Science.gov

Sample records for status selenoprotein expression

  1. Selenium status affects selenoprotein expression, reproduction, and F₁ generation locomotor activity in zebrafish (Danio rerio).

    PubMed

    Penglase, Sam; Hamre, Kristin; Rasinger, Josef D; Ellingsen, Staale

    2014-06-14

    Se is an essential trace element, and is incorporated into selenoproteins which play important roles in human health. Mammalian selenoprotein-coding genes are often present as paralogues in teleost fish, and it is unclear whether the expression patterns or functions of these fish paralogues reflect their mammalian orthologues. Using the model species zebrafish (Danio rerio; ZF), we aimed to assess how dietary Se affects key parameters in Se metabolism and utilisation including glutathione peroxidase (GPX) activity, the mRNA expression of key Se-dependent proteins (gpx1a, gpx1b, sepp1a and sepp1b), oxidative status, reproductive success and F1 generation locomotor activity. From 27 d until 254 d post-fertilisation, ZF were fed diets with graded levels of Se ranging from deficient ( < 0·10 mg/kg) to toxic (30 mg/kg). The mRNA expression of gpx1a and gpx1b and GPX activity responded in a similar manner to changes in Se status. GPX activity and mRNA levels were lowest when dietary Se levels (0·3 mg/kg) resulted in the maximum growth of ZF, and a proposed bimodal mechanism in response to Se status below and above this dietary Se level was identified. The expression of the sepp1 paralogues differed, with only sepp1a responding to Se status. High dietary Se supplementation (30 mg/kg) decreased reproductive success, while the offspring of ZF fed above 0·3 mg Se/kg diet had lower locomotor activity than the other groups. Overall, the novel finding of low selenoprotein expression and activity coinciding with maximum body growth suggests that even small Se-induced variations in redox status may influence cellular growth rates. PMID:24666596

  2. Selenoprotein M is expressed during bone development

    PubMed Central

    Grosch, Melanie; Fuchs, Jennifer; Bösl, Michael; Winterpacht, Andreas; Tagariello, Andreas

    2013-01-01

    25 selenoproteins that contain selenium, incorporated as selenocysteine (Sec), have been identified to date. Selenoprotein M (SELM) is one of seven endoplasmic reticulum (ER)-resident, Sec-containing proteins that may be involved in posttranslational processing of proteins and maintenance of ER function. Since SELM was overrepresented in a cartilage- and bone-specific expressed sequence tag (EST) library, we further investigated the expression pattern of Selm and its possible biological function in the skeleton. RNA in situ hybridization of Selm in chicken and mice of different developmental stages revealed prominent expression in bones, specifically in osteoblast, and in tendons. This result suggests that SELM functions during bone development, where it is possibly involved in the processing of secreted proteins. PMID:27298612

  3. The Selenocysteine tRNA STAF-Binding Region is Essential for Adequate Selenocysteine tRNA Status, Selenoprotein Expression and Early Age Survival of Mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    STAF is a transcription activating factor for a number of RNA Pol III-and RNA Pol II-dependent genes including the selenocysteine (Sec) tRNA gene. Here, the role of STAF in regulating expression of Sec tRNA and selenoproteins was examined in an invivo model. Heterozygous inactivation of the Staf gen...

  4. Analyses of Fruit Flies That Do Not Express Selenoproteins or Express the Mouse Selenoprotein, Methionine Sulfoxide Reductase B1, Reveal a Role of Selenoproteins in Stress Resistance*

    PubMed Central

    Shchedrina, Valentina A.; Kabil, Hadise; Vorbruggen, Gerd; Lee, Byung Cheon; Turanov, Anton A.; Hirosawa-Takamori, Mitsuko; Kim, Hwa-Young; Harshman, Lawrence G.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Selenoproteins are essential in vertebrates because of their crucial role in cellular redox homeostasis, but some invertebrates that lack selenoproteins have recently been identified. Genetic disruption of selenoprotein biosynthesis had no effect on lifespan and oxidative stress resistance of Drosophila melanogaster. In the current study, fruit flies with knock-out of the selenocysteine-specific elongation factor were metabolically labeled with 75Se; they did not incorporate selenium into proteins and had the same lifespan on a chemically defined diet with or without selenium supplementation. These flies were, however, more susceptible to starvation than controls, and this effect could be ascribed to the function of selenoprotein K. We further expressed mouse methionine sulfoxide reductase B1 (MsrB1), a selenoenzyme that catalyzes the reduction of oxidized methionine residues and has protein repair function, in the whole body or the nervous system of fruit flies. This exogenous selenoprotein could only be expressed when the Drosophila selenocysteine insertion sequence element was used, whereas the corresponding mouse element did not support selenoprotein synthesis. Ectopic expression of MsrB1 in the nervous system led to an increase in the resistance against oxidative stress and starvation, but did not affect lifespan and reproduction, whereas ubiquitous MsrB1 expression had no effect. Dietary selenium did not influence lifespan of MsrB1-expressing flies. Thus, in contrast to vertebrates, fruit flies preserve only three selenoproteins, which are not essential and play a role only under certain stress conditions, thereby limiting the use of the micronutrient selenium by these organisms. PMID:21622567

  5. Selenoprotein P Status Correlates to Cancer-Specific Mortality in Renal Cancer Patients

    PubMed Central

    Stephan, Carsten; Stoedter, Mette; Behrends, Thomas; Wolff, Ingmar; Jung, Klaus; Schomburg, Lutz

    2012-01-01

    Selenium (Se) is an essential trace element for selenoprotein biosynthesis. Selenoproteins have been implicated in cancer risk and tumor development. Selenoprotein P (SePP) serves as the major Se transport protein in blood and as reliable biomarker of Se status in marginally supplied individuals. Among the different malignancies, renal cancer is characterized by a high mortality rate. In this study, we aimed to analyze the Se status in renal cell cancer (RCC) patients and whether it correlates to cancer-specific mortality. To this end, serum samples of RCC patients (n = 41) and controls (n = 21) were retrospectively analyzed. Serum Se and SePP concentrations were measured by X-ray fluorescence and an immunoassay, respectively. Clinical and survival data were compared to serum Se and SePP concentrations as markers of Se status by receiver operating characteristic (ROC) curve and Kaplan-Meier and Cox regression analyses. In our patients, higher tumor grade and tumor stage at diagnosis correlated to lower SePP and Se concentrations. Kaplan-Meier analyses indicated that low Se status at diagnosis (SePP<2.4 mg/l, bottom tertile of patient group) was associated with a poor 5-year survival rate of 20% only. We conclude that SePP and Se concentrations are of prognostic value in RCC and may serve as additional diagnostic biomarkers identifying a Se deficit in kidney cancer patients potentially affecting therapy regimen. As poor Se status was indicative of high mortality odds, we speculate that an adjuvant Se supplementation of Se-deficient RCC patients might be beneficial in order to stabilize their selenoprotein expression hopefully prolonging their survival. However, this assumption needs to be rigorously tested in prospective clinical trials. PMID:23056383

  6. Selenoprotein P status correlates to cancer-specific mortality in renal cancer patients.

    PubMed

    Meyer, Hellmuth A; Endermann, Tobias; Stephan, Carsten; Stoedter, Mette; Behrends, Thomas; Wolff, Ingmar; Jung, Klaus; Schomburg, Lutz

    2012-01-01

    Selenium (Se) is an essential trace element for selenoprotein biosynthesis. Selenoproteins have been implicated in cancer risk and tumor development. Selenoprotein P (SePP) serves as the major Se transport protein in blood and as reliable biomarker of Se status in marginally supplied individuals. Among the different malignancies, renal cancer is characterized by a high mortality rate. In this study, we aimed to analyze the Se status in renal cell cancer (RCC) patients and whether it correlates to cancer-specific mortality. To this end, serum samples of RCC patients (n = 41) and controls (n = 21) were retrospectively analyzed. Serum Se and SePP concentrations were measured by X-ray fluorescence and an immunoassay, respectively. Clinical and survival data were compared to serum Se and SePP concentrations as markers of Se status by receiver operating characteristic (ROC) curve and Kaplan-Meier and Cox regression analyses. In our patients, higher tumor grade and tumor stage at diagnosis correlated to lower SePP and Se concentrations. Kaplan-Meier analyses indicated that low Se status at diagnosis (SePP<2.4 mg/l, bottom tertile of patient group) was associated with a poor 5-year survival rate of 20% only. We conclude that SePP and Se concentrations are of prognostic value in RCC and may serve as additional diagnostic biomarkers identifying a Se deficit in kidney cancer patients potentially affecting therapy regimen. As poor Se status was indicative of high mortality odds, we speculate that an adjuvant Se supplementation of Se-deficient RCC patients might be beneficial in order to stabilize their selenoprotein expression hopefully prolonging their survival. However, this assumption needs to be rigorously tested in prospective clinical trials. PMID:23056383

  7. Gene-specific regulation of hepatic selenoprotein expression by interleukin-6.

    PubMed

    Martitz, J; Becker, N-P; Renko, K; Stoedter, M; Hybsier, S; Schomburg, L

    2015-11-01

    Sepsis is a severe inflammatory disease resulting in excessive production of pro-inflammatory cytokines including interleukin-6 (IL-6), causing oxidative stress, tissue damage and organ dysfunction. Health benefits have been observed upon selenium (Se) supplementation in severe sepsis. Selenium is incorporated into selenoproteins implicated in anti-oxidative defence, thyroid hormone metabolism and immunoregulation. Selenium metabolism is controlled by hepatocytes synthesizing and secreting the Se transporter selenoprotein P (SePP). The circulating SePP declines in sepsis causing low serum Se levels. Dysregulation of the hepatic selenoenzyme deiodinase type 1 (DIO1) potentially contributes to the low T3 (thyroid hormone) syndrome observed in severe diseases. We hypothesized that IL-6 affects hepatic selenoprotein biosynthesis directly. Testing human hepatocytes in culture, IL-6 reduced the concentrations of SePP mRNA and secreted SePP in a dose-dependent manner. In parallel, expression of DIO1 declined at the mRNA, protein and enzyme activity level. The effects of IL-6 on glutathione peroxidase (GPX) expression were isozyme-specific; GPX1 remained unaffected, while transcript concentrations of GPX2 increased and those of GPX4 decreased. This pattern of IL-6-dependent effects was mirrored in reporter gene experiments with SePP, DIO1, GPX1, and GPX2 promoter constructs pointing to direct transcriptional effects of IL-6. The redirection of hepatic selenoprotein biosynthesis by IL-6 may represent a central regulatory circuit responsible for the decline of serum Se and low T3 concentrations in sepsis. Accordingly, therapeutic IL-6 targeting may be effective for improving the Se and thyroid hormone status, adjuvant Se supplementation success and survival in sepsis. PMID:26399395

  8. Expression and purification of the membrane enzyme selenoprotein K.

    PubMed

    Liu, Jun; Srinivasan, Prabhavathi; Pham, Diane N; Rozovsky, Sharon

    2012-11-01

    Selenoprotein K (SelK) is a membrane protein residing in the endoplasmic reticulum. The function of SelK is mostly unknown; however, it has been shown to participate in anti-oxidant defense, calcium regulation and in the endoplasmic reticulum associated protein degradation (ERAD) pathway. In order to study the function of SelK and the role of selenocysteine in catalysis, we have tested heterologous expression of human SelK in E. coli. Consequently, we have developed an over-expression strategy that exploits the maltose binding protein as a fusion partner to stabilize and solubilize SelK. The fusion partner can be cleaved from SelK in the presence of a variety of detergents compatible with structural characterization and the protein purified to homogeneity. SelK acquires a helical secondary structure in detergent micelles, even though it was predicted to be an intrinsically disordered protein due to its high percentage of polar residues. The same strategy was successfully applied to preparation of SelK binding partner - selenoprotein S (SelS). Hence, this heterologous expression and purification strategy can be applied to other members of the membrane enzyme family to which SelK belongs. PMID:22963794

  9. Secisbp2 Is Essential for Embryonic Development and Enhances Selenoprotein Expression

    PubMed Central

    Seeher, Sandra; Atassi, Tarik; Mahdi, Yassin; Carlson, Bradley A.; Braun, Doreen; Wirth, Eva K.; Klein, Marc O.; Reix, Nathalie; Miniard, Angela C.; Schomburg, Lutz; Hatfield, Dolph L.; Driscoll, Donna M.

    2014-01-01

    Abstract Aims: The selenocysteine insertion sequence (SECIS)-binding protein 2 (Secisbp2) binds to SECIS elements located in the 3′-untranslated region of eukaryotic selenoprotein mRNAs. Selenoproteins contain the rare amino acid selenocysteine (Sec). Mutations in SECISBP2 in humans lead to reduced selenoprotein expression thereby affecting thyroid hormone-dependent growth and differentiation processes. The most severe cases also display myopathy, hearing impairment, male infertility, increased photosensitivity, mental retardation, and ataxia. Mouse models are needed to understand selenoprotein-dependent processes underlying the patients' pleiotropic phenotypes. Results: Unlike tRNA[Ser]Sec-deficient embryos, homozygous Secisbp2-deleted embryos implant, but fail before gastrulation. Heterozygous inactivation of Secisbp2 reduced the amount of selenoprotein expressed, but did not affect the thyroid hormone axis or growth. Conditional deletion of Secisbp2 in hepatocytes significantly decreased selenoprotein expression. Unexpectedly, the loss of Secisbp2 reduced the abundance of many, but not all, selenoprotein mRNAs. Transcript-specific and gender-selective effects on selenoprotein mRNA abundance were greater in Secisbp2-deficient hepatocytes than in tRNA[Ser]Sec-deficient cells. Despite the massive reduction of Dio1 and Sepp1 mRNAs, significantly more corresponding protein was detected in primary hepatocytes lacking Secisbp2 than in cells lacking tRNA[Ser]Sec. Regarding selenoprotein expression, compensatory nuclear factor, erythroid-derived, like 2 (Nrf2)-dependent gene expression, or embryonic development, phenotypes were always milder in Secisbp2-deficient than in tRNA[Ser]Sec-deficient mice. Innovation: We report the first Secisbp2 mutant mouse models. The conditional mutants provide a model for analyzing Secisbp2 function in organs not accessible in patients. Conclusion: In hepatocyte-specific conditional mouse models, Secisbp2 gene inactivation is less

  10. Selenium Deficiency Mainly Influences Antioxidant Selenoproteins Expression in Broiler Immune Organs.

    PubMed

    Yang, Zijiang; Liu, Ci; Liu, Chunpeng; Teng, Xiaohua; Li, Shu

    2016-07-01

    Selenoprotein has many functions in chicken, and the expression of selenoproteins is closely associated with the selenium (Se) level. However, little is known about the expression patterns of selenoproteins in chicken immune organs. Here, we investigated the effect of dietary Se deficiency on the expressions of 23 selenoproteins in broiler immune organs. In this study, 150 broilers were randomly divided into two groups (75 chickens per group). The chickens were maintained either on a diet supplemented with Se through the addition of 0.2 mg/kg of Se (C group) via sodium selenite or on a Se-deficient granulated diet (L group) until the broilers exhibited an onset of exudative diathesis (ED). Following euthanasia, the samples from the immune tissues (including the spleen, thymus, and bursa of Fabricius) were quickly collected, and the messenger RNA (mRNA) expression levels of 23 selenoproteins were examined by real-time quantitative PCR and analyzed using principal component analysis. The results showed that Se deficiency decreased the mRNA levels of 23 selenoproteins in the thymus, spleen, and bursa of the Fabricius tissues of broiler chickens. Furthermore, we found that among 23 selenoproteins, the mRNA levels of Dio1 in the thymus, Txnrd2 in the spleen, and Txnrd3 in the bursa of Fabricius decreased significantly (90.9 %, 83.3 %, and 96.8 %, respectively). In addition, the principal component analysis (PCA) results suggested that Se deficiency mainly influenced the expression of antioxidative selenoproteins, especially glutathione peroxidases (Gpxs), thioredoxin reductases (Txnrds), and iodothyronine deiodinases (Dios) in chicken immune organs. The results of this study are valuable for understanding the relevance of selenoprotein activity in vivo. PMID:26631053

  11. Nucleolin binds to a subset of selenoprotein mRNAs and regulates their expression.

    PubMed

    Miniard, Angela C; Middleton, Lisa M; Budiman, Michael E; Gerber, Carri A; Driscoll, Donna M

    2010-08-01

    Selenium, an essential trace element, is incorporated into selenoproteins as selenocysteine (Sec), the 21st amino acid. In order to synthesize selenoproteins, a translational reprogramming event must occur since Sec is encoded by the UGA stop codon. In mammals, the recoding of UGA as Sec depends on the selenocysteine insertion sequence (SECIS) element, a stem-loop structure in the 3' untranslated region of the transcript. The SECIS acts as a platform for RNA-binding proteins, which mediate or regulate the recoding mechanism. Using UV crosslinking, we identified a 110 kDa protein, which binds with high affinity to SECIS elements from a subset of selenoprotein mRNAs. The crosslinking activity was purified by RNA affinity chromatography and identified as nucleolin by mass spectrometry analysis. In vitro binding assays showed that purified nucleolin discriminates among SECIS elements in the absence of other factors. Based on siRNA experiments, nucleolin is required for the optimal expression of certain selenoproteins. There was a good correlation between the affinity of nucleolin for a SECIS and its effect on selenoprotein expression. As selenoprotein transcript levels and localization did not change in siRNA-treated cells, our results suggest that nucleolin selectively enhances the expression of a subset of selenoproteins at the translational level. PMID:20385601

  12. Targeted deletion of Secisbp2 reduces, but does not abrogate, selenoprotein expression and leads to striatal interneuron loss.

    PubMed

    Seeher, Sandra; Schweizer, Ulrich

    2014-10-01

    Selenoproteins contain the amino acid selenocysteine (Sec). The Sec insertion sequence (SECIS)-binding protein 2 (Secisbp2) binds to SECIS elements in the 3'-UTR of eukaryotic selenoprotein mRNAs. Mutations in SECISBP2 in humans lead to reduced selenoprotein expression thereby affecting thyroid hormone-dependent growth and differentiation processes. The most severe cases also display mental retardation and ataxia. Mouse models are needed to understand selenoprotein-dependent processes underlying the patients' pleiotropic phenotypes. Homozygous Secisbp2 deletion is embryonic lethal. Conditional deletion of Secisbp2 in hepatocytes significantly decreased selenoprotein expression and reduced the abundance of many, but not all, selenoprotein mRNAs. Regarding selenoprotein expression, compensatory Nrf2-dependent gene expression, or embryonic development, phenotypes were always milder in Secisbp2- than in tRNA(Sec)-deficient mice. Neuron-specific inactivation of Secisbp2 reduced cerebral expression of selenoproteins, but allowed to study the development of cortical PVpos interneurons, which are known to depend on selenoproteins. Cre expression spares the cerebellum of these mice, why we suspected that basal ganglia dysfunction may cause the obvious movement phenotype. We observed for the first time that the number of PVpos neurons was reduced by 50% in the caudate putamen of a selenoprotein-deficient mouse model. In situ hybridization for Gad67 showed that selenoprotein deficiency selectively reduced the number of PVpos GABAergic interneurons. We propose that the striatal neuron loss likely causes the movement disorder. The most striking novel finding of this work is the selective damage of PVpos/Gad67pos neurons in the striatum. The second key finding is that selenoprotein expression in hepatocytes and neurons is less dependent on Secisbp2 than on tRNA(Sec). This implies the possibility of Secisbp2-independent selenoprotein expression, albeit on a reduced level. PMID

  13. S-Adenosylmethionine-dependent protein methylation Is required for expression of selenoprotein P and gluconeogenic enzymes in HepG2 human hepatocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellular methylation processes enable expression of gluconeogenic enzymes and metabolism of the nutrient selenium (Se). Se status may relate to type-II diabetes and plasma levels of selenoprotein P (SEPP1) are positively correlated with insulin resistance. Increased expression of gluconeogenic enzym...

  14. Selenium Deficiency Influences the mRNA Expression of Selenoproteins and Cytokines in Chicken Erythrocytes.

    PubMed

    Luan, Yilin; Zhao, Jinxin; Yao, Haidong; Zhao, Xia; Fan, Ruifeng; Zhao, Wenchao; Zhang, Ziwei; Xu, Shiwen

    2016-06-01

    Selenium (Se) deficiency induces hemolysis in chickens, but the molecular mechanism for this effect remains unclear. Se primarily elicits its function through the activity of selenoproteins, which contain the unique amino acid selenocysteine (Sec). In this study, we aimed to investigate the effect of Se deficiency on the expression of 24 selenoproteins and 10 cytokines. One hundred eighty chickens were randomly divided into 2 groups (90 chickens per group). During the entire experimental period, chickens were allowed ad libitum consumption of feed and water. The chickens were fed either a Se-deficient diet (0.008 mg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or a Se-supplemented diet (as sodium selenite) at 0.2 mg/kg for 35 days. At the 35th day, the messenger RNA (mRNA) levels of 24 selenoproteins and 10 cytokines were examined in erythrocytes of 5 chickens per group, and the correlation was analyzed. The results showed that the expression of 24 selenoproteins and 7 cytokines (IL-2, IL-4, IL-8, IL-10, IL-12β, TGF-β4, and IFN-γ) decreased (P < 0.05), and the expression of 3 cytokines (IL-1γ, IL-6 and IL-7) was higher in the Se-deficient group. In both groups, glutathione peroxidase (GPX), thioredoxin 1 (Txnrd1), selenoprotein P1 (SELP), and selenoprotein synthetase (SPS2) were highly expressed compared to the other selenoproteins in chicken erythrocytes (P < 0.05). These data suggest that GPXs, Txnrd1, SELP, and SPS2 possibly play a more important role than the other selenoproteins. The increase of pro-inflammatory cytokines (IL-1γ, IL-6, and IL-7) suggested that the immune system of chickens was damaged by the Se deficiency. Correlation analysis suggested that although the expression of 24 selenoproteins and 7 cytokines decreased and that of 3 cytokines increased, there was a close correlation between their expression levels and a Se diet. These results suggested that Se deficiency influenced the expressions of 24 selenoproteins

  15. Paclitaxel inhibits selenoprotein S expression and attenuates endoplasmic reticulum stress.

    PubMed

    Qin, Hong-Shuang; Yu, Pei-Pei; Sun, Ying; Wang, Dan-Feng; Deng, Xiao-Fen; Bao, Yong-Li; Song, Jun; Sun, Lu-Guo; Song, Zhen-Bo; Li, Yu-Xin

    2016-06-01

    The primary effect of the endoplasmic reticulum (ER) stress response or unfolded protein response (UPR) is to reduce the load of unfolded protein and promote survival. However, prolonged and severe ER stress leads to tissue injury and serious diseases. Thus, it is important to identify drugs that can attenuate ER stress for the treatment of diseases. Natural products continue to provide lead compounds for drug discovery and front‑line pharmacotherapy for people worldwide. Previous studies have indicated that selenoprotein S (SelS) is a sensitive and ideal maker of ER stress. In the present study, a firefly luciferase reporter driven by the SelS gene promoter was used to screen for natural compounds capable of attenuating ER stress. From this, paclitaxel (PTX) was identified to efficiently inhibit the promoter activity of the SelS gene, and further results revealed that PTX significantly inhibited the tunicamycin‑induced upregulation of SelS at the mRNA and protein levels in HepG2 and HEK293T cells. In addition, PTX was able to efficiently inhibit the expression of the ER stress marker, glucose‑regulated protein 78, in ER stress, indicating that PTX may reverse ER stress. Taken together, these results suggest that PTX is able to inhibit SelS expression during ER stress and attenuate ER stress. PMID:27109260

  16. Paclitaxel inhibits selenoprotein S expression and attenuates endoplasmic reticulum stress

    PubMed Central

    QIN, HONG-SHUANG; YU, PEI-PEI; SUN, YING; WANG, DAN-FENG; DENG, XIAO-FEN; BAO, YONG-LI; SONG, JUN; SUN, LU-GUO; SONG, ZHEN-BO; LI, YU-XIN

    2016-01-01

    The primary effect of the endoplasmic reticulum (ER) stress response or unfolded protein response (UPR) is to reduce the load of unfolded protein and promote survival. However, prolonged and severe ER stress leads to tissue injury and serious diseases. Thus, it is important to identify drugs that can attenuate ER stress for the treatment of diseases. Natural products continue to provide lead compounds for drug discovery and front-line pharmacotherapy for people worldwide. Previous studies have indicated that selenoprotein S (SelS) is a sensitive and ideal maker of ER stress. In the present study, a firefly luciferase reporter driven by the SelS gene promoter was used to screen for natural compounds capable of attenuating ER stress. From this, paclitaxel (PTX) was identified to efficiently inhibit the promoter activity of the SelS gene, and further results revealed that PTX significantly inhibited the tunicamycin-induced upregulation of SelS at the mRNA and protein levels in HepG2 and HEK293T cells. In addition, PTX was able to efficiently inhibit the expression of the ER stress marker, glucose-regulated protein 78, in ER stress, indicating that PTX may reverse ER stress. Taken together, these results suggest that PTX is able to inhibit SelS expression during ER stress and attenuate ER stress. PMID:27109260

  17. Selenoprotein S expression in reactive astrocytes following brain injury.

    PubMed

    Fradejas, Noelia; Serrano-Pérez, Maria Del Carmen; Tranque, Pedro; Calvo, Soledad

    2011-06-01

    Selenoprotein S (SelS) is an endoplasmic reticulum (ER)-resident protein involved in the unfolded protein response. Besides reducing ER-stress, SelS attenuates inflammation by decreasing pro-inflammatory cytokines. We have recently shown that SelS is responsive to ischemia in cultured astrocytes. To check the possible association of SelS with astrocyte activation, here we investigate the expression of SelS in two models of brain injury: kainic acid (KA) induced excitotoxicity and cortical mechanical lesion. The regulation of SelS and its functional consequences for neuroinflammation, ER-stress, and cell survival were further analyzed using cultured astrocytes from mouse and human. According to our immunofluorescence analysis, SelS expression is prominent in neurons and hardly detectable in astrocytes from control mice. However, brain injury intensely upregulates SelS, specifically in reactive astrocytes. SelS induction by KA was evident at 12 h and faded out after reaching maximum levels at 3-4 days. Analysis of mRNA and protein expression in cultured astrocytes showed SelS upregulation by inflammatory stimuli as well as ER-stress inducers. In turn, siRNA-mediated SelS silencing combined with adenoviral overexpression assays demonstrated that SelS reduces ER-stress markers CHOP and spliced XBP-1, as well as inflammatory cytokines IL-1β and IL-6 in stimulated astrocytes. SelS overexpression increased astrocyte resistance to ER-stress and inflammatory stimuli. Conversely, SelS suppression compromised astrocyte viability. In summary, our results reveal the upregulation of SelS expression in reactive astrocytes, as well as a new protective role for SelS against inflammation and ER-stress that can be relevant to astrocyte function in the context of inflammatory neuropathologies. PMID:21456042

  18. Impaired selenoprotein expression in brain triggers striatal neuronal loss leading to coordination defects in mice

    PubMed Central

    Seeher, Sandra; Carlson, Bradley A.; Miniard, Angela C.; Wirth, Eva K.; Mahdi, Yassin; Hatfield, Dolph L.; Driscoll, Donna M.; Schweizer, Ulrich

    2014-01-01

    Selenocysteine Insertion Sequence (SECIS)-Binding Protein 2 (Secisbp2) binds to SECIS elements located in the 3′-untranslated region of eukaryotic selenoprotein mRNAs. It facilitates incorporation of the rare amino acid selenocysteine in response to UGA codons. Inactivation of Secisbp2 in hepatocytes greatly reduced selenoprotein levels. Neuron-specific inactivation of Secisbp2 (CamK-Cre; Secisbp2fl/fl) reduced cerebral expression of selenoproteins to a lesser extent than inactivation of tRNA[Ser]Sec. This allowed us to study the development of cortical parvalbumin-positive (PV+) interneurons, which are completely lost in tRNA[Ser]Sec mutants. PV+ interneuron density was reduced in the somatosensory cortex, hippocampus, and striatum. In situ-hybridization for Gad67 confirmed the reduction of GABAergic interneurons. Because of the obvious movement phenotype involving a broad, dystonic gait, we suspected basal ganglia dysfunction. Tyrosine hydroxylase expression was normal in substantia nigra neurons and their striatal terminals. However the densities of striatal PV+ and Gad67+ neurons were decreased by 65% and 49%, respectively. Likewise, the density of striatal cholinergic neurons was reduced by 68%. Our observations demonstrate that several classes of striatal interneurons depend on selenoprotein expression. These findings may offer an explanation for the movement phenotype of selenoprotein P-deficient mice and the movement disorder and mental retardation described in a patient carrying SECISBP2 mutations. PMID:24844465

  19. Interplay between selenium levels, selenoprotein expression, and replicative senescence in WI-38 human fibroblasts.

    PubMed

    Yona, Legrain; Zahia, Touat-Hamici; Laurent, Chavatte

    2014-10-01

    Selenium is an essential trace element, which is incorporated as selenocysteine into at least 25 selenoproteins using a unique translational UGA-recoding mechanism. Selenoproteins are important enzymes involved in antioxidant defense, redox homeostasis, and redox signaling pathways. Selenium levels decline during aging, and its deficiency is associated with a marked increase in mortality for people over 60 years of age. Here, we investigate the relationship between selenium levels in the culture medium, selenoprotein expression, and replicative life span of human embryonic lung fibroblast WI-38 cells. Selenium levels regulate the entry into replicative senescence and modify the cellular markers characteristic for senescent cells. Whereas selenium supplementation extends the number of population doublings, its deficiency impairs the proliferative capacity of WI-38 cells. We observe that the expression of several selenoproteins involved in antioxidant defense is specifically affected in response to cellular senescence. Their expression is selectively controlled by the modulation of mRNA levels and translational recoding efficiencies. Our data provide novel mechanistic insights into how selenium impacts the replicative life span of mammalian cells by identifying several selenoproteins as new targets of senescence. PMID:26461317

  20. Expression of Selenoprotein Genes Is Affected by Heat Stress in IPEC-J2 Cells.

    PubMed

    Cao, Lei; Tang, Jiayong; Li, Qiang; Xu, Jingyang; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Shang, Haiying; Cai, Jingyi; Zhao, Hua

    2016-08-01

    The aim of this study was to explore the impacts of heat stress (HS) on expressions of selenoprotein genes in IPEC-J2 cells. Cells were cultured with 5 % CO2-humidified chamber at 37 °C until the cells grew to complete confluence and then exposed to a mild hyperthermia at 41.5 °C (HS) or 37 °C (control) for another 24 h, finally harvested for total RNA or protein extraction. Real-time quantitative PCRs (qPCRs) were performed to compare gene expression of 25 selenoprotein genes, 3 tight junction-related genes, and 10 inflammation-related genes. Protein expressions of heat shock protein 70 (Hsp70) and selenoprotein X and P (SelX and SelP) were also investigated by Western blot. The results showed that HS up-regulated (P < 0.05) Hsp70 and one tight junction-related gene [zonula occludens-1 (Zo-1)] in IPEC-J2 cells. At the same time, HS up-regulated (P < 0.05) 4 selenoprotein genes (Gpx3, Dio2, Selk, Sels) and three inflammation-related genes (Il-6, Icam-1, Tgf-β) and down-regulated (P < 0.05 or as indicated) six selenoprotein genes (Gpx2, Gpx6, Txnrd1, Selh, Selm, Selx) and three inflammation-related genes (Ifn-β, Mcp-1, Tnf-α) in the cells. HS also exhibited impacts on protein expressions, which up-regulated Hsp70, down-regulated SelX, and showed no effect on SelP in IPEC-J2 cells. Our results showed that HS affected the expression of inflammation-related genes and up-regulated gene and protein expressions of Hsp70. The changes of so many selenoprotein genes expression implied a potential link between selenoprotein genes and HS. Moreover, the results provided by this IPEC-J2 model may be used to further study the interactive mechanisms between selenoprotein function and potential intestinal damage induced by HS. PMID:26706036

  1. Compositions and methods for the expression of selenoproteins in eukaryotic cells

    DOEpatents

    Gladyshev, Vadim; Novoselov, Sergey

    2012-09-25

    Recombinant nucleic acid constructs for the efficient expression of eukaryotic selenoproteins and related methods for production of recombinant selenoproteins are provided. The nucleic acid constructs comprise novel selenocysteine insertion sequence (SECIS) elements. Certain novel SECIS elements of the invention contain non-canonical quartet sequences. Other novel SECIS elements provided by the invention are chimeric SECIS elements comprising a canonical SECIS element that contains a non-canonical quartet sequence and chimeric SECIS elements comprising a non-canonical SECIS element that contains a canonical quartet sequence. The novel SECIS elements of the invention facilitate the insertion of selenocysteine residues into recombinant polypeptides.

  2. Dietary Selenium Levels Affect Selenoprotein Expression and Support the Interferon-γ and IL-6 Immune Response Pathways in Mice

    PubMed Central

    Tsuji, Petra A.; Carlson, Bradley A.; Anderson, Christine B.; Seifried, Harold E.; Hatfield, Dolph L.; Howard, Michael T.

    2015-01-01

    Selenium is an essential element that is required to support a number of cellular functions and biochemical pathways. The objective of this study was to examine the effects of reduced dietary selenium levels on gene expression to assess changes in expression of non-selenoprotein genes that may contribute to the physiological consequences of selenium deficiency. Mice were fed diets that were either deficient in selenium or supplemented with selenium in the form of sodium selenite for six weeks. Differences in liver mRNA expression and translation were measured using a combination of ribosome profiling, RNA-Seq, microarrays, and qPCR. Expression levels and translation of mRNAs encoding stress-related selenoproteins were shown to be up-regulated by increased selenium status, as were genes involved in inflammation and response to interferon-γ. Changes in serum cytokine levels were measured which confirmed that interferon-γ, as well as IL-6, were increased in selenium adequate mice. Finally, microarray and qPCR analysis of lung tissue demonstrated that the selenium effects on immune function are not limited to liver. These data are consistent with previous reports indicating that adequate selenium levels can support beneficial immune responses, and further identify the IL-6 and interferon-γ pathways as being responsive to dietary selenium intake. PMID:26258789

  3. Selenoprotein Genes Exhibit Differential Expression Patterns Between Hepatoma HepG2 and Normal Hepatocytes LO2 Cell Lines.

    PubMed

    Zhao, Hua; Tang, Jiayong; Xu, Jingyang; Cao, Lei; Jia, Gang; Long, Dingbiao; Liu, Guangmang; Chen, Xiaoling; Wang, Kangning

    2015-10-01

    The purpose of this study was to compare messenger RNA (mRNA) expression of selenoprotein genes between hepatoma HepG2 and normal hepatocytes LO2 cell lines. Liver HepG2 and LO2 cells were cultured in 12-well plates under the same condition until cells grew to complete confluence, and then cells were harvested for total RNA and protein extraction. The qPCRs were performed to compare gene expression of 14 selenoprotein genes and 5 cancer signaling-related genes. Enzyme activities were also assayed. The results showed that human hepatoma HepG2 cells grew faster than normal hepatocytes LO2 cells. Among the genes investigated, 10 selenoprotein genes (Gpx1, Gpx3, Gpx4, Selx, Sepp, Sepw1, Sepn1, Selt, Seli, Selh) and 3 cancer signaling-related genes (Bcl-2A, caspase-3, and P38) were upregulated (P < 0.05), while Selo and Bcl-2B were downregulated (P < 0.05) in hepatoma HepG2 cells compared to LO2 cells. Significant correlations were found between selenoprotein genes and the cancer signaling-related genes Caspase3, P53, Bc1-2A, and Bc1-2B. Our results revealed that selenoprotein genes were aberrantly expressed in hepatoma HepG2 cells compared to normal liver LO2 cells, which indicated that those selenoprotein genes may play important roles in the occurrence and development of liver carcinogenesis. PMID:25846212

  4. Selenoprotein Transcript Level and Enzyme Activity as Biomarkers for Selenium Status and Selenium Requirements of Chickens (Gallus gallus)

    PubMed Central

    Li, Jin-Long; Sunde, Roger A.

    2016-01-01

    The NRC selenium (Se) requirement for broiler chicks is 0.15 μg Se/g diet, based primarily on weight gain and feed intake studies reported in 1986. To determine Se requirements in today’s rapidly growing broiler chick, day-old male chicks were fed Se-deficient basal diets supplemented with graded levels of Se (0, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.5, 0.75, and 1.0 μg Se/g) as Na2SeO3 (5/treatment). Diets contained 15X the vitamin E requirement, and there were no gross signs of Se-deficiency. At 29 d, Se-deficient chicks weighed 62% of Se-supplemented chicks; 0.025 μg Se/g reversed this effect, indicating a minimum Se requirement of 0.025 μg Se/g diet for growth for male broiler chicks. Enzyme activities in Se-deficient chicks for plasma GPX3, liver and gizzard GPX1, and liver and gizzard GPX4 decreased dramatically to 3, 2, 5, 10 and 5%, respectively, of Se-adequate levels, with minimum Se requirements of 0.10–0.13 μg Se/g, and with defined plateaus above these levels. Pancreas GPX1 and GPX4 activities, however, lacked defined plateaus, with breakpoints at 0.3 μg Se/g. qPCR measurement of all 24 chicken selenoprotein transcripts, plus SEPHS1, found that SEPP1 in liver, GPX3 in gizzard, and SEPP1, GPX3 and SELK in pancreas were expressed at levels comparable to housekeeping transcripts. Only 33%, 25% and 50% of selenoprotein transcripts were down-regulated significantly by Se deficiency in liver, gizzard and pancreas, respectively. No transcripts could be used as biomarkers for supernutritional Se status. For export selenoproteins SEPP1 and GPX3, tissue distribution, high expression and Se-regulation clearly indicate unique Se metabolism, which may underlie tissues targeted by Se deficiency. Based on enzyme activities in liver, gizzard, and plasma, the minimum Se requirement in today’s broiler chick is 0.15 μg Se/g diet; pancreas data indicate that the Se requirement should be raised to 0.2 μg Se/g diet to provide a margin of safety. PMID:27045754

  5. Selenoprotein Transcript Level and Enzyme Activity as Biomarkers for Selenium Status and Selenium Requirements of Chickens (Gallus gallus).

