Improvement of Statistical Decisions under Parametric Uncertainty
NASA Astrophysics Data System (ADS)
Nechval, Nicholas A.; Nechval, Konstantin N.; Purgailis, Maris; Berzins, Gundars; Rozevskis, Uldis
2011-10-01
A large number of problems in production planning and scheduling, location, transportation, finance, and engineering design require that decisions be made in the presence of uncertainty. Decision-making under uncertainty is a central problem in statistical inference, and has been formally studied in virtually all approaches to inference. The aim of the present paper is to show how the invariant embedding technique, the idea of which belongs to the authors, may be employed in the particular case of finding the improved statistical decisions under parametric uncertainty. This technique represents a simple and computationally attractive statistical method based on the constructive use of the invariance principle in mathematical statistics. Unlike the Bayesian approach, an invariant embedding technique is independent of the choice of priors. It allows one to eliminate unknown parameters from the problem and to find the best invariant decision rule, which has smaller risk than any of the well-known decision rules. To illustrate the proposed technique, application examples are given.
A Comparison of Parametric versus Nonparametric Statistics.
ERIC Educational Resources Information Center
Royeen, Charlotte Brasic
In order to examine the possible effects of violation of assumptions using parametric procedures, this study is an exploratory investigation into the use of parametric versus nonparametric procedures using a multiple case study design. The case study investigation guidelines outlined by Yin served as the methodology. The following univariate…
Application of parametric statistical weights in CAD imaging systems
NASA Astrophysics Data System (ADS)
Galperin, Michael
2005-04-01
PURPOSE: To propose a method for Parametric Statistical Weights (PSW) estimations and analyze its statistical impact in Computer-Aided Diagnosis Imaging Systems based on a Relative Similarity (CADIRS) classification approach. MATERIALS AND METHODS: A Multifactor statistical method was developed and applied for Parametric Statistical Weights calculations in CADIRS. The implemented PSW method was used for statistical estimations of PSW impact when applied to a clinically validated breast ultrasound digital database of 332 patients' cases with biopsy proven findings. The method is based on the assumption that each parameter used in Relative Similarity (RS) classifier contributes to the deviation of the diagnostic prediction proportionally to the normalized value of its coefficient of multiple regression. The calculated by CADIRS Relative Similarity values with and without PSW were statistically estimated, compared and analyzed (on subset of cases) using classic Receiver Operator Characteristic (ROC) analysis methods. RESULTS: When CADIRS classification scheme was augmented with PSW the Relative Similarity the calculated values were 2-5% higher in average. Numeric estimations of PSW allowed decomposition of statistical significance for each component (factor) and its impact on similarity to the diagnostic results (biopsy proven). CONCLUSION: Parametric Statistical Weights in Computer-Aided Diagnosis Imaging Systems based on a Relative Similarity classification approach can be successfully applied in an effort to enhance overall classification (including scoring) outcomes. For the analyzed cohort of 332 cases the application of PSW increased Relative Similarity to the retrieved templates with known findings by 2-5% in average.
Aversi-Ferreira, Roqueline A. G. M. F.; Nishijo, Hisao; Aversi-Ferreira, Tales Alexandre
2015-01-01
Various statistical methods have been published for comparative anatomy. However, few studies compared parametric and nonparametric statistical methods. Moreover, some previous studies using statistical method for comparative anatomy (SMCA) proposed the formula for comparison of groups of anatomical structures (multiple structures) among different species. The present paper described the usage of SMCA and compared the results by SMCA with those by parametric test (t-test) and nonparametric analyses (cladistics) of anatomical data. In conclusion, the SMCA can offer a more exact and precise way to compare single and multiple anatomical structures across different species, which requires analyses of nominal features in comparative anatomy. PMID:26413553
Aversi-Ferreira, Roqueline A G M F; Nishijo, Hisao; Aversi-Ferreira, Tales Alexandre
2015-01-01
Various statistical methods have been published for comparative anatomy. However, few studies compared parametric and nonparametric statistical methods. Moreover, some previous studies using statistical method for comparative anatomy (SMCA) proposed the formula for comparison of groups of anatomical structures (multiple structures) among different species. The present paper described the usage of SMCA and compared the results by SMCA with those by parametric test (t-test) and nonparametric analyses (cladistics) of anatomical data. In conclusion, the SMCA can offer a more exact and precise way to compare single and multiple anatomical structures across different species, which requires analyses of nominal features in comparative anatomy. PMID:26413553
Shiraishi, Hideaki; Stufflebeam, Steven M; Knake, Susanne; Ahlfors, Seppo P; Sudo, Akira; Asahina, Naoko; Egawa, Kiyoshi; Hatanaka, Keisaku; Kohsaka, Shinobu; Saitoh, Shinji; Grant, P Ellen; Dale, Anders M; Halgren, Eric
2005-04-01
Our current purpose is to evaluate the applicability of dynamic statistical parametric mapping, a novel method for localizing epileptiform activity recorded with magnetoencephalography in patients with epilepsy. We report four pediatric patients with focal epilepsies. Magnetoencephalographic data were collected with a 306-channel whole-head helmet-shaped sensor array. We calculated equivalent current dipoles and dynamic statistical parametric mapping movies of the interictal epileptiform discharges that were based in the minimum-L2 norm estimate, minimizing the square sum of the dipole element amplitudes. The dynamic statistical parametric mapping analysis of interictal epileptiform discharges can demonstrate the rapid change and propagation of interical epileptiform discharges. According to these findings, specific epileptogenic lesion-focal cortical dysplasia could be found and patients could be operated on successfully. The presurgical analysis of interictal epileptiform discharges using dynamic statistical parametric mapping seems to be promising in patients with a possible underlying focal cortical dysplasia and might help to guide the placement of invasive electrodes. PMID:15921240
Applying Statistical Models and Parametric Distance Measures for Music Similarity Search
NASA Astrophysics Data System (ADS)
Lukashevich, Hanna; Dittmar, Christian; Bastuck, Christoph
Automatic deriving of similarity relations between music pieces is an inherent field of music information retrieval research. Due to the nearly unrestricted amount of musical data, the real-world similarity search algorithms have to be highly efficient and scalable. The possible solution is to represent each music excerpt with a statistical model (ex. Gaussian mixture model) and thus to reduce the computational costs by applying the parametric distance measures between the models. In this paper we discuss the combinations of applying different parametric modelling techniques and distance measures and weigh the benefits of each one against the others.
Shafieloo, Arman
2012-05-01
By introducing Crossing functions and hyper-parameters I show that the Bayesian interpretation of the Crossing Statistics [1] can be used trivially for the purpose of model selection among cosmological models. In this approach to falsify a cosmological model there is no need to compare it with other models or assume any particular form of parametrization for the cosmological quantities like luminosity distance, Hubble parameter or equation of state of dark energy. Instead, hyper-parameters of Crossing functions perform as discriminators between correct and wrong models. Using this approach one can falsify any assumed cosmological model without putting priors on the underlying actual model of the universe and its parameters, hence the issue of dark energy parametrization is resolved. It will be also shown that the sensitivity of the method to the intrinsic dispersion of the data is small that is another important characteristic of the method in testing cosmological models dealing with data with high uncertainties.
Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation
NASA Astrophysics Data System (ADS)
Karakatsanis, Nicolas A.; Lodge, Martin A.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman
2013-10-01
In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (˜15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study
Biological Parametric Mapping: A Statistical Toolbox for Multi-Modality Brain Image Analysis
Casanova, Ramon; Ryali, Srikanth; Baer, Aaron; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru; Flowers, Lynn; Wood, Frank; Maldjian, Joseph A.
2006-01-01
In recent years multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in MATLAB with a user friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely-used T-field, has been implemented in the correlation analysis for more accurate results. An example with in-vivo data is presented demonstrating the potential of the BPM methodology as a tool for multimodal image analysis. PMID:17070709
Statistical structuring theory in parametrically excitable dynamical systems with a Gaussian pump
NASA Astrophysics Data System (ADS)
Klyatskin, V. I.; Koshel, K. V.
2016-03-01
Based on the idea of the statistical topography, we analyze the problem of emergence of stochastic structure formation in linear and quasilinear problems described by first-order partial differential equations. The appearance of a parametric excitation on the background of a Gaussian pump is a specific feature of these problems. We obtain equations for the probability density of the solutions of these equations, whence it follows that the stochastic structure formation emerges with probability one, i.e., for almost every realization of the random parameters of the medium.
Phase locking and quantum statistics in a parametrically driven nonlinear resonator
NASA Astrophysics Data System (ADS)
Hovsepyan, G. H.; Shahinyan, A. R.; Chew, Lock Yue; Kryuchkyan, G. Yu.
2016-04-01
We discuss phase-locking phenomenon at low-level of quanta and quantum statistics for parametrically driven nonlinear Kerr resonator (PDNR). Oscillatory mode of PDNR is created in the process of a degenerate down-conversion of photons under interaction with a train of external Gaussian pulses. We calculate the distribution of photon-number states, the second-order correlation function of photons, the Wigner functions of cavity mode showing two-fold symmetry in phase space, and we analyze formation of phase-locked states in the regular as well as the quantum chaotic regime of the PDNR.
Packham, B; Barnes, G; Dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D
2016-06-01
Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p < 0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity. PMID:27203477
NASA Astrophysics Data System (ADS)
Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon
2013-07-01
This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.
Fouré, Alexandre; Le Troter, Arnaud; Guye, Maxime; Mattei, Jean-Pierre; Bendahan, David; Gondin, Julien
2015-01-01
In the present study, we proposed an original and robust methodology which combines the spatial normalization of skeletal muscle images, the statistical parametric mapping (SPM) analysis and the use of a specific parcellation in order to accurately localize and quantify the extent of skeletal muscle damage within the four heads of the quadriceps femoris. T2 maps of thigh muscles were characterized before, two (D2) and four (D4) days after 40 maximal isometric electrically-evoked contractions in 25 healthy young males. On the basis of SPM analysis of coregistrated T2 maps, the alterations were similarly detected at D2 and D4 in the superficial and distal regions of the vastus medialis (VM) whereas the proportion of altered muscle was higher in deep muscle regions of the vastus lateralis at D4 (deep: 35 ± 25%, superficial: 23 ± 15%) as compared to D2 (deep: 18 ± 13%, superficial: 17 ± 13%). The present methodology used for the first time on skeletal muscle would be of utmost interest to detect subtle intramuscular alterations not only for the diagnosis of muscular diseases but also for assessing the efficacy of potential therapeutic interventions and clinical treatment strategies. PMID:26689827
Nguyen, Peter T; Holschneider, Daniel P; Maarek, Jean-Michel I; Yang, Jun; Mandelkern, Mark A
2004-09-01
Autoradiographs are conventionally analyzed by a region-of-interest (ROI) analysis. However, definition of ROIs on an image set is labor intensive, is subject to potential inter-rater bias, and is not well suited for anatomically variable structures that may not consistently correspond to specific ROIs. Most importantly, the ROI method is poorly suited for whole-brain analysis, where one wishes to detect all activations resulting from an experimental paradigm. A system developed for analysis of imaging data in humans, Statistical Parametric Mapping (SPM), avoids some of these limitations but has not previously been adapted as a tool for the analysis of autoradiographs. Here, we describe the application of SPM to an autoradiographic data set mapping cerebral activation in rats during treadmill walking. We studied freely moving, non-tethered rats that received injections of the cerebral blood flow tracer [14C]-iodoantipyrine, while they were performing a treadmill task (n = 7) or during a quiescent control condition (n = 6). Results obtained with SPM were compared to those previously reported using a standard ROI-based method of analysis [J. Cereb. Blood Flow Metab. 23(2003) 925]. The SPM method confirmed most areas detected as significant using the ROI approach. However, in the subcortex, SPM detected additional significant regions that, because of their irregular structures, fell short of statistical significance when analyzed by ROI. The SPM approach offers the ability to perform a semi-automated whole-brain analysis, and coupled with autoradiography, provides an effective means to globally localize functional activity in small animals. PMID:15325372
NASA Astrophysics Data System (ADS)
Grützun, Verena; Quaas, Johannes; Ament, Felix
2010-05-01
Cloud feedbacks are appreciated to be one of the reasons for the large scatter of Global Climate Model (GCM) simulations (Randall et al., 2007). One way to reduce the uncertainties in the representation of clouds and their feedback to the climate is a thorough evaluation of the respective cloud process parametrizations in GCMs. While satellite observations are useful tools for a first evaluation, they lack important information such as, for example, accurate water vapor retrievals. Also, the spacial resolution of satellite data, especially the vertical one, is too coarse to gain comprehensive information about the atmospheric state, which is crucial for a model improvement on the process level. A more detailed data basis with higher vertical resolution and more information about the atmospheric constituents and properties can be retrieved from ground-based remote sensing. Especially, through measurements of lidar, radar and radiometers at certain locations for long time periods, a comprehensive data set for model evaluation can be gained: Using the Integrated Profiling Technique (IPT, Löhnert et al., 2004) to combine the different measurements it is possible to retrieve accurate vertical profiles of humidity, liquid water, temperature, and also the hydrometeor distribution within the clouds along with the corresponding uncertainties in the data. We will make use of long-term ground-based remote sensing data by University of Hamburg and by the Richard-Aßmann-Observatory of the Deutscher Wetterdienst (DWD) to evaluate and improve the statistical cloud scheme by (Tompkins, 2002) in ECHAM6 (Roeckner et al., 2003). For the first time, the statistical representation of the total liquid water content and the respective cloud cover, which has been developed basing on cloud resolving model simulations, will be tested against detailed measurements. To link the column data to the comparably coarse resolution of a GCM, a statistical analysis over long time periods of the
NASA Technical Reports Server (NTRS)
Lua, Yuan J.; Liu, Wing K.; Belytschko, Ted
1992-01-01
A stochastic damage model for predicting the rupture of a brittle multiphase material is developed, based on the microcrack-macrocrack interaction. The model, which incorporates uncertainties in locations, orientations, and numbers of microcracks, characterizes damage by microcracking and fracture by macrocracking. A parametric study is carried out to investigate the change of the stress intensity at the macrocrack tip by the configuration of microcracks. The inherent statistical distribution of the fracture toughness arising from the intrinsic random nature of microcracks is explored using a statistical approach. For this purpose, a computer simulation model is introduced, which incorporates a statistical characterization of geometrical parameters of a random microcrack array.
Spatial-Temporal Change Detection in NDVI Data Through Statistical Parametric Mapping
NASA Astrophysics Data System (ADS)
McKenna, S. A.; Yadav, V.; Gutierrez, K.
2011-12-01
Detection of significant changes in vegetation patterns provides a quantitative means of defining phenological response to changing climate. These changes may be indicative of long-term trends or shorter-duration conditions. In either case, quantifying the significance of the change patterns is critical in order to better understand the underlying processes. Spatial and temporal correlation within imaged data sets complicates change detection and must be taken into account. We apply a novel approach, Statistical Parametric Mapping (SPM), to change detection in Normalized Difference Vegetation Index (NDVI) data. SPM has been developed for identification of regions of anomalous activation in human brain imaging given functional magnetic resonance imaging (fMRI) data. Here, we adapt SPM to work on identifying anomalous regions of vegetation density within 30 years of weekly NDVI imagery. Significant change in any given image pixel is defined as a deviation from the expected value. Expected values are calculated using sinusoidal regression models fit to previous data at that location. The amount of deviation of an observation from the expected value is calculated using a modified t-test that accounts for temporal correlation in the regression data. The t-tests are applied independently to each pixel to create a t-statistic map for every time step. For a given time step, the probability that the maximum t-value exceeds a given threshold can be calculated to determine times with significant deviations, but standard techniques are not applicable due to the large number of pixels searched to find the maximum. SPM takes into account the spatial correlation of the t-statistic map to determine the significance of the maximum observed t-value. Theory developed for truncated Gaussian fields as part of SPM provides the expected number and size of regions within the t-statistic map that exceed a given threshold. The significance of the excursion regions can be assessed and then
Chaibub Neto, Elias
2015-01-01
In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson’s sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling. PMID:26125965
ERIC Educational Resources Information Center
Ferrando, Pere J.; Lorenzo, Urbano
2000-01-01
Describes a program for computing different person-fit measures under different parametric item response models for binary items. The indexes can be computed for the Rasch model and the two- and three-parameter logistic models. The program can plot person response curves to allow the researchers to investigate the nonfitting response behavior of…
Abdalla, M. Sebawe Khalil, E.M. Obada, A.S.-F.
2007-11-15
A Hamiltonian model that includes two-photon interaction with a two-level atom and a degenerate parametric amplifier is considered. By invoking a canonical transformation an exact solution of the wave function in the Schroedinger picture is obtained. The result presented in this context is employed to discuss the purity, the entropy squeezing, and the variance squeezing, in addition to the normal squeezing. It has been shown that the existence of the second harmonic generation leads to reduction in the squeezing amount for all quadrature variances and we found that as the value of the coupling parameter {lambda}{sub 2} increases the squeezing phenomenon gets more apparent. Further we have also considered the Q-function as an example of the quasi-probability distribution.
Park, Hae-Jeong; Kwon, Jun Soo; Youn, Tak; Pae, Ji Soo; Kim, Jae-Jin; Kim, Myung-Sun; Ha, Kyoo-Seob
2002-11-01
We describe a method for the statistical parametric mapping of low resolution electromagnetic tomography (LORETA) using high-density electroencephalography (EEG) and individual magnetic resonance images (MRI) to investigate the characteristics of the mismatch negativity (MMN) generators in schizophrenia. LORETA, using a realistic head model of the boundary element method derived from the individual anatomy, estimated the current density maps from the scalp topography of the 128-channel EEG. From the current density maps that covered the whole cortical gray matter (up to 20,000 points), volumetric current density images were reconstructed. Intensity normalization of the smoothed current density images was used to reduce the confounding effect of subject specific global activity. After transforming each image into a standard stereotaxic space, we carried out statistical parametric mapping of the normalized current density images. We applied this method to the source localization of MMN in schizophrenia. The MMN generators, produced by a deviant tone of 1,200 Hz (5% of 1,600 trials) under the standard tone of 1,000 Hz, 80 dB binaural stimuli with 300 msec of inter-stimulus interval, were measured in 14 right-handed schizophrenic subjects and 14 age-, gender-, and handedness-matched controls. We found that the schizophrenic group exhibited significant current density reductions of MMN in the left superior temporal gyrus and the left inferior parietal gyrus (P < 0. 0005). This study is the first voxel-by-voxel statistical mapping of current density using individual MRI and high-density EEG. PMID:12391570
Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy
NASA Astrophysics Data System (ADS)
Gil, D.; Garcia-Barnes, J.; Hernández-Sabate, A.; Marti, E.
2010-03-01
Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature.
NASA Astrophysics Data System (ADS)
Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K.; Ourselin, Sébastien
2006-03-01
Subdivision surfaces and parameterization are desirable for many algorithms that are commonly used in Medical Image Analysis. However, extracting an accurate surface and parameterization can be difficult for many anatomical objects of interest, due to noisy segmentations and the inherent variability of the object. The thin cartilages of the knee are an example of this, especially after damage is incurred from injuries or conditions like osteoarthritis. As a result, the cartilages can have different topologies or exist in multiple pieces. In this paper we present a topology preserving (genus 0) subdivision-based parametric deformable model that is used to extract the surfaces of the patella and tibial cartilages in the knee. These surfaces have minimal thickness in areas without cartilage. The algorithm inherently incorporates several desirable properties, including: shape based interpolation, sub-division remeshing and parameterization. To illustrate the usefulness of this approach, the surfaces and parameterizations of the patella cartilage are used to generate a 3D statistical shape model.
Bogaerts, Louisa; Siegelman, Noam; Frost, Ram
2016-08-01
What determines individuals' efficacy in detecting regularities in visual statistical learning? Our theoretical starting point assumes that the variance in performance of statistical learning (SL) can be split into the variance related to efficiency in encoding representations within a modality and the variance related to the relative computational efficiency of detecting the distributional properties of the encoded representations. Using a novel methodology, we dissociated encoding from higher-order learning factors, by independently manipulating exposure duration and transitional probabilities in a stream of visual shapes. Our results show that the encoding of shapes and the retrieving of their transitional probabilities are not independent and additive processes, but interact to jointly determine SL performance. The theoretical implications of these findings for a mechanistic explanation of SL are discussed. PMID:26743060
NASA Astrophysics Data System (ADS)
Lucarini, V.; Speranza, A.; Vitolo, R.
2009-04-01
A quasi-geostrophic intermediate complexity model of the mid-latitude atmospheric circulation is considered, featuring simplified baroclinic conversion and barotropic convergence processes. The model undergoes baroclinic forcing towards a given latitudinal temperature profile controlled by the forced equator-to-pole temperature difference Te. When Te increases, a transition takes place from a stationary regime-Hadley equilibrium-to a periodic regime, and eventually to a chaotic regime where evolution takes place on a strange attractor. The attractor dimension, metric entropy, and bounding box volume in phase space have a smooth dependence on Te which results in power-law scaling properties. Power-law scalings are detected also for the statistical properties of global physical observables — the total energy of the system and the averaged zonal wind. The scaling laws, which constitute the main novel result of the present work, can be thought to result from the presence of a statistical process of baroclinic adjustment, which tends to decrease the equator-to-pole temperature difference and determines the properties of the attractor of the system. The self-similarity could be of great help in setting up a theory for the overall statistical properties of the general circulation of the atmosphere and in guiding-on a heuristic basis-both data analysis and realistic simulations, going beyond the unsatisfactory mean field theories and /brute force/ approaches. A leading example for this would be the possibility of estimating the sensitivity of the output of the system with respect to changes in the parameters. Ref: Valerio Lucarini, Antonio Speranza, Renato Vitolo, Parametric smoothness and self-scaling of the statistical properties of a minimal climate model: What beyond the mean field theories?, Physica D, 234 (2007), 105-123
Panagiotopoulou, Olga; Pataky, Todd C; Hill, Zoe; Hutchinson, John R
2012-05-01
Foot pressure distributions during locomotion have causal links with the anatomical and structural configurations of the foot tissues and the mechanics of locomotion. Elephant feet have five toes bound in a flexible pad of fibrous tissue (digital cushion). Does this specialized foot design control peak foot pressures in such giant animals? And how does body size, such as during ontogenetic growth, influence foot pressures? We addressed these questions by studying foot pressure distributions in elephant feet and their correlation with body mass and centre of pressure trajectories, using statistical parametric mapping (SPM), a neuro-imaging technology. Our results show a positive correlation between body mass and peak pressures, with the highest pressures dominated by the distal ends of the lateral toes (digits 3, 4 and 5). We also demonstrate that pressure reduction in the elephant digital cushion is a complex interaction of its viscoelastic tissue structure and its centre of pressure trajectories, because there is a tendency to avoid rear 'heel' contact as an elephant grows. Using SPM, we present a complete map of pressure distributions in elephant feet during ontogeny by performing statistical analysis at the pixel level across the entire plantar/palmar surface. We hope that our study will build confidence in the potential clinical and scaling applications of mammalian foot pressures, given our findings in support of a link between regional peak pressures and pathogenesis in elephant feet. PMID:22496296
Goumeidane, Aicha Baya; Nacereddine, Nafaa; Khamadja, Mohammed
2015-01-01
A perfect knowledge of a defect shape is determinant for the analysis step in automatic radiographic inspection. Image segmentation is carried out on radiographic images and extract defects indications. This paper deals with weld defect delineation in radiographic images. The proposed method is based on a new statistics-based explicit active contour. An association of local and global modeling of the image pixels intensities is used to push the model to the desired boundaries. Furthermore, other strategies are proposed to accelerate its evolution and make the convergence speed depending only on the defect size as selecting a band around the active contour curve. The experimental results are very promising, since experiments on synthetic and radiographic images show the ability of the proposed model to extract a piece-wise homogenous object from very inhomogeneous background, even in a bad quality image. PMID:26410464
Fujita, André; Takahashi, Daniel Y; Patriota, Alexandre G; Sato, João R
2014-12-10
Statistical inference of functional magnetic resonance imaging (fMRI) data is an important tool in neuroscience investigation. One major hypothesis in neuroscience is that the presence or not of a psychiatric disorder can be explained by the differences in how neurons cluster in the brain. Therefore, it is of interest to verify whether the properties of the clusters change between groups of patients and controls. The usual method to show group differences in brain imaging is to carry out a voxel-wise univariate analysis for a difference between the mean group responses using an appropriate test and to assemble the resulting 'significantly different voxels' into clusters, testing again at cluster level. In this approach, of course, the primary voxel-level test is blind to any cluster structure. Direct assessments of differences between groups at the cluster level seem to be missing in brain imaging. For this reason, we introduce a novel non-parametric statistical test called analysis of cluster structure variability (ANOCVA), which statistically tests whether two or more populations are equally clustered. The proposed method allows us to compare the clustering structure of multiple groups simultaneously and also to identify features that contribute to the differential clustering. We illustrate the performance of ANOCVA through simulations and an application to an fMRI dataset composed of children with attention deficit hyperactivity disorder (ADHD) and controls. Results show that there are several differences in the clustering structure of the brain between them. Furthermore, we identify some brain regions previously not described to be involved in the ADHD pathophysiology, generating new hypotheses to be tested. The proposed method is general enough to be applied to other types of datasets, not limited to fMRI, where comparison of clustering structures is of interest. PMID:25185759
Scarpazza, Cristina; Nichols, Thomas E.; Seramondi, Donato; Maumet, Camille; Sartori, Giuseppe; Mechelli, Andrea
2016-01-01
In recent years, an increasing number of studies have used Voxel Based Morphometry (VBM) to compare a single patient with a psychiatric or neurological condition of interest against a group of healthy controls. However, the validity of this approach critically relies on the assumption that the single patient is drawn from a hypothetical population with a normal distribution and variance equal to that of the control group. In a previous investigation, we demonstrated that family-wise false positive error rate (i.e., the proportion of statistical comparisons yielding at least one false positive) in single case VBM are much higher than expected (Scarpazza et al., 2013). Here, we examine whether the use of non-parametric statistics, which does not rely on the assumptions of normal distribution and equal variance, would enable the investigation of single subjects with good control of false positive risk. We empirically estimated false positive rates (FPRs) in single case non-parametric VBM, by performing 400 statistical comparisons between a single disease-free individual and a group of 100 disease-free controls. The impact of smoothing (4, 8, and 12 mm) and type of pre-processing (Modulated, Unmodulated) was also examined, as these factors have been found to influence FPRs in previous investigations using parametric statistics. The 400 statistical comparisons were repeated using two independent, freely available data sets in order to maximize the generalizability of the results. We found that the family-wise error rate was 5% for increases and 3.6% for decreases in one data set; and 5.6% for increases and 6.3% for decreases in the other data set (5% nominal). Further, these results were not dependent on the level of smoothing and modulation. Therefore, the present study provides empirical evidence that single case VBM studies with non-parametric statistics are not susceptible to high false positive rates. The critical implication of this finding is that VBM can be used
Balasubramanian, Madhusudhanan; Arias-Castro, Ery; Medeiros, Felipe A.; Kriegman, David J.; Bowd, Christopher; Weinreb, Robert N.; Holst, Michael; Sample, Pamela A.; Zangwill, Linda M.
2014-01-01
Purpose. We evaluated three new pixelwise rates of retinal height changes (PixR) strategies to reduce false-positive errors while detecting glaucomatous progression. Methods. Diagnostic accuracy of nonparametric PixR-NP cluster test (CT), PixR-NP single threshold test (STT), and parametric PixR-P STT were compared to statistic image mapping (SIM) using the Heidelberg Retina Tomograph. We included 36 progressing eyes, 210 nonprogressing patient eyes, and 21 longitudinal normal eyes from the University of California, San Diego (UCSD) Diagnostic Innovations in Glaucoma Study. Multiple comparison problem due to simultaneous testing of retinal locations was addressed in PixR-NP CT by controlling family-wise error rate (FWER) and in STT methods by Lehmann-Romano's k-FWER. For STT methods, progression was defined as an observed progression rate (ratio of number of pixels with significant rate of decrease; i.e., red-pixels, to disk size) > 2.5%. Progression criterion for CT and SIM methods was presence of one or more significant (P < 1%) red-pixel clusters within disk. Results. Specificity in normals: CT = 81% (90%), PixR-NP STT = 90%, PixR-P STT = 90%, SIM = 90%. Sensitivity in progressing eyes: CT = 86% (86%), PixR-NP STT = 75%, PixR-P STT = 81%, SIM = 39%. Specificity in nonprogressing patient eyes: CT = 49% (55%), PixR-NP STT = 56%, PixR-P STT = 50%, SIM = 79%. Progression detected by PixR in nonprogressing patient eyes was associated with early signs of visual field change that did not yet meet our definition of glaucomatous progression. Conclusions. The PixR provided higher sensitivity in progressing eyes and similar specificity in normals than SIM, suggesting that PixR strategies can improve our ability to detect glaucomatous progression. Longer follow-up is necessary to determine whether nonprogressing eyes identified as progressing by these methods will develop glaucomatous progression. (ClinicalTrials.gov number, NCT00221897.) PMID:24519427
NASA Astrophysics Data System (ADS)
Gallego, A.; Benavent-Climent, A.; Romo-Melo, L.
2015-08-01
The paper proposes a new application of non-parametric statistical processing of signals recorded from vibration tests for damage detection and evaluation on I-section steel segments. The steel segments investigated constitute the energy dissipating part of a new type of hysteretic damper that is used for passive control of buildings and civil engineering structures subjected to earthquake-type dynamic loadings. Two I-section steel segments with different levels of damage were instrumented with piezoceramic sensors and subjected to controlled white noise random vibrations. The signals recorded during the tests were processed using two non-parametric methods (the power spectral density method and the frequency response function method) that had never previously been applied to hysteretic dampers. The appropriateness of these methods for quantifying the level of damage on the I-shape steel segments is validated experimentally. Based on the results of the random vibrations, the paper proposes a new index that predicts the level of damage and the proximity of failure of the hysteretic damper.
Jamalabadi, Hamidreza; Alizadeh, Sarah; Schönauer, Monika; Leibold, Christian; Gais, Steffen
2016-05-01
Multivariate pattern analysis (MVPA) has recently become a popular tool for data analysis. Often, classification accuracy as quantified by correct classification rate (CCR) is used to illustrate the size of the effect under investigation. However, we show that in low sample size (LSS), low effect size (LES) data, which is typical in neuroscience, the distribution of CCRs from cross-validation of linear MVPA is asymmetric and can show classification rates considerably below what would be expected from chance classification. Conversely, the mode of the distribution in these cases is above expected chance levels, leading to a spuriously high number of above chance CCRs. This unexpected distribution has strong implications when using MVPA for hypothesis testing. Our analyses warrant the conclusion that CCRs do not well reflect the size of the effect under investigation. Moreover, the skewness of the null-distribution precludes the use of many standard parametric tests to assess significance of CCRs. We propose that MVPA results should be reported in terms of P values, which are estimated using randomization tests. Also, our results show that cross-validation procedures using a low number of folds, e.g. twofold, are generally more sensitive, even though the average CCRs are often considerably lower than those obtained using a higher number of folds. Hum Brain Mapp 37:1842-1855, 2016. © 2016 Wiley Periodicals, Inc. PMID:27015748
NASA Astrophysics Data System (ADS)
Marchand, Paul J.; Bouwens, Arno; Shamaei, Vincent; Nguyen, David; Extermann, Jerome; Bolmont, Tristan; Lasser, Theo
2016-03-01
Magnetic Resonance Imaging has revolutionised our understanding of brain function through its ability to image human cerebral structures non-invasively over the entire brain. By exploiting the different magnetic properties of oxygenated and deoxygenated blood, functional MRI can indirectly map areas undergoing neural activation. Alongside the development of fMRI, powerful statistical tools have been developed in an effort to shed light on the neural pathways involved in processing of sensory and cognitive information. In spite of the major improvements made in fMRI technology, the obtained spatial resolution of hundreds of microns prevents MRI in resolving and monitoring processes occurring at the cellular level. In this regard, Optical Coherence Microscopy is an ideal instrumentation as it can image at high spatio-temporal resolution. Moreover, by measuring the mean and the width of the Doppler spectra of light scattered by moving particles, OCM allows extracting the axial and lateral velocity components of red blood cells. The ability to assess quantitatively total blood velocity, as opposed to classical axial velocity Doppler OCM, is of paramount importance in brain imaging as a large proportion of cortical vascular is oriented perpendicularly to the optical axis. We combine here quantitative blood flow imaging with extended-focus Optical Coherence Microscopy and Statistical Parametric Mapping tools to generate maps of stimuli-evoked cortical hemodynamics at the capillary level.
Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.
NASA Astrophysics Data System (ADS)
Ahmad, Waqas; Fatima, Aamira; Awan, Usman Khalid; Anwar, Arif
2014-11-01
The Indus basin of Pakistan is vulnerable to climate change which would directly affect the livelihoods of poor people engaged in irrigated agriculture. The situation could be worse in middle and lower part of this basin which occupies 90% of the irrigated area. The objective of this research is to analyze the long term meteorological trends in the middle and lower parts of Indus basin of Pakistan. We used monthly data from 1971 to 2010 and applied non-parametric seasonal Kendal test for trend detection in combination with seasonal Kendall slope estimator to quantify the magnitude of trends. The meteorological parameters considered were mean maximum and mean minimum air temperature, and rainfall from 12 meteorological stations located in the study region. We examined the reliability and spatial integrity of data by mass-curve analysis and spatial correlation matrices, respectively. Analysis was performed for four seasons (spring-March to May, summer-June to August, fall-September to November and winter-December to February). The results show that max. temperature has an average increasing trend of magnitude + 0.16, + 0.03, 0.0 and + 0.04 °C/decade during all the four seasons, respectively. The average trend of min. temperature during the four seasons also increases with magnitude of + 0.29, + 0.12, + 0.36 and + 0.36 °C/decade, respectively. Persistence of the increasing trend is more pronounced in the min. temperature as compared to the max. temperature on annual basis. Analysis of rainfall data has not shown any noteworthy trend during winter, fall and on annual basis. However during spring and summer season, the rainfall trends vary from - 1.15 to + 0.93 and - 3.86 to + 2.46 mm/decade, respectively. It is further revealed that rainfall trends during all seasons are statistically non-significant. Overall the study area is under a significant warming trend with no changes in rainfall.
NASA Astrophysics Data System (ADS)
Branch, Allan C.
1998-01-01
Parametric mapping (PM) lies midway between older and proven artificial landmark based guidance systems and yet to be realized vision based guidance systems. It is a simple yet effective natural landmark recognition system offering freedom from the need for enhancements to the environment. Development of PM systems can be inexpensive and rapid and they are starting to appear in commercial and industrial applications. Together with a description of the structural framework developed to generically describe robot mobility, this paper illustrates clearly the parts of any mobile robot navigation and guidance system and their interrelationships. Among other things, the importance of the richness of the reference map, and not necessarily the sensor map, is introduced, the benefits of dynamic path planners to alleviate the need for separate object avoidance, and the independence of the PM system to the type of sensor input is shown.
Parametric Hazard Function Estimation.
Energy Science and Technology Software Center (ESTSC)
1999-09-13
Version 00 Phaze performs statistical inference calculations on a hazard function (also called a failure rate or intensity function) based on reported failure times of components that are repaired and restored to service. Three parametric models are allowed: the exponential, linear, and Weibull hazard models. The inference includes estimation (maximum likelihood estimators and confidence regions) of the parameters and of the hazard function itself, testing of hypotheses such as increasing failure rate, and checking ofmore » the model assumptions.« less
Parametric Cost Models for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2010-01-01
A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.
Feng, Dagan; Wang, Zhizhong . Basser Dept. of Computer Science); Huang, Sung Cheng . Dept. of Radiological Sciences)
1993-06-01
With the advent of positron emission tomography (PET), a variety of techniques have been developed to measure local cerebral blood flow (LCBF) noninvasively in humans. It is essential that the techniques developed should be statistically reliable and computationally efficient. A potential class of techniques, which includes linear least squares (LS), linear weighted least squares (WLS), linear generalized least squares (GLS), and linear generalized weighted least squares (GWLS), is proposed. The statistical characteristics of the new methods were examined by computer simulation. The authors present a comparison of these four methods with two other rapid estimation techniques developed by Huang et al. and Alpert, and two classical methods, the unweighted and weighted nonlinear least squares regression which are supposed to have optimal statistical properties. The results show that the new methods can take full advantage of the contribution from the fine temporal sampling data of modern tomographs, and thus provide statistically reliable estimates that are comparable to those obtained from nonlinear least squares regression. The new methods also have high computational efficiency, and the parameters can be estimated directly from operational equations in one single step. Therefore, they can potentially be used in image-wide estimation of local cerebral blood flow and distribution volume with positron emission tomography.
NASA Astrophysics Data System (ADS)
Chen, Kewei; Ge, Xiaolin; Yao, Li; Bandy, Dan; Alexander, Gene E.; Prouty, Anita; Burns, Christine; Zhao, Xiaojie; Wen, Xiaotong; Korn, Ronald; Lawson, Michael; Reiman, Eric M.
2006-03-01
Having approved fluorodeoxyglucose positron emission tomography (FDG PET) for the diagnosis of Alzheimer's disease (AD) in some patients, the Centers for Medicare and Medicaid Services suggested the need to develop and test analysis techniques to optimize diagnostic accuracy. We developed an automated computer package comparing an individual's FDG PET image to those of a group of normal volunteers. The normal control group includes FDG-PET images from 82 cognitively normal subjects, 61.89+/-5.67 years of age, who were characterized demographically, clinically, neuropsychologically, and by their apolipoprotein E genotype (known to be associated with a differential risk for AD). In addition, AD-affected brain regions functionally defined as based on a previous study (Alexander, et al, Am J Psychiatr, 2002) were also incorporated. Our computer package permits the user to optionally select control subjects, matching the individual patient for gender, age, and educational level. It is fully streamlined to require minimal user intervention. With one mouse click, the program runs automatically, normalizing the individual patient image, setting up a design matrix for comparing the single subject to a group of normal controls, performing the statistics, calculating the glucose reduction overlap index of the patient with the AD-affected brain regions, and displaying the findings in reference to the AD regions. In conclusion, the package automatically contrasts a single patient to a normal subject database using sound statistical procedures. With further validation, this computer package could be a valuable tool to assist physicians in decision making and communicating findings with patients and patient families.
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1995-01-01
Parametric cost analysis is a mathematical approach to estimating cost. Parametric cost analysis uses non-cost parameters, such as quality characteristics, to estimate the cost to bring forth, sustain, and retire a product. This paper reviews parametric cost analysis and shows how it can be used within the cost deployment process.
Measurement selection for parametric IC fault diagnosis
NASA Technical Reports Server (NTRS)
Wu, A.; Meador, J.
1991-01-01
Experimental results obtained with the use of measurement reduction for statistical IC fault diagnosis are described. The reduction method used involves data pre-processing in a fashion consistent with a specific definition of parametric faults. The effects of this preprocessing are examined.
Parametric resonance in tunable superconducting cavities
NASA Astrophysics Data System (ADS)
Wustmann, Waltraut; Shumeiko, Vitaly
2013-05-01
We develop a theory of parametric resonance in tunable superconducting cavities. The nonlinearity introduced by the superconducting quantum interference device (SQUID) attached to the cavity and damping due to connection of the cavity to a transmission line are taken into consideration. We study in detail the nonlinear classical dynamics of the cavity field below and above the parametric threshold for the degenerate parametric resonance, featuring regimes of multistability and parametric radiation. We investigate the phase-sensitive amplification of external signals on resonance, as well as amplification of detuned signals, and relate the amplifier performance to that of linear parametric amplifiers. We also discuss applications of the device for dispersive qubit readout. Beyond the classical response of the cavity, we investigate small quantum fluctuations around the amplified classical signals. We evaluate the noise power spectrum both for the internal field in the cavity and the output field. Other quantum-statistical properties of the noise are addressed such as squeezing spectra, second-order coherence, and two-mode entanglement.
Eberhard, B.J.; Harbour, J.R.; Plodinec, M.J.
1994-06-01
As part of the DWPF Startup Test Program, a parametric study has been performed to determine a range of welder operating parameters which will produce acceptable final welds for canistered waste forms. The parametric window of acceptable welds defined by this study is 90,000 {plus_minus} 15,000 lb of force, 248,000 {plus_minus} 22,000 amps of current, and 95 {plus_minus} 15 cycles (@ 60 cops) for the time of application of the current.
Parametric Rietveld refinement
Stinton, Graham W.; Evans, John S. O.
2007-01-01
In this paper the method of parametric Rietveld refinement is described, in which an ensemble of diffraction data collected as a function of time, temperature, pressure or any other variable are fitted to a single evolving structural model. Parametric refinement offers a number of potential benefits over independent or sequential analysis. It can lead to higher precision of refined parameters, offers the possibility of applying physically realistic models during data analysis, allows the refinement of ‘non-crystallographic’ quantities such as temperature or rate constants directly from diffraction data, and can help avoid false minima. PMID:19461841
Plodinec, M.J.
1998-11-20
After being filled with glass, DWPF canistered waste forms will be welded closed using an upset resistance welding process. This final closure weld must be leaktight, and must remain so during extended storage at SRS. As part of the DWPF Startup Test Program, a parametric study (DWPF-WP-24) has been performed to determine a range of welder operating parameters which will produce acceptable welds. The parametric window of acceptable welds defined by this study is 90,000 + 15,000 lb of force, 248,000 + 22,000 amps of current, and 95 + 15 cycles* for the time of application of the current.
Calibrated parametric medical ultrasound imaging.
Valckx, F M; Thijsse, J M; van Geemen, A J; Rotteveel, J J; Mullaart, R
2000-01-01
The goal of this study was to develop a calibrated on-line technique to extract as much diagnostically-relevant information as possible from conventional video-format echograms. The final aim is to improve the diagnostic potentials of medical ultrasound. Video-output images were acquired by a frame grabber board incorporated in a multiprocessor workstation. Calibration images were obtained from a stable tissue-mimicking phantom with known acoustic characteristics. Using these images as reference, depth dependence of the gray level could fairly be corrected for the transducer performance characteristics, for the observer-dependent equipment settings and for attenuation in the examined tissues. Second-order statistical parameters still displayed some nonconsistent depth dependencies. The results obtained with two echoscanners for the same phantom were different; hence, an a posteriori normalization of clinical data with the phantom data is indicated. Prior to processing of clinical echograms,. the anatomical reflections and echoless voids were removed automatically. The final step in the preprocessing concerned the compensation of the overall attenuation in the tissue. A 'sliding window' processing was then applied to a region of interest (ROI) in the 'back-scan converted' images. A number of first and second order statistical texture parameters and acoustical parameters were estimated in each window and assigned to the central pixel. This procedure results in a set of new 'parametric' images of the ROI, which can be inserted in the original echogram (gray value, color) or presented as a color overlay. A clinical example is presented for illustrating the potentials of the developed technique. Depending on the choice of the parameters, four full resolution calibrated parametric images can be calculated and simultaneously displayed within 5 to 20 seconds. In conclusion, an on-line technique has been developed to estimate acoustic and texture parameters with a reduced
Parametric Differentiation and Integration
ERIC Educational Resources Information Center
Chen, Hongwei
2009-01-01
Parametric differentiation and integration under the integral sign constitutes a powerful technique for calculating integrals. However, this topic is generally not included in the undergraduate mathematics curriculum. In this note, we give a comprehensive review of this approach, and show how it can be systematically used to evaluate most of the…
Comparisons of parametric and non-parametric classification rules for e-nose and e-tongue
NASA Astrophysics Data System (ADS)
Mahat, Nor Idayu; Zakaria, Ammar; Shakaff, Ali Yeon Md
2015-12-01
This paper evaluates the performance of parametric and non-parametric classification rules in sensor technology. The growing of sensor technologies, e-nose and e-tongue, has urged engineers to equip themselves with the utmost recent and advanced statistical approaches. As data collected from e-nose and e-tongue face some complexities, often data pre-processing and transformation are performed prior to the classification. This paper discusses the comparisons made on some known parametric and non-parametric classification rules in the application for classifying data of e-nose and e-tongue. The comparisons which based on leave-one-out accuracy, sensitivity and specificity shows that non-parametric approaches especially k-nearest neighbour does not much distorted with changes of distribution, but Naïve Bayes is greatly influenced by the structure of the data.
Parametric Explosion Spectral Model
Ford, S R; Walter, W R
2012-01-19
Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.
ERIC Educational Resources Information Center
Osler, James Edward
2014-01-01
This monograph provides an epistemological rational for the design of a novel post hoc statistical measure called "Tri-Center Analysis". This new statistic is designed to analyze the post hoc outcomes of the Tri-Squared Test. In Tri-Center Analysis trichotomous parametric inferential parametric statistical measures are calculated from…
NASA Technical Reports Server (NTRS)
Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)
2014-01-01
A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.
Multipass optical parametric amplifier
Jeys, T.H.
1996-08-01
A compact, low-threshold, multipass optical parametric amplifier has been developed for the conversion of short-pulse (360-ps) 1064-nm Nd:YAG laser radiation into eye-safe 1572-nm radiation for laser ranging and radar applications. The amplifier had a threshold pump power of as low as 45{mu}J, and at three to four times this threshold pump power the amplifier converted 30{percent} of the input 1064-nm radiation into 1572-nm output radiation. {copyright} {ital 1996 Optical Society of America.}
Progress in optical parametric oscillators
NASA Technical Reports Server (NTRS)
Fan, Y. X.; Byer, R. L.
1984-01-01
It is pointed out that tunable coherent sources are very useful for many applications, including spectroscopy, chemistry, combustion diagnostics, and remote sensing. Compared with other tunable sources, optical parametric oscillators (OPO) offer the potential advantage of a wide wavelength operating range, which extends from 0.2 micron to 25 microns. The current status of OPO is examined, taking into account mainly advances made during the last decade. Attention is given to early LiNbO3 parametric oscillators, problems which have prevented wide use of parametric oscillators, the demonstration of OPO's using urea and AgGaS2, progress related to picosecond OPO's, a breakthrough in nanosecond parametric oscillators, the first demonstration of a waveguide and fiber parametric amplification and generation, the importance of chalcopyrite crystals, and theoretical work performed with the aim to understand the factors affecting the parametric oscillator performance.
Winters, Ryan; Winters, Andrew; Amedee, Ronald G.
2010-01-01
The Accreditation Council for Graduate Medical Education sets forth a number of required educational topics that must be addressed in residency and fellowship programs. We sought to provide a primer on some of the important basic statistical concepts to consider when examining the medical literature. It is not essential to understand the exact workings and methodology of every statistical test encountered, but it is necessary to understand selected concepts such as parametric and nonparametric tests, correlation, and numerical versus categorical data. This working knowledge will allow you to spot obvious irregularities in statistical analyses that you encounter. PMID:21603381
Johnson, R.N.
1981-10-20
A method and apparatus for converting thermal energy into mechanical energy by parametric pumping of rotary inertia. In a preferred embodiment, a modified tesla turbine rotor is positioned within a rotary boiler along its axis of rotation. An external heat source, such as solar radiation, is directed onto the outer casing of the boiler to convert the liquid to steam. As the steam spirals inwardly toward the discs of the rotor, the moment of inertia of the mass of steam is reduced to thereby substantially increase its kinetic energy. The laminar flow of steam between the discs of the rotor transfers the increased kinetic energy to the rotor which can be coupled out through an output shaft to perform mechanical work. A portion of the mechanical output can be fed back to maintain rotation of the boiler.
Mechanical Parametric Oscillations and Waves
ERIC Educational Resources Information Center
Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.
2013-01-01
Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.
1993-01-01
Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.
Ground-Based Telescope Parametric Cost Model
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Rowell, Ginger Holmes
2004-01-01
A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.
Spectral and parametric averaging for integrable systems
NASA Astrophysics Data System (ADS)
Ma, Tao; Serota, R. A.
2015-05-01
We analyze two theoretical approaches to ensemble averaging for integrable systems in quantum chaos, spectral averaging (SA) and parametric averaging (PA). For SA, we introduce a new procedure, namely, rescaled spectral averaging (RSA). Unlike traditional SA, it can describe the correlation function of spectral staircase (CFSS) and produce persistent oscillations of the interval level number variance (IV). PA while not as accurate as RSA for the CFSS and IV, can also produce persistent oscillations of the global level number variance (GV) and better describes saturation level rigidity as a function of the running energy. Overall, it is the most reliable method for a wide range of statistics.
Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models
ERIC Educational Resources Information Center
Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum
2011-01-01
Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…
Parametric Mass Reliability Study
NASA Technical Reports Server (NTRS)
Holt, James P.
2014-01-01
The International Space Station (ISS) systems are designed based upon having redundant systems with replaceable orbital replacement units (ORUs). These ORUs are designed to be swapped out fairly quickly, but some are very large, and some are made up of many components. When an ORU fails, it is replaced on orbit with a spare; the failed unit is sometimes returned to Earth to be serviced and re-launched. Such a system is not feasible for a 500+ day long-duration mission beyond low Earth orbit. The components that make up these ORUs have mixed reliabilities. Components that make up the most mass-such as computer housings, pump casings, and the silicon board of PCBs-typically are the most reliable. Meanwhile components that tend to fail the earliest-such as seals or gaskets-typically have a small mass. To better understand the problem, my project is to create a parametric model that relates both the mass of ORUs to reliability, as well as the mass of ORU subcomponents to reliability.
NASA Astrophysics Data System (ADS)
Choi, Jongseong
The performance of a hypersonic flight vehicle will depend on existing materials and fuels; this work presents the performance of the ideal scramjet engine for three different combustion chamber materials and three different candidate fuels. Engine performance is explored by parametric cycle analysis for the ideal scramjet as a function of material maximum service temperature and the lower heating value of jet engine fuels. The thermodynamic analysis is based on the Brayton cycle as similarly employed in describing the performance of the ramjet, turbojet, and fanjet ideal engines. The objective of this work is to explore material operating temperatures and fuel possibilities for the combustion chamber of a scramjet propulsion system to show how they relate to scramjet performance and the seven scramjet engine parameters: specific thrust, fuel-to-air ratio, thrust-specific fuel consumption, thermal efficiency, propulsive efficiency, overall efficiency, and thrust flux. The information presented in this work has not been done by others in the scientific literature. This work yields simple algebraic equations for scramjet performance which are similar to that of the ideal ramjet, ideal turbojet and ideal turbofan engines.
Parametric Equations, Maple, and Tubeplots.
ERIC Educational Resources Information Center
Feicht, Louis
1997-01-01
Presents an activity that establishes a graphical foundation for parametric equations by using a graphing output form called tubeplots from the computer program Maple. Provides a comprehensive review and exploration of many previously learned topics. (ASK)
Baker, C.
1994-10-01
The Department of Energy`s (DOE) Hanford site near Richland, Washington is being cleaned up after 50 years of nuclear materials production. One of the most serious problems at the site is the waste stored in single-shell underground storage tanks. There are 149 of these tanks containing the spent fuel residue remaining after the fuel is dissolved in acid and the desired materials (primarily plutonium and uranium) are separated out. The tanks are upright cylinders 75 ft. in diameter with domed tops. They are made of reinforced concrete, have steel liners, and each tank is buried under 7--12 ft. of overburden. The tanks are up to 40-ft. high, and have capacities of 500,000, 750,000, or 1,000,000 gallons of waste. As many as one-third of these tanks are known or suspected to leak. The waste form contained in the tanks varies in consistency from liquid supernatant to peanut-butter-like gels and sludges to hard salt cake (perhaps as hard as low-grade concrete). The current waste retrieval plan is to insert a large long-reach manipulator through a hole cut in the top of the tank, and use a variety of end-effectors to mobilize the waste and remove it from the tank. PNL has, with the assistance of Deneb robotics employees, developed a means of using the IGRIP code to perform parametric design of mechanical systems. This method requires no modifications to the IGRIP code, and all design data are stored in the IGRIP workcell. The method is presented in the context of development of a passive articulated mechanism that is used to deliver down-arm services to a gantry robot. The method is completely general, however, and could be used to design a fully articulated manipulator. Briefly, the method involves using IGCALC expressions to control manipulator joint angles, and IGCALC variables to allow user control of link lengths and offsets. This paper presents the method in detail, with examples drawn from PNL`s experience with the gantry robot service-providing mechanism.
Comparison of thawing and freezing dark energy parametrizations
NASA Astrophysics Data System (ADS)
Pantazis, G.; Nesseris, S.; Perivolaropoulos, L.
2016-05-01
Dark energy equation of state w (z ) parametrizations with two parameters and given monotonicity are generically either convex or concave functions. This makes them suitable for fitting either freezing or thawing quintessence models but not both simultaneously. Fitting a data set based on a freezing model with an unsuitable (concave when increasing) w (z ) parametrization [like Chevallier-Polarski-Linder (CPL)] can lead to significant misleading features like crossing of the phantom divide line, incorrect w (z =0 ), incorrect slope, etc., that are not present in the underlying cosmological model. To demonstrate this fact we generate scattered cosmological data at both the level of w (z ) and the luminosity distance DL(z ) based on either thawing or freezing quintessence models and fit them using parametrizations of convex and of concave type. We then compare statistically significant features of the best fit w (z ) with actual features of the underlying model. We thus verify that the use of unsuitable parametrizations can lead to misleading conclusions. In order to avoid these problems it is important to either use both convex and concave parametrizations and select the one with the best χ2 or use principal component analysis thus splitting the redshift range into independent bins. In the latter case, however, significant information about the slope of w (z ) at high redshifts is lost. Finally, we propose a new family of parametrizations w (z )=w0+wa(z/1 +z )n which generalizes the CPL and interpolates between thawing and freezing parametrizations as the parameter n increases to values larger than 1.
Adjusted Rasch person-fit statistics.
Dimitrov, Dimiter M; Smith, Richard M
2006-01-01
Two frequently used parametric statistics of person-fit with the dichotomous Rasch model (RM) are adjusted and compared to each other and to their original counterparts in terms of power to detect aberrant response patterns in short tests (10, 20, and 30 items). Specifically, the cube root transformation of the mean square for the unweighted person-fit statistic, t, and the standardized likelihood-based person-fit statistic Z3 were adjusted by estimating the probability for correct item response through the use of symmetric functions in the dichotomous Rasch model. The results for simulated unidimensional Rasch data indicate that t and Z3 are consistently, yet not greatly, outperformed by their adjusted counterparts, denoted t* and Z3*, respectively. The four parametric statistics, t, Z3, t*, and Z3*, were also compared to a non-parametric statistic, HT, identified in recent research as outperforming numerous parametric and non-parametric person-fit statistics. The results show that HT substantially outperforms t, Z3, t*, and Z3* in detecting aberrant response patterns for 20-item and 30-item tests, but not for very short tests of 10 items. The detection power of t, Z3, t*, and Z3*, and HT at two specific levels of Type I error, .10 and .05 (i.e., up to 10% and 5% false alarm rate, respectively), is also reported. PMID:16632900
Parametric infrared tunable laser system
NASA Technical Reports Server (NTRS)
Garbuny, M.; Henningsen, T.; Sutter, J. R.
1980-01-01
A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further.
BRST Cohomology in Beltrami Parametrization
NASA Astrophysics Data System (ADS)
Tătaru, Liviu; Vancea, Ion V.
We study the BRST cohomology within a local conformal Lagrangian field theory model built on a two-dimensional Riemann surface with no boundary. We deal with the case of the complex structure parametrized by the Beltrami differential and the scalar matter fields. The computation of all elements of the BRST cohomology is given.
NASA Astrophysics Data System (ADS)
Ramesh, Azadeh; Glade, Thomas; Malet, Jean-Philippe
2010-09-01
The existence of a trend in hydrological and meteorological time series is detected by statistical tests. The trend analysis of hydrological and meteorological series is important to consider, because of the effects of global climate change. Parametric or non-parametric statistical tests can be used to decide whether there is a statistically significant trend. In this paper, first a homogeneity analysis was performed by using the non-parametric Bartlett test. Then, trend detection was estimated by using non-parametric Mann-Kendall test. The null hypothesis in the Mann-Kendall test is that the data are independent and randomly ordered. The result of Mann-Kendall test was compared with the parametric T-Test for finding the existence of trend. To reach this purpose, the significance of trends was analyzed on monthly data of Ubaye river in Barcelonnette watershed in southeast of France at an elevation of 1132 m (3717 ft) during the period from 1928 to 2009 bases with the nonparametric Mann-Kendall test and parametric T-Test for river discharge and for meteorological data. The result shows that a rainfall event does not necessarily have an immediate impact on discharge. Visual inspection suggests that the correlation between observations made at the same time point is not very strong. In the results of the trend tests the p-value of the discharge is slightly smaller than the p-value of the precipitation but it seems that in both there is no statistically significant trend. In statistical hypothesis testing, a test statistic is a numerical summary of a set of data that reduces the data to one or a small number of values that can be used to perform a hypothesis test. Statistical hypothesis testing is determined if there is a significant trend or not. Negative test statistics and MK test in both precipitation and discharge data indicate downward trends. As conclusion we can say extreme flood event during recent years is strongly depending on: 1) location of the city: It is
Experience with parametric binary dissection
NASA Technical Reports Server (NTRS)
Bokhari, Shahid H.
1993-01-01
Parametric Binary Dissection (PBD) is a new algorithm that can be used for partitioning graphs embedded in 2- or 3-dimensional space. It partitions explicitly on the basis of nodes + (lambda)x(edges cut), where lambda is the ratio of time to communicate over an edge to the time to compute at a node. The new algorithm is faster than the original binary dissection algorithm and attempts to obtain better partitions than the older algorithm, which only takes nodes into account. The performance of parametric dissection with plain binary dissection on 3 large unstructured 3-d meshes obtained from computational fluid dynamics and on 2 random graphs were compared. It was showm that the new algorithm can usually yield partitions that are substantially superior, but that its performance is heavily dependent on the input data.
Frequency domain optical parametric amplification
Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François
2014-01-01
Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968
A new parametric approach for wind profiling with Doppler Radar
NASA Astrophysics Data System (ADS)
Le Foll, GwenaëLle; Larzabal, Pascal; Clergeot, Henri; Petitdidier, Monique
1997-07-01
In this paper, we propose a new approach for wind profile extraction with Doppler radar. To perform this, we first focus on the analysis and modeling of VHF or UHF waves backscattered by clear-air turbulence. A physical description of the backscattered wave is given. This description involves a spectral model that includes a parametric profile of the Doppler spectrum. A parametric approach of the wind profile can be easily generated. The sounding volume is divided into slabs whose thickness is consistent with that of the expected homogeneous turbulent layer. The echo spectrum of each slab is supposed Gaussian. Thus, for the range gate, the backscattered spectrum is a priori non-Gaussian, since it is weighted by a nonconstant reflectivity. This represents a more realistic assumption than the classical ones. The realistic temporal model thereby obtained can be used in simulation, which provides a valable tool for testing the extraction algorithm. An original recursive fitting, in terms of maximum likelihood, between the experimentally recorded spectrum and the parametric candidate spectrum is described and implemented as a second-order, steepest-descent algorithm. This optimization problem is solved in a weighted fashion on the entire gate simultaneously. The regularized parametric method, described in this paper, is a way to minimize some of the drawbacks encountered with traditional methods. Simulations reveal good statistical performance compared with traditional methods. The algorithm is then tested on real data. To achieve this, original methods are proposed for noise suppression and clutter removal.
Parametric Modeling for Fluid Systems
NASA Technical Reports Server (NTRS)
Pizarro, Yaritzmar Rosario; Martinez, Jonathan
2013-01-01
Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.
Cosmic statistics of statistics
NASA Astrophysics Data System (ADS)
Szapudi, István; Colombi, Stéphane; Bernardeau, Francis
1999-12-01
The errors on statistics measured in finite galaxy catalogues are exhaustively investigated. The theory of errors on factorial moments by Szapudi & Colombi is applied to cumulants via a series expansion method. All results are subsequently extended to the weakly non-linear regime. Together with previous investigations this yields an analytic theory of the errors for moments and connected moments of counts in cells from highly non-linear to weakly non-linear scales. For non-linear functions of unbiased estimators, such as the cumulants, the phenomenon of cosmic bias is identified and computed. Since it is subdued by the cosmic errors in the range of applicability of the theory, correction for it is inconsequential. In addition, the method of Colombi, Szapudi & Szalay concerning sampling effects is generalized, adapting the theory for inhomogeneous galaxy catalogues. While previous work focused on the variance only, the present article calculates the cross-correlations between moments and connected moments as well for a statistically complete description. The final analytic formulae representing the full theory are explicit but somewhat complicated. Therefore we have made available a fortran program capable of calculating the described quantities numerically (for further details e-mail SC at colombi@iap.fr). An important special case is the evaluation of the errors on the two-point correlation function, for which this should be more accurate than any method put forward previously. This tool will be immensely useful in the future for assessing the precision of measurements from existing catalogues, as well as aiding the design of new galaxy surveys. To illustrate the applicability of the results and to explore the numerical aspects of the theory qualitatively and quantitatively, the errors and cross-correlations are predicted under a wide range of assumptions for the future Sloan Digital Sky Survey. The principal results concerning the cumulants ξ, Q3 and Q4 is that
Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A
2015-05-01
Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between 0D and 1D methods is much more important than the distinction between parametric and non-parametric procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired, two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-parametric CIs were qualitatively identical to RFT CIs, and all were very different from 0D CIs. Second, 1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D models of randomness are generally biased unless one explicitly identifies 0D variables before the experiment, and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for analysis when one׳s hypothesis explicitly or implicitly pertains to whole 1D trajectories. PMID:25817475
Plasma waves in parametric interactions
NASA Astrophysics Data System (ADS)
Yampolsky, Nikolai Andreevich
The nonlinear laser-plasma interaction is widely discussed in the modern plasma literature with applications to inertial confinement fusion, generation of fast electrons, and amplification of high power radiation. Among nonlinear wave phenomena in plasma, the parametric wave coupling often plays the dominant role in laser-plasma interaction at moderate laser intensities since it is the lowest order nonlinear effect. The plasma wave can mediate the parametric laser coupling with high efficiency. We study the interplay of the parametric laser-plasma interaction and other physical effects which may affect this interaction. We study this interplay with an emphasis on the plasma-based backward Raman amplifier (BRA) based on the three-wave coupling. Three major types of physical effects in the parametric wave coupling are studied. In the first part of the thesis, we find the longitudinal profiles of the interacting waves in cases of interest for pulse compression. We find the solution for the output pulse in backward Raman amplification seeded by a laser pulse of finite duration. We also propose a new scheme for high-power amplification for pulses in the terahertz frequency range. For this scheme, based on the four-wave mixing in a capillary filled with plasma, we find the profile of the output pulse. The second part of this thesis is devoted to transverse effects, which may reduce the focusability of the output pulse in backward Raman amplification. We find that the transverse modulations of the pump can be averaged and do not reduce the amplified pulse focusability if the longitudinal length of these modulations is much smaller than the amplification length. In the third part, we study the kinetic effects. We propose a simplified fluid model for the nonlinear Landau damping of a parametrically driven plasma wave and study the effect of nonlinear Landau damping in backward Raman amplification. This simplified model can be useful not only for understanding complex
Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation
NASA Astrophysics Data System (ADS)
Pentaris, Fragkiskos P.; Fouskitakis, George N.
2014-05-01
]. Preliminary results indicate that parametric methods are capable of sufficiently providing the structural/modal characteristics such as natural frequencies and damping ratios. The study also aims - at a further level of investigation - to provide a reliable statistically-based methodology for structural health monitoring after major seismic events which potentially cause harming consequences in structures. Acknowledgments This work was supported by the State Scholarships Foundation of Hellas. References [1] J. S. Sakellariou and S. D. Fassois, "Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation," Journal of Sound and Vibration, vol. 297, pp. 1048-1067, 2006. [2] G. Hloupis, I. Papadopoulos, J. P. Makris, and F. Vallianatos, "The South Aegean seismological network - HSNC," Adv. Geosci., vol. 34, pp. 15-21, 2013. [3] F. P. Pentaris, J. Stonham, and J. P. Makris, "A review of the state-of-the-art of wireless SHM systems and an experimental set-up towards an improved design," presented at the EUROCON, 2013 IEEE, Zagreb, 2013. [4] S. D. Fassois, "Parametric Identification of Vibrating Structures," in Encyclopedia of Vibration, S. G. Braun, D. J. Ewins, and S. S. Rao, Eds., ed London: Academic Press, London, 2001. [5] S. D. Fassois and J. S. Sakellariou, "Time-series methods for fault detection and identification in vibrating structures," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 365, pp. 411-448, February 15 2007.
Stellar parametrization from Gaia RVS spectra
NASA Astrophysics Data System (ADS)
Recio-Blanco, A.; de Laverny, P.; Allende Prieto, C.; Fustes, D.; Manteiga, M.; Arcay, B.; Bijaoui, A.; Dafonte, C.; Ordenovic, C.; Ordoñez Blanco, D.
2016-01-01
found for A-type stars, while the log(g) derivation is more accurate (errors of 0.07 and 0.12 dex at GRVS = 12.6 and 13.4, respectively). For the faintest stars, with GRVS≳ 13-14, a Teff input from the spectrophotometric-derived parameters will allow the final GSP-Spec parametrization to be improved. Conclusions: The reported results, while neglecting possible mismatches between synthetic and real spectra, show that the contribution of the RVS-based stellar parameters will be unique in the brighter part of the Gaia survey, which allows for crucial age estimations and accurate chemical abundances. This will constitute a unique and precious sample, providing many pieces of the Milky Way history puzzle with unprecedented precision and statistical relevance.
Parametric vs. non-parametric daily weather generator: validation and comparison
NASA Astrophysics Data System (ADS)
Dubrovsky, Martin
2016-04-01
As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30 years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series
Analysis of parametric transformer with rectifier load
Ichinokura, O.; Jinzenji, T. ); Tajima, K. )
1993-03-01
This paper describes a push-pull parametric transformer constructed using a pair of orthogonal-cores. The operating characteristics of the parametric transformer with a rectifier load were analyzed based on SPICE simulations. The analysis results show good agreement with experiment. It was found that the input surge current of the full-wave rectifier circuit with a smoothing capacitor can be compensated by the parametric transformer. Use of the parametric transformer as a power stabilizer is anticipated owing to its various functions such as for voltage regulation and overload protection.
Software for Managing Parametric Studies
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; McCann, Karen M.; DeVivo, Adrian
2003-01-01
The Information Power Grid Virtual Laboratory (ILab) is a Practical Extraction and Reporting Language (PERL) graphical-user-interface computer program that generates shell scripts to facilitate parametric studies performed on the Grid. (The Grid denotes a worldwide network of supercomputers used for scientific and engineering computations involving data sets too large to fit on desktop computers.) Heretofore, parametric studies on the Grid have been impeded by the need to create control language scripts and edit input data files painstaking tasks that are necessary for managing multiple jobs on multiple computers. ILab reflects an object-oriented approach to automation of these tasks: All data and operations are organized into packages in order to accelerate development and debugging. A container or document object in ILab, called an experiment, contains all the information (data and file paths) necessary to define a complex series of repeated, sequenced, and/or branching processes. For convenience and to enable reuse, this object is serialized to and from disk storage. At run time, the current ILab experiment is used to generate required input files and shell scripts, create directories, copy data files, and then both initiate and monitor the execution of all computational processes.
Shi, Runhua; McLarty, Jerry W
2009-10-01
In this article, we introduced basic concepts of statistics, type of distributions, and descriptive statistics. A few examples were also provided. The basic concepts presented herein are only a fraction of the concepts related to descriptive statistics. Also, there are many commonly used distributions not presented herein, such as Poisson distributions for rare events and exponential distributions, F distributions, and logistic distributions. More information can be found in many statistics books and publications. PMID:19891281
ERIC Educational Resources Information Center
Petocz, Peter; Sowey, Eric
2008-01-01
As a branch of knowledge, Statistics is ubiquitous and its applications can be found in (almost) every field of human endeavour. In this article, the authors track down the possible source of the link between the "Siren song" and applications of Statistics. Answers to their previous five questions and five new questions on Statistics are presented.
ERIC Educational Resources Information Center
Callamaras, Peter
1983-01-01
This buyer's guide to seven major types of statistics software packages for microcomputers reviews Edu-Ware Statistics 3.0; Financial Planning; Speed Stat; Statistics with DAISY; Human Systems Dynamics package of Stats Plus, ANOVA II, and REGRESS II; Maxistat; and Moore-Barnes' MBC Test Construction and MBC Correlation. (MBR)
ERIC Educational Resources Information Center
Meyer, Donald L.
Bayesian statistical methodology and its possible uses in the behavioral sciences are discussed in relation to the solution of problems in both the use and teaching of fundamental statistical methods, including confidence intervals, significance tests, and sampling. The Bayesian model explains these statistical methods and offers a consistent…
Non-parametric estimation of morphological lopsidedness
NASA Astrophysics Data System (ADS)
Giese, Nadine; van der Hulst, Thijs; Serra, Paolo; Oosterloo, Tom
2016-09-01
Asymmetries in the neutral hydrogen gas distribution and kinematics of galaxies are thought to be indicators for both gas accretion and gas removal processes. These are of fundamental importance for galaxy formation and evolution. Upcoming large blind H I surveys will provide tens of thousands of galaxies for a study of these asymmetries in a proper statistical way. Due to the large number of expected sources and the limited resolution of the majority of objects, detailed modelling is not feasible for most detections. We need fast, automatic and sensitive methods to classify these objects in an objective way. Existing non-parametric methods suffer from effects like the dependence on signal to noise, resolution and inclination. Here we show how to correctly take these effects into account and show ways to estimate the precision of the methods. We will use existing and modelled data to give an outlook on the performance expected for galaxies observed in the various sky surveys planned for e.g. WSRT/APERTIF and ASKAP.
Improving extreme value statistics.
Shekhawat, Ashivni
2014-11-01
The rate of convergence in extreme value statistics is nonuniversal and can be arbitrarily slow. Further, the relative error can be unbounded in the tail of the approximation, leading to difficulty in extrapolating the extreme value fit beyond the available data. We introduce the T method, and show that by using simple nonlinear transformations the extreme value approximation can be rendered rapidly convergent in the bulk, and asymptotic in the tail, thus fixing both issues. The transformations are often parametrized by just one parameter, which can be estimated numerically. The classical extreme value method is shown to be a special case of the proposed method. We demonstrate that vastly improved results can be obtained with almost no extra cost. PMID:25493780
Parametric analysis of ATT configurations.
NASA Technical Reports Server (NTRS)
Lange, R. H.
1972-01-01
This paper describes the results of a Lockheed parametric analysis of the performance, environmental factors, and economics of an advanced commercial transport envisioned for operation in the post-1985 time period. The design parameters investigated include cruise speeds from Mach 0.85 to Mach 1.0, passenger capacities from 200 to 500, ranges of 2800 to 5500 nautical miles, and noise level criteria. NASA high performance configurations and alternate configurations are operated over domestic and international route structures. Indirect and direct costs and return on investment are determined for approximately 40 candidate aircraft configurations. The candidate configurations are input to an aircraft sizing and performance program which includes a subroutine for noise criteria. Comparisons are made between preferred configurations on the basis of maximum return on investment as a function of payload, range, and design cruise speed.
Direct fluorescence characterisation of a picosecond seeded optical parametric amplifier
NASA Astrophysics Data System (ADS)
Stuart, N. H.; Bigourd, D.; Hill, R. W.; Robinson, T. S.; Mecseki, K.; Patankar, S.; New, G. H. C.; Smith, R. A.
2015-02-01
The temporal intensity contrast of high-power lasers based on optical parametric amplification (OPA) can be limited by parametric fluorescence from the non-linear gain stages. Here we present a spectroscopic method for direct measurement of unwanted parametric fluorescence widely applicable from unseeded to fully seeded and saturated OPA operation. Our technique employs simultaneous spectroscopy of fluorescence photons slightly outside the seed bandwidth and strongly attenuated light at the seed central wavelength. To demonstrate its applicability we have characterised the performance of a two-stage picosecond OPA pre-amplifier with 2.8×105 gain, delivering 335 μJ pulses at 1054 nm. We show that fluorescence from a strongly seeded OPA is reduced by ~500× from the undepleted to full pump depletion regimes. We also determine the vacuum fluctuation driven noise term seeding this OPA fluorescence to be 0.7±0.4 photons ps-1 nm-1 bandwidth. The resulting shot-to-shot statistics highlights a 1.5% probability of a five-fold and 0.3% probability of a ten-fold increase of fluorescence above the average value. Finally, we show that OPA fluorescence can be limited to a few-ps pedestal with 3×10-9 temporal intensity contrast 1.3 ps ahead of an intense laser pulse, a level highly attractive for large scale chirped-pulse OPA laser systems.
Optical filtering enabled by cascaded parametric amplification.
McKinstrie, C J; Dailey, J M; Agarwal, A; Toliver, P
2016-06-27
A cascaded parametric amplifier consists of a first parametric amplifier, which amplifies an input signal and generates an idler, which is a copy of the signal, a signal processor, which controls the phases of the signal and idler, and a second parametric amplifier, which combines the signal and idler in a phase-sensitive manner. In this paper, cascaded parametric amplification is modeled and the conditions required to maximize the constructive-destructive extinction ratio are determined. The results show that a cascaded parametric amplifier can be operated as a filter: A desired signal-idler pair is amplified, whereas undesired signal-idler pairs are deamplified. For the desired signal and idler, the noise figures of the filtering process (input signal-to-noise ratio divided by the output ratios) are only slightly higher than those of the copying process: Signal-processing functionality can be achieved with only a minor degradation in signal quality. PMID:27410581
Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia
2004-01-01
A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.
Multivariable Parametric Cost Model for Ground Optical Telescope Assembly
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia
2005-01-01
A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.
Quantiles, parametric-select density estimation, and bi-information parameter estimators
NASA Technical Reports Server (NTRS)
Parzen, E.
1982-01-01
A quantile-based approach to statistical analysis and probability modeling of data is presented which formulates statistical inference problems as functional inference problems in which the parameters to be estimated are density functions. Density estimators can be non-parametric (computed independently of model identified) or parametric-select (approximated by finite parametric models that can provide standard models whose fit can be tested). Exponential models and autoregressive models are approximating densities which can be justified as maximum entropy for respectively the entropy of a probability density and the entropy of a quantile density. Applications of these ideas are outlined to the problems of modeling: (1) univariate data; (2) bivariate data and tests for independence; and (3) two samples and likelihood ratios. It is proposed that bi-information estimation of a density function can be developed by analogy to the problem of identification of regression models.
Kogalovskii, M.R.
1995-03-01
This paper presents a review of problems related to statistical database systems, which are wide-spread in various fields of activity. Statistical databases (SDB) are referred to as databases that consist of data and are used for statistical analysis. Topics under consideration are: SDB peculiarities, properties of data models adequate for SDB requirements, metadata functions, null-value problems, SDB compromise protection problems, stored data compression techniques, and statistical data representation means. Also examined is whether the present Database Management Systems (DBMS) satisfy the SDB requirements. Some actual research directions in SDB systems are considered.
Smith, Alwyn
1969-01-01
This paper is based on an analysis of questionnaires sent to the health ministries of Member States of WHO asking for information about the extent, nature, and scope of morbidity statistical information. It is clear that most countries collect some statistics of morbidity and many countries collect extensive data. However, few countries relate their collection to the needs of health administrators for information, and many countries collect statistics principally for publication in annual volumes which may appear anything up to 3 years after the year to which they refer. The desiderata of morbidity statistics may be summarized as reliability, representativeness, and relevance to current health problems. PMID:5306722
Marmarelis, Vasilis Z.; Berger, Theodore W.
2009-01-01
Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input–output data. Results show that the non-parametric models accurately and efficiently replicate the input–output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP. PMID:18506609
NASA Astrophysics Data System (ADS)
Andronov, I. L.; Chinarova, L. L.
Numerical comparison of the methods for periodogram analysis is carried out for the parametric modifications of the Fourier transform by Deeming T.J. (1975, Ap. Space Sci., 36, 137); Lomb N.R. (1976, Ap. Space Sci., 39, 447); Andronov I.L. (1994, Odessa Astron. Publ., 7, 49); parametric modifications based on the spline approximations of different order k and defect k by Jurkevich I. (1971, Ap. Space Sci., 13, 154; n = 0, k = 1); Marraco H.G., Muzzio J.C. (1980, P.A.S.P., 92, 700; n = 1, k = 2); Andronov I.L. (1987, Contrib. Astron. Inst. Czechoslovak. 20, 161; n = 3, k = 1); non-parametric modifications by Lafler J. and Kinman T.D. (1965, Ap.J.Suppl., 11, 216), Burke E.W., Rolland W.W. and Boy W.R. (1970, J.R.A.S.Canada, 64, 353), Deeming T.J. (1970, M.N.R.A.S., 147, 365), Renson P. (1978, As. Ap., 63, 125) and Dworetsky M.M. (1983, M.N.R.A.S., 203, 917). For some numerical models the values of the mean, variance, asymmetry and excess of the test-functions are determined, the correlations between them are discussed. Analytic estimates of the mathematical expectation of the test function for different methods and of the dispersion of the test function by Lafler and Kinman (1965) and of the parametric functions are determined. The statistical distribution of the test functions computed for fixed data and various frequencies is significantly different from that computed for various data realizations. The histogram for the non-parametric test functions is nearly symmetric for normally distributed uncorrelated data and is characterized by a distinctly negative asymmetry for noisy data with periodic components. The non-parametric test-functions may be subdivided into two groups - similar to that by Lafler and Kinman (1965) and to that by Deeming (1970). The correlation coefficients for the test-functions within each group are close to unity for large number of data. Conditions for significant influence of the phase difference between the data onto the test functions are
ERIC Educational Resources Information Center
Petocz, Peter; Sowey, Eric
2008-01-01
In this article, the authors focus on hypothesis testing--that peculiarly statistical way of deciding things. Statistical methods for testing hypotheses were developed in the 1920s and 1930s by some of the most famous statisticians, in particular Ronald Fisher, Jerzy Neyman and Egon Pearson, who laid the foundations of almost all modern methods of…
Type I Error Probabilities and Power of the Rank and Parametric ANCOVA Procedures.
ERIC Educational Resources Information Center
Seaman, Samuel; And Others
The probability of obtaining a significant statistic, using the parametric analysis of covariance (ANCOVA) and the rank transform ANCOVA, was estimated for three conditions defined in terms of conditional distributions for two groups. The distributions were both normal, both skewed in the same direction but to different degrees, or both skewed to…
Characteristics of stereo reproduction with parametric loudspeakers
NASA Astrophysics Data System (ADS)
Aoki, Shigeaki; Toba, Masayoshi; Tsujita, Norihisa
2012-05-01
A parametric loudspeaker utilizes nonlinearity of a medium and is known as a super-directivity loudspeaker. The parametric loudspeaker is one of the prominent applications of nonlinear ultrasonics. So far, the applications have been limited monaural reproduction sound system for public address in museum, station and street etc. In this paper, we discussed characteristics of stereo reproduction with two parametric loudspeakers by comparing with those with two ordinary dynamic loudspeakers. In subjective tests, three typical listening positions were selected to investigate the possibility of correct sound localization in a wide listening area. The binaural information was ILD (Interaural Level Difference) or ITD (Interaural Time Delay). The parametric loudspeaker was an equilateral hexagon. The inner and outer diameters were 99 and 112 mm, respectively. Signals were 500 Hz, 1 kHz, 2 kHz and 4 kHz pure tones and pink noise. Three young males listened to test signals 10 times in each listening condition. Subjective test results showed that listeners at the three typical listening positions perceived correct sound localization of all signals using the parametric loudspeakers. It was almost similar to those using the ordinary dynamic loudspeakers, however, except for the case of sinusoidal waves with ITD. It was determined the parametric loudspeaker could exclude the contradiction between the binaural information ILD and ITD that occurred in stereo reproduction with ordinary dynamic loudspeakers because the super directivity of parametric loudspeaker suppressed the cross talk components.
Ionization Cooling using Parametric Resonances
Johnson, Rolland P.
2008-06-07
Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been
Self-seeding ring optical parametric oscillator
Smith, Arlee V.; Armstrong, Darrell J.
2005-12-27
An optical parametric oscillator apparatus utilizing self-seeding with an external nanosecond-duration pump source to generate a seed pulse resulting in increased conversion efficiency. An optical parametric oscillator with a ring configuration are combined with a pump that injection seeds the optical parametric oscillator with a nanosecond duration, mJ pulse in the reverse direction as the main pulse. A retroreflecting means outside the cavity injects the seed pulse back into the cavity in the direction of the main pulse to seed the main pulse, resulting in higher conversion efficiency.
Optimal Parametric Feedback Excitation of Nonlinear Oscillators
NASA Astrophysics Data System (ADS)
Braun, David J.
2016-01-01
An optimal parametric feedback excitation principle is sought, found, and investigated. The principle is shown to provide an adaptive resonance condition that enables unprecedentedly robust movement generation in a large class of oscillatory dynamical systems. Experimental demonstration of the theory is provided by a nonlinear electronic circuit that realizes self-adaptive parametric excitation without model information, signal processing, and control computation. The observed behavior dramatically differs from the one achievable using classical parametric modulation, which is fundamentally limited by uncertainties in model information and nonlinear effects inevitably present in real world applications.
Optimal Parametric Feedback Excitation of Nonlinear Oscillators.
Braun, David J
2016-01-29
An optimal parametric feedback excitation principle is sought, found, and investigated. The principle is shown to provide an adaptive resonance condition that enables unprecedentedly robust movement generation in a large class of oscillatory dynamical systems. Experimental demonstration of the theory is provided by a nonlinear electronic circuit that realizes self-adaptive parametric excitation without model information, signal processing, and control computation. The observed behavior dramatically differs from the one achievable using classical parametric modulation, which is fundamentally limited by uncertainties in model information and nonlinear effects inevitably present in real world applications. PMID:26871336
Guan Yiyi; Haus, Joseph W.; Powers, Peter
2005-02-01
We present simulations and experimental results for quantum-noise-initiated emission from an optical parametric generator (OPG) fabricated from periodically poled lithium niobate. The model we employ, which includes transverse coupling effects to enable off-axis phase matching, has been successfully used for describing broadband emission spectra in OPG's and optical parametric amplifiers. The emission spectra and the quantum statistics deduced from macroscopic fluctuations are compared between simulations and experiment.
Airy beam optical parametric oscillator
NASA Astrophysics Data System (ADS)
Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.
2016-05-01
Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).
Airy beam optical parametric oscillator.
Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K
2016-01-01
Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582
Airy beam optical parametric oscillator
Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.
2016-01-01
Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582
NASA Astrophysics Data System (ADS)
Shchagin, Alexander
1997-10-01
The main PXR properties [1,2] are considered in the paper: energy, width, smooth tuning of monochromatic PXR spectral line; fine structure and absolute differential yields of PXR in the vicinity of and at angular distances from Brag directions; angular spread of the PXR beam; the influence of incident electron energy and of the density effect on the PXR properties; linear polarization of PXR; background in PXR spectra. Experimental setups for linacs and the results of measurements are discussed. Experimental data are compared to theoretical calculations at PXR energies between 5 and 400 keV for incident electron energies ranging from 15 to 1200 MeV. Possible applications of PXR as a new source of a bright, tunable X-ray beam in science and industry are discussed. [1] A.V. Shchagin and N.A. Khizhnyak, NIM B119, 115-122 (1996). [2] A.V. Shchagin and X.K. Maruyama, "Parametric X-rays", a chapter in the book "Accelerator-based Atomic Physics Techniques and Applications", edited by S.M. Shafroth and J.C. Austin, AIP Press, 1997, pp 279-307.
NASA Technical Reports Server (NTRS)
Feiveson, Alan H.; Foy, Millennia; Ploutz-Snyder, Robert; Fiedler, James
2014-01-01
Do you have elevated p-values? Is the data analysis process getting you down? Do you experience anxiety when you need to respond to criticism of statistical methods in your manuscript? You may be suffering from Insufficient Statistical Support Syndrome (ISSS). For symptomatic relief of ISSS, come for a free consultation with JSC biostatisticians at our help desk during the poster sessions at the HRP Investigators Workshop. Get answers to common questions about sample size, missing data, multiple testing, when to trust the results of your analyses and more. Side effects may include sudden loss of statistics anxiety, improved interpretation of your data, and increased confidence in your results.
Validation of two (parametric vs non-parametric) daily weather generators
NASA Astrophysics Data System (ADS)
Dubrovsky, M.; Skalak, P.
2015-12-01
As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed-like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30-years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series
The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute works to provide information on cancer statistics in an effort to reduce the burden of cancer among the U.S. population.
... cancer statistics across the world. U.S. Cancer Mortality Trends The best indicator of progress against cancer is ... the number of cancer survivors has increased. These trends show that progress is being made against the ...
NASA Astrophysics Data System (ADS)
Hermann, Claudine
Statistical Physics bridges the properties of a macroscopic system and the microscopic behavior of its constituting particles, otherwise impossible due to the giant magnitude of Avogadro's number. Numerous systems of today's key technologies - such as semiconductors or lasers - are macroscopic quantum objects; only statistical physics allows for understanding their fundamentals. Therefore, this graduate text also focuses on particular applications such as the properties of electrons in solids with applications, and radiation thermodynamics and the greenhouse effect.
Parametric models for samples of random functions
Grigoriu, M.
2015-09-15
A new class of parametric models, referred to as sample parametric models, is developed for random elements that match sample rather than the first two moments and/or other global properties of these elements. The models can be used to characterize, e.g., material properties at small scale in which case their samples represent microstructures of material specimens selected at random from a population. The samples of the proposed models are elements of finite-dimensional vector spaces spanned by samples, eigenfunctions of Karhunen–Loève (KL) representations, or modes of singular value decompositions (SVDs). The implementation of sample parametric models requires knowledge of the probability laws of target random elements. Numerical examples including stochastic processes and random fields are used to demonstrate the construction of sample parametric models, assess their accuracy, and illustrate how these models can be used to solve efficiently stochastic equations.
A uniform parametrization of moment tensors
NASA Astrophysics Data System (ADS)
Tape, Walter; Tape, Carl
2015-09-01
A moment tensor is a 3 × 3 symmetric matrix that expresses an earthquake source. We construct a parametrization of the 5-D space of all moment tensors of unit norm. The coordinates associated with the parametrization are closely related to moment tensor orientations and source types. The parametrization is uniform, in the sense that equal volumes in the coordinate domain of the parametrization correspond to equal volumes of moment tensors. Uniformly distributed points in the coordinate domain therefore give uniformly distributed moment tensors. A cartesian grid in the coordinate domain can be used to search efficiently over moment tensors. We find that uniformly distributed moment tensors have uniformly distributed orientations (eigenframes), but that their source types (eigenvalue triples) are distributed so as to favour double couples.
Engineering artificial Hamiltonians with parametric superconducting circuits
NASA Astrophysics Data System (ADS)
Lu, Yao; Chakram, Srivatsan; Leung, Nelson; Naik, Ravi; Earnest, Nathan; Groszkowski, Peter; Koch, Jens; Kapit, Eliot; Schuster, David
One major challenge in building a large scale quantum computer is to generate and manipulate interactions between its many qubits. One promising approach is to use parametric flux or voltage modulation to realize effective interactions between different components of superconducting circuits, generating artificial Hamiltonians that are suitable for various quantum computation tasks, which might be difficult to achieve through other means. We propose a parametric superconducting circuit where transmon qubits and resonators are coupled to a flux-modulated parametric coupler. We show that with this device, arbitrary pairs of qubits or resonators in the circuit can be selectively and simultaneously brought into resonance with each other and swap excitations at a controllable rate. This allows for the creation of various artificial circuit Hamiltonians that are suitable for a number of applications such as single qubit state stablization, parametric qubit state readout, autonomous error correction and so on.
Parametrically disciplined operation of a vibratory gyroscope
NASA Technical Reports Server (NTRS)
Shcheglov, Kirill V. (Inventor); Hayworth, Ken J. (Inventor); Challoner, A. Dorian (Inventor); Peay, Chris S. (Inventor)
2008-01-01
Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.
Inferential statistics of claim assessment
NASA Astrophysics Data System (ADS)
Ling, Lloyd; Yusop, Zulkifli
2014-12-01
Initial abstraction coefficient ratio (λ) within the runoff prediction model proposed by the United States Department of Agriculture (USDA), Soil Conservation Services (SCS) in 1954 produced inconsistent runoff results according to worldwide research findings. SCS proposed a linear correlation between initial abstraction (Ia) and total abstraction (S) where Ia = λS. The proposed correlation by then was re-assessed using non-parametric inferential statistics to deduce a different conclusion in this study. Practitioners are encouraged to validate and employ the runoff prediction model with caution.
Observation of Parametric Instability in Advanced LIGO.
Evans, Matthew; Gras, Slawek; Fritschel, Peter; Miller, John; Barsotti, Lisa; Martynov, Denis; Brooks, Aidan; Coyne, Dennis; Abbott, Rich; Adhikari, Rana X; Arai, Koji; Bork, Rolf; Kells, Bill; Rollins, Jameson; Smith-Lefebvre, Nicolas; Vajente, Gabriele; Yamamoto, Hiroaki; Adams, Carl; Aston, Stuart; Betzweiser, Joseph; Frolov, Valera; Mullavey, Adam; Pele, Arnaud; Romie, Janeen; Thomas, Michael; Thorne, Keith; Dwyer, Sheila; Izumi, Kiwamu; Kawabe, Keita; Sigg, Daniel; Derosa, Ryan; Effler, Anamaria; Kokeyama, Keiko; Ballmer, Stefan; Massinger, Thomas J; Staley, Alexa; Heinze, Matthew; Mueller, Chris; Grote, Hartmut; Ward, Robert; King, Eleanor; Blair, David; Ju, Li; Zhao, Chunnong
2015-04-24
Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed as a barrier to progress. PMID:25955042
The Quantum Theory of Optical Parametric Amplification
NASA Astrophysics Data System (ADS)
Hussain, N. A.
Available from UMI in association with The British Library. Requires signed TDF. The aim of this thesis is to investigate the effect of parametric amplification on various forms of light. In particular we shall consider number and coherent states, but many of the calculations hold for those states whose operators satisfy the properties, < {a}^+{a}^+ >=<{a}{a }> = < {a}^+>=<{a }>=0 e.g. chaotic light. The first chapter lays down the fundamental preliminaries necessary for our calculations and reviews linear amplifier theory. We consider the phase sensitive and insensitive forms of amplifiers modelling the former on the degenerate parametric amplifier and the latter on the non-degenerate and inverted population amplifiers. Chapter 2 deals with balanced homodyne detection of a narrow band coherent state before and after degenerate parametric amplification. In chapter 3 we consider a continuous mode number state produced by atomic emission and parametrically amplified using the formalism of Collett and Gardiner. We give general results for the output flux intensity and also consider the simpler case where the atomic decay rate is much smaller than the parametric cavity decay rate. Also we consider the degree of second order coherence using this simplified theory. Chapters 4 and 5 consider the double amplifier interferometer, using single and continuous mode theories, and enable us to determine the form of amplifier which produces the best visibility and hence lowest noise figures. The travelling-wave parametric amplifier is discussed in chapter 6 and is contrasted with the cavity parametric amplifier discussed in chapters 1 and 2. Finally we consider the much contemplated idea of using amplifiers to boost signals in fibre optic transmission lines using our model of the parametric amplifier and examining the degradation of the signal-to-noise ratio. We consider both coherent and squeezed inputs and our results hold for both cavity and travelling -wave amplifiers.
Chaos control of parametric driven Duffing oscillators
Jin, Leisheng; Mei, Jie; Li, Lijie
2014-03-31
Duffing resonators are typical dynamic systems, which can exhibit chaotic oscillations, subject to certain driving conditions. Chaotic oscillations of resonating systems with negative and positive spring constants are identified to investigate in this paper. Parametric driver imposed on these two systems affects nonlinear behaviours, which has been theoretically analyzed with regard to variation of driving parameters (frequency, amplitude). Systematic calculations have been performed for these two systems driven by parametric pumps to unveil the controllability of chaos.
Analytic parametrization for nuclear form factors
Atkin, G.; Dumbrajs, O.
1982-08-01
A new analytic parametrization of the nuclear form factor is developed using a factorization theorem. We show that the nuclear form factor can be represented in terms of its real zeros and its asymptotic behavior. The parametrization is applied to nuclear form factor data of /sup 3/He and /sup 4/He. Our results suggest that further diffraction minima can be expected at higher momentum transfer where experiments have not yet been made.
A general non-parametric classifier applied to discriminating surface water from terrain shadows
NASA Technical Reports Server (NTRS)
Eppler, W. G.
1975-01-01
A general non-parametric classifier is described in the context of discriminating surface water from terrain shadows. In addition to using non-parametric statistics, this classifier permits the use of a cost matrix to assign different penalties to various types of misclassifications. The approach also differs from conventional classifiers in that it applies the maximum-likelihood criterion to overall class probabilities as opposed to the standard practice of choosing the most likely individual subclass. The classifier performance is evaluated using two different effectiveness measures for a specific set of ERTS data.
Nonparametric statistical tests for the continuous data: the basic concept and the practical use.
Nahm, Francis Sahngun
2016-02-01
Conventional statistical tests are usually called parametric tests. Parametric tests are used more frequently than nonparametric tests in many medical articles, because most of the medical researchers are familiar with and the statistical software packages strongly support parametric tests. Parametric tests require important assumption; assumption of normality which means that distribution of sample means is normally distributed. However, parametric test can be misleading when this assumption is not satisfied. In this circumstance, nonparametric tests are the alternative methods available, because they do not required the normality assumption. Nonparametric tests are the statistical methods based on signs and ranks. In this article, we will discuss about the basic concepts and practical use of nonparametric tests for the guide to the proper use. PMID:26885295
Nonparametric statistical tests for the continuous data: the basic concept and the practical use
2016-01-01
Conventional statistical tests are usually called parametric tests. Parametric tests are used more frequently than nonparametric tests in many medical articles, because most of the medical researchers are familiar with and the statistical software packages strongly support parametric tests. Parametric tests require important assumption; assumption of normality which means that distribution of sample means is normally distributed. However, parametric test can be misleading when this assumption is not satisfied. In this circumstance, nonparametric tests are the alternative methods available, because they do not required the normality assumption. Nonparametric tests are the statistical methods based on signs and ranks. In this article, we will discuss about the basic concepts and practical use of nonparametric tests for the guide to the proper use. PMID:26885295
NASA Astrophysics Data System (ADS)
Goodman, J. W.
This book is based on the thesis that some training in the area of statistical optics should be included as a standard part of any advanced optics curriculum. Random variables are discussed, taking into account definitions of probability and random variables, distribution functions and density functions, an extension to two or more random variables, statistical averages, transformations of random variables, sums of real random variables, Gaussian random variables, complex-valued random variables, and random phasor sums. Other subjects examined are related to random processes, some first-order properties of light waves, the coherence of optical waves, some problems involving high-order coherence, effects of partial coherence on imaging systems, imaging in the presence of randomly inhomogeneous media, and fundamental limits in photoelectric detection of light. Attention is given to deterministic versus statistical phenomena and models, the Fourier transform, and the fourth-order moment of the spectrum of a detected speckle image.