    PubMed

    Li, Jin-Long; Sunde, Roger A

    2016-01-01

    The NRC selenium (Se) requirement for broiler chicks is 0.15 μg Se/g diet, based primarily on weight gain and feed intake studies reported in 1986. To determine Se requirements in today's rapidly growing broiler chick, day-old male chicks were fed Se-deficient basal diets supplemented with graded levels of Se (0, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.5, 0.75, and 1.0 μg Se/g) as Na2SeO3 (5/treatment). Diets contained 15X the vitamin E requirement, and there were no gross signs of Se-deficiency. At 29 d, Se-deficient chicks weighed 62% of Se-supplemented chicks; 0.025 μg Se/g reversed this effect, indicating a minimum Se requirement of 0.025 μg Se/g diet for growth for male broiler chicks. Enzyme activities in Se-deficient chicks for plasma GPX3, liver and gizzard GPX1, and liver and gizzard GPX4 decreased dramatically to 3, 2, 5, 10 and 5%, respectively, of Se-adequate levels, with minimum Se requirements of 0.10-0.13 μg Se/g, and with defined plateaus above these levels. Pancreas GPX1 and GPX4 activities, however, lacked defined plateaus, with breakpoints at 0.3 μg Se/g. qPCR measurement of all 24 chicken selenoprotein transcripts, plus SEPHS1, found that SEPP1 in liver, GPX3 in gizzard, and SEPP1, GPX3 and SELK in pancreas were expressed at levels comparable to housekeeping transcripts. Only 33%, 25% and 50% of selenoprotein transcripts were down-regulated significantly by Se deficiency in liver, gizzard and pancreas, respectively. No transcripts could be used as biomarkers for supernutritional Se status. For export selenoproteins SEPP1 and GPX3, tissue distribution, high expression and Se-regulation clearly indicate unique Se metabolism, which may underlie tissues targeted by Se deficiency. Based on enzyme activities in liver, gizzard, and plasma, the minimum Se requirement in today's broiler chick is 0.15 μg Se/g diet; pancreas data indicate that the Se requirement should be raised to 0.2 μg Se/g diet to provide a margin of safety. PMID:27045754

  6. Umbilical cord blood and placental mercury, selenium and selenoprotein expression in relation to maternal fish consumption

    PubMed Central

    Gilman, Christy L.; Soon, Reni; Sauvage, Lynnae; Ralston, Nicholas V.C.; Berry, Marla J.

    2015-01-01

    Seafood is an important source of nutrients for fetal neurodevelopment. Most individuals are exposed to the toxic element mercury through seafood. Due to the neurotoxic effects of mercury, United States government agencies recommend no more than 340 g (12 oz) per week of seafood consumption during pregnancy. However, recent studies have shown that selenium, also abundant in seafood, can have protective effects against mercury toxicity. In this study, we analyzed mercury and selenium levels and selenoprotein mRNA, protein, and activity in placenta of a cohort of women in Hawaii in relation to maternal seafood consumption assessed with dietary surveys. Fish consumption resulted in differences in mercury levels in placenta and cord blood. When taken as a group, those who consumed no fish exhibited the lowest mercury levels in placenta and cord blood. However, there were numerous individuals who either had higher mercury with no fish consumption or lower mercury with high fish consumption, indicating a lack of correlation. Placental expression of selenoprotein mRNAs, proteins and enzyme activity was not statistically different in any region among the different dietary groups. While the absence of seafood consumption correlates with lower average placental and cord blood mercury levels, no strong correlations were seen between seafood consumption or its absence and the levels of either selenoproteins or selenoenzyme activity. PMID:25744505

  7. Assessment of the Selenoprotein M (SELM) Over-Expression on Human Hepatocellular Carcinoma Tissues by Immunohistochemistry

    PubMed Central

    Guerriero, E.; Accardo, M.; Capone, F.; Colonna, G.; Castello, G.; Costantini, S.

    2014-01-01

    Selenium is an essential trace mineral of fundamental importance to human healthy and exerts its biological function through selenoproteins. In particular, Selenoprotein M (SELM) is located in the endoplasmic reticulum and contains the common redox motif of cysteine-X-X-selenocysteine type. It attracts great attention due to its high expression in brain and its potential roles as antioxidant, neuroprotective, and cytosolic calcium regulator. Recently, our group found SELM over-expression in human hepatocellular carcinoma (HCC) cell lines. In this report some paraffin-embedded tissues from liver biopsy of patients with hepatitis C virus (HCV)-related cirrhosis and HCC were immunohistochemically stained and SELM expression scoring was evaluated. Our results evidence for the first time an increase of SELM expression in HCC liver tissues, and its gradual expression raise associated with an increased malignancy grade. Therefore, we propose to use i) SELM as putative marker for HCC as well as ii) simple immunohistochemistry technique to distinguish between the different grades of malignancy. PMID:25578973

  8. Selenoprotein Expression in Macrophages Is Critical for Optimal Clearance of Parasitic Helminth Nippostrongylus brasiliensis.

    PubMed

    Nelson, Shakira M; Shay, Ashley E; James, Jamaal L; Carlson, Bradley A; Urban, Joseph F; Prabhu, K Sandeep

    2016-02-01

    The plasticity of macrophages is evident in helminthic parasite infections, providing protection from inflammation. Previously we demonstrated that the micronutrient selenium induces a phenotypic switch in macrophage activation from a classically activated (pro-inflammatory; M1/CAM) toward an alternatively activated (anti-inflammatory; M2/AAM) phenotype, where cyclooxygenase (COX)-dependent cyclopentenone prostaglandin J2 (15d-PGJ2) plays a key role. Here, we hypothesize that dietary selenium modulates macrophage polarization toward an AAM phenotype to assist in the increasing clearance of adult Nippostrongylus brasiliensis, a gastrointestinal nematode parasite. Mice on a selenium-adequate (0.08 ppm) diet significantly augmented intestinal AAM presence while decreasing adult worms and fecal egg production when compared with infection of mice on selenium-deficient (<0.01 ppm) diet. Further increase in dietary selenium to supraphysiological levels (0.4 ppm) had very little or no impact on worm expulsion. Normal adult worm clearance and enhanced AAM marker expression were observed in the selenium-supplemented Trsp(fl/fl)Cre(WT) mice that express selenoproteins driven by tRNA(Sec) (Trsp), whereas N. brasiliensis-infected Trsp(fl/fl)Cre(LysM) selenium-supplemented mice showed a decreased clearance, with lowered intestinal expression of several AAM markers. Inhibition of the COX pathway with indomethacin resulted in delayed worm expulsion in selenium-adequate mice. This was rescued with 15d-PGJ2, which partially recapitulated the effect of selenium supplementation on fecal egg output in addition to increasing markers of AAMs in the small intestine. Antagonism of PPARγ blocked the effect of selenium. These results suggest that optimal expression of selenoproteins and selenium-dependent production of COX-derived endogenous prostanoids, such as Δ(12)-PGJ2 and 15d-PGJ2, may regulate AAM activation to enhance anti-helminthic parasite responses. PMID:26644468

  9. Expression of Selenoproteins Is Maintained in Mice Carrying Mutations in SECp43, the tRNA Selenocysteine 1 Associated Protein (Trnau1ap)

    PubMed Central

    Carlson, Bradley A.; Fradejas, Noelia; Günter, Paul; Braun, Doreen; Southon, Eileen; Tessarollo, Lino; Hatfield, Dolph L.; Schweizer, Ulrich

    2015-01-01

    Selenocysteine tRNA 1 associated protein (Trnau1ap) has been characterized as a tRNA[Ser]Sec-binding protein of 43 kDa, hence initially named SECp43. Previous studies reported its presence in complexes containing tRNA[Ser]Sec implying a role of SECp43 as a co-factor in selenoprotein expression. We generated two conditionally mutant mouse models targeting exons 3+4 and exons 7+8 eliminating parts of the first RNA recognition motif or of the tyrosine-rich domain, respectively. Constitutive inactivation of exons 3+4 of SECp43 apparently did not affect the mice or selenoprotein expression in several organs. Constitutive deletion of exons 7+8 was embryonic lethal. We therefore generated hepatocyte-specific Secp43 knockout mice and characterized selenoprotein expression in livers of mutant mice. We found no significant changes in the levels of 75Se-labelled hepatic proteins, selenoprotein levels as determined by Western blot analysis, enzymatic activity or selenoprotein mRNA abundance. The methylation pattern of tRNA[Ser]Sec remained unchanged. Truncated Secp43 Δ7,8mRNA increased in Secp43-mutant livers suggesting auto-regulation of Secp43 mRNA abundance. We found no signs of liver damage in Secp433-mutant mice, but neuron-specific deletion of exons 7+8 impaired motor performance, while not affecting cerebral selenoprotein expression or cerebellar development. These findings suggest that the targeted domains in the SECp43 protein are not essential for selenoprotein biosynthesis in hepatocytes and neurons. Whether the remaining second RNA recognition motif plays a role in selenoprotein biosynthesis and which other cellular process depends on SECp43 remains to be determined. PMID:26043259

  10. Selenoprotein P Regulation by the Glucocorticoid Receptor

    PubMed Central

    Rock, Colleen; Moos, Philip J.

    2010-01-01

    Maintenance of the antioxidant activity of selenoproteins is one potential mechanism of the beneficial health effects of selenium. Selenoprotein P is the primary selenium distribution protein of the body as well as the major selenium containing protein in serum. The transcriptional regulation of selenoprotein P is of interest since the extrahepatic expression of this gene has demonstrated differentiation-dependent expression in development as well as under different disease states. SEPP1 displays patterned expression in numerous tissues during development and the loss of SEPP1 expression has been observed in malignancy. In addition, factors that influence inflammatory processes like cytokines and their regulators have been implicated in selenoprotein P transcriptional control. Herein, we identify a retinoid responsive element and describe a mechanism where the glucocorticoid receptor negatively regulates expression of selenoprotein P. Luciferase reporter assays and quantitative PCR were used to measure selenoprotein P transcription in engineered HEK-293 cells. When stimulated with ecdysone analogs, selenoprotein P expression was increased with the use of a fusion transcription factor that contains the glucocorticoid receptor DNA binding domain, an ecdysone ligand-binding domain, and a strong transactivation domain as well as the retinoid X receptor. The native glucocorticoid receptor inhibited selenoprotein P transactivation, and selenoprotein P was further attenuated in the presence of dexamethasone. Our results may provide insight into a potential mechanism by which selenium is redistributed during development, differentiation or under conditions of critical illness, where glucocorticoid levels are typically increased. PMID:19513589

  11. Selenoprotein Transcript Level and Enzyme Activity as Biomarkers for Selenium Status and Selenium Requirements in the Turkey (Meleagris gallopavo).

    PubMed

    Taylor, Rachel M; Sunde, Roger A

    2016-01-01

    The current National Research Council (NRC) selenium (Se) requirement for the turkey is 0.2 μg Se/g diet. The sequencing of the turkey selenoproteome offers additional molecular biomarkers for assessment of Se status. To determine dietary Se requirements using selenoprotein transcript levels and enzyme activities, day-old male turkey poults were fed a Se-deficient diet supplemented with graded levels of Se (0, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0 μg Se/g diet) as selenite, and 12.5X the vitamin E requirement. Poults fed less than 0.05 μg Se/g diet had a significantly reduced rate of growth, indicating the Se requirement for growth in young male poults is 0.05 μg Se/g diet. Se deficiency decreased plasma GPX3 (glutathione peroxidase), liver GPX1, and liver GPX4 activities to 2, 3, and 7%, respectively, of Se-adequate levels. Increasing Se supplementation resulted in well-defined plateaus for all blood, liver and gizzard enzyme activities and mRNA levels, showing that these selenoprotein biomarkers could not be used as biomarkers for supernutritional-Se status. Using selenoenzyme activity, minimum Se requirements based on red blood cell GPX1, plasma GPX3, and pancreas and liver GPX1 activities were 0.29-0.33 μg Se/g diet. qPCR analyses using all 10 dietary Se treatments for all 24 selenoprotein transcripts (plus SEPHS1) in liver, gizzard, and pancreas found that only 4, 4, and 3 transcripts, respectively, were significantly down-regulated by Se deficiency and could be used as Se biomarkers. Only GPX3 and SELH mRNA were down regulated in all 3 tissues. For these transcripts, minimum Se requirements were 0.07-0.09 μg Se/g for liver, 0.06-0.15 μg Se/g for gizzard, and 0.13-0.18 μg Se/g for pancreas, all less than enzyme-based requirements. Panels based on multiple Se-regulated transcripts were effective in identifying Se deficiency. These results show that the NRC turkey dietary Se requirement should be raised to 0.3 μg Se/g diet. PMID:27008545

  12. Selenoprotein Transcript Level and Enzyme Activity as Biomarkers for Selenium Status and Selenium Requirements in the Turkey (Meleagris gallopavo)

    PubMed Central

    Taylor, Rachel M.; Sunde, Roger A.

    2016-01-01

    The current National Research Council (NRC) selenium (Se) requirement for the turkey is 0.2 μg Se/g diet. The sequencing of the turkey selenoproteome offers additional molecular biomarkers for assessment of Se status. To determine dietary Se requirements using selenoprotein transcript levels and enzyme activities, day-old male turkey poults were fed a Se-deficient diet supplemented with graded levels of Se (0, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0 μg Se/g diet) as selenite, and 12.5X the vitamin E requirement. Poults fed less than 0.05 μg Se/g diet had a significantly reduced rate of growth, indicating the Se requirement for growth in young male poults is 0.05 μg Se/g diet. Se deficiency decreased plasma GPX3 (glutathione peroxidase), liver GPX1, and liver GPX4 activities to 2, 3, and 7%, respectively, of Se-adequate levels. Increasing Se supplementation resulted in well-defined plateaus for all blood, liver and gizzard enzyme activities and mRNA levels, showing that these selenoprotein biomarkers could not be used as biomarkers for supernutritional-Se status. Using selenoenzyme activity, minimum Se requirements based on red blood cell GPX1, plasma GPX3, and pancreas and liver GPX1 activities were 0.29–0.33 μg Se/g diet. qPCR analyses using all 10 dietary Se treatments for all 24 selenoprotein transcripts (plus SEPHS1) in liver, gizzard, and pancreas found that only 4, 4, and 3 transcripts, respectively, were significantly down-regulated by Se deficiency and could be used as Se biomarkers. Only GPX3 and SELH mRNA were down regulated in all 3 tissues. For these transcripts, minimum Se requirements were 0.07–0.09 μg Se/g for liver, 0.06–0.15 μg Se/g for gizzard, and 0.13–0.18 μg Se/g for pancreas, all less than enzyme-based requirements. Panels based on multiple Se-regulated transcripts were effective in identifying Se deficiency. These results show that the NRC turkey dietary Se requirement should be raised to 0.3 μg Se/g diet. PMID

  13. Selenoprotein expression in macrophages is critical for optimal clearance of parasitic helminth Helminth Nippostrongylus brasiliensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plasticity of macrophages is evident in helminthic parasite infections where they play a role in both inflammation and protection. Previously, we demonstrated that selenium (Se), in the form of selenoproteins, induced a phenotypic switch in macrophage activation from a pro-inflammatory (M1) towa...

  14. Selenoprotein W controls epidermal growth factor receptor surface expression, activation and degradation via receptor ubiquitination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidermal growth factor (EGF) receptor (EGFR) is the founding member of the ErbB family of growth factor receptors that modulate a complex network of intracellular signaling pathways controlling growth, proliferation and differentiation. Selenoprotein W (SEPW1) is a diet-regulated, highly conserved...

  15. Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system.

    PubMed

    Steinbrenner, Holger; Sies, Helmut

    2013-08-15

    The essential trace element selenium, as selenocysteine, is incorporated into antioxidant selenoproteins such as glutathione peroxidases (GPx), thioredoxin reductases (TrxR) and selenoprotein P (Sepp1). Although comparatively low in selenium content, the brain exhibits high priority for selenium supply and retention under conditions of dietary selenium deficiency. Liver-derived Sepp1 is the major transport protein in plasma to supply the brain with selenium, serving as a "survival factor" for neurons in culture. Sepp1 expression has also been detected within the brain. Presumably, astrocytes secrete Sepp1, which is subsequently taken up by neurons via the apolipoprotein E receptor 2 (ApoER2). Knock-out of Sepp1 or ApoER2 as well as neuron-specific ablation of selenoprotein biosynthesis results in neurological dysfunction in mice. Astrocytes, generally less vulnerable to oxidative stress than neurons, are capable of up-regulating the expression of antioxidant selenoproteins upon brain injury. Occurrence of neurological disorders has been reported occasionally in patients with inadequate nutritional selenium supply or a mutation in the gene encoding selenocysteine synthase, one of the enzymes involved in selenoprotein biosynthesis. In three large trials carried out among elderly persons, a low selenium status was associated with faster decline in cognitive functions and poor performance in tests assessing coordination and motor speed. Future research is required to better understand the role of selenium and selenoproteins in brain diseases including hepatic encephalopathy. PMID:23500141

  16. Dietary Selenium (Se) and Copper (Cu) Affect the Activity and Expression of the Hepatic Selenoprotein Methionine Sulfoxide Reductase B (MrsB) in Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As reported by Jenkinson et al. (J Nutr 1982) and Prohaska et al. (J Nutr Biochem 1992) Cu deficiency (CuD) decreases the activity and mRNA expression of the selenoprotein GPx. Because both Se and Cu are important in oxidative defense, we wanted to determine the effect of a combined deficiency on th...

  17. Expression of human selenoprotein genes selh, selk, selm, sels, selv, and gpx-6 in various tumor cell lines.

    PubMed

    Varlamova, E G; Goltyaev, M V; Fesenko, E E

    2016-05-01

    The expression level of the genes encoding six selenocysteine-containing human proteins was determined in the brain, cervical, liver, breast, prostate, and human fibrosarcoma cancer cells. It was found that a high level of expression in all studied types genes of tumor cells is characteristic for selh, selk, and selm genes, encoding SelH, SelK, and SelM proteins, respectively, whereas a complete lack of such expression was shown for gpx-6, selv, and sels genes. The results of this work can be regarded as a major prerequisite for further studies on the role of the three selenoproteins SelH, SelK, and SelM in the regulation of carcinogenesis processes associated with these types of cancer. PMID:27417721

  18. Selenoprotein expression in Hürthle cell carcinomas and in the human Hürthle cell carcinoma line XTC.UC1.

    PubMed

    Menth, Marianne; Schmutzler, Cornelia; Mentrup, Birgit; Hoang-Vu, Cuong; Takahashi, Kazuhiko; Honjoh, Tsutomu; Köhrle, Josef

    2005-05-01

    Hürthle cell carcinomas (HTC) are characterized by mitochondrial amplification and enhanced oxygen metabolism. To clarify if defects in enzymes scavenging reactive oxygen species are involved in the pathogenesis of HTC, we analyzed selenium (Se)-dependent expression of various detoxifying selenoproteins in the HTC cell line XTC.UC1. Glutathione peroxidase and thioredoxin reductase activity was found both in cell lysates and conditioned media of XTC.UC1 cells and was increased by Na(2)SeO(3). Western blot analysis demonstrated the presence of thioredoxin reductase both in cell lysates and conditioned media and of glutathione peroxidase 3 in conditioned media. Type I 5'-deiodinase, another selenoprotein that catalyzes thyroid hormone metabolism, was detectable only in cell lysates by enzyme assay and Western blot, and responded to stimulation by both Na(2)SeO(3) and retinoic acid. A selenoprotein P signal was detected in conditioned media by Western blot, but was not enhanced by Na(2)SeO(3) treatment. In situ hybridization revealed glutathione peroxidase mRNAs in HTC specimen; glutathione peroxidase 3 mRNA levels were reduced. These data suggest adequate expression and Se-dependent regulation of a couple of selenoproteins involved in antioxidant defense and thyroid hormone metabolism in XTC.UC1 cells, so far giving no evidence of a role of these proteins in the pathogenesis of HTCs. PMID:15929660

  19. Crucial role of macrophage selenoproteins in experimental colitis

    PubMed Central

    Kaushal, Naveen; Kudva, Avinash K.; Patterson, Andrew D.; Chiaro, Christopher; Kennett, Mary J.; Desai, Dhimant; Amin, Shantu; Carlson, Bradley A.; Cantorna, Margherita T.; Prabhu, K. Sandeep

    2014-01-01

    Inflammation is a hallmark of inflammatory bowel disease (IBD) that involves macrophages. Given the inverse link between selenium (Se) status and IBD-induced inflammation, our objective was to demonstrate that selenoproteins in macrophages were essential to suppress pro-inflammatory mediators, in part, by the modulation of arachidonic acid metabolism. Acute colitis was induced using 4% DSS in wild type mice maintained on Se-deficient (<0.01 ppm Se), Se-adequate (0.1 ppm; sodium selenite), and two supraphysiological levels in the form of Se-supplemented (0.4 ppm; sodium selenite) and high Se (1.0 ppm; sodium selenite) diets. Transfer RNASec (tRNA[sec]) knockout mice (Trspfl/flLysMCre) were used to examine the role of selenoproteins in macrophages on disease progression and severity using histopathological evaluation, expression of pro-inflammatory and anti-inflammatory genes, and modulation of prostaglandin (PG) metabolites in urine and plasma. While Se-deficient and Se-adequate mice showed increased colitis and exhibited poor survival, Se supplementation at 0.4 and 1.0 ppm increased survival of mice and decreased colitis-associated inflammation with an up-regulation of expression of pro-inflammatory and anti-inflammatory genes. Metabolomic profiling of urine suggested increased oxidation of PGE2 at supraphysiological levels of Se that also correlated well with Se-dependent upregulation of 15-hydroxy-PG dehydrogenase (15-PGDH) in macrophages. Pharmacological inhibition of 15-PGDH, lack of selenoprotein expression in macrophages, and depletion of infiltrating macrophages indicated that macrophage-specific selenoproteins and upregulation of 15-PGDH expression were key for Se-dependent anti-inflammatory and pro-resolving effects. Selenoproteins in macrophages protect mice from DSS-colitis by enhancing 15-PGDH-dependent oxidation of PGE2 to alleviate inflammation, suggesting a therapeutic role for Se in IBD. PMID:25187657

  20. [cDNA cloning, expression and determination of substrate specificity of mice selenocysteine-containing protein SelV (Selenoprotein V)].

    PubMed

    Varlamova, E G; Novoselov, S V; Novoselov, V I

    2015-01-01

    To date various bioinformatics tools allowed to identify 25 selenocysteine-containing mammalian proteins. The name of these proteins assumes that they contain the amino acid selenocysteine (Sec). Functionally characterized selenocysteine-containing proteins are oxidoreductases with various functions, including glutathione peroxidases, thioredoxin reductases, deiodinases etc. However, the functions of more than half of identified proteins are still unclear, and mammalian selenoprotein SeIV is among them. We studied the selV in all stages of postnatal development with the maximum level of mRNA expression during puberty, whereas in adult mice (8-18 months) we observed a gradual decrease of expression. In order to get closer to the functional role of Selenoprotein V, we have carried out experiments on the substrate specificity and enzymatic activity measurement of this selenocysteine-containing protein. It was shown that SelV posseses glutathionperoxidase and thioredoxinreductase activities. PMID:26510596

  1. Involvement of selenoprotein P and GPx4 gene expression in cadmium-induced testicular pathophysiology in rat.

    PubMed

    Messaoudi, Imed; Banni, Mohamed; Saïd, Lamia; Saïd, Khaled; Kerkeni, Abdelhamid

    2010-10-01

    To investigate the effect of co-exposure to cadmium (Cd) and selenium (Se) on selenoprotein P (SelP) and phospholipid hydroperoxide glutathione peroxidase (GPx4) gene expression in testis and to evaluate their possible involvement in Cd-induced testicular pathophysiology, male rats received either tap water, Cd or Cd+Se in their drinking water for 5 weeks. Cd exposure caused a down-regulation of SelP and GPx4 gene expression and a significant decrease in plasma and testicular concentrations of Se. These changes were accompanied by decreased plasma testosterone level, sperm count and motility, GSH content, protein-bound sulfhydryl concentration (PSH), enzymatic activities of catalase (CAT) and glutathione peroxidase (GSH-Px) as well as by increased glutathione-S-transferase (GST) activity, lipid peroxidation (as malondialdehyde, MDA) and proteins carbonyls (PC). The decrease of testicular SelP and GPx4 gene expression under Cd influence was significantly restored in Cd+Se group. Co-treatment with Cd and Se also totally reversed the Cd-induced depletion of Se, decrease in plasma testosterone level and partially restored Cd-induced oxidative stress and decrease in sperm count and motility. Taken together, these data suggest that down-regulation of SelP and GPx4 gene expression induces plasma and testicular Se depletion leading, at least in part, to Cd-induced testicular pathophysiology. PMID:20643113

  2. Selenoproteins: Antioxidant selenoenzymes and beyond.

    PubMed

    Steinbrenner, Holger; Speckmann, Bodo; Klotz, Lars-Oliver

    2016-04-01

    Adequate intake of the essential trace element and micronutrient selenium is thought to be beneficial for maintaining human health. Selenium may modulate a broad spectrum of key biological processes, including the cellular response to oxidative stress, redox signalling, cellular differentiation, the immune response, and protein folding. Biochemical and cellular effects of selenium are achieved through activities of selenocysteine-containing selenoproteins. This small yet essential group comprises proteins encoded by 25 genes in humans, e.g. oxidoreductases such as glutathione peroxidases (GPx) and thioredoxin reductases (TrxR), as well as the iodothyronine deiodinases (DIO) and the plasma selenium transport protein, selenoprotein P (SePP1). Synthetic selenoorganic compounds, including the GPx mimetic ebselen, have also been applied in biological systems in vitro and in vivo; antioxidant and anti-inflammatory actions of ebselen and its history as a drug candidate are summarised here. Furthermore, we discuss several aspects of selenoprotein biochemistry, ranging from their well-known importance for cellular protection against oxidative damage to more recent data that link selenoprotein expression/activity to enterocyte and adipocyte differentiation and function and to (dys)regulation of insulin action and secretion. PMID:27095226

  3. Eukaryotic selenoproteins and selenoproteomes.

    PubMed

    Lobanov, Alexey V; Hatfield, Dolph L; Gladyshev, Vadim N

    2009-11-01

    Selenium is an essential trace element for which both beneficial and toxic effects in human health have been described. It is now clear that the importance of having adequate amounts of this micronutrient in the diet is primarily due to the fact that selenium is required for biosynthesis of selenocysteine, the twenty first naturally occurring amino acid in protein. In this review, we provide an overview of eukaryotic selenoproteins and selenoproteomes, which are sets of selenoproteins in these organisms. In eukaryotes, selenoproteins show a mosaic occurrence, with some organisms, such as vertebrates and algae, having dozens of these proteins, while other organisms, such as higher plants and fungi, having lost all selenoproteins during evolution. We also discuss selenoprotein functions and evolutionary trends in the use of these proteins in eukaryotes. Functional analysis of selenoproteins is critical for better understanding of the role of selenium in human health and disease. PMID:19477234

  4. Effect of Inorganic Dietary Selenium Supplementation on Selenoprotein and Lipid Metabolism Gene Expression Patterns in Liver and Loin Muscle of Growing Lambs.

    PubMed

    Juszczuk-Kubiak, Edyta; Bujko, Kamila; Cymer, Monika; Wicińska, Krystyna; Gabryszuk, Mirosław; Pierzchała, Mariusz

    2016-08-01

    Effect of selenium (Se) supplementation on the selenoprotein and lipid metabolism gene expression patterns in ruminants, especially in lambs is not yet fully understood. The aim of study was to evaluate the effect of Se supplementation on the messenger RNA (mRNA) expression patterns of selected selenoproteins and genes related to lipid metabolism in growing lambs. The experiment was conducted on 48 Polish Merino lambs divided into two groups (n = 24): control (C)-lambs fed with a basal diet (BD) with no Se supplementation, and supplemented (S)-lambs fed with a BD, supplemented with 0.5 mg Se/kg as sodium selenate for 8 weeks. Expression of 12 selenoproteins and six genes related to lipid metabolism was analyzed in the liver and longissimus dorsi (LD) muscle of growing lambs by qPCR. Significant differences were found in the expression of GPX1, GPX2, SEPM, SEPW1, SEP15, SEPGS2, and TXNRD1 in the liver, and GPX1, SEPP1, SEPN1, SEPW1, SEP15, and MSRB1 in the LD muscle between S and C lambs. Se supplementation mainly upregulated SEPW1, SEP15 (P < 0.001; P < 0.01) mRNA expression in the liver, and GPX1, SEPP1, SEPN1, SEPW1 (P < 0.001; P < 0.01) in the muscle of S group. On the other hand, significant decrease in GPX2 (P < 0.01), SEPM (P < 0.001), and SEPHS2 (P < 0.01) mRNA expression levels were observed in the liver of S group of lambs. Se supplementation did not affect PON1, LXRα, and PPARα mRNA expression levels, but a significant increase in mRNA levels of APOE and LPL in the LD muscle (P < 0.05) as well as LPL (P < 0.05) in the liver were noticed in the group of Se supplemented lambs. Our study confirmed that, in lambs, similarly to other species, mRNA expression patterns of several selenoproteins highly depend on dietary Se levels, and their expression is ruled by hierarchical principles and tissue-specific mechanisms. Moreover, the study showed that changes Se intake leads to different levels of genes expression related

  5. Selenoprotein S Is Highly Expressed in the Blood Vessels and Prevents Vascular Smooth Muscle Cells From Apoptosis.

    PubMed

    Ye, Yali; Fu, Fen; Li, Xiaoming; Yang, Jie; Liu, Hongmei

    2016-01-01

    Atherosclerosis and related cardiovascular diseases (CVD) represent one of the greatest threats to human health worldwide. The protection of vascular smooth muscle cells (VSMCs) from apoptosis in the plaque has become an important therapeutic target for atherosclerotic plaque stabilization. A significant association of selenoprotein S (SelS) gene polymorphism with atherosclerotic CVD has been reported in epidemiologic studies, but the underlying mechanism remains unknown. In this paper, SelS expression in the thoracic aorta and its role in the protection of VSMCs from apoptosis have been studied. Western blot analysis showed that SelS was highly expressed in rat thoracic aorta. SelS gene silence by small interference RNA (siRNA) rendered VSMCs more sensitive to hydrogen peroxide- or tunicamycin- induced injury and apoptosis, as determined by MTT assay, Hoechst staining, and annexin V/propidium iodide staining. SelS silence aggravated hydrogen peroxide-induced oxidative stress and phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK) in VSMCs. Furthermore, SelS silence enhanced endoplasmic reticulum (ER) stress induced by hydrogen peroxide or tunicamycin, as showed by the increased protein levels of ER chaperone 78 kDa glucose-regulated protein (GRP78), ER stress transducer phosphorylated protein kinase RNA like ER kinase (PERK), and the proapoptotic transcription factor C/EBP homologous protein (CHOP). In conclusion, the present study suggested that SelS highly expressed in the blood vessel might protect VSMCs from apoptosis by inhibiting oxidative stress and ER stress. Our finding provided mechanistic insights for the potential preventive role of SelS in atherosclerotic CVD. PMID:26058460

  6. Regulation and function of selenoproteins in human disease

    PubMed Central

    BELLINGER, Frederick P.; RAMAN, Arjun V.; REEVES, Mariclair A.; BERRY, Marla J.

    2010-01-01

    Selenoproteins are proteins containing selenium in the form of the 21st amino acid, selenocysteine. Members of this protein family have many diverse functions, but their synthesis is dependent on a common set of cofactors and on dietary selenium. Although the functions of many selenoproteins are unknown, several disorders involving changes in selenoprotein structure, activity or expression have been reported. Selenium deficiency and mutations or polymorphisms in selenoprotein genes and synthesis cofactors are implicated in a variety of diseases, including muscle and cardiovascular disorders, immune dysfunction, cancer, neurological disorders and endocrine function. Members of this unusual family of proteins have roles in a variety of cell processes and diseases. PMID:19627257

  7. Impaired Homocysteine Transmethylation and Protein-Methyltransferase Activity Reduce Expression of Selenoprotein P: Implications for Obesity and Metabolic Syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity causes Metabolic Syndrome and Type-II Diabetes, disrupting hepatic function, methionine (Met)/homocysteine (Hcy) transmethylation and methyltransferase (PRMT) activities. Selenoprotein P (SEPP1), exported from the liver, is the predominate form of plasma selenium (Se) and the physiological S...

  8. Selenium and Selenoprotein Deficiencies Induce Widespread Pyogranuloma Formation in Mice, while High Levels of Dietary Selenium Decrease Liver Tumor Size Driven by TGFα

    PubMed Central

    Zhong, Nianxin; Ward, Jerrold M.; Perella, Christine M.; Hoffmann, Victoria J.; Rogers, Keith; Combs, Gerald F.; Schweizer, Ulrich; Merlino, Glenn; Gladyshev, Vadim N.; Hatfield, Dolph L.

    2013-01-01

    Changes in dietary selenium and selenoprotein status may influence both anti- and pro-cancer pathways, making the outcome of interventions different from one study to another. To characterize such outcomes in a defined setting, we undertook a controlled hepatocarcinogenesis study involving varying levels of dietary selenium and altered selenoprotein status using mice carrying a mutant (A37G) selenocysteine tRNA transgene (TrsptG37) and/or a cancer driver TGFα transgene. The use of TrsptG37 altered selenoprotein expression in a selenoprotein and tissue specific manner and, at sufficient dietary selenium levels, separate the effect of diet and selenoprotein status. Mice were maintained on diets deficient in selenium (0.02 ppm selenium) or supplemented with 0.1, 0.4 or 2.25 ppm selenium or 30 ppm triphenylselenonium chloride (TPSC), a non-metabolized selenium compound. TrsptG37 transgenic and TGFα/TrsptG37 bi-transgenic mice subjected to selenium-deficient or TPSC diets developed a neurological phenotype associated with early morbidity and mortality prior to hepatocarcinoma development. Pathology analyses revealed widespread disseminated pyogranulomatous inflammation. Pyogranulomas occurred in liver, lungs, heart, spleen, small and large intestine, and mesenteric lymph nodes in these transgenic and bi-transgenic mice. The incidence of liver tumors was significantly increased in mice carrying the TGFα transgene, while dietary selenium and selenoprotein status did not affect tumor number and multiplicity. However, adenoma and carcinoma size and area were smaller in TGFα transgenic mice that were fed 0.4 and 2.25 versus 0.1 ppm of selenium. Thus, selenium and selenoprotein deficiencies led to widespread pyogranuloma formation, while high selenium levels inhibited the size of TGFα–induced liver tumors. PMID:23460847

  9. Regulation of Selenocysteine Content of Human Selenoprotein P by Dietary Selenium and Insertion of Cysteine in Place of Selenocysteine

    PubMed Central

    Turanov, Anton A.; Everley, Robert A.; Hybsier, Sandra; Renko, Kostja; Schomburg, Lutz; Gygi, Steven P.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2015-01-01

    Selenoproteins are a unique group of proteins that contain selenium in the form of selenocysteine (Sec) co-translationally inserted in response to a UGA codon with the help of cis- and trans-acting factors. Mammalian selenoproteins contain single Sec residues, with the exception of selenoprotein P (SelP) that has 7–15 Sec residues depending on species. Assessing an individual’s selenium status is important under various pathological conditions, which requires a reliable selenium biomarker. Due to a key role in organismal selenium homeostasis, high Sec content, regulation by dietary selenium, and availability of robust assays in human plasma, SelP has emerged as a major biomarker of selenium status. Here, we found that Cys is present in various Sec positions in human SelP. Treatment of cells expressing SelP with thiophosphate, an analog of the selenium donor for Sec synthesis, led to a nearly complete replacement of Sec with Cys, whereas supplementation of cells with selenium supported Sec insertion. SelP isolated directly from human plasma had up to 8% Cys inserted in place of Sec, depending on the Sec position. These findings suggest that a change in selenium status may be reflected in both SelP concentration and its Sec content, and that availability of the SelP-derived selenium for selenoprotein synthesis may be overestimated under conditions of low selenium status due to replacement of Sec with Cys. PMID:26452064

  10. Regulation of Selenocysteine Content of Human Selenoprotein P by Dietary Selenium and Insertion of Cysteine in Place of Selenocysteine.

    PubMed

    Turanov, Anton A; Everley, Robert A; Hybsier, Sandra; Renko, Kostja; Schomburg, Lutz; Gygi, Steven P; Hatfield, Dolph L; Gladyshev, Vadim N

    2015-01-01

    Selenoproteins are a unique group of proteins that contain selenium in the form of selenocysteine (Sec) co-translationally inserted in response to a UGA codon with the help of cis- and trans-acting factors. Mammalian selenoproteins contain single Sec residues, with the exception of selenoprotein P (SelP) that has 7-15 Sec residues depending on species. Assessing an individual's selenium status is important under various pathological conditions, which requires a reliable selenium biomarker. Due to a key role in organismal selenium homeostasis, high Sec content, regulation by dietary selenium, and availability of robust assays in human plasma, SelP has emerged as a major biomarker of selenium status. Here, we found that Cys is present in various Sec positions in human SelP. Treatment of cells expressing SelP with thiophosphate, an analog of the selenium donor for Sec synthesis, led to a nearly complete replacement of Sec with Cys, whereas supplementation of cells with selenium supported Sec insertion. SelP isolated directly from human plasma had up to 8% Cys inserted in place of Sec, depending on the Sec position. These findings suggest that a change in selenium status may be reflected in both SelP concentration and its Sec content, and that availability of the SelP-derived selenium for selenoprotein synthesis may be overestimated under conditions of low selenium status due to replacement of Sec with Cys. PMID:26452064

  11. Selenoproteins in Nervous System Development and Function

    PubMed Central

    Pitts, Matthew W.; Byrns, China N.; Ogawa, Ashley N.; Kremer, Penny; Berry, Marla J.

    2014-01-01

    Selenoproteins are a distinct class of proteins that are characterized by the co-translational incorporation of selenium (Se) in the form of the 21st amino acid selenocysteine. Selenoproteins provide a key defense against oxidative stress, as many of these proteins participate in oxidation-reduction reactions neutralizing reactive oxygen species, where selenocysteine residues act as catalytic sites. Many selenoproteins are highly expressed in the brain and mouse knockout studies have determined that several are required for normal brain development. In parallel with these laboratory studies, recent reports of rare human cases with mutations in genes involved in selenoprotein biosynthesis have described individuals with an assortment of neurological problems that mirror those detailed in knockout mice. These deficits include impairments in cognition and motor function, seizures, hearing loss, and altered thyroid metabolism. Additionally, due to the fact that oxidative stress is a key feature of neurodegenerative disease, there is considerable interest in the therapeutic potential of selenium supplementation for human neurological disorders. Studies performed in cell culture and rodent models have demonstrated that selenium administration attenuates oxidative stress, prevents neurodegeneration, and counters cell signaling mechanisms known to be dysregulated in certain disease states. However, there is currently no definitive evidence in support of selenium supplementation to prevent and/or treat common neurological conditions in the general population. It appears likely, that in humans, supplementation with selenium may only benefit certain subpopulations, such as those that are either selenium-deficient or possess genetic variants that affect selenium metabolism. PMID:24974905

  12. Regulation of redox signaling by selenoproteins.

    PubMed

    Hawkes, Wayne Chris; Alkan, Zeynep

    2010-06-01

    The unique chemistry of oxygen has been both a resource and threat for life on Earth for at least the last 2.4 billion years. Reduction of oxygen to water allows extraction of more metabolic energy from organic fuels than is possible through anaerobic glycolysis. On the other hand, partially reduced oxygen can react indiscriminately with biomolecules to cause genetic damage, disease, and even death. Organisms in all three superkingdoms of life have developed elaborate mechanisms to protect against such oxidative damage and to exploit reactive oxygen species as sensors and signals in myriad processes. The sulfur amino acids, cysteine and methionine, are the main targets of reactive oxygen species in proteins. Oxidative modifications to cysteine and methionine can have profound effects on a protein's activity, structure, stability, and subcellular localization. Non-reversible oxidative modifications (oxidative damage) may contribute to molecular, cellular, and organismal aging and serve as signals for repair, removal, or programmed cell death. Reversible oxidation events can function as transient signals of physiological status, extracellular environment, nutrient availability, metabolic state, cell cycle phase, immune function, or sensory stimuli. Because of its chemical similarity to sulfur and stronger nucleophilicity and acidity, selenium is an extremely efficient catalyst of reactions between sulfur and oxygen. Most of the biological activity of selenium is due to selenoproteins containing selenocysteine, the 21st genetically encoded protein amino acid. The most abundant selenoproteins in mammals are the glutathione peroxidases (five to six genes) that reduce hydrogen peroxide and lipid hydroperoxides at the expense of glutathione and serve to limit the strength and duration of reactive oxygen signals. Thioredoxin reductases (three genes) use nicotinamide adenine dinucleotide phosphate to reduce oxidized thioredoxin and its homologs, which regulate a plethora of

  13. Selenoproteins are essential for proper keratinocyte function and skin development.

    PubMed

    Sengupta, Aniruddha; Lichti, Ulrike F; Carlson, Bradley A; Ryscavage, Andrew O; Gladyshev, Vadim N; Yuspa, Stuart H; Hatfield, Dolph L

    2010-01-01

    Dietary selenium is known to protect skin against UV-induced damage and cancer and its topical application improves skin surface parameters in humans, while selenium deficiency compromises protective antioxidant enzymes in skin. Furthermore, skin and hair abnormalities in humans and rodents may be caused by selenium deficiency, which are overcome by dietary selenium supplementation. Most important biological functions of selenium are attributed to selenoproteins, proteins containing selenium in the form of the amino acid, selenocysteine (Sec). Sec insertion into proteins depends on Sec tRNA; thus, knocking out the Sec tRNA gene (Trsp) ablates selenoprotein expression. We generated mice with targeted removal of selenoproteins in keratin 14 (K14) expressing cells and their differentiated descendents. The knockout progeny had a runt phenotype, developed skin abnormalities and experienced premature death. Lack of selenoproteins in epidermal cells led to the development of hyperplastic epidermis and aberrant hair follicle morphogenesis, accompanied by progressive alopecia after birth. Further analyses revealed that selenoproteins are essential antioxidants in skin and unveiled their role in keratinocyte growth and viability. This study links severe selenoprotein deficiency to abnormalities in skin and hair and provides genetic evidence for the role of these proteins in keratinocyte function and cutaneous development. PMID:20805887

  14. Selenoprotein M gene expression, peroxidases activity and hydrogen peroxide concentration are differentially regulated in gill and hepatopancreas of the white shrimp Litopenaeus vannamei during hypoxia and reoxygenation.

    PubMed

    García-Triana, Antonio; Peregrino-Uriarte, Alma Beatriz; Yepiz-Plascencia, Gloria

    2016-09-01

    In many organisms, episodes of low O2 concentration (hypoxia) and the subsequent rise of O2 concentration (reoxygenation) result in the accumulation of reactive oxygen species and oxidative stress. Selenoprotein M (SelM), is a selenocysteine containing protein with redox activity involved in the antioxidant response. It was previously shown that in the white shrimp Litopenaeus vannamei, the silencing of SelM by RNAi decreased peroxidase activity in gill. In this work, we report the structure of the SelM gene (LvSelM) and its relative expression in hepatopancreas and gill after 24h of hypoxia followed by 1h of reoxygenation. The gene is composed by four exons interrupted by tree introns. In gills and hepatopancreas, SelM expression increased after 24h of hypoxia followed by 1h of reoxygenation, while peroxidases activity diminished in hepatopancreas but increased in gills. Hydrogen peroxide (H2O2) concentration was higher in hepatopancreas in response to hypoxia for 6h and did not change after 24 of hypoxia followed by reoxygenation; conversely, no change was detected in gill. SelM appears to be a key enzyme in gill oxidative stress regulation, since the higher expression is associated with an increase in peroxidases activity while maintaining H2O2 concentration. In contrast, in hepatopancreas there is a higher expression after hypoxia and reoxygenation for 24h, but peroxidases activity was lower and the change in H2O2 occurred after 6h of hypoxia and this level was maintained during reoxygenation. PMID:27112516

  15. Selenoprotein P is the essential selenium transporter for bones.

    PubMed

    Pietschmann, Nicole; Rijntjes, Eddy; Hoeg, Antonia; Stoedter, Mette; Schweizer, Ulrich; Seemann, Petra; Schomburg, Lutz

    2014-05-01

    Selenium (Se) plays an important role in bone physiology as best reflected by Kashin-Beck disease, an endemic Se-dependent osteoarthritis. Bone development is delayed in children with mutations in SECIS binding protein 2 (SBP2), a central factor for selenoprotein biosynthesis. Circulating selenoprotein P (SePP) is positively associated with bone turnover in humans, yet its function for bone homeostasis is not known. We have analysed murine models of altered Se metabolism. Most of the known selenoprotein genes and factors needed for selenoprotein biosynthesis are expressed in bones. Bone Se is not associated with the mineral but exclusively with the organic matrix. Genetic ablation of Sepp-expression causes a drastic decline in serum (25-fold) but only a mild reduction in bone (2.5-fold) Se concentrations. Cell-specific expression of a SePP transgene in hepatocytes efficiently restores bone Se levels in Sepp-knockout mice. Of the two known SePP receptors, Lrp8 was detected in bones while Lrp2 was absent. Interestingly, Lrp8 mRNA concentrations were strongly increased in bones of Sepp-knockout mice likely in order to counteract the developing Se deficiency. Our data highlight SePP as the essential Se transporter to bones, and suggest a novel feedback mechanism for preferential uptake of Se in Se-deprived bones, thereby contributing to our understanding of hepatic osteodystrophy and the consistent bone phenotype observed in subjects with inherited selenoprotein biosynthesis mutations. PMID:24626785

  16. Absence of Selenoprotein P but not Selenocysteine Lyase Results in Severe Neurological Dysfunction

    PubMed Central

    Raman, Arjun V.; Pitts, Matthew W.; Seyedali, Ali; Hashimoto, Ann C.; Seale, Lucia A.; Bellinger, Frederick P.; Berry, Marla J.

    2012-01-01

    Dietary selenium restriction in mammals causes bodily selenium to be preferentially retained in the brain relative to other organs. Almost all of the known selenoproteins are found in brain, where expression is facilitated by selenocysteine-laden selenoprotein P. The brain also expresses selenocysteine lyase, an enzyme that putatively salvages selenocysteine and recycles the selenium for selenoprotein translation. We compared mice with a genetic deletion of selenocysteine lyase to selenoprotein P knockout mice for similarity of neurological impairments, and whether dietary selenium modulates these parameters. We report that selenocysteine lyase knockout mice do not display neurological dysfunction comparable to selenoprotein P knockout mice. Feeding a low-selenium diet to selenocysteine lyase knockout mice revealed a mild spatial learning deficit without disrupting motor coordination. Additionally, we report that the neurological phenotype caused by the absence of selenoprotein P is exacerbated in male versus female mice. These findings indicate that selenocysteine recycling via selenocysteine lyase becomes limiting under selenium deficiency, and suggest the presence of a complementary mechanism for processing selenocysteine. Our studies illuminate the interaction between selenoprotein P and selenocysteine lyase in the distribution and turnover of body and brain selenium, and emphasize the consideration of sex differences when studying selenium and selenoproteins in vertebrate biology. PMID:22487427

  17. Understanding selenoprotein function and regulation through the use of rodent models

    PubMed Central

    Kasaikina, Marina V.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2012-01-01

    Selenium (Se) is an essential micronutrient. Its biological functions are associated with selenoproteins, which contain this trace element in the form of the 21st amino acid, selenocysteine. Genetic defects in selenocysteine insertion into proteins are associated with severe health issues. The consequences of selenoprotein deficiency are more variable, with several selenoproteins being essential, and several showing no clear phenotypes. Much of these functional studies benefited from the use of rodent models and diets employing variable levels of Se. This review summarizes the data obtained with these models, focusing on mouse models with targeted expression of individual selenoproteins and removal of individual, subsets or all selenoproteins in a systemic or organ-specific manner. PMID:22440326

  18. Human selenoproteins at a glance.

    PubMed

    Gromer, S; Eubel, J K; Lee, B L; Jacob, J

    2005-11-01

    The public perception of selenium has changed significantly over the last decades. Originally mainly known for its high toxicity, it was later recognized as an essential trace element and is now (despite its narrow therapeutic window) almost being marketed as a lifestyle drug. Indeed, some clinical and preclinical studies suggest that selenium supplementation may be beneficial in a large number of clinical conditions. However, its mode of action is unresolved in most of these cases. Selenocysteine - identified as the 21st amino acid used in ribosome-mediated protein synthesis - is incorporated in at least 25 specific, genetically determined human selenoproteins, many of which have only recently been discovered. Restoration of normal selenoprotein levels may be - apart from direct supranutritional effects - one possible explanation for the effects of selenium supplements. In this review we provide a brief but up-to-date overview of what is currently known about these 25 acknowledged human selenoproteins and their synthesis. PMID:16231092

  19. Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis.

    PubMed

    Schoenmakers, Erik; Carlson, Bradley; Agostini, Maura; Moran, Carla; Rajanayagam, Odelia; Bochukova, Elena; Tobe, Ryuta; Peat, Rachel; Gevers, Evelien; Muntoni, Francesco; Guicheney, Pascale; Schoenmakers, Nadia; Farooqi, Sadaf; Lyons, Greta; Hatfield, Dolph; Chatterjee, Krishna

    2016-03-01

    Selenium is a trace element that is essential for human health and is incorporated into more than 25 human selenocysteine-containing (Sec-containing) proteins via unique Sec-insertion machinery that includes a specific, nuclear genome-encoded, transfer RNA (tRNA[Ser]Sec). Here, we have identified a human tRNA[Ser]Sec mutation in a proband who presented with a variety of symptoms, including abdominal pain, fatigue, muscle weakness, and low plasma levels of selenium. This mutation resulted in a marked reduction in expression of stress-related, but not housekeeping, selenoproteins. Evaluation of primary cells from the homozygous proband and a heterozygous parent indicated that the observed deficit in stress-related selenoprotein production is likely mediated by reduced expression and diminished 2'-O-methylribosylation at uridine 34 in mutant tRNA[Ser]Sec. Moreover, this methylribosylation defect was restored by cellular complementation with normal tRNA[Ser]Sec. This study identifies a tRNA mutation that selectively impairs synthesis of stress-related selenoproteins and demonstrates the importance of tRNA modification for normal selenoprotein synthesis. PMID:26854926

  20. Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis

    PubMed Central

    Schoenmakers, Erik; Carlson, Bradley; Agostini, Maura; Moran, Carla; Rajanayagam, Odelia; Bochukova, Elena; Tobe, Ryuta; Peat, Rachel; Gevers, Evelien; Muntoni, Francesco; Guicheney, Pascale; Schoenmakers, Nadia; Farooqi, Sadaf; Lyons, Greta; Hatfield, Dolph; Chatterjee, Krishna

    2016-01-01

    Selenium is a trace element that is essential for human health and is incorporated into more than 25 human selenocysteine-containing (Sec-containing) proteins via unique Sec-insertion machinery that includes a specific, nuclear genome–encoded, transfer RNA (tRNA[Ser]Sec). Here, we have identified a human tRNA[Ser]Sec mutation in a proband who presented with a variety of symptoms, including abdominal pain, fatigue, muscle weakness, and low plasma levels of selenium. This mutation resulted in a marked reduction in expression of stress-related, but not housekeeping, selenoproteins. Evaluation of primary cells from the homozygous proband and a heterozygous parent indicated that the observed deficit in stress-related selenoprotein production is likely mediated by reduced expression and diminished 2′-O-methylribosylation at uridine 34 in mutant tRNA[Ser]Sec. Moreover, this methylribosylation defect was restored by cellular complementation with normal tRNA[Ser]Sec. This study identifies a tRNA mutation that selectively impairs synthesis of stress-related selenoproteins and demonstrates the importance of tRNA modification for normal selenoprotein synthesis. PMID:26854926

  1. Selenium Supplementation Fails to Correct the Selenoprotein Synthesis Defect in Subjects with SBP2 Gene Mutations

    PubMed Central

    Dumitrescu, Alexandra M.; Liao, Xiao-Hui; Bin-Abbas, Bassam; Hoeflich, Johanna; Köhrle, Josef; Refetoff, Samuel

    2009-01-01

    Background Selenium (Se) is an essential trace element needed for the biosynthesis of selenoproteins. Selenocysteine incorporation sequence binding protein 2 (SBP2) represents a key trans-acting factor for the co-translational insertion of selenocysteine into selenoproteins. We recently described children with mutations in the SBP2 gene who displayed abnormal thyroid function tests and reduced selenoprotein concentrations. We have tried to improve selenoprotein biosynthesis and thyroid hormone metabolism in SBP2 deficient subjects by supplementing an organic and an inorganic Se form. Methods Three affected and two unaffected siblings received daily doses of 100, 200, or 400 μg selenomethionine-rich yeast and 400 μg sodium selenite for one month each. Serum was drawn at baseline and after supplementations. Thyroid function tests, extracellular glutathione peroxidase activity, Se, and selenoprotein P concentrations were determined. Results Selenomethionine-rich yeast increased serum Se concentrations in all subjects irrespective of genotype. Sodium selenite was effective in increasing the selenoprotein P concentration in normal and to a lesser degree in affected subjects. Both forms failed to increase the glutathione peroxidase activity or to correct the thyroid function abnormalities in the SBP2 deficient individuals indicating that impaired deiodinase expression was not positively affected. No adverse side effects were observed. Conclusions Total serum Se concentrations in SBP2 deficient subjects respond to selenomethionine supplementation but this effect is not indicative for improved selenoprotein synthesis. Se is obviously not a limiting factor in the SBP2 deficient individuals when regular daily Se intake is provided. These findings might help to identify and diagnose more individuals with selenoprotein biosynthesis defects who might present at young age irrespective of their Se supply with characteristic thyroid function test abnormalities, growth

  2. Modeling and gene knockdown to assess the contribution of nonsense-mediated decay, premature termination, and selenocysteine insertion to the selenoprotein hierarchy

    PubMed Central

    Meplan, Catherine; Huguenin, Grazielle V.B.; Hesketh, John E.; Shanley, Daryl P.

    2016-01-01

    The expression of selenoproteins, a specific group of proteins that incorporates selenocysteine, is hierarchically regulated by the availability of Se, with some, but not all selenoprotein mRNA transcripts decreasing in abundance with decreasing Se. Selenocysteine insertion into the peptide chain occurs during translation following recoding of an internal UGA stop codon. There is increasing evidence that this UGA recoding competes with premature translation termination, which is followed by nonsense-mediated decay (NMD) of the transcript. In this study, we tested the hypothesis that the susceptibility of different selenoprotein mRNAs to premature termination during translation and differential sensitivity of selenoprotein transcripts to NMD are major factors in the selenoprotein hierarchy. Selenoprotein transcript abundance was measured in Caco-2 cells using real-time PCR under different Se conditions and the data obtained fitted to mathematical models of selenoprotein translation. A calibrated model that included a combination of differential sensitivity of selenoprotein transcripts to NMD and different frequency of non-NMD related premature translation termination was able to fit all the measurements. The model predictions were tested using SiRNA to knock down expression of the crucial NMD factor UPF1 (up-frameshift protein 1) and selenoprotein mRNA expression. The calibrated model was able to predict the effect of UPF1 knockdown on gene expression for all tested selenoproteins, except SPS2 (selenophosphate synthetase), which itself is essential for selenoprotein synthesis. These results indicate an important role for NMD in the hierarchical regulation of selenoprotein mRNAs, with the exception of SPS2 whose expression is likely regulated by a different mechanism. PMID:27208313

  3. Modeling and gene knockdown to assess the contribution of nonsense-mediated decay, premature termination, and selenocysteine insertion to the selenoprotein hierarchy.

    PubMed

    Zupanic, Anze; Meplan, Catherine; Huguenin, Grazielle V B; Hesketh, John E; Shanley, Daryl P

    2016-07-01

    The expression of selenoproteins, a specific group of proteins that incorporates selenocysteine, is hierarchically regulated by the availability of Se, with some, but not all selenoprotein mRNA transcripts decreasing in abundance with decreasing Se. Selenocysteine insertion into the peptide chain occurs during translation following recoding of an internal UGA stop codon. There is increasing evidence that this UGA recoding competes with premature translation termination, which is followed by nonsense-mediated decay (NMD) of the transcript. In this study, we tested the hypothesis that the susceptibility of different selenoprotein mRNAs to premature termination during translation and differential sensitivity of selenoprotein transcripts to NMD are major factors in the selenoprotein hierarchy. Selenoprotein transcript abundance was measured in Caco-2 cells using real-time PCR under different Se conditions and the data obtained fitted to mathematical models of selenoprotein translation. A calibrated model that included a combination of differential sensitivity of selenoprotein transcripts to NMD and different frequency of non-NMD related premature translation termination was able to fit all the measurements. The model predictions were tested using SiRNA to knock down expression of the crucial NMD factor UPF1 (up-frameshift protein 1) and selenoprotein mRNA expression. The calibrated model was able to predict the effect of UPF1 knockdown on gene expression for all tested selenoproteins, except SPS2 (selenophosphate synthetase), which itself is essential for selenoprotein synthesis. These results indicate an important role for NMD in the hierarchical regulation of selenoprotein mRNAs, with the exception of SPS2 whose expression is likely regulated by a different mechanism. PMID:27208313

  4. SBP2 binding affinity is a major determinant in differential selenoprotein mRNA translation and sensitivity to nonsense-mediated decay.

    PubMed

    Squires, Jeffrey E; Stoytchev, Ilko; Forry, Erin P; Berry, Marla J

    2007-11-01

    Selenoprotein mRNAs are potential targets for degradation via nonsense-mediated decay due to the presence of in-frame UGA codons that can be decoded as either selenocysteine or termination codons. When UGA decoding is inefficient, as occurs when selenium is limiting, termination occurs at these positions. Based on the predicted exon-intron structure, 14 of the 25 human selenoprotein mRNAs are predicted to be sensitive to nonsense-mediated decay. Among these, sensitivity varies widely, resulting in a hierarchy of preservation or degradation of selenoprotein mRNAs and, thus, of selenoprotein synthesis. Potential factors in dictating the hierarchy of selenoprotein synthesis are the Sec insertion sequence RNA-binding proteins, SBP2 and nucleolin. To investigate the mechanistic basis for this hierarchy and the role of these two proteins, we carried out knockdowns of SBP2 expression and assessed the effects on selenoprotein mRNA levels. We also investigated in vivo binding of selenoprotein mRNAs by SBP2 and nucleolin via immunoprecipitation of the proteins and quantitation of bound mRNAs. We report that SBP2 exhibits strong preferential binding to some selenoprotein mRNAs over others, whereas nucleolin exhibits minimal differences in binding. Thus, SBP2 is a major determinant in dictating the hierarchy of selenoprotein synthesis via differential selenoprotein mRNA translation and sensitivity to nonsense-mediated decay. PMID:17846120

  5. Statin-induced liver injury involves cross-talk between cholesterol and selenoprotein biosynthetic pathways.

    PubMed

    Kromer, Andrea; Moosmann, Bernd

    2009-06-01

    Statins have become the mainstay of hypercholesterolemia treatment. Despite a seemingly clear rationale behind their use, the inhibition of HMG-CoA reductase, these compounds have been shown to elicit a variety of unanticipated and elusive effects and side effects in vivo. Among the most frequently noted side effects of statin treatment are elevations in liver enzymes. Here, we report our finding that atorvastatin, cerivastatin, and lovastatin at clinically common concentrations induce a selective, differential loss of selenoprotein expression in cultured human HepG2 hepatocytes. The primarily affected selenoprotein was glutathione peroxidase (GPx), whose biosynthesis, steady-state expression level, and catalytic activity were significantly reduced with 10 to 100 nM concentrations of the different compounds. Messenger RNA levels of GPx1 and GPx4 were unaffected by statin treatment, pointing at a post-transcriptional mechanism of selenoprotein suppression. Although statins at selenoprotein-modulatory doses were not cytotoxic by themselves, they induced a significantly increased sensitivity of the cells to peroxides, an effect that was largely reversible by supraphysiological concentrations of selenite. We conclude that statins inhibit the expression of inducible selenoproteins by preventing the mevalonate-dependent maturation of the single human selenocysteine-tRNA and may thereby evoke an increased vulnerability of the liver to secondary toxins. Selenoprotein modulation might constitute an important mechanism of statins to bring forth their clinical effects. PMID:19332511

  6. Redox active motifs in selenoproteins

    PubMed Central

    Li, Fei; Lutz, Patricia B.; Pepelyayeva, Yuliya; Arnér, Elias S. J.; Bayse, Craig A.; Rozovsky, Sharon

    2014-01-01

    Selenoproteins use the rare amino acid selenocysteine (Sec) to act as the first line of defense against oxidants, which are linked to aging, cancer, and neurodegenerative diseases. Many selenoproteins are oxidoreductases in which the reactive Sec is connected to a neighboring Cys and able to form a ring. These Sec-containing redox motifs govern much of the reactivity of selenoproteins. To study their fundamental properties, we have used 77Se NMR spectroscopy in concert with theoretical calculations to determine the conformational preferences and mobility of representative motifs. This use of 77Se as a probe enables the direct recording of the properties of Sec as its environment is systematically changed. We find that all motifs have several ring conformations in their oxidized state. These ring structures are most likely stabilized by weak, nonbonding interactions between the selenium and the amide carbon. To examine how the presence of selenium and ring geometric strain governs the motifs’ reactivity, we measured the redox potentials of Sec-containing motifs and their corresponding Cys-only variants. The comparisons reveal that for C-terminal motifs the redox potentials increased between 20–25 mV when the selenenylsulfide bond was changed to a disulfide bond. Changes of similar magnitude arose when we varied ring size or the motifs’ flanking residues. This suggests that the presence of Sec is not tied to unusually low redox potentials. The unique roles of selenoproteins in human health and their chemical reactivities may therefore not necessarily be explained by lower redox potentials, as has often been claimed. PMID:24769567

  7. Redox active motifs in selenoproteins.

    PubMed

    Li, Fei; Lutz, Patricia B; Pepelyayeva, Yuliya; Arnér, Elias S J; Bayse, Craig A; Rozovsky, Sharon

    2014-05-13

    Selenoproteins use the rare amino acid selenocysteine (Sec) to act as the first line of defense against oxidants, which are linked to aging, cancer, and neurodegenerative diseases. Many selenoproteins are oxidoreductases in which the reactive Sec is connected to a neighboring Cys and able to form a ring. These Sec-containing redox motifs govern much of the reactivity of selenoproteins. To study their fundamental properties, we have used (77)Se NMR spectroscopy in concert with theoretical calculations to determine the conformational preferences and mobility of representative motifs. This use of (77)Se as a probe enables the direct recording of the properties of Sec as its environment is systematically changed. We find that all motifs have several ring conformations in their oxidized state. These ring structures are most likely stabilized by weak, nonbonding interactions between the selenium and the amide carbon. To examine how the presence of selenium and ring geometric strain governs the motifs' reactivity, we measured the redox potentials of Sec-containing motifs and their corresponding Cys-only variants. The comparisons reveal that for C-terminal motifs the redox potentials increased between 20-25 mV when the selenenylsulfide bond was changed to a disulfide bond. Changes of similar magnitude arose when we varied ring size or the motifs' flanking residues. This suggests that the presence of Sec is not tied to unusually low redox potentials. The unique roles of selenoproteins in human health and their chemical reactivities may therefore not necessarily be explained by lower redox potentials, as has often been claimed. PMID:24769567

  8. Selective up-regulation of human selenoproteins in response to oxidative stress.

    PubMed

    Zahia, Touat-Hamici; Yona, Legrain; Anne-Laure, Bulteau; Laurent, Chavatte

    2014-10-01

    Selenocysteinse is inserted into selenoproteins via the translational recoding of a UGA codon, normally used as a stop signal. This process depends on the nature of the SECIS element located in the 3'UTR of selenoprotein mRNAs, selenium bioavailability, and possibly exogenous stimuli. To further understand the function and regulation of selenoproteins in antioxidant defense and redox homeostasis, we have investigated how oxidative stress influences selenoprotein expression as a function of different selenium concentrations. We found that selenium supplementation of the culture media, which resulted in a hierarchical upregulation of selenoproteins, protected HEK293 cells from ROS formation. Furthermore, in response to oxidative stress, we identified a selective upregulation of several selenoproteins involved in antioxidant defense (Gpx1, Gpx4, TR1, SelS, SelK and Sps2). Interestingly, the response was more efficient when selenium was limiting. While a modest change in mRNA levels was noted, we identified a novel translational control mechanism stimulated by oxidative stress that is characterized by upregulation of UGA-selenocysteine recoding efficiency and relocalization of SBP2, EFsec and L30 recoding factors from cytoplasm to nucleus. PMID:26461318

  9. The Selenium Deficiency Disease Exudative Diathesis in Chicks Is Associated with Downregulation of Seven Common Selenoprotein Genes in Liver and Muscle123

    PubMed Central

    Huang, Jia-Qiang; Li, Dai-Lin; Zhao, Hua; Sun, Lv-Hui; Xia, Xin-Jie; Wang, Kang-Ning; Luo, Xugang; Lei, Xin Gen

    2011-01-01

    Fast-growing broiler chicks are susceptible to Se deficiency diseases including exudative diathesis (ED). Our objective was to determine if ED could be induced by feeding a current, practical diet and if the incidence was related to selenogenome expression in liver and muscle of chicks. Four groups of day-old broiler chicks (n = 60/group) were fed a corn-soy basal diet (BD; 14 μg Se/kg; produced in the Se-deficient area of Sichuan, China and not supplemented with Se or vitamin E), the BD and all-rac-α-tocopheryl acetate at 50 mg/kg and Se (as sodium selenite) at 0.3 mg/kg, or both of these nutrients for 6 wk. A high incidence of ED and mortality of chicks were induced by the BD. The incidences and mortality were completely prevented by supplemental dietary Se but were only partially decreased by supplemental α-tocopherol acetate. Dietary Se deficiency decreased (P < 0.05) mRNA levels of 7 common selenoprotein genes (Gpx1, Gpx4, Sepw1, Sepn1, Sepp1, Selo, and Selk) in muscle and liver. Whereas supplementing α-tocopherol acetate enhanced (P < 0.05) only the muscle Sepx1 mRNA level, it actually decreased (P < 0.05) hepatic Gpx1, Seli, Txnrd1, and Txnrd2 mRNA levels. In conclusion, dietary Se protected chicks from the Se deficiency disease ED, probably by upregulating selenoprotein genes coding for oxidation- and/or lesion-protective proteins. The protection by vitamin E might be mediated via selenoproteins not assayed in this study and/or Se-independent mechanisms. The inverse relationship between hepatic expression of 4 redox-related selenoprotein genes and vitamin E status revealed a novel interaction between Se and vitamin E in vivo. PMID:21795426

  10. Factors impacting the aminoglycoside-induced UGA stop codon readthrough in selenoprotein translation.

    PubMed

    Martitz, Janine; Hofmann, Peter Josef; Johannes, Jörg; Köhrle, Josef; Schomburg, Lutz; Renko, Kostja

    2016-09-01

    Aminoglycosides (AG) are oligosaccharide antibiotics that interfere with the small ribosomal subunit in aerobic, Gram-negative bacteria, causing pathogen-destructing error rates in their protein biosynthesis. Aminoglycosides also induce mRNA misinterpretation in eukaryotic cells, especially of the UGA (Opal)-stop codon, albeit to a lower extent. UGA recoding is essentially required for the incorporation of selenocysteine (Sec) into growing selenoproteins during translation. Selenocysteine incorporation requires the presence of a selenoprotein-specific stem-loop structure within the 3'-untranslated region of the mRNA, the so-called Sec-insertion sequence (SECIS) element. Interestingly, selenoprotein genes differ in their SECIS-element sequence and in their UGA base context. We hypothesized that the SECIS-element and the specific codon context synergize in controlling the effects of AG on stop codon readthrough. To this end, the SECIS-elements of glutathione peroxidase 1, glutathione peroxidase 4 and selenoprotein P transcripts were cloned into a reporter system and analyzed in combination with different UGA codon contexts. Our results indicate that a cytosine in position 4 (directly downstream of UGA) confers strongest effects on both the Se- and AG-dependent readthrough. Overall selenoprotein biosynthesis rate depends on the Se-status, AG concentration and the specific SECIS-element present in the transcript. These findings help to get a better understanding for the susceptibility of different transcripts towards AG-mediated interference with the biosynthesis of functional Se-containing selenoproteins, and highlight the importance of the Se-status for successful selenoprotein biosynthesis under antibiotic therapy. PMID:27157664

  11. Cell Proliferation and Motility Are Inhibited by G1 Phase Arrest in 15-kDa Selenoprotein-Deficient Chang Liver Cells

    PubMed Central

    Bang, Jeyoung; Huh, Jang Hoe; Na, Ji-Woon; Lu, Qiao; Carlson, Bradley A.; Tobe, Ryuta; Tsuji, Petra A.; Gladyshev, Vadim N.; Hatfield, Dolph L.; Lee, Byeong Jae

    2015-01-01

    The 15-kDa selenoprotein (Sep15) is a selenoprotein residing in the lumen of the endoplasmic reticulum (ER) and implicated in quality control of protein folding. Herein, we established an inducible RNAi cell line that targets Sep15 mRNA in Chang liver cells. RNAi-induced Sep15 deficiency led to inhibition of cell proliferation, whereas cell growth was resumed after removal of the knockdown inducer. Sep15-deficient cells were arrested at the G1 phase by upregulating p21 and p27, and these cells were also characterized by ER stress. In addition, Sep15 deficiency led to the relocation of focal adhesions to the periphery of the cell basement and to the decrease of the migratory and invasive ability. All these changes were reversible depending on Sep15 status. Rescuing the knockdown state by expressing a silent mutant Sep15 mRNA that is resistant to siRNA also reversed the phenotypic changes. Our results suggest that SEP15 plays important roles in the regulation of the G1 phase during the cell cycle as well as in cell motility in Chang liver cells, and that this selenoprotein offers a novel functional link between the cell cycle and cell motility. PMID:25728752

  12. Selenoprotein S-dependent Selenoprotein K Binding to p97(VCP) Protein Is Essential for Endoplasmic Reticulum-associated Degradation.

    PubMed

    Lee, Jea Hwang; Park, Ki Jun; Jang, Jun Ki; Jeon, Yeong Ha; Ko, Kwan Young; Kwon, Joon Hyun; Lee, Seung-Rock; Kim, Ick Young

    2015-12-11

    Cytosolic valosin-containing protein (p97(VCP)) is translocated to the ER membrane by binding to selenoprotein S (SelS), which is an ER membrane protein, during endoplasmic reticulum-associated degradation (ERAD). Selenoprotein K (SelK) is another known p97(VCP)-binding selenoprotein, and the expression of both SelS and SelK is increased under ER stress. To understand the regulatory mechanisms of SelS, SelK, and p97(VCP) during ERAD, the interaction of the selenoproteins with p97(VCP) was investigated using N2a cells and HEK293 cells. Both SelS and SelK co-precipitated with p97(VCP). However, the association between SelS and SelK did not occur in the absence of p97(VCP). SelS had the ability to recruit p97(VCP) to the ER membrane but SelK did not. The interaction between SelK and p97(VCP) did not occur in SelS knockdown cells, whereas SelS interacted with p97(VCP) in the presence or absence of SelK. These results suggest that p97(VCP) is first translocated to the ER membrane via its interaction with SelS, and then SelK associates with the complex on the ER membrane. Therefore, the interaction between SelK and p97(VCP) is SelS-dependent, and the resulting ERAD complex (SelS-p97(VCP)-SelK) plays an important role in ERAD and ER stress. PMID:26504085

  13. Changes in Selenoprotein P in Substantia Nigra and Putamen in Parkinson’s Disease

    PubMed Central

    Bellinger, Frederick P.; Raman, Arjun V.; Rueli, Rachel H.; Bellinger, Miyoko T.; Dewing, Andrea S.; Seale, Lucia A.; Andres, Marilou A.; Uyehara-Lock, Jane H.; White, Lon R.; Ross, G. Webster; Berry, Marla J.

    2012-01-01

    Oxidative stress and oxidized dopamine contribute to the degeneration of the nigrostriatal pathway in Parkinson’s disease (PD). Selenoproteins are a family of proteins containing the element selenium in the form of the amino acid selenocysteine, and many of these proteins have antioxidant functions. We recently reported changes in expression of the selenoprotein, phospholipid hydroperoxide glutathione peroxidase GPX4 and its co-localization with neuromelanin in PD brain. To further understand the changes in GPX4 in PD, we examine here the expression of the selenium transport protein selenoprotein P (Sepp1) in postmortem Parkinson’s brain tissue. Sepp1 in midbrain was expressed in neurons of the substantia nigra (SN), and expression was concentrated within the centers of Lewy bodies, the pathological hallmark of PD. As with GPX4, Sepp1 expression was significantly reduced in SN from PD subjects compared with controls, but increased relative to cell density. In putamen, Sepp1 was found in cell bodies and in dopaminergic axons and terminals, although levels of Sepp1 were not altered in PD subjects compared to controls. Expression levels of Sepp1 and GPX4 correlated strongly in the putamen of control subjects but not in the putamen of PD subjects. These findings indicate a role for Sepp1 in the nigrostriatal pathway, and suggest that local release of Sepp1 in striatum may be important for signaling and/or synthesis of other selenoproteins such as GPX4. PMID:23268326

  14. Reduced serum selenoprotein P concentrations in German prostate cancer patients.

    PubMed

    Meyer, Hellmuth-Alexander; Hollenbach, Birgit; Stephan, Carsten; Endermann, Tobias; Morgenthaler, Nils G; Cammann, Henning; Köhrle, Josef; Jung, Klaus; Schomburg, Lutz

    2009-09-01

    Selenium (Se) is essentially needed for the biosynthesis of selenoproteins. Low Se intake causes reduced selenoprotein biosynthesis and constitutes a risk factor for tumorigenesis. Accordingly, some Se supplementation trials have proven effective to reduce prostate cancer risk, especially in poorly supplied individuals. Because Se metabolism is controlled by selenoprotein P (SEPP), we have tested whether circulating SEPP concentrations correlate to prostate cancer stage and grade. A total of 190 men with prostate cancer (n = 90) and "no evidence of malignancy" (NEM; n = 100) histologically confirmed by prostate biopsy were retrospectively analyzed for established tumor markers and for their Se and SEPP status. Prostate specific antigen (PSA), free PSA, total Se, and SEPP concentrations were determined from serum samples and compared with clinicopathologic parameters. The diagnostic performance was analyzed with receiver operating characteristic curves. Median Se and SEPP concentrations differed significantly (P < 0.001) between the groups. Median serum Se concentrations in the 25th to 75th percentile were 95.9 microg/L (82-117.9) in NEM patients and 81.4 microg/L (67.9-98.4) in prostate cancer patients. Corresponding serum SEPP concentrations were 3.4 mg/L (1.9-5.6) in NEM and 2.9 mg/L (1.1-5.5) in prostate cancer patients. The area under the curve (AUC) of a marker combination with age, PSA, and percent free PSA (%fPSA) in combination with the SEPP concentration, yielded the highest diagnostic value (AUC 0.80) compared with the marker combination without SEPP (AUC 0.77) or %fPSA (AUC 0.76). We conclude that decreased SEPP concentration in serum might represent an additional valuable marker for prostate cancer diagnostics. PMID:19690186

  15. Selenoproteins: Molecular Pathways and Physiological Roles

    PubMed Central

    Labunskyy, Vyacheslav M.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2014-01-01

    Selenium is an essential micronutrient with important functions in human health and relevance to several pathophysiological conditions. The biological effects of selenium are largely mediated by selenium-containing proteins (selenoproteins) that are present in all three domains of life. Although selenoproteins represent diverse molecular pathways and biological functions, all these proteins contain at least one selenocysteine (Sec), a selenium-containing amino acid, and most serve oxidoreductase functions. Sec is cotranslationally inserted into nascent polypeptide chains in response to the UGA codon, whose normal function is to terminate translation. To decode UGA as Sec, organisms evolved the Sec insertion machinery that allows incorporation of this amino acid at specific UGA codons in a process requiring a cis-acting Sec insertion sequence (SECIS) element. Although the basic mechanisms of Sec synthesis and insertion into proteins in both prokaryotes and eukaryotes have been studied in great detail, the identity and functions of many selenoproteins remain largely unknown. In the last decade, there has been significant progress in characterizing selenoproteins and selenoproteomes and understanding their physiological functions. We discuss current knowledge about how these unique proteins perform their functions at the molecular level and highlight new insights into the roles that selenoproteins play in human health. PMID:24987004

  16. Molecular characterization and expression analyses of cDNAs encoding the thioredoxin-interacting protein and selenoprotein P genes and histological changes in Nile tilapia (Oreochromis niloticus) in response to silver nanoparticle exposure.