Surface parametrization and shape description
NASA Astrophysics Data System (ADS)
Brechbuehler, Christian; Gerig, Guido; Kuebler, Olaf
1992-09-01
Procedures for the parameterization and description of the surface of simply connected 3-D objects are presented. Critical issues for shape-based categorization and comparison of 3-D objects are addressed, which are generality with respect to object complexity, invariance to standard transformations, and descriptive power in terms of object geometry. Starting from segmented volume data, a relational data structure describing the adjacency of local surface elements is generated. The representation is used to parametrize the surface by defining a continuous, one-to-one mapping from the surface of the original object to the surface of a unit sphere. The mapping is constrained by two requirements, minimization of distortions and preservation of area. The former is formulated as the goal function of a nonlinear optimization problem and the latter as its constraints. Practicable starting values are obtained by an initial mapping based on a heat conduction model. In contract to earlier approaches, the novel parameterization method provides a mapping of arbitrarily shaped simply connected objects, i.e., it performs an unfolding of convoluted surface structures. This global parameterization allows the systematical scanning of the object surface by the variation of two parameters. As one possible approach to shape analysis, it enables us to expand the object surface into a series of spherical harmonic functions, extending the concept of elliptical Fourier descriptors for 2-D closed curves. The novel parameterization overcomes the traditional limitations of expressing an object surface in polar coordinates, which restricts such descriptions to star-shaped objects. The numerical coefficients in the Fourier series form an object-centered, surface-oriented descriptor of the object''s form. Rotating the coefficients in parameter space and object space puts the object into a standard position and yields a spherical harmonic descriptor which is invariant to translations, rotations
ERIC Educational Resources Information Center
Chicot, Katie; Holmes, Hilary
2012-01-01
The use, and misuse, of statistics is commonplace, yet in the printed format data representations can be either over simplified, supposedly for impact, or so complex as to lead to boredom, supposedly for completeness and accuracy. In this article the link to the video clip shows how dynamic visual representations can enliven and enhance the…
ERIC Educational Resources Information Center
Catley, Alan
2007-01-01
Following the announcement last year that there will be no more math coursework assessment at General Certificate of Secondary Education (GCSE), teachers will in the future be able to devote more time to preparing learners for formal examinations. One of the key things that the author has learned when teaching statistics is that it makes for far…
Parametric mapping of contrasted ovarian transvaginal sonography.
Korhonen, Katrina; Moore, Ryan; Lyshchik, Andrej; Fleischer, Arthur C
2015-06-01
The purpose of this study was to assess the accuracy of parametric analysis of transvaginal contrast-enhanced ultrasound (TV-CEUS) for distinguishing benign versus malignant ovarian masses. A total of 48 ovarian masses (37 benign and 11 borderline/malignant) were examined with TV-CEUS (Definity; Lantheus, North Billerica, MA; Philips iU22; Philips Medical Systems, Bothell, WA). Parametric images were created offline with a quantification software (Bracco Suisse SA, Geneva, Switzerland) with map color scales adjusted such that abnormal hemodynamics were represented by the color red and the presence of any red color could be used to differentiate benign and malignant tumors. Using these map color scales, low values of the perfusion parameter were coded in blue, and intermediate values of the perfusion parameter were coded in yellow. Additionally, for each individual color (red, blue, or yellow), a darker shade of that color indicated a higher intensity value. Our study found that the parametric mapping method was considerably more sensitive than standard region of interest (ROI) analysis for the detection of malignant tumors but was also less specific than standard ROI analysis. Parametric mapping allows for stricter cutoff criteria, as hemodynamics are visualized on a finer scale than ROI analyses, and as such, parametric maps are a useful addition to TV-CEUS analysis by allowing ROIs to be limited to areas of the highest malignant potential. PMID:26002525
Generalized parametrization dependence in quantum gravity
NASA Astrophysics Data System (ADS)
Gies, Holger; Knorr, Benjamin; Lippoldt, Stefan
2015-10-01
We critically examine the gauge and field-parametrization dependence of renormalization group flows in the vicinity of non-Gaußian fixed points in quantum gravity. While physical observables are independent of such calculational specifications, the construction of quantum gravity field theories typically relies on off-shell quantities such as β functions and generating functionals and thus face potential stability issues with regard to such generalized parametrizations. We analyze a two-parameter class of covariant gauge conditions, the role of momentum-dependent field rescalings and a class of field parametrizations. Using the product of Newton and cosmological constant as an indicator, the principle of minimum sensitivity identifies stationary points in this parametrization space which show a remarkable insensitivity to the parametrization. In the most insensitive cases, the quantized gravity system exhibits a non-Gaußian UV stable fixed point, lending further support to asymptotically safe quantum gravity. One of the stationary points facilitates an analytical determination of the quantum gravity phase diagram and features ultraviolet and infrared complete RG trajectories with a classical regime.
Parametric excitation of magnetization by electric field
NASA Astrophysics Data System (ADS)
Chen, Yu-Jin; Lee, Han Kyu; Verba, Roman; Katine, Jordan; Tiberkevich, Vasil; Slavin, Andrei; Barsukov, Igor; Krivorotov, Ilya
Manipulation of magnetization by electric field is of primary importance for development of low-power spintronic devices. We present the first experimental demonstration of parametric generation of magnetic oscillations by electric field. We realize the parametric generation in CoFeB/MgO/SAF nanoscale magnetic tunnel junctions (MTJs). The magnetization of the free layer is perpendicular to the sample plane while the magnetizations of the synthetic antiferromagnet (SAF) lie in the plane. We apply microwave voltage to the MTJ at 2 f, where f is the ferromagnetic resonance frequency of the free layer. In this configuration, the oscillations can only be driven parametrically via voltage-controlled magnetic anisotropy (VCMA) whereby electric field across the MgO barrier modulates the free layer anisotropy. The parametrically driven oscillations are detected via microwave voltage from the MTJ near f and show resonant character, observed only in a narrow range of drive frequencies near 2 f. The excitation also exhibits a well-pronounced threshold drive voltage of approximately 0.1 Volts. Our work demonstrates a low threshold for parametric excitation of magnetization by VCMA that holds promise for the development of energy-efficient nanoscale spin wave devices.
Optimization of noncollinear optical parametric amplification
NASA Astrophysics Data System (ADS)
Schimpf, D. N.; Rothardt, J.; Limpert, J.; Tünnermann, A.
2007-02-01
Noncollinearly phase-matched optical parametric amplifiers (NOPAs) - pumped with the green light of a frequency doubled Yb-doped fiber-amplifier system 1, 2 - permit convenient generation of ultrashort pulses in the visible (VIS) and near infrared (NIR) 3. The broad bandwidth of the parametric gain via the noncollinear pump configuration allows amplification of few-cycle optical pulses when seeded with a spectrally flat, re-compressible signal. The short pulses tunable over a wide region in the visible permit transcend of frontiers in physics and lifescience. For instance, the resulting high temporal resolution is of significance for many spectroscopic techniques. Furthermore, the high magnitudes of the peak-powers of the produced pulses allow research in high-field physics. To understand the demands of noncollinear optical parametric amplification using a fiber pump source, it is important to investigate this configuration in detail 4. An analysis provides not only insight into the parametric process but also determines an optimal choice of experimental parameters for the objective. Here, the intention is to design a configuration which yields the shortest possible temporal pulse. As a consequence of this analysis, the experimental setup could be optimized. A number of aspects of optical parametric amplifier performance have been treated analytically and computationally 5, but these do not fully cover the situation under consideration here.
NASA Astrophysics Data System (ADS)
Goodman, Joseph W.
2000-07-01
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research
Parametric instabilities in the LCGT arm cavity
NASA Astrophysics Data System (ADS)
Yamamoto, K.; Uchiyama, T.; Miyoki, S.; Ohashi, M.; Kuroda, K.; Numata, K.
2008-07-01
We evaluated the parametric instabilities of LCGT (Japanese interferometric gravitational wave detector project) arm cavity. The number of unstable modes of LCGT is 10-times smaller than that of Advanced LIGO (USA). Since the strength of the instabilities of LCGT depends on the mirror curvature more weakly than that of Advanced LIGO, the requirement of the mirror curvature accuracy is easier to be achieved. The difference in the parametric instabilities between LCGT and Advanced LIGO is because of the thermal noise reduction methods (LCGT, cooling sapphire mirrors; Advanced LIGO, fused silica mirrors with larger laser beams), which are the main strategies of the projects. Elastic Q reduction by the barrel surface (0.2 mm thickness Ta2O5) coating is effective to suppress instabilities in the LCGT arm cavity. Therefore, the cryogenic interferometer is a smart solution for the parametric instabilities in addition to thermal noise and thermal lensing.
Ku band low noise parametric amplifier
NASA Technical Reports Server (NTRS)
1976-01-01
A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.
Modeling personnel turnover in the parametric organization
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1991-01-01
A model is developed for simulating the dynamics of a newly formed organization, credible during all phases of organizational development. The model development process is broken down into the activities of determining the tasks required for parametric cost analysis (PCA), determining the skills required for each PCA task, determining the skills available in the applicant marketplace, determining the structure of the model, implementing the model, and testing it. The model, parameterized by the likelihood of job function transition, has demonstrated by the capability to represent the transition of personnel across functional boundaries within a parametric organization using a linear dynamical system, and the ability to predict required staffing profiles to meet functional needs at the desired time. The model can be extended by revisions of the state and transition structure to provide refinements in functional definition for the parametric and extended organization.
Parametric resonance in nanoelectromechanical single electron transistors.
Midtvedt, Daniel; Tarakanov, Yury; Kinaret, Jari
2011-04-13
We show that the coupling between single-electron charging and mechanical motion in a nanoelectromechanical single-electron transistor can be utilized in a novel parametric actuation scheme. This scheme, which relies on a periodic modulation of the mechanical resonance frequency through an alternating source-drain voltage, leads to a parametric instability and emergence of mechanical vibrations in a limited range of modulation amplitudes. Remarkably, the frequency range where instability occurs and the maximum oscillation amplitude, depend weakly on the damping in the system. We also show that a weak parametric modulation increases the effective quality factor and amplifies the system's response to the conventional actuation that exploits an AC gate signal. PMID:21375279
Parametric analysis of ATM solar array.
NASA Technical Reports Server (NTRS)
Singh, B. K.; Adkisson, W. B.
1973-01-01
The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.
Parametric instabilities in helicon-produced plasmas
Aliev, Yu.M.; Kraemer, M.
2005-07-15
Parametric instabilities arising in the pump field of a helicon wave are analyzed for typical parameters of helicon-produced plasmas. The pump wavenumber parallel to the magnetic field is assumed to be finite according to recent experimental findings obtained on a high-density helicon discharge. The parametric decay of the helicon pump wave into ion-sound and Trivelpiece-Gould waves is investigated. The approach takes into account that the damping rate of the Trivelpiece-Gould wave is generally much higher than the ion-sound frequency. The theoretical results are in agreement with the growth rates and thresholds of this instability, as well as the dispersion properties of the decay waves observed in helicon experiments. Estimates of the level of the decay parametric turbulence turn out to be sufficiently high to account for the strong absorption observed in helicon-produced plasmas.
Qubit readout with a directional parametric amplifier
NASA Astrophysics Data System (ADS)
Sliwa, K. M.; Abdo, B.; Narla, A.; Shankar, S.; Hatridge, M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.
2014-03-01
Josephson junction based quantum limited parametric amplifiers play an essential role in superconducting qubit measurements. These measurements necessitate circulators and isolators between the amplifier and qubit to add directionality and/or isolation. Unfortunately, this extra hardware limits both quantum measurement efficiency and experimental scalability. Here we present a quantum-limited Josephson-junction-based directional amplifier (JDA) based on a novel coupling between two nominally identical Josephson parametric converters (JPCs). The device achieves a forward gain of 11 dB with a 15 MHz dynamical bandwidth, but higher gains are possible at the expense of bandwidth. We also present measurements of a transmon qubit made with the JDA, and show minimal measurement back-action despite the absence of any isolator or circulator before the amplifier. These results provide a first step toward realizing on-chip integration of qubits and parametric amplifiers. Work supported by: IARPA, ARO, and NSF.
NASA Astrophysics Data System (ADS)
Cicirello, Alice; Langley, Robin S.
2013-04-01
An existing hybrid finite element (FE)/statistical energy analysis (SEA) approach to the analysis of the mid- and high frequency vibrations of a complex built-up system is extended here to a wider class of uncertainty modeling. In the original approach, the constituent parts of the system are considered to be either deterministic, and modeled using FE, or highly random, and modeled using SEA. A non-parametric model of randomness is employed in the SEA components, based on diffuse wave theory and the Gaussian Orthogonal Ensemble (GOE), and this enables the mean and variance of second order quantities such as vibrational energy and response cross-spectra to be predicted. In the present work the assumption that the FE components are deterministic is relaxed by the introduction of a parametric model of uncertainty in these components. The parametric uncertainty may be modeled either probabilistically, or by using a non-probabilistic approach such as interval analysis, and it is shown how these descriptions can be combined with the non-parametric uncertainty in the SEA subsystems to yield an overall assessment of the performance of the system. The method is illustrated by application to an example built-up plate system which has random properties, and benchmark comparisons are made with full Monte Carlo simulations.
Parametric number covariance in quantum chaotic spectra
NASA Astrophysics Data System (ADS)
Vinayak, Kumar, Sandeep; Pandey, Akhilesh
2016-03-01
We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.
Unifying parametrized VLSI Jacobi algorithms and architectures
NASA Astrophysics Data System (ADS)
Deprettere, Ed F. A.; Moonen, Marc
1993-11-01
Implementing Jacobi algorithms in parallel VLSI processor arrays is a non-trivial task, in particular when the algorithms are parametrized with respect to size and the architectures are parametrized with respect to space-time trade-offs. The paper is concerned with an approach to implement several time-adaptive Jacobi-type algorithms on a parallel processor array, using only Cordic arithmetic and asynchronous communications, such that any degree of parallelism, ranging from single-processor up to full-size array implementation, is supported by a `universal' processing unit. This result is attributed to a gracious interplay between algorithmic and architectural engineering.
Hamiltonian dynamics of the parametrized electromagnetic field
NASA Astrophysics Data System (ADS)
Barbero G, J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.
2016-06-01
We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.
Parametrically driven surface waves on viscous ferrofluids
NASA Astrophysics Data System (ADS)
Müller, Hanns Walter
1998-11-01
Standing waves on the surface of a ferrofluid in a normal magnetic field can be excited by a vertical vibration of the container. A stability theory for the onset of these parametrically driven waves is developed, taking viscous dissipation and finite depth effects into account. It will be shown that a careful choice of the filling level permits the normal and anomalous dispersion branches to be measured. Furthermore it will be demonstrated that the parametric driving mechanism may lead to a delay of the Rosensweig instability. A bicritical situation can be achieved when Rosensweig and Faraday waves interact.
Parametric number covariance in quantum chaotic spectra.
Vinayak; Kumar, Sandeep; Pandey, Akhilesh
2016-03-01
We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated. PMID:27078354
1986-01-01
Official population data for the USSR are presented for 1985 and 1986. Part 1 (pp. 65-72) contains data on capitals of union republics and cities with over one million inhabitants, including population estimates for 1986 and vital statistics for 1985. Part 2 (p. 72) presents population estimates by sex and union republic, 1986. Part 3 (pp. 73-6) presents data on population growth, including birth, death, and natural increase rates, 1984-1985; seasonal distribution of births and deaths; birth order; age-specific birth rates in urban and rural areas and by union republic; marriages; age at marriage; and divorces. PMID:12178831
Using scientifically and statistically sufficient statistics in comparing image segmentations.
Chi, Yueh-Yun; Muller, Keith E
2010-01-01
Automatic computer segmentation in three dimensions creates opportunity to reduce the cost of three-dimensional treatment planning of radiotherapy for cancer treatment. Comparisons between human and computer accuracy in segmenting kidneys in CT scans generate distance values far larger in number than the number of CT scans. Such high dimension, low sample size (HDLSS) data present a grand challenge to statisticians: how do we find good estimates and make credible inference? We recommend discovering and using scientifically and statistically sufficient statistics as an additional strategy for overcoming the curse of dimensionality. First, we reduced the three-dimensional array of distances for each image comparison to a histogram to be modeled individually. Second, we used non-parametric kernel density estimation to explore distributional patterns and assess multi-modality. Third, a systematic exploratory search for parametric distributions and truncated variations led to choosing a Gaussian form as approximating the distribution of a cube root transformation of distance. Fourth, representing each histogram by an individually estimated distribution eliminated the HDLSS problem by reducing on average 26,000 distances per histogram to just 2 parameter estimates. In the fifth and final step we used classical statistical methods to demonstrate that the two human observers disagreed significantly less with each other than with the computer segmentation. Nevertheless, the size of all disagreements was clinically unimportant relative to the size of a kidney. The hierarchal modeling approach to object-oriented data created response variables deemed sufficient by both the scientists and statisticians. We believe the same strategy provides a useful addition to the imaging toolkit and will succeed with many other high throughput technologies in genetics, metabolomics and chemical analysis. PMID:24967000
Parametric and experimental analysis using a power flow approach
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1990-01-01
A structural power flow approach for the analysis of structure-borne transmission of vibrations is used to analyze the influence of structural parameters on transmitted power. The parametric analysis is also performed using the Statistical Energy Analysis approach and the results are compared with those obtained using the power flow approach. The advantages of structural power flow analysis are demonstrated by comparing the type of results that are obtained by the two analytical methods. Also, to demonstrate that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental study of structural power flow is presented. This experimental study presents results for an L shaped beam for which an available solution was already obtained. Various methods to measure vibrational power flow are compared to study their advantages and disadvantages.
Robustness analysis for real parametric uncertainty
NASA Technical Reports Server (NTRS)
Sideris, Athanasios
1989-01-01
Some key results in the literature in the area of robustness analysis for linear feedback systems with structured model uncertainty are reviewed. Some new results are given. Model uncertainty is described as a combination of real uncertain parameters and norm bounded unmodeled dynamics. Here the focus is on the case of parametric uncertainty. An elementary and unified derivation of the celebrated theorem of Kharitonov and the Edge Theorem is presented. Next, an algorithmic approach for robustness analysis in the cases of multilinear and polynomic parametric uncertainty (i.e., the closed loop characteristic polynomial depends multilinearly and polynomially respectively on the parameters) is given. The latter cases are most important from practical considerations. Some novel modifications in this algorithm which result in a procedure of polynomial time behavior in the number of uncertain parameters is outlined. Finally, it is shown how the more general problem of robustness analysis for combined parametric and dynamic (i.e., unmodeled dynamics) uncertainty can be reduced to the case of polynomic parametric uncertainty, and thus be solved by means of the algorithm.
New Logic Circuit with DC Parametric Excitation
NASA Astrophysics Data System (ADS)
Sugahara, Masanori; Kaneda, Hisayoshi
1982-12-01
It is shown that dc parametric excitation is possible in a circuit named JUDO, which is composed of two resistively-connected Josephson junctions. Simulation study proves that the circuit has large gain and properties suitable for the construction of small, high-speed logic circuits.
Solitons versus parametric instabilities during ionospheric heating
NASA Technical Reports Server (NTRS)
Nicholson, D. R.; Payne, G. L.; Downie, R. M.; Sheerin, J. P.
1984-01-01
Various effects associated with ionospheric heating are investigated by numerically solving the modified Zakharov (1972) equations. It is shown that, for typical ionospheric parameters, the modulational instability is more important than the parametric decay instability in the spatial region of strongest heater electric field. It is concluded that the modulational instability leads to the formation of solitons, as originally predicted by Petviashvili (1976).
Identifying graph clusters using variational inference and links to covariance parametrization.
Barber, David
2009-11-13
Finding clusters of well-connected nodes in a graph is a problem common to many domains, including social networks, the Internet and bioinformatics. From a computational viewpoint, finding these clusters or graph communities is a difficult problem. We use a clique matrix decomposition based on a statistical description that encourages clusters to be well connected and few in number. The formal intractability of inferring the clusters is addressed using a variational approximation inspired by mean-field theories in statistical mechanics. Clique matrices also play a natural role in parametrizing positive definite matrices under zero constraints on elements of the matrix. We show that clique matrices can parametrize all positive definite matrices restricted according to a decomposable graph and form a structured factor analysis approximation in the non-decomposable case. Extensions to conjugate Bayesian covariance priors and more general non-Gaussian independence models are briefly discussed. PMID:19805451
Parametric acoustic arrays: A state of the art review
NASA Technical Reports Server (NTRS)
Fenlon, F. H.
1976-01-01
Following a brief introduction to the concept of parametric acoustic interactions, the basic properties of parametric transmitting and receiving arrays are considered in the light of conceptual advances resulting from experimental and theoretical investigations that have taken place since 1963.
BRST Cohomology of the Superstring in Super-Beltrami Parametrization
NASA Astrophysics Data System (ADS)
Tătaru, Liviu; Vancea, Ion V.
A method for calculating the BRST cohomology, recently developed for 2-D gravity theory and the bosonic string in Beltrami parametrization, is generalized to the superstring theories quantized in super-Beltrami parametrization.
Technology Transfer Automated Retrieval System (TEKTRAN)
Parametric non-linear regression (PNR) techniques commonly are used to develop weed seedling emergence models. Such techniques, however, require statistical assumptions that are difficult to meet. To examine and overcome these limitations, we compared PNR with a nonparametric estimation technique. F...
Parametric plate-bridge dynamic filter model of violin radiativity.
Bissinger, George
2012-07-01
A hybrid, deterministic-statistical, parametric "dynamic filter" model of the violin's radiativity profile [characterized by an averaged-over-sphere, mean-square radiativity (R(ω)(2))] is developed based on the premise that acoustic radiation depends on (1) how strongly it vibrates [characterized by the averaged-over-corpus, mean-square mobility (Y(ω)(2))] and (2) how effectively these vibrations are turned into sound, characterized by the radiation efficiency, which is proportional to (R(ω)(2))/(Y(ω)(2)). Two plate mode frequencies were used to compute 1st corpus bending mode frequencies using empirical trend lines; these corpus bending modes in turn drive cavity volume flows to excite the two lowest cavity modes A0 and A1. All widely-separated, strongly-radiating corpus and cavity modes in the low frequency deterministic region are then parameterized in a dual-Helmholtz resonator model. Mid-high frequency statistical regions are parameterized with the aid of a distributed-excitation statistical mobility function (no bridge) to help extract bridge filter effects associated with (a) bridge rocking mode frequency changes and (b) bridge-corpus interactions from 14-violin-average, excited-via-bridge (Y(ω)(2)) and (R(ω)(2)). Deterministic-statistical regions are rejoined at ~630 Hz in a mobility-radiativity "trough" where all violin quality classes had a common radiativity. Simulations indicate that typical plate tuning has a significantly weaker effect on radiativity profile trends than bridge tuning. PMID:22779493
Entanglement of Coupled Optomechanical Systems Improved by Optical Parametric Amplifiers
NASA Astrophysics Data System (ADS)
Pan, Guixia; Xiao, Ruijie; Zhou, Ling
2016-04-01
A scheme to generate the stationary entanglement of two distant coupled optical cavities placed optical parametric amplifiers is proposed. We study how the optical parametric amplifiers can affect the entanglement behaviors of the movable mirrors and the cavity fields. With the existence of optical parametric amplifiers, we show that larger stationary entanglement of optical and mechanical modes can be obtained and the entanglement increases with the increasing parametric gain. Especially, the degree of entanglement between the two cavity fields is more pronouncedly enhanced. Moreover, for a fixed parametric gain, the entanglement of distant cavity optomechanical systems increases as the input laser power is increased.
Entanglement of Coupled Optomechanical Systems Improved by Optical Parametric Amplifiers
NASA Astrophysics Data System (ADS)
Pan, Guixia; Xiao, Ruijie; Zhou, Ling
2016-08-01
A scheme to generate the stationary entanglement of two distant coupled optical cavities placed optical parametric amplifiers is proposed. We study how the optical parametric amplifiers can affect the entanglement behaviors of the movable mirrors and the cavity fields. With the existence of optical parametric amplifiers, we show that larger stationary entanglement of optical and mechanical modes can be obtained and the entanglement increases with the increasing parametric gain. Especially, the degree of entanglement between the two cavity fields is more pronouncedly enhanced. Moreover, for a fixed parametric gain, the entanglement of distant cavity optomechanical systems increases as the input laser power is increased.
Revisiting Parametric Types and Virtual Classes
NASA Astrophysics Data System (ADS)
Madsen, Anders Bach; Ernst, Erik
This paper presents a conceptually oriented updated view on the relationship between parametric types and virtual classes. The traditional view is that parametric types excel at structurally oriented composition and decomposition, and virtual classes excel at specifying mutually recursive families of classes whose relationships are preserved in derived families. Conversely, while class families can be specified using a large number of F-bounded type parameters, this approach is complex and fragile; and it is difficult to use traditional virtual classes to specify object composition in a structural manner, because virtual classes are closely tied to nominal typing. This paper adds new insight about the dichotomy between these two approaches; it illustrates how virtual constraints and type refinements, as recently introduced in gbeta and Scala, enable structural treatment of virtual types; finally, it shows how a novel kind of dynamic type check can detect compatibility among entire families of classes.
A multimode electromechanical parametric resonator array
Mahboob, I.; Mounaix, M.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.
2014-01-01
Electromechanical resonators have emerged as a versatile platform in which detectors with unprecedented sensitivities and quantum mechanics in a macroscopic context can be developed. These schemes invariably utilise a single resonator but increasingly the concept of an array of electromechanical resonators is promising a wealth of new possibilities. In spite of this, experimental realisations of such arrays have remained scarce due to the formidable challenges involved in their fabrication. In a variation to this approach, we identify 75 harmonic vibration modes in a single electromechanical resonator of which 7 can also be parametrically excited. The parametrically resonating modes exhibit vibrations with only 2 oscillation phases which are used to build a binary information array. We exploit this array to execute a mechanical byte memory, a shift-register and a controlled-NOT gate thus vividly illustrating the availability and functionality of an electromechanical resonator array by simply utilising higher order vibration modes. PMID:24658349
Pattern Generation by Dissipative Parametric Instability
NASA Astrophysics Data System (ADS)
Perego, A. M.; Tarasov, N.; Churkin, D. V.; Turitsyn, S. K.; Staliunas, K.
2016-01-01
Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and engineered systems, ranging from biology to galaxy buildup. We propose a new instability mechanism leading to pattern formation in spatially extended nonlinear systems, which is based on a periodic antiphase modulation of spectrally dependent losses arranged in a zigzag way: an effective filtering is imposed at symmetrically located wave numbers k and -k in alternating order. The properties of the dissipative parametric instability differ from the features of both key classical concepts of modulation instabilities, i.e., the Benjamin-Feir instability and the Faraday instabiltyity. We demonstrate how the dissipative parametric instability can lead to the formation of stable patterns in one- and two-dimensional systems. The proposed instability mechanism is generic and can naturally occur or can be implemented in various physical systems.
High dynamic range Josephson parametric amplifiers
NASA Astrophysics Data System (ADS)
Roch, Nicolas; Murch, Kater W.; Vijay, Rajamani
Josephson parametric amplifiers (JPAs) have become the technology of choice to amplify small amplitude microwave signals since they show noise performances close to the quantum limit of amplification. An important challenge that faces this technology is the low dynamic range of current devices, which limits the number of measurements that can be performed concurrently and the rate of information acquisition for single measurements. We have fabricated and tested novel parametric amplifiers based on arrays of up to 100 SQUIDS. The amplifiers produce gain in excess of 20 dB over a large bandwidth and match the dynamic range achieved with traveling wave devices. Compared to the latter devices they are fabricated in a single lithography step and we will show that their bandwidth performance can be further extended using a recently developed impedance matching technique.
Parametric amplification by coupled flux qubits
Rehák, M.; Neilinger, P.; Grajcar, M.; Oelsner, G.; Hübner, U.; Meyer, H.-G.; Il'ichev, E.
2014-04-21
We report parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonlinear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a tunable Kerr constant (up to 3 × 10{sup −3}) and a measured gain of about 20 dB. This arrangement represents a unit cell which can be straightforwardly extended to a quasi one-dimensional quantum metamaterial with large tunable Kerr nonlinearity, providing a basis for implementation of wide-band travelling wave parametric amplifiers.
Rayleigh-type parametric chemical oscillation
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Intersection of parametric surfaces using lookup tables
NASA Technical Reports Server (NTRS)
Hanna, S. L.; Abel, J. F.; Greenberg, D. P.
1984-01-01
When primitive structures in the form of parametric surfaces are combined and modified interactively to form complex intersecting surfaces, it becomes important to find the curves of intersection. One must distinguish between finding the shape of the intersection curve, which may only be useful for display purposes, and finding an accurate mathematical representation of the curve, which is important for any meaningful geometric modeling, analysis, design, or manufacturing involving the intersection. The intersection curve between two or more parametric surfaces is important in a variety of computer-aided design and manufacture areas. A few examples are shape design, analysis of groins, design of fillets, and computation of numerically controlled tooling paths. The algorithm presented here provides a mathematical representation of the intersection curve to a specified accuracy. It also provides the database that can simplify operations such as hidden-surface removal, surface rendering, profile identification, and interference or clearance computations.
Rayleigh-type parametric chemical oscillation
NASA Astrophysics Data System (ADS)
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-01
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Rayleigh-type parametric chemical oscillation.
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions. PMID:26429035
Nondegenerate optical parametric chirped pulse amplifier
Jovanovic, Igor; Ebbers, Christopher A.
2005-03-22
A system provides an input pump pulse and a signal pulse. A first dichroic beamsplitter is highly reflective for the input signal pulse and highly transmissive for the input pump pulse. A first optical parametric amplifier nonlinear crystal transfers part of the energy from the input pump pulse to the input signal pulse resulting in a first amplified signal pulse and a first depleted pump pulse. A second dichroic beamsplitter is highly reflective for the first amplified signal pulse and highly transmissive for the first depleted pump pulse. A second optical parametric amplifier nonlinear crystal transfers part of the energy from the first depleted pump pulse to the first amplified signal pulse resulting in a second amplified signal pulse and a second depleted pump pulse. A third dichroic beamsplitter receives the second amplified signal pulse and the second depleted pump pulse. The second depleted pump pulse is discarded.
Pattern Generation by Dissipative Parametric Instability.
Perego, A M; Tarasov, N; Churkin, D V; Turitsyn, S K; Staliunas, K
2016-01-15
Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and engineered systems, ranging from biology to galaxy buildup. We propose a new instability mechanism leading to pattern formation in spatially extended nonlinear systems, which is based on a periodic antiphase modulation of spectrally dependent losses arranged in a zigzag way: an effective filtering is imposed at symmetrically located wave numbers k and -k in alternating order. The properties of the dissipative parametric instability differ from the features of both key classical concepts of modulation instabilities, i.e., the Benjamin-Feir instability and the Faraday instabiltyity. We demonstrate how the dissipative parametric instability can lead to the formation of stable patterns in one- and two-dimensional systems. The proposed instability mechanism is generic and can naturally occur or can be implemented in various physical systems. PMID:26824573
Parametric Model of an Aerospike Rocket Engine
NASA Technical Reports Server (NTRS)
Korte, J. J.
2000-01-01
A suite of computer codes was assembled to simulate the performance of an aerospike engine and to generate the engine input for the Program to Optimize Simulated Trajectories. First an engine simulator module was developed that predicts the aerospike engine performance for a given mixture ratio, power level, thrust vectoring level, and altitude. This module was then used to rapidly generate the aerospike engine performance tables for axial thrust, normal thrust, pitching moment, and specific thrust. Parametric engine geometry was defined for use with the engine simulator module. The parametric model was also integrated into the iSIGHTI multidisciplinary framework so that alternate designs could be determined. The computer codes were used to support in-house conceptual studies of reusable launch vehicle designs.
Parametric Model of an Aerospike Rocket Engine
NASA Technical Reports Server (NTRS)
Korte, J. J.
2000-01-01
A suite of computer codes was assembled to simulate the performance of an aerospike engine and to generate the engine input for the Program to Optimize Simulated Trajectories. First an engine simulator module was developed that predicts the aerospike engine performance for a given mixture ratio, power level, thrust vectoring level, and altitude. This module was then used to rapidly generate the aerospike engine performance tables for axial thrust, normal thrust, pitching moment, and specific thrust. Parametric engine geometry was defined for use with the engine simulator module. The parametric model was also integrated into the iSIGHT multidisciplinary framework so that alternate designs could be determined. The computer codes were used to support in-house conceptual studies of reusable launch vehicle designs.
Diode-pumped optical parametric oscillator
Geiger, A.R.; Hemmati, H.; Farr, W.H.
1996-02-01
Diode-pumped optical parametric oscillation has been demonstrated for the first time to our knowledge in a single Nd:MgO:LiNbO{sub 3} nonlinear crystal. The crystal is pumped by a semiconductor diode laser array at 812 nm. The Nd{sup 3+} ions absorb the 812-nm radiation to generate 1084-nm laser oscillation. On internal {ital Q} switching the 1084-nm radiation pumps the LiNbO{sub 3} host crystal that is angle cut at 46.5{degree} and generates optical parametric oscillation. The oscillation threshold that is due to the 1084-nm laser pump with a pulse length of 80 ns in a 1-mm-diameter beam was measured to be {approx_equal}1 mJ and produced 0.5-mJ output at 3400-nm signal wavelength. {copyright} {ital 1996 Optical Society of America.}
Parametric-Studies and Data-Plotting Modules for the SOAP
NASA Technical Reports Server (NTRS)
2008-01-01
"Parametric Studies" and "Data Table Plot View" are the names of software modules in the Satellite Orbit Analysis Program (SOAP). Parametric Studies enables parameterization of as many as three satellite or ground-station attributes across a range of values and computes the average, minimum, and maximum of a specified metric, the revisit time, or 21 other functions at each point in the parameter space. This computation produces a one-, two-, or three-dimensional table of data representing statistical results across the parameter space. Inasmuch as the output of a parametric study in three dimensions can be a very large data set, visualization is a paramount means of discovering trends in the data (see figure). Data Table Plot View enables visualization of the data table created by Parametric Studies or by another data source: this module quickly generates a display of the data in the form of a rotatable three-dimensional-appearing plot, making it unnecessary to load the SOAP output data into a separate plotting program. The rotatable three-dimensionalappearing plot makes it easy to determine which points in the parameter space are most desirable. Both modules provide intuitive user interfaces for ease of use.
Scaling laws for parametrizations of subgrid interactions in simulations of oceanic circulations.
Kitsios, V; Frederiksen, J S; Zidikheri, M J
2014-06-28
Parametrizations of the subgrid eddy-eddy and eddy-meanfield interactions are developed for the simulation of baroclinic ocean circulations representative of an idealized Antarctic Circumpolar Current. Benchmark simulations are generated using a spectral spherical harmonic quasi-geostrophic model with maximum truncation wavenumber of T=504, which is equivalent to a resolution of 0.24° globally. A stochastic parametrization is used for the eddy-eddy interactions, and a linear deterministic parametrization for the eddy-meanfield interactions. The parametrization coefficients are determined from the statistics of benchmark simulations truncated back to the large eddy simulation (LES) truncation wavenumber, TR
Scaling laws for parametrizations of subgrid interactions in simulations of oceanic circulations
Kitsios, V.; Frederiksen, J. S.; Zidikheri, M. J.
2014-01-01
Parametrizations of the subgrid eddy–eddy and eddy–meanfield interactions are developed for the simulation of baroclinic ocean circulations representative of an idealized Antarctic Circumpolar Current. Benchmark simulations are generated using a spectral spherical harmonic quasi-geostrophic model with maximum truncation wavenumber of T=504, which is equivalent to a resolution of 0.24° globally. A stochastic parametrization is used for the eddy–eddy interactions, and a linear deterministic parametrization for the eddy–meanfield interactions. The parametrization coefficients are determined from the statistics of benchmark simulations truncated back to the large eddy simulation (LES) truncation wavenumber, TR
Parametric study of laser photovoltaic energy converters
NASA Technical Reports Server (NTRS)
Walker, G. H.; Heinbockel, J. H.
1987-01-01
Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.
SEC sensor parametric test and evaluation system
NASA Technical Reports Server (NTRS)
1978-01-01
This system provides the necessary automated hardware required to carry out, in conjunction with the existing 70 mm SEC television camera, the sensor evaluation tests which are described in detail. The Parametric Test Set (PTS) was completed and is used in a semiautomatic data acquisition and control mode to test the development of the 70 mm SEC sensor, WX 32193. Data analysis of raw data is performed on the Princeton IBM 360-91 computer.
Wavelength-doubling optical parametric oscillator
Armstrong, Darrell J.; Smith, Arlee V.
2007-07-24
A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.
A variable parameter parametric snake method
NASA Astrophysics Data System (ADS)
Marouf, A.; Houacine, A.
2015-12-01
In this paper, we introduce a new approach to parametric snake method by using variable snake parameters. Adopting fixed parameter values for all points of the snake, as usual, constitutes by itself a limitation that leads to poor performances in terms of convergence and tracking properties. A more adapted choice should be the one that allows selection depending on the image region properties as on the contour shape and position. However, such variability is not an easy task in general and a precise method need to be defined to assure contour point dependent tuning at iterations. We were particularly interested in applying this idea to the recently presented parametric method [1]. In the work mentioned, an attraction term is used to improve the convergence of the standard parametric snake without a significant increase in computational load. We show here, that improved performances can ensue from applying variable parameter concepts. For this purpose, the method is first analyzed and then a procedure is developed to assure an automatic variable parameter tuning. The interest of our approach is illustrated through object segmentation results.
Parametric Cost Models for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney
2010-01-01
Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.
Parametric cost analysis for advanced energy concepts
Not Available
1983-10-01
This report presents results of an exploratory study to develop parametric cost estimating relationships for advanced fossil-fuel energy systems. The first of two tasks was to develop a standard Cost Chart of Accounts to serve as a basic organizing framework for energy systems cost analysis. The second task included development of selected parametric cost estimating relationships (CERs) for individual elements (or subsystems) of a fossil fuel plant, nominally for the Solvent-Refined Coal (SRC) process. Parametric CERs are presented for the following elements: coal preparation, coal slurry preparation, dissolver (reactor); gasification; oxygen production; acid gas/CO/sub 2/ removal; shift conversion; cryogenic hydrogen recovery; and sulfur removal. While the nominal focus of the study was on the SRC process, each of these elements is found in other fossil fuel processes. Thus, the results of this effort have broader potential application. However, it should also be noted that the CERs presented in this report are based upon a limited data base. Thus, they are applicable over a limited range of values (of the independent variables) and for a limited set of specific technologies (e.g., the gasifier CER is for the multi-train, Koppers-Totzek process). Additional work is required to extend the range of these CERs. 16 figures, 13 tables.
Exploring deep parametric embeddings for breast CADx
NASA Astrophysics Data System (ADS)
Jamieson, Andrew R.; Alam, Rabi; Giger, Maryellen L.
2011-03-01
Computer-aided diagnosis (CADx) involves training supervised classifiers using labeled ("truth-known") data. Often, training data consists of high-dimensional feature vectors extracted from medical images. Unfortunately, very large data sets may be required to train robust classifiers for high-dimensional inputs. To mitigate the risk of classifier over-fitting, CADx schemes may employ feature selection or dimension reduction (DR), for example, principal component analysis (PCA). Recently, a number of novel "structure-preserving" DR methods have been proposed1. Such methods are attractive for use in CADx schemes for two main reasons. First, by providing visualization of highdimensional data structure, and second, since DR can be unsupervised or semi-supervised, unlabeled ("truth-unknown") data may be incorporated2. However, the practical application of state-of-the-art DR techniques such as, t-SNE3, to breast CADx were inhibited by the inability to retain a parametric embedding function capable of mapping new input data to the reduced representation. Deep (more than one hidden layer) neural networks can be used to learn such parametric DR embeddings. We explored the feasibility of such methods for use in CADx by conducting a variety of experiments using simulated feature data, including models based on breast CADx features. Specifically, we investigated the unsupervised parametric t-SNE4 (pt-SNE), the supervised deep t-distributed MCML5 (dt-MCML), and hybrid semi-supervised modifications combining the two.
The Representation and Parametrization of Orthogonal Matrices.
Shepard, Ron; Brozell, Scott R; Gidofalvi, Gergely
2015-07-16
Four representations and parametrizations of orthogonal matrices Q ∈ R(m×n) in terms of the minimal number of essential parameters {φ} are discussed: the exponential representation, the Householder reflector representation, the Givens rotation representation, and the rational Cayley transform representation. Both square n = m and rectangular n < m situations are considered. Two separate kinds of parametrizations are considered: one in which the individual columns of Q are distinct, the Stiefel manifold, and the other in which only span(Q) is significant, the Grassmann manifold. The practical issues of numerical stability, continuity, and uniqueness are discussed. The computation of Q in terms of the essential parameters {φ}, and also the extraction of {φ} for a given Q are considered for all of the parametrizations. The transformation of gradient arrays between the Q and {φ} variables is discussed for all representations. It is our hope that developers of new methods will benefit from this comparative presentation of an important but rarely analyzed subject. PMID:25946418
Colossal magnetoelectric effect induced by parametric amplification
NASA Astrophysics Data System (ADS)
Wang, Yi; Onuta, Tiberiu-Dan; Long, Christian J.; Geng, Yunlong; Takeuchi, Ichiro
2015-11-01
We describe the use of parametric amplification to substantially increase the magnetoelectric (ME) coefficient of multiferroic cantilevers. Parametric amplification has been widely used in sensors and actuators based on optical, electronic, and mechanical resonators to increase transducer gain. In our system, a microfabricated mechanical cantilever with a magnetostrictive layer is driven at its fundamental resonance frequency by an AC magnetic field. The resulting actuation of the cantilever at the resonance frequency is detected by measuring the voltage across a piezoelectric layer in the same cantilever. Concurrently, the spring constant of the cantilever is modulated at twice the resonance frequency by applying an AC voltage across the piezoelectric layer. The spring constant modulation results in parametric amplification of the motion of the cantilever, yielding a gain in the ME coefficient. Using this method, the ME coefficient was amplified from 33 V/(cm Oe) to 2.0 MV/(cm Oe), an increase of over 4 orders of magnitude. This boost in the ME coefficient directly resulted in an enhancement of the magnetic field sensitivity of the device from 6.0 nT /√{Hz } to 1.0 nT /√{Hz } . The enhancement in the ME coefficient and magnetic field sensitivity demonstrated here may be beneficial for a variety actuators and sensors based on resonant multiferroic devices.
A parametric design evaluation of lateral prophylactic knee braces.
Daley, B J; Ralston, J L; Brown, T D; Brand, R A
1993-05-01
Six major mechanical design variables characterizing single-upright lateral prophylactic knee braces were studied experimentally, using a generic modular brace (GMB). Impulsive valgus loading tests were conducted with the GMB applied to a surrogate leg model. The surrogate involved anatomically realistic aluminum-reinforced acrylic components to model bone, and expendable polymeric blanks to mimic the major knee ligaments. Behavior of the surrogate system reasonably reproduced that of human cadaveric knees under similar loading conditions. Load at failure of the medial collateral ligament (MCL) analog, gross knee stiffness, and MCL relative strain relief were measured for each of twelve parametric brace design permutations. Compared to the unbraced condition, bracing provided statistically significant increases in valgus load uptake at failure and in MCL strain relief. Increasing the dimensions of individual brace components (hinge length and offset; upright length, breadth, and thickness; cuff area), relative to those of a GMB baseline configuration deemed representative of current commercial products, failed to achieve statistically significant improvements in brace performance. However, most below-baseline dimensioning of individual components did significantly compromise GMB performance. These surrogate test data indicate that geometric modifications of current single-upright lateral brace designs are unlikely to substantially improve upon the fairly modest valgus load protection afforded by this class of devices. PMID:8326718
A New Aerodynamic Parametrization for Real Urban Surfaces
NASA Astrophysics Data System (ADS)
Kanda, Manabu; Inagaki, Atsushi; Miyamoto, Takashi; Gryschka, Micha; Raasch, Siegfried
2013-08-01
This study conducted large-eddy simulations (LES) of fully developed turbulent flow within and above explicitly resolved buildings in Tokyo and Nagoya, Japan. The more than 100 LES results, each covering a 1,000 × 1,000 m2 area with 2-m resolution, provide a database of the horizontally-averaged turbulent statistics and surface drag corresponding to various urban morphologies. The vertical profiles of horizontally-averaged wind velocity mostly follow a logarithmic law even for districts with high-rise buildings, allowing estimates of aerodynamic parameters such as displacement height and roughness length using the von Karman constant = 0.4. As an alternative derivation of the aerodynamic parameters, a regression of roughness length and variable Karman constant was also attempted, using a displacement height physically determined as the central height of drag action. Although both the regression methods worked, the former gives larger (smaller) values of displacement height (roughness length) by 20-25 % than the latter. The LES database clearly illustrates the essential difference in bulk flow properties between real urban surfaces and simplified arrays. The vertical profiles of horizontally-averaged momentum flux were influenced by the maximum building height and the standard deviation of building height, as well as conventional geometric parameters such as the average building height, frontal area index, and plane area index. On the basis of these investigations, a new aerodynamic parametrization of roughness length and displacement height in terms of the five geometric parameters described above was empirically proposed. The new parametrizations work well for both real urban morphologies and simplified model geometries.
NASA Astrophysics Data System (ADS)
Sánchez, M.; Oldenhof, M.; Freitez, J. A.; Mundim, K. C.; Ruette, F.
A systematic improvement of parametric quantum methods (PQM) is performed by considering: (a) a new application of parameterization procedure to PQMs and (b) novel parametric functionals based on properties of elementary parametric functionals (EPF) [Ruette et al., Int J Quantum Chem 2008, 108, 1831]. Parameterization was carried out by using the simplified generalized simulated annealing (SGSA) method in the CATIVIC program. This code has been parallelized and comparison with MOPAC/2007 (PM6) and MINDO/SR was performed for a set of molecules with C=C, C=H, and H=H bonds. Results showed better accuracy than MINDO/SR and MOPAC-2007 for a selected trial set of molecules.
Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.
2016-01-01
In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration
Robust biological parametric mapping: an improved technique for multimodal brain image analysis
NASA Astrophysics Data System (ADS)
Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.
2011-03-01
Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.
Cosmetic Plastic Surgery Statistics
2014 Cosmetic Plastic Surgery Statistics Cosmetic Procedure Trends 2014 Plastic Surgery Statistics Report Please credit the AMERICAN SOCIETY OF PLASTIC SURGEONS when citing statistical data or using ...
Discrete photon statistics from continuous microwave measurements
NASA Astrophysics Data System (ADS)
Virally, Stéphane; Simoneau, Jean Olivier; Lupien, Christian; Reulet, Bertrand
2016-04-01
Photocount statistics are an important tool for the characterization of electromagnetic fields, especially for fields with an irrelevant phase. In the microwave domain, continuous rather than discrete measurements are the norm. Using a different approach, we recover discrete photon statistics from the cumulants of a continuous distribution of field quadrature measurements. The use of cumulants allows the separation between the signal of interest and experimental noise. Using a parametric amplifier as the first stage of the amplification chain, we extract useful data from up to the sixth cumulant of the continuous distribution of a coherent field, hence recovering up to the third moment of the discrete statistics associated with a signal with much less than one average photon.
Parametric interactions in presence of different size colloids in semiconductor quantum plasmas
Vanshpal, R. Sharma, Uttam; Dubey, Swati
2015-07-31
Present work is an attempt to investigate the effect of different size colloids on parametric interaction in semiconductor quantum plasma. Inclusion of quantum effect is being done in this analysis through quantum correction term in classical hydrodynamic model of homogeneous semiconductor plasma. The effect is associated with purely quantum origin using quantum Bohm potential and quantum statistics. Colloidal size and quantum correction term modify the parametric dispersion characteristics of ion implanted semiconductor plasma medium. It is found that quantum effect on colloids is inversely proportional to their size. Moreover critical size of implanted colloids for the effective quantum correction is determined which is found to be equal to the lattice spacing of the crystal.
Non-classical Signature of Parametric Fluorescence and its Application in Metrology
NASA Astrophysics Data System (ADS)
Hamar, M.; Michálek, V.; Pathak, A.
2014-08-01
The article provides a short theoretical background of what the non-classical light means. We applied the criterion for the existence of non-classical effects derived by C.T. Lee on parametric fluorescence. The criterion was originally derived for the study of two light beams with one mode per beam. We checked if the criterion is still working for two multimode beams of parametric down-conversion through numerical simulations. The theoretical results were tested by measurement of photon number statistics of twin beams emitted by nonlinear BBO crystal pumped by intense femtoseconds UV pulse. We used ICCD camera as the detector of photons in both beams. It appears that the criterion can be used for the measurement of the quantum efficiencies of the ICCD cameras.
All-optical quantum random bit generation from intrinsically binary phase of parametric oscillators.