    PubMed

    Thummabancha, Kubpaphas; Onparn, Nuttaphon; Srisapoome, Prapansak

    2016-02-15

    Herein, Nile tilapia thioredoxin-interacting protein (On-TXNIP) and selenoprotein P (On-SEPP) cDNAs were cloned and characterized. The full-length On-TXNIP cDNA contained 2 arrestin domains, 2 conserved cysteine residues that bind to thioredoxin to inhibit thioredoxin function, and 2 PPXY motifs, which negatively regulate the protein by stimulating binding to E3 ubiquitin ligase. The On-SEPP cDNA contained 17 selenocysteines (Sec) encoded by the TGA codon, which can be recognized as either a stop codon or a Sec codon. The On-SEPP cDNA also carried 2 typical SECIS elements located in the 3'UTR that are important for selenocysteine translation. Evolutionary analyses of both the On-TXNIP and On-SEPP genes revealed that these genes are closely related to the TXNIP and SEPP genes in zebrafish (Danio rerio), with amino acid similarities of 91.8% and 61.9%, respectively. A normal tissue distribution analysis indicated that the On-TXNIP and On-SEPP genes were ubiquitously expressed in all tissues examined, and the highest expression levels of these genes were observed in peripheral blood leukocytes (PBLs) and the trunk kidney, respectively. The expression levels of On-TXNIP and On-SEPP transcripts were acutely and chronically analyzed following the injection of fish with 1, 10 or 100mg/kg silver nanoparticles (Ag NPs). Significant up-regulation of On-TXNIP and On-SEPP transcripts was observed in the liver, spleen, and head kidney at the early phase of Ag NP exposure (hours 6 through 48). Down-regulation of On-SEPP transcripts was clearly observed in the liver at weeks 1 to 4. Histopathology analysis demonstrated that the fish livers exhibited a dramatic infiltration of Kupffer cells, elevated bi-nucleated cells, expanded sinusoidal blood congestion and severe necrosis in a dose-dependent manner. Based on these findings, coupling of the expression analysis of these two cellular stress response genes and histopathological observation of fish exposed to Ag NPs should be

  17. Selenoprotein P in colitis-associated carcinoma

    PubMed Central

    Short, Sarah P.; Whitten-Barrett, Caitlyn; Williams, Christopher S.

    2016-01-01

    ABSTRACT Patients with inflammatory bowel disease are often deficient in micronutrients such as selenium and have an increased risk of colon cancer. We tested whether the selenium transport protein, selenoprotein P, could modify colitis-associated cancer. Our results indicate that global SEPP1 haploinsufficiency augments tumorigenesis and mediates oxidative damage in the intestine. PMID:27314080

  18. Contrasting roles of dietary selenium and selenoproteins in chemically induced hepatocarcinogenesis

    PubMed Central

    Gladyshev, Vadim N.

    2013-01-01

    Selenium (Se) has long been known for its cancer prevention properties, but the molecular basis remains unclear. The principal questions in assessing the effect of dietary Se in cancer are whether selenoproteins, small molecule selenocompounds, or both, are involved, and under which conditions and genotypes Se may be protective. In this study, we examined diethylnitrosamine-induced hepatocarcinogenesis in mice lacking a subset of selenoproteins due to expression of a mutant selenocysteine tRNA gene (Trsp A37G mice). To uncouple the effects of selenocompounds and selenoproteins, these animals were examined at several levels of dietary Se. Our analysis revealed that tumorigenesis in Trsp A37G mice maintained on the adequate Se diet was increased. However, in the control, wild-type mice, both Se deficiency and high Se levels protected against tumorigenesis. We further found that the Se-deficient diet induced severe neurological phenotypes in TrspA37G mice. Surprisingly, a similar phenotype could be induced in these mice at high dietary Se intake. Overall, our results show a complex role of Se in chemically induced hepatocarcinogenesis, which involves interaction among selenoproteins, selenocompounds and toxins, and depends on genotype and background of the animals. PMID:23389288

  19. Pro198Leu polymorphism affects the selenium status and GPx activity in response to Brazil nut intake.

    PubMed

    Cardoso, Bárbara R; Busse, Alexandre L; Hare, Dominic J; Cominetti, Cristiane; Horst, Maria A; McColl, Gawain; Magaldi, Regina M; Jacob-Filho, Wilson; Cozzolino, Silvia M F

    2016-02-01

    Selenoproteins play important roles in antioxidant mechanisms, and are thus hypothesised to have some involvement in the pathology of certain types of dementia. Mild cognitive impairment (MCI) and Alzheimer's disease (AD) are both thought to involve impaired biological activity of certain selenoproteins. Previously, supplementation with a selenium-rich Brazil nut (Bertholletia excelsa) has shown potential in reducing cognitive decline in MCI patients, and could prove to be a safe and effective nutritional approach early in the disease process to slow decline. Here, we have conducted a pilot study that examined the effects of a range of single nucleotide polymorphisms (SNPs) in genes encoding the selenoproteins glutathione peroxidase (GPX1) and selenoprotein P (SEPP) in response to selenium supplementation via dietary Brazil nuts, including selenium status, oxidative stress parameters and GPX1 and SEPP gene expression. Our data suggest that GPX1 Pro198Leu rs1050450 genotypes may differentially affect the selenium status and GPx activity. Moreover, rs7579 and rs3877899 SNPs in SEPP gene, as well as GPX1 rs1050450 genotypes can influence the expression of GPX1 and SEPP mRNA in response to Brazil nuts intake. This small study gives cause for larger investigations into the role of these SNPs in both the selenium status and response to selenium dietary intake, especially in chronic degenerative conditions like MCI and AD. PMID:26661784

  20. Modulation of selenium tissue distribution and selenoprotein expression in Atlantic salmon (Salmo salar L.) fed diets with graded levels of plant ingredients.

    PubMed

    Betancor, Monica B; Dam, Thi M C; Walton, James; Morken, Thea; Campbell, Patrick J; Tocher, Douglas R

    2016-04-01

    Increased substitution of marine ingredients by terrestrial plant products in aquafeeds has been proven to be suitable for Atlantic salmon farming. However, a reduction in n-3 long-chain PUFA is a consequence of this substitution. In contrast, relatively little attention has been paid to the effects of fishmeal and oil substitution on levels of micronutrients such as Se, considering fish are major sources of this mineral for human consumers. To evaluate the effects of dietary marine ingredient substitution on tissue Se distribution and the expression of Se metabolism and antioxidant enzyme genes, Atlantic salmons were fed three feeds based on commercial formulations with increasing levels of plant proteins (PP) and vegetable oil. Lipid content in flesh did not vary at any sampling point, but it was higher in the liver of 1 kg of fish fed higher PP. Fatty acid content reflected dietary input and was related to oxidation levels (thiobarbituric acid-reactive substances). Liver had the highest Se levels, followed by head kidney, whereas the lowest contents were found in brain and gill. The Se concentration of flesh decreased considerably with high levels of substitution, reducing the added value of fish consumption. Only the brain showed significant differences in glutathione peroxidase, transfer RNA selenocysteine 1-associated protein 1b and superoxide dismutase expression, whereas no significant regulation of Se-related genes was found in liver. Although Se levels in the diets satisfied the essential requirements of salmon, high PP levels led to a reduction in the supply of this essential micronutrient. PMID:26907361

  1. Biomarkers of Selenium Status

    PubMed Central

    Combs, Gerald F.

    2015-01-01

    The essential trace element, selenium (Se), has multiple biological activities, which depend on the level of Se intake. Relatively low Se intakes determine the expression of selenoenzymes in which it serves as an essential constituent. Higher intakes have been shown to have anti-tumorigenic potential; and very high Se intakes can produce adverse effects. This hierarchy of biological activities calls for biomarkers informative at different levels of Se exposure. Some Se-biomarkers, such as the selenoproteins and particularly GPX3 and SEPP1, provide information about function directly and are of value in identifying nutritional Se deficiency and tracking responses of deficient individuals to Se-treatment. They are useful under conditions of Se intake within the range of regulated selenoprotein expression, e.g., for humans <55 μg/day and for animals <20 μg/kg diet. Other Se-biomarkers provide information indirectly through inferences based on Se levels of foods, tissues, urine or feces. They can indicate the likelihood of deficiency or adverse effects, but they do not provide direct evidence of either condition. Their value is in providing information about Se status over a wide range of Se intake, particularly from food forms. There is need for additional Se biomarkers particularly for assessing Se status in non-deficient individuals for whom the prospects of cancer risk reduction and adverse effects risk are the primary health considerations. This would include determining whether supranutritional intakes of Se may be required for maximal selenoprotein expression in immune surveillance cells. It would also include developing methods to determine low molecular weight Se-metabolites, i.e., selenoamino acids and methylated Se-metabolites, which to date have not been detectable in biological specimens. Recent analytical advances using tandem liquid chromatography-mass spectrometry suggest prospects for detecting these metabolites. PMID:25835046

  2. Selenium, glutathione peroxidase and other selenoproteins

    SciTech Connect

    Wilhelmsen, E.C.

    1983-01-01

    Selenium, as essential trace element, has long been associated with protein. The essentiality of selenium is partially understood as glutathione peroxidase contains an essential selenocysteine. Glutathione peroxidase has been purified from many tissues including rat liver. An estimated molecular weight of 105,000 was obtained for glutathione peroxidase by comparison to standards. A subunit size of 26,000 was obtained by SDS-gel electrophoresis. Glutathione peroxidase is not the only selenoprotein in the rat. In seven rat tissues examined, there were many different subunit sizes and change groups representing between 9 and 23 selenoproteins. Selenocysteine in glutathione peroxidase accounts for ca. 36% of the selenium in the rat. The mode of synthesis of glutathione peroxidase and the other selenoproteins is not understood. Glutathione peroxidase is strongly and reversibly inhibited by mercaptocarboxylic acids and other mercaptans, including some used as slow-acting drugs for the symtomatic treatment of rheumatoid arthritis. The mechanism and chemistry of this inhibition is discussed. This inhibition may provide a link between selenium and arthritis.

  3. Effects of Dietary Selenium Against Lead Toxicity on mRNA Levels of 25 Selenoprotein Genes in the Cartilage Tissue of Broiler Chicken.

    PubMed

    Gao, H; Liu, C P; Song, S Q; Fu, J

    2016-07-01

    The interactions between the essential element selenium (Se) and the toxic element lead (Pb) have been reported extensively; however, little is known about the effect of Se on Pb toxicity and the expression pattern of selenoproteins in the cartilage of chicken. To investigate the effects of Se on Pb toxicity and the messenger RNA (mRNA) expressions of selenoproteins in cartilage tissue, an in vitro study was performed on 1-day-old broiler chickens (randomly allocated into four groups) with diet of different concentration of Se and Pb. After 90 days, the meniscus cartilage and sword cartilage tissue were examined for the mRNA levels of 25 selenoprotein genes. The results showed that Se and Pb influenced the expression of selenoprotein genes in the chicken cartilage tissue. In detail, Se could alleviate the downtrend of the expression of Gpx1, Gpx2, Gpx4, Txnrd2, Txnrd3, Dio1, Dio2, Seli, Selu, Sepx1, Selk, Selw, Selo, Selm, Sep15, Sepnn1, Sels, and Selt induced by Pb exposure in the meniscus cartilage. In the sword cartilage, Se alleviated the downtrend of the expression of Gpx2, Gpx3, Gpx4, Txnrd1, Txnrd2, Dio2, Dio3, Seli, Selh, SPS2, Sepx1, Selk, Selw, Selo, Selm, Sep15, Selpb, Sepn1, and Selt induced by Pb exposure. The present study provided some compensated data about the roles of Se against Pb toxicity in the regulation of selenoprotein expression. PMID:26643179

  4. Ex vivo correction of selenoprotein N deficiency in rigid spine muscular dystrophy caused by a mutation in the selenocysteine codon

    PubMed Central

    Rederstorff, M.; Allamand, V.; Guicheney, P.; Gartioux, C.; Richard, P.; Chaigne, D.; Krol, A.; Lescure, A.

    2008-01-01

    Premature termination of translation due to nonsense mutations is a frequent cause of inherited diseases. Therefore, many efforts were invested in the development of strategies or compounds to selectively suppress this default. Selenoproteins are interesting candidates considering the idiosyncrasy of the amino acid selenocysteine (Sec) insertion mechanism. Here, we focused our studies on SEPN1, a selenoprotein gene whose mutations entail genetic disorders resulting in different forms of muscular diseases. Selective correction of a nonsense mutation at the Sec codon (UGA to UAA) was undertaken with a corrector tRNASec that was engineered to harbor a compensatory mutation in the anticodon. We demonstrated that its expression restored synthesis of a full-length selenoprotein N both in HeLa cells and in skin fibroblasts from a patient carrying the mutated Sec codon. Readthrough of the UAA codon was effectively dependent on the Sec insertion machinery, therefore being highly selective for this gene and unlikely to generate off-target effects. In addition, we observed that expression of the corrector tRNASec stabilized the mutated SEPN1 transcript that was otherwise more subject to degradation. In conclusion, our data provide interesting evidence that premature termination of translation due to nonsense mutations is amenable to correction, in the context of the specialized selenoprotein synthesis mechanism. PMID:18025044

  5. Characterization of Selenoprotein M and Its Response to Selenium Deficiency in Chicken Brain.

    PubMed

    Huang, Jia-Qiang; Ren, Fa-Zheng; Jiang, Yun-Yun; Lei, XinGen

    2016-04-01

    Selenoprotein M (SelM) may function as thiol disulfide oxidoreductase that participates in the formation of disulfide bonds and can be implicated in calcium responses. SelM may have a functional role in catalyzing free radicals and has been associated with Alzheimer's disease (AD). However, studies of SelM in chicken remain very limited. In this study, two groups of day-old broiler chicks (n = 40/group) were fed a corn-soy basal diet (BD, 13 μg Se/kg) and BD supplemented with Se (as sodium selenite) at 0.3 mg/kg. The brain was collected at 14, 21, 28, and 42 days of age. We performed a sequence analysis and predicted the structure and function of SelM. We also investigated the effects of Se deficiency on the expression of Selt, Selw, and Selm and the Se status in the chicken brain. The results show that Se deficiency induced the lower (P < 0.05) Se content, glutathione peroxidase (GPx), and catalase (CAT) activities; increased (P < 0.05) malondialdehyde (MDA) content; and reduced (P < 0.05) the expression of Selm messenger RNA (mRNA) and protein abundance of SelM in the brain. However, there were no significant brain Selt and Selw mRNA levels by dietary Se deficiency in chicks. The different regulations of these three redox (Rdx) protein expressions by Se deficiency represent a novel finding of the present study. Our results demonstrated that SelM may have an important role in protecting against oxidative damage in the brain of chicken, which might shed light on the role of SelM in human neurodegenerative disease. More studies are needed to confirm our conclusion. PMID:26315306

  6. Galectin-1 is an interactive protein of selenoprotein M in the brain.

    PubMed

    Qiao, Xifeng; Tian, Jing; Chen, Ping; Wang, Chao; Ni, Jiazuan; Liu, Qiong

    2013-01-01

    Selenium, an essential trace element for human health, mainly exerts its biological function through selenoproteins. Selenoprotein M (SelM) is one of the highly expressed selenoproteins in the brain, but its biological effect and molecular mechanism remain unclear. Thus, the interactive protein of SelM was investigated in this paper to guide further study. In order to avoid protein translational stop, the selenocysteine-encoding UGA inside the open reading frame of SelM was site-directly changed to the cysteine-encoding UGC to generate the SelM' mutant. Meanwhile, its N terminal transmembrane signal peptide was also cut off. This truncated SelM' was used to screen a human fetal brain cDNA library by the yeast two-hybrid system. A new interactive protein of SelM' was found to be galectin-1 (Gal-1). This protein-protein interaction was further verified by the results of fluorescence resonance energy transfer techniques, glutathione S-transferase pull-down and co-immunoprecipitation assays. As Gal-1 plays important roles in preventing neurodegeneration and promoting neuroprotection in the brain, the interaction between SelM' and Gal-1 displays a new direction for studying the biological function of SelM in the human brain. PMID:24284396

  7. The 15kDa Selenoprotein and Thioredoxin Reductase 1 Promote Colon Cancer by Different Pathways

    PubMed Central

    Tsuji, Petra A.; Carlson, Bradley A.; Yoo, Min-Hyuk; Naranjo-Suarez, Salvador; Xu, Xue-Ming; He, Yiwen; Asaki, Esther; Seifried, Harold E.; Reinhold, William C.; Davis, Cindy D.; Gladyshev, Vadim N.; Hatfield, Dolph L.

    2015-01-01

    Selenoproteins mediate much of the cancer-preventive properties of the essential nutrient selenium, but some of these proteins have been shown to also have cancer-promoting effects. We examined the contributions of the 15kDa selenoprotein (Sep15) and thioredoxin reductase 1 (TR1) to cancer development. Targeted down-regulation of either gene inhibited anchorage-dependent and anchorage-independent growth and formation of experimental metastases of mouse colon carcinoma CT26 cells. Surprisingly, combined deficiency of Sep15 and TR1 reversed the anti-cancer effects observed with down-regulation of each single gene. We found that inflammation-related genes regulated by Stat-1, especially interferon-γ-regulated guanylate-binding proteins, were highly elevated in Sep15-deficient, but not in TR1-deficient cells. Interestingly, components of the Wnt/β-catenin signaling pathway were up-regulated in cells lacking both TR1 and Sep15. These results suggest that Sep15 and TR1 participate in interfering regulatory pathways in colon cancer cells. Considering the variable expression levels of Sep15 and TR1 found within the human population, our results provide insights into new roles of selenoproteins in cancer. PMID:25886253

  8. Selenium and selenoprotein deficiencies induce widespread pyogranuloma formation in mice, while high levels of dietary selenium decrease liver tumor size driven by TGFa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in dietary selenium and selenoprotein status may influence both anti- and pro-cancer pathways, making the outcome of interventions different from one study to another. To characterize such outcomes in a defined setting, we undertook a controlled hepatocarcinogenesis study involving varying l...

  9. Mars EXpress: status and recent findings

    NASA Astrophysics Data System (ADS)

    Titov, Dmitri; Bibring, Jean-Pierre; Cardesin, Alejandro; Duxbury, Tom; Forget, Francois; Giuranna, Marco; Holmstroem, Mats; Jaumann, Ralf; Martin, Patrick; Montmessin, Franck; Orosei, Roberto; Paetzold, Martin; Plaut, Jeff; MEX SGS Team

    2016-04-01

    Mars Express has entered its second decade in orbit in excellent health. The mission extension in 2015-2016 aims at augmenting of the surface coverage by imaging and spectral imaging instruments, continuing monitoring of the climate parameters and their variability, study of the upper atmosphere and its interaction with the solar wind in collaboration with NASA's MAVEN mission. Characterization of geological processes and landforms on Mars on a local-to-regional scale by HRSC camera constrained the martian geological activity in space and time and suggested its episodicity. Six years of spectro-imaging observations by OMEGA allowed correction of the surface albedo for presence of the atmospheric dust and revealed changes associated with the dust storm seasons. Imaging and spectral imaging of the surface shed light on past and present aqueous activity and contributed to the selection of the Mars-2018 landing sites. More than a decade long record of climatological parameters such as temperature, dust loading, water vapor, and ozone abundance was established by SPICAM and PFS spectrometers. Observed variations of HDO/H2O ratio above the subliming North polar cap suggested seasonal fractionation. The distribution of aurora was found to be related to the crustal magnetic field. ASPERA observations of ion escape covering a complete solar cycle revealed important dependences of the atmospheric erosion rate on parameters of the solar wind and EUV flux. Structure of the ionosphere sounded by MARSIS radar and MaRS radio science experiment was found to be significantly affected by the solar activity, crustal magnetic field as well as by influx of meteorite and cometary dust. The new atlas of Phobos based on the HRSC imaging was issued. The talk will give the mission status and review recent science highlights.

  10. Transcriptional activation of antioxidants may compensate for selenoprotein deficiencies in Amblyomma maculatum (Acari: Ixodidae) injected with selK- or selM-dsRNA

    PubMed Central

    Adamson, Steven; Browning, Rebecca; Singh, Parul; Nobles, Sarah; Villarreal, Ashley; Karim, Shahid

    2014-01-01

    The Gulf-Coast tick, Amblyomma maculatum, possesses an elaborate set of selenoprotein, which prevent the deleterious effects from oxidative stress that occur during feeding. In the current work, we examined the role of Selenoprotein K (SelK) and Selenoprotein M (SelM) in feeding A. maculatum by bioinformatics, transcriptional gene expression, RNA interference and antioxidant assays. The transcriptional expression of SelK does not vary significantly in salivary glands or midguts throughout the blood meal. However, there is a 58-fold increase in transcript levels of SelM in tick midguts. Ticks injected with selK-dsRNA or selM-dsRNA did not reveal any observable differences in egg viability but oviposition was reduced. Surprisingly, salivary antioxidant activity was higher in selenoprotein knockouts compared to controls, which is likely due to compensatory transcriptional expression of genes involved in combating reactive oxygen species. In fact, RT-qPCR data suggest the transcriptional expression of catalase increased in ticks injected with selM-dsRNA. Additionally, the transcriptional expression of selN decreased ~90% in both SelK/SelM knockdowns. PMID:24698418

  11. Social Status and Anger Expression: The Cultural Moderation Hypothesis

    PubMed Central

    Park, Jiyoung; Kitayama, Shinobu; Markus, Hazel R.; Coe, Christopher L.; Miyamoto, Yuri; Karasawa, Mayumi; Curhan, Katherine B.; Love, Gayle D.; Kawakami, Norito; Boylan, Jennifer Morozink; Ryff, Carol D.

    2013-01-01

    Individuals with lower social status have been reported to express more anger, but this evidence comes mostly from Western cultures. Here, we used representative samples of American and Japanese adults and tested the hypothesis that the association between social status and anger expression depends on whether anger serves primarily to vent frustration, as in the United States, or to display authority, as in Japan. Consistent with the assumption that lower social standing is associated with greater frustration stemming from life adversities and blocked goals, Americans with lower social status expressed more anger, with the relationship mediated by the extent of frustration. In contrast, consistent with the assumption that higher social standing affords a privilege to display anger, Japanese with higher social status expressed more anger, with the relationship mediated by decision-making authority. As expected, anger expression was predicted by subjective social status among Americans and by objective social status among Japanese. Implications for the dynamic construction of anger and anger expression are discussed. PMID:24098926

  12. Social status and anger expression: the cultural moderation hypothesis.

    PubMed

    Park, Jiyoung; Kitayama, Shinobu; Markus, Hazel R; Coe, Christopher L; Miyamoto, Yuri; Karasawa, Mayumi; Curhan, Katherine B; Love, Gayle D; Kawakami, Norito; Boylan, Jennifer Morozink; Ryff, Carol D

    2013-12-01

    Individuals with lower social status have been reported to express more anger, but this evidence comes mostly from Western cultures. Here, we used representative samples of American and Japanese adults and tested the hypothesis that the association between social status and anger expression depends on whether anger serves primarily to vent frustration, as in the United States, or to display authority, as in Japan. Consistent with the assumption that lower social standing is associated with greater frustration stemming from life adversities and blocked goals, Americans with lower social status expressed more anger, with the relationship mediated by the extent of frustration. In contrast, consistent with the assumption that higher social standing affords a privilege to display anger, Japanese with higher social status expressed more anger, with the relationship mediated by decision-making authority. As expected, anger expression was predicted by subjective social status among Americans and by objective social status among Japanese. Implications for the dynamic construction of anger and anger expression are discussed. PMID:24098926

  13. Exposure to monomethylarsonous acid (MMA{sup III}) leads to altered selenoprotein synthesis in a primary human lung cell model

    SciTech Connect

    Meno, Sarah R.; Nelson, Rebecca; Hintze, Korry J.; Self, William T.

    2009-09-01

    Monomethylarsonous acid (MMA{sup III}), a trivalent metabolite of arsenic, is highly cytotoxic and recent cell culture studies suggest that it might act as a carcinogen. The general consensus of studies indicates that the cytotoxicity of MMA{sup III} is a result of increased levels of reactive oxygen species (ROS). A longstanding relationship between arsenic and selenium metabolism has led to the use of selenium as a supplement in arsenic exposed populations, however the impact of organic arsenicals (methylated metabolites) on selenium metabolism is still poorly understood. In this study we determined the impact of exposure to MMA{sup III} on the regulation of expression of TrxR1 and its activity using a primary lung fibroblast line, WI-38. The promoter region of the gene encoding the selenoprotein thioredoxin reductase 1 (TrxR1) contains an antioxidant responsive element (ARE) that has been shown to be activated in the presence of electrophilic compounds. Results from radiolabeled selenoproteins indicate that exposure to low concentrations of MMA{sup III} resulted in increased synthesis of TrxR1 in WI-38 cells, and lower incorporation of selenium into other selenoproteins. MMA{sup III} treatment led to increased mRNA encoding TrxR1 in WI-38 cells, while lower levels of mRNA coding for cellular glutathione peroxidase (cGpx) were detected in exposed cells. Luciferase activity of TrxR1 promoter fusions increased with addition of MMA{sup III}, as did expression of a rat quinone reductase (QR) promoter fusion construct. However, MMA{sup III} induction of the TRX1 promoter fusion was abrogated when the ARE was mutated, suggesting that this regulation is mediated via the ARE. These results indicate that MMA{sup III} alters the expression of selenoproteins based on a selective induction of TrxR1, and this response to exposure to organic arsenicals that requires the ARE element.

  14. A Novel Protein Kinase-Like Domain in a Selenoprotein, Widespread in the Tree of Life

    PubMed Central

    Dudkiewicz, Małgorzata; Szczepińska, Teresa; Grynberg, Marcin; Pawłowski, Krzysztof

    2012-01-01

    Selenoproteins serve important functions in many organisms, usually providing essential oxidoreductase enzymatic activity, often for defense against toxic xenobiotic substances. Most eukaryotic genomes possess a small number of these proteins, usually not more than 20. Selenoproteins belong to various structural classes, often related to oxidoreductase function, yet a few of them are completely uncharacterised. Here, the structural and functional prediction for the uncharacterised selenoprotein O (SELO) is presented. Using bioinformatics tools, we predict that SELO protein adopts a three-dimensional fold similar to protein kinases. Furthermore, we argue that despite the lack of conservation of the “classic” catalytic aspartate residue of the archetypical His-Arg-Asp motif, SELO kinases might have retained catalytic phosphotransferase activity, albeit with an atypical active site. Lastly, the role of the selenocysteine residue is considered and the possibility of an oxidoreductase-regulated kinase function for SELO is discussed. The novel kinase prediction is discussed in the context of functional data on SELO orthologues in model organisms, FMP40 a.k.a.YPL222W (yeast), and ydiU (bacteria). Expression data from bacteria and yeast suggest a role in oxidative stress response. Analysis of genomic neighbourhoods of SELO homologues in the three domains of life points toward a role in regulation of ABC transport, in oxidative stress response, or in basic metabolism regulation. Among bacteria possessing SELO homologues, there is a significant over-representation of aquatic organisms, also of aerobic ones. The selenocysteine residue in SELO proteins occurs only in few members of this protein family, including proteins from Metazoa, and few small eukaryotes (Ostreococcus, stramenopiles). It is also demonstrated that enterobacterial mchC proteins involved in maturation of bactericidal antibiotics, microcins, form a distant subfamily of the SELO proteins. The new protein

  15. Selenoprotein T Exerts an Essential Oxidoreductase Activity That Protects Dopaminergic Neurons in Mouse Models of Parkinson's Disease

    PubMed Central

    Boukhzar, Loubna; Hamieh, Abdallah; Cartier, Dorthe; Tanguy, Yannick; Alsharif, Ifat; Castex, Matthieu; Arabo, Arnaud; Hajji, Sana El; Bonnet, Jean-Jacques; Errami, Mohammed; Falluel-Morel, Anthony; Chagraoui, Abdeslam; Lihrmann, Isabelle

    2016-01-01

    Abstract Aims: Oxidative stress is central to the pathogenesis of Parkinson's disease (PD), but the mechanisms involved in the control of this stress in dopaminergic cells are not fully understood. There is increasing evidence that selenoproteins play a central role in the control of redox homeostasis and cell defense, but the precise contribution of members of this family of proteins during the course of neurodegenerative diseases is still elusive. Results: We demonstrated first that selenoprotein T (SelT) whose gene disruption is lethal during embryogenesis, exerts a potent oxidoreductase activity. In the SH-SY5Y cell model of dopaminergic neurons, both silencing and overexpression of SelT affected oxidative stress and cell survival. Treatment with PD-inducing neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone triggered SelT expression in the nigrostriatal pathway of wild-type mice, but provoked rapid and severe parkinsonian-like motor defects in conditional brain SelT-deficient mice. This motor impairment was associated with marked oxidative stress and neurodegeneration and decreased tyrosine hydroxylase activity and dopamine levels in the nigrostriatal system. Finally, in PD patients, we report that SelT is tremendously increased in the caudate putamen tissue. Innovation: These results reveal the activity of a novel selenoprotein enzyme that protects dopaminergic neurons against oxidative stress and prevents early and severe movement impairment in animal models of PD. Conclusions: Our findings indicate that selenoproteins such as SelT play a crucial role in the protection of dopaminergic neurons against oxidative stress and cell death, providing insight into the molecular underpinnings of this stress in PD. Antioxid. Redox Signal. 24, 557–574. PMID:26866473

  16. Prooxidative toxicity and selenoprotein suppression by cerivastatin in muscle cells.

    PubMed

    Fuhrmeister, Jessica; Tews, Martha; Kromer, Andrea; Moosmann, Bernd

    2012-12-17

    Statins are the most widely used drugs for the treatment of hypercholesterolemia. In spite of their overall favorable safety profile, they do possess serious myotoxic potential, whose molecular origin has remained equivocal. Here, we demonstrate in cultivated myoblasts and skeletal muscle cells that cerivastatin at nanomolar concentrations interferes with selenoprotein synthesis and evokes a heightened vulnerability of the cells toward oxidative stressors. A correspondingly increased vulnerability was found with atorvastatin, albeit at higher concentrations than with cerivastatin. In selenium-saturated cells, cerivastatin caused a largely indiscriminate suppression of selenoprotein biosynthesis and reduced the steady state-levels of glutathione peroxidase 1 (GPx1) and selenoprotein N (SelN). Selenite, ebselen, and ubiquinone were unable to prevent the devitalizing effect of statin treatment, despite the fact that the cellular baseline resistance against tert-butyl hydroperoxide was significantly increased by picomolar sodium selenite. Mevalonic acid, in contrast, entirely prevented the statin-induced decrease in peroxide resistance. These results indicate that muscle cells may be particularly susceptible to a statin-induced suppression of essential antioxidant selenoproteins, which provides an explanation for the disposition of these drugs to evoke adverse muscular side-effects. PMID:23092657

  17. G-rich, a Drosophila selenoprotein, is a Golgi-resident type III membrane protein

    SciTech Connect

    Chen, Chang Lan; Shim, Myoung Sup; Chung, Jiyeol; Yoo, Hyun-Seung; Ha, Ji Min; Kim, Jin Young; Choi, Jinmi; Zang, Shu Liang; Hou, Xiao; Carlson, Bradley A.; Hatfield, Dolph L.; Lee, Byeong Jae . E-mail: imbglmg@plaza.snu.ac.kr

    2006-10-06

    G-rich is a Drosophila melanogaster selenoprotein, which is a homologue of human and mouse SelK. Subcellular localization analysis using GFP-tagged G-rich showed that G-rich was localized in the Golgi apparatus. The fusion protein was co-localized with the Golgi marker proteins but not with an endoplasmic reticulum (ER) marker protein in Drosophila SL2 cells. Bioinformatic analysis of G-rich suggests that this protein is either type II or type III transmembrane protein. To determine the type of transmembrane protein experimentally, GFP-G-rich in which GFP was tagged at the N-terminus of G-rich, or G-rich-GFP in which GFP was tagged at the C-terminus of G-rich, were expressed in SL2 cells. The tagged proteins were then digested with trypsin, and analyzed by Western blot analysis. The results showed that the C-terminus of the G-rich protein was exposed to the cytoplasm indicating it is a type III microsomal membrane protein. G-rich is First selenoprotein identified in the Golgi apparatus.

  18. NOD2 Status and Human Ileal Gene Expression

    PubMed Central

    Hamm, Christina M.; Reimers, Melissa A.; McCullough, Casey K.; Gorbe, Elizabeth B.; Lu, Jianyun; Gu, C. Charles; Li, Ellen; Dieckgraefe, Brian K.; Gong, Qingqing; Stappenbeck, Thaddeus S.; Stone, Christian D.; Dietz, David W.; Hunt, Steven R.

    2014-01-01

    Background NOD2 single nucleotide polymorphisms have been associated with increased risk of ileal Crohn’s disease. This exploratory study was conducted to compare ileal mucosal gene expression in Crohn’s disease (CD) patients with and without NOD2 risk alleles. Methods Ileal samples were prospectively collected from eighteen non-smoking CD patients not treated with anti-TNFα biologics and nine non-smoking control patients without inflammatory bowel disease undergoing initial resection, and genotyped for the three major NOD2 risk alleles (Arg702Trp, Gly908Arg, Leu1007fs). Microarray analysis was performed in samples from four NOD2R (at least one risk allele) CD patients, four NOD2NR (no risk alleles) CD patients and four NOD2NR controls. Candidate genes selected by significance analysis of microarrays (SAM) were confirmed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assays of all the samples. Results SAM detected upregulation of 18 genes in affected ileum in NOD2R compared to NOD2NR CD patients, including genes related to lymphocyte activation. SAM also detected altered ileal gene expression in unaffected NOD2NR ileal mucosal CD samples compared to NOD2NR control samples. QRT-PCR conducted on all the samples confirmed that increased CD3D expression in affected samples was associated with NOD2R status, and that increased MUC1, DUOX2, DMBT1 and decreased C4orf7 expression in unaffected samples was associated with CD, independent of NOD2 status. Conclusions The results support the concept that NOD2 risk alleles contribute to impaired regulation of inflammation in the ileum. Furthermore, altered ileal gene expression, independent of NOD2 status, is detected in the unaffected proximal margin of resected ileum from CD patients. PMID:20155851

  19. Selenoprotein H suppresses cellular senescence through genome maintenance and redox regulation.

    PubMed

    Wu, Ryan T Y; Cao, Lei; Chen, Benjamin P C; Cheng, Wen-Hsing

    2014-12-01

    Oxidative stress and persistent DNA damage response contribute to cellular senescence, a degeneration process critically involving ataxia telangiectasia-mutated (ATM) and p53. Selenoprotein H (SelH), a nuclear selenoprotein, is proposed to carry redox and transactivation domains. To determine the role of SelH in genome maintenance, shRNA knockdown was employed in human normal and immortalized cell lines. SelH shRNA MRC-5 diploid fibroblasts under ambient O2 displayed a distinct profile of senescence including β-galactosidase expression, autofluorescence, growth inhibition, and ATM pathway activation. Such senescence phenotypes were alleviated in the presence of ATM kinase inhibitors, by p53 shRNA knockdown, or by maintaining the cells under 3% O2. During the course of 5-day recovery, the induction of phospho-ATM on Ser-1981 and γH2AX by H2O2 treatment (20 μm) subsided in scrambled shRNA but exacerbated in SelH shRNA MRC-5 cells. Results from clonogenic assays demonstrated hypersensitivity of SelH shRNA HeLa cells to paraquat and H2O2, but not to hydroxyurea, neocarzinostatin, or camptothecin. While SelH mRNA expression was induced by H2O2 treatment, SelH-GFP did not mobilize to sites of oxidative DNA damage. The glutathione level was lower in SelH shRNA than scrambled shRNA HeLa cells, and the H2O2-induced cell death was rescued in the presence of N-acetylcysteine, a glutathione precursor. Altogether, SelH protects against cellular senescence to oxidative stress through a genome maintenance pathway involving ATM and p53. PMID:25336634

  20. Selenoprotein H Suppresses Cellular Senescence through Genome Maintenance and Redox Regulation*

    PubMed Central

    Wu, Ryan T. Y.; Cao, Lei; Chen, Benjamin P. C.; Cheng, Wen-Hsing

    2014-01-01

    Oxidative stress and persistent DNA damage response contribute to cellular senescence, a degeneration process critically involving ataxia telangiectasia-mutated (ATM) and p53. Selenoprotein H (SelH), a nuclear selenoprotein, is proposed to carry redox and transactivation domains. To determine the role of SelH in genome maintenance, shRNA knockdown was employed in human normal and immortalized cell lines. SelH shRNA MRC-5 diploid fibroblasts under ambient O2 displayed a distinct profile of senescence including β-galactosidase expression, autofluorescence, growth inhibition, and ATM pathway activation. Such senescence phenotypes were alleviated in the presence of ATM kinase inhibitors, by p53 shRNA knockdown, or by maintaining the cells under 3% O2. During the course of 5-day recovery, the induction of phospho-ATM on Ser-1981 and γH2AX by H2O2 treatment (20 μm) subsided in scrambled shRNA but exacerbated in SelH shRNA MRC-5 cells. Results from clonogenic assays demonstrated hypersensitivity of SelH shRNA HeLa cells to paraquat and H2O2, but not to hydroxyurea, neocarzinostatin, or camptothecin. While SelH mRNA expression was induced by H2O2 treatment, SelH-GFP did not mobilize to sites of oxidative DNA damage. The glutathione level was lower in SelH shRNA than scrambled shRNA HeLa cells, and the H2O2-induced cell death was rescued in the presence of N-acetylcysteine, a glutathione precursor. Altogether, SelH protects against cellular senescence to oxidative stress through a genome maintenance pathway involving ATM and p53. PMID:25336634

  1. Selenoprotein W was Correlated with the Protective Effect of Selenium on Chicken Myocardial Cells from Oxidative Damage.

    PubMed

    Liu, Wei; Yao, Haidong; Zhao, Wenchao; Shi, Yuguang; Zhang, Ziwei; Xu, Shiwen

    2016-06-01

    Selenium (Se) mainly performs its function through Se-containing proteins. Selenoprotein W (SelW), one member of the selenoprotein family, plays important roles in the normal function of the heart. To investigate the possible relationship between Se and SelW for the regulation of oxidative damage in chicken embryo myocardial cells, we treated myocardial cells with Se and H2O2. Then, the levels of lactate dehydrogenase (LDH) and 3,4-methylenedioxyamphetamine in the culture media, levels of SelW, inflammatory genes NF-κB, tumor necrosis factor (TNF)-α, p53, and the cell cycle were analyzed. Furthermore, the correlation between SelW and the levels of these factors was determined. The results indicated that Se treatment increased the expression of SelW (P < 0.05) and caused a downregulation of p53, NF-κB, and TNF-α (P < 0.05). In contrast, H2O2 increased the expression of p53, NF-κB, TNF-α, and LDH (P < 0.05) and induced early cell apoptosis, which was alleviated by treatment with Se. In addition, SelW had a positive correlation with the levels of inflammatory genes investigated. Taken together, our findings suggested that SelW is sensitive to Se levels and oxidative stress, and may play a role in the protective function of Se against oxidative damage and inflammation in chicken myocardial cells. PMID:26463750

  2. Proteomic analysis of kidneys from selenoprotein M transgenic rats in response to increased bioability of selenium

    PubMed Central

    2013-01-01

    Background To characterize changes in global protein expression in kidneys of transgenic rats overexpressing human selenoprotein M (SelM) in response to increased bioabivility of selenium (Sel), total proteins extracted from kidneys of 10-week-old CMV/hSelM Tg and wild-type rats were separated by 2-dimensional gel electrophoresis and measured for changes in expression. Results Ten and three proteins showing high antioxidant enzymatic activity were up- and down-regulated, respectively, in SelM-overexpressing CMV/hSelM Tg rats compared to controls based on an arbitrary 2-fold difference. Up-regulated proteins included LAP3, BAIAP2L1, CRP2, CD73 antigen, PDGF D, KIAA143 homolog, PRPPS-AP2, ZFP313, HSP-60, and N-WASP, whereas down-regulated proteins included ALKDH3, rMCP-3, and STC-1. After Sel treatment, five of the up-regulated proteins were significantly increased in expression in wild-type rats, whereas there were no changes in CMV/hSelM Tg rats. Only two of the down-regulated proteins showed reduced expression in wild-type and Tg rats after Sel treatment. Conclusions These results show the primary novel biological evidences that new functional protein groups and individual proteins in kidneys of Tg rats relate to Sel biology including the response to Sel treatment and SelM expression. PMID:23937859

  3. Using chemical approaches to study selenoproteins - focus on thioredoxin reductases

    PubMed Central

    Hondal, Robert J.

    2009-01-01

    The study of selenocysteine-containing proteins is difficult due to the problems associated with the heterologous production of these proteins. These problems are due to the intricate recoding mechanism used by cells to translate the UGA codon as a sense codon for selenocysteine. The process is further complicated by the fact that eukaryotes and prokaryotes have different UGA recoding machineries. This review focuses on chemical approaches to produce selenoproteins and study the mechanism of selenoenzymes. The use of intein-mediated peptide ligation is discussed with respect to the production of the mammalian selenoenzymes thioredoxin reductase and selenoprotein R, also known as methionine sulfoxide reductase B1. New methods for removing protecting groups from selenocysteine post-synthesis and methods for selenosulfide/diselenide formation are also reviewed. Chemical approaches have also been used to study the enzymatic mechanism of thioredoxin reductase. The approach divides the enzyme into two modules, a large protein module lacking selenocysteine and a small, synthetic selenocysteine-containing peptide. Study of this semisynthetic enzyme has revealed three distinct enzymatic pathways that depend on the properties of the substrate. The enzyme utilizes a macromolecular mechanism for protein substrates, a second mechanism for small molecule substrates and a third pathway for selenium-containing substrates such as selenocystine. PMID:19406205

  4. The protozoa dinoflagellate Oxyrrhis marina contains selenoproteins and the relevant translation apparatus.

    PubMed

    Osaka, Takashi; Beika, Asa; Hattori, Asuka; Kohno, Yoshinori; Kato, Koichi H; Mizutani, Takaharu

    2003-01-01

    In the phylogenetic tree, selenoproteins and the corresponding translation machinery are found in Archaea, Eubacteria, and animals, but not in fungi and higher plants. As very little is known about Protozoa, we searched for the presence of selenoproteins in the primitive dinoflagellate Oxyrrhis marina, belonging to the Protoctista kingdom. Four selenoproteins could be obtained from O. marina cells cultured in the presence of 75Se. Using O. marina or bovine liver cytosolic extracts, we could serylate and selenylate in vitro total O. marina tRNAs. Moreover, the existence of a tRNA(Sec) could be deduced from in vivo experiments. Lastly, an anti-serum against the specialized mammalian translation elongation factor mSelB reacted with a protein of 48-kDa molecular mass. Altogether, our data showed that O. marina contains selenoproteins and suggests that the corresponding translation machinery is related to that found in animals. PMID:12480549

  5. Selenoproteins-What unique properties can arise with selenocysteine in place of cysteine?

    PubMed

    Arnér, Elias S J

    2010-05-01

    The defining entity of a selenoprotein is the inclusion of at least one selenocysteine (Sec) residue in its sequence. Sec, the 21st naturally occurring genetically encoded amino acid, differs from its significantly more common structural analog cysteine (Cys) by the identity of a single atom: Sec contains selenium instead of the sulfur found in Cys. Selenium clearly has unique chemical properties that differ from sulfur, but more striking are perhaps the similarities between the two elements. Selenium was discovered by Jöns Jacob Berzelius, a renowned Swedish scientist instrumental in establishing the institution that would become Karolinska Institutet. Written at the occasion of the bicentennial anniversary of Karolinska Institutet, this mini review focuses on the unique selenium-derived properties that may potentially arise in a protein upon the inclusion of Sec in place of Cys. With 25 human genes encoding selenoproteins and in total several thousand selenoproteins yet described in nature, it seems likely that the presence of that single selenium atom of Sec should convey some specific feature, thereby explaining the existence of selenoproteins in spite of demanding and energetically costly Sec-specific synthesis machineries. Nonetheless, most, if not all, of the currently known selenoproteins are also found as Cys-containing non-selenoprotein orthologues in other organisms, wherefore any potentially unique properties of selenoproteins are yet a matter of debate. The pK(a) of free Sec (approximately 5.2) being significantly lower than that of free Cys (approximately 8.5) has often been proposed as one of the unique features of Sec. However, as discussed herein, this pK(a) difference between Sec and Cys can hardly provide an evolutionary pressure for maintenance of selenoproteins. Moreover, the typically 10- to 100-fold lower enzymatic efficiencies of Sec-to-Cys mutants of selenoprotein oxidoreductases, are also weak arguments for the overall existence of

  6. Selenoproteins-What unique properties can arise with selenocysteine in place of cysteine?

    SciTech Connect

    Arner, Elias S.J.

    2010-05-01

    The defining entity of a selenoprotein is the inclusion of at least one selenocysteine (Sec) residue in its sequence. Sec, the 21st naturally occurring genetically encoded amino acid, differs from its significantly more common structural analog cysteine (Cys) by the identity of a single atom: Sec contains selenium instead of the sulfur found in Cys. Selenium clearly has unique chemical properties that differ from sulfur, but more striking are perhaps the similarities between the two elements. Selenium was discovered by Joens Jacob Berzelius, a renowned Swedish scientist instrumental in establishing the institution that would become Karolinska Institutet. Written at the occasion of the bicentennial anniversary of Karolinska Institutet, this mini review focuses on the unique selenium-derived properties that may potentially arise in a protein upon the inclusion of Sec in place of Cys. With 25 human genes encoding selenoproteins and in total several thousand selenoproteins yet described in nature, it seems likely that the presence of that single selenium atom of Sec should convey some specific feature, thereby explaining the existence of selenoproteins in spite of demanding and energetically costly Sec-specific synthesis machineries. Nonetheless, most, if not all, of the currently known selenoproteins are also found as Cys-containing non-selenoprotein orthologues in other organisms, wherefore any potentially unique properties of selenoproteins are yet a matter of debate. The pK{sub a} of free Sec (approximately 5.2) being significantly lower than that of free Cys (approximately 8.5) has often been proposed as one of the unique features of Sec. However, as discussed herein, this pK{sub a} difference between Sec and Cys can hardly provide an evolutionary pressure for maintenance of selenoproteins. Moreover, the typically 10- to 100-fold lower enzymatic efficiencies of Sec-to-Cys mutants of selenoprotein oxidoreductases, are also weak arguments for the overall existence

  7. Selenoprotein X Gene Knockdown Aggravated H2O2-Induced Apoptosis in Liver LO2 Cells.

    PubMed

    Tang, Jiayong; Cao, Lei; Li, Qiang; Wang, Longqiong; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Cai, Jingyi; Shang, Haiying; Zhao, Hua

    2016-09-01

    To determine the roles of selenoprotein X gene (Selx) in protecting liver cells against oxidative damage, the influences of Selx knockdown on H2O2-induced apoptosis in human normal hepatocyte (LO2) cells were studied. pSilencer 3.1 was used to develop knockdown vector targeting the 3'-UTR of human Selx. The Selx knockdown and control cells were further exposed to H2O2, and cell viability, cell apoptosis rate, and the expression levels of mRNA and protein of apoptosis-related genes were detected. The results showed that vector targeting the 3'-UTR of Selx successfully silenced mRNA or protein expression of SelX in LO2 cells. Selx knockdown resulted in decreased cell viability, increased percentage of early apoptotic cells, decreased Bcl2A1 and Bcl-2 expression, and increased phosphorylation of P38 in LO2 cells. When Selx knockdown LO2 cells were exposed to H2O2, characteristics of H2O2-induced cell dysfunctions were further exacerbated. Taken together, our findings suggested that SelX played important roles in protecting LO2 cells against oxidative damage and reducing H2O2-induced apoptosis in liver cells. PMID:26899321

  8. Purification of selenoprotein P from human plasma using immunoaffinity chromatography

    SciTech Connect

    Aakesson, B.; Bellew, T.; Burk, R.F. )

    1991-03-11

    Selenoprotein P was purified from rat plasma using immunoaffinity chromatography. The same approach was used with human plasma. HepG2 cells were labeled with {sup 75}Se. The labeled medium, containing proteins secreted by the cells, was added to human plasma and the {sup 75}Se was used as a marker for {gt}1,000-fold purification of the major {sup 75}Se-containing protein. This material was used to produce 2 monoclonal antibodies. In a competitive assay, human plasma, but not plasma from 5 other species, inhibited binding of {sup 75}Se by these 2 antibodies. The antibodies were coupled to agarose and columns were made. Human plasma was processed in 2 steps. Step 1 was an antibody column and step 2 was a heparin-agarose column. SDS-PAGE demonstrated bands at 61 and 55 kDa. Both bands stained with PAS. Amino acid analysis of carboxymethylated material indicated that selenocysteine was {gt}1% of the total amino acids. N-terminal sequencing revealed a strong similarity to rat selenoprotein P. Immunodepleted human plasma and control plasma were chromatographed on Sephacryl S200 and selenium was measured in the eluted fractions. Immunodepletion removed one-third of the selenium. The elution pattern of control plasma revealed a broad peak of selenium just ahead of and including the albumin peak. Most of this peak was absent from the immunodepleted serum and a graph of the difference between the 2 chromatograms was a single peak of selenium well separated from the albumin peak.

  9. Cellular Selenoprotein mRNA Tethering via Antisense Interactions with Ebola and HIV-1 mRNAs May Impact Host Selenium Biochemistry.

    PubMed

    Taylor, Ethan Will; Ruzicka, Jan A; Premadasa, Lakmini; Zhao, Lijun

    2016-01-01

    Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3' end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation. PMID:26369818

  10. Cellular Selenoprotein mRNA Tethering via Antisense Interactions with Ebola and HIV-1 mRNAs May Impact Host Selenium Biochemistry

    PubMed Central

    Taylor, Ethan Will; Ruzicka, Jan A.; Premadasa, Lakmini; Zhao, Lijun

    2016-01-01

    Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3′ end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation. PMID:26369818

  11. Association of selenoprotein S gene polymorphism with ischemic stroke in a Chinese case-control study.

    PubMed

    Li, Xiao-Xia; Guan, Hong-Jun; Liu, Jian-Ping; Guo, Yu-Peng; Yang, Yong; Niu, Ying-Ying; Yao, Li-Yan; Yang, Yin-Dong; Yue, Hong-Yu; Meng, Li-Li; Cui, Xin-Yu; Yang, Xiao-Wei; Gao, Jin-Xiao

    2015-03-01

    Previous studies showed that selenoprotein S (SELS) was associated with a range of inflammatory markers, and its gene expression was influenced by a polymorphism in the promoter region. The genetic basis of the ischemic stroke has now been largely determined, so the aim of the study was to examine the role of SELS genetic variants in the ischemic stroke risk in a Chinese population. We conducted a case-control study with 239 ischemic stroke patients and 240 controls. Two single-nucleotide polymorphisms (SNPs) in SELS genes were analyzed for association with the risk of ischemic stroke in the Chinese Han population. No evidence of ischemic stroke association was observed with the SNP rs34713741. Interestingly, the strongest evidence showed that SELS SNP rs4965814 was associated with ischemic stroke (P < 0.05). We found a significant association with increased ischemic stroke risk in women carrying the CC genotype of rs4965814 [hazard ratio: 2.43(1.03-5.75)]; a similar trend was also found in men carrying the TC genotype of rs4965814 [hazard ratio: 1.81(1.06-3.08)]. SNP rs4965814 of SELS may affect the susceptibility to ischemic stroke. Understanding the inflammatory mechanisms of ischemic stroke may give new therapeutic targets to pharmacologists. PMID:25390504

  12. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses

    PubMed Central

    Verma, Saguna; Hoffmann, FuKun W.; Kumar, Mukesh; Huang, Zhi; Roe, Kelsey; Nguyen-Wu, Elizabeth; Hashimoto, Ann S.; Hoffmann, Peter R.

    2011-01-01

    Selenoprotein K (Sel K) is a selenium-containing protein for which no function has been identified. We found that Sel K is an endoplasmic reticulum (ER) transmembrane protein expressed at relatively high levels in immune cells and is regulated by dietary selenium. Sel K−/− mice were generated and found to be similar to WT controls regarding growth and fertility. Immune system development was not affected by Sel K deletion, but specific immune cell defects were found in Sel K−/− mice. Receptor-mediated Ca2+ flux was decreased in T cells, neutrophils, and macrophages from Sel K−/− mice compare to controls. Ca2+-dependent functions including T cell proliferation, T cell and neutrophil migration, and Fcγ-receptor-mediated oxidative burst in macrophages were decreased in cells from Sel K−/− mice compared to controls. West Nile virus (WNV) infections were performed and Sel K−/− mice exhibited decreased viral clearance in the periphery and increased viral titers in brain. Furthermore, WNV-infected Sel K−/− mice demonstrated significantly lower survival (2/23; 8.7%) compared to WT controls (10/26; 38.5%). These results establish Sel K as an ER-membrane protein important for promoting effective Ca2+ flux during immune cell activation and provide insight into molecular mechanisms by which dietary selenium enhances immune responses. PMID:21220695

  13. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling.

    PubMed

    Solovyev, Nikolay D

    2015-12-01

    Multiple biological functions of selenium manifest themselves mainly via 25 selenoproteins that have selenocysteine at their active centre. Selenium is vital for the brain and seems to participate in the pathology of disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and epilepsy. Since selenium was shown to be involved in diverse functions of the central nervous system, such as motor performance, coordination, memory and cognition, a possible role of selenium and selenoproteins in brain signalling pathways may be assumed. The aim of the present review is to analyse possible relations between selenium and neurotransmission. Selenoproteins seem to be of special importance in the development and functioning of GABAergic (GABA, γ-aminobutyric acid) parvalbumin positive interneurons of the cerebral cortex and hippocampus. Dopamine pathway might be also selenium dependent as selenium shows neuroprotection in the nigrostriatal pathway and also exerts toxicity towards dopaminergic neurons under higher concentrations. Recent findings also point to acetylcholine neurotransmission involvement. The role of selenium and selenoproteins in neurotransmission might not only be limited to their antioxidant properties but also to inflammation, influencing protein phosphorylation and ion channels, alteration of calcium homeostasis and brain cholesterol metabolism. Moreover, a direct signalling function was proposed for selenoprotein P through interaction with post-synaptic apoliprotein E receptors 2 (ApoER2). PMID:26398431

  14. (Implicitly) judging a book by its cover: the power of pride and shame expressions in shaping judgments of social status.

    PubMed

    Shariff, Azim F; Tracy, Jessica L; Markusoff, Jeffrey L

    2012-09-01

    How do we decide who merits social status? According to functionalist theories of emotion, the nonverbal expressions of pride and shame play a key role, functioning as automatically perceived status signals. In this view, observers automatically make status inferences about expressers on the basis of these expressions, even when contradictory contextual information about the expressers' status is available. In four studies, the authors tested whether implicit and explicit status perceptions are influenced by pride and shame expressions even when these expressions' status-related messages are contradicted by contextual information. Results indicate that emotion expressions powerfully influence implicit and explicit status inferences, at times neutralizing or even overriding situational knowledge. These findings demonstrate the irrepressible communicative power of emotion displays and indicate that status judgments can be informed as much (and often more) by automatic responses to nonverbal expressions of emotion as by rational, contextually bound knowledge. PMID:22611053

  15. Direct Interaction of Selenoprotein R with Clusterin and Its Possible Role in Alzheimer's Disease.

    PubMed

    Chen, Ping; Wang, Chao; Ma, Xiaojie; Zhang, Yizhe; Liu, Qing; Qiu, Shi; Liu, Qiong; Tian, Jing; Ni, Jiazuan

    2013-01-01

    Selenoprotein R (SelR) plays an important role in maintaining intracellular redox balance by reducing the R-form of methionine sulfoxide to methionine. As SelR is highly expressed in brain and closely related to Alzheimer's disease (AD), its biological functions in human brain become a research focus. In this paper, the selenocysteine-coding TGA of SelR gene was mutated to cysteine-coding TGC and used to screen the human fetal brain cDNA library with a yeast two-hybrid system. Our results demonstrated that SelR interacts with clusterin (Clu), a chaperone protein. This protein interaction was further verified by fluorescence resonance energy transfer (FRET), coimmunoprecipitation (co-IP), and pull-down assays. The interacting domain of Clu was determined by co-IP to be a dynamic, molten globule structure spanning amino acids 315 to 381 with an amphipathic-helix. The interacting domain of SelR was investigated by gene manipulation, ligand replacement, protein over-expression, and enzyme activity measurement to be a tetrahedral complex consisting of a zinc ion binding with four Cys residues. Study on the mutual effect of SelR and Clu showed synergic property between the two proteins. Cell transfection with SelR gene increased the expression of Clu, while cell transfection with Clu promoted the enzyme activity of SelR. Co-overexpression of SelR and Clu in N2aSW cells, an AD model cell line, significantly decreased the level of intracellular reactive oxygen species. Furthermore, FRET and co-IP assays demonstrated that Clu interacted with β-amyloid peptide, a pathological protein of AD, which suggested a potential effect of SelR and Aβ with the aid of Clu. The interaction between SelR and Clu provides a novel avenue for further study on the mechanism of SelR in AD prevention. PMID:23805218

  16. Selenoproteins of African trypanosomes are dispensable for parasite survival in a mammalian host.

    PubMed

    Bonilla, Mariana; Krull, Erika; Irigoín, Florencia; Salinas, Gustavo; Comini, Marcelo A

    2016-01-01

    The trace element selenium is found in polypeptides as selenocysteine, the 21(st) amino acid that is co-translationally inserted into proteins at a UGA codon. In proteins, selenocysteine usually plays a role as an efficient redox catalyst. Trypanosomatids previously examined harbor a full set of genes encoding the machinery needed for selenocysteine biosynthesis and incorporation into three selenoproteins: SelK, SelT and, the parasite-specific, Seltryp. We investigated the selenoproteome of kinetoplastid species in recently sequenced genomes and assessed the in vivo relevance of selenoproteins for African trypanosomes. Database mining revealed that SelK, SelT and Seltryp genes are present in most kinetoplastids, including the free-living species Bodo saltans, and Seltryp was lost in the subgenus Viannia from the New World Leishmania. Homology and sinteny with bacterial sulfur dioxygenases and sulfur transferases suggest a putative role for Seltryp in sulfur metabolism. A Trypanosoma brucei selenocysteine synthase (SepSecS) null-mutant, in which selenoprotein synthesis is abolished, displayed similar sensitivity to oxidative stress induced by a short-term exposure to high concentrations of methylglyoxal or H2O2 to that of the parental wild-type cell line. Importantly, the infectivity of the SepSecS knockout cell line was not impaired when tested in a mouse infection model and compensatory effects via up-regulation of proteins involved in thiol-redox metabolism were not observed. Collectively, our data show that selenoproteins are not required for survival of African trypanosomes in a mammalian host and exclude a role for selenoproteins in parasite antioxidant defense and/or virulence. On this basis, selenoproteins can be disregarded as drug target candidates. PMID:26975431

  17. Cross-Cultural Evidence that the Nonverbal Expression of Pride Is an Automatic Status Signal

    ERIC Educational Resources Information Center

    Tracy, Jessica L.; Shariff, Azim F.; Zhao, Wanying; Henrich, Joseph

    2013-01-01

    To test whether the pride expression is an implicit, reliably developing signal of high social status in humans, the authors conducted a series of experiments that measured implicit and explicit cognitive associations between pride displays and high-status concepts in two culturally disparate populations--North American undergraduates and Fijian…

  18. Eukaryotic selenoprotein synthesis: mechanistic insight incorporating new factors and new functions for old factors.

    PubMed

    Squires, Jeffrey E; Berry, Marla J

    2008-04-01

    Selenium is an essential micronutrient that has been linked to various aspects of human health. Selenium exerts its biological activity through the incorporation of the amino acid, selenocysteine (Sec), into a unique class of proteins termed selenoproteins. Sec incorporation occurs cotranslationally at UGA codons in archaea, prokaryotes, and eukaryotes. UGA codons specify Sec coding rather than termination by the presence of specific secondary structures in mRNAs termed selenocysteine insertion (SECIS) elements, and trans-acting factors that associate with SECIS elements. Herein, we discuss the various proteins known to function in eukaryotic selenoprotein biosynthesis, including several players whose roles have only been elucidated very recently. PMID:18344183

  19. Cross-cultural evidence that the nonverbal expression of pride is an automatic status signal.

    PubMed

    Tracy, Jessica L; Shariff, Azim F; Zhao, Wanying; Henrich, Joseph

    2013-02-01

    To test whether the pride expression is an implicit, reliably developing signal of high social status in humans, the authors conducted a series of experiments that measured implicit and explicit cognitive associations between pride displays and high-status concepts in two culturally disparate populations--North American undergraduates and Fijian villagers living in a traditional, small-scale society. In both groups, pride displays produced strong implicit associations with high status, despite Fijian social norms discouraging overt displays of pride. Also in both groups, implicit and explicit associations between emotion expressions and status were dissociated; despite the cross-cultural implicit association between pride displays and high status, happy displays were, cross-culturally, the more powerful status indicator at an explicit level, and among Fijians, happy and pride displays were equally strongly implicitly associated with status. Finally, a cultural difference emerged: Fijians viewed happy displays as more deserving of high status than did North Americans, both implicitly and explicitly. Together, these findings suggest that the display and recognition of pride may be part of a suite of adaptations for negotiating status relationships, but that the high-status message of pride is largely communicated through implicit cognitive processes. PMID:22564115

  20. Manipulating the appearance of a badge of status causes changes in true badge expression

    PubMed Central

    Dey, Cody J.; Dale, James; Quinn, James S.

    2014-01-01

    Signals of dominance and fighting ability (i.e. status signals) are found in a wide range of taxa and are used to settle disputes between competitive rivals. Most previous research has considered status-signal phenotype as an attribute of the individual; however, it is more likely that signal expression is an emergent property that also incorporates aspects of the social environment. Furthermore, because an individual's signal phenotype is likely to influence its social interactions, the relationships between status signals, social environment and individual quality are probably much more complex than previously appreciated. Here, we explore the dynamic relationship between social interactions and signal expression in a previously undescribed status signal, the frontal shield of the pukeko (Porphyrio porphyrio melanotus: Aves). We demonstrate that frontal shield size is a strong predictor of dominance status within social groups, even after controlling for potentially confounding variables. Then, we evaluate the relationship between social interactions and signal expression by testing whether manipulating apparent shield size influences (i) dominance interactions and (ii) future signal expression. By showing that decreasing apparent shield size causes both an increase in the amount of aggression received and a decrease in an individual's true shield size, we provide the first evidence of dynamic feedback between signal expression and social interactions. Our study provides important insight into the role of receiver-dependent (i.e. social) costs in maintaining signal honesty and demonstrates a unique approach to studying status signalling applicable to future studies on dynamic morphological signals. PMID:24285201

  1. Racial Identity Status Profiles and Expressions of Anger in Black Americans: An Exploratory Study

    ERIC Educational Resources Information Center

    Carter, Robert T.; Pieterse, Alex L.; Smith, Sidney, III

    2008-01-01

    The relationship between Black adult racial identity status profiles and anger expression was examined. Two profiles, Undifferentiated and Immersion-Emersion, emerged. A comparison of modes of anger expression revealed that the Immersion-Emersion dominant profile was associated with higher scores on Anger-Out and lower scores on Anger-Control.…

  2. The expression status of TRX, AR, and cyclin D1 correlates with clinicopathological characteristics and ER status in breast cancer

    PubMed Central

    Huang, Weisun; Nie, Weiwei; Zhang, Wenwen; Wang, Yanru; Zhu, Aiyu; Guan, Xiaoxiang

    2016-01-01

    Background The ER signaling pathway plays a critical role in breast cancer. ER signaling pathway-related proteins, such as TRX, AR, and cyclin D1, may have an important function in breast cancer. However, the ways that they influence breast cancer development and progression are still unclear. Patients and methods A total of 101 Chinese female patients diagnosed with invasive ductal breast adenocarcinoma were retrospectively enrolled in the study. The expression levels of TRX, AR, and cyclin D1 were detected by immunohistochemistry and analyzed via correlation with clinicopathological characteristics and the expression status of ER, PR, and HER2. Results The expression status of TRX, AR, and cyclin D1 was not associated with the patient’s age, menopausal status, tumor size, or histological differentiation (P>0.05), but was positively correlated with ER and PR (P<0.001, respectively). Most (66/76, 86.8) TRX-positive patients were also HER2-positive (P=0.003). Of AR- or cyclin D1-positive patients, most had relatively earlier I–II tumor stage (P=0.005 and P=0.047, respectively) and no metastatic lymph node involvement (P=0.008 and P=0.005, respectively). Conclusion TRX was found to be positively correlated with ER and PR expression, whereas it was negatively correlated with HER2 expression. In addition, we found that the positive expression of AR and cyclin D1 was correlated with lower TNM stage and fewer metastatic lymph nodes, and it was more common in ER-positive breast cancer than in the basal-like subtype. This may indicate that AR and cyclin D1 are good predictive and prognostic factors and closely interact with ER signaling pathway. Further studies will be necessary to investigate the response and clinical outcomes of treatment targeting TRX, AR, and cyclin D1. PMID:27499632

  3. Selenoprotein N deficiency in mice is associated with abnormal lung development.

    PubMed

    Moghadaszadeh, Behzad; Rider, Branden E; Lawlor, Michael W; Childers, Martin K; Grange, Robert W; Gupta, Kushagra; Boukedes, Steve S; Owen, Caroline A; Beggs, Alan H

    2013-04-01

    Mutations in the human SEPN1 gene, encoding selenoprotein N (SepN), cause SEPN1-related myopathy (SEPN1-RM) characterized by muscle weakness, spinal rigidity, and respiratory insufficiency. As with other members of the selenoprotein family, selenoprotein N incorporates selenium in the form of selenocysteine (Sec). Most selenoproteins that have been functionally characterized are involved in oxidation-reduction (redox) reactions, with the Sec residue located at their catalytic site. To model SEPN1-RM, we generated a Sepn1-knockout (Sepn1(-/-)) mouse line. Homozygous Sepn1(-/-) mice are fertile, and their weight and lifespan are comparable to wild-type (WT) animals. Under baseline conditions, the muscle histology of Sepn1(-/-) mice remains normal, but subtle core lesions could be detected in skeletal muscle after inducing oxidative stress. Ryanodine receptor (RyR) calcium release channels showed lower sensitivity to caffeine in SepN deficient myofibers, suggesting a possible role of SepN in RyR regulation. SepN deficiency also leads to abnormal lung development characterized by enlarged alveoli, which is associated with decreased tissue elastance and increased quasi-static compliance of Sepn1(-/-) lungs. This finding raises the possibility that the respiratory syndrome observed in patients with SEPN1 mutations may have a primary pulmonary component in addition to the weakness of respiratory muscles. PMID:23325319

  4. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    SciTech Connect

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng; Sarsour, Ehab H.; Goswami, Prabhat C.

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.

  5. Selenoprotein P in seminal fluid is a novel biomarker of sperm quality.

    PubMed

    Michaelis, Marten; Gralla, Oliver; Behrends, Thomas; Scharpf, Marcus; Endermann, Tobias; Rijntjes, Eddy; Pietschmann, Nicole; Hollenbach, Birgit; Schomburg, Lutz

    2014-01-17

    Hepatically-derived selenoprotein P (SePP) transports selenium (Se) via blood to other tissues including the testes. Male Sepp-knockout mice are infertile. SePP-mediated Se transport to Sertoli cells is needed for supporting biosynthesis of the selenoenzyme glutathione peroxidase-4 (GPX4) in spermatozoa. GPX4 becomes a structural component of sperm midpiece during sperm maturation, and its expression correlates to semen quality. We tested whether SePP is also present in seminal plasma, potentially correlating to fertility parameters. Semen quality was assessed by sperm density, morphology and motility. SePP was measured by an immunoluminometric assay, and trace elements were determined by X-ray fluorescence spectroscopy. SePP levels were considerably lower in seminal plasma as compared to serum (0.4±0.1 mg/l vs. 3.5±1.0 mg/l); Se concentrations showed a similar but less pronounced difference (48.9±20.7 μg/l vs. 106.7±17.3 μg/l). Se and Zn correlated positively in seminal fluid but not in serum. Seminal plasma SePP concentrations were independent of serum SePP concentrations, but correlated positively to sperm density and fraction of vital sperm. SePP concentrations in seminal plasma of vasectomized men were similar to controls indicating that accessory sex glands are a testes-independent source of SePP. This notion was corroborated by histochemical analyses localizing SePP in epithelial cells of seminal vesicles. We conclude that SePP is not only involved in Se transport to testes supporting GPX4 biosynthesis but it also becomes secreted into seminal plasma, likely important to protect sperm during storage, genital tract passage and final journey. PMID:24361887

  6. Selenoprotein N deficiency in mice is associated with abnormal lung development

    PubMed Central

    Moghadaszadeh, Behzad; Rider, Branden E.; Lawlor, Michael W.; Childers, Martin K.; Grange, Robert W.; Gupta, Kushagra; Boukedes, Steve S.; Owen, Caroline A.; Beggs, Alan H.

    2013-01-01

    Mutations in the human SEPN1 gene, encoding selenoprotein N (SepN), cause SEPN1-related myopathy (SEPN1-RM) characterized by muscle weakness, spinal rigidity, and respiratory insufficiency. As with other members of the selenoprotein family, selenoprotein N incorporates selenium in the form of selenocysteine (Sec). Most selenoproteins that have been functionally characterized are involved in oxidation-reduction (redox) reactions, with the Sec residue located at their catalytic site. To model SEPN1-RM, we generated a Sepn1-knockout (Sepn1−/−) mouse line. Homozygous Sepn1−/− mice are fertile, and their weight and lifespan are comparable to wild-type (WT) animals. Under baseline conditions, the muscle histology of Sepn1−/− mice remains normal, but subtle core lesions could be detected in skeletal muscle after inducing oxidative stress. Ryanodine receptor (RyR) calcium release channels showed lower sensitivity to caffeine in SepN deficient myofibers, suggesting a possible role of SepN in RyR regulation. SepN deficiency also leads to abnormal lung development characterized by enlarged alveoli, which is associated with decreased tissue elastance and increased quasi-static compliance of Sepn1−/− lungs. This finding raises the possibility that the respiratory syndrome observed in patients with SEPN1 mutations may have a primary pulmonary component in addition to the weakness of respiratory muscles.—Moghadaszadeh, B., Rider B. E., Lawlor, M. W., Childers, M. K., Grange, R. W., Gupta, K., Boukedes, S. S., Owen, C. A., Beggs, A. H. Selenoprotein N deficiency in mice is associated with abnormal lung development. PMID:23325319

  7. Mutations in the selenocysteine insertion sequence–binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans

    PubMed Central

    Schoenmakers, Erik; Agostini, Maura; Mitchell, Catherine; Schoenmakers, Nadia; Papp, Laura; Rajanayagam, Odelia; Padidela, Raja; Ceron-Gutierrez, Lourdes; Doffinger, Rainer; Prevosto, Claudia; Luan, Jian’an; Montano, Sergio; Lu, Jun; Castanet, Mireille; Clemons, Nick; Groeneveld, Matthijs; Castets, Perrine; Karbaschi, Mahsa; Aitken, Sri; Dixon, Adrian; Williams, Jane; Campi, Irene; Blount, Margaret; Burton, Hannah; Muntoni, Francesco; O’Donovan, Dominic; Dean, Andrew; Warren, Anne; Brierley, Charlotte; Baguley, David; Guicheney, Pascale; Fitzgerald, Rebecca; Coles, Alasdair; Gaston, Hill; Todd, Pamela; Holmgren, Arne; Khanna, Kum Kum; Cooke, Marcus; Semple, Robert; Halsall, David; Wareham, Nicholas; Schwabe, John; Grasso, Lucia; Beck-Peccoz, Paolo; Ogunko, Arthur; Dattani, Mehul; Gurnell, Mark; Chatterjee, Krishna

    2010-01-01

    Selenium, a trace element that is fundamental to human health, is incorporated into some proteins as selenocysteine (Sec), generating a family of selenoproteins. Sec incorporation is mediated by a multiprotein complex that includes Sec insertion sequence–binding protein 2 (SECISBP2; also known as SBP2). Here, we describe subjects with compound heterozygous defects in the SECISBP2 gene. These individuals have reduced synthesis of most of the 25 known human selenoproteins, resulting in a complex phenotype. Azoospermia, with failure of the latter stages of spermatogenesis, was associated with a lack of testis-enriched selenoproteins. An axial muscular dystrophy was also present, with features similar to myopathies caused by mutations in selenoprotein N (SEPN1). Cutaneous deficiencies of antioxidant selenoenzymes, increased cellular ROS, and susceptibility to ultraviolet radiation–induced oxidative damage may mediate the observed photosensitivity. Reduced levels of selenoproteins in peripheral blood cells were associated with impaired T lymphocyte proliferation, abnormal mononuclear cell cytokine secretion, and telomere shortening. Paradoxically, raised ROS in affected subjects was associated with enhanced systemic and cellular insulin sensitivity, similar to findings in mice lacking the antioxidant selenoenzyme glutathione peroxidase 1 (GPx1). Thus, mutation of SECISBP2 is associated with a multisystem disorder with defective biosynthesis of many selenoproteins, highlighting their role in diverse biological processes. PMID:21084748

  8. Se Enhances MLCK Activation by Regulating Selenoprotein T (SelT) in the Gastric Smooth Muscle of Rats.

    PubMed

    Li, Jia-Ping; Zhou, Jing-Xuan; Wang, Qi; Gu, Gao-Qin; Yang, Shi-Jin; Li, Cheng-Ye; Qiu, Chang-Wei; Deng, Gan-Zhen; Guo, Meng-Yao

    2016-09-01

    Selenium (Se), a nutritionally essential trace element, is associated with health and disease. Selenoprotein T (SelT) was identified as a redoxin protein with a selenocystein, localizing in the endoplasmic reticulum. The myosin light chain kinase (MLCK) and myosin light chain (MLC) play key roles in the contraction process of smooth muscle. The present study was to detect the effect and mechanism of SelT on the contraction process of gastric smooth muscle. The WT rats were fed with different Se concentration diets, and Se and Ca(2+) concentrations were detected in the gastric smooth muscle. Western blot and qPCR were performed to determine SelT, CaM, MLCK, and MLC expressions. MLCK activity was measured by identifying the rates of [γ-32P]ATP incorporated into the MLC. The results showed Se and Ca(2+) concentrations were enhanced with Se intake in gastric smooth muscle tissues. With increasing Se, SelT, CaM, MLCK and MLC expressions increased, and MLCK and MLC activation improved in gastric smooth muscle tissue. The SelT RNA interference experiments showed that Ca(2+) release, MLCK activation, and MLC phosphorylation were regulated by SelT. Se affected the gastric smooth muscle constriction by regulating Ca(2+) release, MLCK activation, and MLC phosphorylation through SelT. Se plays a major role in regulating the contraction processes of gastric smooth muscle with the SelT. PMID:26779623

  9. Estrogenic status modulates aryl hydrocarbon receptor - mediated hepatic gene expression and carcinogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogenic status is thought to influence the cancer risk in women and has been reported to affect toxicity of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in animals. The objective of this study was to examine the influence of estradiol (E2) on hepatic gene expression changes mediated by 7,...