Marandi, Alireza; Leindecker, Nick C; Vodopyanov, Konstantin L; Byer, Robert L
2012-08-13
We demonstrate a novel all-optical quantum random number generator (RNG) based on above-threshold binary phase state selection in a degenerate optical parametric oscillator (OPO). Photodetection is not a part of the random process, and no post processing is required for the generated bit sequence. We show that the outcome is statistically random with 99% confidence, and verify that the randomness is due to the phase of initiating photons generated through spontaneous parametric down conversion of the pump, with negligible contribution of classical noise sources. With the use of micro- and nanoscale OPO resonators, this technique offers a promise for simple, robust, and high-speed on-chip all-optical quantum RNGs. PMID:23038574
Parametric reduced models for the nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Harlim, John; Li, Xiantao
2015-05-01
Reduced models for the (defocusing) nonlinear Schrödinger equation are developed. In particular, we develop reduced models that only involve the low-frequency modes given noisy observations of these modes. The ansatz of the reduced parametric models are obtained by employing a rational approximation and a colored-noise approximation, respectively, on the memory terms and the random noise of a generalized Langevin equation that is derived from the standard Mori-Zwanzig formalism. The parameters in the resulting reduced models are inferred from noisy observations with a recently developed ensemble Kalman filter-based parametrization method. The forecasting skill across different temperature regimes are verified by comparing the moments up to order four, a two-time correlation function statistics, and marginal densities of the coarse-grained variables.
Multicutter machining of compound parametric surfaces
NASA Astrophysics Data System (ADS)
Hatna, Abdelmadjid; Grieve, R. J.; Broomhead, P.
2000-10-01
Parametric free forms are used in industries as disparate as footwear, toys, sporting goods, ceramics, digital content creation, and conceptual design. Optimizing tool path patterns and minimizing the total machining time is a primordial issue in numerically controlled (NC) machining of free form surfaces. We demonstrate in the present work that multi-cutter machining can achieve as much as 60% reduction in total machining time for compound sculptured surfaces. The given approach is based upon the pre-processing as opposed to the usual post-processing of surfaces for the detection and removal of interference followed by precise tracking of unmachined areas.
Lottery spending: a non-parametric analysis.
Garibaldi, Skip; Frisoli, Kayla; Ke, Li; Lim, Melody
2015-01-01
We analyze the spending of individuals in the United States on lottery tickets in an average month, as reported in surveys. We view these surveys as sampling from an unknown distribution, and we use non-parametric methods to compare properties of this distribution for various demographic groups, as well as claims that some properties of this distribution are constant across surveys. We find that the observed higher spending by Hispanic lottery players can be attributed to differences in education levels, and we dispute previous claims that the top 10% of lottery players consistently account for 50% of lottery sales. PMID:25642699
Parametric modulation of an atomic magnetometer
Li, Zhimin; Wakai, Ronald T.; Walker, Thad G.
2012-01-01
The authors report on a rubidium atomic magnetometer designed for use in a shielded environment. Operating in the spin-exchange relaxation-free regime, the magnetometer utilizes parametric modulation of the z-magnetic field to suppress noise associated with airflow through the oven and to simultaneously detect x- and y-field components, using a single probe beam, with minimal loss of sensitivity and bandwidth. A white noise level of 60 fT/(Hz)1/2 was achieved. PMID:22942436
Quantum finite time availability for parametric oscillators
NASA Astrophysics Data System (ADS)
Hoffmann, Karl Heinz; Schmidt, Kim; Salamon, Peter
2015-06-01
The availability of a thermodynamic system out of equilibrium with its environment describes its ability to perform work in a reversible process which brings it to equilibrium with this environment. Processes in finite time can usually not be performed reversibly thus leading to unavoidable losses. In order to account for these losses the concept of finite time availability was introduced. We here add a new feature through the introduction of quantum finite time availability for an ensemble of parametric oscillators. For such systems there exists a certain critical time, the FEAT time. Quantum finite time availability quantifies the available work from processes which are shorter than the FEAT time of the oscillator ensemble.
Algorithm for parametric community detection in networks.
Bettinelli, Andrea; Hansen, Pierre; Liberti, Leo
2012-07-01
Modularity maximization is extensively used to detect communities in complex networks. It has been shown, however, that this method suffers from a resolution limit: Small communities may be undetectable in the presence of larger ones even if they are very dense. To alleviate this defect, various modifications of the modularity function have been proposed as well as multiresolution methods. In this paper we systematically study a simple model (proposed by Pons and Latapy [Theor. Comput. Sci. 412, 892 (2011)] and similar to the parametric model of Reichardt and Bornholdt [Phys. Rev. E 74, 016110 (2006)]) with a single parameter α that balances the fraction of within community edges and the expected fraction of edges according to the configuration model. An exact algorithm is proposed to find optimal solutions for all values of α as well as the corresponding successive intervals of α values for which they are optimal. This algorithm relies upon a routine for exact modularity maximization and is limited to moderate size instances. An agglomerative hierarchical heuristic is therefore proposed to address parametric modularity detection in large networks. At each iteration the smallest value of α for which it is worthwhile to merge two communities of the current partition is found. Then merging is performed and the data are updated accordingly. An implementation is proposed with the same time and space complexity as the well-known Clauset-Newman-Moore (CNM) heuristic [Phys. Rev. E 70, 066111 (2004)]. Experimental results on artificial and real world problems show that (i) communities are detected by both exact and heuristic methods for all values of the parameter α; (ii) the dendrogram summarizing the results of the heuristic method provides a useful tool for substantive analysis, as illustrated particularly on a Les Misérables data set; (iii) the difference between the parametric modularity values given by the exact method and those given by the heuristic is
Lottery Spending: A Non-Parametric Analysis
Garibaldi, Skip; Frisoli, Kayla; Ke, Li; Lim, Melody
2015-01-01
We analyze the spending of individuals in the United States on lottery tickets in an average month, as reported in surveys. We view these surveys as sampling from an unknown distribution, and we use non-parametric methods to compare properties of this distribution for various demographic groups, as well as claims that some properties of this distribution are constant across surveys. We find that the observed higher spending by Hispanic lottery players can be attributed to differences in education levels, and we dispute previous claims that the top 10% of lottery players consistently account for 50% of lottery sales. PMID:25642699
Detecting Atlantic herring by parametric sonar.
Godo, Olav Rune; Foote, Kenneth G; Dybedal, Johnny; Tenningen, Eirik; Patel, Ruben
2010-04-01
The difference-frequency band of the Kongsberg TOPAS PS18 parametric sub-bottom profiling sonar, nominally 1-6 kHz, is being used to observe Atlantic herring. Representative TOPAS echograms of herring layers and schools observed in situ in December 2008 and November 2009 are presented. These agree well with echograms of volume backscattering strength derived simultaneously with the narrowband Simrad EK60/18- and 38-kHz scientific echo sounder, also giving insight into herring avoidance behavior in relation to survey vessel passage. Progress in rendering the TOPAS echograms quantitative is described. PMID:20369983
Parametric study of modern airship productivity
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Flaig, K.
1980-01-01
A method for estimating the specific productivity of both hybrid and fully buoyant airships is developed. Various methods of estimating structural weight of deltoid hybrids are discussed and a derived weight estimating relationship is presented. Specific productivity is used as a figure of merit in a parametric study of fully buoyant ellipsoidal and deltoid hybrid semi-buoyant vehicles. The sensitivity of results as a function of assumptions is also determined. No airship configurations were found to have superior specific productivity to transport airplanes.
Automatic Parametric Testing Of Integrated Circuits
NASA Technical Reports Server (NTRS)
Jennings, Glenn A.; Pina, Cesar A.
1989-01-01
Computer program for parametric testing saves time and effort in research and development of integrated circuits. Software system automatically assembles various types of test structures and lays them out on silicon chip, generates sequency of test instructions, and interprets test data. Employs self-programming software; needs minimum of human intervention. Adapted to needs of different laboratories and readily accommodates new test structures. Program codes designed to be adaptable to most computers and test equipment now in use. Written in high-level languages to enhance transportability.
Parametric modulation of an atomic magnetometer.
Li, Zhimin; Wakai, Ronald T; Walker, Thad G
2006-01-01
The authors report on a rubidium atomic magnetometer designed for use in a shielded environment. Operating in the spin-exchange relaxation-free regime, the magnetometer utilizes parametric modulation of the z-magnetic field to suppress noise associated with airflow through the oven and to simultaneously detect x- and y-field components, using a single probe beam, with minimal loss of sensitivity and bandwidth. A white noise level of 60 fT/(Hz)(1/2) was achieved. PMID:22942436
Parametric uncertain identification of a robotic system
NASA Astrophysics Data System (ADS)
Angel, L.; Viola, J.; Hernández, C.
2016-07-01
This paper presents the parametric uncertainties identification of a robotic system of one degree of freedom. A MSC-ADAMS / MATLAB co-simulation model was built to simulate the uncertainties that affect the robotic system. For a desired trajectory, a set of dynamic models of the system was identified in presence of variations in the mass, length and friction of the system employing least squares method. Using the input-output linearization technique a linearized model plant was defined. Finally, the maximum multiplicative uncertainty of the system was modelled giving the controller desired design conditions to achieve a robust stability and performance of the closed loop system.
A Cartesian parametrization for the numerical analysis of material instability
Mota, Alejandro; Chen, Qiushi; Foulk, III, James W.; Ostien, Jakob T.; Lai, Zhengshou
2016-02-25
We examine four parametrizations of the unit sphere in the context of material stability analysis by means of the singularity of the acoustic tensor. We then propose a Cartesian parametrization for vectors that lie a cube of side length two and use these vectors in lieu of unit normals to test for the loss of the ellipticity condition. This parametrization is then used to construct a tensor akin to the acoustic tensor. It is shown that both of these tensors become singular at the same time and in the same planes in the presence of a material instability. Furthermore, themore » performance of the Cartesian parametrization is compared against the other parametrizations, with the results of these comparisons showing that in general, the Cartesian parametrization is more robust and more numerically efficient than the others.« less
Characterization of a multimode coplanar waveguide parametric amplifier
Simoen, M. Krantz, P.; Bylander, Jonas; Shumeiko, V.; Delsing, P.; Chang, C. W. S.; Wilson, C. M.; Wustmann, W.
2015-10-21
We characterize a Josephson parametric amplifier based on a flux-tunable quarter-wavelength resonator. The fundamental resonance frequency is ∼1 GHz, but we use higher modes of the resonator for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier. We investigate and compare degenerate parametric amplification, involving a single mode, and nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-limited noise performance in both cases.
Cascade frequency generation regime in an optical parametric oscillator
Kolker, D B; Dmitriev, Aleksandr K; Gorelik, P; Vong, Franko; Zondy, J J
2009-05-31
In a parametric oscillator of a special two-sectional design based on a lithium niobate periodic structure, a cascade frequency generation regime was observed in which a signal wave pumped a secondary parametric oscillator, producing secondary signal and idler waves. The secondary parametric oscillator can be tuned in a broad range of {approx}200 nm with respect to a fixed wavelength of the primary idler wave. (nonlinear optical phenomena)
Second order parametric processes in nonlinear silica microspheres.
Xu, Yong; Han, Ming; Wang, Anbo; Liu, Zhiwen; Heflin, James R
2008-04-25
We analyze second order parametric processes in a silica microsphere coated with radially aligned nonlinear optical molecules. In a high-Q nonlinear microsphere, we discover that it is possible to achieve ultralow threshold parametric oscillation that obeys the rule of angular momentum conservation. Based on symmetry considerations, one can also implement parametric processes that naturally generate quantum entangled photon pairs. Practical issues regarding implementation of the nonlinear microsphere are also discussed. PMID:18518201
Experimental demonstration of nanosecond optical parametric amplifier in YCOB
NASA Astrophysics Data System (ADS)
Li, Huanhuan; Li, Shiguang; Ma, Xiuhua; Zhu, Xiaolei; Tu, Xiaoniu; Zheng, Yanqing
2013-05-01
In this letter, we provide the experimental demonstration of nanosecond optical parametric amplification in YCOB centered at 1572 nm. The optical gain characterization of YCOB crystal was simulated and tested in this optical parametric conversion. A saturated OPA gain of 2.4 was obtained. The results confirm that YCOB crystal has the potential to be used in a high-energy cascade of MOPA parametric amplifiers at 1572 nm.
Statistical properties of cosmological billiards
NASA Astrophysics Data System (ADS)
Damour, Thibault; Lecian, Orchidea Maria
2011-02-01
Belinski, Khalatnikov, and Lifshitz pioneered the study of the statistical properties of the never-ending oscillatory behavior (among successive Kasner epochs) of the geometry near a spacelike singularity. We show how the use of a “cosmological billiard” description allows one to refine and deepen the understanding of these statistical properties. Contrary to previous treatments, we do not quotient the dynamics by its discrete symmetry group (of order 6), thereby uncovering new phenomena, such as correlations between the successive billiard corners in which the oscillations take place. Starting from the general integral invariants of Hamiltonian systems, we show how to construct invariant measures for various projections of the cosmological-billiard dynamics. In particular, we exhibit, for the first time, a (non-normalizable) invariant measure on the “Kasner circle” which parametrizes the exponents of successive Kasner epochs. Finally, we discuss the relation between: (i) the unquotiented dynamics of the Bianchi-IX (a, b, c or mixmaster) model; (ii) its quotienting by the group of permutations of (a, b, c); and (iii) the billiard dynamics that arose in recent studies suggesting the hidden presence of Kac-Moody symmetries in cosmological billiards.
Parametric robust control and system identification: Unified approach
NASA Technical Reports Server (NTRS)
Keel, Leehyun
1994-01-01
Despite significant advancement in the area of robust parametric control, the problem of synthesizing such a controller is still a wide open problem. Thus, we attempt to give a solution to this important problem. Our approach captures the parametric uncertainty as an H(sub infinity) unstructured uncertainty so that H(sub infinity) synthesis techniques are applicable. Although the techniques cannot cope with the exact parametric uncertainty, they give a reasonable guideline to model the unstructured uncertainty that contains the parametric uncertainty. An additional loop shaping technique is also introduced to relax its conservatism.
Parametric resonance of intrinsic localized modes in coupled cantilever arrays
NASA Astrophysics Data System (ADS)
Kimura, Masayuki; Matsushita, Yasuo; Hikihara, Takashi
2016-08-01
In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein-Gordon, Fermi-Pasta-Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation.
A new class of parametrization for dark energy without divergence
Feng, Chao-Jun; Shen, Xian-Yong; Li, Ping; Li, Xin-Zhou E-mail: 1000304237@smail.shnu.edu.cn E-mail: kychz@shnu.edu.cn
2012-09-01
A new class of parametrization of the equation of state of dark energy is proposed in this paper. In contrast with the famous CPL parametrization, the equation of state with this new kind of parametrization does not divergent during the evolution of the Universe even in the future. By using the Markov Chain Monte Carlo (MCMC) method, we perform an observational constraint on two simplest dark energy models belonging to this new class of parametrization with the combined latest observational data from the type Ia supernova compilations including Union2(557), cosmic microwave background, and baryon acoustic oscillation.
Study of Vertical Sound Image Control Using Parametric Loudspeakers
NASA Astrophysics Data System (ADS)
Shimizu, Kazuhiro; Itou, Kouki; Aoki, Shigeaki
A parametric loudspeaker is known as a super-directivity loudspeaker. So far, the applications have been limited monaural reproduction sound system. We had discussed characteristics of stereo reproduction with two parametric loudspeakers. In this paper, the sound localization in the vertical direction using the parametric loudspeakers was confirmed. The direction of sound localization was able to be controlled. The results were similar as in using ordinary loudspeakers. However, by setting the parametric loudspeaker 5 degrees rightward, the direction of sound localization moved about 20 degrees rightward. The measured ILD (Interaural Level Difference) using a dummy head were analyzed.
Terahertz parametric sources and imaging applications
NASA Astrophysics Data System (ADS)
Yamashita, M.; Ogawa, Y.; Otani, C.; Kawase, K.
2005-12-01
We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of LiNbO 3 or MgO-doped LiNbO 3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We report the detailed characteristics of the oscillation and the radiation including tunability, spatial and temporal coherency, uni directivity, and efficiency. A Fourier transform limited THz-wave spectrum narrowing was achieved by introducing the injection seeding method. Further, we have developed a spectroscopic THz imaging system using a TPO, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. Several images of the envelope are recorded at different THz frequencies and then processed. The final result is an image that reveals what substances are present in the envelope, in what quantity, and how they are distributed across the envelope area. The example presented here shows the identification of three drugs, two of which illegal, while one is an over-the-counter drug.
Quantum metrology with unitary parametrization processes
Liu, Jing; Jing, Xiao-Xing; Wang, Xiaoguang
2015-01-01
Quantum Fisher information is a central quantity in quantum metrology. We discuss an alternative representation of quantum Fisher information for unitary parametrization processes. In this representation, all information of parametrization transformation, i.e., the entire dynamical information, is totally involved in a Hermitian operator . Utilizing this representation, quantum Fisher information is only determined by and the initial state. Furthermore, can be expressed in an expanded form. The highlights of this form is that it can bring great convenience during the calculation for the Hamiltonians owning recursive commutations with their partial derivative. We apply this representation in a collective spin system and show the specific expression of . For a simple case, a spin-half system, the quantum Fisher information is given and the optimal states to access maximum quantum Fisher information are found. Moreover, for an exponential form initial state, an analytical expression of quantum Fisher information by operator is provided. The multiparameter quantum metrology is also considered and discussed utilizing this representation. PMID:25708678
Modeling Personnel Turnover in the Parametric Organization
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1991-01-01
A primary issue in organizing a new parametric cost analysis function is to determine the skill mix and number of personnel required. The skill mix can be obtained by a functional decomposition of the tasks required within the organization and a matrixed correlation with educational or experience backgrounds. The number of personnel is a function of the skills required to cover all tasks, personnel skill background and cross training, the intensity of the workload for each task, migration through various tasks by personnel along a career path, personnel hiring limitations imposed by management and the applicant marketplace, personnel training limitations imposed by management and personnel capability, and the rate at which personnel leave the organization for whatever reason. Faced with the task of relating all of these organizational facets in order to grow a parametric cost analysis (PCA) organization from scratch, it was decided that a dynamic model was required in order to account for the obvious dynamics of the forming organization. The challenge was to create such a simple model which would be credible during all phases of organizational development. The model development process was broken down into the activities of determining the tasks required for PCA, determining the skills required for each PCA task, determining the skills available in the applicant marketplace, determining the structure of the dynamic model, implementing the dynamic model, and testing the dynamic model.
Femtosecond fiber-feedback optical parametric oscillator.
Südmeyer, T; Aus der Au, J; Paschotta, R; Keller, U; Smith, P G; Ross, G W; Hanna, D C
2001-03-01
We demonstrate what is to our knowledge the first synchronously pumped high-gain optical parametric oscillator (OPO) with feedback through a single-mode fiber. This device generates 2.3-2.7 W of signal power in 700-900-fs pulses tunable in a wavelength range from 1429 to 1473 nm. The necessary high gain was obtained from a periodically poled LiTaO(3) crystal pumped with as much as 8.2 W of power at 1030 nm from a passively mode-locked Yb:YAG laser with 600-fs pulse duration and a 35-MHz repetition rate. The fiber-feedback OPO setup is compact because most of the resonator feedback path consists of a standard telecom fiber. Because of the high parametric gain, the fiber-feedback OPO is highly insensitive to intracavity losses. For the same reason, the synchronization of the cavity with the pump laser is not critical, so active stabilization of the cavity length is not required. PMID:18040309
Supramodal parametric working memory processing in humans.
Spitzer, Bernhard; Blankenburg, Felix
2012-03-01
Previous studies of delayed-match-to-sample (DMTS) frequency discrimination in animals and humans have succeeded in delineating the neural signature of frequency processing in somatosensory working memory (WM). During retention of vibrotactile frequencies, stimulus-dependent single-cell and population activity in prefrontal cortex was found to reflect the task-relevant memory content, whereas increases in occipital alpha activity signaled the disengagement of areas not relevant for the tactile task. Here, we recorded EEG from human participants to determine the extent to which these mechanisms can be generalized to frequency retention in the visual and auditory domains. Subjects performed analogous variants of a DMTS frequency discrimination task, with the frequency information presented either visually, auditorily, or by vibrotactile stimulation. Examining oscillatory EEG activity during frequency retention, we found characteristic topographical distributions of alpha power over visual, auditory, and somatosensory cortices, indicating systematic patterns of inhibition and engagement of early sensory areas, depending on stimulus modality. The task-relevant frequency information, in contrast, was found to be represented in right prefrontal cortex, independent of presentation mode. In each of the three modality conditions, parametric modulations of prefrontal upper beta activity (20-30 Hz) emerged, in a very similar manner as recently found in vibrotactile tasks. Together, the findings corroborate a view of parametric WM as supramodal internal scaling of abstract quantity information and suggest strong relevance of previous evidence from vibrotactile work for a more general framework of quantity processing in human working memory. PMID:22399750
Enhanced higher order parametric x radiation production
NASA Astrophysics Data System (ADS)
Dinova, Kay L.
1992-12-01
This thesis examines parametric x-radiation (PXR) which is the Bragg scattering of the virtual photons associated with the Coulomb field of relativistic charged particle from the atomic planes of a crystal. Higher order parametric x-radiation from the (002) planes of a thick mosaic graphite crystal have been observed. The raw PXR data was collected using a SiLi detector and a Pulse Height Analyzer (PHA) software program. The data was corrected for various effects including attenuation, detector drift, and efficiency. The absolute number of photons per electron was obtained by using the fluorescent x-ray yield from a tin foil backing on the graphite crystal to determine the LINAC current. The number of photons per electron observed greatly exceeds the expected values. Comparison of the ratio of intensity of a given order to the first order I(n)/I(I) to the theoretical ratio shows that the ratios increase with order. Not only is the absolute intensity greater than expected, but the higher orders (compared to the first order) are larger than expected. Lastly, the intensity for various crystal angle orientations and a fixed detector angle was measured.
Degenerate parametric oscillation in quantum membrane optomechanics
NASA Astrophysics Data System (ADS)
Benito, Mónica; Sánchez Muñoz, Carlos; Navarrete-Benlloch, Carlos
2016-02-01
The promise of innovative applications has triggered the development of many modern technologies capable of exploiting quantum effects. But in addition to future applications, such quantum technologies have already provided us with the possibility of accessing quantum-mechanical scenarios that seemed unreachable just a few decades ago. With this spirit, in this work we show that modern optomechanical setups are mature enough to implement one of the most elusive models in the field of open system dynamics: degenerate parametric oscillation. Introduced in the eighties and motivated by its alleged implementability in nonlinear optical resonators, it rapidly became a paradigm for the study of dissipative phase transitions whose corresponding spontaneously broken symmetry is discrete. However, it was found that the intrinsic multimode nature of optical cavities makes it impossible to experimentally study the model all the way through its phase transition. In contrast, here we show that this long-awaited model can be implemented in the motion of a mechanical object dispersively coupled to the light contained in a cavity, when the latter is properly driven with multichromatic laser light. We focus on membranes as the mechanical element, showing that the main signatures of the degenerate parametric oscillation model can be studied in state-of-the-art setups, thus opening the possibility of analyzing spontaneous symmetry breaking and enhanced metrology in one of the cleanest dissipative phase transitions. In addition, the ideas put forward in this work would allow for the dissipative preparation of squeezed mechanical states.
CLOC: Cluster Luminosity Order-Statistic Code
NASA Astrophysics Data System (ADS)
Da Silva, Robert L.; Krumholz, Mark R.; Fumagalli, Michele; Fall, S. Michael
2016-02-01
CLOC computes cluster order statistics, i.e. the luminosity distribution of the Nth most luminous cluster in a population. It is flexible and requires few assumptions, allowing for parametrized variations in the initial cluster mass function and its upper and lower cutoffs, variations in the cluster age distribution, stellar evolution and dust extinction, as well as observational uncertainties in both the properties of star clusters and their underlying host galaxies. It uses Markov chain Monte Carlo methods to search parameter space to find best-fitting values for the parameters describing cluster formation and disruption, and to obtain rigorous confidence intervals on the inferred values.
Comparison of Three Statistical Classification Techniques for Maser Identification
NASA Astrophysics Data System (ADS)
Manning, Ellen M.; Holland, Barbara R.; Ellingsen, Simon P.; Breen, Shari L.; Chen, Xi; Humphries, Melissa
2016-04-01
We applied three statistical classification techniques-linear discriminant analysis (LDA), logistic regression, and random forests-to three astronomical datasets associated with searches for interstellar masers. We compared the performance of these methods in identifying whether specific mid-infrared or millimetre continuum sources are likely to have associated interstellar masers. We also discuss the interpretability of the results of each classification technique. Non-parametric methods have the potential to make accurate predictions when there are complex relationships between critical parameters. We found that for the small datasets the parametric methods logistic regression and LDA performed best, for the largest dataset the non-parametric method of random forests performed with comparable accuracy to parametric techniques, rather than any significant improvement. This suggests that at least for the specific examples investigated here accuracy of the predictions obtained is not being limited by the use of parametric models. We also found that for LDA, transformation of the data to match a normal distribution led to a significant improvement in accuracy. The different classification techniques had significant overlap in their predictions; further astronomical observations will enable the accuracy of these predictions to be tested.
Parametric distortion-adaptive neighborhood for omnidirectional camera.
Tang, Yazhe; Li, Youfu; Luo, Jun
2015-08-10
Catadioptric omnidirectional images exhibit serious nonlinear distortion due to the involved quadratic mirror. Conventional pinhole model-based methods perform poorly when directly applied to the deformed omnidirectional images. This study constructs a catadioptric geometry system to analyze the variation of the neighborhood of an object in terms of the elevation and azimuth directions in a spherical coordinate system. To accurately represent the distorted visual information, a parametric neighborhood mapping model is proposed based on the catadioptric geometry. Unlike the conventional catadioptric models, the prior information of the system is effectively integrated into the neighborhood formulation framework. Then the distortion-adaptive neighborhood can be directly calculated based on its measurable image radial distance. This method can significantly improve the computational efficiency of algorithm since statistical neighborhood sampling is not used. On the basis of the proposed neighborhood model, a distortion-invariant Haar wavelet transform is presented to perform the robust human detection and tracking in catadioptric omnidirectional vision. The experimental results verify the effectiveness of the proposed neighborhood mapping model and prove that the distorted neighborhood in the omnidirectional image follows a nonlinear pattern. PMID:26368363
Significance of heralding in spontaneous parametric down-conversion
NASA Astrophysics Data System (ADS)
Bashkansky, Mark; Vurgaftman, Igor; Pipino, Andrew C. R.; Reintjes, J.
2014-11-01
Single photons exhibit nonclassical, counterintuitive behavior that can be exploited in the developing field of quantum technology. They are needed for various applications such as quantum key distribution, optical quantum information processing, quantum computing, intensity measurement standards, and others yet to be discovered in this developing field. This drives the current intensive research into the realization of true deterministic sources of single photons on demand. Lacking such a source, many researchers default to the well-established workhorse: spontaneous parametric down-conversion that generates entangled signal-idler pairs. Since this source is thermal statistical in nature, it is common to use a detected idler photon to herald the production of a signal photon. The need exists to determine the quality of the single photons generated in the heralded signal beam. Quite often, the literature reports a heralded second-order coherence function of the signal photons conditioned on the idler photons using readily available single-photon detectors. In this work we examine the applicability of this technique to single-photon characterization and the consequences of the fact that the most commonly used single-photon detectors are not photon-number resolving. Our results show that this method using non-photon-resolving detectors can only be used to characterize the signal-idler correlations rather than the nature of the signal-photon state alone.
Parametric and experimental analysis using a power flow approach
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1988-01-01
Having defined and developed a structural power flow approach for the analysis of structure-borne transmission of structural vibrations, the technique is used to perform an analysis of the influence of structural parameters on the transmitted energy. As a base for comparison, the parametric analysis is first performed using a Statistical Energy Analysis approach and the results compared with those obtained using the power flow approach. The advantages of using structural power flow are thus demonstrated by comparing the type of results obtained by the two methods. Additionally, to demonstrate the advantages of using the power flow method and to show that the power flow results represent a direct physical parameter that can be measured on a typical structure, an experimental investigation of structural power flow is also presented. Results are presented for an L-shaped beam for which an analytical solution has already been obtained. Furthermore, the various methods available to measure vibrational power flow are compared to investigate the advantages and disadvantages of each method.
A parametric study of dewatering of fine coal
Sung, D.J.; Lee, K.J.; Parekh, B.K.
1996-12-31
A statistical design of parametric study of pressure filtration for fine coal dewatering is presented. The effects of five major process parameters of the dewatering, i.e. applied pressure, filtration time, cake thickness, solids concentration and slurry pH, on cake moisture reduction and air consumption were investigated. The study was conducted starting with two level factorial experiments to identify the most significant parameters in the filtration process, and concluding with response surface methodologies to establish an optimum operating condition for the dewatering of fine coal with these significant variables. An operating process condition for the dewatering that provided satisfactory performance was determined to be an applied pressure of 93 psi with a cake thickness of 2.5 cm and a filtration time of 4.8 minutes for this specific laboratory filtration system. At the optimum process condition the filter cake containing about 22 percent moisture by weight was obtained and the air was consumed by 4.1 m{sup 3}/(m{sup 2} min.kg). 6 refs., 4 figs., 2 tabs.
Predict! Teaching Statistics Using Informational Statistical Inference
ERIC Educational Resources Information Center
Makar, Katie
2013-01-01
Statistics is one of the most widely used topics for everyday life in the school mathematics curriculum. Unfortunately, the statistics taught in schools focuses on calculations and procedures before students have a chance to see it as a useful and powerful tool. Researchers have found that a dominant view of statistics is as an assortment of tools…
Statistics Poker: Reinforcing Basic Statistical Concepts
ERIC Educational Resources Information Center
Leech, Nancy L.
2008-01-01
Learning basic statistical concepts does not need to be tedious or dry; it can be fun and interesting through cooperative learning in the small-group activity of Statistics Poker. This article describes a teaching approach for reinforcing basic statistical concepts that can help students who have high anxiety and makes learning and reinforcing…
Bifurcations and sensitivity in parametric nonlinear programming
NASA Technical Reports Server (NTRS)
Lundberg, Bruce N.; Poore, Aubrey B.
1990-01-01
The parametric nonlinear programming problem is that of determining the behavior of solution(s) as a parameter or vector of parameters alpha belonging to R(sup r) varies over a region of interest for the problem: Minimize over x the set f(x, alpha):h(x, alpha) = 0, g(x, alpha) is greater than or equal to 0, where f:R(sup (n+r)) approaches R, h:R(sup (n+r)) approaches R(sup q) and g:R(sup (n+r)) approaches R(sup p) are assumed to be at least twice continuously differentiable. Some of these parameters may be fixed but not known precisely and others may be varied to enhance the performance of the system. In both cases a fundamentally important problem in the investigation of global sensitivity of the system is to determine the stability boundaries of the regions in parameter space which define regions of qualitatively similar solutions. The objective is to explain how numerical continuation and bifurcation techniques can be used to investigate the parametric nonlinear programming problem in a global sense. Thus, first the problem is converted to a closed system of parameterized nonlinear equations whose solution set contains all local minimizers of the original problem. This system, which will be represented as F(z,alpha) = O, will include all Karush-Kuhn-Tucker and Fritz John points, both feasible and infeasible solutions, and relative minima, maxima, and saddle points of the problem. The local existence and uniqueness of a solution path (z(alpha), alpha) of this system as well as the solution type persist as long as a singularity in the Jacobian D(sub z)F(z,alpha) is not encountered. Thus the nonsingularity of this Jacobian is characterized in terms of conditions on the problem itself. Then, a class of efficient predictor-corrector continuation procedures for tracing solution paths of the system F(z,alpha) = O which are tailored specifically to the parametric programming problem are described. Finally, these procedures and the obtained information are illustrated
Scaling of preferential flow in biopores by parametric or non parametric transfer functions
NASA Astrophysics Data System (ADS)
Zehe, E.; Hartmann, N.; Klaus, J.; Palm, J.; Schroeder, B.
2009-04-01
Rapid flow in connected macropores - often worm burrows or sometimes shrinkage cracks - is today accepted to play a key role for transport of agro chemicals in cohesive soils. Nevertheless, we still struggle to come up with reliable predictions at the field or even the catchment scale, also because crucial information on the spatial distribution of connected subsurface structures is most difficult to access. Assessing the environmental risk of pesticides transport in earthworm burrows requires the development of an integrated eco-hydrological model that allows predictions of a) the spatiotemporal distribution and population dynamics of anecic earthworms, b) the related pattern of connective preferential flow pathways (i.e., earthworm burrows), and c) the space-time pattern of infiltration and travel times distribution of solutes considering short and long term feedbacks. The suggested paper will present the first steps towards this long term goal of the so called BIOPORE project. The first step is to assess statistical data on the spatial distribution of worm burrows in the study area. Deep digging earthworms create mainly vertical semi-permanent burrows of moderate tortuosity down to a depth of 3m (Shipitalo and Butt, 1999). Data on the spatial density of worm burrows and their depth is gathered by preparing horizontal soil profiles (Zehe and Fluehler, 2001). Hydraulic properties of worm burrows are straightforward to measure either by means of a special permeameter (Shipitalo and Butt, 1999) or by taking macroporous samples to the lab. The next step is to establish a link between the distribution of travel depths of a tracer/pesticide that occurs during events and the depth distribution of connected flow paths that link the surface continuously to the subsoils. To this end we generate a population of macropores using a Poisson process for the number of macropores per model element, a normal process compared with an anisotropic random walk for pore lengths and
Neely, Michael; Bartroff, Jay; van Guilder, Michael; Yamada, Walter; Bayard, David; Jelliffe, Roger; Leary, Robert; Chubatiuk, Alyona; Schumitzky, Alan
2013-01-01
Population pharmacokinetic (PK) modeling methods can be statistically classified as either parametric or nonparametric (NP). Each classification can be divided into maximum likelihood (ML) or Bayesian (B) approazches. In this paper we discuss the nonparametric case using both maximum likelihood and Bayesian approaches. We present two nonparametric methods for estimating the unknown joint population distribution of model parameter values in a pharmacokinetic/pharmacodynamic (PK/PD) dataset. The first method is the NP Adaptive Grid (NPAG). The second is the NP Bayesian (NPB) algorithm with a stick-breaking process to construct a Dirichlet prior. Our objective is to compare the performance of these two methods using a simulated PK/PD dataset. Our results showed excellent performance of NPAG and NPB in a realistically simulated PK study. This simulation allowed us to have benchmarks in the form of the true population parameters to compare with the estimates produced by the two methods, while incorporating challenges like unbalanced sample times and sample numbers as well as the ability to include the covariate of patient weight. We conclude that both NPML and NPB can be used in realistic PK/PD population analysis problems. The advantages of one versus the other are discussed in the paper. NPAG and NPB are implemented in R and freely available for download within the Pmetrics package from www.lapk.org. PMID:23404393
Parametric thermal evaluations of waste package emplacement
Bahney, R.H. III; Doering, T.W.
1996-02-01
Parametric thermal evaluations of spent nuclear fuel (SNF) waste packages (WPs) emplaced in the potential repository were performed to determine the impact of thermal loading, WP spacing, drift diameter, SNF aging, backfill, and relocation on the design of the Engineered Barrier System. Temperatures in the WP and near-field host rock are key to radionuclide containment, as they directly affect oxidation rates of the metal barriers and the ability of the rock to impede particle movement which must be demonstrated for a safe and licensable repository. Maximum allowable temperatures are based on material performance criteria and are specified as the following design goals for the WP/EBS design: SNF cladding 350{degrees}C, drift wall 200{degrees}C, and TSw3 rock 115{degrees}C.
Parametric systems analysis for tandem mirror hybrids
Lee, J.D.; Chapin, D.L.; Chi, J.W.H.
1980-09-01
Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U/sub 3/O/sub 8/ cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions.
Quantum Cylindrical Waves and Parametrized Field Theory
NASA Astrophysics Data System (ADS)
Varadarajan, Madhavan
In this article, we review some illustrative results in the study of two related toy models for quantum gravity, namely cylindrical waves (which are cylindrically symmetric gravitational fields)and parametrized field theory (which is just free scalar field theory on a flat space-time in generally covariant disguise). In the former, we focus on the phenomenon of unexpected large quantum gravity effects in regions of weak classical gravitational fields and on an analysis of causality in a quantum geometry. In the latter, we focus on Dirac quantization, argue that this is related to the unitary implementability of free scalar field evolution along curved foliations of the flat space-time and review the relevant results for unitary implementability.
Ultrafast Airy beam optical parametric oscillator.
Apurv Chaitanya, N; Kumar, S Chaitanya; Aadhi, A; Samanta, G K; Ebrahim-Zadeh, M
2016-01-01
We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm. PMID:27476910
Parametric constraints in multi-beam interference
NASA Astrophysics Data System (ADS)
Burrow, Guy M.; Gaylord, Thomas K.
2012-10-01
Multi-beam interference (MBI) represents a method of producing one-, two-, and three-dimensional submicron periodic optical-intensity distributions for applications including micro- and nano-electronics, photonic crystals, metamaterial, biomedical structures, optical trapping, and numerous other subwavelength structures. Accordingly, numerous optical configurations have been developed to implement MBI. However, these configurations typically provide limited ability to condition the key parameters of each interfering beam. Constraints on individual beam amplitudes and polarizations are systematically considered to understand their effects on lithographically useful MBI periodic patterning possibilities. A method for analyzing parametric constraints is presented and used to compare the optimized optical-intensity distributions for representative constrained systems. Case studies are presented for both square and hexagonal-lattices produced via three-beam interference. Results demonstrate that constraints on individual-beam polarizations significantly impact patterning possibilities and must be included in the systematic design of an MBI system.
Simplifying the circuit of Josephson parametric converters
NASA Astrophysics Data System (ADS)
Abdo, Baleegh; Brink, Markus; Chavez-Garcia, Jose; Keefe, George
Josephson parametric converters (JPCs) are quantum-limited three-wave mixing devices that can play various important roles in quantum information processing in the microwave domain, including amplification of quantum signals, transduction of quantum information, remote entanglement of qubits, nonreciprocal amplification, and circulation of signals. However, the input-output and biasing circuit of a state-of-the-art JPC consists of bulky components, i.e. two commercial off-chip broadband 180-degree hybrids, four phase-matched short coax cables, and one superconducting magnetic coil. Such bulky hardware significantly hinders the integration of JPCs in scalable quantum computing architectures. In my talk, I will present ideas on how to simplify the JPC circuit and show preliminary experimental results
Parametric resonance and cosmological gravitational waves
Sa, Paulo M.; Henriques, Alfredo B.
2008-03-15
We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.
Ultrafast Airy beam optical parametric oscillator
Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.
2016-01-01
We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm. PMID:27476910
Parametric study of double cellular detonation structure
NASA Astrophysics Data System (ADS)
Khasainov, B.; Virot, F.; Presles, H.-N.; Desbordes, D.
2013-05-01
A parametric numerical study is performed of a detonation cellular structure in a model gaseous explosive mixture whose decomposition occurs in two successive exothermic reaction steps with markedly different characteristic times. Kinetic and energetic parameters of both reactions are varied in a wide range in the case of one-dimensional steady and two-dimensional (2D) quasi-steady self-supported detonations. The range of governing parameters of both exothermic steps is defined where a "marked" double cellular structure exists. It is shown that the two-level cellular structure is completely governed by the kinetic parameters and the local overdrive ratio of the detonation front propagating inside large cells. Furthermore, since it is quite cumbersome to use detailed chemical kinetics in unsteady 2D case, the proposed work should help to identify the mixtures and the domain of their equivalence ratio where double detonation structure could be observed.
Parametric phase diffusion analysis of irregular oscillations
NASA Astrophysics Data System (ADS)
Schwabedal, Justus T. C.
2014-09-01
Parametric phase diffusion analysis (ΦDA), a method to determine variability of irregular oscillations, is presented. ΦDA is formulated as an analysis technique for sequences of Poincaré return times found in numerous applications. The method is unbiased by the arbitrary choice of Poincaré section, i.e. isophase, which causes a spurious component in the Poincaré return times. Other return-time variability measures can be biased drastically by these spurious return times, as shown for the Fano factor of chaotic oscillations in the Rössler system. The empirical use of ΦDA is demonstrated in an application to heart rate data from the Fantasia Database, for which ΦDA parameters successfully classify heart rate variability into groups of age and gender.
Multidimensional Scaling Visualization Using Parametric Entropy
NASA Astrophysics Data System (ADS)
Lopes, António M.; Tenreiro Machado, J. A.; Galhano, Alexandra M.
2015-12-01
This paper studies complex systems using a generalized multidimensional scaling (MDS) technique. Complex systems are characterized by time-series responses, interpreted as a manifestation of their dynamics. Two types of time-series are analyzed, namely 18 stock markets and the gross domestic product per capita of 18 countries. For constructing the MDS charts, indices based on parametric entropies are adopted. Multiparameter entropies allow the variation of the parameters leading to alternative sets of charts. The final MDS maps are then assembled by means of Procrustes’ method that maximizes the fit between the individual charts. Therefore, the proposed method can be interpreted as a generalization to higher dimensions of the standard technique that represents (and discretizes) items by means of single “points” (i.e. zero-dimensional “objects”). The MDS plots, involving one-, two- and three-dimensional “objects”, reveal a good performance in capturing the correlations between data.
Power-law parametrized quintessence model
Rahvar, Sohrab; Movahed, M. Sadegh
2007-01-15
We propose a simple power-law parametrized quintessence model with time-varying equation of state and obtain corresponding quintessence potential of this model. This model is compared with Supernova Type Ia (SNIa) Gold sample data, size of baryonic acoustic peak from Sloan Digital Sky Survey (SDSS), the position of the acoustic peak from the CMB observations and structure formation from the 2dFGRS survey and put constrain on the parameters of model. The parameters from the best fit indicates that the equation of state of this model at the present time is w{sub 0}=-1.40{sub -0.65}{sup +0.40} at 1{sigma} confidence level. Finally we calculate the age of universe in this model and compare it with the age of old cosmological objects.
Normal dispersion femtosecond fiber optical parametric oscillator.
Nguyen, T N; Kieu, K; Maslov, A V; Miyawaki, M; Peyghambarian, N
2013-09-15
We propose and demonstrate a synchronously pumped fiber optical parametric oscillator (FOPO) operating in the normal dispersion regime. The FOPO generates chirped pulses at the output, allowing significant pulse energy scaling potential without pulse breaking. The output average power of the FOPO at 1600 nm was ∼60 mW (corresponding to 1.45 nJ pulse energy and ∼55% slope power conversion efficiency). The output pulses directly from the FOPO were highly chirped (∼3 ps duration), and they could be compressed outside of the cavity to 180 fs by using a standard optical fiber compressor. Detailed numerical simulation was also performed to understand the pulse evolution dynamics around the laser cavity. We believe that the proposed design concept is useful for scaling up the pulse energy in the FOPO using different pumping wavelengths. PMID:24104828
uvmcmcfit: Parametric models to interferometric data fitter
NASA Astrophysics Data System (ADS)
Bussmann, Shane; Leung, Tsz Kuk (Daisy); Conley, Alexander
2016-06-01
Uvmcmcfit fits parametric models to interferometric data. It is ideally suited to extract the maximum amount of information from marginally resolved observations with interferometers like the Atacama Large Millimeter Array (ALMA), Submillimeter Array (SMA), and Plateau de Bure Interferometer (PdBI). uvmcmcfit uses emcee (ascl:1303.002) to do Markov Chain Monte Carlo (MCMC) and can measure the goodness of fit from visibilities rather than deconvolved images, an advantage when there is strong gravitational lensing and in other situations. uvmcmcfit includes a pure-Python adaptation of Miriad’s (ascl:1106.007) uvmodel task to generate simulated visibilities given observed visibilities and a model image and a simple ray-tracing routine that allows it to account for both strongly lensed systems (where multiple images of the lensed galaxy are detected) and weakly lensed systems (where only a single image of the lensed galaxy is detected).
A parametric evaluation of railgun augmentation
NASA Astrophysics Data System (ADS)
Kotas, J. F.; Guderjahn, C. A.; Littman, F. D.
1986-11-01
A general dynamic system model of an augmented electromagnetic launch (EML) system was developed. This model was used to characterize the augmentation effect on EML system performance by a direct comparison to a nonaugmented or simple railgun system. The results of these calculations indicate that increasing rail augmentation increases both Joule heating losses and total EML system inductance. These losses and the larger system inductance were shown to decrease system efficiency despite the lower peak rail current required to induce the same Lorentz force on the projectile in the simple EML system. The Joule heating loss was shown to be reduced by decreasing the initial augmentor rail temperature or by increasing the augmentor rail area. This paper discusses the augmented EML system model and reports the results of the parametric calculations.
Ultrafast Airy beam optical parametric oscillator
NASA Astrophysics Data System (ADS)
Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.
2016-08-01
We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm.
Compact, flexible, frequency agile parametric wavelength converter
Velsko, Stephan P.; Yang, Steven T.
2002-01-01
This improved Frequency Agile Optical Parametric Oscillator provides near on-axis pumping of a single QPMC with a tilted periodically poled grating to overcome the necessity to find a particular crystal that will permit collinear birefringence in order to obtain a desired tuning range. A tilted grating design and the elongation of the transverse profile of the pump beam in the angle tuning plane of the FA-OPO reduces the rate of change of the overlap between the pumped volume in the crystal and the resonated and non-resonated wave mode volumes as the pump beam angle is changed. A folded mirror set relays the pivot point for beam steering from a beam deflector to the center of the FA-OPO crystal. This reduces the footprint of the device by as much as a factor of two over that obtained when using the refractive telescope design.
Parametric design and gridding through relational geometry
NASA Technical Reports Server (NTRS)
Letcher, John S., Jr.; Shook, D. Michael
1995-01-01
Relational Geometric Synthesis (RGS) is a new logical framework for building up precise definitions of complex geometric models from points, curves, surfaces and solids. RGS achieves unprecedented design flexibility by supporting a rich variety of useful curve and surface entities. During the design process, many qualitative and quantitative relationships between elementary objects may be captured and retained in a data structure equivalent to a directed graph, such that they can be utilized for automatically updating the complete model geometry following changes in the shape or location of an underlying object. Capture of relationships enables many new possibilities for parametric variations and optimization. Examples are given of panelization applications for submarines, sailing yachts, offshore structures, and propellers.
Parametric separation of symmetric pure quantum states
NASA Astrophysics Data System (ADS)
Solís-Prosser, M. A.; Delgado, A.; Jiménez, O.; Neves, L.
2016-01-01
Quantum state separation is a probabilistic map that transforms a given set of pure states into another set of more distinguishable ones. Here we investigate such a map acting onto uniparametric families of symmetric linearly dependent or independent quantum states. We obtained analytical solutions for the success probability of the maps—which is shown to be optimal—as well as explicit constructions in terms of positive operator valued measures. Our results can be used for state discrimination strategies interpolating continuously between minimum-error and unambiguous (or maximum-confidence) discrimination, which, in turn, have many applications in quantum information protocols. As an example, we show that quantum teleportation through a nonmaximally entangled quantum channel can be accomplished with higher probability than the one provided by unambiguous (or maximum-confidence) discrimination and with higher fidelity than the one achievable by minimum-error discrimination. Finally, an optical network is proposed for implementing parametric state separation.
PARSEC: PARametrized Simulation Engine for Cosmic rays
NASA Astrophysics Data System (ADS)
Bretz, Hans-Peter; Erdmann, Martin; Schiffer, Peter; Walz, David; Winchen, Tobias
2015-02-01
PARSEC (PARametrized Simulation Engine for Cosmic rays) is a simulation engine for fast generation of ultra-high energy cosmic ray data based on parameterizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.
Parametric amplification of soliton steering in optical lattices.
Kartashov, Yaroslav V; Torner, Lluis; Vysloukh, Victor A
2004-05-15
We report on the effect of parametric amplification of spatial soliton swinging in Kerr-type nonlinear media with longitudinal and transverse periodic modulation of the linear refractive index. The parameter areas are found where the soliton center motion is analogous to the motion of a parametrically driven pendulum. This effect has potential applications for controllable soliton steering. PMID:15181999
Injection-seeded optical parametric oscillator and system
Lucht, Robert P.; Kulatilaka, Waruna D.; Anderson, Thomas N.; Bougher, Thomas L.