  10. Neurotensin Decreases the Proinflammatory Status of Human Skin Fibroblasts and Increases Epidermal Growth Factor Expression

    PubMed Central

    Miguel Neves, Bruno; Cruz, Maria Teresa; Carvalho, Eugénia

    2014-01-01

    Fibroblasts colonization into injured areas during wound healing (WH) is responsible for skin remodelling and is also involved in the modulation of inflammation, as fibroblasts are immunologically active. Herein, we aimed to determine neurotensin effect on the immunomodulatory profile of fibroblasts, both in homeostatic and inflammatory conditions. Neurotensin mediated responses occurred through NTR1 or NTR3 receptors, while under inflammatory conditions NTR1 expression increase seemed to modulate neurotensin responses. Among different immunomodulatory genes, CCL11, IL-8, and IL-6 were the most expressed genes, while CCL4 and EGF were the less expressed genes. After neurotensin exposure, IL-8 mRNA expression was increased while CCL11 was decreased, suggesting a proinflammatory upregulation and chemoattractant ability downregulation of fibroblasts. Under inflammatory conditions, gene expression was significantly increased. After neurotensin exposure, CCL4 and IL-6 mRNA expression were decreased while CCL11 was increased, suggesting again a decrease in the chemoattractant capacity of fibroblasts and in their proinflammatory status. Furthermore, the expression of EGF, a crucial growth factor for skin cells proliferation and WH, was increased in all conditions. Overall, neurotensin, released by nerve fibers or skin cells, may be involved in the decrease of the chemotaxis and the proinflammatory status in the proliferation and remodelling phases of WH. PMID:25180119

  11. The labour pains of biochemical selenology: the history of selenoprotein biosynthesis.

    PubMed

    Flohé, Leopold

    2009-11-01

    The serendipitous discoveries leading to the present knowledge on selenium's role in biology are reviewed. Detected in 1818 as by-product of sulphuric acid production, selenium first attracted medical attention as an industrial hazard. In parallel selenium intoxication was recognized as cause of life stock diseases. Reports on teratogenic effects and carcinogenicity of selenium followed since the middle of the past century. In 1954 first hints towards specific biological functions of selenium were contributed from microbiology, and its essentiality for mammalian life was discovered in 1957. Independent and unrelated studies led to the identification of selenium as an integral constituent of one mammalian and two bacterial enzymes in the early 70ies followed by the identification of selenocysteine in these proteins. In the 80ies, independent sequencing of selenoproteins and cloned DNAs revealed that the selenocysteine of selenoproteins is encoded by the termination codon TGA (UGA). Recoding of TGA as selenocysteine codon by secondary mRNA structures was first elucidated by molecular genetics in bacteria and later in mammals. During the 90ies, finally, the basic principles of selenoprotein synthesis were worked out by molecular biology tools. The article closes with spotlight comments on proven and potential biomedical benefits of selenium and related research deficits. PMID:19358874

  12. Neural endocannabinoid CB1 receptor expression, social status, and behavior in male European starlings.

    PubMed

    DeVries, M Susan; Cordes, Melissa A; Rodriguez, Jonathan D; Stevenson, Sharon A; Riters, Lauren V

    2016-08-01

    Many species modify behavior in response to changes in resource availability or social status; however, the neural mechanisms underlying these modifications are not well understood. Prior work in male starlings demonstrates that status-appropriate changes in behavior involve brain regions that regulate social behavior and vocal production. Endocannabinoids are ubiquitously distributed neuromodulators that are proposed to play a role in adjusting behavior to match social status. As an initial step to provide insight into this hypothesis we observed flocks of male starlings in outdoor aviaries during the breeding season. We used quantitative real-time PCR to measure expression of endocannabinoid CB1 receptors in brain regions involved in social behavior and motivation (lateral septum [LS], ventral tegmental area [VTA], medial preoptic nucleus [POM]) and vocal behavior (Area X and robust nucleus of the arcopallium; RA). Males with nesting sites sang to females and displaced other males more than males without nesting sites. They also had higher levels of CB1 receptor expression in LS and RA. CB1 expression in LS correlated positively with agonistic behaviors. CB1 expression in RA correlated positively with singing behavior. CB1 in VTA also correlated positively with singing when only singing birds were considered. These correlations nicely map onto the well-established role of LS in agonistic behavior and the known role of RA in song production and VTA in motivation and song production. Studies are now needed to precisely characterize the role of CB1 receptors in these regions in the production of status-appropriate social behaviors. PMID:27206544

  13. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    PubMed Central

    2011-01-01

    Background Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Method Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Results Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4) showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3) were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Conclusions Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue. PMID:21668942

  14. Methylation Status and Expression of BRCA2 in Epithelial Ovarian Cancers in Indonesia.

    PubMed

    Pradjatmo, Heru

    2015-01-01

    Ovarian cancer is the main cause of mortality in gynecological malignancy and extensive studies have been conducted to study the underlying molecular mechanisms. The BRCA2 gene is known to be an important tumor suppressor in ovarian cancer, thereby BRCA2 alterations may lead to cancer progression. However, the BRCA2 gene is rarely mutated, and loss of function is suspected to be mediated by epigenetic regulation. In this study we investigated the methylation status and gene expression of BRCA2 in ovarian cancer patients. Ovarian cancer pateints (n=69) were recruited and monitored for 54 months in this prospective cohort study. Clinical specimens were used to study the in situ expression of aberrant BRCA2 proteins and the methylation status of BRCA2. These parameters were then compared with clinical parameters and overall survival rate. We found that BRCA2 methylation was found in the majority of cases (98.7%). However, the methylation status was not associated with protein level expression of BRCA2 (49.3%). Therefore in addition to DNA methylation, other epigenetic mechanisms may regulate BRCA2 expresison. Our findings may become evidence of BRCA2 inactivation mechanism through DNA methylation in the Indonesian population. More importantly, from multivariate analysis, BRCA2 expression was correlated with better overall survival (HR 0.32; p=0.05). High percentage of BRCA2 methylation and correlation of BRCA2 expression with overall survival in epithelial ovarian cancer cases may lead to development of treatment modalities specifically to target methylation of BRCA genes. PMID:26745123

  15. Effect of Selenium Supplementation on Redox Status of the Aortic Wall in Young Spontaneously Hypertensive Rats

    PubMed Central

    Ruseva, Boryana; Atanasova, Milena; Tsvetkova, Reni; Betova, Tatyana; Mollova, Margarita; Alexandrova, Margarita; Laleva, Pavlina; Dimitrova, Aneliya

    2015-01-01

    Selenium (Se) is an exogenous antioxidant that performs its function via the expression of selenoproteins. The aim of this study was to explore the effect of varying Se intake on the redox status of the aortic wall in young spontaneously hypertensive rats (SHR). Sixteen male Wistar Kyoto (WKY) rats and nineteen male SHR, 16-week-old, were tested after being given diets with different Se content for eight weeks. They were divided into 4 groups: control groups of WKY NSe and SHR NSe on an adequate Se diet and groups of WKY HSe and SHR HSe that received Se supplementation. The Se nutritional status was assessed by measuring whole blood glutathione peroxidase-1 (GPx-1) activity. Serum concentration of lipid hydroperoxides and serum level of antibodies against advanced glycation end products (anti-AGEs abs) were determined. Expression of GPx-1 and endothelial nitric oxide synthase (eNOS) were examined in aortic wall. Se supplementation significantly increased GPx-1 activity of whole blood and in the aortas of WKY and SHR. Decreased lipid peroxidation level, eNOS-3 expression in the aortic wall, and serum level of anti-AGEs abs were found in SHR HSe compared with SHR NSe. In conclusion, Se supplementation improved the redox status of the aortic wall in young SHR. PMID:26473024

  16. Expressing Status and Correlation of ARID1A and Histone H2B on Breast Cancer

    PubMed Central

    Wu, Yan; Gu, Yan; Guo, Shanyu; Dai, Qiancheng; Zhang, Wei

    2016-01-01

    ARID1A is one of the important cancer-related genes and regulates transcription of certain genes by altering chromatin structure. Inactivated mutations and decreased expression of ARID1A gene have been reported in several kinds of cancer. Histone H2B is a major component of chromatin and encoded by HIST1H2BE. The goal of the study is to evaluate expressing status of ARID1A and H2B as well as their correlation on breast cancer. Gene expression profiles of ARID1A and H2B on Oncomine database are analyzed. Tissue microarray of breast cancer was used for examination of ARID1A and H2B expression by immunohistochemistry. As a result, the disagreement of ARID1A expression was found, while HIST1H2BE expression is elevated in 4 out of 5 datasets on Oncomine database. There were 15 cases (20%) of breast cancers that were positive for ARID1A. Fifty-eight out of 75 cases of breast cancer (77.3%) were highly expressed for H2B protein and 17 cases (22.7%) were low expressed for H2B protein. All cases with ARID1A expression are overlapped with H2B high expression. Among 15 cases with ARID1A and H2B coexpression, 13 are invasive ductal carcinoma and 2 are mucinous carcinoma. Our results indicate that ARID1A gene may be involved in carcinogenesis of some subtypes of breast cancer. PMID:26904685

  17. Methylation status and protein expression of RASSF1A in endometriosis

    PubMed Central

    WU, YU; ZHANG, MINGDE; ZHANG, XIAN; XU, ZHENZHOU; JIN, WEIGUO

    2016-01-01

    Ras association domain family 1A (RASSF1A) gene inactivation by promoter hypermethylation is a common event in the development of a variety of types of human cancer. Accumulated evidence has demonstrated that DNA methylation serve a critical role in the pathogenesis of endometriosis. The aim of the present study was to analyze the methylation status and protein expression of RASSF1A in endometriosis (EMS). The ectopic and corresponding eutopic endometrium tissues were collected from 45 women with EMS (EMS group) and normal endometrium tissues from 20 women without EMS (control group). The methylation status of RASSF1A was examined by methylation specific polymerase chain reaction (MSP). Immunohistochemistry was performed to measure RASSF1A protein level in endometrium tissues. In normal endometrium samples, RASSF1A protein expression was significantly higher at the secretory phase than the proliferative phase. RASSF1A protein expression in the ectopic endometrium tissues and eutopic endometrium tissues were significantly reduced than in normal endometrium (P<0.05). The frequency of aberrant methylation of RASSF1A was 55.56% in ectopic endometrium and 33.33% in paired eutopic endometrium, whereas such methylation was not detected in normal endometrium. Moreover, RASSF1A promoter hypermethylation was frequently associated with reduced expression of RASSF1A, and was common in advanced stage in ectopic endometrium of EMS. Epigenetic inactivation of RASSF1A through aberrant promoter methylation may be important in the formation and progression of EMS, and assessment of RASSF1A methylation status in eutopic endometrium may be a potentially useful biomarker to enhance the early detection of EMS. PMID:27313749

  18. The TGA codons are present in the open reading frame of selenoprotein P cDNA

    SciTech Connect

    Hill, K.E.; Lloyd, R.S.; Read, R.; Burk, R.F. )

    1991-03-11

    The TGA codon in DNA has been shown to direct incorporation of selenocysteine into protein. Several proteins from bacteria and animals contain selenocysteine in their primary structures. Each of the cDNA clones of these selenoproteins contains one TGA codon in the open reading frame which corresponds to the selenocysteine in the protein. A cDNA clone for selenoprotein P (SeP), obtained from a {gamma}ZAP rat liver library, was sequenced by the dideoxy termination method. The correct reading frame was determined by comparison of the deduced amino acid sequence with the amino acid sequence of several peptides from SeP. Using SeP labelled with {sup 75}Se in vivo, the selenocysteine content of the peptides was verified by the collection of carboxymethylated {sup 77}Se-selenocysteine as it eluted from the amino acid analyzer and determination of the radioactivity contained in the collected samples. Ten TGA codons are present in the open reading frame of the cDNA. Peptide fragmentation studies and the deduced sequence indicate that selenium-rich regions are located close to the carboxy terminus. Nine of the 10 selenocysteines are located in the terminal 26% of the sequence with four in the terminal 15 amino acids. The deduced sequence codes for a protein of 385 amino acids. Cleavage of the signal peptide gives the mature protein with 366 amino acids and a calculated mol wt of 41,052 Da. Searches of PIR and SWISSPROT protein databases revealed no similarity with glutathione peroxidase or other selenoproteins.

  19. Use of stable isotopic selenium as a tracer to follow incorporation of selenium into selenoproteins

    SciTech Connect

    Finley, J.W.; Vanderpool, R.A.; Korynta, E.

    1995-12-01

    Stable isotopes of selenium (Se) have been used in human studies to measure Se absorption, retention and excretion. The purpose of this study was to examine whether stable Se could also be used to follow the incorporation of Se into selenoproteins and whether selenoproteins are labeled with stable isotopes the same way they are with radioactive Se. Rats fed either a Se-deficient or a high-Se diet were injected with either a radioactive ({sup 75}Se) or a stable isotope of Se ({sup 77}Se), and the liver cytosol was chromatographed on Sephadex G-200. Compared with {sup 75}Se, a greater percentage of {sup 77}Se was incorporated into cytosol, but the distribution and the effect of dietary Se was similar for both isotopes. New Zealand long-eared rabbits were also injected with either {sup 77}Se or {sup 75}Se, and the plasma was chromatographed. More of the {sup 75}Se was incorporated into the plasma, but again the patterns of incorporation were similar for both isotopes. Plasma from a male subject who ingested 60 {mu}g of {sup 77}Se was chromatographed, and the stable Se was detected in column fractions and showed a distribution similar to that observed for rabbit plasma. Finally, a polyacrylamide gel electrophoresis (PAGE) method was developed that allowed loading of sufficient protein to analyze for {sup 77}Se in individual protein fractions. The distribution of {sup 77}Se and {sup 75}Se in rabbit plasma was similar. Human plasma was electrophoresed by a similar method and peaks of 56 and 23 kDa were detected. These data show that stable isotopes of Se can be used for selenoprotein production in the same way as radioactive isotopes. They also show that, when physiological amounts of stable Se are ingested by humans, the isotope can be detected in blood-borne proteins separated by column chromatography and PAGE. 28 refs., 5 figs.

  20. Profiling status epilepticus-induced changes in hippocampal RNA expression using high-throughput RNA sequencing.

    PubMed

    Hansen, Katelin F; Sakamoto, Kensuke; Pelz, Carl; Impey, Soren; Obrietan, Karl

    2014-01-01

    Status epilepticus (SE) is a life-threatening condition that can give rise to a number of neurological disorders, including learning deficits, depression, and epilepsy. Many of the effects of SE appear to be mediated by alterations in gene expression. To gain deeper insight into how SE affects the transcriptome, we employed the pilocarpine SE model in mice and Illumina-based high-throughput sequencing to characterize alterations in gene expression from the induction of SE, to the development of spontaneous seizure activity. While some genes were upregulated over the entire course of the pathological progression, each of the three sequenced time points (12-hour, 10-days and 6-weeks post-SE) had a largely unique transcriptional profile. Hence, genes that regulate synaptic physiology and transcription were most prominently altered at 12-hours post-SE; at 10-days post-SE, marked changes in metabolic and homeostatic gene expression were detected; at 6-weeks, substantial changes in the expression of cell excitability and morphogenesis genes were detected. At the level of cell signaling, KEGG analysis revealed dynamic changes within the MAPK pathways, as well as in CREB-associated gene expression. Notably, the inducible expression of several noncoding transcripts was also detected. These findings offer potential new insights into the cellular events that shape SE-evoked pathology. PMID:25373493

  1. Mutant p53 protein expression and antioxidant status deficiency in breast cancer

    PubMed Central

    Milicevic, Zorka; Kasapovic, Jelena; Gavrilovic, Ljubica; Milovanovic, Zorka; Bajic, Vladan; Spremo-Potparevic, Biljana

    2014-01-01

    It is well recognized that cancers develop and grow as a result of disordered function of tumor suppressor genes and oncogenes, which may be exploited for screening purposes. Extensive evidence indicated tumor suppressor protein p53 as candidate marker for mutation identification. We have investigated mutant p53 protein expression in human breast tumors in relation to antioxidant status deficiency. The study included 100 breast cancer patients. p53 protein expression was evaluated by Western blot assay and immunostaining using a CM-1, DO-7 and Pab240 antibodies. Antioxidant parameters and lipid peroxidation were estimated by biochemical analyses. Western blotting with epitopespecific monoclonal antibody Pab240 strongly suggests that nuclear extracts from breast cancer cells express mutant forms of p53. It is of interest that the mutant forms of p53 overexpression in conjunction with the appearance of nuclear bodies are observed in highly aggressive carcinomas. Expression of isoform Δp53 (45 kDa) and isoform of ~ 29 kDa were more common in cases with LN metastasis. These studies point out the molecular consequences of oxidative stress (lipid peroxides, LP, p<0.001) and antioxidant status deficiency (copper, zinc superoxid dismutase, SOD, p<0.001; catalase, CAT, p<0.01; glutathione reductase, GR, p<0.001; glutathione, GSH, p<0.05) and indicate the importance of p53 mutation as the commonest genetic alteration detected in breast cancer cells. The expression of mutant p53 is correlated to increased lipid peroxides (0.346, p<0.05 ) and lowered antioxidant activity of CAT (- 0.437, p<0.01) in the breast cancer patients. PMID:26417293

  2. Conserved nucleotide sequences in the open reading frame and 3' untranslated region of selenoprotein P mRNA.

    PubMed Central

    Hill, K E; Lloyd, R S; Burk, R F

    1993-01-01

    Rat liver selenoprotein P contains 10 selenocysteine residues in its primary structure (deduced). It is the only selenoprotein characterized to date that has more than one selenocysteine residue. Selenoprotein P cDNA has been cloned from human liver and heart cDNA libraries and sequenced. The open reading frames are identical and contain a signal peptide, indicating that the protein is secreted by both organs and is therefore not exclusively produced in the liver. Ten selenocysteine residues (deduced) are present. Comparison of the open reading frame of the human cDNA with the rat cDNA reveals a 69% identity of the nucleotide sequence and 72% identity of the deduced amino acid sequence. Two regions in the 3' untranslated portion have high conservation between human and rat. Each of these regions contains a predicted stable stem-loop structure similar to the single stem-loop structures reported in 3' untranslated regions of type I iodothyronine 5'-deiodinase and glutathione peroxidase. The stem-loop structure of type I iodothyronine 5'-deiodinase has been shown to be necessary for incorporation of the selenocysteine residue at the UGA codon. Because only two stem-loop structures are present in the 3' untranslated region of selenoprotein P mRNA, it can be concluded that a separate stem-loop structure is not required for each selenocysteine residue. Images PMID:8421687

  3. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors

    PubMed Central

    Falcicchia, Chiara; Trempat, Pascal; Binaschi, Anna; Perrier-Biollay, Coline; Roncon, Paolo; Soukupova, Marie; Berthommé, Hervé; Simonato, Michele

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies. PMID:26954758

  4. Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P.

    PubMed

    Sasakura, C; Suzuki, K T

    1998-09-01

    The interaction between transition metals (Ag+, Cd2+ and Hg2+) and selenium (Se) in the bloodstream was studied in vitro by means of the HPLC--inductively coupled argon plasma-mass spectrometry (ICP MS) method. Transition metal ions and selenide (produced in vitro from selenite in the presence of glutathione) or sulfide (Na2S) formed a (metal-Se/S) complex, which then bound to a plasma protein, selenoprotein P (Sel P), to form a ternary complex, (metal-Se/S)-Sel P. The molar ratios of metals to Se were 1:1 for Hg/Se and Cd/Se, but either 1:1 or 2:1 for Ag/Se, depending on the ratio of their doses. The results indicate that the interaction between transition metals and Se occurs through the general mechanism, i.e., transition metal ions and selenide form the unit complex (metal-Se)n, and then the complex binds to selenoprotein P to form the ternary complex ¿(metal-Se)n¿m--seleno-protein P in the bloodstream. PMID:9833321

  5. Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage

    PubMed Central

    Barrett, Caitlyn W.; Reddy, Vishruth K.; Short, Sarah P.; Motley, Amy K.; Lintel, Mary K.; Bradley, Amber M.; Freeman, Tanner; Vallance, Jefferson; Ning, Wei; Parang, Bobak; Poindexter, Shenika V.; Fingleton, Barbara; Chen, Xi; Washington, Mary K.; Wilson, Keith T.; Shroyer, Noah F.; Hill, Kristina E.; Burk, Raymond F.; Williams, Christopher S.

    2015-01-01

    Patients with inflammatory bowel disease are at increased risk for colon cancer due to augmented oxidative stress. These patients also have compromised antioxidant defenses as the result of nutritional deficiencies. The micronutrient selenium is essential for selenoprotein production and is transported from the liver to target tissues via selenoprotein P (SEPP1). Target tissues also produce SEPP1, which is thought to possess an endogenous antioxidant function. Here, we have shown that mice with Sepp1 haploinsufficiency or mutations that disrupt either the selenium transport or the enzymatic domain of SEPP1 exhibit increased colitis-associated carcinogenesis as the result of increased genomic instability and promotion of a protumorigenic microenvironment. Reduced SEPP1 function markedly increased M2-polarized macrophages, indicating a role for SEPP1 in macrophage polarization and immune function. Furthermore, compared with partial loss, complete loss of SEPP1 substantially reduced tumor burden, in part due to increased apoptosis. Using intestinal organoid cultures, we found that, compared with those from WT animals, Sepp1-null cultures display increased stem cell characteristics that are coupled with increased ROS production, DNA damage, proliferation, decreased cell survival, and modulation of WNT signaling in response to H2O2-mediated oxidative stress. Together, these data demonstrate that SEPP1 influences inflammatory tumorigenesis by affecting genomic stability, the inflammatory microenvironment, and epithelial stem cell functions. PMID:26053663

  6. Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage.

    PubMed

    Barrett, Caitlyn W; Reddy, Vishruth K; Short, Sarah P; Motley, Amy K; Lintel, Mary K; Bradley, Amber M; Freeman, Tanner; Vallance, Jefferson; Ning, Wei; Parang, Bobak; Poindexter, Shenika V; Fingleton, Barbara; Chen, Xi; Washington, Mary K; Wilson, Keith T; Shroyer, Noah F; Hill, Kristina E; Burk, Raymond F; Williams, Christopher S

    2015-07-01

    Patients with inflammatory bowel disease are at increased risk for colon cancer due to augmented oxidative stress. These patients also have compromised antioxidant defenses as the result of nutritional deficiencies. The micronutrient selenium is essential for selenoprotein production and is transported from the liver to target tissues via selenoprotein P (SEPP1). Target tissues also produce SEPP1, which is thought to possess an endogenous antioxidant function. Here, we have shown that mice with Sepp1 haploinsufficiency or mutations that disrupt either the selenium transport or the enzymatic domain of SEPP1 exhibit increased colitis-associated carcinogenesis as the result of increased genomic instability and promotion of a protumorigenic microenvironment. Reduced SEPP1 function markedly increased M2-polarized macrophages, indicating a role for SEPP1 in macrophage polarization and immune function. Furthermore, compared with partial loss, complete loss of SEPP1 substantially reduced tumor burden, in part due to increased apoptosis. Using intestinal organoid cultures, we found that, compared with those from WT animals, Sepp1-null cultures display increased stem cell characteristics that are coupled with increased ROS production, DNA damage, proliferation, decreased cell survival, and modulation of WNT signaling in response to H2O2-mediated oxidative stress. Together, these data demonstrate that SEPP1 influences inflammatory tumorigenesis by affecting genomic stability, the inflammatory microenvironment, and epithelial stem cell functions. PMID:26053663

  7. Regulation of Selenocysteine Incorporation into the Selenium Transport Protein, Selenoprotein P*

    PubMed Central

    Shetty, Sumangala P.; Shah, Ravi; Copeland, Paul R.

    2014-01-01

    Selenoproteins are unique as they contain selenium in their active site in the form of the 21st amino acid selenocysteine (Sec), which is encoded by an in-frame UGA stop codon. Sec incorporation requires both cis- and trans-acting factors, which are known to be sufficient for Sec incorporation in vitro, albeit with low efficiency. However, the abundance of the naturally occurring selenoprotein that contains 10 Sec residues (SEPP1) suggests that processive and efficient Sec incorporation occurs in vivo. Here, we set out to study native SEPP1 synthesis in vitro to identify factors that regulate processivity and efficiency. Deletion analysis of the long and conserved 3′-UTR has revealed that the incorporation of multiple Sec residues is inherently processive requiring only the SECIS elements but surprisingly responsive to the selenium concentration. We provide evidence that processive Sec incorporation is linked to selenium utilization and that reconstitution of known Sec incorporation factors in a wheat germ lysate does not permit multiple Sec incorporation events, thus suggesting a role for yet unidentified mammalian-specific processes or factors. The relationship between our findings and the channeling theory of translational efficiency is discussed. PMID:25063811

  8. Dopamine quinone modifies and decreases the abundance of the mitochondrial selenoprotein glutathione peroxidase 4.

    PubMed

    Hauser, David N; Dukes, April A; Mortimer, Amanda D; Hastings, Teresa G

    2013-12-01

    Oxidative stress and mitochondrial dysfunction are known to contribute to the pathogenesis of Parkinson's disease. Dopaminergic neurons may be more sensitive to these stressors because they contain dopamine (DA), a molecule that oxidizes to the electrophilic dopamine quinone (DAQ) which can covalently bind nucleophilic amino acid residues such as cysteine. The identification of proteins that are sensitive to covalent modification and functional alteration by DAQ is of great interest. We have hypothesized that selenoproteins, which contain a highly nucleophilic selenocysteine residue and often play vital roles in the maintenance of neuronal viability, are likely targets for the DAQ. Here we report the findings of our studies on the effect of DA oxidation and DAQ on the mitochondrial antioxidant selenoprotein glutathione peroxidase 4 (GPx4). Purified GPx4 could be covalently modified by DAQ, and the addition of DAQ to rat testes lysate resulted in dose-dependent decreases in GPx4 activity and monomeric protein levels. Exposing intact rat brain mitochondria to DAQ resulted in similar decreases in GPx4 activity and monomeric protein levels as well as detection of multiple forms of DA-conjugated GPx4 protein. Evidence of both GPx4 degradation and polymerization was observed following DAQ exposure. Finally, we observed a dose-dependent loss of mitochondrial GPx4 in differentiated PC12 cells treated with dopamine. Our findings suggest that a decrease in mitochondrial GPx4 monomer and a functional loss of activity may be a contributing factor to the vulnerability of dopaminergic neurons in Parkinson's disease. PMID:23816523

  9. Effect of BRAF mutational status on expression profiles in conventional papillary thyroid carcinomas

    PubMed Central

    2015-01-01

    Background Whereas 40 % to 70 % of papillary thyroid carcinomas (PTCs) are characterized by a BRAF mutation (BRAFmut), unified biomarkers for the genetically heterogeneous group of BRAF wild type (BRAFwt) PTCs are not established yet. Using state-of-the-art technology we compared RNA expression profiles between conventional BRAFwt and BRAFmut PTCs. Methods Microarrays covering 36,079 reference sequences were used to generate whole transcript expression profiles in 11 BRAFwt PTCs including five micro PTCs, 14 BRAFmut PTCs, and 7 normal thyroid specimens. A p-value with a false discovery rate (FDR) < 0.05 and a fold change > 2 were used as a threshold of significance for differential expression. Network and pathway utilities were employed to interpret significance of expression data. BRAF mutational status was established by direct sequencing the hotspot region of exon 15. Results We identified 237 annotated genes that were significantly differentially expressed between BRAFwt and BRAFmut PTCs. Of these, 110 genes were down- and 127 were upregulated in BRAFwt compared to BRAFmut PTCs. A number of molecules involved in thyroid hormone metabolism including thyroid peroxidase (TPO) were differentially expressed between both groups. Among cancer-associated molecules were ERBB3 that was downregulated and ERBB4 that was upregulated in BRAFwt PTCs. Two microRNAs were significantly differentially expressed of which miR492 bears predicted functions relevant to thyroid-specific molecules. The protein kinase A (PKA) and the G protein-coupled receptor pathways were identified as significantly related signaling cascades to the gene set of 237 genes. Furthermore, a network of interacting molecules was predicted on basis of the differentially expressed gene set. Conclusions The expression study focusing on affected genes that are differentially expressed between BRAFwt and BRAFmut conventional PTCs identified a number of molecules which are connected in a network and affect

  10. Cryptochrome expression in the eye of migratory birds depends on their migratory status.

    PubMed

    Fusani, Leonida; Bertolucci, Cristiano; Frigato, Elena; Foà, Augusto

    2014-03-15

    Most passerine birds are nocturnal migrants. When kept in captivity during the migratory periods, these species show a migratory restlessness, or Zugunruhe. Recent studies on Sylvia warblers have shown that Zugunruhe is an excellent proxy of migratory disposition. Passerine birds can use the Earth's geomagnetic field as a compass to keep their course during their migratory flight. Among the candidate magnetoreceptive mechanisms are the cryptochromes, flavoproteins located in the retina that are supposed to perceive the magnetic field through a light-mediated process. Previous work has suggested that expression of Cryptochrome 1 (Cry1) is increased in migratory birds compared with non-migratory species. Here we tested the hypothesis that Cry1 expression depends on migratory status. Blackcaps Sylvia atricapilla were caught before fall migration and held in registration cages. When the birds were showing robust Zugunruhe, we applied a food deprivation protocol that simulates a long migratory flight. When the birds were refed after 2 days, their Zugunruhe decreased substantially, as is expected from birds that would interrupt migration for a refuelling stopover. We found that Cry1 expression was higher at night than during daytime in birds showing Zugunruhe, whereas in birds that underwent the fasting-and-refeeding protocol and reduced their levels of Zugunruhe, night Cry1 expression decreased to daytime levels. Our work shows that Cry1 expression is dependent on the presence of Zugunruhe and not on species-specific or seasonal factors, or on the birds being active versus inactive. These results support the hypothesis that cryptochromes underlie magnetoreceptive mechanisms in birds. PMID:24622895

  11. TP53 status regulates ACSL5-induced expression of mitochondrial mortalin in enterocytes and colorectal adenocarcinomas.

    PubMed

    Klaus, Christina; Kaemmerer, Elke; Reinartz, Andrea; Schneider, Ursula; Plum, Patrick; Jeon, Min Kyung; Hose, Josephine; Hartmann, Franziska; Schnölzer, Martina; Wagner, Norbert; Kopitz, Jürgen; Gassler, Nikolaus

    2014-07-01

    Acyl-CoA synthetase 5 (ACSL5), a mitochondrially localized enzyme, catalyzes the synthesis of long-chain fatty acid thioesters and is physiologically involved in pro-apoptotic sensing of enterocytes. The aim of the present study is to identify an ACSL5-dependent regulation of mitochondrially expressed proteins and the characterization of related pathways in normal and diseased human intestinal mucosa. Proteomics of isolated mitochondria from ACSL5 transfectants and CaCo2 controls were performed. ACSL5-dependent protein synthesis was verified with quantitative reverse transcription plus the polymerase chain reaction, Western blotting, short-interfering-RNA-mediated gene silencing and additional cell culture experiments. Lipid changes were analyzed with tandem mass spectrometry. ACSL5-related pathways were characterized in normal mucosa and sporadic adenocarcinomas of the human intestine. In CaCo2 cells transfected with ACSL5, mortalin (HSPA9) was about two-fold increased in mitochondria, whereas cytoplasmic mortalin levels were unchanged. Disturbance of acyl-CoA/sphingolipid metabolism, induced by ACSL5 over-expression, was characterized as crucial. ACSL5-related over-expression of mitochondrial mortalin was found in HEK293 and Lovo (wild-type TP53 [tumor protein p53]) and CaCo2 (p53-negative; TP53 mutated) cells but not in Colo320DM cells (mutated TP53). In normal human intestinal mucosa, an increasing gradient of both ACSL5 and mortalin from bottom to top was observed, whereas p53 (wild-type TP53) decreased. In sporadic intestinal adenocarcinomas with strong p53 immunostaining (mutated TP53), ACSL5-related mortalin expression was heterogeneous. ACSL5-induced mitochondrial mortalin expression is assumed to be a stress response to ACSL5-related changes in lipid metabolism and is regulated by the TP53 status. Uncoupling of ACSL5 and mitochondrial mortalin by mutated TP53 could be important in colorectal carcinogenesis. PMID:24770931

  12. Steroid receptor expression in the fish inner ear varies with sex, social status, and reproductive state

    PubMed Central

    2010-01-01

    Background Gonadal and stress-related steroid hormones are known to influence auditory function across vertebrates but the cellular and molecular mechanisms responsible for steroid-mediated auditory plasticity at the level of the inner ear remain unknown. The presence of steroid receptors in the ear suggests a direct pathway for hormones to act on the peripheral auditory system, but little is known about which receptors are expressed in the ear or whether their expression levels change with internal physiological state or external social cues. We used qRT-PCR to measure mRNA expression levels of multiple steroid receptor subtypes (estrogen receptors: ERα, ERβa, ERβb; androgen receptors: ARα, ARβ; corticosteroid receptors: GR2, GR1a/b, MR) and aromatase in the main hearing organ of the inner ear (saccule) in the highly social African cichlid fish Astatotilapia burtoni, and tested whether these receptor levels were correlated with circulating steroid concentrations. Results We show that multiple steroid receptor subtypes are expressed within the main hearing organ of a single vertebrate species, and that expression levels differ between the sexes. We also show that steroid receptor subtype-specific changes in mRNA expression are associated with reproductive phase in females and social status in males. Sex-steroid receptor mRNA levels were negatively correlated with circulating estradiol and androgens in both males and females, suggesting possible ligand down-regulation of receptors in the inner ear. In contrast, saccular changes in corticosteroid receptor mRNA levels were not related to serum cortisol levels. Circulating steroid levels and receptor subtype mRNA levels were not as tightly correlated in males as compared to females, suggesting different regulatory mechanisms between sexes. Conclusions This is the most comprehensive study of sex-, social-, and reproductive-related steroid receptor mRNA expression in the peripheral auditory system of any single

  13. Early embryonic failure: Expression and imprinted status of candidate genes on human chromosome 21

    SciTech Connect

    Sherman, L.S.; Bennett, P.R.; Moore, G.E.

    1994-09-01

    Two cases of maternal uniparental (hetero)disomy for human chromosome 21 (mUPD21) have been identified in a systematic search for UPD in 23 cases of early embryonic failure (EEF). Bi-parental origin of the other chromosome pairs was confirmed using specific VNTR probes or dinucleotide repeat analysis. Both maternally and paternally derived isochromosomes 21q have previously been identified in two individuals with normal phenotypes. Full UPD21 has a different mechanism of origin than uniparental isochromosome 21q and its effect on imprinted genes and phenotypic outcome will therefore not necessarily be the same. EEF associated with mUPD21 suggests that developmentally important genes on HSA 21 may be imprinted such that they are only expressed from either the maternally or paternally derived alleles. We have searched for monoallelic expression of candidate genes on HSA 21 in human pregnancy (CBS, IFNAR, COL6A1) using intragenic DNA polymorphisms. These genes were chosen either because their murine homologues lie in imprinted regions or because they are potentially important in embryogenesis. Once imprinted candidate genes have been identified, their methylation status and expression in normal, early embryonic failure and uniparental disomy 21 pregnancies will be studied. At the same time, a larger number of cases of EEF are being examined to further investigate the incidence of UPD21 in this group.

  14. An essential non-Watson-Crick base pair motif in 3'UTR to mediate selenoprotein translation.

    PubMed Central

    Walczak, R; Carbon, P; Krol, A

    1998-01-01

    The SECIS element is an RNA hairpin in the 3'UTR of selenoprotein mRNAs required for decoding UGA selenocysteine codons. Our experimentally derived 2D structure model for the SECIS RNA revealed the conservation of four consecutive non-Watson-Crick base pairs, with a central G.A/A.G tandem. The present study was dedicated to gaining insight into the role of this quartet of base pairs. The effects of mutations introduced into the SECIS quartet of the glutathione peroxidase (GPx) cDNA, an enzyme with selenocysteine in its active center, were reported in vivo by the GPx activity. The detrimental consequence of an all-Watson-Crick mutant quartet disclosed the paramount importance of the non-Watson-Crick base pairs for GPx activity. Next, structure probing established that base pair changes in the central G.A/A.G tandem, predicted by the model to be structurally unfavorable, effectively led to local opening of the helix at the quartet. A concomitant abolition of GPx activity was observed, arising from translational impairment of full-length GPx. In contrast, an isosteric base pair replacement in the tandem did not affect base pairing in the quartet, leading to an almost wt GPx activity. Collectively, the data provided conclusive evidence for the functional relevance of these non-Watson-Crick base pairs in vivo, thus identifying a noncanonical RNA motif crucial to SECIS function in mediating selenoprotein translation. Within the quartet, the prominent requirement for the central G.A/A.G tandem is highlighted, our previous structural model and the mutagenesis data presented here strongly arguing in favor of a sheared arrangement for the G.A base pairs. The SECIS RNA is therefore another member to be added to the growing list of RNAs containing building blocks of non-Watson-Crick base pairs, required for structure and/or function. PMID:9436910

  15. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals.

    PubMed

    Goodrich, Jaclyn M; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

    2011-12-01

    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione S-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n=515), and total mercury content was measured. Average urine (1.06±1.24 microg/L) and hair mercury levels (0.49±0.63 microg/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5'), or both (SEPP1 3'UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). PMID:21967774

  16. Inhibition of Cellular Methyltransferases Promotes Endothelial Cell Activation by Suppressing Glutathione Peroxidase 1 Protein Expression*

    PubMed Central

    Barroso, Madalena; Florindo, Cristina; Kalwa, Hermann; Silva, Zélia; Turanov, Anton A.; Carlson, Bradley A.; de Almeida, Isabel Tavares; Blom, Henk J.; Gladyshev, Vadim N.; Hatfield, Dolph L.; Michel, Thomas; Castro, Rita; Loscalzo, Joseph; Handy, Diane E.

    2014-01-01

    S-Adenosylhomocysteine (SAH) is a negative regulator of most methyltransferases and the precursor for the cardiovascular risk factor homocysteine. We have previously identified a link between the homocysteine-induced suppression of the selenoprotein glutathione peroxidase 1 (GPx-1) and endothelial dysfunction. Here we demonstrate a specific mechanism by which hypomethylation, promoted by the accumulation of the homocysteine precursor SAH, suppresses GPx-1 expression and leads to inflammatory activation of endothelial cells. The expression of GPx-1 and a subset of other selenoproteins is dependent on the methylation of the tRNASec to the Um34 form. The formation of methylated tRNASec facilitates translational incorporation of selenocysteine at a UGA codon. Our findings demonstrate that SAH accumulation in endothelial cells suppresses the expression of GPx-1 to promote oxidative stress. Hypomethylation stress, caused by SAH accumulation, inhibits the formation of the methylated isoform of the tRNASec and reduces GPx-1 expression. In contrast, under these conditions, the expression and activity of thioredoxin reductase 1, another selenoprotein, is increased. Furthermore, SAH-induced oxidative stress creates a proinflammatory activation of endothelial cells characterized by up-regulation of adhesion molecules and an augmented capacity to bind leukocytes. Taken together, these data suggest that SAH accumulation in endothelial cells can induce tRNASec hypomethylation, which alters the expression of selenoproteins such as GPx-1 to contribute to a proatherogenic endothelial phenotype. PMID:24719327

  17. Reproductive Status Regulates Expression of Sex Steroid and GnRH Receptors in the Olfactory Bulb

    PubMed Central

    Fernald, Russell D.

    2010-01-01

    Neuromodulators including gonadotropin-releasing hormone (GnRH) and sex steroids help integrate an animal's internal physiological state with incoming external cues, and can have profound effects on the processing of behaviorally-relevant information, particularly from the olfactory system. While GnRH and steroid receptors are present in olfactory processing regions across vertebrates, little is known about whether their expression levels change with internal physiological state or external social cues. We used qRT-PCR to measure mRNA levels of two GnRH receptors (GnRH-R1, GnRH-R2), five sex steroid receptors (estrogen receptors: ERα, ERβa, ERβb; androgen receptors: ARα, ARβ), and aromatase in the olfactory bulb of the highly social African cichlid fish Astatotilapia burtoni. We asked whether these receptor levels changed with reproductive condition in females, or with social status, which regulates reproductive capacity in males. Our results reveal that mRNA levels of multiple sex steroid, GnRH receptor subtypes, and aromatase in the olfactory bulb vary with sex, social status in males, and reproductive condition in females, which highlights the potential importance of changing receptor levels in fine-tuning the olfactory system during the reproductive cycle. Further, steroid receptor mRNA levels were positively correlated with circulating steroid levels in males, but negatively correlated in females, suggesting different regulatory control between sexes. These results provide support for the hypothesis that the first-order olfactory relay station is a substrate for both GnRH and sex steroid modulation, and suggest that changes in receptor levels could be an important mechanism for regulating reproductive, social, and seasonal plasticity in olfactory perception observed across vertebrates. PMID:20466023

  18. Cyclin B1 Expression and p53 Status in Squamous Cell Carcinomas of the Head and Neck

    PubMed Central

    Hoffmann, Thomas K.; Trellakis, Sokratis; Okulicz, Kornelia; Schuler, Patrick; Greve, Jens; Arnolds, Judith; Bergmann, Christoph; Bas, Murat; Lang, Stephan; Lehnerdt, Götz; Brandau, Sven; Mattheis, Stefan; Scheckenbach, Kathrin; Finn, Oliviera J.; Whiteside, Theresa L.; Sonkoly, Enikö

    2013-01-01

    Background The cyclin B1/CDC2 complex governs entry into mitosis by regulating the G2/M checkpoint, and it can be repressed by the tumor suppressor p53. We aimed to determine cyclin B1 expression in squamous cell carcinomas of the head and neck (SCCHN) and correlate it with p53 status and clinicopathological parameters. Patients and Methods Cyclin B1 and p53 protein expression was analyzed by immunohistochemistry, and p53 mutation analyses were performed. Results Cytoplasmic expression of cyclin B1 was found in all 26 SCCHN studied. In contrast, nuclear staining was seen in the basal layers of normal mucosa. A total of 46% of tumors showed high cyclin B1 expression. p53 was overexpressed in 53.8% of cases, and of these 79% carried a p53 gene mutation. High cyclin B1 expression significantly correlated with the high tumor grade, but not with gender, tumor size, nodal status, local tumor recurrence or p53 expression. Conclusion Cyclin B1 is frequently overexpressed in SCCHN, and its high expression is significantly associated with a high tumor grade. These data suggest that cyclin B1 may serve as a potential prognostic biomarker in SCCHN. PMID:21965721

  19. The Promoter Methylation Status and mRNA Expression Levels of CTCF and SIRT6 in Sporadic Breast Cancer

    PubMed Central

    Wang, Da; Zhang, Xuemei

    2014-01-01

    Promoter hypermethylation causes gene silencing and is thought to be an early event in carcinogenesis. This study was to detect promoter methylation status and mRNA expression levels of CCCTC-binding factor (CTCF) and sirtuin 6 (SIRT6), and to explore the relationship between methylation and mRNA expression in breast cancer patient samples. Promoter methylation analysis and expression profile analysis of two genes were performed by methylation-specific PCR, bisulfite sequencing PCR, and quantitative real-time PCR in cancer lesions and matched normal tissues. The promoter region of CTCF has not been hypermethylated in all patient samples. In contrast, methylation of SIRT6 gene was present in invasive cancers (93.5%) and matched normal tissues (96.8%) from 62 patients. Promoter hypermethylation of SIRT6 was also observed in ductal carcinoma in situ (three of three) and matched normal tissues (two of three). mRNA expression of CTCF and SIRT6 in invasive tumors showed a lower level than that in paired normal tissues (p=0.008 and p=0.030, respectively). The fold change values of CTCF expression were significantly lower in invasive ductal cancer lesions with Ki-67-positive status (p=0.042). In conclusion, our data showed that the methylation status of CTCF and SIRT6 promoter regions was not statistically different in cancer lesions compared with matched normal tissues. No significant association between promoter methylation status and expression profiles of CTCF and SIRT6 was found in invasive breast cancers. PMID:24842653

  20. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration

    PubMed Central

    Burk, Raymond F.; Hill, Kristina E.; Motley, Amy K.; Winfrey, Virginia P.; Kurokawa, Suguru; Mitchell, Stuart L.; Zhang, Wanqi

    2014-01-01

    Selenoprotein P (Sepp1) and its receptor, apolipoprotein E receptor 2 (apoER2), account for brain retaining selenium better than other tissues. The primary sources of Sepp1 in plasma and brain are hepatocytes and astrocytes, respectively. ApoER2 is expressed in varying amounts by tissues; within the brain it is expressed primarily by neurons. Knockout of Sepp1 or apoER2 lowers brain selenium from ∼120 to ∼50 ng/g and leads to severe neurodegeneration and death in mild selenium deficiency. Interactions of Sepp1 and apoER2 that protect against this injury have not been characterized. We studied Sepp1, apoER2, and brain selenium in knockout mice. Immunocytochemistry showed that apoER2 mediates Sepp1 uptake at the blood-brain barrier. When Sepp1−/− or apoER2−/− mice developed severe neurodegeneration caused by mild selenium deficiency, brain selenium was ∼35 ng/g. In extreme selenium deficiency, however, brain selenium of ∼12 ng/g was tolerated when both Sepp1 and apoER2 were intact in the brain. These findings indicate that tandem Sepp1-apoER2 interactions supply selenium for maintenance of brain neurons. One interaction is at the blood-brain barrier, and the other is within the brain. We postulate that Sepp1 inside the blood-brain barrier is taken up by neurons via apoER2, concentrating brain selenium in them.—Burk, R. F., Hill, K. E., Motley, A. K., Winfrey, V. P., Kurokawa, S., Mitchell, S. L., Zhang, W. Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. PMID:24760755

  1. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals

    SciTech Connect

    Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

    2011-12-15

    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione s-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n = 515), and total mercury content was measured. Average urine (1.06 {+-} 1.24 ug/L) and hair mercury levels (0.49 {+-} 0.63 ug/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5 Prime ), or both (SEPP1 3 Prime UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). -- Highlights: Black-Right-Pointing-Pointer We explore the influence of 15 polymorphisms on urine and hair Hg levels. Black-Right-Pointing-Pointer Urine and hair Hg levels in dental professionals were similar to the US population. Black-Right-Pointing-Pointer GSTT1 and SEPP1 polymorphisms associated with urine Hg levels. Black

  2. Single-Cell Cytokine Gene Expression in Peripheral Blood Cells Correlates with Latent Tuberculosis Status

    PubMed Central

    Lakehal, Karim; Davidow, Amy L.; Pine, Richard; Tyagi, Sanjay; Bushkin, Yuri; Lardizabal, Alfred; Gennaro, Maria Laura

    2015-01-01

    RNA flow cytometry (FISH-Flow) achieves high-throughput measurement of single-cell gene expression by combining in-situ nucleic acid hybridization with flow cytometry. We tested whether antigen-specific T-cell responses detected by FISH-Flow correlated with latent tuberculosis infection (LTBI), a condition affecting one-third of the world population. Peripheral-blood mononuclear cells from donors, identified as positive or negative for LTBI by current medical practice, were stimulated ex vivo with mycobacterial antigen. IFNG and IL2 mRNA production was assayed by FISH-Flow. Concurrently, immunophenotypes of the cytokine mRNA-positive cells were characterized by conventional, antibody-based staining of cell-surface markers. An association was found between donor LTBI status and antigen-specific induction of IFNG and IL2 transcripts. Induction of these cytokine genes, which was detected by FISH-Flow in a quarter the time required to see release of the corresponding proteins by ELISA, occurred primarily in activated CD4+ T cells via T-cell receptor engagement. Moreover, NK cells contributed to IFNG gene induction. These results show that antigen-driven induction of T-cell cytokine mRNA is a measurable single-cell parameter of the host responses associated with latent tuberculosis. FISH-Flow read-outs contribute a multi-scale dimension to the immunophenotyping afforded by antibody-based flow cytometry. Multi-scale, single-cell analyses may satisfy the need to determine disease stage and therapy response for tuberculosis and other infectious pathologies. PMID:26658491

  3. [Oil pollution status expressed as the fraction of dissolved and dispersed petroleum hydrocarbons].

    PubMed

    Acuña-González, Jenaro; Vargas-Zamora, José A; Gómez-Ramírez, Eddy; García-Céspedes, Jairo

    2004-12-01

    Four coastal ecosystems with contrasting characteristics were sampled in Costa Rica (2000-2002). Oil pollution status, expressed as the fraction of dissolved/dispersed petroleum hydrocarbons related to chrysene equivalents, was determined by the molecular fluorescence analytical technique. A total of 130 water samples were taken, from the Caribbean (Moín Bay), and from the Pacific (Bahía Culebra, Gulf of Nicoya and Dulce Gulf). On one occasion, seven samples along the Puntarenas estuary were also analysed. In Moín the mean and standard deviation were 0.10 microg x L(-1) +/- 0.18 micro x L(-1), ranging from non detectable (nd) to 0.65 microg x L(-1). For the Pacific ecosystems the total range was from nd to 0.37 microg x L(-1). In Bahia Culebra no fluorescence signals were obtained. In the Gulf of Nicoya the mean and standard deviation were 0.04 microg x L(-1) +/- 0.09 microg x L(-1), from nd to 0.33 microg x L(-1). Values in Dulce Gulf were 0.05 microg x L(-1) +/- 0.11 microg x L(-1), from nd to 0.37 microg x L(-1). Along the Puntarenas estuary the range was 0.17 to 5.91 microg x L(-1), with a mean of 1.21 microg x L(-1) and a standard deviation of +/- 2.10 microg x L(-1). The four coastal ecosystems had concentrations below the 10 microg x L(-1) limit for polluted oceanic areas. The Puntarenas estuary reflects the influence of antropogenic activities from and around the City of Puntarenas. These levels are considered low for inshore waters. PMID:17465131

  4. PIK3CA mutation / PTEN expression status predicts response of colon cancer cells to the EGFR inhibitor cetuximab

    PubMed Central

    Jhawer, Minaxi; Goel, Sanjay; Wilson, Andrew J.; Montagna, Cristina; Ling, Yi-He; Byun, Do-Sun; Nasser, Shannon; Arango, Diego; Shin, Joongho; Klampfer, Lidija; Augenlicht, Leonard H.; Soler, Roman Perez; Mariadason, John M.

    2014-01-01

    Cetuximab is a monoclonal antibody that targets the human epidermal growth factor receptor (EGFR). Although approved for use in EGFR over-expressing advanced colorectal cancer, recent studies have demonstrated a lack of association between EGFR over-expression and cetuximab response, requiring the identification of novel biomarkers predictive of response to this agent. To do so, 22 colon cancer cell lines were screened for cetuximab response in-vitro and sensitive and resistant lines identified. In sensitive cell lines cetuximab induced a G0/G1 arrest without inducing apoptosis. Notably, cetuximab sensitive but not resistant cell lines were preferentially responsive to EGF-stimulated growth. While neither EGFR protein/mRNA expression nor gene copy number correlated with cetuximab response, examination of the mutation status of signaling components downstream of EGFR demonstrated that cells lines with activating PIK3CA mutations or loss of PTEN expression (PTEN null) were more resistant to cetuximab than PIK3CA wild type/PTEN expressing cell lines (14±5.0% versus 38.5±6.4% growth inhibition, mean ± SEM, p=0.008). Consistently, PIK3CA mutant isogenic HCT116 cells showed increased resistance to cetuximab compared to PIK3CA wild type controls. Furthermore, cell lines that were PIK3CA mutant/PTEN null and Ras/BRAF mutant were highly resistant to cetuximab compared to those without dual mutations / PTEN loss (10.8±4.3% versus 38.8±5.9% growth inhibition, respectively, p=0.002), indicating constitutive and simultaneous activation of the Ras and PIK3CA pathways confers maximal resistance to this agent. A priori screening of colon tumors for PTEN expression status and PIK3CA and Ras/BRAF mutation status could help stratify patients likely to benefit from this therapy. PMID:18339877

  5. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P < 0.05). In the hypertensive chickens, superoxide dismutase activity was decreased (forebrain, midbrain, and hindbrain), while catalase activity was increased (forebrain and midbrain) ( P < 0.05). Glutathione peroxidase activity did not change. Relative gene expression of catalase and superoxide dismutases (1 and 2) was downregulated, while glutathione peroxidase was upregulated in the brain of the cold-induced pulmonary hypertensive chickens. Probably, these situations in the oxidant and antioxidant status of the brain especially hindbrain may change its function at cardiovascular center and sympathetic nervous system to exacerbate pulmonary hypertension.

  6. Gene expression profiling of selenophosphate synthetase 2 knockdown in Drosophila melanogaster.

    PubMed

    Li, Gaopeng; Liu, Liying; Li, Ping; Chen, Luonan; Song, Haiyun; Zhang, Yan

    2016-03-01

    Selenium (Se) is an important trace element for many organisms and is incorporated into selenoproteins as selenocysteine (Sec). In eukaryotes, selenophosphate synthetase SPS2 is essential for Sec biosynthesis. In recent years, genetic disruptions of both Sec biosynthesis genes and selenoprotein genes have been investigated in different animal models, which provide important clues for understanding the Se metabolism and function in these organisms. However, a systematic study on the knockdown of SPS2 has not been performed in vivo. Herein, we conducted microarray experiments to study the transcriptome of fruit flies with knockdown of SPS2 in larval and adult stages. Several hundred differentially expressed genes were identified in each stage. In spite that the expression levels of other Sec biosynthesis genes and selenoprotein genes were not significantly changed, it is possible that selenoprotein translation might be reduced without impacting the mRNA level. Functional enrichment and network-based analyses revealed that although different sets of differentially expressed genes were obtained in each stage, they were both significantly enriched in the carbohydrate metabolism and redox processes. Furthermore, protein-protein interaction (PPI)-based network clustering analysis implied that several hub genes detected in the top modules, such as Nimrod C1 and regucalcin, could be considered as key regulators that are responsible for the complex responses caused by SPS2 knockdown. Overall, our data provide new insights into the relationship between Se utilization and several fundamental cellular processes as well as diseases. PMID:26824785

  7. Selenoprotein S is involved in maintenance and transport of multiprotein complexes.

    PubMed

    Turanov, Anton A; Shchedrina, Valentina A; Everley, Robert A; Lobanov, Alexei V; Yim, Sun Hee; Marino, Stefano M; Gygi, Steven P; Hatfield, Dolph L; Gladyshev, Vadim N

    2014-09-15

    SelS (Selenoprotein S) is a selenocysteine-containing protein with roles in ER (endoplasmic reticulum) function and inflammation. It has been implicated in ERAD (ER-associated protein degradation), and clinical studies revealed an association of its promoter polymorphism with cytokine levels and human diseases. However, the pathways and interacting proteins that could shed light on pathogenesis of SelS-associated diseases have not been studied systematically. We performed a large-scale affinity isolation of human SelS and its mutant forms and analysed the proteins that interact with them. All previously known SelS targets and nearly two hundred additional proteins were identified that were remarkably enriched for various multiprotein complexes. Subsequent chemical cross-linking experiments identified the specific interacting sites in SelS and its several targets. Most of these interactions involved coiled-coil domains. The data suggest that SelS participates in intracellular membrane transport and maintenance of protein complexes by anchoring them to the ER membrane. PMID:24897171

  8. Differential gene expression of activating Fcγ receptor classifies active tuberculosis regardless of human immunodeficiency virus status or ethnicity.

    PubMed

    Sutherland, J S; Loxton, A G; Haks, M C; Kassa, D; Ambrose, L; Lee, J-S; Ran, L; van Baarle, D; Maertzdorf, J; Howe, R; Mayanja-Kizza, H; Boom, W H; Thiel, B A; Crampin, A C; Hanekom, W; Ota, M O C; Dockrell, H; Walzl, G; Kaufmann, S H E; Ottenhoff, T H M

    2014-04-01

    New diagnostics and vaccines for tuberculosis (TB) are urgently needed, but require an understanding of the requirements for protection from/susceptibility to TB. Previous studies have used unbiased approaches to determine gene signatures in single-site populations. The present study utilized a targeted approach, reverse transcriptase multiplex ligation-dependent probe amplification (RT-MLPA), to validate these genes in a multisite study. We analysed ex vivo whole blood RNA from a total of 523 participants across four sub-Saharan countries (Ethiopia, Malawi, South Africa, and The Gambia) with differences in TB and human immunodeficiency virus (HIV) status. We found a number of genes that were expressed at significantly lower levels in participants with active disease than in those with latent TB infection (LTBI), with restoration following successful TB treatment. The most consistent classifier of active disease was FCGR1A (high-affinity IgG Fc receptor 1 (CD64)), which was the only marker expressed at significantly higher levels in participants with active TB than in those with LTBI before treatment regardless of HIV status or genetic background. This is the first study to identify a biomarker for TB that is not affected by HIV status or geo-genetic differences. These data provide valuable clues for understanding TB pathogenesis, and also provide a proof-of-concept for the use of RT-MLPA in rapid and inexpensive validation of unbiased gene expression findings. PMID:24205913

  9. Selenium and its relationship with selenoprotein P and glutathione peroxidase in children and adolescents with Hashimoto's thyroiditis and hypothyroidism.

    PubMed

    Nourbakhsh, Mitra; Ahmadpour, Fatemeh; Chahardoli, Behnam; Malekpour-Dehkordi, Zahra; Nourbakhsh, Mona; Hosseini-Fard, Seyed Reza; Doustimotlagh, Amirhossein; Golestani, Abolfazl; Razzaghy-Azar, Maryam

    2016-03-01

    The essential trace element selenium (Se) is required for thyroid hormone synthesis and metabolism. Selenoproteins contain selenocysteine and are responsible for biological functions of selenium. Glutathione peroxidase (GPx) is one of the major selenoproteins which protects the thyroid cells from oxidative damage. Selenoprotein P (SePP) is considered as the plasma selenium transporter to tissues. The aim of this study was to evaluate serum Se and SePP levels, and GPx activity in erythrocytes of children and adolescents with treated Hashimoto's thyroiditis, hypothyroidism, and normal subjects. Blood samples were collected from 32 patients with Hashimoto's thyroiditis, 20 with hypothyroidism, and 25 matched normal subjects. All the patients were under treatment with levothyroxine and at the time of analysis all of the thyroid function tests were normal. GPx enzyme activity was measured by spectrophotometry at 340 nm. Serum selenium levels were measured by high-resolution continuum source graphite furnace atomic absorption. SePP, TPOAb (anti-thyroid peroxidase antibody), and TgAb (anti-thyroglobulin antibody) were determined by ELISA kits. T4, T3, T3 uptake and TSH were also measured. Neither GPx activity nor SePP levels were significantly different in patients with Hashimoto's thyroiditis or hypothyroidism compared to normal subjects. Although GPx and SePP were both lower in patients with hypothyroidism compared to those with Hashimoto's thyroiditis and normal subjects but the difference was not significant. Serum Se levels also did not differ significantly in patients and normal subjects. We did not find any correlation between GPx or SePP with TPOAb or TgAb but SePP was significantly correlated with Se. Results show that in patients with Hashimoto's thyroiditis or hypothyroidism who have been under treatment with levothyroxine and have normal thyroid function tests, the GPx, SePP and Se levels are not significantly different. PMID:26854239

  10. Ring finger protein 43 expression is associated with genetic alteration status and poor prognosis among patients with intrahepatic cholangiocarcinoma.

    PubMed

    Talabnin, Chutima; Janthavon, Patcharee; Thongsom, Sunisa; Suginta, Wipa; Talabnin, Krajang; Wongkham, Sopit

    2016-06-01

    Ring finger E3 ligases have roles in processes central to maintenance of genomic integrity and cellular homeostasis. Many ring finger E3 ligases are implicated in malignancy. Ring finger protein 43 (RNF43) is a ring finger E3 ligase that negatively regulates the Wnt/β-catenin signaling pathway. RNF43 is frequently mutated in several types of malignancy, including intrahepatic cholangiocarcinoma (ICC). The significance of its expression in ICC has not, however, been reported. We determined RNF43 expression and identified RNF43 polymorphisms in ICC tissues. We also investigated the correlation between RNF43 expression and RNF43 mutation status, RNF43 polymorphisms, clinicopathological features, and prognosis of ICC patients. RNF43 reduced expression in ICC, and the reduction of RNF43 messenger RNA expression was significantly correlated with the presence of rs2257205 and RNF43 somatic mutations, confirming that all RNF43 somatic mutations in ICC are inactivating. Overall survival was worst in patients with down-regulation of RNF43. Univariate and multivariate analyses revealed that RNF43 expression was an independent prognostic factor. There was no statistically significant association between RNF43 messenger RNA and protein expression nor any clinicopathological features or RNF43 polymorphisms. The results imply that RNF43 is down-regulated in ICC and may play a crucial role during development of ICC. PMID:26980022

  11. GXD: a Gene Expression Database for the laboratory mouse: current status and recent enhancements

    PubMed Central

    Ringwald, Martin; Eppig, Janan T.; Kadin, James A.; Richardson, Joel E.; the Gene Expression Database Group

    2000-01-01

    The Gene Expression Database (GXD) is a community resource of gene expression information for the laboratory mouse. The database is designed as an open-ended system that can integrate different types of expression data. New expression data are made available on a daily basis. Thus, GXD provides increasingly complete information about what transcripts and proteins are produced by what genes; where, when and in what amounts these gene products are expressed; and how their expression varies in different mouse strains and mutants. GXD is integrated with the Mouse Genome Database (MGD). Continuously refined interconnections with sequence databases and with databases from other species place the gene expression information in the larger biological and analytical context. GXD is accessible through the Mouse Genome Informatics Web site at http://www. informatics.jax.org/ or directly at http://www.informatics. jax.org/menus/expression_menu.shtml PMID:10592197

  12. Salivary expression of soluble HER2 in breast cancer patients with positive and negative HER2 status

    PubMed Central

    Laidi, Fatna; Bouziane, Amal; Lakhdar, Amina; Khabouze, Samira; Rhrab, Brahim; Zaoui, Fatima

    2014-01-01

    Background The aim of this study was to investigate the relationship between salivary concentration of the soluble fragment of the HER2 (human epidermal growth factor receptor) protein and its status in mammary tissues. Methods This case-control study was done in 27 breast cancer patients with no visible metastatic disease treated at the gynecology service, Maternity Souissi Hospital, Rabat, Morocco. Two groups were selected, ie, patients with positive and negative HER2 status in mammary tissue. The salivary HER2 protein concentration was assessed by enzyme-linked immunosorbent assay. The salivary HER2 concentration was compared between the HER2-positive and HER2-negative groups using the Mann-Whitney U test. A P-value <0.05 was considered to be statistically significant. Results No statistically significant difference in salivary HER2 protein expression was found between the case and control groups. There was also no significant difference in clinical characteristics according to positive and negative HER2 status (P>0.05), except for the progesterone hormone receptor which was statistically significant in both the case and control groups (P=0.047). Conclusion According to our data, salivary expression of the HER2 receptor may not be a reliable alternative to tissue assessment. PMID:25053886

  13. Exercise Increases Cystathionine-γ-lyase Expression and Decreases the Status of Oxidative Stress in Myocardium of Ovariectomized Rats.

    PubMed

    Tang, Zhiping; Wang, Yujun; Zhu, Xiaoyan; Ni, Xin; Lu, Jianqiang

    2016-01-01

    Exercise could be a therapeutic approach for cardiovascular dysfunction induced by estrogen deficiency. Our previous study has shown that estrogen maintains cystathionine-γ-lyase (CSE) expression and inhibits oxidative stress in the myocardium of female rats. In the present study, we investigated whether exercise improves CSE expression and oxidative stress status and ameliorates isoproterenol (ISO)-induced cardiac damage in ovariectomized (OVX) rats. The results showed that treadmill training restored the ovariectomy-induced reduction of CSE and estrogen receptor (ER)α and decrease of total antioxidant capacity (T-AOC) and increase of malondialdehyde (MDA). The level of CSE was positively correlated to T-AOC and ERα while inversely correlated to MDA. OVX rats showed increases in the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH) and the percentage of TUNEL staining in myocardium upon ISO insult compared to sham rats. Exercise training significantly reduced the serum levels of LDH and CK and the percentage of TUNEL staining in myocardium upon ISO insult in OVX rats. In cultured cardiomyocytes, ISO treatment decreased cell viability and increased LDH release, while overexpression of CSE increased cell viability and decreased LDH release in the cells upon ISO insult. The results suggest that exercise training improves the oxidative stress status and ameliorates the cardiac damage induced by oxidative stress in OVX rats. The improvement of oxidative stress status by exercise might be at least partially due to upregulation of CSE/H2S signaling. PMID:26673437

  14. Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein.

    PubMed

    Jeon, Yeong Ha; Ko, Kwan Young; Lee, Jea Hwang; Park, Ki Jun; Jang, Jun Ki; Kim, Ick Young

    2016-01-01

    Selenoprotein W (SelW) contains a selenocysteine (Sec, U) in a conserved CXXU motif corresponding to the CXXC redox motif of thioredoxin, suggesting a putative redox function of SelW. We have previously reported that the binding of 14-3-3 protein to its target proteins, including CDC25B, Rictor and TAZ, is inhibited by the interaction of 14-3-3 protein with SelW. However, the binding mechanism is unclear. In this study, we sought to determine the binding site of SelW to understand the regulatory mechanism of the interaction between SelW and 14-3-3 and its biological effects. Phosphorylated Ser(pS) or Thr(pT) residues in RSXpSXP or RXXXp(S/T)XP motifs are well-known common 14-3-3-binding sites, but Thr41, Ser59, and T69 of SelW, which are computationally predicted to serve are phosphorylation sites, were neither phosphorylation sites nor sites involved in the interaction. A mutant SelW in which Sec13 is changed to Ser (U13S) was unable to interact with 14-3-3 protein and thus did not inhibit the interaction of 14-3-3 to other target proteins. However, other Cys mutants of SelW(C10S, C33S and C37S) normally interacted with 14-3-3 protein. The interaction of SelW to 14-3-3 protein was enhanced by diamide or H2O2 and decreased by dithiothreitol (DTT). Taken together, these findings demonstrate that the Sec of SelW is involved in its interaction with 14-3-3 protein and that this interaction is increased under oxidative stress conditions. Thus, SelW may have a regulatory function in redox cell signaling by interacting with 14-3-3 protein. PMID:26474786

  15. Selenoprotein W depletion induces a p53- and p21-dependent delay in cell cycle progression in RWPE-1 prostate epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The anticancer activity of selenium (Se) has been demonstrated in myriad animal and in vitro studies, yet the mechanisms remain obscure. The relative importance of small selenium compounds versus selenoproteins in the cancer-protective activity of Se is unresolved, but the main form of Se in animal ...

  16. The Prognostic Value of HPV Status and p16 Expression in Patients with Carcinoma of the Anal Canal

    PubMed Central

    Roldán Urgoiti, Gloria B.; Gustafson, Karla; Klimowicz, Alexander C.; Petrillo, Stephanie K.; Magliocco, Anthony M.; Doll, Corinne M.

    2014-01-01

    Background In anal cancer studies, the detection frequency of high-risk HPV (human papillomavirus) is variable, depending on the method used. There are limited data reporting results of different HPV detection techniques in the same clinical series, and very few correlating results with clinical outcome. Objectives To evaluate tumor expression of p16/HPV16 using three different methods, and to determine their association with clinical outcome in patients with anal canal squamous cell carcinomas (SCC). Design This retrospective study included patients with anal canal SCC treated with definitive radiotherapy or chemoradiotherapy at a single institution between 1992 and 2005. Formalin-fixed paraffin–embedded tumor samples from 53 of the 89 (60%) patient pre-treatment biopsies were adequate for tissue microarray construction. HPV status was determined using: p16 expression by conventional immunohistochemistry (IHC) and quantitative IHC (AQUA), HPV genotype analysis by chromogenic in situ hybridization (CISH) and HPV linear array sub-typing. Expression status was correlated with clinical outcome. Results 80% (28/35) of patient tumors had high p16 expression using conventional IHC. HPV16 CISH was positive in 81% (34/42) of tumors, and 78% (28/36) of tumors were HPV subtype 16. HPV16 CISH correlated with p16 evaluated by conventional IHC (correlation coefficient 0.46; p = 0.01) and by p16 AQUA score (correlation coefficient 0.49; p = 0.001). A subset of cases (15%) had very high p16 quantitative IHC scores (>244) and were associated with a higher incidence of local or distant recurrence (p = 0.04). Conclusions The vast majority (80%) of anal canal SCC in our series were positive for HPV16/p16, regardless of the testing method used. The exploratory analysis of automated quantitative IHC scoring was the only technique to define a subset of patients with a worse prognosis by p16 expression status on univariate analysis. Further exploration of the molecular

  17. ESTROGENIC STATUS MODULATES DMBA-MEDIATED HEPATIC GENE EXPRESSION: MICROARRAY-BASED ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogenic status in women influences the metabolism and toxicity of polycyclic aromatic hydrocarbons (PAH). The objective of this study was to examine the influence of estradiol (E2) on 7,12 dimethylbenz(a)anthracene (DMBA), a ligand for aryl hydrocarbon receptor, mediated changes on gene expressio...

  18. E5HPV16 mRNA EXPRESSION PATTERN ANALYSIS IN PATIENTS WITH CERVICAL LESIONS IN VIRAL STATUS CONTEXT.

    PubMed

    Iancu, Iulia V; Pleşa, Adriana; Botezatu, Anca; Huică, Irina; Stănescu, Anca D; Socolov, Demetra; Anton, Gabriela

    2015-01-01

    Human papilloma virus (HPV) may cause mostly transient infections of cutaneous and mucous epithelia. Persistent HPV genital infections may induce pre-malignant or malignant lesions. While E6 and E7 HPV genes' malignant character is known, E5 is still under debate. We evaluated the possible role of E5 gene in cervix oncogenesis, in patients with abnormal cytology and HPV1 6 positive, in the context of viral status correlated with potential targets (p21, EGFR). HPV DNA was detected and genotyped using Linear Array HPV Genotyping Test (Roche Molecular Biochemicals, Mannheim, Germany) and E2, E6, E5 HPV16, p21 and EGFR transcripts levels were investigated by qRT-PCR. Our results indicate a significantly high E5 expression in low grade cytology, expression correlated with a moderated E6 and low p21 levels. All HSIL specimens presented integrated/mixed viral forms; mixed forms presented moderate E5 expression, high levels of p21 correlates with E6 oncogene high expression. These findings indicate a potential role for E5 pattern of expression in discriminating be-tween lesions that may progress to cancer. PMID:26727852

  19. A Lentiviral Vector Allowing Physiologically Regulated Membrane-anchored and Secreted Antibody Expression Depending on B-cell Maturation Status.

    PubMed

    Fusil, Floriane; Calattini, Sara; Amirache, Fouzia; Mancip, Jimmy; Costa, Caroline; Robbins, Justin B; Douam, Florian; Lavillette, Dimitri; Law, Mansun; Defrance, Thierry; Verhoeyen, Els; Cosset, François-Loïc

    2015-11-01

    The development of lentiviral vectors (LVs) for expression of a specific antibody can be achieved through the transduction of mature B-cells. This approach would provide a versatile tool for active immunotherapy strategies for infectious diseases or cancer, as well as for protein engineering. Here, we created a lentiviral expression system mimicking the natural production of these two distinct immunoglobulin isoforms. We designed a LV (FAM2-LV) expressing an anti-HCV-E2 surface glycoprotein antibody (AR3A) as a membrane-anchored Ig form or a soluble Ig form, depending on the B-cell maturation status. FAM2-LV induced high-level and functional membrane expression of the transgenic antibody in a nonsecretory B-cell line. In contrast, a plasma cell (PC) line transduced with FAM2-LV preferentially produced the secreted transgenic antibody. Similar results were obtained with primary B-cells transduced ex vivo. Most importantly, FAM2-LV transduced primary B-cells efficiently differentiated into PCs, which secreted the neutralizing anti-HCV E2 antibody upon adoptive transfer into immunodeficient NSG (NOD/SCIDγc(-/-)) recipient mice. Altogether, these results demonstrate that the conditional FAM2-LV allows preferential expression of the membrane-anchored form of an antiviral neutralizing antibody in B-cells and permits secretion of a soluble antibody following B-cell maturation into PCs in vivo. PMID:26281898

  20. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer's disease model cell line

    SciTech Connect

    Sung, Hye Youn; Choi, Eun Nam; Ahn Jo, Sangmee; Oh, Seikwan; Ahn, Jung-Hyuck

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Genome-wide DNA methylation pattern in Alzheimer's disease model cell line. Black-Right-Pointing-Pointer Integrated analysis of CpG methylation and mRNA expression profiles. Black-Right-Pointing-Pointer Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. Black-Right-Pointing-Pointer The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer's disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterations in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2 Prime -deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the -435, -295, and -271 CpG sites of CTIF, and at the -505 to -341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at -432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory mechanism may

  1. Neuropilin 1 expression correlates with differentiation status of epidermal cells and cutaneous squamous cell carcinomas.