2007-10-09
Optical parametric oscillators (OPO) and systems are provided. The OPO has a non-linear optical material located between two optical elements where the product of the reflection coefficients of the optical elements are higher at the output wavelength than at either the pump or idler wavelength. The OPO output may be amplified using an additional optical parametric amplifier (OPA) stage.
Using a Parametric Solid Modeler as an Instructional Tool
ERIC Educational Resources Information Center
Devine, Kevin L.
2008-01-01
This paper presents the results of a quasi-experimental study that brought 3D constraint-based parametric solid modeling technology into the high school mathematics classroom. This study used two intact groups; a control group and an experimental group, to measure the extent to which using a parametric solid modeler during instruction affects…
Parametric cost estimation for space science missions
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; Thompson, Bruce E.
2008-07-01
Cost estimation for space science missions is critically important in budgeting for successful missions. The process requires consideration of a number of parameters, where many of the values are only known to a limited accuracy. The results of cost estimation are not perfect, but must be calculated and compared with the estimates that the government uses for budgeting purposes. Uncertainties in the input parameters result from evolving requirements for missions that are typically the "first of a kind" with "state-of-the-art" instruments and new spacecraft and payload technologies that make it difficult to base estimates on the cost histories of previous missions. Even the cost of heritage avionics is uncertain due to parts obsolescence and the resulting redesign work. Through experience and use of industry best practices developed in participation with the Aerospace Industries Association (AIA), Northrop Grumman has developed a parametric modeling approach that can provide a reasonably accurate cost range and most probable cost for future space missions. During the initial mission phases, the approach uses mass- and powerbased cost estimating relationships (CER)'s developed with historical data from previous missions. In later mission phases, when the mission requirements are better defined, these estimates are updated with vendor's bids and "bottoms- up", "grass-roots" material and labor cost estimates based on detailed schedules and assigned tasks. In this paper we describe how we develop our CER's for parametric cost estimation and how they can be applied to estimate the costs for future space science missions like those presented to the Astronomy & Astrophysics Decadal Survey Study Committees.
Evaluation of Two Energy Balance Closure Parametrizations
NASA Astrophysics Data System (ADS)
Eder, Fabian; De Roo, Frederik; Kohnert, Katrin; Desjardins, Raymond L.; Schmid, Hans Peter; Mauder, Matthias
2014-05-01
A general lack of energy balance closure indicates that tower-based eddy-covariance (EC) measurements underestimate turbulent heat fluxes, which calls for robust correction schemes. Two parametrization approaches that can be found in the literature were tested using data from the Canadian Twin Otter research aircraft and from tower-based measurements of the German Terrestrial Environmental Observatories (TERENO) programme. Our analysis shows that the approach of Huang et al. (Boundary-Layer Meteorol 127:273-292, 2008), based on large-eddy simulation, is not applicable to typical near-surface flux measurements because it was developed for heights above the surface layer and over homogeneous terrain. The biggest shortcoming of this parametrization is that the grid resolution of the model was too coarse so that the surface layer, where EC measurements are usually made, is not properly resolved. The empirical approach of Panin and Bernhofer (Izvestiya Atmos Oceanic Phys 44:701-716, 2008) considers landscape-level roughness heterogeneities that induce secondary circulations and at least gives a qualitative estimate of the energy balance closure. However, it does not consider any feature of landscape-scale heterogeneity other than surface roughness, such as surface temperature, surface moisture or topography. The failures of both approaches might indicate that the influence of mesoscale structures is not a sufficient explanation for the energy balance closure problem. However, our analysis of different wind-direction sectors shows that the upwind landscape-scale heterogeneity indeed influences the energy balance closure determined from tower flux data. We also analyzed the aircraft measurements with respect to the partitioning of the "missing energy" between sensible and latent heat fluxes and we could confirm the assumption of scalar similarity only for Bowen ratios 1.
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-01-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882
Robust parametric bootstrap test with MOM estimator: An alternative to independent sample t-test
NASA Astrophysics Data System (ADS)
Harun, Nurul Hanis; Yusof, Zahayu Md
2014-12-01
Normality and homogeneity are two major assumptions that need to be fulfilled when using independent sample t-test. However, not all data encompassed with these assumptions. Consequently, the result produced by independent sample t-test becomes invalid. Therefore, the alternative is to use robust statistical procedure in handling the problems of nonnormality and variances heterogeneity. This study proposed to use Parametric Bootstrap test with popular robust estimators, MADn and Tn which empirically determines the amount of trimming. The Type I error rates produced by each procedure were examined and compared with classical parametric test and nonparametric test namely independent sample t-test and Mann Whitney test, respectively. 5000 simulated data sets are used in this study in order to generate the Type I error for each procedure. The findings of this study indicate that the Parametric Bootstrap test with MADn and Tn produces the best Type I error control compared to the independent sample t-test and the Mann Whitney test under nonnormal distribution, heterogeneous variances and unbalanced design. Then, the performance of each procedure was demonstrated using real data.
Neuroendocrine Tumor: Statistics
... Tumor > Neuroendocrine Tumor - Statistics Request Permissions Neuroendocrine Tumor - Statistics Approved by the Cancer.Net Editorial Board , 04/ ... the body. It is important to remember that statistics on how many people survive this type of ...
NASA Technical Reports Server (NTRS)
Coverse, G. L.
1984-01-01
A turbine modeling technique has been developed which will enable the user to obtain consistent and rapid off-design performance from design point input. This technique is applicable to both axial and radial flow turbine with flow sizes ranging from about one pound per second to several hundred pounds per second. The axial flow turbines may or may not include variable geometry in the first stage nozzle. A user-specified option will also permit the calculation of design point cooling flow levels and corresponding changes in efficiency for the axial flow turbines. The modeling technique has been incorporated into a time-sharing program in order to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and example cases, it is suitable as a user's manual. This report is the second of a three volume set. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (Parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulation Flow Fan).
Statistical aspects of the 1980 solar flares. Part 3: Parametric comparison and final comments
NASA Technical Reports Server (NTRS)
Wilson, R. M.
1983-01-01
The 1349 study flares are considered addressing relationships between pairs of specific study paremeters; namely, H alpha rise time versus H alpha importance, X-ray class and H alpha decay time; H alpha decay time versus H alpha importance and X-ray class; and H alpha importance versus X-ray class. Mean H alpha rise time and decay time versus X-ray class and H alpha importance will also be discussed, and some final comments regarding the study flares are given.
Applications of non-parametric statistics and analysis of variance on sample variances
NASA Technical Reports Server (NTRS)
Myers, R. H.
1981-01-01
Nonparametric methods that are available for NASA-type applications are discussed. An attempt will be made here to survey what can be used, to attempt recommendations as to when each would be applicable, and to compare the methods, when possible, with the usual normal-theory procedures that are avavilable for the Gaussion analog. It is important here to point out the hypotheses that are being tested, the assumptions that are being made, and limitations of the nonparametric procedures. The appropriateness of doing analysis of variance on sample variances are also discussed and studied. This procedure is followed in several NASA simulation projects. On the surface this would appear to be reasonably sound procedure. However, difficulties involved center around the normality problem and the basic homogeneous variance assumption that is mase in usual analysis of variance problems. These difficulties discussed and guidelines given for using the methods.
Reduction of non-native accents through statistical parametric articulatory synthesis.
Aryal, Sandesh; Gutierrez-Osuna, Ricardo
2015-01-01
This paper presents an articulatory synthesis method to transform utterances from a second language (L2) learner to appear as if they had been produced by the same speaker but with a native (L1) accent. The approach consists of building a probabilistic articulatory synthesizer (a mapping from articulators to acoustics) for the L2 speaker, then driving the model with articulatory gestures from a reference L1 speaker. To account for differences in the vocal tract of the two speakers, a Procrustes transform is used to bring their articulatory spaces into registration. In a series of listening tests, accent conversions were rated as being more intelligible and less accented than L2 utterances while preserving the voice identity of the L2 speaker. No significant effect was found between the intelligibility of accent-converted utterances and the proportion of phones outside the L2 inventory. Because the latter is a strong predictor of pronunciation variability in L2 speech, these results suggest that articulatory resynthesis can decouple those aspects of an utterance that are due to the speaker's physiology from those that are due to their linguistic gestures. PMID:25618072
Statistical detection of systematic election irregularities
Klimek, Peter; Yegorov, Yuri; Hanel, Rudolf; Thurner, Stefan
2012-01-01
Democratic societies are built around the principle of free and fair elections, and that each citizen’s vote should count equally. National elections can be regarded as large-scale social experiments, where people are grouped into usually large numbers of electoral districts and vote according to their preferences. The large number of samples implies statistical consequences for the polling results, which can be used to identify election irregularities. Using a suitable data representation, we find that vote distributions of elections with alleged fraud show a kurtosis substantially exceeding the kurtosis of normal elections, depending on the level of data aggregation. As an example, we show that reported irregularities in recent Russian elections are, indeed, well-explained by systematic ballot stuffing. We develop a parametric model quantifying the extent to which fraudulent mechanisms are present. We formulate a parametric test detecting these statistical properties in election results. Remarkably, this technique produces robust outcomes with respect to the resolution of the data and therefore, allows for cross-country comparisons. PMID:23010929
Applications of quantum entropy to statistics
Silver, R.N.; Martz, H.F.
1994-07-01
This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to heirarchical Bayes methods.
Non-Parametric Change-Point Method for Differential Gene Expression Detection
Wang, Yao; Wu, Chunguo; Ji, Zhaohua; Wang, Binghong; Liang, Yanchun
2011-01-01
Background We proposed a non-parametric method, named Non-Parametric Change Point Statistic (NPCPS for short), by using a single equation for detecting differential gene expression (DGE) in microarray data. NPCPS is based on the change point theory to provide effective DGE detecting ability. Methodology NPCPS used the data distribution of the normal samples as input, and detects DGE in the cancer samples by locating the change point of gene expression profile. An estimate of the change point position generated by NPCPS enables the identification of the samples containing DGE. Monte Carlo simulation and ROC study were applied to examine the detecting accuracy of NPCPS, and the experiment on real microarray data of breast cancer was carried out to compare NPCPS with other methods. Conclusions Simulation study indicated that NPCPS was more effective for detecting DGE in cancer subset compared with five parametric methods and one non-parametric method. When there were more than 8 cancer samples containing DGE, the type I error of NPCPS was below 0.01. Experiment results showed both good accuracy and reliability of NPCPS. Out of the 30 top genes ranked by using NPCPS, 16 genes were reported as relevant to cancer. Correlations between the detecting result of NPCPS and the compared methods were less than 0.05, while between the other methods the values were from 0.20 to 0.84. This indicates that NPCPS is working on different features and thus provides DGE identification from a distinct perspective comparing with the other mean or median based methods. PMID:21655325
Parametric Studies of Flow Separation using Air Injection
NASA Technical Reports Server (NTRS)
Zhang, Wei
2004-01-01
Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as
NASA Astrophysics Data System (ADS)
Reed, P. M.; Urban, R. L.; Wagener, T.; van Werkhoven, K. L.
2009-12-01
This study uses interactive visualization to investigate the common assumption that parametric screening using sensitivity analysis simplifies hydrologic calibration. Put simply, do we make calibration easier by eliminating model parameters from the optimization problem? Traditional approaches for parametric screening focus on model evaluation metrics that seek to minimize statistical error. We demonstrate in this study that additional hydrology relevant metrics (e.g., water balance) are essential to properly screening parameters and producing search problems that do not degenerate into random walks (a severe case of equifinality). This work highlights that we should move beyond a focus on optimality in a traditional error sense and instead focus on enhancing our evaluative metrics and formulations to include hydrology relevant information. Building on the prior work by van Werkhoven et al. 2009, this study utilizes parameter screening results based on Sobol sensitivity analysis to reduce the size of hydrologic calibration problems for the Sacramento Soil Moisture Accounting model (SAC SMA). Our study was conducted across four hydroclimatically diverse watersheds, and we distinguish various sets of parametric screenings, including a full parameter search, as well as parameter screenings based on 5%, 10%, 20%, and 30% Sobol sensitivity levels. For each Sobol sensitivity level there are two subcases: (1) parameters are screened based on statistical metrics alone, and (2) parameters are screened based on statistical and hydrological metrics. The reduced parameter sets were searched using a multiobjective evolutionary algorithm to determine the tradeoff surfaces of optimal parameter settings. Our results contribute detailed interactive visualizations of the 4-objective tradeoff surfaces for all of the parametric screening cases evaluated. For almost all of problem formulations that result from parametric screening, the combined use of statistical and hydrological
Statistical Analysis of the Exchange Rate of Bitcoin.
Chu, Jeffrey; Nadarajah, Saralees; Chan, Stephen
2015-01-01
Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States Dollar. Fifteen of the most popular parametric distributions in finance are fitted to the log-returns. The generalized hyperbolic distribution is shown to give the best fit. Predictions are given for future values of the exchange rate. PMID:26222702
Statistical Analysis of the Exchange Rate of Bitcoin
Chu, Jeffrey; Nadarajah, Saralees; Chan, Stephen
2015-01-01
Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States Dollar. Fifteen of the most popular parametric distributions in finance are fitted to the log-returns. The generalized hyperbolic distribution is shown to give the best fit. Predictions are given for future values of the exchange rate. PMID:26222702
Statistical Reference Datasets
National Institute of Standards and Technology Data Gateway
Statistical Reference Datasets (Web, free access) The Statistical Reference Datasets is also supported by the Standard Reference Data Program. The purpose of this project is to improve the accuracy of statistical software by providing reference datasets with certified computational results that enable the objective evaluation of statistical software.
Parametric generation of quadrature squeezing of mirrors in cavity optomechanics
Liao, Jie-Qiao; Law, C. K.
2011-03-15
We propose a method to generate quadrature-squeezed states of a moving mirror in a Fabry-Perot cavity. This is achieved by exploiting the fact that when the cavity is driven by an external field with a large detuning, the moving mirror behaves as a parametric oscillator. We show that parametric resonance can be reached approximately by modulating the driving field amplitude at a frequency matching the frequency shift of the mirror. The parametric resonance leads to an efficient generation of squeezing, which is limited by the thermal noise of the environment.
Nonlinear cross-talk mitigation in polychromatic parametric sampling gate.
Ataie, Vahid; Wiberg, Andreas O J; Alic, Nikola; Radic, Stojan
2013-02-25
New technique for cancellation of nonlinear cross-talk in polychromatic parametric sampling gate is described and quantified. The method relies on a newly derived look-up table method that achieves equalization and suppresses nonlinear response associated with parametric sampling operation. The new cancellation scheme is implemented in a framework of a specific parametric photonics assisted analog-to-digital conversion (ADC) copy-and-sample-all (CaSA) architecture. A 20 dB improvement in total harmonic distortion is demonstrated experimentally. PMID:23481948
Peterson, James T.
1999-12-01
Natural resource professionals are increasingly required to develop rigorous statistical models that relate environmental data to categorical responses data. Recent advances in the statistical and computing sciences have led to the development of sophisticated methods for parametric and nonparametric analysis of data with categorical responses. The statistical software package CATDAT was designed to make some of these relatively new and powerful techniques available to scientists. The CATDAT statistical package includes 4 analytical techniques: generalized logit modeling; binary classification tree; extended K-nearest neighbor classification; and modular neural network.
Parametric instabilities in picosecond time scales
Baldis, H.A.; Rozmus, W.; Labaune, C.; Mounaix, Ph.; Pesme, D.; Baton, S.; Tikhonchuk, V.T.
1993-03-01
The coupling of intense laser light with plasmas is a rich field of plasma physics, with many applications. Among these are inertial confinement fusion (ICF), x-ray lasers, particle acceleration, and x-ray sources. Parametric instabilities have been studied for many years because of their importance to ICF; with laser pulses with duration of approximately a nanosecond, and laser intensities in the range 10{sup 14}--10{sup 15}W/cm{sup 2} these instabilities are of crucial concern because of a number of detrimental effects. Although the laser pulse duration of interest for these studies are relatively long, it has been evident in the past years that to reach an understanding of these instabilities requires their characterization and analysis in picosecond time scales. At the laser intensities of interest, the growth rate for stimulated Brillouin scattering (SBS) is of the order of picoseconds, and of an order of magnitude shorter for stimulated Raman scattering (SRS). In this paper the authors discuss SBS and SRS in the context of their evolution in picosecond time scales. They describe the fundamental concepts associated with their growth and saturation, and recent work on the nonlinear treatment required for the modeling of these instabilities at high laser intensities.
Parametric optimization of inverse trapezoid oleophobic surfaces.
Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin
2012-12-18
In this paper, we introduce a comprehensive and versatile approach to the parametric shape optimization of oleophobic surfaces. We evaluate the performance of inverse trapezoid microstructures in terms of three objective parameters: apparent contact angle, maximum sustainable hydrostatic pressure, and mechanical robustness (Im, M.; Im, H:; Lee, J.H.; Yoon, J.B.; Choi, Y.K. A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter 2010, 6, 1401-1404; Im, M.; Im, H:; Lee, J.H.; Yoon, J.B.; Choi, Y.K. Analytical Modeling and Thermodynamic Analysis of Robust Superhydrophobic Surfaces with Inverse-Trapezoidal Microstructures. Langmuir 2010, 26, 17389-17397). We find that each of these parameters, if considered alone, would give trivial optima, while their interplay provides a well-defined optimal shape and aspect ratio. The inclusion of mechanical robustness in combination with conventional performance characteristics favors solutions relevant for practical applications, as mechanical stability is a critical issue not often addressed in idealized models. PMID:23078017
Parametric Decay During HHFW on NSTX
Wilson, J.R.; Bernabei, S.; Biewer, T.; Diem, S.; Hosea, J.; LeBlanc, B.; Phillips, C.K.; Ryan, P.; Swain, D.W.
2005-09-26
High Harmonic Fast Wave (HHFW) heating experiments on NSTX have been observed to be accompanied by significant edge ion heating (Ti >> Te). This heating is found to be anisotropic with T perpendicular > T parallel. Simultaneously, coherent oscillations have been detected with an edge Langmuir probe. The oscillations are consistent with parametric decay of the incident fast wave ({omega} > 13{omega}c) into ion Bernstein waves and an unobserved ion-cyclotron quasi-mode. The observation of anisotropic heating is consistent with Bernstein wave damping and the Bernstein waves should completely damp in the plasma periphery as they propagate toward a cyclotron harmonic resonance. The number of daughter waves is found to increase with rf power and to increase as the incident wave's toroidal wavelength increases. The frequencies of the daughter wave are separated by the edge ion cyclotron frequency. Theoretical calculations of the threshold for this decay in uniform plasma indicate an extremely small value of incident power should be required to drive the instability. While such decays are commonly observed at lower harmonics in conventional ICRF heating scenarios they usually do not involve the loss of significant wave power from the pump wave. On NSTX an estimate of the power loss can be found by calculating the minimum power required to support the edge ion heating (presumed to come from the decay Bernstein wave). This calculation indicates at least 20-30% of the incident rf power ends up as decay waves.
Parametric Study of Variable Emissivity Radiator Surfaces
NASA Technical Reports Server (NTRS)
Grob, Lisa M.; Swanson, Theodore D.
2000-01-01
The goal of spacecraft thermal design is to accommodate a high function satellite in a low weight and real estate package. The extreme environments that the satellite is exposed during its orbit are handled using passive and active control techniques. Heritage passive heat rejection designs are sized for the hot conditions and augmented for the cold end with heaters. The active heat rejection designs to date are heavy, expensive and/or complex. Incorporating an active radiator into the design that is lighter, cheaper and more simplistic will allow designers to meet the previously stated goal of thermal spacecraft design Varying the radiator's surface properties without changing the radiating area (as with VCHP), or changing the radiators' views (traditional louvers) is the objective of the variable emissivity (vary-e) radiator technologies. A parametric evaluation of the thermal performance of three such technologies is documented in this paper. Comparisons of the Micro-Electromechanical Systems (MEMS), Electrochromics, and Electrophoretics radiators to conventional radiators, both passive and active are quantified herein. With some noted limitations, the vary-e radiator surfaces provide significant advantages over traditional radiators and a promising alternative design technique for future spacecraft thermal systems.
Parametric probability distributions for anomalous change detection
Theiler, James P; Foy, Bernard R; Wohlberg, Brendt E; Scovel, James C
2010-01-01
The problem of anomalous change detection arises when two (or possibly more) images are taken of the same scene, but at different times. The aim is to discount the 'pervasive differences' that occur thoughout the imagery, due to the inevitably different conditions under which the images were taken (caused, for instance, by differences in illumination, atmospheric conditions, sensor calibration, or misregistration), and to focus instead on the 'anomalous changes' that actually take place in the scene. In general, anomalous change detection algorithms attempt to model these normal or pervasive differences, based on data taken directly from the imagery, and then identify as anomalous those pixels for which the model does not hold. For many algorithms, these models are expressed in terms of probability distributions, and there is a class of such algorithms that assume the distributions are Gaussian. By considering a broader class of distributions, however, a new class of anomalous change detection algorithms can be developed. We consider several parametric families of such distributions, derive the associated change detection algorithms, and compare the performance with standard algorithms that are based on Gaussian distributions. We find that it is often possible to significantly outperform these standard algorithms, even using relatively simple non-Gaussian models.
Recursive delay calculation unit for parametric beamformer
NASA Astrophysics Data System (ADS)
Nikolov, Svetoslav I.; Jensen, Jørgen A.; Tomov, Borislav
2006-03-01
This paper presents a recursive approach for parametric delay calculations for a beamformer. The suggested calculation procedure is capable of calculating the delays for any image line defined by an origin and arbitrary direction. It involves only add and shift operations making it suitable for hardware implementation. One delaycalculation unit (DCU) needs 4 parameters, and all operations can be implemented using fixed-point arithmetics. An N-channel system needs N+ 1 DCUs per line - one for the distance from the transmit origin to the image point and N for the distances from the image point to each of the receivers. Each DCU recursively calculates the square of the distance between a transducer element and a point on the beamformed line. Then it finds the approximate square root. The distance to point i is used as an initial guess for point i + 1. Using fixed-point calculations with 36-bit precision gives an error in the delay calculations on the order of 1/64 samples, at a sampling frequency of f s = 40 MHz. The circuit has been synthesized for a Virtex II Pro device speed grade 6 in two versions - a pipelined and a non-pipelined producing 150 and 30 million delays per second, respectively. The non-pipelined circuit occupies about 0.5 % of the FPGA resources and the pipelined one about 1 %. When the square root is found with a pipelined CORDIC processor, 2 % of the FPGA slices are used to deliver 150 million delays per second.
Parametric Cost Analysis: A Design Function
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1989-01-01
Parametric cost analysis uses equations to map measurable system attributes into cost. The measures of the system attributes are called metrics. The equations are called cost estimating relationships (CER's), and are obtained by the analysis of cost and technical metric data of products analogous to those to be estimated. Examples of system metrics include mass, power, failure_rate, mean_time_to_repair, energy _consumed, payload_to_orbit, pointing_accuracy, manufacturing_complexity, number_of_fasteners, and percent_of_electronics_weight. The basic assumption is that a measurable relationship exists between system attributes and the cost of the system. If a function exists, the attributes are cost drivers. Candidates for metrics include system requirement metrics and engineering process metrics. Requirements are constraints on the engineering process. From optimization theory we know that any active constraint generates cost by not permitting full optimization of the objective. Thus, requirements are cost drivers. Engineering processes reflect a projection of the requirements onto the corporate culture, engineering technology, and system technology. Engineering processes are an indirect measure of the requirements and, hence, are cost drivers.
Parametric Decay during HHFW on NSTX
J.R. Wilson; S. Bernabei; T. Biewer; S. Diem; J. Hosea; B. LeBlanc; C.K. Phillips; P. Ryan; D.W. Swain
2005-05-13
High Harmonic Fast Wave (HHFW) heating experiments on NSTX have been observed to be accompanied by significant edge ion heating (T{sub i} >> T{sub e}). This heating is found to be anisotropic with T{sub perp} > T{sub par}. Simultaneously, coherent oscillations have been detected with an edge Langmuir probe. The oscillations are consistent with parametric decay of the incident fast wave ({omega} > 13{omega}{sub ci}) into ion Bernstein waves and an unobserved ion-cyclotron quasi-mode. The observation of anisotropic heating is consistent with Bernstein wave damping, and the Bernstein waves should completely damp in the plasma periphery as they propagate toward a cyclotron harmonic resonance. The number of daughter waves is found to increase with rf power, and to increase as the incident wave's toroidal wavelength increases. The frequencies of the daughter wave are separated by the edge ion cyclotron frequency. Theoretical calculations of the threshold for this decay in uniform plasma indicate an extremely small value of incident power should be required to drive the instability. While such decays are commonly observed at lower harmonics in conventional ICRF heating scenarios, they usually do not involve the loss of significant wave power from the pump wave. On NSTX an estimate of the power loss can be found by calculating the minimum power required to support the edge ion heating (presumed to come from the decay Bernstein wave). This calculation indicates at least 20-30% of the incident rf power ends up as decay waves.
Selected Parametric Effects on Materials Flammability Limits
NASA Technical Reports Server (NTRS)
Hirsch, David B.; Juarez, Alfredo; Peyton, Gary J.; Harper, Susana A.; Olson, Sandra L.
2011-01-01
NASA-STD-(I)-6001B Test 1 is currently used to evaluate the flammability of materials intended for use in habitable environments of U.S. spacecraft. The method is a pass/fail upward flame propagation test conducted in the worst case configuration, which is defined as a combination of a material s thickness, test pressure, oxygen concentration, and temperature that make the material most flammable. Although simple parametric effects may be intuitive (such as increasing oxygen concentrations resulting in increased flammability), combinations of multi-parameter effects could be more complex. In addition, there are a variety of material configurations used in spacecraft. Such configurations could include, for example, exposed free edges where fire propagation may be different when compared to configurations commonly employed in standard testing. Studies involving combined oxygen concentration, pressure, and temperature on flammability limits have been conducted and are summarized in this paper. Additional effects on flammability limits of a material s thickness, mode of ignition, burn-length criteria, and exposed edges are presented. The information obtained will allow proper selection of ground flammability test conditions, support further studies comparing flammability in 1-g with microgravity and reduced gravity environments, and contribute to persuasive scientific cases for rigorous space system fire risk assessments.
Parametric analysis of a magnetized cylindrical plasma
Ahedo, Eduardo
2009-11-15
The relevant macroscopic model, the spatial structure, and the parametric regimes of a low-pressure plasma confined by a cylinder and an axial magnetic field is discussed for the small-Debye length limit, making use of asymptotic techniques. The plasma response is fully characterized by three-dimensionless parameters, related to the electron gyroradius, and the electron and ion collision mean-free-paths. There are the unmagnetized regime, the main magnetized regime, and, for a low electron-collisionality plasma, an intermediate-magnetization regime. In the magnetized regimes, electron azimuthal inertia is shown to be a dominant phenomenon in part of the quasineutral plasma region and to set up before ion radial inertia. In the main magnetized regime, the plasma structure consists of a bulk diffusive region, a thin layer governed by electron inertia, a thinner sublayer controlled by ion inertia, and the non-neutral Debye sheath. The solution of the main inertial layer yields that the electron azimuthal energy near the wall is larger than the electron thermal energy, making electron resistivity effects non-negligible. The electron Boltzmann relation is satisfied only in the very vicinity of the Debye sheath edge. Ion collisionality effects are irrelevant in the magnetized regime. Simple scaling laws for plasma production and particle and energy fluxes to the wall are derived.
A Parametric Study of Spur Gear Dynamics
NASA Technical Reports Server (NTRS)
Lin, Hsiang Hsi; Liou, Chuen-Huei
1998-01-01
A parametric study of a spur gear system was performed through a numerical analysis approach. This study used the gear dynamic program DANST, a computer simulator, to determine the dynamic behavior of a spur gear system. The analytical results have taken the deflection of shafts and bearings into consideration for static analysis, and the influence of these deflections on gear dynamics was investigated. Damping in the gear system usually is an unknown quantity, but it has an important effect in resonance vibration. Typical values as reported in the literature were used in the present analysis. The dynamic response due to different damping factors was evaluated and compared. The effect of the contact ratio on spur gear dynamic load and dynamic stress was investigated through a parameter study. The contact ratio was varied over the range of 1.26 to 2.46 by adjusting the tooth addendum. Gears with contact ratio near 2.0 were found to have the most favorable dynamic performance.
Program Predicts Performance of Optical Parametric Oscillators
NASA Technical Reports Server (NTRS)
Cross, Patricia L.; Bowers, Mark
2006-01-01
A computer program predicts the performances of solid-state lasers that operate at wavelengths from ultraviolet through mid-infrared and that comprise various combinations of stable and unstable resonators, optical parametric oscillators (OPOs), and sum-frequency generators (SFGs), including second-harmonic generators (SHGs). The input to the program describes the signal, idler, and pump beams; the SFG and OPO crystals; and the laser geometry. The program calculates the electric fields of the idler, pump, and output beams at three locations (inside the laser resonator, just outside the input mirror, and just outside the output mirror) as functions of time for the duration of the pump beam. For each beam, the electric field is used to calculate the fluence at the output mirror, plus summary parameters that include the centroid location, the radius of curvature of the wavefront leaving through the output mirror, the location and size of the beam waist, and a quantity known, variously, as a propagation constant or beam-quality factor. The program provides a typical Windows interface for entering data and selecting files. The program can include as many as six plot windows, each containing four graphs.
Visual to Parametric Interaction (V2PI)
Maiti, Dipayan; Endert, Alex; North, Chris
2013-01-01
Typical data visualizations result from linear pipelines that start by characterizing data using a model or algorithm to reduce the dimension and summarize structure, and end by displaying the data in a reduced dimensional form. Sensemaking may take place at the end of the pipeline when users have an opportunity to observe, digest, and internalize any information displayed. However, some visualizations mask meaningful data structures when model or algorithm constraints (e.g., parameter specifications) contradict information in the data. Yet, due to the linearity of the pipeline, users do not have a natural means to adjust the displays. In this paper, we present a framework for creating dynamic data displays that rely on both mechanistic data summaries and expert judgement. The key is that we develop both the theory and methods of a new human-data interaction to which we refer as “ Visual to Parametric Interaction” (V2PI). With V2PI, the pipeline becomes bi-directional in that users are embedded in the pipeline; users learn from visualizations and the visualizations adjust to expert judgement. We demonstrate the utility of V2PI and a bi-directional pipeline with two examples. PMID:23555552
Optical parametric osicllators with improved beam quality
Smith, Arlee V.; Alford, William J.
2003-11-11
An optical parametric oscillator (OPO) having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.
Parametric Testing of Launch Vehicle FDDR Models
NASA Technical Reports Server (NTRS)
Schumann, Johann; Bajwa, Anupa; Berg, Peter; Thirumalainambi, Rajkumar
2011-01-01
For the safe operation of a complex system like a (manned) launch vehicle, real-time information about the state of the system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and to initiate fault recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular, hierarchical subsystems and components. With this model, the nominal flight performance characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a complicated model is virtually impossible. In this paper, we will describe, how parametric testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to generate a small, yet comprehensive set of parameters for the test runs. For the analysis of the high-dimensional simulation data, we are using multivariate clustering to automatically find structure in this high-dimensional data space. Our tools can generate detailed HTML reports that facilitate the analysis.
Optical parametric oscillators for medical applications
NASA Astrophysics Data System (ADS)
Gloster, Lawrie A. W.; Golding, Paul S.; King, Terence A.
1996-04-01
In recent years optical parametric oscillators (OPOs) have undergone a renaissance largely due to the discovery of new nonlinear materials capable of wide continuous tuning ranges spanning from the UV to the near-infrared spectral regions. To date, however, OPOs have not been exploited in the medical field despite their advantages over the dye laser in terms of tuning range and solid state structure. We consider the development of an OPO based on barium borate (BBO) which can be tailored to suit applications in medicine. Converting the maximum number of pump photons to tunable signal and idler photons is of great importance to secure high-fluence radiation necessary for many treatments. With this in mind, we report on an all- solid-state system using BBO which has been optimized by computer modeling with the potential of delivering amplification factors of typically up to 20 over a continuous tuning range of 700 nm to 1000 nm. As an example of its biomedical application, we describe the selective excitation of biomolecules and chromophores for cell destruction using malachite green isothiocyanate labelled bacteria. The potential for development is reviewed towards other medical applications such as diagnostic sensing and phototherapy.
Characterization of photons generated in spontaneous parametric down-conversion
NASA Astrophysics Data System (ADS)
Bashkansky, Mark; Vurgaftman, Igor; Reintjes, J.
2014-05-01
Low-photon-number sources can exhibit non-classical, counterintuitive behavior that can be exploited in the developing field of quantum technology. Single photons play a special role in this arena since they represent the ultimate lowphoton- number source. They are considered an important element in various applications such as quantum key distribution, optical quantum information processing, quantum computing, intensity measurement standards, and others yet to be discovered in this developing field. True deterministic sources of single photons on demand are currently an area of intensive research, but have not been demonstrated in a practical setting. As a result, researchers commonly default to the well-established workhorse: spontaneous parametric down-conversion generating entangled signal-idler pairs. Since this source is thermal-statistical in nature, it is common to use a detected idler photon to herald the production of a signal photon. The need exists to determine the quality of the single photons generated in the heralded signal beam. Quite often, the literature reports a "heralded second-order coherence function" of the signal photons conditioned on the idler photons using readily available single-photon detectors. In this work, we examine the applicability of this technique to single-photon characterization and the consequences of the fact that the most commonly used single-photon detectors are not photon-number resolving. Our results show that this method using non-photonresolving detectors can only be used to characterize the signal-idler correlations rather than the nature of the signalphoton state alone.
Optimal Parametric Discrete Event Control: Problem and Solution
Griffin, Christopher H
2008-01-01
We present a novel optimization problem for discrete event control, similar in spirit to the optimal parametric control problem common in statistical process control. In our problem, we assume a known finite state machine plant model $G$ defined over an event alphabet $\\Sigma$ so that the plant model language $L = \\LanM(G)$ is prefix closed. We further assume the existence of a \\textit{base control structure} $M_K$, which may be either a finite state machine or a deterministic pushdown machine. If $K = \\LanM(M_K)$, we assume $K$ is prefix closed and that $K \\subseteq L$. We associate each controllable transition of $M_K$ with a binary variable $X_1,\\dots,X_n$ indicating whether the transition is enabled or not. This leads to a function $M_K(X_1,\\dots,X_n)$, that returns a new control specification depending upon the values of $X_1,\\dots,X_n$. We exhibit a branch-and-bound algorithm to solve the optimization problem $\\min_{X_1,\\dots,X_n}\\max_{w \\in K} C(w)$ such that $M_K(X_1,\\dots,X_n) \\models \\Pi$ and $\\LanM(M_K(X_1,\\dots,X_n)) \\in \\Con(L)$. Here $\\Pi$ is a set of logical assertions on the structure of $M_K(X_1,\\dots,X_n)$, and $M_K(X_1,\\dots,X_n) \\models \\Pi$ indicates that $M_K(X_1,\\dots,X_n)$ satisfies the logical assertions; and, $\\Con(L)$ is the set of controllable sublanguages of $L$.
Shaikh, Masood Ali
2016-04-01
Statistical tests help infer meaningful conclusions from studies conducted and data collected. This descriptive study analyzed the type of statistical tests used and the statistical software utilized for analysis reported in the original articles published in 2014 by the three Medline-indexed journals of Pakistan. Cumulatively, 466 original articles were published in 2014. The most frequently reported statistical tests for original articles by all three journals were bivariate parametric and non-parametric tests i.e. involving comparisons between two groups e.g. Chi-square test, t-test, and various types of correlations. Cumulatively, 201 (43.1%) articles used these tests. SPSS was the primary choice for statistical analysis, as it was exclusively used in 374 (80.3%) original articles. There has been a substantial increase in the number of articles published, and in the sophistication of statistical tests used in the articles published in the Pakistani Medline indexed journals in 2014, compared to 2007. PMID:27122277
Cheng, Xiaoyin; Bayer, Christine; Maftei, Constantin-Alin; Astner, Sabrina T; Vaupel, Peter; Ziegler, Sibylle I; Shi, Kuangyu
2014-01-20
Compared to indirect methods, direct parametric image reconstruction (PIR) has the advantage of high quality and low statistical errors. However, it is not yet clear if this improvement in quality is beneficial for physiological quantification. This study aimed to evaluate direct PIR for the quantification of tumor hypoxia using the hypoxic fraction (HF) assessed from immunohistological data as a physiological reference. Sixteen mice with xenografted human squamous cell carcinomas were scanned with dynamic [18F]FMISO PET. Afterward, tumors were sliced and stained with H&E and the hypoxia marker pimonidazole. The hypoxic signal was segmented using k-means clustering and HF was specified as the ratio of the hypoxic area over the viable tumor area. The parametric Patlak slope images were obtained by indirect voxel-wise modeling on reconstructed images using filtered back projection and ordered-subset expectation maximization (OSEM) and by direct PIR (e.g., parametric-OSEM, POSEM). The mean and maximum Patlak slopes of the tumor area were investigated and compared with HF. POSEM resulted in generally higher correlations between slope and HF among the investigated methods. A strategy for the delineation of the hypoxic tumor volume based on thresholding parametric images at half maximum of the slope is recommended based on the results of this study. PMID:24351879
NASA Astrophysics Data System (ADS)
Cheng, Xiaoyin; Bayer, Christine; Maftei, Constantin-Alin; Astner, Sabrina T.; Vaupel, Peter; Ziegler, Sibylle I.; Shi, Kuangyu
2014-01-01
Compared to indirect methods, direct parametric image reconstruction (PIR) has the advantage of high quality and low statistical errors. However, it is not yet clear if this improvement in quality is beneficial for physiological quantification. This study aimed to evaluate direct PIR for the quantification of tumor hypoxia using the hypoxic fraction (HF) assessed from immunohistological data as a physiological reference. Sixteen mice with xenografted human squamous cell carcinomas were scanned with dynamic [18F]FMISO PET. Afterward, tumors were sliced and stained with H&E and the hypoxia marker pimonidazole. The hypoxic signal was segmented using k-means clustering and HF was specified as the ratio of the hypoxic area over the viable tumor area. The parametric Patlak slope images were obtained by indirect voxel-wise modeling on reconstructed images using filtered back projection and ordered-subset expectation maximization (OSEM) and by direct PIR (e.g., parametric-OSEM, POSEM). The mean and maximum Patlak slopes of the tumor area were investigated and compared with HF. POSEM resulted in generally higher correlations between slope and HF among the investigated methods. A strategy for the delineation of the hypoxic tumor volume based on thresholding parametric images at half maximum of the slope is recommended based on the results of this study.
Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests
Naghili, Hossein; Tajik, Hossein; Mardani, Karim; Razavi Rouhani, Seyed Mehdi; Ehsani, Ali; Zare, Payman
2013-01-01
Drop plate technique has a priority and preference compared with the spread plate procedure, because of less time, quantity of media, effort requirement, little incubator space, and less labor intensive. The objective of this research was to compare the accuracy and fidelity of drop plate method vs. spread plate method by parametric and nonparametric statistical tests. For bacterial enumeration by drop and spread plate methods, successive dilutions of second subculture of Lactobacillus casei and Salmonella Typhimurium were transferred to selective agar. The correlation of agreement between both methods was evaluated by using statistical proofs. Results showed that mean value (parametric unpaired t-test) comparison at 95 percent confidence level did not reject null hypothesis, which it meant that the equality of the mean data could not be ruled out. Nonparametric method was used because of approximately Gaussian pattern of data distribution. For this purpose, Mann-Whitney test (equivalent nonparametric t-test) was used. It meant that the equality of medians obtained from two methods were similar. Spearman’s rho correlation coefficient (r) via both methods due to data distribution patterns for enumeration of S. Typhimurium and L. casei were 0.62 and 0.87, respectively; which represented moderately strong and strong relationship between two methods, respectively. Besides, there was a significant and strong positive correlation (p < 0.001) between spread and drop plate procedures. Because of aforementioned reasons, the spread plate method can be replaced by drop plate method. PMID:25653794
Non-Parametric Bayesian Registration (NParBR) of Body Tumors in DCE-MRI Data.
Pilutti, David; Strumia, Maddalena; Buchert, Martin; Hadjidemetriou, Stathis
2016-04-01
The identification of tumors in the internal organs of chest, abdomen, and pelvis anatomic regions can be performed with the analysis of Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) data. The contrast agent is accumulated differently by pathologic and healthy tissues and that results in a temporally varying contrast in an image series. The internal organs are also subject to potentially extensive movements mainly due to breathing, heart beat, and peristalsis. This contributes to making the analysis of DCE-MRI datasets challenging as well as time consuming. To address this problem we propose a novel pairwise non-rigid registration method with a Non-Parametric Bayesian Registration (NParBR) formulation. The NParBR method uses a Bayesian formulation that assumes a model for the effect of the distortion on the joint intensity statistics, a non-parametric prior for the restored statistics, and also applies a spatial regularization for the estimated registration with Gaussian filtering. A minimally biased intra-dataset atlas is computed for each dataset and used as reference for the registration of the time series. The time series registration method has been tested with 20 datasets of liver, lungs, intestines, and prostate. It has been compared to the B-Splines and to the SyN methods with results that demonstrate that the proposed method improves both accuracy and efficiency. PMID:26672032
Physics-based statistical model and simulation method of RF propagation in urban environments
Pao, Hsueh-Yuan; Dvorak, Steven L.
2010-09-14
A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.
NASA Astrophysics Data System (ADS)
Verrelst, Jochem; Rivera, Juan Pablo; Veroustraete, Frank; Muñoz-Marí, Jordi; Clevers, Jan G. P. W.; Camps-Valls, Gustau; Moreno, José
2015-10-01
Given the forthcoming availability of Sentinel-2 (S2) images, this paper provides a systematic comparison of retrieval accuracy and processing speed of a multitude of parametric, non-parametric and physically-based retrieval methods using simulated S2 data. An experimental field dataset (SPARC), collected at the agricultural site of Barrax (Spain), was used to evaluate different retrieval methods on their ability to estimate leaf area index (LAI). With regard to parametric methods, all possible band combinations for several two-band and three-band index formulations and a linear regression fitting function have been evaluated. From a set of over ten thousand indices evaluated, the best performing one was an optimized three-band combination according to (ρ560 -ρ1610 -ρ2190) / (ρ560 +ρ1610 +ρ2190) with a 10-fold cross-validation RCV2 of 0.82 (RMSECV : 0.62). This family of methods excel for their fast processing speed, e.g., 0.05 s to calibrate and validate the regression function, and 3.8 s to map a simulated S2 image. With regard to non-parametric methods, 11 machine learning regression algorithms (MLRAs) have been evaluated. This methodological family has the advantage of making use of the full optical spectrum as well as flexible, nonlinear fitting. Particularly kernel-based MLRAs lead to excellent results, with variational heteroscedastic (VH) Gaussian Processes regression (GPR) as the best performing method, with a RCV2 of 0.90 (RMSECV : 0.44). Additionally, the model is trained and validated relatively fast (1.70 s) and the processed image (taking 73.88 s) includes associated uncertainty estimates. More challenging is the inversion of a PROSAIL based radiative transfer model (RTM). After the generation of a look-up table (LUT), a multitude of cost functions and regularization options were evaluated. The best performing cost function is Pearson's χ -square. It led to a R2 of 0.74 (RMSE: 0.80) against the validation dataset. While its validation went fast
Explicit Closed Forms for Parametric Integrals. Classroom Notes
ERIC Educational Resources Information Center
Dana-Picard, Thierry
2004-01-01
Closed forms are computed for parametric integrals, generally using induction formulas. It is shown that these integrals can be core activities, mixing hand-work, computations with a computer algebra system and experimental mathematics with an interactive website.
Unitary Parametrization of Perturbations to Tribimaximal Neutrino Mixing
Pakvasa, Sandip; Rodejohann, Werner; Weiler, Thomas J.
2008-03-21
Current experimental data on neutrino mixing are very well described by tribimaximal mixing. Accordingly, any phenomenological parametrization of the Maki-Nakagawa-Sakata-Pontecorvo matrix must build upon tribimaximal mixing. We propose one particularly natural parametrization, which we call 'triminimal'. The three small deviations of the Particle Data Group angles from their tribimaximal values, and the PDG phase, parametrize the triminimal mixing matrix. As an important example of the utility of this new parametrization, we present the simple resulting expressions for the flavor-mixing probabilities of atmospheric and astrophysical neutrinos. As no foreseeable experiment will be sensitive to more than second order in the small parameters, we expand these flavor probabilities to second order.
Unitary Parametrization of Perturbations to Tribimaximal Neutrino Mixing
NASA Astrophysics Data System (ADS)
Pakvasa, Sandip; Rodejohann, Werner; Weiler, Thomas J.
2008-03-01
Current experimental data on neutrino mixing are very well described by tribimaximal mixing. Accordingly, any phenomenological parametrization of the Maki-Nakagawa-Sakata-Pontecorvo matrix must build upon tribimaximal mixing. We propose one particularly natural parametrization, which we call “triminimal.” The three small deviations of the Particle Data Group angles from their tribimaximal values, and the PDG phase, parametrize the triminimal mixing matrix. As an important example of the utility of this new parametrization, we present the simple resulting expressions for the flavor-mixing probabilities of atmospheric and astrophysical neutrinos. As no foreseeable experiment will be sensitive to more than second order in the small parameters, we expand these flavor probabilities to second order.
Direct Estimation of Kinetic Parametric Images for Dynamic PET
Wang, Guobao; Qi, Jinyi
2013-01-01
Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed. PMID:24396500
Threshold Analysis of a THz-Wave Parametric Oscillator
NASA Astrophysics Data System (ADS)
Li, Zhong-Yang; Yao, Jian-Quan; Zhu, Neng-Nian; Wang, Yu-Ye; Xu, De-Gang
2010-06-01
The parametric gain of a terahertz wave parametric oscillator (TPO) is analyzed. Meanwhile the expression of TPO threshold pump intensity is derived and theoretically analyzed with different factors. The effective interaction length between the pump wave and Stokes wave is calculated, and particular attention is paid to the coupling efficiency of the pump wave and Stokes wave. Such an analysis is useful for the experiments of TPO.
Finding Rational Parametric Curves of Relative Degree One or Two
ERIC Educational Resources Information Center
Boyles, Dave
2010-01-01
A plane algebraic curve, the complete set of solutions to a polynomial equation: f(x, y) = 0, can in many cases be drawn using parametric equations: x = x(t), y = y(t). Using algebra, attempting to parametrize by means of rational functions of t, one discovers quickly that it is not the degree of f but the "relative degree," that describes how…
Statistical error model for a solar electric propulsion thrust subsystem
NASA Technical Reports Server (NTRS)
Bantell, M. H.
1973-01-01
The solar electric propulsion thrust subsystem statistical error model was developed as a tool for investigating the effects of thrust subsystem parameter uncertainties on navigation accuracy. The model is currently being used to evaluate the impact of electric engine parameter uncertainties on navigation system performance for a baseline mission to Encke's Comet in the 1980s. The data given represent the next generation in statistical error modeling for low-thrust applications. Principal improvements include the representation of thrust uncertainties and random process modeling in terms of random parametric variations in the thrust vector process for a multi-engine configuration.
Parametric Characterization of SGP4 Theory and TLE Positional Accuracy
NASA Astrophysics Data System (ADS)
Oltrogge, D.; Ramrath, J.
2014-09-01
Two-Line Elements, or TLEs, contain mean element state vectors compatible with General Perturbations (GP) singly-averaged semi-analytic orbit theory. This theory, embodied in the SGP4 orbit propagator, provides sufficient accuracy for some (but perhaps not all) orbit operations and SSA tasks. For more demanding tasks, higher accuracy orbit and force model approaches (i.e. Special Perturbations numerical integration or SP) may be required. In recent times, the suitability of TLEs or GP theory for any SSA analysis has been increasingly questioned. Meanwhile, SP is touted as being of high quality and well-suited for most, if not all, SSA applications. Yet the lack of truth or well-known reference orbits that haven't already been adopted for radar and optical sensor network calibration has typically prevented a truly unbiased assessment of such assertions. To gain better insight into the practical limits of applicability for TLEs, SGP4 and the underlying GP theory, the native SGP4 accuracy is parametrically examined for the statistically-significant range of RSO orbit inclinations experienced as a function of all orbit altitudes from LEO through GEO disposal altitude. For each orbit altitude, reference or truth orbits were generated using full force modeling, time-varying space weather, and AGIs HPOP numerical integration orbit propagator. Then, TLEs were optimally fit to these truth orbits. The resulting TLEs were then propagated and positionally differenced with the truth orbits to determine how well the GP theory was able to fit the truth orbits. Resultant statistics characterizing these empirically-derived accuracies are provided. This TLE fit process of truth orbits was intentionally designed to be similar to the JSpOC process operationally used to generate Enhanced GP TLEs for debris objects. This allows us to draw additional conclusions of the expected accuracies of EGP TLEs. In the real world, Orbit Determination (OD) programs aren't provided with dense optical
CFD Parametric Study of Consortium Impeller
NASA Technical Reports Server (NTRS)
Cheng, Gary C.; Chen, Y. S.; Garcia, Roberto; Williams, Robert W.
1993-01-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform
CFD parametric study of consortium impeller
NASA Astrophysics Data System (ADS)
Cheng, Gary C.; Chen, Y. S.; Garcia, Roberto; Williams, Robert W.
1993-07-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform
Hamiltonian constraint in polymer parametrized field theory
Laddha, Alok; Varadarajan, Madhavan
2011-01-15
Recently, a generally covariant reformulation of two-dimensional flat spacetime free scalar field theory known as parametrized field theory was quantized using loop quantum gravity (LQG) type ''polymer'' representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG: (i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit, (ii) if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski-Marolf habitat, (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill-defined on the Lewandowski-Marolf habitat despite the well-definedness of the operator correspondent of their classical Poisson bracket there, (v) there is a new habitat which supports a nontrivial representation of the Poisson-Lie algebra of density 2 constraints.
Fast parametric beamformer for synthetic aperture imaging.
Nikolov, Svetoslav Ivanov; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev
2008-08-01
This paper describes the design and implementation of a real-time delay-and-sum synthetic aperture beamformer. The beamforming delays and apodization coefficients are described parametrically. The image is viewed as a set of independent lines that are defined in 3D by their origin, direction, and inter-sample distance. The delay calculation is recursive and inspired by the coordinate rotation digital computer (CORDIC) algorithm. Only 3 parameters per channel and line are needed for their generation. The calculation of apodization coefficients is based on a piece- wise linear approximation. The implementation of the beamformer is optimized with respect to the architecture of a novel synthetic aperture real-time ultrasound scanner (SARUS), in which 4 channels are processed by the same set of field-programmable gate arrays (FPGA). In synthetic transmit aperture imaging, low-resolution images are formed after every emission. Summing all low-resolution images produces a perfectly focused high-resolution image. The design of the beamformer is modular, and a single beamformation unit can produce 4600 low-resolution images per second, each consisting of 32 lines and 1024 complex samples per line. In its present incarnation, 3 such modules fit in a single device. The summation of low-resolution images is performed internally in the FPGA to reduce the required bandwidth. The delays are calculated with a precision of 1/16th of a sample, and the apodization coefficients with 7-bit precision. The accumulation of low-resolution images is performed with 24-bit precision. The level of the side- and grating lobes, introduced by the use of integer numbers in the calculations and truncation of intermediate results, is below -86 dB from the peak. PMID:18986919
Interacting parametrized post-Friedmann method
NASA Astrophysics Data System (ADS)
Richarte, Martín G.; Xu, Lixin
2016-04-01
We apply the interacting parametrized post-Friedmann (IPPF) method to coupled dark energy models where the interaction is proportional to dark matter density at background level. In the first case, the dark components are treated as fluids and the growth of dark matter perturbations only feel the interaction via the modification of background quantities provided dark matter follows geodesic. We also perform a Markov Chain Monte-Carlo analysis which combines several cosmological probes including the cosmic microwave background (WMAP9+Planck) data, baryon acoustic oscillation (BAO) measurements, JLA sample of supernovae, Hubble constant (HST), and redshift-space distortion (RSD) measurements through the fσ 8(z) data points. The joint observational analysis of Planck+WP+JLA+BAO+HST+ RSD data leads to a coupling parameter, ξ c=0.00140_{-0.00080}^{+0.00079} at 1σ level for vanishing momentum transfer potential. On the other hand, we deal with a coupled quintessence model which exhibits a violation of the equivalence principle coming form a coupling term in the modified Euler equation; as a result of that the local Hubble expansion rate and the effective gravitational coupling are both enhanced. Provided that the interaction is parallel to scalar field velocity the momentum transfer potential is switched on, leading to a lower interaction coupling ξ c=0.00136_{-0.00073}^{+0.00080} at 1σ level when Planck+WP+JLA+BAO+HST+RSD data are combined. Besides, the CMB power spectrum shows up a correlation between the coupling parameter ξ c and the position of acoustic peaks or their amplitudes. The first peak's height increases when ξ c takes larger values and its position is shifted. We also obtain the matter power spectrum may be affected by the strength of interaction coupling over scales bigger than 10^{-2} h Mpc^{-1}, reducing its amplitude in relation to the vanilla model.
Optical Parametric Technology for Methane Measurements
NASA Technical Reports Server (NTRS)
Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris
2015-01-01
Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 microJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).
Optical parametric technology for methane measurements
NASA Astrophysics Data System (ADS)
Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris
2015-09-01
Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 μJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).
Statistical Treatment of Looking-Time Data
2016-01-01
Looking times (LTs) are frequently measured in empirical research on infant cognition. We analyzed the statistical distribution of LTs across participants to develop recommendations for their treatment in infancy research. Our analyses focused on a common within-subject experimental design, in which longer looking to novel or unexpected stimuli is predicted. We analyzed data from 2 sources: an in-house set of LTs that included data from individual participants (47 experiments, 1,584 observations), and a representative set of published articles reporting group-level LT statistics (149 experiments from 33 articles). We established that LTs are log-normally distributed across participants, and therefore, should always be log-transformed before parametric statistical analyses. We estimated the typical size of significant effects in LT studies, which allowed us to make recommendations about setting sample sizes. We show how our estimate of the distribution of effect sizes of LT studies can be used to design experiments to be analyzed by Bayesian statistics, where the experimenter is required to determine in advance the predicted effect size rather than the sample size. We demonstrate the robustness of this method in both sets of LT experiments. PMID:26845505
Deriving statistical closure from dynamical optimization
NASA Astrophysics Data System (ADS)
Turkington, Bruce
2015-11-01
Turbulence theorists have traditionally deduced statistical models by generating a hierarchy of moment equations and invoking some closure rules to truncate the hierarchy. In this talk a conceptually different approach to model reduction and statistical closure will be presented, and its implications for coarse-graining fluid turbulence will be indicated. The author has developed this method in the context of nonequilibrium statistical descriptions of Hamiltonian systems with many degrees of freedom. With respect to a chosen parametric statistical model, the lack-of-fit of model paths to the full dynamics is minimized in a time-integrated, mean-squared sense. This optimal closure method is applied to coarse-grain spectrally-truncated inviscid dynamics, including the Burgers-Hopf equation and incompressible two-dimensional flow, using the means and/or variances of low modes as resolved variables. The derived reduced dynamics for these test cases contain (1) scale-dependent dissipation which is not a local eddy viscosity, (2) modified nonlinear interactions between resolved modes, and (3) coupling between the mean and variance of each resolved mode. These predictions are validated against direct numerical simulations of ensembles for the fully resolved dynamics.
Statistical treatment of looking-time data.
Csibra, Gergely; Hernik, Mikołaj; Mascaro, Olivier; Tatone, Denis; Lengyel, Máté
2016-04-01
Looking times (LTs) are frequently measured in empirical research on infant cognition. We analyzed the statistical distribution of LTs across participants to develop recommendations for their treatment in infancy research. Our analyses focused on a common within-subject experimental design, in which longer looking to novel or unexpected stimuli is predicted. We analyzed data from 2 sources: an in-house set of LTs that included data from individual participants (47 experiments, 1,584 observations), and a representative set of published articles reporting group-level LT statistics (149 experiments from 33 articles). We established that LTs are log-normally distributed across participants, and therefore, should always be log-transformed before parametric statistical analyses. We estimated the typical size of significant effects in LT studies, which allowed us to make recommendations about setting sample sizes. We show how our estimate of the distribution of effect sizes of LT studies can be used to design experiments to be analyzed by Bayesian statistics, where the experimenter is required to determine in advance the predicted effect size rather than the sample size. We demonstrate the robustness of this method in both sets of LT experiments. (PsycINFO Database Record PMID:26845505
IMM filtering on parametric data for multi-sensor fusion
NASA Astrophysics Data System (ADS)
Shafer, Scott; Owen, Mark W.
2014-06-01
In tracking, many types of sensor data can be obtained and utilized to distinguish a particular target. Commonly, kinematic information is used for tracking, but this can be combined with identification attributes and parametric information passively collected from the targets emitters. Along with the standard tracking process (predict, associate, score, update, and initiate) that operates in all kinematic trackers, parametric data can also be utilized to perform these steps and provide a means for feature fusion. Feature fusion, utilizing parametrics from multiple sources, yields a rich data set providing many degrees of freedom to separate and correlate data into appropriate tracks. Parametric radar data can take on many dynamics to include: stable, agile, jitter, and others. By utilizing a running sample mean and sample variance a good estimate of radar parametrics is achieved. However, when dynamics are involved, a severe lag can occur and a non-optimal estimate is achieved. This estimate can yield incorrect associations in feature space and cause track fragmentation or miscorrelation. In this paper we investigate the accuracy of the interacting multiple model (IMM) filter at estimating the first and second moments of radar parametrics. The algorithm is assessed by Monte Carlo simulation and compared against a running sample mean/variance technique. We find that the IMM approach yields a better result due to its ability to quickly adapt to dynamical systems with the proper model and tuning.
Avoiding negative reviewer comments: common statistical errors in anesthesia journals
2016-01-01
Manuscripts submitted to journals should be understandable even to those who are not experts in a particular field. Moreover, they should use publicly available materials and the results should be verifiable and reproducible. Readers and reviewers will want to check the strengths and weaknesses of the research study design, and ways to make this determination should be clear through proper analysis methods. Studies should be described in detail so as to help readers understand the results. Statistical analysis is one of the key methods by which to do this. The inappropriate application of statistical methods could be misleading to readers and clinicians. While many researchers describe their general research methods in detail, statistical methods tend to be described briefly, with certain omissions or errors or other incorrect aspects. For instance, researchers should describe whether the median or mean was used, whether parametric or nonparametric tests were used, whether the data meet the normality test, whether confounding factors were corrected, and whether stratification or matching methods were used. Statistical analysis regardless of the program should be reported correctly. The results may be less reliable if the statistical assumptions before applying the statistical method are not met. These common errors in statistical methods originate from the researcher's lack of knowledge of statistics and/or from the lack of any statistical consultation. The aim of this work is to help researchers know what is important statistically and how to present it in papers. PMID:27274365
Avoiding negative reviewer comments: common statistical errors in anesthesia journals.
Lee, Sangseok
2016-06-01
Manuscripts submitted to journals should be understandable even to those who are not experts in a particular field. Moreover, they should use publicly available materials and the results should be verifiable and reproducible. Readers and reviewers will want to check the strengths and weaknesses of the research study design, and ways to make this determination should be clear through proper analysis methods. Studies should be described in detail so as to help readers understand the results. Statistical analysis is one of the key methods by which to do this. The inappropriate application of statistical methods could be misleading to readers and clinicians. While many researchers describe their general research methods in detail, statistical methods tend to be described briefly, with certain omissions or errors or other incorrect aspects. For instance, researchers should describe whether the median or mean was used, whether parametric or nonparametric tests were used, whether the data meet the normality test, whether confounding factors were corrected, and whether stratification or matching methods were used. Statistical analysis regardless of the program should be reported correctly. The results may be less reliable if the statistical assumptions before applying the statistical method are not met. These common errors in statistical methods originate from the researcher's lack of knowledge of statistics and/or from the lack of any statistical consultation. The aim of this work is to help researchers know what is important statistically and how to present it in papers. PMID:27274365
NASA Technical Reports Server (NTRS)
Converse, G. L.
1984-01-01
A modeling technique for single stage flow modulating fans or centrifugal compressors has been developed which will enable the user to obtain consistent and rapid off-design performnce from design point input. The fan flow modulation may be obtained by either a VIGV (variable inlet guide vane) or a VPF (variable pitch rotor) option. Only the VIGV option is available for the centrifugal compressor. The modeling technique has been incorporated into a time-sharing program to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and examples cases, it is suitable as a user's manual. This report is the last of a three volume set describing the parametric representation of compressor fans, and turbines. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (Parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulating Flow Fan).
... Research AMIGAS Fighting Cervical Cancer Worldwide Stay Informed Statistics for Other Kinds of Cancer Breast Cervical Colorectal ( ... Skin Vaginal and Vulvar Cancer Home Uterine Cancer Statistics Language: English Español (Spanish) Recommend on Facebook Tweet ...
Mathematical and statistical analysis
NASA Technical Reports Server (NTRS)
Houston, A. Glen
1988-01-01
The goal of the mathematical and statistical analysis component of RICIS is to research, develop, and evaluate mathematical and statistical techniques for aerospace technology applications. Specific research areas of interest include modeling, simulation, experiment design, reliability assessment, and numerical analysis.
Minnesota Health Statistics 1988.
ERIC Educational Resources Information Center
Minnesota State Dept. of Health, St. Paul.
This document comprises the 1988 annual statistical report of the Minnesota Center for Health Statistics. After introductory technical notes on changes in format, sources of data, and geographic allocation of vital events, an overview is provided of vital health statistics in all areas. Thereafter, separate sections of the report provide tables…
ERIC Educational Resources Information Center
Lenard, Christopher; McCarthy, Sally; Mills, Terence
2014-01-01
There are many different aspects of statistics. Statistics involves mathematics, computing, and applications to almost every field of endeavour. Each aspect provides an opportunity to spark someone's interest in the subject. In this paper we discuss some ethical aspects of statistics, and describe how an introduction to ethics has been…
ERIC Educational Resources Information Center
Strasser, Nora
2007-01-01
Avoiding statistical mistakes is important for educators at all levels. Basic concepts will help you to avoid making mistakes using statistics and to look at data with a critical eye. Statistical data is used at educational institutions for many purposes. It can be used to support budget requests, changes in educational philosophy, changes to…
Statistical quality management
NASA Astrophysics Data System (ADS)
Vanderlaan, Paul
1992-10-01
Some aspects of statistical quality management are discussed. Quality has to be defined as a concrete, measurable quantity. The concepts of Total Quality Management (TQM), Statistical Process Control (SPC), and inspection are explained. In most cases SPC is better than inspection. It can be concluded that statistics has great possibilities in the field of TQM.
Ruiz-Sanchez, Eduardo
2015-12-01
The Neotropical woody bamboo genus Otatea is one of five genera in the subtribe Guaduinae. Of the eight described Otatea species, seven are endemic to Mexico and one is also distributed in Central and South America. Otatea acuminata has the widest geographical distribution of the eight species, and two of its recently collected populations do not match the known species morphologically. Parametric and non-parametric methods were used to delimit the species in Otatea using five chloroplast markers, one nuclear marker, and morphological characters. The parametric coalescent method and the non-parametric analysis supported the recognition of two distinct evolutionary lineages. Molecular clock estimates were used to estimate divergence times in Otatea. The results for divergence time in Otatea estimated the origin of the speciation events from the Late Miocene to Late Pleistocene. The species delimitation analyses (parametric and non-parametric) identified that the two populations of O. acuminata from Chiapas and Hidalgo are from two separate evolutionary lineages and these new species have morphological characters that separate them from O. acuminata s.s. The geological activity of the Trans-Mexican Volcanic Belt and the Isthmus of Tehuantepec may have isolated populations and limited the gene flow between Otatea species, driving speciation. Based on the results found here, I describe Otatea rzedowskiorum and Otatea victoriae as two new species, morphologically different from O. acuminata. PMID:26265258
Explorations in statistics: statistical facets of reproducibility.
Curran-Everett, Douglas
2016-06-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This eleventh installment of Explorations in Statistics explores statistical facets of reproducibility. If we obtain an experimental result that is scientifically meaningful and statistically unusual, we would like to know that our result reflects a general biological phenomenon that another researcher could reproduce if (s)he repeated our experiment. But more often than not, we may learn this researcher cannot replicate our result. The National Institutes of Health and the Federation of American Societies for Experimental Biology have created training modules and outlined strategies to help improve the reproducibility of research. These particular approaches are necessary, but they are not sufficient. The principles of hypothesis testing and estimation are inherent to the notion of reproducibility in science. If we want to improve the reproducibility of our research, then we need to rethink how we apply fundamental concepts of statistics to our science. PMID:27231259
Mixing parametrizations for ocean climate modelling
NASA Astrophysics Data System (ADS)
Gusev, Anatoly; Moshonkin, Sergey; Diansky, Nikolay; Zalesny, Vladimir
2016-04-01
The algorithm is presented of splitting the total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF), which is used to parameterize the viscosity and diffusion coefficients in ocean circulation models. The turbulence model equations are split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage, the following schemes are implemented: the explicit-implicit numerical scheme, analytical solution and the asymptotic behavior of the analytical solutions. The experiments were performed with different mixing parameterizations for the modelling of Arctic and the Atlantic climate decadal variability with the eddy-permitting circulation model INMOM (Institute of Numerical Mathematics Ocean Model) using vertical grid refinement in the zone of fully developed turbulence. The proposed model with the split equations for turbulence characteristics is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. Parameterizations with using the split turbulence model make it possible to obtain more adequate structure of temperature and salinity at decadal timescales, compared to the simpler Pacanowski-Philander (PP) turbulence parameterization. Parameterizations with using analytical solution or numerical scheme at the generation-dissipation step of the turbulence model leads to better representation of ocean climate than the faster parameterization using the asymptotic behavior of the analytical solution. At the same time, the computational efficiency left almost unchanged relative to the simple PP parameterization. Usage of PP parametrization in the circulation model leads to realistic simulation of density and circulation with violation of T,S-relationships. This error is majorly avoided with using the proposed parameterizations containing the split turbulence model
Group Parametrized Tunneling and Local Symmetry Conditions
NASA Astrophysics Data System (ADS)
Harter, William; Mitchell, Justin
2010-06-01
Recently, Hougen showed an ad hoc symmetry-based parameterization scheme for analyzing tunneling dynamics and high resolution spectra of fluxional molecular structure similar to S-parameter analysis of superfine structure in SF_6 or NH_3 maser inversion dynamics by Feynman et.al. The problem is that ad hoc parametrization, like path integration in general, can lead to logjams of parameters or ``paths'' with no way to pick out the relevant ones. We show a way to identify and use relevant parameters for a tunneling Hamiltonian H having global G-symmetry-defined bases by first expressing H as a linear combination bar γ ^i {bar g}_i of operators in dual symmetry group bar G. The coefficients bar γ ^i are parameters that define a complete set of allowed paths for any H with G-symmetry and are related thru spectral decomposition of G to eigensolutions of H. Quantum G vs.bar G duality generalizes lab -vs. -body and state -vs. -particle. The number of relevant bar γ ^i-parameters is reduced if a system tends to stick in states of a local symmetry subgroup LsubsetG so the H spectrum forms level clusters labeled by induced representations d(ℓ)(L)\\uparrowG. A cluster-(ℓ) has one E(epsilon)-level labeled by G species (epsilon) for each L species (ℓ) in Depsilon(G)downarrowL by Frobenius reciprocity. Then we apply local symmetry conditions to each irrep Depsilon(bar γ ^i {bar g}_i) that has already been reduced with respect to local symmetry L. This amounts to setting each off-diagonal component Dj,kepsilon(H) to zero. Local symmetry conditions may tell which bar γ ^i-parameters are redundant or zero and directly determine d(ℓ)\\uparrowG tunneling matrix eigenvalues that give E(epsilon)-levels as well as eigenvectors. Otherwise one may need to choose a particular localizing subgroup chain LsubsetL_1subsetL_2...G and further reduce the number of path parameters to facilitate spectral fitting. J.T. Hougen, 2009 MSS RJ01, {J Mol Spect 123, 197 (1987) W.G. Harter and
NASA Astrophysics Data System (ADS)
Aliabadi, Amir A.; Staebler, Ralf M.; Liu, Michael; Herber, Andreas
2016-06-01
Aircraft measurements are used to characterize properties of clear-air turbulence in the lower Arctic troposphere. For typical vertical resolutions in general circulation models, there is evidence for both downgradient and countergradient vertical turbulent transport of momentum and heat in the mostly statically stable conditions within both the boundary layer and the free troposphere. Countergradient transport is enhanced in the free troposphere compared to the boundary layer. Three parametrizations are suggested to formulate the turbulent heat flux and are evaluated using the observations. The parametrization that accounts for the anisotropic nature of turbulence and buoyancy flux predicts both observed downgradient and countergradient transport of heat more accurately than those that do not. The inverse turbulent Prandtl number is found to only weakly decrease with increasing gradient Richardson number in a statistically significant way, but with large scatter in the data. The suggested parametrizations can potentially improve the performance of regional and global atmospheric models.
Johnson, H.O.; Gupta, S.C.; Vecchia, A.V.; Zvomuya, F.
2009-01-01
Excessive loading of sediment and nutrients to rivers is a major problem in many parts of the United States. In this study, we tested the non-parametric Seasonal Kendall (SEAKEN) trend model and the parametric USGS Quality of Water trend program (QWTREND) to quantify trends in water quality of the Minnesota River at Fort Snelling from 1976 to 2003. Both methods indicated decreasing trends in flow-adjusted concentrations of total suspended solids (TSS), total phosphorus (TP), and orthophosphorus (OP) and a generally increasing trend in flow-adjusted nitrate plus nitrite-nitrogen (NO3-N) concentration. The SEAKEN results were strongly influenced by the length of the record as well as extreme years (dry or wet) earlier in the record. The QWTREND results, though influenced somewhat by the same factors, were more stable. The magnitudes of trends between the two methods were somewhat different and appeared to be associated with conceptual differences between the flow-adjustment processes used and with data processing methods. The decreasing trends in TSS, TP, and OP concentrations are likely related to conservation measures implemented in the basin. However, dilution effects from wet climate or additional tile drainage cannot be ruled out. The increasing trend in NO3-N concentrations was likely due to increased drainage in the basin. Since the Minnesota River is the main source of sediments to the Mississippi River, this study also addressed the rapid filling of Lake Pepin on the Mississippi River and found the likely cause to be increased flow due to recent wet climate in the region. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
SOCR Analyses: Implementation and Demonstration of a New Graphical Statistics Educational Toolkit
Chu, Annie; Cui, Jenny; Dinov, Ivo D.
2011-01-01
The web-based, Java-written SOCR (Statistical Online Computational Resource) tools have been utilized in many undergraduate and graduate level statistics courses for seven years now (Dinov 2006; Dinov et al. 2008b). It has been proven that these resources can successfully improve students’ learning (Dinov et al. 2008b). Being first published online in 2005, SOCR Analyses is a somewhat new component and it concentrate on data modeling for both parametric and non-parametric data analyses with graphical model diagnostics. One of the main purposes of SOCR Analyses is to facilitate statistical learning for high school and undergraduate students. As we have already implemented SOCR Distributions and Experiments, SOCR Analyses and Charts fulfill the rest of a standard statistics curricula. Currently, there are four core components of SOCR Analyses. Linear models included in SOCR Analyses are simple linear regression, multiple linear regression, one-way and two-way ANOVA. Tests for sample comparisons include t-test in the parametric category. Some examples of SOCR Analyses’ in the non-parametric category are Wilcoxon rank sum test, Kruskal-Wallis test, Friedman’s test, Kolmogorov-Smirnoff test and Fligner-Killeen test. Hypothesis testing models include contingency table, Friedman’s test and Fisher’s exact test. The last component of Analyses is a utility for computing sample sizes for normal distribution. In this article, we present the design framework, computational implementation and the utilization of SOCR Analyses. PMID:21666874
Statistical Tests of Conditional Independence between Responses and/or Response Times on Test Items
ERIC Educational Resources Information Center
van der Linden, Wim J.; Glas, Cees A. W.
2010-01-01
Three plausible assumptions of conditional independence in a hierarchical model for responses and response times on test items are identified. For each of the assumptions, a Lagrange multiplier test of the null hypothesis of conditional independence against a parametric alternative is derived. The tests have closed-form statistics that are easy to…
Statistics: Notes and Examples. Study Guide for the Doctor of Arts in Computer-Based Learning.
ERIC Educational Resources Information Center
MacFarland, Thomas W.
This study guide presents lessons on hand calculating various statistics: Central Tendency and Dispersion; Tips on Data Presentation; Two-Tailed and One-Tailed Tests of Significance; Error Types; Standard Scores; Non-Parametric Tests such as Chi-square, Spearman Rho, Sign Test, Wilcoxon Matched Pairs, Mann-Whitney U, Kruskal-Wallis, and Rank Sums;…
BIAZA statistics guidelines: toward a common application of statistical tests for zoo research.
Plowman, Amy B
2008-05-01
Zoo research presents many statistical challenges, mostly arising from the need to work with small sample sizes. Efforts to overcome these often lead to the misuse of statistics including pseudoreplication, inappropriate pooling, assumption violation or excessive Type II errors because of using tests with low power to avoid assumption violation. To tackle these issues and make some general statistical recommendations for zoo researchers, the Research Group of the British and Irish Association of Zoos and Aquariums (BIAZA) conducted a workshop. Participants included zoo-based researchers, university academics with zoo interests and three statistical experts. The result was a BIAZA publication Zoo Research Guidelines: Statistics for Typical Zoo Datasets (Plowman [2006] Zoo research guidelines: statistics for zoo datasets. London: BIAZA), which provides advice for zoo researchers on study design and analysis to ensure appropriate and rigorous use of statistics. The main recommendations are: (1) that many typical zoo investigations should be conducted as single case/small N randomized designs, analyzed with randomization tests, (2) that when comparing complete time budgets across conditions in behavioral studies, G tests and their derivatives are the most appropriate statistical tests and (3) that in studies involving multiple dependent and independent variables there are usually no satisfactory alternatives to traditional parametric tests and, despite some assumption violations, it is better to use these tests with careful interpretation, than to lose information through not testing at all. The BIAZA guidelines were recommended by American Association of Zoos and Aquariums (AZA) researchers at the AZA Annual Conference in Tampa, FL, September 2006, and are free to download from www.biaza.org.uk. PMID:19360620
NASA Astrophysics Data System (ADS)
Takara, K. T.
2015-12-01
This paper describes a non-parametric frequency analysis method for hydrological extreme-value samples with a size larger than 100, verifying the estimation accuracy with a computer intensive statistics (CIS) resampling such as the bootstrap. Probable maximum values are also incorporated into the analysis for extreme events larger than a design level of flood control. Traditional parametric frequency analysis methods of extreme values include the following steps: Step 1: Collecting and checking extreme-value data; Step 2: Enumerating probability distributions that would be fitted well to the data; Step 3: Parameter estimation; Step 4: Testing goodness of fit; Step 5: Checking the variability of quantile (T-year event) estimates by the jackknife resampling method; and Step_6: Selection of the best distribution (final model). The non-parametric method (NPM) proposed here can skip Steps 2, 3, 4 and 6. Comparing traditional parameter methods (PM) with the NPM, this paper shows that PM often underestimates 100-year quantiles for annual maximum rainfall samples with records of more than 100 years. Overestimation examples are also demonstrated. The bootstrap resampling can do bias correction for the NPM and can also give the estimation accuracy as the bootstrap standard error. This NPM has advantages to avoid various difficulties in above-mentioned steps in the traditional PM. Probable maximum events are also incorporated into the NPM as an upper bound of the hydrological variable. Probable maximum precipitation (PMP) and probable maximum flood (PMF) can be a new parameter value combined with the NPM. An idea how to incorporate these values into frequency analysis is proposed for better management of disasters that exceed the design level. The idea stimulates more integrated approach by geoscientists and statisticians as well as encourages practitioners to consider the worst cases of disasters in their disaster management planning and practices.
A Comparison of Boundary-Layer Characteristics Simulated Using Different Parametrization Schemes
NASA Astrophysics Data System (ADS)
Wang, Weiguo; Shen, Xinyong; Huang, Wenyan
2016-06-01
We compare daytime planetary boundary-layer (PBL) characteristics under fair-weather conditions simulated using a single column version of the Weather Research and Forecasting model with different PBL parametrization schemes. The model is driven only by prescribed surface heat fluxes and horizontal pressure gradient forcing. Parametrizations for all physical processes except for turbulence and transport in the PBL are turned off in the simulations to ensure the discrepancies in the simulated PBL flow are due only to differences in the PBL schemes. A large-eddy simulation (LES) of the evolution of a daytime PBL is performed as a benchmark to examine how well a PBL parametrization scheme reproduces the LES results, and performance statistics are compared to rank those schemes. In general, hybrid local and non-local schemes such as the Yonsei University and Asymmetrical Convective Model (version 2) schemes perform better in reproducing the LES results, particularly well-mixed features, than do local schemes. Among local schemes, the University of Washington scheme produces the results closest to the LES. Local schemes, such as those of Mellor-Yamada-Janjic and Mellor-Yamada-Nakanishi-Niino, simulate too low an entrainment flux, while PBL heights diagnosed from the simulations using local schemes are lower than those from the LES results. Hybrid local and non-local schemes are more sensitive to vertical grid resolution than local schemes. With a higher vertical resolution in the PBL, the schemes using the eddy-diffusivity and mass-flux methods perform better. Differences in the values of eddy diffusivity, length scale, and turbulence kinetic energy and their vertical distributions are large.
Multimode Entanglement Generation in a Parametric Superconducting Cavity
NASA Astrophysics Data System (ADS)
Chang, C. W. S.; Simoen, M.; Vadiraj, A. M.; Delsing, P.; Wilson, C. M.
Parametric microwave resonators implemented with superconducting circuits have become increasingly important in various application within quantum information processing. For example, quantum-limited parametric amplifiers based on these devices have now become commonplace as first-stage amplifiers for qubit experiments. Here we study the generation of multimode entangled states of propagating microwave photons, which can be used a resource in quantum computing and communication applications. We use a CPW resonator with a low fundamental resonance frequency that than has a number of modes in the common frequency band of 4-12 GHz. These modes are all parametrically coupled by a single SQUID that terminates the resonator. When parametrically pumping the system at the sum of two mode frequencies, we observe parametric downconversion and two-mode squeezing. By pumping at the difference frequency, we observe a beamsplitter-like mode conversion. By using multiple pump tones that combine these different processes, theory predicts we can construct multimode entangled states with a well-controlled entanglement structure, e.g., cluster states. Preliminary measurements will be presented.
Parametric Amplifier and Oscillator Based on Josephson Junction Circuitry
NASA Astrophysics Data System (ADS)
Yamamoto, T.; Koshino, K.; Nakamura, Y.
While the demand for low-noise amplification is ubiquitous, applications where the quantum-limited noise performance is indispensable are not very common. Microwave parametric amplifiers with near quantum-limited noise performance were first demonstrated more than 20 years ago. However, there had been little effort until recently to improve the performance or the ease of use of these amplifiers, partly because of a lack of any urgent motivation. The emergence of the field of quantum information processing in superconducting systems has changed this situation dramatically. The need to reliably read out the state of a given qubit using a very weak microwave probe within a very short time has led to renewed interest in these quantum-limited microwave amplifiers, which are already widely used as tools in this field. Here, we describe the quantum mechanical theory for one particular parametric amplifier design, called the flux-driven Josephson parametric amplifier, which we developed in 2008. The theory predicts the performance of this parametric amplifier, including its gain, bandwidth, and noise temperature. We also present the phase detection capability of this amplifier when it is operated with a pump power that is above the threshold, i.e., as a parametric phase-locked oscillator or parametron.
Towards an Empirically Based Parametric Explosion Spectral Model
Ford, S R; Walter, W R; Ruppert, S; Matzel, E; Hauk, T; Gok, R
2009-08-31
Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before been tested. The focus of our work is on the local and regional distances (< 2000 km) and phases (Pn, Pg, Sn, Lg) necessary to see small explosions. We are developing a parametric model of the nuclear explosion seismic source spectrum that is compatible with the earthquake-based geometrical spreading and attenuation models developed using the Magnitude Distance Amplitude Correction (MDAC) techniques (Walter and Taylor, 2002). The explosion parametric model will be particularly important in regions without any prior explosion data for calibration. The model is being developed using the available body of seismic data at local and regional distances for past nuclear explosions at foreign and domestic test sites. Parametric modeling is a simple and practical approach for widespread monitoring applications, prior to the capability to carry out fully deterministic modeling. The achievable goal of our parametric model development is to be able to predict observed local and regional distance seismic amplitudes for event identification and yield determination in regions with incomplete or no prior history of underground nuclear testing. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.
Incorporating parametric uncertainty into population viability analysis models
McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.
2011-01-01
Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.
Impacts of advanced manufacturing technology on parametric estimating
NASA Astrophysics Data System (ADS)
Hough, Paul G.
1989-12-01
The introduction of advanced manufacturing technology in the aerospace industry poses serious challenges for government cost analysts. Traditionally, the analysts have relied on parametric estimating techniques for both planning and budgeting. Despite its problems, this approach has proven to be a remarkably useful and robust tool for estimating new weapon system costs. However, rapid improvements in both product and process technology could exacerbate current difficulties, and diminish the utility of the parametric approach. This paper reviews some weakness associated with parametrics, then proceeds to examine how specific aspects of the factory of the future may further impact parametric estimating, and suggests avenues of research for their resolution. This paper is an extended version of Cost Estimating for the Factory of the Future. Parametric estimating is a method by which aggregated costs are derived as a function of high-level product characteristics or parameters. The resulting equations are known as cost estimating relationships (CERs). Such equations are particularly useful when detailed technical specifications are not available.
Marginally specified priors for non-parametric Bayesian estimation
Kessler, David C.; Hoff, Peter D.; Dunson, David B.
2014-01-01
Summary Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables. PMID:25663813
Elliptic Volume Grid Generation for Viscous CFD Parametric Design Studies
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Cheatwood, F. McNeil
1996-01-01
This paper presents a robust method for the generation of zonal volume grids of design parametrics for aerodynamic configurations. The process utilizes simple algebraic techniques with parametric splines coupled with elliptic volume grid generation to generate isolated zonal grids for changes in body configuration needed to perform parametric design studies. Speed of the algorithm is maximized through the algebraic methods and reduced number of grid points to be regenerated for each design parametric without sacrificing grid quality and continuity within the volume domain. The method is directly applicable to grid reusability, because it modifies existing ow adapted volume grids and enables the user to restart the CFD solution process with an established flow field. Use of this zonal approach reduces computer usage time to create new volume grids for design parametric studies by an order of magnitude, as compared to current methods which require the regeneration of an entire volume grid. A sample configuration of a proposed Single Stage-to-Orbit Vehicle is used to illustrate an application of this method.
Statistical design of a uranium corrosion experiment
Wendelberger, Joanne R; Moore, Leslie M
2009-01-01
This work supports an experiment being conducted by Roland Schulze and Mary Ann Hill to study hydride formation, one of the most important forms of corrosion observed in uranium and uranium alloys. The study goals and objectives are described in Schulze and Hill (2008), and the work described here focuses on development of a statistical experiment plan being used for the study. The results of this study will contribute to the development of a uranium hydriding model for use in lifetime prediction models. A parametric study of the effect of hydrogen pressure, gap size and abrasion on hydride initiation and growth is being planned where results can be analyzed statistically to determine individual effects as well as multi-variable interactions. Input to ESC from this experiment will include expected hydride nucleation, size, distribution, and volume on various uranium surface situations (geometry) as a function of age. This study will also address the effect of hydrogen threshold pressure on corrosion nucleation and the effect of oxide abrasion/breach on hydriding processes. Statistical experiment plans provide for efficient collection of data that aids in understanding the impact of specific experiment factors on initiation and growth of corrosion. The experiment planning methods used here also allow for robust data collection accommodating other sources of variation such as the density of inclusions, assumed to vary linearly along the cast rods from which samples are obtained.
Simultaneous Statistical Inference for Epigenetic Data
Schildknecht, Konstantin; Olek, Sven; Dickhaus, Thorsten
2015-01-01
Epigenetic research leads to complex data structures. Since parametric model assumptions for the distribution of epigenetic data are hard to verify we introduce in the present work a nonparametric statistical framework for two-group comparisons. Furthermore, epigenetic analyses are often performed at various genetic loci simultaneously. Hence, in order to be able to draw valid conclusions for specific loci, an appropriate multiple testing correction is necessary. Finally, with technologies available for the simultaneous assessment of many interrelated biological parameters (such as gene arrays), statistical approaches also need to deal with a possibly unknown dependency structure in the data. Our statistical approach to the nonparametric comparison of two samples with independent multivariate observables is based on recently developed multivariate multiple permutation tests. We adapt their theory in order to cope with families of hypotheses regarding relative effects. Our results indicate that the multivariate multiple permutation test keeps the pre-assigned type I error level for the global null hypothesis. In combination with the closure principle, the family-wise error rate for the simultaneous test of the corresponding locus/parameter-specific null hypotheses can be controlled. In applications we demonstrate that group differences in epigenetic data can be detected reliably with our methodology. PMID:25965389
NASA Astrophysics Data System (ADS)
Schieve, William C.; Horwitz, Lawrence P.
2009-04-01
1. Foundations of quantum statistical mechanics; 2. Elementary examples; 3. Quantum statistical master equation; 4. Quantum kinetic equations; 5. Quantum irreversibility; 6. Entropy and dissipation: the microscopic theory; 7. Global equilibrium: thermostatics and the microcanonical ensemble; 8. Bose-Einstein ideal gas condensation; 9. Scaling, renormalization and the Ising model; 10. Relativistic covariant statistical mechanics of many particles; 11. Quantum optics and damping; 12. Entanglements; 13. Quantum measurement and irreversibility; 14. Quantum Langevin equation: quantum Brownian motion; 15. Linear response: fluctuation and dissipation theorems; 16. Time dependent quantum Green's functions; 17. Decay scattering; 18. Quantum statistical mechanics, extended; 19. Quantum transport with tunneling and reservoir ballistic transport; 20. Black hole thermodynamics; Appendix; Index.
Statistical distribution sampling
NASA Technical Reports Server (NTRS)
Johnson, E. S.
1975-01-01
Determining the distribution of statistics by sampling was investigated. Characteristic functions, the quadratic regression problem, and the differential equations for the characteristic functions are analyzed.
Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1997-01-01
A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.
Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1998-01-01
A global nonlinear parametric modeling technique is described and demonstrated. The technique uses multivariate orthogonal modeling functions generated from the data to determine nonlinear model structure, then expands each retained modeling function into an ordinary multivariate polynomial. The final model form is a finite multivariate power series expansion for the dependent variable in terms of the independent variables. Partial derivatives of the identified models can be used to assemble globally valid linear parameter varying models. The technique is demonstrated by identifying global nonlinear parametric models for nondimensional aerodynamic force and moment coefficients from a subsonic wind tunnel database for the F-16 fighter aircraft. Results show less than 10% difference between wind tunnel aerodynamic data and the nonlinear parameterized model for a simulated doublet maneuver at moderate angle of attack. Analysis indicated that the global nonlinear parametric models adequately captured the multivariate nonlinear aerodynamic functional dependence.
Coalescence cascade of dissipative solitons in parametrically driven systems.
Clerc, M G; Coulibaly, S; Gordillo, L; Mujica, N; Navarro, R
2011-09-01
Parametrically driven spatially extended systems exhibit uniform oscillations which are modulationally unstable. The resulting periodic state evolves to the creation of a gas of dissipative solitons. Driven by the interaction of dissipative solitons, the multisoliton state undergoes a cascade of coalescence processes, where the average soliton separation distance obeys a temporal self-similar law. Starting from the soliton pair interaction law, we have derived analytically and characterized the law of this multisoliton coarsening process. A comparison of numerical results obtained with different models such as the parametrically driven damped nonlinear Schrödinger equation, a vertically driven chain of pendula, and a parametrically forced magnetic wire, shows remarkable agreement. Both phenomena, the pair interaction law and the coarsening process, are also observed experimentally in a quasi-one-dimensional layer of Newtonian fluid which is oscillated vertically. PMID:22060473
Coupled parametric design of flow control and duct shape
NASA Technical Reports Server (NTRS)
Florea, Razvan (Inventor); Bertuccioli, Luca (Inventor)
2009-01-01
A method for designing gas turbine engine components using a coupled parametric analysis of part geometry and flow control is disclosed. Included are the steps of parametrically defining the geometry of the duct wall shape, parametrically defining one or more flow control actuators in the duct wall, measuring a plurality of performance parameters or metrics (e.g., flow characteristics) of the duct and comparing the results of the measurement with desired or target parameters, and selecting the optimal duct geometry and flow control for at least a portion of the duct, the selection process including evaluating the plurality of performance metrics in a pareto analysis. The use of this method in the design of inter-turbine transition ducts, serpentine ducts, inlets, diffusers, and similar components provides a design which reduces pressure losses and flow profile distortions.
Noise-enhanced Parametric Resonance in Perturbed Galaxies
NASA Astrophysics Data System (ADS)
Sideris, Ioannis V.; Kandrup, Henry E.
2004-02-01
This paper describes how parametric resonances associated with a galactic potential subjected to relatively low-amplitude, strictly periodic time-dependent perturbations can be impacted by pseudo-random variations in the pulsation frequency, modeled as colored noise. One aim thereby is to allow for the effects of a changing oscillation frequency as the density distribution associated with a galaxy evolves during violent relaxation. Another is to mimic the possible effects of internal substructures, satellite galaxies, and/or a high-density environment. The principal conclusions are that allowing for a variable frequency does not vitiate the effects of parametric resonance, and that, in at least some cases, such variations can increase the overall importance of parametric resonance associated with systematic pulsations. In memory of Professor H. E. Kandrup, a brilliant scientist, excellent teacher, and good friend. His genius and sense of humor will be greatly missed.
Terahertz-wave parametric gain of stimulated polariton scattering
NASA Astrophysics Data System (ADS)
Takida, Yuma; Shikata, Jun-ichi; Nawata, Kouji; Tokizane, Yu; Han, Zhengli; Koyama, Mio; Notake, Takashi; Hayashi, Shin'ichiro; Minamide, Hiroaki
2016-04-01
We have experimentally determined the terahertz- (THz-) wave parametric gain of stimulated Raman scattering (SRS) by phonon-polaritons in LiNb O3 . Our approach is based on ultrabright THz-wave generation from SRS under stimulated Brillouin scattering suppression with subnanosecond pump pulses. To obtain the frequency dependence of the parametric gain, we measured the crystal-length dependence of the THz-wave output directly using a surface-coupling configuration. We found that the product of the parametric gain and the threshold crystal length is constant throughout the tuning range. Our result provides a physical basis for the design and performance enhancement of SRS-based ultrabright tabletop THz-wave sources for various applications.
THz-wave parametric sources and imaging applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo
2004-12-01
We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We have also developed a novel basic technology for THz imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral trasillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.
Epicyclic helical channels for parametric resonance ionization cooling
Johson, Rolland Paul; Derbenev, Yaroslav
2015-08-23
Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.
Ultrasensitive hysteretic force sensing with parametric nonlinear oscillators
NASA Astrophysics Data System (ADS)
Papariello, Luca; Zilberberg, Oded; Eichler, Alexander; Chitra, R.
2016-08-01
We propose a method for linear detection of weak forces using parametrically driven nonlinear resonators. The method is based on a peculiar feature in the response of the resonator to a near resonant periodic external force. This feature stems from a complex interplay among the parametric drive, external force, and nonlinearities. For weak parametric drive, the response exhibits the standard Duffing-like single jump hysteresis. For stronger drive amplitudes, we find a qualitatively new double jump hysteresis which arises from stable solutions generated by the cubic Duffing nonlinearity. The additional jump exists only if the external force is present and the frequency at which it occurs depends linearly on the amplitude of the external force, permitting a straightforward ultrasensitive detection of weak forces. With state-of-the-art nanomechanical resonators, our scheme should permit force detection in the attonewton range.
Feedback-Enhanced Parametric Squeezing of Mechanical Motion
NASA Astrophysics Data System (ADS)
Vinante, A.; Falferi, P.
2013-11-01
We present a single-quadrature feedback scheme able to overcome the conventional 3 dB limit on parametric squeezing. The method is experimentally demonstrated in a micromechanical system based on a cantilever with a magnetic tip. The cantilever is detected at low temperature by a SQUID susceptometer, while parametric pumping is obtained by modulating the magnetic field gradient at twice the cantilever frequency. A maximum squeezing of 11.5 dB and 11.3 dB is observed, respectively, in the response to a sinusoidal test signal and in the thermomechanical noise. So far, the maximum squeezing factor is limited only by the maximum achievable parametric modulation. The proposed technique might be used to squeeze one quadrature of a mechanical resonator below the quantum noise level, even without the need for a quantum limited detector.
Correlation-enhanced Metrology with Mechanical Parametric Amplifiers
NASA Astrophysics Data System (ADS)
Cheung, Hil Fung Harry; Chang, Laura; Patil, Yogesh Sharad; Chakram, Srivatsan; Vengalattore, Mukund
2015-05-01
Quantum correlations between the two arms of a mechanical parametric amplifier can be used to realize sensing beyond the standard quantum limit. We use nondegenerate mechanical parametric oscillators made of silicon nitride membrane resonators to demonstrate mechanical amplitude squeezing. This is the acoustic equivalent of intensity difference squeezing observed in optical parametric oscillators. We use the strong correlations between the nondegenerate modes to realize sub-thermal force sensitivities through noise cancellation and signal enhancement schemes. Our classical realization of enhanced metrology in a platform amenable to quantum optomechanics and nonclassical state preparation paves the way for quantum nonlinear sensing. This work is supported by the DARPA QuASAR program through a grant from the ARO and an NSF INSPIRE award.
Cosmic slowing down of acceleration for several dark energy parametrizations
Magaña, Juan; Cárdenas, Víctor H.; Motta, Verónica E-mail: victor.cardenas@uv.cl
2014-10-01
We further investigate slowing down of acceleration of the universe scenario for five parametrizations of the equation of state of dark energy using four sets of Type Ia supernovae data. In a maximal probability analysis we also use the baryon acoustic oscillation and cosmic microwave background observations. We found the low redshift transition of the deceleration parameter appears, independently of the parametrization, using supernovae data alone except for the Union 2.1 sample. This feature disappears once we combine the Type Ia supernovae data with high redshift data. We conclude that the rapid variation of the deceleration parameter is independent of the parametrization. We also found more evidence for a tension among the supernovae samples, as well as for the low and high redshift data.
Cascade of parametric resonances in coupled Josephson junctions
NASA Astrophysics Data System (ADS)
Shukrinov, Yu. M.; Azemtsa-Donfack, H.; Rahmonov, I. R.; Botha, A. E.
2016-06-01
We found that the coupled system of Josephson junctions under external electromagnetic radiation demonstrates a cascade of parametric instabilities. These instabilities appear along the IV characteristics within bias current intervals corresponding to Shapiro step subharmonics and lead to charging in the superconducting layers. The amplitudes of the charge oscillations increase with increasing external radiation power. We demonstrate the existence of longitudinal plasma waves at the corresponding bias current values. An essential advantage of the parametric instabilities in the case of subharmonics is the lower amplitude of radiation that is needed for the creation of the longitudinal plasma wave. This fact gives a unique possibility to create and control longitudinal plasma waves in layered superconductors. We propose a novel experiment for studying parametric instabilities and the charging of superconducting layers based on the simultaneous variation of the bias current and radiation amplitude.
Subthreshold optical parametric oscillator with nonorthogonal polarization eigenmodes
Aiello, A.; Nienhuis, G.; Woerdman, J.P.
2003-04-01
We study the behavior of a type-II degenerate parametric amplifier in a cavity with nonorthogonal polarization eigenmodes. The mode nonorthogonality is achieved by introducing circular birefringence and linear dichroism. We use a scattering matrix formalism to investigate the role of excess quantum noise in such a device. Since only two modes are involved we are able to derive an analytical expression for the twin-photon generation rate measured outside the cavity as a function of the degree of mode nonorthogonality. Contrary to recent claims we conclude that there is no evidence of excess quantum noise for a parametric amplifier working so far below threshold that spontaneous processes dominate. Using the same scattering matrix formalism we also investigate the output spectrum of the amplifier near the threshold of parametric oscillation. We find optical band structures very similar to those known for passive ring cavities. These optical band structures are studied as a function of mode nonorthogonality and mirror reflectivity.
On minimally parametric primordial power spectrum reconstruction and the evidence for a red tilt
Verde, Licia; Peiris, Hiranya E-mail: lverde@astro.princeton.edu
2008-07-15
The latest cosmological data seem to indicate a significant deviation from scale invariance of the primordial power spectrum when parameterized either by a power law or by a spectral index with non-zero 'running'. This deviation, by itself, serves as a powerful tool for discriminating among theories for the origin of cosmological structures such as inflationary models. Here, we use a minimally parametric smoothing spline technique to reconstruct the shape of the primordial power spectrum. This technique is well suited to searching for smooth features in the primordial power spectrum such as deviations from scale invariance or a running spectral index, although it would recover sharp features of high statistical significance. We use the WMAP three-year results in combination with data from a suite of higher resolution cosmic microwave background experiments (including the latest ACBAR 2008 release), as well as large-scale structure data from SDSS and 2dFGRS. We employ cross-validation to assess, using the data themselves, the optimal amount of smoothness in the primordial power spectrum consistent with the data. This minimally parametric reconstruction supports the evidence for a power law primordial power spectrum with a red tilt, but not for deviations from a power law power spectrum. Smooth variations in the primordial power spectrum are not significantly degenerate with the other cosmological parameters.
The binned bispectrum estimator: template-based and non-parametric CMB non-Gaussianity searches
NASA Astrophysics Data System (ADS)
Bucher, Martin; Racine, Benjamin; van Tent, Bartjan
2016-05-01
We describe the details of the binned bispectrum estimator as used for the official 2013 and 2015 analyses of the temperature and polarization CMB maps from the ESA Planck satellite. The defining aspect of this estimator is the determination of a map bispectrum (3-point correlation function) that has been binned in harmonic space. For a parametric determination of the non-Gaussianity in the map (the so-called fNL parameters), one takes the inner product of this binned bispectrum with theoretically motivated templates. However, as a complementary approach one can also smooth the binned bispectrum using a variable smoothing scale in order to suppress noise and make coherent features stand out above the noise. This allows one to look in a model-independent way for any statistically significant bispectral signal. This approach is useful for characterizing the bispectral shape of the galactic foreground emission, for which a theoretical prediction of the bispectral anisotropy is lacking, and for detecting a serendipitous primordial signal, for which a theoretical template has not yet been put forth. Both the template-based and the non-parametric approaches are described in this paper.
The impact of parametrized convection on cloud feedback
Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming
2015-01-01
We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud
Extreme prepulse contrast utilizing cascaded-optical parametric amplification
Jovanovic, I; Haefner, C; Wattellier, B; Barty, C J
2006-06-15
It has been shown recently that an optical parametric chirped-pulse amplifier can be easily reconfigured into a cascaded-optical parametric amplifier (COPA), enabling complete prepulse removal and optical switching with a window defined by the pump pulse duration. We have demonstrated instrument-limited measurement of the COPA prepulse contrast >1.4 x 10{sup 11} using 30-mJ pulses. The COPA technique is applicable to all energy ranges and pulse durations. A convenient millijoule-scale implementation of this technique is presented using a single, large-aspect-ratio quasi-phase-matched nonlinear crystal.
The semi-parametric case-only estimator
Tchetgen Tchetgen, Eric J.; Robins, James
2010-01-01
We propose a semi-parametric case-only estimator of multiplicative gene-environment or gene-gene interactions, under the assumption of conditional independence of the two factors given a vector of potential confounding variables. Our estimator yields valid inferences on the interaction function if either but not necessarily both of two unknown baseline functions of the confounders is correctly modeled. Furthermore, when both models are correct, our estimator has the smallest possible asymptotic variance for estimating the interaction parameter in a semi-parametric model that assumes that at least one but not necessarily both baseline models are correct. PMID:20337632
Spin effect on parametric interactions of waves in magnetoplasmas
Shahid, M.; Melrose, D. B.; Jamil, M.; Murtaza, G.
2012-11-15
The parametric decay instability of upper hybrid wave into low-frequency electromagnetic Shear Alfven wave and Ordinary mode radiation (O-mode) has been investigated in an electron-ion plasma immersed in the uniform external magnetic field. Incorporating quantum effect due to electron spin, the fluid model has been used to investigate the linear and nonlinear response of the plasma species for three-wave coupling in a magnetoplasma. It is shown that the spin of electrons has considerable effect on the parametric decay of upper hybrid wave into Ordinary mode radiation (O-mode) and Shear Alfven wave even in classical regime.
Ultra-broad bandwidth parametric amplification at degeneracy.
Limpert, J; Aguergaray, C; Montant, S; Manek-Hönninger, I; Petit, S; Descamps, D; Cormier, E; Salin, F
2005-09-19
We report on a novel approach of ultra-broad bandwidth parametric amplification around degeneracy. A bandwidth of up to 400 nm centered around 800 nm is amplified in a BBO crystal by using chirped pump pulses with a bandwitdth as broad as 10 nm. A supercontinuum signal is generated in a microstructured fiber, having to first order a quadratic chirp, which is necessary to ensure temporal overlap of the interacting waves over this broad bandwidth. Furthermore, we discuss the potential of this approach for an octave-spanning parametric amplification. PMID:19498762
Note on a new parametrization for testing the Kerr metric
NASA Astrophysics Data System (ADS)
Ghasemi-Nodehi, M.; Bambi, Cosimo
2016-05-01
We propose a new parametrization for testing the Kerr nature of astrophysical black hole candidates. The common approaches focus on the attempt to constrain possible deviations from the Kerr solution described by new terms in the metric. Here we adopt a different perspective. The mass and the spin of a black hole make the spacetime curved and we want to check whether they do it with the strength predicted by general relativity. As an example, we apply our parametrization to the black hole shadow, an observation that may be possible in a not too distant future.
Parametric-Resonance Ionization Cooling in Twin-Helix.
V.S. Morozov, Ya.S. Derbenev, A. Afanasev, R.P. Johnson, Erdelyi. B., J.A. Maloney
2011-09-01
Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a highluminosity muon collider. For the implementation of PIC, we developed an epicyclic twin-helix channel with correlated optics. Wedge-shaped absorbers immediately followed by short rf cavities are placed into the twin-helix channel. Parametric resonances are induced in both planes using helical quadrupole harmonics. We demonstrate resonant dynamics and cooling with stochastic effects off using GEANT4/G4beamline. We illustrate compensation of spherical aberrations and benchmark COSY Infinity, a powerful tool for aberration analysis and compensation.
Electro-optically spectrum tailorable intracavity optical parametric oscillator.
Chung, H P; Chang, W K; Tseng, C H; Geiss, R; Pertsch, T; Chen, Y H
2015-11-15
We report a unique, pulsed intracavity optical parametric oscillator (IOPO) whose output spectrum is electro-optically (EO) tailorable based on an aperiodically poled lithium niobate (APPLN) working simultaneously as an optical parametric gain medium and an active gain spectrum filter in the system. We have successfully obtained from the IOPO the emission of single to multiple narrow-line signal spectral peaks in a near-infrared (1531 nm) band simply by electro-optic control. The power spectral density of the EO tailored signal can be enhanced by up to 10 times over the original (nontailored) signal. PMID:26565817
Generalized parametric down conversion, many particle interferometry, and Bell's theorem
NASA Technical Reports Server (NTRS)
Choi, Hyung Sup
1992-01-01
A new field of multi-particle interferometry is introduced using a nonlinear optical spontaneous parametric down conversion (SPDC) of a photon into more than two photons. The study of SPDC using a realistic Hamiltonian in a multi-mode shows that at least a low conversion rate limit is possible. The down converted field exhibits many stronger nonclassical phenomena than the usual two photon parametric down conversion. Application of the multi-particle interferometry to a recently proposed many particle Bell's theorem on the Einstein-Podolsky-Rosen problem is given.
Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier
NASA Technical Reports Server (NTRS)
Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)
2014-01-01
A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.
Epicyclic Helical Channels for Parametric Resonance Ionization Cooling
Andrei Afanaciev, Alex Bogacz, Yaroslav Derbenev, Kevin Beard, Valentin Ivanov, Rolland Johnson, Guimei Wang, Katsuya Yonehara
2009-05-01
In order to achieve cooling of muons in addition to 6D helical cooling channel (HCC) [1], we develop a technique based on a parametric resonance. The use of parametric resonances requires alternating dispersion, minimized at locations of thin absorbers, but maximized in between in order to compensate for chromatic aberrations [2]. These solutions can be combined in an Epicyclic Helical Cooling Channel (EHCC) that meets requirements of alternating dispersion of beam periodic orbit with best conditions for maintenance of stable beam transport in a continuous solenoid-type field [3]. We discuss here basic features and new simulation results for EHCC.
Parametric study of prospective early commercial OCMHD power plants /PSPEC/
NASA Technical Reports Server (NTRS)
Marston, C. H.; Bender, D. J.; Hnat, J. G.; Dellinger, T. C.
1980-01-01
The paper presents a parametric study conducted to obtain the performance, economics, natural resource requirements, and environmental impact of moderate technology MHD/steam power plants that do not require development of direct-fired high-temperature air heaters. The study was divided into three base cases, each with a reference case and parametric variations. The case using recuperative air preheat in the range of 1000 F to 1300 F, combined with O2 enrichment to 42% by volume has been selected for conceptual design.
Photon number amplification/duplication through parametric conversion
NASA Technical Reports Server (NTRS)
Dariano, G. M.; Macchiavello, C.; Paris, M.
1993-01-01
The performance of parametric conversion in achieving number amplification and duplication is analyzed. It is shown that the effective maximum gains G(sub *) remain well below their integer ideal values, even for large signals. Correspondingly, one has output Fano factors F(sub *) which are increasing functions of the input photon number. On the other hand, in the inverse (deamplifier/recombiner) operating mode quasi-ideal gains G(sub *) and small factors F(sub *) approximately equal to 10 percent are obtained. Output noise and non-ideal gains are ascribed to spontaneous parametric emission.
Parametric models of reflectance spectra for dyed fabrics
NASA Astrophysics Data System (ADS)
Aiken, Daniel C.; Ramsey, Scott; Mayo, Troy; Lambrakos, Samuel G.; Peak, Joseph
2016-05-01
This study examines parametric modeling of NIR reflectivity spectra for dyed fabrics, which provides for both their inverse and direct modeling. The dye considered for prototype analysis is triarylamine dye. The fabrics considered are camouflage textiles characterized by color variations. The results of this study provide validation of the constructed parametric models, within reasonable error tolerances for practical applications, including NIR spectral characteristics in camouflage textiles, for purposes of simulating NIR spectra corresponding to various dye concentrations in host fabrics, and potentially to mixtures of dyes.
Parametric seeding of a microresonator optical frequency comb.
Papp, Scott B; Del'Haye, Pascal; Diddams, Scott A
2013-07-29
We have investigated parametric seeding of a microresonator frequency comb (microcomb) by way of a pump laser with two electro-optic-modulation sidebands. We show that the pump-sideband spacing is precisely replicated throughout the microcomb's optical spectrum, and we demonstrate a record absolute line-spacing stability for microcombs of 1.6 × 10(-13) at 1 s. The spectrum of a microcomb is complex, and often non-equidistant subcombs are observed. Our results demonstrate that parametric seeding can not only control the subcombs, but can lead to the generation of a strictly equidistant microcomb spectrum. PMID:23938634
Microwave design optimization for broadband Josephson parametric amplifiers
NASA Astrophysics Data System (ADS)
Reagor, Matthew; Sete, Eyob; Thompson, Dane; Ranadive, Arpit; Vijay, R.; Rigetti, Chad
Broadband Josephson parametric amplifiers are crucial components of a scalable superconducting quantum computing architecture. Recently, the bandwidth of a resonator-based Josephson parametric amplifier was significantly enhanced by introducing a controlled reactance in the signal chain. The design was based on a λ/2 section fabricated on an RF circuit board. We present the design of an on-chip version that will improve robustness and minimize performance variability from one device to another. Further, we will discuss microwave design optimization for flux pumping mechanism to minimize cross-talk between different input-output ports of the device. Finally, we will discuss design goals for further improvement of amplifier performance.
Neuroimaging of Semantic Processing in Schizophrenia: A Parametric Priming Approach
Han, S. Duke; Wible, Cynthia G.
2009-01-01
The use of fMRI and other neuroimaging techniques in the study of cognitive language processes in psychiatric and non-psychiatric conditions has led at times to discrepant findings. Many issues complicate the study of language, especially in psychiatric populations. For example, the use of subtractive designs can produce misleading results. We propose and advocate for a semantic priming parametric approach to the study of semantic processing using fMRI methodology. Implications of this parametric approach are discussed in view of current functional neuroimaging research investigating the semantic processing disturbance of schizophrenia. PMID:19765623
Explorations in Statistics: Regression
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2011-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This seventh installment of "Explorations in Statistics" explores regression, a technique that estimates the nature of the relationship between two things for which we may only surmise a mechanistic or predictive connection.…
Multidimensional Visual Statistical Learning
ERIC Educational Resources Information Center
Turk-Browne, Nicholas B.; Isola, Phillip J.; Scholl, Brian J.; Treat, Teresa A.
2008-01-01
Recent studies of visual statistical learning (VSL) have demonstrated that statistical regularities in sequences of visual stimuli can be automatically extracted, even without intent or awareness. Despite much work on this topic, however, several fundamental questions remain about the nature of VSL. In particular, previous experiments have not…
ERIC Educational Resources Information Center
Huberty, Carl J.
An approach to statistical testing, which combines Neyman-Pearson hypothesis testing and Fisher significance testing, is recommended. The use of P-values in this approach is discussed in some detail. The author also discusses some problems which are often found in introductory statistics textbooks. The problems involve the definitions of…
Deconstructing Statistical Analysis
ERIC Educational Resources Information Center
Snell, Joel
2014-01-01
Using a very complex statistical analysis and research method for the sake of enhancing the prestige of an article or making a new product or service legitimate needs to be monitored and questioned for accuracy. 1) The more complicated the statistical analysis, and research the fewer the number of learned readers can understand it. This adds a…
Explorations in Statistics: Power
ERIC Educational Resources Information Center
Curran-Everett, Douglas
2010-01-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This fifth installment of "Explorations in Statistics" revisits power, a concept fundamental to the test of a null hypothesis. Power is the probability that we reject the null hypothesis when it is false. Four things affect…
ERIC Educational Resources Information Center
Huizingh, Eelko K. R. E.
2007-01-01
Accessibly written and easy to use, "Applied Statistics Using SPSS" is an all-in-one self-study guide to SPSS and do-it-yourself guide to statistics. What is unique about Eelko Huizingh's approach is that this book is based around the needs of undergraduate students embarking on their own research project, and its self-help style is designed to…
Vijayaraj, Veeraraghavan; Cheriyadat, Anil M; Bhaduri, Budhendra L; Vatsavai, Raju; Bright, Eddie A
2008-01-01
Statistical properties of high-resolution overhead images representing different land use categories are analyzed using various local and global statistical image properties based on the shape of the power spectrum, image gradient distributions, edge co-occurrence, and inter-scale wavelet coefficient distributions. The analysis was performed on a database of high-resolution (1 meter) overhead images representing a multitude of different downtown, suburban, commercial, agricultural and wooded exemplars. Various statistical properties relating to these image categories and their relationship are discussed. The categorical variations in power spectrum contour shapes, the unique gradient distribution characteristics of wooded categories, the similarity in edge co-occurrence statistics for overhead and natural images, and the unique edge co-occurrence statistics of downtown categories are presented in this work. Though previous work on natural image statistics has showed some of the unique characteristics for different categories, the relationships for overhead images are not well understood. The statistical properties of natural images were used in previous studies to develop prior image models, to predict and index objects in a scene and to improve computer vision models. The results from our research findings can be used to augment and adapt computer vision algorithms that rely on prior image statistics to process overhead images, calibrate the performance of overhead image analysis algorithms, and derive features for better discrimination of overhead image categories.
Understanding Undergraduate Statistical Anxiety
ERIC Educational Resources Information Center
McKim, Courtney
2014-01-01
The purpose of this study was to understand undergraduate students' views of statistics. Results reveal that students with less anxiety have a higher interest in statistics and also believe in their ability to perform well in the course. Also students who have a more positive attitude about the class tend to have a higher belief in their…
Croarkin, M. Carroll
2001-01-01
For more than 50 years, the Statistical Engineering Division (SED) has been instrumental in the success of a broad spectrum of metrology projects at NBS/NIST. This paper highlights fundamental contributions of NBS/NIST statisticians to statistics and to measurement science and technology. Published methods developed by SED staff, especially during the early years, endure as cornerstones of statistics not only in metrology and standards applications, but as data-analytic resources used across all disciplines. The history of statistics at NBS/NIST began with the formation of what is now the SED. Examples from the first five decades of the SED illustrate the critical role of the division in the successful resolution of a few of the highly visible, and sometimes controversial, statistical studies of national importance. A review of the history of major early publications of the division on statistical methods, design of experiments, and error analysis and uncertainty is followed by a survey of several thematic areas. The accompanying examples illustrate the importance of SED in the history of statistics, measurements and standards: calibration and measurement assurance, interlaboratory tests, development of measurement methods, Standard Reference Materials, statistical computing, and dissemination of measurement technology. A brief look forward sketches the expanding opportunity and demand for SED statisticians created by current trends in research and development at NIST.
ERIC Educational Resources Information Center
Hodgson, Ted; Andersen, Lyle; Robison-Cox, Jim; Jones, Clain
2004-01-01
Water quality experiments, especially the use of macroinvertebrates as indicators of water quality, offer an ideal context for connecting statistics and science. In the STAR program for secondary students and teachers, water quality experiments were also used as a context for teaching statistics. In this article, we trace one activity that uses…
ERIC Educational Resources Information Center
Council of Ontario Universities, Toronto.
Summary statistics on application and registration patterns of applicants wishing to pursue full-time study in first-year places in Ontario universities (for the fall of 1987) are given. Data on registrations were received indirectly from the universities as part of their annual submission of USIS/UAR enrollment data to Statistics Canada and MCU.…
Introduction to Statistical Physics
NASA Astrophysics Data System (ADS)
Casquilho, João Paulo; Ivo Cortez Teixeira, Paulo
2014-12-01
Preface; 1. Random walks; 2. Review of thermodynamics; 3. The postulates of statistical physics. Thermodynamic equilibrium; 4. Statistical thermodynamics – developments and applications; 5. The classical ideal gas; 6. The quantum ideal gas; 7. Magnetism; 8. The Ising model; 9. Liquid crystals; 10. Phase transitions and critical phenomena; 11. Irreversible processes; Appendixes; Index.
Reform in Statistical Education
ERIC Educational Resources Information Center
Huck, Schuyler W.
2007-01-01
Two questions are considered in this article: (a) What should professionals in school psychology do in an effort to stay current with developments in applied statistics? (b) What should they do with their existing knowledge to move from surface understanding of statistics to deep understanding? Written for school psychologists who have completed…
Statistical Mapping by Computer.
ERIC Educational Resources Information Center
Utano, Jack J.
The function of a statistical map is to provide readers with a visual impression of the data so that they may be able to identify any geographic characteristics of the displayed phenomena. The increasingly important role played by the computer in the production of statistical maps is manifested by the varied examples of computer maps in recent…
The purpose of the Disability Statistics Center is to produce and disseminate statistical information on disability and the status of people with disabilities in American society and to establish and monitor indicators of how conditions are changing over time to meet their health...
Statistics 101 for Radiologists.
Anvari, Arash; Halpern, Elkan F; Samir, Anthony E
2015-10-01
Diagnostic tests have wide clinical applications, including screening, diagnosis, measuring treatment effect, and determining prognosis. Interpreting diagnostic test results requires an understanding of key statistical concepts used to evaluate test efficacy. This review explains descriptive statistics and discusses probability, including mutually exclusive and independent events and conditional probability. In the inferential statistics section, a statistical perspective on study design is provided, together with an explanation of how to select appropriate statistical tests. Key concepts in recruiting study samples are discussed, including representativeness and random sampling. Variable types are defined, including predictor, outcome, and covariate variables, and the relationship of these variables to one another. In the hypothesis testing section, we explain how to determine if observed differences between groups are likely to be due to chance. We explain type I and II errors, statistical significance, and study power, followed by an explanation of effect sizes and how confidence intervals can be used to generalize observed effect sizes to the larger population. Statistical tests are explained in four categories: t tests and analysis of variance, proportion analysis tests, nonparametric tests, and regression techniques. We discuss sensitivity, specificity, accuracy, receiver operating characteristic analysis, and likelihood ratios. Measures of reliability and agreement, including κ statistics, intraclass correlation coefficients, and Bland-Altman graphs and analysis, are introduced. PMID:26466186
NASA Astrophysics Data System (ADS)
Vali Ahmadi, Mohammad; Doostparast, Mahdi; Ahmadi, Jafar
2015-04-01
In manufacturing industries, the lifetime of an item is usually characterised by a random variable X and considered to be satisfactory if X exceeds a given lower lifetime limit L. The probability of a satisfactory item is then ηL := P(X ≥ L), called conforming rate. In industrial companies, however, the lifetime performance index, proposed by Montgomery and denoted by CL, is widely used as a process capability index instead of the conforming rate. Assuming a parametric model for the random variable X, we show that there is a connection between the conforming rate and the lifetime performance index. Consequently, the statistical inferences about ηL and CL are equivalent. Hence, we restrict ourselves to statistical inference for CL based on generalised order statistics, which contains several ordered data models such as usual order statistics, progressively Type-II censored data and records. Various point and interval estimators for the parameter CL are obtained and optimal critical regions for the hypothesis testing problems concerning CL are proposed. Finally, two real data-sets on the lifetimes of insulating fluid and ball bearings, due to Nelson (1982) and Caroni (2002), respectively, and a simulated sample are analysed.
Januszyk, Michael; Gurtner, Geoffrey C
2011-01-01
The scope of biomedical research has expanded rapidly during the past several decades, and statistical analysis has become increasingly necessary to understand the meaning of large and diverse quantities of raw data. As such, a familiarity with this lexicon is essential for critical appraisal of medical literature. This article attempts to provide a practical overview of medical statistics, with an emphasis on the selection, application, and interpretation of specific tests. This includes a brief review of statistical theory and its nomenclature, particularly with regard to the classification of variables. A discussion of descriptive methods for data presentation is then provided, followed by an overview of statistical inference and significance analysis, and detailed treatment of specific statistical tests and guidelines for their interpretation. PMID:21200241
Super-resolution image reconstruction using non-parametric Bayesian INLA approximation.
Camponez, Marcelo Oliveira; Evandro, Ottoni Teatini Salles; Sarcinelli-Filho, Mário
2012-08-01
Superresolution are techniques to enhance the resolution of an image without changing the camera resolution, through using software algorithms. In this context, this paper proposes a fully automatic Superresolution algorithm, using a recent non-parametric Bayesian inference method based on numerical integration, known in the statistical literature as Integrated Nested Laplace Approximation. By applying such inference method to the Superresolution problem, this paper shows that all the equations needed to implement this technique can be written in closed form. Moreover, the results of several simulations (three of them are here presented) show that the proposed algorithm performs better than other Superresolution algorithms recently proposed. As far as the authors know, this is the first time that the Integrated Nested Laplace Approximation is used in the area of image processing, which is a meaningful contribution of this paper. PMID:22562764
NASA Astrophysics Data System (ADS)
Chattopadhyay, Amit K.; Ray, Nilanjan; Acton, Scott T.
2005-06-01
Measurement of lung ventilation is one of the most reliable techniques in diagnosing pulmonary diseases. The time-consuming and bias-prone traditional methods using hyperpolarized H3He and 1H magnetic resonance imageries have recently been improved by an automated technique based on 'multiple active contour evolution'. This method involves a simultaneous evolution of multiple initial conditions, called 'snakes', eventually leading to their 'merging' and is entirely independent of the shapes and sizes of snakes or other parametric details. The objective of this paper is to show, through a theoretical analysis, that the functional dynamics of merging as depicted in the active contour method has a direct analogue in statistical physics and this explains its 'universality'. We show that the multiple active contour method has an universal scaling behaviour akin to that of classical nucleation in two spatial dimensions. We prove our point by comparing the numerically evaluated exponents with an equivalent thermodynamic model.
Sorting of Streptomyces Cell Pellets Using a Complex Object Parametric Analyzer and Sorter
Petrus, Marloes L. C.; van Veluw, G. Jerre; Wösten, Han A. B.; Claessen, Dennis
2014-01-01
Streptomycetes are filamentous soil bacteria that are used in industry for the production of enzymes and antibiotics. When grown in bioreactors, these organisms form networks of interconnected hyphae, known as pellets, which are heterogeneous in size. Here we describe a method to analyze and sort mycelial pellets using a Complex Object Parametric Analyzer and Sorter (COPAS). Detailed instructions are given for the use of the instrument and the basic statistical analysis of the data. We furthermore describe how pellets can be sorted according to user-defined settings, which enables downstream processing such as the analysis of the RNA or protein content. Using this methodology the mechanism underlying heterogeneous growth can be tackled. This will be instrumental for improving streptomycetes as a cell factory, considering the fact that productivity correlates with pellet size. PMID:24561666
Parametric Investigation of Thrust Augmentation by Ejectors on a Pulsed Detonation Tube
NASA Technical Reports Server (NTRS)
Wilson, Jack; Sgondea, Alexandru; Paxson, Daniel E.; Rosenthal, Bruce N.
2005-01-01
A parametric investigation has been made of thrust augmentation of a 1 inch diameter pulsed detonation tube by ejectors. A set of ejectors was used which permitted variation of the ejector length, diameter, and nose radius, according to a statistical design of experiment scheme. The maximum augmentations for each ejector were fitted using a polynomial response surface, from which the optimum ejector diameters, and nose radius, were found. Thrust augmentations above a factor of 2 were measured. In these tests, the pulsed detonation device was run on approximately stoichiometric air-hydrogen mixtures, at a frequency of 20 Hz. Later measurements at a frequency of 40 Hz gave lower values of thrust augmentation. Measurements of thrust augmentation as a function of ejector entrance to detonation tube exit distance showed two maxima, one with the ejector entrance upstream, and one downstream, of the detonation tube exit. A thrust augmentation of 2.5 was observed using a tapered ejector.
Critical fluctuations in an optical parametric oscillator: when light behaves like magnetism
NASA Astrophysics Data System (ADS)
Dechoum, Kaled; Rosales-Zárate, Laura; Drummond, Peter D.
2016-05-01
We study the nondegenerate optical parametric oscillator in a planar interferometer near threshold, where critical phenomena are expected. These phenomena are associated with nonequilibrium quantum dynamics that are known to lead to quadrature entanglement and squeezing in the oscillator field modes. We obtain a universal form for the equation describing this system, which allows a comparison with other phase transitions. We find that the unsqueezed quadratures of this system correspond to a two-dimensional XY-type model with a tricritical Lifshitz point. This leaves open the possibility of a controlled experimental investigation into this unusual class of statistical models. We evaluate the correlations of the unsqueezed quadrature using both an exact numerical simulation and a Gaussian approximation, and obtain an accurate numerical calculation of the non-Gaussian correlations.
Dynamic performance of angle-steel concrete columns under low cyclic loading-II: parametric study
NASA Astrophysics Data System (ADS)
Zheng, Wenzhong; Ji, Jing
2008-06-01
Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are presented, and show good agreement with the test results. Furthermore, parametric studies are conducted to explore the influence of factors such as the axial compression ratio, shear steel plate ratio, steel ratio, prismatic concrete compression strength, yield strength of angle steel and shear span ratio, etc., on the monotonic load-displacement curves of the ASCCs. Based on a statistical analysis of the calculated results, hysteretic models for load-displacement and moment-curvature are proposed, which agree well with the test results. Finally, some suggestions concerning the conformation of ASCCs are proposed, which could be useful in engineering practice.
Non-parametric star formation histories for four dwarf spheroidal galaxies of the Local Group
NASA Astrophysics Data System (ADS)
Hernandez, X.; Gilmore, Gerard; Valls-Gabaud, David
2000-10-01
We use recent Hubble Space Telescope colour-magnitude diagrams of the resolved stellar populations of a sample of local dSph galaxies (Carina, Leo I, Leo II and Ursa Minor) to infer the star formation histories of these systems, SFR(t). Applying a new variational calculus maximum likelihood method, which includes a full Bayesian analysis and allows a non-parametric estimate of the function one is solving for, we infer the star formation histories of the systems studied. This method has the advantage of yielding an objective answer, as one need not assume a priori the form of the function one is trying to recover. The results are checked independently using Saha's W statistic. The total luminosities of the systems are used to normalize the results into physical units and derive SN type II rates. We derive the luminosity-weighted mean star formation history of this sample of galaxies.
Assessing T cell clonal size distribution: a non-parametric approach.
Bolkhovskaya, Olesya V; Zorin, Daniil Yu; Ivanchenko, Mikhail V
2014-01-01
Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity. PMID:25275470
Ector, Hugo
2010-12-01
I still remember my first book on statistics: "Elementary statistics with applications in medicine and the biological sciences" by Frederick E. Croxton. For me, it has been the start of pursuing understanding statistics in daily life and in medical practice. It was the first volume in a long row of books. In his introduction, Croxton pretends that"nearly everyone involved in any aspect of medicine needs to have some knowledge of statistics". The reality is that for many clinicians, statistics are limited to a "P < 0.05 = ok". I do not blame my colleagues who omit the paragraph on statistical methods. They have never had the opportunity to learn concise and clear descriptions of the key features. I have experienced how some authors can describe difficult methods in a well understandable language. Others fail completely. As a teacher, I tell my students that life is impossible without a basic knowledge of statistics. This feeling has resulted in an annual seminar of 90 minutes. This tutorial is the summary of this seminar. It is a summary and a transcription of the best pages I have detected. PMID:21302664
A parametric approach to kinship hypothesis testing using identity-by-descent parameters.
García-Magariños, Manuel; Egeland, Thore; López-de-Ullibarri, Ignacio; Hjort, Nils L; Salas, Antonio
2015-11-01
There is a large number of applications where family relationships need to be determined from DNA data. In forensic science, competing ideas are in general verbally formulated as the two hypotheses of a test. For the most common paternity case, the null hypothesis states that the alleged father is the true father against the alternative hypothesis that the father is an unrelated man. A likelihood ratio is calculated to summarize the evidence. We propose an alternative framework whereby a model and the hypotheses are formulated in terms of parameters representing identity-by-descent probabilities. There are several advantages to this approach. Firstly, the alternative hypothesis can be completely general. Specifically, the alternative does not need to specify an unrelated man. Secondly, the parametric formulation corresponds to the approach used in most other applications of statistical hypothesis testing and so there is a large theory of classical statistics that can be applied. Theoretical properties of the test statistic under the null hypothesis are studied. An extension to trios of individuals has been carried out. The methods are exemplified using simulations and a real dataset of 27 Spanish Romani individuals. PMID:26509786
AgGaS2 infrared parametric oscillator
NASA Technical Reports Server (NTRS)
Fan, Y. X.; Eckardt, R. C.; Byer, R. L.; Route, R. K.; Feigelson, R. S.
1984-01-01
A report is presented of the first operation of an optical parametric oscillator in a chalcopyrite crystal, AgGaS2. Tuning from 1.4 to 4.0 microns is demonstrated for 1.06-micron Nd:yttrium aluminum garnet pumping. The potential tuning range extends to the 12-micron transparency limit of the crystal.
GCG parametrization for growth function and current constraints
Gupta, Gaveshna; Sen, Somasri; Sen, Anjan A. E-mail: ssen@jmi.ac.in
2012-04-01
We study the linear growth function f for large scale structures in a cosmological scenario where Generalised Chaplygin Gas (GCG) serves as dark energy candidate. We parametrize the growth index parameter as a function of redshift and do a comparative study between the theoretical growth rate and the proposed parametrization. Moreover, we demonstrate that growth rates for a wide range of dark energy models can be modeled accurately by our proposed parametrization. Finally, we compile a data set consisting of 28 data points within redshift range (0.15,3.8) to constrain the growth rate. It includes direct growth data from various projects/surveys including the latest data from the Wiggle-Z measurements. It also includes data constraining growth indirectly through the rms mass fluctuation σ{sub 8}(z) inferred from Ly-α measurements at various redshifts. By fitting our proposed parametrization for f to these data, we show that growth history of large scale structures of the universe although allows a transient acceleration, one cannot distinguish it at present with an eternally accelerating universe.
Tunable terahertz generation via a cascaded optical parametric device
NASA Astrophysics Data System (ADS)
Huang, Nan; Liu, Hongjun; Sun, Qibing; Wang, Zhaolu; Li, Shaopeng; Han, Jing
2016-05-01
A compact cascaded optical parametric device generating a coherent pulse terahertz (THz) wave is demonstrated. The terahertz parametric oscillator (TPO) and the difference frequency generation (DFG) are designed for cascaded operation use with two outputs producing tunable THz wavelengths. From the first optical parametric device, a TPO with a MgO: LiNbO3 crystal pumped by a Q switch laser of 1.064 μm, 1.8 mJ idler pulse and 5.5 mJ residual pump pulse is obtained. Both of the two beams are employed as the pump and signal beams in the second optical parametric device DFG with a GaSe crystal. More than 0.6 μJ and about 2.1 ns THz pulse at 183 μm is achieved from the DFG. A tunable THz source in the range 104–226 μm via tuning the external phase matching (PM) angles of the TPO and the DFG flexibly under room temperature is obtained. The observed tunable THz wavelengths from the DFG are the same as those from the TPO.
Dark energy parametrization motivated by scalar field dynamics
NASA Astrophysics Data System (ADS)
de la Macorra, Axel
2016-05-01
We propose a new dark energy (DE) parametrization motivated by the dynamics of a scalar field ϕ. We use an equation of state w parametrized in terms of two functions L and y, closely related to the dynamics of scalar fields, which is exact and has no approximation. By choosing an appropriate ansatz for L we obtain a wide class of behavior for the evolution of DE without the need to specify the scalar potential V. We parametrize L and y in terms of only four parameters, giving w a rich structure and allowing for a wide class of DE dynamics. Our w can either grow and later decrease, or it can happen the other way around; the steepness of the transition is not fixed and it contains the ansatz w={w}o+{w}a(1-a). Our parametrization follows closely the dynamics of a scalar field, and the function L allows us to connect it with the scalar potential V(φ ). While the Universe is accelerating and the slow roll approximation is valid, we get L≃ {({V}\\prime /V)}2. To determine the dynamics of DE we also calculate the background evolution and its perturbations, since they are important to discriminate between different DE models.
An Optical Parametric Amplifier for Profiling Gases of Atmospheric Interest
NASA Technical Reports Server (NTRS)
Heaps, William (Technical Monitor); Burris, John; Richter, Dale
2004-01-01
This paper describes the development of a lidar transmitter using an optical parametric amplifier. It is designed for profiling gases of atmospheric interest at high spatial and temporal precision in the near-IR. Discussions on desirable characteristics for such a transmitter with specific reference to the case of CO, are made.
Update on Parametric Cost Models for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl. H. Philip; Henrichs, Todd; Luedtke, Alexander; West, Miranda
2011-01-01
Since the June 2010 Astronomy Conference, an independent review of our cost data base discovered some inaccuracies and inconsistencies which can modify our previously reported results. This paper will review changes to the data base, our confidence in those changes and their effect on various parametric cost models
Acoustic attenuation design requirements established through EPNL parametric trades
NASA Technical Reports Server (NTRS)
Veldman, H. F.
1972-01-01
An optimization procedure for the provision of an acoustic lining configuration that is balanced with respect to engine performance losses and lining attenuation characteristics was established using a method which determined acoustic attenuation design requirements through parametric trade studies using the subjective noise unit of effective perceived noise level (EPNL).
Spacelab mission dependent training parametric resource requirements study
NASA Technical Reports Server (NTRS)
Ogden, D. H.; Watters, H.; Steadman, J.; Conrad, L.
1976-01-01
Training flows were developed for typical missions, resource relationships analyzed, and scheduling optimization algorithms defined. Parametric analyses were performed to study the effect of potential changes in mission model, mission complexity and training time required on the resource quantities required to support training of payload or mission specialists. Typical results of these analyses are presented both in graphic and tabular form.
Raman-Enhanced Phase-Sensitive Fibre Optical Parametric Amplifier
NASA Astrophysics Data System (ADS)
Fu, Xuelei; Guo, Xiaojie; Shu, Chester
2016-02-01
Phase-sensitive amplification is of great research interest owing to its potential in noiseless amplification. One key feature in a phase-sensitive amplifier is the gain extinction ratio defined as the ratio of the maximum to the minimum gains. It quantifies the capability of the amplifier in performing low-noise amplification for high phase-sensitive gain. Considering a phase-sensitive fibre optical parametric amplifier for linear amplification, the gain extinction ratio increases with the phase-insensitive parametric gain achieved from the same pump. In this work, we use backward Raman amplification to increase the phase-insensitive parametric gain, which in turn improves the phase-sensitive operation. Using a 955 mW Raman pump, the gain extinction ratio is increased by 9.2 dB. The improvement in the maximum phase-sensitive gain is 18.7 dB. This scheme can significantly boost the performance of phase-sensitive amplification in a spectral range where the parametric pump is not sufficiently strong but broadband Raman amplification is available.
The Dynamics of a Parametrically Driven Damped Pendulum
NASA Astrophysics Data System (ADS)
Das, A.; Kumar, K.
2015-05-01
Ordered and chaotic states of a parametrically driven planar pendulum with viscous damping are numerically investigated. The damping makes the number of chaotic windows fewer but with larger width. Stroboscopic maps of the chaotic motion of the pendulum, driven either subharmonically or harmonically, show strange attractors with inversion symmetry in the phase plane.
A Parametric Approach to Numerical Modeling of TKR Contact Forces
Lundberg, Hannah J.; Foucher, Kharma C.; Wimmer, Markus A.
2009-01-01
In vivo knee contact forces are difficult to determine using numerical methods because there are more unknown forces than equilibrium equations available. We developed parametric methods for computing contact forces across the knee joint during the stance phase of level walking. Three-dimensional contact forces were calculated at two points of contact between the tibia and the femur, one on the lateral aspect of the tibial plateau, and one on the medial side. Muscle activations were parametrically varied over their physiologic range resulting in a solution space of contact forces. The obtained solution space was reasonably small and the resulting force pattern compared well to a previous model from the literature for kinematics and external kinetics from the same patient. Peak forces of the parametric model and the previous model were similar for the first half of the stance phase, but differed for the second half. The previous model did not take into account the transverse external moment about the knee and could not calculate muscle activation levels. Ultimately, the parametric model will result in more accurate contact force inputs for total knee simulators, as current inputs are not generally based on kinematics and kinetics inputs from TKR patients. PMID:19155015
Surface and Volume Grid Generation in Parametric Form
NASA Technical Reports Server (NTRS)
Yu, Tzuyi; Soni, Bharat K.; Benjamin, Ted; Williams, Robert
1996-01-01
The algorithm for surface modeling and volume grid generation using parametric Non-Uniform Rational B-splines (NURBS) geometric representation are presented. The enhanced re-parameterization algorithm which can yield a desired physical distribution on the curve, surface, and volume is also presented. This approach bridges the gap between computer aided design surface/volume definition and surface/volume grid generation.
Soil Analysis using the semi-parametric NAA technique
Zamboni, C. B.; Silveira, M. A. G.; Medina, N. H.
2007-10-26
The semi-parametric Neutron Activation Analysis technique, using Au as a flux monitor, was applied to measure element concentrations of Br, Ca, Cl, K, Mn and Na for soil characterization. The results were compared with those using the Instrumental Neutron Activation Analysis technique and they found to be compatible. The viability, advantages, and limitations of using these two analytic methodologies are discussed.
Tuning curve of type-0 spontaneous parametric down-conversion
NASA Astrophysics Data System (ADS)
Lerch, Stefan; Bessire, Bänz; Bernhard, Christof; Feurer, Thomas; Stefanov, André
2013-04-01
We study the tuning curve of entangled photons generated by type-0 spontaneous parametric down-conversion in a periodically poled KTP crystal. We demonstrate the X-shaped spatiotemporal structure of the spectrum by means of measurements and numerical simulations. Experiments for different pump waists, crystal temperatures, and crystal lengths are in good agreement with numerical simulations.
Universal parametrization of thermal photon rates in hadronic matter
NASA Astrophysics Data System (ADS)
Heffernan, Matthew; Hohler, Paul; Rapp, Ralf
2015-02-01
Electromagnetic (EM) radiation off strongly interacting matter created in high-energy heavy-ion collisions (HICs) encodes information on the high-temperature phases of nuclear matter. Microscopic calculations of thermal EM emission rates are usually rather involved and not readily accessible to broad applications in models of the fireball evolution which are required to compare with experimental data. An accurate and universal parametrization of the microscopic calculations is thus key to honing the theory behind the EM spectra. Here we provide such a parametrization for photon emission rates from hadronic matter, including the contributions from in-medium ρ mesons (which incorporate effects from baryons and antibaryons), as well as bremsstrahlung from π π scattering. Individual parametrizations for each contribution are numerically determined through nested fitting functions for photon energies from 0.2 to 5 GeV in chemically equilibrated matter of temperatures 100-180 MeV and baryon chemical potentials 0-400 MeV. Special care is taken to extent the parametrizations to chemical off-equilibrium as encountered in HICs after chemical freeze-out. This provides a functional description of thermal photon rates within a 20% variation of the microscopically calculated values.
Parametric resonance induced chaos in magnetic damped driven pendulum
NASA Astrophysics Data System (ADS)
Khomeriki, Giorgi
2016-07-01
A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments.
Steady States of the Parametric Rotator and Pendulum
ERIC Educational Resources Information Center
Bouzas, Antonio O.
2010-01-01
We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…
Dichroism for orbital angular momentum using parametric amplification
NASA Astrophysics Data System (ADS)
Lowney, J.; Roger, T.; Faccio, D.; Wright, E. M.
2014-11-01
We theoretically analyze parametric amplification as a means to produce dichroism based on the orbital angular momentum (OAM) of an incident signal field. The nonlinear interaction is shown to provide differential gain between signal states of differing OAM, the peak gain occurring at half the OAM of the pump field.
Parametric R-norm directed-divergence convex function
NASA Astrophysics Data System (ADS)
Garg, Dhanesh; Kumar, Satish
2016-06-01
In this paper, we define parametric R-norm directed-divergence convex function and discuss their special cases and prove some properties similar to Kullback-Leibler information measure. From R-norm divergence measure new information measures have also been derived and their relations with different measures of entropy have been obtained and give its application in industrial engineering.
Results on Levy stable parametrizations of Bose-Einstein Correlations
Novak, Tamas
2006-04-11
Bose-Einstein correlations of identical charged-pion pairs produced in hadronic Z decays are analyzed in terms of various parametrizations. A good description is achieved using Levy stable distributions. The source function is reconstructed with the help of the {tau}-model.
PARAMETRIC DISTANCE WEIGHTING OF LANDSCAPE INFLUENCE ON STREAMS
We present a parametric model for estimating the areas within watersheds whose land use best predicts indicators of stream ecological condition. We regress a stream response variable on the distance-weighted proportion of watershed area that has a specific land use, such as agric...
Raman-Enhanced Phase-Sensitive Fibre Optical Parametric Amplifier
Fu, Xuelei; Guo, Xiaojie; Shu, Chester
2016-01-01
Phase-sensitive amplification is of great research interest owing to its potential in noiseless amplification. One key feature in a phase-sensitive amplifier is the gain extinction ratio defined as the ratio of the maximum to the minimum gains. It quantifies the capability of the amplifier in performing low-noise amplification for high phase-sensitive gain. Considering a phase-sensitive fibre optical parametric amplifier for linear amplification, the gain extinction ratio increases with the phase-insensitive parametric gain achieved from the same pump. In this work, we use backward Raman amplification to increase the phase-insensitive parametric gain, which in turn improves the phase-sensitive operation. Using a 955 mW Raman pump, the gain extinction ratio is increased by 9.2 dB. The improvement in the maximum phase-sensitive gain is 18.7 dB. This scheme can significantly boost the performance of phase-sensitive amplification in a spectral range where the parametric pump is not sufficiently strong but broadband Raman amplification is available. PMID:26830136
Infra-red parametric generation: Phase mismatch condition
Ghosh, S.; Dubey, Swati; Jain, Kamal
2015-07-31
An analytical investigation is made for the Infrared parametric generation in doped semiconductor plasma under phase mismatch condition. Theoretical formulations are undertaken to determine induced polarization and threshold pump field for the onset of parametric generation in semiconductor plasma medium. The origin of this nonlinear interaction lies in the second order optical susceptibility arising due to the induced nonlinear current density in piezoelectric medium. Numerical estimations are made for n- type InSb at 77 K duly irradiated by a pulsed 10.6µm CO{sub 2} laser. It is very difficult to attain exact phase matching in experimental frame so we have considered a tolerable small phase mismatch in order to attain a new result. Its effect on the Infrared parametric generation in compound semiconductor is examined through induced polarization. Transmitted intensity is determined to have an idea about conversion efficiency of the said process. Phase mismatch tends to raise the required pump field to stimulate the parametric generation. Transmitted intensity is found to decrease with coherence length lc and increase carrier concentration n{sub 0}, which is favorable for improved conversion efficiency.
Developing Parametric Building Models - the Gandis Use Case
NASA Astrophysics Data System (ADS)
Thaller, W.; Krispel, U.; Havemann, S.; Redi, I.; Redi, A.; Fellner, D. W.
2011-09-01
In the course of a project related to green building design, we have created a group of eight parametric building models that can be manipulated interactively with respect to dimensions, number of floors, and a few other parameters. We report on the commonalities and differences between the models and the abstractions that we were able to identify.
Generation of ultra-low-noise optical parametric combs
NASA Astrophysics Data System (ADS)
Kuo, Ping P.; Radic, Stojan
2016-03-01
Generation of wideband optical frequency combs requires precise balance between nonlinear photon interaction and parasitic effects. While near-octave combs can be generated in both silica and silicon waveguides, it is not always possible to suppress the noise across the operational bandwidth. Principles and challenges of noiseinhibited, tunable frequency comb generation in cavity-free parametric mixers are described and discussed.
Parametric Design Studies on a Direct Liquid Feed Fuel Cell
NASA Technical Reports Server (NTRS)
Frank, H. A.; Narayanan, S. R.; Nakamura, B.; Surampudi, S.; Halpert, G.
1995-01-01
Parametric design studies were carried out on a direct methanol liquid feed fuel cell employing 1 M MeOH fuel, air and oxygen as oxidant in a 2 inch x 2 inch cell employing polymeric electrolyte membranes. Measurements include voltage-current output parameters, methanol crossover rate, and impedance as a function of several design and operational variables. Design variables are described.
Multi-level approach for parametric roll analysis
NASA Astrophysics Data System (ADS)
Kim, Taeyoung; Kim, Yonghwan
2011-03-01
The present study considers multi-level approach for the analysis of parametric roll phenomena. Three kinds of computation method, GM variation, impulse response function (IRF), and Rankine panel method, are applied for the multi-level approach. IRF and Rankine panel method are based on the weakly nonlinear formulation which includes nonlinear Froude- Krylov and restoring forces. In the computation result of parametric roll occurrence test in regular waves, IRF and Rankine panel method show similar tendency. Although the GM variation approach predicts the occurrence of parametric roll at twice roll natural frequency, its frequency criteria shows a little difference. Nonlinear roll motion in bichromatic wave is also considered in this study. To prove the unstable roll motion in bichromatic waves, theoretical and numerical approaches are applied. The occurrence of parametric roll is theoretically examined by introducing the quasi-periodic Mathieu equation. Instability criteria are well predicted from stability analysis in theoretical approach. From the Fourier analysis, it has been verified that difference-frequency effects create the unstable roll motion. The occurrence of unstable roll motion in bichromatic wave is also observed in the experiment.
Statistics of football dynamics
NASA Astrophysics Data System (ADS)
Mendes, R. S.; Malacarne, L. C.; Anteneodo, C.
2007-06-01
We investigate the dynamics of football matches. Our goal is to characterize statistically the temporal sequence of ball movements in this collective sport game, searching for traits of complex behavior. Data were collected over a variety of matches in South American, European and World championships throughout 2005 and 2006. We show that the statistics of ball touches presents power-law tails and can be described by q-gamma distributions. To explain such behavior we propose a model that provides information on the characteristics of football dynamics. Furthermore, we discuss the statistics of duration of out-of-play intervals, not directly related to the previous scenario.
Unsupervised Structural Damage Diagnosis Based on Change of Response Surface Using Statistical Tool
NASA Astrophysics Data System (ADS)
Iwasaki, Atsushi; Todoroki, Akira; Shimamura, Yoshinobu; Kobayashi, Hideo
Most structural health monitoring systems adopt parametric methods based on modeling or non-parametric methods such as artificial neural networks. The former methods require modeling of each structure, and the latter methods require a large number of data for training. These methods demand high costs, and it is impossible to obtain training data of the damaged state of an in-service structure. By the present method, damage is detected by judging the statistical difference between data of the intact state and the current state. The method requires data of the undamaged state, but does not require complicated modeling or data for training. As an example, the present study deals with the detection of delamination of a composite beam. Damage is detected from the change of strain data using statistical tools such as the response surface and F-statistics. As a result, the new method successfully diagnoses the damage without the need to use modeling or data of the damaged state.
Aircraft conceptual design - an adaptable parametric sizing methodology
NASA Astrophysics Data System (ADS)
Coleman, Gary John, Jr.
Aerospace is a maturing industry with successful and refined baselines which work well for traditional baseline missions, markets and technologies. However, when new markets (space tourism) or new constrains (environmental) or new technologies (composite, natural laminar flow) emerge, the conventional solution is not necessarily best for the new situation. Which begs the question "how does a design team quickly screen and compare novel solutions to conventional solutions for new aerospace challenges?" The answer is rapid and flexible conceptual design Parametric Sizing. In the product design life-cycle, parametric sizing is the first step in screening the total vehicle in terms of mission, configuration and technology to quickly assess first order design and mission sensitivities. During this phase, various missions and technologies are assessed. During this phase, the designer is identifying design solutions of concepts and configurations to meet combinations of mission and technology. This research undertaking contributes the state-of-the-art in aircraft parametric sizing through (1) development of a dedicated conceptual design process and disciplinary methods library, (2) development of a novel and robust parametric sizing process based on 'best-practice' approaches found in the process and disciplinary methods library, and (3) application of the parametric sizing process to a variety of design missions (transonic, supersonic and hypersonic transports), different configurations (tail-aft, blended wing body, strut-braced wing, hypersonic blended bodies, etc.), and different technologies (composite, natural laminar flow, thrust vectored control, etc.), in order to demonstrate the robustness of the methodology and unearth first-order design sensitivities to current and future aerospace design problems. This research undertaking demonstrates the importance of this early design step in selecting the correct combination of mission, technologies and configuration to
Parametric perfusion imaging based on low-cost ultrasound platform.
Gu, Xiaolin; Zhong, Hui; Wan, Mingxi; Hu, Xiaowen; Lv, Dan; Shen, Liang; Zhang, Xiaomei
2010-01-01
In this study, we attempted to implement parametric perfusion imaging to quantify blood perfusion based on modified low-cost ultrasound platform. A novel ultrasound contrast-specific imaging method called pulse-inversion harmonic sum-squared-differences (PIHSSD) was proposed for improving the sensitivity for detecting contrast agents and the accuracy of parametric perfusion imaging, which combined pulse-inversion harmonic (PIH) with pulse-inversion sum-squared-differences (PISSD) threshold-based decision. PIHSSD method just involved simple operations including addition and multiplication and was easy to realize. The sequences of contrast images without logarithmic compression were used to acquire time intensity curves (TICs) from numerous equal-sized regions-of-interest (ROI) covering the entire image plane. Parametric perfusion images were obtained based on the parameters extracted from the TICs, including peak value (PV), area under curve (AUC), mean transit time (MTT), peak value time (PVT), peak width (PW) and climbing rate (CR). Flow phantom was used for validation and the results suggested that PIHSSD method provided 9.6 to 20.3 dB higher contrast-to-tissue ratio (CTR) than PIH method. The results of the experiments of rabbit kidney also showed that the CTR of PIHSSD images was higher than that of PIH images, and the parametric perfusion images based on PIHSSD method provided more accurate quantification of blood perfusion compared with those based on PIH and PISSD methods. It demonstrated that the parametric perfusion imaging achieved good performance though implemented on low-cost ultrasound platform. (E-mail: mxwan@mail.xjtu.edu.cn). PMID:19931972
Playing at Statistical Mechanics
ERIC Educational Resources Information Center
Clark, Paul M.; And Others
1974-01-01
Discussed are the applications of counting techniques of a sorting game to distributions and concepts in statistical mechanics. Included are the following distributions: Fermi-Dirac, Bose-Einstein, and most probable. (RH)
Cooperative Learning in Statistics.
ERIC Educational Resources Information Center
Keeler, Carolyn M.; And Others
1994-01-01
Formal use of cooperative learning techniques proved effective in improving student performance and retention in a freshman level statistics course. Lectures interspersed with group activities proved effective in increasing conceptual understanding and overall class performance. (11 references) (Author)
Understanding Solar Flare Statistics
NASA Astrophysics Data System (ADS)
Wheatland, M. S.
2005-12-01
A review is presented of work aimed at understanding solar flare statistics, with emphasis on the well known flare power-law size distribution. Although avalanche models are perhaps the favoured model to describe flare statistics, their physical basis is unclear, and they are divorced from developing ideas in large-scale reconnection theory. An alternative model, aimed at reconciling large-scale reconnection models with solar flare statistics, is revisited. The solar flare waiting-time distribution has also attracted recent attention. Observed waiting-time distributions are described, together with what they might tell us about the flare phenomenon. Finally, a practical application of flare statistics to flare prediction is described in detail, including the results of a year of automated (web-based) predictions from the method.
Titanic: A Statistical Exploration.
ERIC Educational Resources Information Center
Takis, Sandra L.
1999-01-01
Uses the available data about the Titanic's passengers to interest students in exploring categorical data and the chi-square distribution. Describes activities incorporated into a statistics class and gives additional resources for collecting information about the Titanic. (ASK)
... and Statistics Recommend on Facebook Tweet Share Compartir Plague in the United States Plague was first introduced ... per year in the United States: 1900-2012. Plague Worldwide Plague epidemics have occurred in Africa, Asia, ...
NASA Astrophysics Data System (ADS)
Grégoire, G.
2016-05-01
This chapter is devoted to two objectives. The first one is to answer the request expressed by attendees of the first Astrostatistics School (Annecy, October 2013) to be provided with an elementary vademecum of statistics that would facilitate understanding of the given courses. In this spirit we recall very basic notions, that is definitions and properties that we think sufficient to benefit from courses given in the Astrostatistical School. Thus we give briefly definitions and elementary properties on random variables and vectors, distributions, estimation and tests, maximum likelihood methodology. We intend to present basic ideas in a hopefully comprehensible way. We do not try to give a rigorous presentation, and due to the place devoted to this chapter, can cover only a rather limited field of statistics. The second aim is to focus on some statistical tools that are useful in classification: basic introduction to Bayesian statistics, maximum likelihood methodology, Gaussian vectors and Gaussian mixture models.
Tuberculosis Data and Statistics
... Organization Chart Advisory Groups Federal TB Task Force Data and Statistics Language: English Español (Spanish) Recommend on ... United States publication. PDF [6 MB] Interactive TB Data Tool Online Tuberculosis Information System (OTIS) OTIS is ...
NASA Astrophysics Data System (ADS)
Richfield, Jon; bookfeller
2016-07-01
In reply to Ralph Kenna and Pádraig Mac Carron's feature article “Maths meets myths” in which they describe how they are using techniques from statistical physics to characterize the societies depicted in ancient Icelandic sagas.
... facts and statistics here include brain and central nervous system tumors (including spinal cord, pituitary and pineal gland ... U.S. living with a primary brain and central nervous system tumor. This year, nearly 17,000 people will ...
Purposeful Statistical Investigations
ERIC Educational Resources Information Center
Day, Lorraine
2014-01-01
Lorraine Day provides us with a great range of statistical investigations using various resources such as maths300 and TinkerPlots. Each of the investigations link mathematics to students' lives and provide engaging and meaningful contexts for mathematical inquiry.
Oakland, J.S.
1986-01-01
Addressing the increasing importance for firms to have a thorough knowledge of statistically based quality control procedures, this book presents the fundamentals of statistical process control (SPC) in a non-mathematical, practical way. It provides real-life examples and data drawn from a wide variety of industries. The foundations of good quality management and process control, and control of conformance and consistency during production are given. Offers clear guidance to those who wish to understand and implement modern SPC techniques.
Jacquin, Laval; Cao, Tuong-Vi; Ahmadi, Nourollah
2016-01-01
One objective of this study was to provide readers with a clear and unified understanding of parametric statistical and kernel methods, used for genomic prediction, and to compare some of these in the context of rice breeding for quantitative traits. Furthermore, another objective was to provide a simple and user-friendly R package, named KRMM, which allows users to perform RKHS regression with several kernels. After introducing the concept of regularized empirical risk minimization, the connections between well-known parametric and kernel methods such as Ridge regression [i.e., genomic best linear unbiased predictor (GBLUP)] and reproducing kernel Hilbert space (RKHS) regression were reviewed. Ridge regression was then reformulated so as to show and emphasize the advantage of the kernel “trick” concept, exploited by kernel methods in the context of epistatic genetic architectures, over parametric frameworks used by conventional methods. Some parametric and kernel methods; least absolute shrinkage and selection operator (LASSO), GBLUP, support vector machine regression (SVR) and RKHS regression were thereupon compared for their genomic predictive ability in the context of rice breeding using three real data sets. Among the compared methods, RKHS regression and SVR were often the most accurate methods for prediction followed by GBLUP and LASSO. An R function which allows users to perform RR-BLUP of marker effects, GBLUP and RKHS regression, with a Gaussian, Laplacian, polynomial or ANOVA kernel, in a reasonable computation time has been developed. Moreover, a modified version of this function, which allows users to tune kernels for RKHS regression, has also been developed and parallelized for HPC Linux clusters. The corresponding KRMM package and all scripts have been made publicly available. PMID:27555865
Jacquin, Laval; Cao, Tuong-Vi; Ahmadi, Nourollah
2016-01-01
One objective of this study was to provide readers with a clear and unified understanding of parametric statistical and kernel methods, used for genomic prediction, and to compare some of these in the context of rice breeding for quantitative traits. Furthermore, another objective was to provide a simple and user-friendly R package, named KRMM, which allows users to perform RKHS regression with several kernels. After introducing the concept of regularized empirical risk minimization, the connections between well-known parametric and kernel methods such as Ridge regression [i.e., genomic best linear unbiased predictor (GBLUP)] and reproducing kernel Hilbert space (RKHS) regression were reviewed. Ridge regression was then reformulated so as to show and emphasize the advantage of the kernel "trick" concept, exploited by kernel methods in the context of epistatic genetic architectures, over parametric frameworks used by conventional methods. Some parametric and kernel methods; least absolute shrinkage and selection operator (LASSO), GBLUP, support vector machine regression (SVR) and RKHS regression were thereupon compared for their genomic predictive ability in the context of rice breeding using three real data sets. Among the compared methods, RKHS regression and SVR were often the most accurate methods for prediction followed by GBLUP and LASSO. An R function which allows users to perform RR-BLUP of marker effects, GBLUP and RKHS regression, with a Gaussian, Laplacian, polynomial or ANOVA kernel, in a reasonable computation time has been developed. Moreover, a modified version of this function, which allows users to tune kernels for RKHS regression, has also been developed and parallelized for HPC Linux clusters. The corresponding KRMM package and all scripts have been made publicly available. PMID:27555865
ERIC Educational Resources Information Center
Maydeu-Olivares, Albert
2005-01-01
Chernyshenko, Stark, Chan, Drasgow, and Williams (2001) investigated the fit of Samejima's logistic graded model and Levine's non-parametric MFS model to the scales of two personality questionnaires and found that the graded model did not fit well. We attribute the poor fit of the graded model to small amounts of multidimensionality present in…
Statistical Physics of Particles
NASA Astrophysics Data System (ADS)
Kardar, Mehran
2006-06-01
Statistical physics has its origins in attempts to describe the thermal properties of matter in terms of its constituent particles, and has played a fundamental role in the development of quantum mechanics. Based on lectures for a course in statistical mechanics taught by Professor Kardar at Massachusetts Institute of Technology, this textbook introduces the central concepts and tools of statistical physics. It contains a chapter on probability and related issues such as the central limit theorem and information theory, and covers interacting particles, with an extensive description of the van der Waals equation and its derivation by mean field approximation. It also contains an integrated set of problems, with solutions to selected problems at the end of the book. It will be invaluable for graduate and advanced undergraduate courses in statistical physics. A complete set of solutions is available to lecturers on a password protected website at www.cambridge.org/9780521873420. Based on lecture notes from a course on Statistical Mechanics taught by the author at MIT Contains 89 exercises, with solutions to selected problems Contains chapters on probability and interacting particles Ideal for graduate courses in Statistical Mechanics
NASA Astrophysics Data System (ADS)
Kardar, Mehran
2006-06-01
While many scientists are familiar with fractals, fewer are familiar with the concepts of scale-invariance and universality which underly the ubiquity of their shapes. These properties may emerge from the collective behaviour of simple fundamental constituents, and are studied using statistical field theories. Based on lectures for a course in statistical mechanics taught by Professor Kardar at Massachusetts Institute of Technology, this textbook demonstrates how such theories are formulated and studied. Perturbation theory, exact solutions, renormalization groups, and other tools are employed to demonstrate the emergence of scale invariance and universality, and the non-equilibrium dynamics of interfaces and directed paths in random media are discussed. Ideal for advanced graduate courses in statistical physics, it contains an integrated set of problems, with solutions to selected problems at the end of the book. A complete set of solutions is available to lecturers on a password protected website at www.cambridge.org/9780521873413. Based on lecture notes from a course on Statistical Mechanics taught by the author at MIT Contains 65 exercises, with solutions to selected problems Features a thorough introduction to the methods of Statistical Field theory Ideal for graduate courses in Statistical Physics
A Bayesian statistical model for hybrid metrology to improve measurement accuracy
NASA Astrophysics Data System (ADS)
Silver, R. M.; Zhang, N. F.; Barnes, B. M.; Qin, J.; Zhou, H.; Dixson, R.
2011-05-01
We present a method to combine measurements from different techniques that reduces uncertainties and can improve measurement throughput. The approach directly integrates the measurement analysis of multiple techniques that can include different configurations or platforms. This approach has immediate application when performing model-based optical critical dimension (OCD) measurements. When modeling optical measurements, a library of curves is assembled through the simulation of a multi-dimensional parameter space. Parametric correlation and measurement noise lead to measurement uncertainty in the fitting process with fundamental limitations resulting from the parametric correlations. A strategy to decouple parametric correlation and reduce measurement uncertainties is described. We develop the rigorous underlying Bayesian statistical model and apply this methodology to OCD metrology. We then introduce an approach to damp the regression process to achieve more stable and rapid regression fitting. These methods that use a priori information are shown to reduce measurement uncertainty and improve throughput while also providing an improved foundation for comprehensive reference metrology.
Statistical Aspects of Tropical Cyclone Activity in the North Atlantic Basin, 1945-2010
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2012-01-01
Examined are statistical aspects of the 715 tropical cyclones that formed in the North Atlantic basin during the interval 1945-2010. These 715 tropical cyclones include 306 storms that attained only tropical storm strength, 409 hurricanes, 179 major or intense hurricanes, and 108 storms that struck the US coastline as hurricanes. Comparisons made using 10-year moving average (10-yma) values between tropical cyclone parametric values and surface air and ENSO-related parametric values indicate strong correlations to exist, in particular, against the Armagh Observatory (Northern Ireland) surface air temperature, the Atlantic Multi-decadal Oscillation (AMO) index, the Atlantic Meridional Mode (AMM) index, and the North Atlantic Oscillation (NAO) index, in addition to the Oceanic Ni o index (ONI) and Quasi-Biennial Oscillation (QBO) indices. Also examined are the decadal variations of the tropical cyclone parametric values and a look ahead towards the 2012 hurricane season and beyond.
Simultaneous segmentation and statistical label fusion
NASA Astrophysics Data System (ADS)
Asman, Andrew J.; Landman, Bennett A.
2012-02-01
Labeling or segmentation of structures of interest in medical imaging plays an essential role in both clinical and scientific understanding. Two of the common techniques to obtain these labels are through either fully automated segmentation or through multi-atlas based segmentation and label fusion. Fully automated techniques often result in highly accurate segmentations but lack the robustness to be viable in many cases. On the other hand, label fusion techniques are often extremely robust, but lack the accuracy of automated algorithms for specific classes of problems. Herein, we propose to perform simultaneous automated segmentation and statistical label fusion through the reformulation of a generative model to include a linkage structure that explicitly estimates the complex global relationships between labels and intensities. These relationships are inferred from the atlas labels and intensities and applied to the target using a non-parametric approach. The novelty of this approach lies in the combination of previously exclusive techniques and attempts to combine the accuracy benefits of automated segmentation with the robustness of a multi-atlas based approach. The accuracy benefits of this simultaneous approach are assessed using a multi-label multi-atlas whole-brain segmentation experiment and the segmentation of the highly variable thyroid on computed tomography images. The results demonstrate that this technique has major benefits for certain types of problems and has the potential to provide a paradigm shift in which the lines between statistical label fusion and automated segmentation are dramatically blurred.
NASA Astrophysics Data System (ADS)
Donnelly, Aoife; Misstear, Bruce; Broderick, Brian
2015-02-01
This paper presents a model for producing real time air quality forecasts with both high accuracy and high computational efficiency. Temporal variations in nitrogen dioxide (NO2) levels and historical correlations between meteorology and NO2 levels are used to estimate air quality 48 h in advance. Non-parametric kernel regression is used to produce linearized factors describing variations in concentrations with wind speed and direction and, furthermore, to produce seasonal and diurnal factors. The basis for the model is a multiple linear regression which uses these factors together with meteorological parameters and persistence as predictors. The model was calibrated at three urban sites and one rural site and the final fitted model achieved R values of between 0.62 and 0.79 for hourly forecasts and between 0.67 and 0.84 for daily maximum forecasts. Model validation using four model evaluation parameters, an index of agreement (IA), the correlation coefficient (R), the fraction of values within a factor of 2 (FAC2) and the fractional bias (FB), yielded good results. The IA for 24 hr forecasts of hourly NO2 was between 0.77 and 0.90 at urban sites and 0.74 at the rural site, while for daily maximum forecasts it was between 0.89 and 0.94 for urban sites and 0.78 for the rural site. R values of up to 0.79 and 0.81 and FAC2 values of 0.84 and 0.96 were observed for hourly and daily maximum predictions, respectively. The model requires only simple input data and very low computational resources. It found to be an accurate and efficient means of producing real time air quality forecasts.
Review of Statistical Methods for Analysing Healthcare Resources and Costs
Mihaylova, Borislava; Briggs, Andrew; O'Hagan, Anthony; Thompson, Simon G
2011-01-01
We review statistical methods for analysing healthcare resource use and costs, their ability to address skewness, excess zeros, multimodality and heavy right tails, and their ease for general use. We aim to provide guidance on analysing resource use and costs focusing on randomised trials, although methods often have wider applicability. Twelve broad categories of methods were identified: (I) methods based on the normal distribution, (II) methods following transformation of data, (III) single-distribution generalized linear models (GLMs), (IV) parametric models based on skewed distributions outside the GLM family, (V) models based on mixtures of parametric distributions, (VI) two (or multi)-part and Tobit models, (VII) survival methods, (VIII) non-parametric methods, (IX) methods based on truncation or trimming of data, (X) data components models, (XI) methods based on averaging across models, and (XII) Markov chain methods. Based on this review, our recommendations are that, first, simple methods are preferred in large samples where the near-normality of sample means is assured. Second, in somewhat smaller samples, relatively simple methods, able to deal with one or two of above data characteristics, may be preferable but checking sensitivity to assumptions is necessary. Finally, some more complex methods hold promise, but are relatively untried; their implementation requires substantial expertise and they are not currently recommended for wider applied work. Copyright © 2010 John Wiley & Sons, Ltd. PMID:20799344
Joint photon and wave statistics in nonlinear optical couplers
NASA Astrophysics Data System (ADS)
Peřina, Jan; Křepelka, Jaromír
2014-09-01
Nonlinear optical couplers based on optical parametric processes and Raman-Brillouin scattering are discussed from the point of view of their nonclassical behaviour using joint photon-number and integrated-intensity probability distributions and derived quantum statistical quantities. Employing these tools quantum entanglement of modes and their nonclassical properties are demonstrated by means of conditional probability distributions and their Fano factors, difference-number probability distributions, quantum oscillations, squeezing of vacuum fluctuations and negative values of the joint wave probability quasidistributions in time evolution. Sub-Poissonian and sub-shot-noise properties are determined for initial coherent, chaotic and squeezed light.
Rainfall statistics changes in Sicily
NASA Astrophysics Data System (ADS)
Arnone, E.; Pumo, D.; Viola, F.; Noto, L. V.; La Loggia, G.
2013-02-01
Changes in rainfall characteristics are one of the most relevant signs of current climate alterations. Many studies have demonstrated an increase in rainfall intensity and a reduction of frequency in several areas of the world, including Mediterranean areas. Rainfall characteristics may be crucial for vegetation patterns formation and evolution in Mediterranean ecosystems, with important implications, for example, in vegetation water stress or coexistence and competition dynamics. At the same time, characteristics of extreme rainfall events are fundamental for the estimation of flood peaks and quantiles which can be used in many hydrological applications, such as design of the most common hydraulic structures, or planning and management of flood prone areas. In the past, Sicily has been screened for several signals of possible climate change. Annual, seasonal and monthly rainfall data in the entire Sicilian region have been analyzed, showing a global reduction of total annual rainfall. Moreover, annual maximum rainfall series for different durations have been rarely analyzed in order to detect the presence of trends. Results indicated that for short durations, historical series generally exhibit increasing trends while for longer durations the trends are mainly negative. Starting from these premises, the aim of this study is to investigate and quantify changes in rainfall statistics in Sicily, during the second half of the last century. Time series of about 60 stations over the region have been processed and screened by using the non parametric Mann-Kendall test. Particularly, extreme events have been analyzed using annual maximum rainfall series at 1, 3, 6, 12 and 24 h duration while daily rainfall properties have been analyzed in term of frequency and intensity, also characterizing seasonal rainfall features. Results of extreme events analysis confirmed an increasing trend for rainfall of short durations, especially for one hour rainfall duration. Instead
Problems of the design of low-noise input devices. [parametric amplifiers
NASA Technical Reports Server (NTRS)
Manokhin, V. M.; Nemlikher, Y. A.; Strukov, I. A.; Sharfov, Y. A.
1974-01-01
An analysis is given of the requirements placed on the elements of parametric centimeter waveband amplifiers for achievement of minimal noise temperatures. A low-noise semiconductor parametric amplifier using germanium parametric diodes for a receiver operating in the 4 GHz band was developed and tested confirming the possibility of satisfying all requirements.
Few-Cycle and Cavity-Enhanced Optical Parametric Amplification
NASA Astrophysics Data System (ADS)
Siddiqui, Aleem Mohammad
Optical parametric amplifiers have emerged as important optical sources by extending the properties of few-cycle laser sources, which exist only in materials with sufficiently large gain bandwidths, to wide array of spectral ranges. The work reported in this thesis relates to two areas for the continued development of optical parametric amplification based sources. First, we present a white light seeded, carrier-envelope stable, degenerately pumped OPA producing near tranform-limited sub 7 fs, 3 microJ pulses at the driver wavelength from a long pulse, non-CEP stable Ti:sapphire regenerative amplifier. Problems to the spectral phase jump at the driver wavelength, 800 nm, were avoided by using a near infrared OPA to produce white light continuum down to 800 nm where the spectral phase is smooth. Secondly, enhancement cavities are used in conjunction with parametric amplifiers resulting in a new technique entitled, cavity-enhanced optical parametric chirped-pulse amplification (C-OPCPA). C-OPCPA increases the capabilities of nonlinear crystals and can allow continued scaling of parametric amplifier systems to high repetition rate. This work contains the first theoretical and experimental investigation of C-OPCPA. Numerically, passive pump pulse shaping of the intracavity pump power is shown to enable octave spanning gain. Experimentally, a first proof-of-principle experiment demonstrates a 78 MHz C-OPCPA with more than 50% conversion with under 1 W of incident pump power. A comparison to a single pass system shows improvements in the C-OPCPA of orders of magnitude in conversion efficiency and 3 fold increase in phase matching bandwidth in 10 and 20 mm periodically poled lithium niobate phase matched for parametric amplification with 1030 nm pump wavelength and a 1550 nm signal wavelength. A Yb-fiber laser based CPA system producing up to 5 W of 500 fs pulses comprises the pump source, and a Er-fiber laser the signal. (Copies available exclusively from MIT Libraries
Universal Parametrization of Thermal Photon Production in Hadronic Matter
NASA Astrophysics Data System (ADS)
Heffernan, Matthew; Hohler, Paul; Rapp, Ralf
2014-09-01
As the production of photons and dileptons from high-energy collisions is able to provide information on the high temperature and high density phases of nuclear matter, an improved and universal parametrization of the rather involved microscopic calculations is key to honing the theory behind this production. We focus on photon emission rates from hadronic many-body calculations of the in-medium rho spectral function, which includes the effects of baryons and antibaryons. Across a range of temperatures from 0.1 to 0.18 GeV and baryon chemical potentials from 0 to 0.4 GeV, a parametrization of thermal photon rates for energies from 0.2 to 5 GeV is numerically determined through the use of nested fitting methods. This provides a fully functional description of thermal photon production largely within an unprecedented 20% of the calculated values from the spectral function, a significant reduction in error from available parametrizations. The contribution of photons and dileptons from pion-pion bremsstrahlung is evaluated for the importance of its contribution. The functional form, coupled with the comparison to the bremsstrahlung production of thermal photons, will provide a baseline for guiding future studies. As the production of photons and dileptons from high-energy collisions is able to provide information on the high temperature and high density phases of nuclear matter, an improved and universal parametrization of the rather involved microscopic calculations is key to honing the theory behind this production. We focus on photon emission rates from hadronic many-body calculations of the in-medium rho spectral function, which includes the effects of baryons and antibaryons. Across a range of temperatures from 0.1 to 0.18 GeV and baryon chemical potentials from 0 to 0.4 GeV, a parametrization of thermal photon rates for energies from 0.2 to 5 GeV is numerically determined through the use of nested fitting methods. This provides a fully functional description of
Creating Efficient Instrumentation Networks to Support Parametric Risk Transfer
NASA Astrophysics Data System (ADS)
Rockett, P.
2009-04-01
The development and institutionalisation of Catastrophe modelling during the 1990s opened the way for Catastrophe risk securitization transactions in which catastrophe risk held by insurers is transferred to the capital markets in the form of a bond. Cat Bonds have been one of the few areas of the capital markets in which the risk modelling has remained secure and the returns on the bonds have held up well through the 2008 Credit Crunch. There are three ways of structuring the loss triggers on bonds: ‘indemnity triggers' - reflecting the actual losses to the issuers; ‘index triggers' reflecting the losses to some index such as reported insurance industry loss and ‘parametric triggers' reflecting the parameters of the underlying catastrophe event itself. Indemnity triggers require that the investors trust that the insurer is reporting all their underlying exposures, while both indemnity and index losses may take 1-2 years to settle before all the claims are reported and resolved. Therefore parametric structures have many advantages, in particular in that the bond can be settled rapidly after an event. The challenge is to create parametric indices that closely reflect the actual losses to the insurer - ie that minimise ‘basis risk'. First generation parametric indices had high basis risk as they were crudely based on the magnitude of an earthquake occurring within some defined geographical box, or the intensity of a hurricane relative to the distance of the storm from some location. Second generation triggers involve taking measurements of ground motion or windspeed or flood depths at many locations and weighting each value so that the overall index closely mimics insurance loss. Cat bonds with second generation parametric triggers have been successfully issued for European Windstorm, UK Flood and California and Japan Earthquake. However the spread of second generation parametric structures is limited by the availability of suitable networks of
Statistical Physics of Fracture
Alava, Mikko; Nukala, Phani K; Zapperi, Stefano
2006-05-01
Disorder and long-range interactions are two of the key components that make material failure an interesting playfield for the application of statistical mechanics. The cornerstone in this respect has been lattice models of the fracture in which a network of elastic beams, bonds, or electrical fuses with random failure thresholds are subject to an increasing external load. These models describe on a qualitative level the failure processes of real, brittle, or quasi-brittle materials. This has been particularly important in solving the classical engineering problems of material strength: the size dependence of maximum stress and its sample-to-sample statistical fluctuations. At the same time, lattice models pose many new fundamental questions in statistical physics, such as the relation between fracture and phase transitions. Experimental results point out to the existence of an intriguing crackling noise in the acoustic emission and of self-affine fractals in the crack surface morphology. Recent advances in computer power have enabled considerable progress in the understanding of such models. Among these partly still controversial issues, are the scaling and size-effects in material strength and accumulated damage, the statistics of avalanches or bursts of microfailures, and the morphology of the crack surface. Here we present an overview of the results obtained with lattice models for fracture, highlighting the relations with statistical physics theories and more conventional fracture mechanics approaches.
Statistical Downscaling: Lessons Learned
NASA Astrophysics Data System (ADS)
Walton, D.; Hall, A. D.; Sun, F.
2013-12-01
In this study, we examine ways to improve statistical downscaling of general circulation model (GCM) output. Why do we downscale GCM output? GCMs have low resolution, so they cannot represent local dynamics and topographic effects that cause spatial heterogeneity in the regional climate change signal. Statistical downscaling recovers fine-scale information by utilizing relationships between the large-scale and fine-scale signals to bridge this gap. In theory, the downscaled climate change signal is more credible and accurate than its GCM counterpart, but in practice, there may be little improvement. Here, we tackle the practical problems that arise in statistical downscaling, using temperature change over the Los Angeles region as a test case. This region is an ideal place to apply downscaling since its complex topography and shoreline are poorly simulated by GCMs. By comparing two popular statistical downscaling methods and one dynamical downscaling method, we identify issues with statistically downscaled climate change signals and develop ways to fix them. We focus on scale mismatch, domain of influence, and other problems - many of which users may be unaware of - and discuss practical solutions.
Statistics for Patch Observations
NASA Astrophysics Data System (ADS)
Hingee, K. L.
2016-06-01
In the application of remote sensing it is common to investigate processes that generate patches of material. This is especially true when using categorical land cover or land use maps. Here we view some existing tools, landscape pattern indices (LPI), as non-parametric estimators of random closed sets (RACS). This RACS framework enables LPIs to be studied rigorously. A RACS is any random process that generates a closed set, which encompasses any processes that result in binary (two-class) land cover maps. RACS theory, and methods in the underlying field of stochastic geometry, are particularly well suited to high-resolution remote sensing where objects extend across tens of pixels, and the shapes and orientations of patches are symptomatic of underlying processes. For some LPI this field already contains variance information and border correction techniques. After introducing RACS theory we discuss the core area LPI in detail. It is closely related to the spherical contact distribution leading to conditional variants, a new version of contagion, variance information and multiple border-corrected estimators. We demonstrate some of these findings on high resolution tree canopy data.
NASA Astrophysics Data System (ADS)
Lange, Stefan; Rockel, Burkhardt; Volkholz, Jan; Bookhagen, Bodo
2015-05-01
This study provides a first thorough evaluation of the COnsortium for Small scale MOdeling weather prediction model in CLimate Mode (COSMO-CLM) over South America. Simulations are driven by ERA-Interim reanalysis data. Besides precipitation, we examine the surface radiation budget, cloud cover, 2 m temperatures, and the low level circulation. We evaluate against reanalysis data as well as observations from ground stations and satellites. Our analysis focuses on the sensitivity of results to the convective parametrization in comparison to their sensitivity to the representation of non-precipitating subgrid-scale clouds in the parametrization of radiation. Specifically, we compare simulations with a relative humidity versus a statistical subgrid-scale cloud scheme, in combination with convection schemes according to Tiedtke (Mon Weather Rev 117(8):1779-1800, 1989) and from the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (IFS) cycle 33r1. The sensitivity of simulated tropical precipitation to the parametrizations of convection and subgrid-scale clouds is of similar magnitude. We show that model runs with different subgrid-scale cloud schemes produce substantially different cloud ice and liquid water contents. This impacts surface radiation budgets, and in turn convection and precipitation. Considering all evaluated variables in synopsis, the model performs best with the (both non-default) IFS and statistical schemes for convection and subgrid-scale clouds, respectively. Despite several remaining deficiencies, such as a poor simulation of the diurnal cycle of precipitation or a substantial austral summer warm bias in northern Argentina, this new setup considerably reduces long-standing model biases, which have been a feature of COSMO-CLM across tropical domains.
Suite versus composite statistics
Balsillie, J.H.; Tanner, W.F.
1999-01-01
Suite and composite methodologies, two statistically valid approaches for producing statistical descriptive measures, are investigated for sample groups representing a probability distribution where, in addition, each sample is probability distribution. Suite and composite means (first moment measures) are always equivalent. Composite standard deviations (second moment measures) are always larger than suite standard deviations. Suite and composite values for higher moment measures have more complex relationships. Very seldom, however, are they equivalent, and they normally yield statistically significant but different results. Multiple samples are preferable to single samples (including composites) because they permit the investigator to examine sample-to-sample variability. These and other relationships for suite and composite probability distribution analyses are investigated and reported using granulometric data.
Candidate Assembly Statistical Evaluation
Energy Science and Technology Software Center (ESTSC)
1998-07-15
The Savannah River Site (SRS) receives aluminum clad spent Material Test Reactor (MTR) fuel from all over the world for storage and eventual reprocessing. There are hundreds of different kinds of MTR fuels and these fuels will continue to be received at SRS for approximately ten more years. SRS''s current criticality evaluation methodology requires the modeling of all MTR fuels utilizing Monte Carlo codes, which is extremely time consuming and resource intensive. Now that amore » significant number of MTR calculations have been conducted it is feasible to consider building statistical models that will provide reasonable estimations of MTR behavior. These statistical models can be incorporated into a standardized model homogenization spreadsheet package to provide analysts with a means of performing routine MTR fuel analyses with a minimal commitment of time and resources. This became the purpose for development of the Candidate Assembly Statistical Evaluation (CASE) program at SRS.« less
Perception in statistical graphics
NASA Astrophysics Data System (ADS)
VanderPlas, Susan Ruth
There has been quite a bit of research on statistical graphics and visualization, generally focused on new types of graphics, new software to create graphics, interactivity, and usability studies. Our ability to interpret and use statistical graphics hinges on the interface between the graph itself and the brain that perceives and interprets it, and there is substantially less research on the interplay between graph, eye, brain, and mind than is sufficient to understand the nature of these relationships. The goal of the work presented here is to further explore the interplay between a static graph, the translation of that graph from paper to mental representation (the journey from eye to brain), and the mental processes that operate on that graph once it is transferred into memory (mind). Understanding the perception of statistical graphics should allow researchers to create more effective graphs which produce fewer distortions and viewer errors while reducing the cognitive load necessary to understand the information presented in the graph. Taken together, these experiments should lay a foundation for exploring the perception of statistical graphics. There has been considerable research into the accuracy of numerical judgments viewers make from graphs, and these studies are useful, but it is more effective to understand how errors in these judgments occur so that the root cause of the error can be addressed directly. Understanding how visual reasoning relates to the ability to make judgments from graphs allows us to tailor graphics to particular target audiences. In addition, understanding the hierarchy of salient features in statistical graphics allows us to clearly communicate the important message from data or statistical models by constructing graphics which are designed specifically for the perceptual system.
Parametrized dielectric functions of amorphous GeSn alloys
NASA Astrophysics Data System (ADS)
D'Costa, Vijay Richard; Wang, Wei; Schmidt, Daniel; Yeo, Yee-Chia
2015-09-01
We obtained the complex dielectric function of amorphous Ge1-xSnx (0 ≤ x ≤ 0.07) alloys using spectroscopic ellipsometry from 0.4 to 4.5 eV. Amorphous GeSn films were formed by room-temperature implantation of phosphorus into crystalline GeSn alloys grown by molecular beam epitaxy. The optical response of amorphous GeSn alloys is similar to amorphous Ge and can be parametrized using a Kramers-Kronig consistent Cody-Lorentz dispersion model. The parametric model was extended to account for the dielectric functions of amorphous Ge0.75Sn0.25 and Ge0.50Sn0.50 alloys from literature. The compositional dependence of band gap energy Eg and parameters associated with the Lorentzian oscillator have been determined. The behavior of these parameters with varying x can be understood in terms of the alloying effect of Sn on Ge.
Ultrabroadband noncollinear optical parametric amplification with LBO crystal.
Zhao, Baozhen; Jiang, Yongliang; Sueda, Keiich; Miyanaga, Noriaki; Kobayashi, Takayoshi
2008-11-10
Ultrabroadband visible noncollinear optical parametric amplification (NOPA) was achieved in an LBO crystal, with a continuum seed pulse generated from a sapphire plate. The spectral bandwidth of the amplified visible pulse was about 200 nm, which can support sub-5 fs pulse amplification. An amplified output of 0.21 microJ with an average gain of about 210 was achieved. This provides, to the best of our knowledge, the first-time demonstration of such broadband amplification with a biaxial nonlinear optical crystal. Both the simulation and experimental results indicate that the LBO has a great potential as nonlinear medium in power amplifier for TW to PW noncollinear optical parametric chirped pulse amplification (NOPCPA) systems. PMID:19581976
Entangled Parametric Hierarchies: Problems for an Overspecified Universal Grammar
Boeckx, Cedric; Leivada, Evelina
2013-01-01
This study addresses the feasibility of the classical notion of parameter in linguistic theory from the perspective of parametric hierarchies. A novel program-based analysis is implemented in order to show certain empirical problems related to these hierarchies. The program was developed on the basis of an enriched data base spanning 23 contemporary and 5 ancient languages. The empirical issues uncovered cast doubt on classical parametric models of language acquisition as well as on the conceptualization of an overspecified Universal Grammar that has parameters among its primitives. Pinpointing these issues leads to the proposal that (i) the (bio)logical problem of language acquisition does not amount to a process of triggering innately pre-wired values of parameters and (ii) it paves the way for viewing language, epigenetic (‘parametric’) variation as an externalization-related epiphenomenon, whose learning component may be more important than what sometimes is assumed. PMID:24019867
Testing composite parametrical hypotheses without applying the reduction
NASA Astrophysics Data System (ADS)
Vlasov, V.; Vlasova, S.; Tolokonsky, A.
2016-01-01
Usually when the parametrical hypotheses are being tested the Wald reduction from composite hypothesis to the simple one is used. However, in order to apply the reduction method it is needed to know the distribution law of unknown parameter. Practically such a law cannot be determined precisely using the experimental data. First of all, it requires long supervision over the controlled stationary process to provide an inalterability of probability characteristics of the process. In practice the modifications in technological process could be made, and therefore the probability characteristics of the process can also change. Using the example of exponential distribution the algorithm of testing composite parametrical hypothesis about the distribution parameter which does not exceed the declared threshold value without use of reduction is considered in article. Such approach is based on the fact that the partition boundary of the sample space depends monotonously on unknown value of the interest parameter.
Higher-order nonlinear effects in a Josephson parametric amplifier
NASA Astrophysics Data System (ADS)
Kochetov, Bogdan A.; Fedorov, Arkady
2015-12-01
Nonlinearity of the current-phase relationship of a Josephson junction is the key resource for a Josephson parametric amplifier (JPA) as well as for a Josephson traveling-wave parametric amplifier, the only devices in which the quantum limit for added noise has so far been approached at microwave frequencies. A standard approach to describe JPA takes into account only the lowest order (cubic) nonlinearity resulting in a Duffing-like oscillator equation of motion or in a Kerr-type nonlinearity term in the Hamiltonian. In this paper we derive the quantum expression for the gain of JPA including all orders of the Josephson junction nonlinearity in the linear response regime. We then analyze gain saturation effect for stronger signals within a semiclassical approach. Our results reveal nonlinear effects of higher orders and their implications for operation of a JPA.
New approach in bats' sonar signals parametrization and modelling
NASA Astrophysics Data System (ADS)
Herman, Krzysztof; Gudra, Tadeusz
2010-01-01
Parameterization of bats' echolocation signal is essentially based on determination of spectral power density by means of the classic Fourier transform FFT. This study presents an alternative solution in this area of research, that is parametric and non-parametric modelling of short-time signals. The above mentioned methods are based on modelling of white noise with the use of digital filters the transmission of which was set in a way that allows the output signal to be as close to the modelled signal as possible. Proper selection of parameterization method - MA (Moving Average), AR (Autoregressive), ARMA (Autoregressive Moving Average), in respect of the character of signal spectrum (line spectrum, noise) maximally reduces the number of filter coefficients and improves the accuracy of bat's signal modelling. The work also presents the possibility of using the suggested parameterization methods in automatic species identification.
A parametric study of alum recovery from water treatment sludge.
Ayoub, Mohamed; Abdelfattah, Abdallah
2016-01-01
Alum recovery from water treatment sludge is a promising technique applied to decrease usage of fresh coagulants in the water treatment industry. In addition, alum recovery reduces sludge volume for easy handling. The undertaken work investigated the parametric conditions for alum recovery procedure by acidification. The results show that alum recovery reaches up to 69.03%, and the reduction of sludge volume reaches its highest level at 90%. Moreover, results of the parametric investigation reveal that the mixing time of 60 minutes and mixing intensity of 150 rpm are the optimum conditions of mixing for alum recovery from water treatment sludge. The optimum pH level is 1.50 for alum recovery as indicated by maximum aluminum releasing, maximum reduction of sludge volume, and reasonable dosages of added sulfuric acid. PMID:27438258
THz-wave parametric source and its imaging applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo
2004-08-01
Widely tunable coherent terahertz (THz) wave generation has been demonstrated based on the parametric oscillation using MgO doped LiNbO3 crystal pumped by a Q-switched Nd:YAG laser. This method exhibits multiple advantages like wide tunability, coherency and compactness of its system. We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.
Excitation of parametric instabilities by radio waves in the ionosphere.
NASA Technical Reports Server (NTRS)
Fejer, J. A.; Leer, E.
1972-01-01
The excitation of parametric instabilities by radio waves in a magnetoplasma is discussed. A uniform medium is assumed and linear approximations are used. Excitation by a pump wave of ordinary polarization is hardly affected by the magnetic field. Low or zero frequency ion waves and high frequency Langmuir waves are excited simultaneously. For an extraordinary pump wave, the excited high frequency electrostatic waves are in the Bernstein mode. The threshold is slightly higher and excitation can occur only within certain 'allowed' frequency bands. A new type of parametric instability in which the excited waves are electromagnetic in nature and which is more strongly affected by the inhomogeneous nature of the medium is discussed qualitatively.
Strong coupling and parametric amplification in mechanical modes of graphene
NASA Astrophysics Data System (ADS)
Mathew, John; Patel, Raj; Borah, Abhinandan; Vijayaraghavan, Rajamani; Deshmukh, Mandar
We demonstrate strong dynamical coupling and parametric amplification in mechanical modes of a graphene drum using an all electrical configuration. Low tension in the system allows large electrostatic tunability of the modes thus enabling dynamic pumping experiments. In the strong coupling regime a red detuned pump gives rise to new eigenmodes having highly tunable mode splitting (cooperativity ~60) with coherent energy transfer. The coupling is also used to amplify the modes under the action of a blue detuned pump. In addition, self-oscillations and parametric amplification of the fundamental vibrational mode is demonstrated with a gain of nearly 3. The low mass and high frequency of these atomically thin resonators could prove useful for studying mode coupling in the quantum regime.
Spectral finite-element methods for parametric constrained optimization problems.
Anitescu, M.; Mathematics and Computer Science
2009-01-01
We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem is solvable because it is feasible for a sufficiently large degree of the polynomial approximation and has an objective function with bounded level sets. In addition, the solutions of the finite-dimensional problems converge for an increasing degree of the polynomials considered, provided that the solutions exhibit a sufficiently large and uniform degree of smoothness. Our approach solves, in the case of optimization problems with uncertain parameters, the most computationally intensive part of stochastic finite-element approaches. We demonstrate that our framework is applicable to parametric eigenvalue problems.
May chaos always be suppressed by parametric perturbations?
Schwalger, Tilo; Dzhanoev, Arsen; Loskutov, Alexander
2006-06-01
The problem of chaos suppression by parametric perturbations is considered. Despite the widespread opinion that chaotic behavior may be stabilized by perturbations of any system parameter, we construct a counterexample showing that this is not necessarily the case. In general, chaos suppression means that parametric perturbations should be applied within a set of parameters at which the system has a positive maximal Lyapunov exponent. Analyzing the known Duffing-Holmes model by a Melnikov method, we showed that chaotic dynamics cannot be suppressed by harmonic perturbations of a certain parameter, independently from the other parameter values. Thus, to stabilize the behavior of chaotic systems, the perturbation and parameters should be carefully chosen. PMID:16822012
Parametric study of pounding tuned mass damper for subsea jumpers
NASA Astrophysics Data System (ADS)
Zhang, P.; Li, L.; Patil, D.; Singla, M.; Li, H.-N.; Mo, Y. L.; Song, G.
2016-01-01
In previous study, a pounding tuned mass damper (PTMD) was proposed to reduce the undesired vibration of a subsea jumper. Both experimental and numerical results verified the effectiveness of the PTMD. This paper aims to enhance the understanding of the PTMD through a parametric study. The jumper is subjected to sinusoidal forces of different frequencies. The reduction ratio is defined for evaluation of the mitigation performance. Three parameters are considered in this study: the pounding stiffness, the gap between the delimiter and the mass block, and the mass ratio. The parametric studies show that the PTMD system is not so sensitive to the small variations of the pounding stiffness and the gap. The reduction ratio is significantly increased with the mass ratio increased up to 2%. Afterwards, it is not so economic or practically feasible to enlarge the mass ratio.
Automated parametrical antenna modelling for ambient assisted living applications
NASA Astrophysics Data System (ADS)
Kazemzadeh, R.; John, W.; Mathis, W.
2012-09-01
In this paper a parametric modeling technique for a fast polynomial extraction of the physically relevant parameters of inductively coupled RFID/NFC (radio frequency identification/near field communication) antennas is presented. The polynomial model equations are obtained by means of a three-step procedure: first, full Partial Element Equivalent Circuit (PEEC) antenna models are determined by means of a number of parametric simulations within the input parameter range of a certain antenna class. Based on these models, the RLC antenna parameters are extracted in a subsequent model reduction step. Employing these parameters, polynomial equations describing the antenna parameter with respect to (w.r.t.) the overall antenna input parameter range are extracted by means of polynomial interpolation and approximation of the change of the polynomials' coefficients. The described approach is compared to the results of a reference PEEC solver with regard to accuracy and computation effort.
Point matching based on non-parametric model
NASA Astrophysics Data System (ADS)
Liu, Renfeng; Zhang, Cong; Tian, Jinwen
2015-12-01
Establishing reliable feature correspondence between two images is a fundamental problem in vision analysis and it is a critical prerequisite in a wide range of applications including structure-from-motion, 3D reconstruction, tracking, image retrieval, registration, and object recognition. The feature could be point, line, curve or surface, among which the point feature is primary and is the foundation of all features. Numerous techniques related to point matching have been proposed within a rich and extensive literature, which are typically studied under rigid/affine or non-rigid motion, corresponding to parametric and non-parametric models for the underlying image relations. In this paper, we provide a review of our previous work on point matching, focusing on nonparametric models. We also make an experimental comparison of the introduced methods, and discuss their advantages and disadvantages as well.