    PubMed

    Shahrabi-Farahani, Shokoufeh; Wang, Lili; Zwaans, Bernadette M M; Santana, Jeans M; Shimizu, Akio; Takashima, Seiji; Kreuter, Michael; Coultas, Leigh; D'Amore, Patricia A; Arbeit, Jeffrey M; Akslen, Lars A; Bielenberg, Diane R

    2014-07-01

    Neuropilins (NRPs) are cell surface receptors for vascular endothelial growth factor (VEGF) and SEMA3 (class 3 semaphorin) family members. The role of NRPs in neurons and endothelial cells has been investigated, but the expression and role of NRPs in epithelial cells is much less clear. Herein, the expression and localization of NRP1 was investigated in human and mouse skin and squamous cell carcinomas (SCCs). Results indicated that NRP1 mRNA and protein was expressed in the suprabasal epithelial layers of the skin sections. NRP1 staining did not overlap with that of keratin 14 (K14) or proliferating cell nuclear antigen, but did co-localize with staining for keratin 1, indicating that differentiated keratinocytes express NRP1. Similar to the expression of NRP1, VEGF-A was expressed in suprabasal epithelial cells, whereas Nrp2 and VEGFR2 were not detectable in the epidermis. The expression of NRP1 correlated with a high degree of differentiation in human SCC specimens, human SCC xenografts, and mouse K14-HPV16 transgenic SCC. UVB irradiation of mouse skin induced Nrp1 upregulation. In vitro, Nrp1 was upregulated in primary keratinocytes in response to differentiating media or epidermal growth factor-family growth factors. In conclusion, the expression of NRP1 is regulated in the skin and is selectively produced in differentiated epithelial cells. NRP1 may function as a reservoir to sequester VEGF ligand within the epithelial compartment, thereby modulating its bioactivity. PMID:24791743

  2. Chronic methamphetamine treatment reduces the expression of synaptic plasticity genes and changes their DNA methylation status in the mouse brain.

    PubMed

    Cheng, Min-Chih; Hsu, Shih-Hsin; Chen, Chia-Hsiang

    2015-12-10

    Methamphetamine (METH) is a highly addictive psychostimulant that may cause long-lasting synaptic dysfunction and abnormal gene expression. We aimed to explore the differential expression of synaptic plasticity genes in chronic METH-treated mouse brain. We used the RT(2) Profiler PCR Array and the real-time quantitative PCR to characterize differentially expressed synaptic plasticity genes in the frontal cortex and the hippocampus of chronic METH-treated mice compared with normal saline-treated mice. We further used pyrosequencing to assess DNA methylation changes in the CpG region of the five immediate early genes (IEGs) in chronic METH-treated mouse brain. We detected six downregulated genes in the frontal cortex and the hippocampus of chronic METH-treated mice, including five IEGs (Arc, Egr2, Fos, Klf10, and Nr4a1) and one neuronal receptor gene (Grm1), compared with normal saline-treated group, but only four genes (Arc, Egr2, Fos, and Nr4a1) were confirmed to be different. Furthermore, we found several CpG sites of the Arc and the Fos that had significant changes in DNA methylation status in the frontal cortex of chronic METH-treated mice, while the klf10 and the Nr4a1 that had significant changes in the hippocampus. Our results show that chronic administration of METH may lead to significant downregulation of the IEGs expression in both the frontal cortex and the hippocampus, which may partly account for the molecular mechanism of the action of METH. Furthermore, the changes in DNA methylation status of the IEGs in the brain indicate that an epigenetic mechanism-dependent transcriptional regulation may contribute to METH addiction, which warrants additional study. PMID:26496011

  3. Epigenetic regulation of inflammatory gene expression in macrophages by selenium.

    PubMed

    Narayan, Vivek; Ravindra, Kodihalli C; Liao, Chang; Kaushal, Naveen; Carlson, Bradley A; Prabhu, K Sandeep

    2015-02-01

    Acetylation of histone and non-histone proteins by histone acetyltransferases plays a pivotal role in the expression of proinflammatory genes. Given the importance of dietary selenium in mitigating inflammation, we hypothesized that selenium supplementation may regulate inflammatory gene expression at the epigenetic level. The effect of selenium towards histone acetylation was examined in both in vitro and in vivo models of inflammation by chromatin immunoprecipitation assays and immunoblotting. Our results indicated that selenium supplementation, as selenite, decreased acetylation of histone H4 at K12 and K16 in COX-2 and TNFα promoters, and of the p65 subunit of the redox sensitive transcription factor NFκB in primary and immortalized macrophages. On the other hand, selenomethionine had a much weaker effect. Selenite treatment of HIV-1-infected human monocytes also significantly decreased the acetylation of H4 at K12 and K16 on the HIV-1 promoter, supporting the down-regulation of proviral expression by selenium. A similar decrease in histone acetylation was also seen in the colonic extracts of mice treated with dextran sodium sulfate that correlated well with the levels of selenium in the diet. Bone-marrow-derived macrophages from Trsp(fl/fl)Cre(LysM) mice that lack expression of selenoproteins in macrophages confirmed the important role of selenoproteins in the inhibition of histone H4 acetylation. Our studies suggest that the ability of selenoproteins to skew the metabolism of arachidonic acid contributes, in part, to their ability to inhibit histone acetylation. In summary, our studies suggest a new role for selenoproteins in the epigenetic modulation of proinflammatory genes. PMID:25458528

  4. Express analysis of HER-2/neu status in breast cancer biopsy specimens.

    PubMed

    Nechaev, I N; Knyazev, E N; Krainova, N A; Shkurnikov, M Yu

    2013-08-01

    Hyperexpression of HER-2/neu is found in tissues of 25-30% patients with primary breast cancer. Monotherapy with antitumor drug trastuzumab as second-third line therapy and its combination with cytostatics prolong the interval before disease progress and the overall survival of patients with metastatic HER-2/neu+ tumors. Trastuzumab is now prescribed after evaluation of HER-2/neu status by the immunohistochemical method and/or fluorescent in situ hybridization. We have developed a method for evaluating the HER-2/neu status of breast cancer biopsy specimens by real time reverse transcription PCR. Based on the analysis of published data, six candidate genes in the pericentromer region of chromosome 17 are selected for data normalization. Stability of these genes is verified on the cell model (MCF-7 and SK-BR-3) and on biopsy materials. The sensitivity and specificity of the method is evaluated on a collection of biopsy specimens. PMID:24143382

  5. Juvenile immune status affects the expression of a sexually selected trait in field crickets.

    PubMed

    Jacot, A; Scheuber, H; Kurtz, J; Brinkhof, M W G

    2005-07-01

    Parasite-mediated sexual selection theory presumes that variation in sexual traits reliably reflects variation in parasite resistance among available mates. One mechanism that may warrant signal honesty involves costs of immune system activation in the case of a parasitic infection. We investigated this hypothesis in male field crickets Gryllus campestris, whose attractiveness to females depends on characteristics of the sound-producing harp that are essentially fixed following adult eclosion. During the nymphal stage, males subjected to one of two feeding regimes were challenged with bacterial lipopolysaccharides (LPS) to investigate condition-dependent effects on harp development as compared to other adult traits. Nymphal nutritional status positively affected adult body size, condition, and harp size. However, nymphal immune status affected harp size only, with LPS-males having smaller harps than control-injected males. In addition, the harps of LPS-males showed a lesser degree of melanization, indicating an enhanced substrate use by the melanin-producing enzyme cascade of the immune system. Thus, past immune status is specifically mirrored in sexual traits, suggesting a key role for deployment costs of immunity in parasite-mediated sexual selection. PMID:16033579

  6. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives.

    PubMed

    Jia, Baolei; Jeon, Che Ok

    2016-08-01

    The ease of genetic manipulation, low cost, rapid growth and number of previous studies have made Escherichia coli one of the most widely used microorganism species for producing recombinant proteins. In this post-genomic era, challenges remain to rapidly express and purify large numbers of proteins for academic and commercial purposes in a high-throughput manner. In this review, we describe several state-of-the-art approaches that are suitable for the cloning, expression and purification, conducted in parallel, of numerous molecules, and we discuss recent progress related to soluble protein expression, mRNA folding, fusion tags, post-translational modification and production of membrane proteins. Moreover, we address the ongoing efforts to overcome various challenges faced in protein expression in E. coli, which could lead to an improvement of the current system from trial and error to a predictable and rational design. PMID:27581654

  7. High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives

    PubMed Central

    2016-01-01

    The ease of genetic manipulation, low cost, rapid growth and number of previous studies have made Escherichia coli one of the most widely used microorganism species for producing recombinant proteins. In this post-genomic era, challenges remain to rapidly express and purify large numbers of proteins for academic and commercial purposes in a high-throughput manner. In this review, we describe several state-of-the-art approaches that are suitable for the cloning, expression and purification, conducted in parallel, of numerous molecules, and we discuss recent progress related to soluble protein expression, mRNA folding, fusion tags, post-translational modification and production of membrane proteins. Moreover, we address the ongoing efforts to overcome various challenges faced in protein expression in E. coli, which could lead to an improvement of the current system from trial and error to a predictable and rational design. PMID:27581654

  8. Expression of CD64 on Circulating Neutrophils Favoring Systemic Inflammatory Status in Erythema Nodosum Leprosum

    PubMed Central

    Prata, Rhana Berto da Silva; Barbosa, Mayara Garcia de Mattos; Mendes, Mayara Abud; Brandão, Sheila Santos; Amadeu, Thaís Porto; Rodrigues, Luciana Silva; Ferreira, Helen; Costa, Fabrício da Mota Ramalho; dos Santos, Jessica Brandão; Pacheco, Fabiana dos Santos; Machado, Alice de Miranda; Nery, José Augusto da Costa; Hacker, Mariana de Andrea; Sales, Anna Maria; Pinheiro, Roberta Olmo; Sarno, Euzenir Nunes

    2016-01-01

    Erythema Nodosum Leprosum (ENL) is an immune reaction in leprosy that aggravates the patient´s clinical condition. ENL presents systemic symptoms of an acute infectious syndrome with high leukocytosis and intense malaise clinically similar to sepsis. The treatment of ENL patients requires immunosuppression and thus needs to be early and efficient to prevent both disabilities and permanent nerve damage. Some patients experience multiple episodes of ENL and prolonged use of immunosuppressive drugs may lead to serious adverse effects. Thalidomide treatment is extremely effective at ameliorating ENL symptoms. Several mechanisms have been proposed to explain the efficacy of thalidomide in ENL, including the inhibition of TNF production. Given its teratogenicity, thalidomide is prohibitive for women of childbearing age. A rational search for molecular targets during ENL episodes is essential to better understand the disease mechanisms involved, which may also lead to the discovery of new drugs and diagnostic tests. Previous studies have demonstrated that IFN-γ and GM-CSF, involved in the induction of CD64 expression, increase during ENL. The aim of the present study was to investigate CD64 expression during ENL and whether thalidomide treatment modulated its expression. Leprosy patients were allocated to one of five groups: (1) Lepromatous leprosy, (2) Borderline leprosy, (3) Reversal reaction, (4) ENL, and (5) ENL 7 days after thalidomide treatment. The present study demonstrated that CD64 mRNA and protein were expressed in ENL lesions and that thalidomide treatment reduced CD64 expression and neutrophil infiltrates—a hallmark of ENL. We also showed that ENL blood neutrophils exclusively expressed CD64 on the cell surface and that thalidomide diminished overall expression. Patient classification based on clinical symptoms found that severe ENL presented high levels of neutrophil CD64. Collectively, these data revealed that ENL neutrophils express CD64, presumably

  9. Expression of CD64 on Circulating Neutrophils Favoring Systemic Inflammatory Status in Erythema Nodosum Leprosum.

    PubMed

    Schmitz, Veronica; Prata, Rhana Berto da Silva; Barbosa, Mayara Garcia de Mattos; Mendes, Mayara Abud; Brandão, Sheila Santos; Amadeu, Thaís Porto; Rodrigues, Luciana Silva; Ferreira, Helen; Costa, Fabrício da Mota Ramalho; Dos Santos, Jessica Brandão; Pacheco, Fabiana Dos Santos; Machado, Alice de Miranda; Nery, José Augusto da Costa; Hacker, Mariana de Andrea; Sales, Anna Maria; Pinheiro, Roberta Olmo; Sarno, Euzenir Nunes

    2016-08-01

    Erythema Nodosum Leprosum (ENL) is an immune reaction in leprosy that aggravates the patient´s clinical condition. ENL presents systemic symptoms of an acute infectious syndrome with high leukocytosis and intense malaise clinically similar to sepsis. The treatment of ENL patients requires immunosuppression and thus needs to be early and efficient to prevent both disabilities and permanent nerve damage. Some patients experience multiple episodes of ENL and prolonged use of immunosuppressive drugs may lead to serious adverse effects. Thalidomide treatment is extremely effective at ameliorating ENL symptoms. Several mechanisms have been proposed to explain the efficacy of thalidomide in ENL, including the inhibition of TNF production. Given its teratogenicity, thalidomide is prohibitive for women of childbearing age. A rational search for molecular targets during ENL episodes is essential to better understand the disease mechanisms involved, which may also lead to the discovery of new drugs and diagnostic tests. Previous studies have demonstrated that IFN-γ and GM-CSF, involved in the induction of CD64 expression, increase during ENL. The aim of the present study was to investigate CD64 expression during ENL and whether thalidomide treatment modulated its expression. Leprosy patients were allocated to one of five groups: (1) Lepromatous leprosy, (2) Borderline leprosy, (3) Reversal reaction, (4) ENL, and (5) ENL 7 days after thalidomide treatment. The present study demonstrated that CD64 mRNA and protein were expressed in ENL lesions and that thalidomide treatment reduced CD64 expression and neutrophil infiltrates-a hallmark of ENL. We also showed that ENL blood neutrophils exclusively expressed CD64 on the cell surface and that thalidomide diminished overall expression. Patient classification based on clinical symptoms found that severe ENL presented high levels of neutrophil CD64. Collectively, these data revealed that ENL neutrophils express CD64, presumably

  10. Promoter-specific expression and imprint status of marsupial IGF2.

    PubMed

    Stringer, Jessica M; Suzuki, Shunsuke; Pask, Andrew J; Shaw, Geoff; Renfree, Marilyn B

    2012-01-01

    In mice and humans, IGF2 has multiple promoters to maintain its complex tissue- and developmental stage-specific imprinting and expression. IGF2 is also imprinted in marsupials, but little is known about its promoter region. In this study, three IGF2 transcripts were isolated from placental and liver samples of the tammar wallaby, Macropus eugenii. Each transcript contained a unique 5' untranslated region, orthologous to the non-coding exons derived from promoters P1-P3 in the human and mouse IGF2 locus. The expression of tammar IGF2 was predominantly from the P2 promoter, similar to humans. Expression of IGF2 was higher in pouch young than in the adult and imprinting was highly tissue and developmental-stage specific. Interestingly, while IGF2 was expressed throughout the placenta, imprinting seemed to be restricted to the vascular, trilaminar region. In addition, IGF2 was monoallelically expressed in the adult mammary gland while in the liver it switched from monoalleleic expression in the pouch young to biallelic in the adult. These data suggest a complex mode of IGF2 regulation in marsupials as seen in eutherian mammals. The conservation of the IGF2 promoters suggests they originated before the divergence of marsupials and eutherians, and have been selectively maintained for at least 160 million years. PMID:22848567

  11. The social status of the male Nile tilapia (Oreochromis niloticus) influences testis structure and gene expression.

    PubMed

    Pfennig, Frank; Kurth, Thomas; Meissner, Stefan; Standke, Andrea; Hoppe, Markus; Zieschang, Freia; Reitmayer, Christine; Göbel, Andy; Kretzschmar, Georg; Gutzeit, Herwig O

    2012-01-01

    Dominant and territorial behaviour are known social phenomena in cichlids and social stress influences reproduction and growth. The gonadotropic hormones trigger spermatogenesis and subordinate males have typically lower levels of gonadotropins than dominant males. In this study, we compared testis morphology and gene expression of dominant and subordinate Nile tilapia males (d- and s-males) in socially stable communities. The d-males had the highest gonadosomatic index but they were not the largest animals in the majority of studied cases. Long-term d-males showed large groups of Leydig cells and hyperplasia of the tunica albuginea due to numerous cytochrome-P450-11β-hydroxylase (Cyp11b) expressing myoid cells. Increased Cyp11b expression in d-males was reflected by elevated 11-ketotestosterone plasma values. However, immunofluorescence microscopy and expression analysis of selected genes revealed that most s-males conserved their capability for spermatogenesis and are, therefore, ready for reproduction when the social environment changes. Moreover, in s-males gene expression analysis by quantitative RT-PCR showed increased transcript levels for germ line-specific genes (vasa, sox2 and dmc1) and Sertoli-specific genes (amh, amhrII and dmrt1) whereas gene expression of key factors for steroid production (sf1 and cyp11b) were reduced. The Nile tilapia is a promising model to study social cues and gonadotropic signals on testis development in vertebrates. PMID:22031714

  12. CpG Promoter Methylation Status is not a Prognostic Indicator of Gene Expression in Beryllium Challenge

    PubMed Central

    Tooker, Brian C.; Ozawa, Katie; Newman, Lee S.

    2016-01-01

    -methylation may be necessary to allow expression of metal-induced TNFα and that promoter hyper-methylation in the IFNγ promoter may interfere with expression. Also, at the dozen CpG sites investigated in the promoter regions of both genes, beryllium had no impact on promoter methylation status, despite its ability to induce pro-inflammatory cytokine expression. PMID:26673671

  13. CpG promoter methylation status is not a prognostic indicator of gene expression in beryllium challenge.

    PubMed

    Tooker, Brian C; Ozawa, Katherine; Newman, Lee S

    2016-05-01

    -methylation may be necessary to allow expression of metal-induced TNFα and that promoter hyper-methylation in the IFNγ promoter may interfere with expression. Also, at the dozen CpG sites investigated in the promoter regions of both genes, beryllium had no impact on promoter methylation status, despite its ability to induce pro-inflammatory cytokine expression. PMID:26673671

  14. Photoperiodic effects on seasonal physiology, reproductive status and hypothalamic gene expression in young male F344 rats.

    PubMed

    Tavolaro, F M; Thomson, L M; Ross, A W; Morgan, P J; Helfer, G

    2015-02-01

    Seasonal or photoperiodically sensitive animals respond to altered day length with changes in physiology (growth, food intake and reproductive status) and behaviour to adapt to predictable yearly changes in the climate. Typically, different species of hamsters, voles and sheep are the most studied animal models of photoperiodism. Although laboratory rats are generally considered nonphotoperiodic, one rat strain, the inbred Fischer 344 (F344) rat, has been shown to be sensitive to the length of daylight exposure by changing its physiological phenotype and reproductive status according to the season. The present study aimed to better understand the nature of the photoperiodic response in the F344 rat. We examined the effects of five different photoperiods on the physiological and neuroendocrine responses. Young male F344 rats were held under light schedules ranging from 8 h of light/day to 16 h of light/day, and then body weight, including fat and lean mass, food intake, testes weights and hypothalamic gene expression were compared. We found that rats held under photoperiods of ≥ 12 h of light/day showed increased growth and food intake relative to rats held under photoperiods of ≤ 10 h of light/day. Magnetic resonance imaging analysis confirmed that these changes were mainly the result of a change in lean body mass. The same pattern was evident for reproductive status, with higher paired testes weight in photoperiods of ≥ 12 h of light/day. Accompanying the changes in physiological status were major changes in hypothalamic thyroid hormone (Dio2 and Dio3), retinoic acid (Crabp1 and Stra6) and Wnt/β-Catenin signalling genes (sFrp2 and Mfrp). Our data demonstrate that a photoperiod schedule of 12 h of light/day is interpreted as a stimulatory photoperiod by the neuroendocrine system of young male F344 rats. PMID:25443173

  15. The respiratory molybdo-selenoprotein formate dehydrogenases of Escherichia coli have hydrogen: benzyl viologen oxidoreductase activity

    PubMed Central

    2011-01-01

    Background Escherichia coli synthesizes three membrane-bound molybdenum- and selenocysteine-containing formate dehydrogenases, as well as up to four membrane-bound [NiFe]-hydrogenases. Two of the formate dehydrogenases (Fdh-N and Fdh-O) and two of the hydrogenases (Hyd-1 and Hyd-2) have their respective catalytic subunits located in the periplasm and these enzymes have been shown previously to oxidize formate and hydrogen, respectively, and thus function in energy metabolism. Mutants unable to synthesize the [NiFe]-hydrogenases retain a H2: benzyl viologen oxidoreductase activity. The aim of this study was to identify the enzyme or enzymes responsible for this activity. Results Here we report the identification of a new H2: benzyl viologen oxidoreductase enzyme activity in E. coli that is independent of the [NiFe]-hydrogenases. This enzyme activity was originally identified after non-denaturing polyacrylamide gel electrophoresis and visualization of hydrogen-oxidizing activity by specific staining. Analysis of a crude extract derived from a variety of E. coli mutants unable to synthesize any [NiFe]-hydrogenase-associated enzyme activity revealed that the mutants retained this specific hydrogen-oxidizing activity. Enrichment of this enzyme activity from solubilised membrane fractions of the hydrogenase-negative mutant FTD147 by ion-exchange, hydrophobic interaction and size-exclusion chromatographies followed by mass spectrometric analysis identified the enzymes Fdh-N and Fdh-O. Analysis of defined mutants devoid of selenocysteine biosynthetic capacity or carrying deletions in the genes encoding the catalytic subunits of Fdh-N and Fdh-O demonstrated that both enzymes catalyze hydrogen activation. Fdh-N and Fdh-O can also transfer the electrons derived from oxidation of hydrogen to other redox dyes. Conclusions The related respiratory molybdo-selenoproteins Fdh-N and Fdh-O of Escherichia coli have hydrogen-oxidizing activity. These findings demonstrate that the

  16. Changes in the expression of the human adenine nucleotide translocase isoforms condition cellular metabolic/proliferative status

    PubMed Central

    Mampel, Teresa; Viñas, Octavi

    2016-01-01

    Human cells express four mitochondrial adenine nucleotide translocase (hANT) isoforms that are tissue-specific and developmentally regulated. hANT1 is mainly expressed in terminally differentiated muscle cells; hANT2 is growth-regulated and is upregulated in highly glycolytic and proliferative cells; and hANT3 is considered to be ubiquitous and non-specifically regulated. Here, we studied how the expression of hANT isoforms is regulated by proliferation and in response to metabolic stimuli, and examined the metabolic consequences of their silencing and overexpression. In HeLa and HepG2 cells, expression of hANT3 was upregulated by shifting metabolism towards oxidation or by slowed growth associated with contact inhibition or growth-factor deprivation, indicating that hANT3 expression is highly regulated. Under these conditions, changes in hANT2 mRNA expression were not observed in either HeLa or HepG2 cells, whereas in SGBS preadipocytes (which, unlike HeLa and HepG2 cells, are growth-arrest-sensitive cells), hANT2 mRNA levels decreased. Additionally, overexpression of hANT2 promoted cell growth and glycolysis, whereas silencing of hANT3 decreased cellular ATP levels, limited cell growth and induced a stress-like response. Thus, cancer cells require both hANT2 and hANT3, depending on their proliferation status: hANT2 when proliferation rates are high, and hANT3 when proliferation slows. PMID:26842067

  17. Ovarian reserve status in young women is associated with altered gene expression in membrana granulosa cells

    PubMed Central

    Skiadas, Christine C.; Duan, Shenghua; Correll, Mick; Rubio, Renee; Karaca, Nilay; Ginsburg, Elizabeth S.; Quackenbush, John; Racowsky, Catherine

    2012-01-01

    Diminished ovarian reserve (DOR) is a challenging diagnosis of infertility, as there are currently no tests to predict who may become affected with this condition, or at what age. We designed the present study to compare the gene expression profile of membrana granulosa cells from young women affected with DOR with those from egg donors of similar age and to determine if distinct genetic patterns could be identified to provide insight into the etiology of DOR. Young women with DOR were identified based on FSH level in conjunction with poor follicular development during an IVF cycle (n = 13). Egg donors with normal ovarian reserve (NOR) comprised the control group (n = 13). Granulosa cells were collected following retrieval, RNA was extracted and microarray analysis was conducted to evaluate genetic differences between the groups. Confirmatory studies were undertaken with quantitative RT–PCR (qRT–PCR). Multiple significant differences in gene expression were observed between the DOR patients and egg donors. Two genes linked with ovarian function, anti-Mullerian hormone (AMH) and luteinizing hormone receptor (LHCGR), were further analyzed with qRT–PCR in all patients. The average expression of AMH was significantly higher in egg donors (adjusted P-value = 0.01), and the average expression of LHCGR was significantly higher in DOR patients (adjusted P-value = 0.005). Expression levels for four additional genes, progesterone receptor membrane component 2 (PGRMC2), prostaglandin E receptor 3 (subtype EP3) (PTGER3), steroidogenic acute regulatory protein (StAR), and StAR-related lipid transfer domain containing 4 (StarD4), were validated in a group consisting of five NOR and five DOR patients. We conclude that gene expression analysis has substantial potential to determine which young women may be affected with DOR. More importantly, our analysis suggests that DOR patients fall into two distinct subgroups based on gene expression profiles, indicating that different

  18. REX-1 Expression and p38 MAPK Activation Status Can Determine Proliferation/Differentiation Fates in Human Mesenchymal Stem Cells

    PubMed Central

    Jung, Ji-Won; Kang, Soo-Kyung; Kang, Kyung-Sun

    2010-01-01

    Background REX1/ZFP42 is a well-known embryonic stem cell (ESC) marker. However, the role of REX1, itself, is relatively unknown because the function of REX1 has only been reported in the differentiation of ESCs via STAT signaling pathways. Human mesenchymal stem cells (hMSCs) isolated from young tissues and cancer cells express REX1. Methodology/Principal Finding Human umbilical cord blood-derived MSCs (hUCB-MSCs) and adipose tissue-derived MSCs (hAD-MSCs) strongly express REX1 and have a lower activation status of p38 MAPK, but bone marrow-derived MSCs (hBM-MSCs) have weak REX1 expression and higher activation of p38 MAPK. These results indicated that REX1 expression in hMSCs was positively correlated with proliferation rates but inversely correlated with the phosphorylation of p38 MAPK. In hUCB-MSCs, the roles of REX1 and p38 MAPK were investigated, and a knockdown study was performed using a lentiviral vector-based small hairpin RNA (shRNA). After REX1 knockdown, decreased cell proliferation was observed. In REX1 knocked-down hUCB-MSCs, the osteogenic differentiation ability deteriorated, but the adipogenic potential increased or was similar to that observed in the controls. The phosphorylation of p38 MAPK in hUCB-MSCs significantly increased after REX1 knockdown. After p38 MAPK inhibitor treatment, the cell growth in REX1 knocked-down hUCB-MSCs almost recovered, and the suppressed expression levels of CDK2 and CCND1 were also restored. The expression of MKK3, an upstream regulator of p38 MAPK, significantly increased in REX1 knocked-down hUCB-MSCs. The direct binding of REX1 to the MKK3 gene was confirmed by a chromatin immunoprecipitation (ChIP) assay. Conclusions/Significance These findings showed that REX1 regulates the proliferation/differentiation of hMSCs through the suppression of p38 MAPK signaling via the direct suppression of MKK3. Therefore, p38 MAPK and REX-1 status can determine the cell fate of adult stem cells (ASCs). These results were the

  19. Surface antigen expression and correlation with variable heavy-chain gene mutation status in chronic lymphocytic leukemia.

    PubMed

    Vilpo, Juhani; Tobin, Gerard; Hulkkonen, Janne; Hurme, Mikko; Thunberg, Ulf; Sundström, Christer; Vilpo, Leena; Rosenquist, Richard

    2003-01-01

    Recent studies have demonstrated that B-cell chronic lymphocytic leukemia (CLL) consists of two clinical entities with either somatically hypermutated (M-CLL) or unmutated (UM-CLL) immunoglobulin variable heavy-chain (VH) regions. In view of the fact that the cellular biology of these two subsets of disease is currently unexplored, we performed an extensive analysis of the surface antigen expression and correlated this with the VH gene mutation status in a cohort of 32 CLL patients. Using polymerase chain reaction amplification and nucleotide sequencing, the VH genes were shown to be mutated in 10 cases (31%) and unmutated in 22 (69%). The expression of 27 surface membrane antigens in peripheral blood leukemic cells was analyzed by flow cytometry, measuring both the percentage of positive cells as well as the geometric mean fluorescence intensity (GMF). Most of the surface membrane antigens (CD5, CD11c, CD19, CD20, CD21, CD22, CD23, CD25, CD40, CD45, VD79b, CD80, CD95, CD122, CD124, CD126, CD130, CD154, IgM, and IgD) showed a similar expression pattern in both UM-CLL and M-CLL patients. The similarity of M-CLL and UM-CLL, as demonstrated here for the first time with many protein markers, indicates a considerably homogeneous phenotype in both subsets. Furthermore, CD27 was strongly expressed in all cases, which may suggest a memory cell phenotype for both M-CLL and UM-CLL. More positive cells in the UM-CLL group were observed regarding CD38, but CD38 was not a good predictor of VH gene mutation status. Seventy percent of the M-CLL cases, but only 36% of UM-CLL cases, were Ig-lambda+. The most striking differential expression, however, was observed in the two slicing variants of the common leukocyte antigen CD45, namely CD45RO and CD45RA. CD45RO expression was significantly associated with M-CLL, whereas the GMF intensity of CD45RA tended to be associated with UM-CLL. The role of these CD45 splicing variants in the pathogenesis of CLL deserves further investigation

  20. Fighting experience alters brain androgen receptor expression dependent on testosterone status

    PubMed Central

    Li, Cheng-Yu; Earley, Ryan L.; Huang, Shu-Ping; Hsu, Yuying

    2014-01-01

    Contest decisions are influenced by the outcomes of recent fights (winner–loser effects). Steroid hormones and serotonin are closely associated with aggression and therefore probably also play important roles in mediating winner–loser effects. In mangrove rivulus fish, Kryptolebias marmoratus, individuals with higher testosterone (T), 11-ketotestosterone and cortisol levels are more capable of winning, but titres of these hormones do not directly mediate winner–loser effects. In this study, we investigated the effects of winning/losing experiences on brain expression levels of the receptor genes for androgen (AR), oestrogen α/β (ERα/β), glucocorticoid (GR) and serotonin (5-HT1AR). The effect of contest experience on AR gene expression depended on T levels: repeated losses decreased, whereas repeated wins increased AR gene expression in individuals with low T but not in individuals with medium or high T levels. These results lend strong support for AR being involved in mediating winner–loser effects, which, in previous studies, were more detectable in individuals with lower T. Furthermore, the expression levels of ERα/β, 5-HT1AR and GR genes were higher in individuals that initiated contests against larger opponents than in those that did not. Overall, contest experience, underlying endocrine state and hormone and serotonin receptor expression patterns interacted to modulate contest decisions jointly. PMID:25320171

  1. Influence of the forms and levels of dietary selenium on antioxidant status and oxidative stress-related parameters in rainbow trout (Oncorhynchus mykiss) fry.

    PubMed

    Fontagné-Dicharry, Stéphanie; Godin, Simon; Liu, Haokun; Antony Jesu Prabhu, Philip; Bouyssière, Brice; Bueno, Maïté; Tacon, Philippe; Médale, Françoise; Kaushik, Sadasivam J

    2015-06-28

    Se is an essential micronutrient required for normal growth, development and antioxidant defence. The objective of the present study was to assess the impact of dietary Se sources and levels on the antioxidant status of rainbow trout (Oncorhynchus mykiss) fry. First-feeding fry (initial body weight: 91 mg) were fed either a plant- or fishmeal-based diet containing 0·5 or 1·2 mg Se/kg diet supplemented or not with 0·3 mg Se/kg diet supplied as Se-enriched yeast or sodium selenite for 12 weeks at 17°C. Growth and survival of rainbow trout fry were not significantly affected by dietary Se sources and levels. Whole-body Se was raised by both Se sources and to a greater extent by Se-yeast. The reduced:oxidised glutathione ratio was raised by Se-yeast, whereas other lipid peroxidation markers were not affected by dietary Se. Whole-body Se-dependent glutathione peroxidase (GPX) activity was enhanced in fish fed Se-yeast compared to fish fed sodium selenite or non-supplemented diets. Activity and gene expression of this enzyme as well as gene expression of selenoprotein P (SelP) were reduced in fish fed the non-supplemented plant-based diet. Catalase, glutamate-cysteine ligase and nuclear factor-erythroid 2-related factor 2 (Nrf2) gene expressions were reduced by Se-yeast. These results suggest the necessity to supplement plant-based diets with Se for rainbow trout fry, and highlight the superiority of organic form of Se to fulfil the dietary Se requirement and sustain the antioxidant status of fish. GPX and SelP expression proved to be good markers of Se status in fish. PMID:25990817

  2. Methylation status and transcriptional expression of the MHC class I loci in human trophoblast cells from term placenta

    SciTech Connect

    Guillaudeux, T.; Rodriguez, A.M.; Girr, M.

    1995-04-01

    Of the various molecular regulatory mechanisms that may be used by human trophoblast cells to down-regulate expression of HLA class I genes, we chose to investigate the methylation of DNA, generally associated with inhibition of transcription. We analyzed the methylation status of different HLA class I loci in villous and extravillous cytotrophoblast cells and in vitro-differentiated syncytiotrophoblast, purified from human term placenta, as well as in the human trophoblast-derived JAR and JEG-3 cell lines. We then compared methylation status and transcriptional activity. An inverse relationship was established between JAR and JEG-3: HLA-A, -B, and -G are methylated and repressed in JAR, whereas in JEG-3, HLA-A is methylated and repressed but HLA-B and -G are partially methylated and transcribed. HLA-E is unmethylated and transcribed in both cell lines. Apart from HLA-E, which is always unmethylated and transcribed, no such relationship exists for the other class I loci in trophoblast cells. Whereas nonclassical HLA-G and classical HLA-A and -B class I genes are undermethylated in both cytotrophoblast and syncytiotrophoblast, they are clearly transcribed in the former but minimally transcribed in the latter subpopulation. Thus, the down-regulation of class I gene expression in the in vitro-differentiated synctiotrophoblast is unlikely to be caused by DNA methylation. Furthermore, there is no detectable expression of any class I molecule at the cell surface of either trophoblast cell subpopulation, suggesting a negative control on translation and/or on the secretory pathway to the plasma membrane. 50 refs., 11 figs., 1 tab.

  3. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer.

    PubMed

    Tomlinson, D C; Baldo, O; Harnden, P; Knowles, M A

    2007-09-01

    FGFR3 is frequently activated by mutation in urothelial carcinoma (UC) and represents a potential target for therapy. In multiple myeloma, both over-expression and mutation of FGFR3 contribute to tumour development. To define the population of UC patients who may benefit from FGFR-targeted therapy, we assessed both mutation and receptor over-expression in primary UCs from a population of new patients. Manual or laser capture microdissection was used to isolate pure tumour cell populations. Where present, non-invasive and invasive components in the same section were microdissected. A screen of the region of the highest tumour stage in each sample yielded a mutation frequency of 42%. Mutations comprised 61 single and five double mutations, all in hotspot codons previously identified in UC. There was a significant association of mutation with low tumour grade and stage. Subsequently, non-invasive areas from the 43 tumours with both non-invasive and invasive components were analysed separately; 18 of these had mutation in at least one region, including nine with mutation in all regions examined, eight with mutation in only the non-invasive component and one with different mutations in different regions. Of the eight with mutation in only the non-invasive component, six were predicted to represent a single tumour and two showed morphological dissimilarity of fragments within the block, indicating the possible presence of distinct tumour clones. Immunohistochemistry showed over-expression of FGFR3 protein in many tumours compared to normal bladder and ureteric controls. Increased expression was associated with mutation (85% of mutant tumours showed high-level expression). Overall, 42% of tumours with no detectable mutation showed over-expression, including many muscle-invasive tumours. This may represent a non-mutant subset of tumours in which FGFR3 signalling contributes to the transformed phenotype and which may benefit from FGFR-targeted therapies. PMID:17668422

  4. Influence of birth weight and gender on lipid status and adipose tissue gene expression in lambs.

    PubMed

    Wallace, Jacqueline M; Milne, John S; Aitken, Raymond P; Adam, Clare L

    2014-08-01

    Intrauterine growth restriction (IUGR) is a risk factor for obesity, particularly when offspring are born into an unrestricted nutritional environment. In this study, we investigated the impact of IUGR and gender on circulating lipids and on expression of adipogenic, lipogenic and adipokine genes in perirenal adipose tissue. Singleton lambs born to overnourished adolescent dams were normal birth weight (N) or IUGR (32% lower birth weight due to placental insufficiency). IUGR lambs exhibited increased fractional growth rates but remained smaller than N lambs at necropsy (d77). At 48 days, fasting plasma triglycerides, non-esterified fatty acids and glycerol were elevated predominantly in IUGR males. Body fat content was independent of prenatal growth but higher in females than in males. In perirenal fat, relative to male lambs, females had larger adipocytes; higher lipoprotein lipase, fatty acid synthase and leptin and lower IGF1, IGF2, IGF1R, IGF2R and hormone-sensitive lipase mRNA expression levels, and all were independent of prenatal growth category; peroxisome proliferator-activated receptor gamma and glycerol-3-phosphate dehydrogenase (G3PDH) mRNA expression were not affected by IUGR or gender. Adiposity indices were inversely related to G3PDH mRNA expression, and for the population as a whole the expression of IGF system genes in perirenal fat was negatively correlated with plasma leptin, fat mass and adipocyte size, and positively correlated with circulating IGF1 levels. Higher plasma lipid levels in IUGR males may predict later adverse metabolic health and obesity, but in early postnatal life gender has the dominant influence on adipose tissue gene expression, reflecting the already established sexual dimorphism in body composition. PMID:24928206

  5. Drought stress, plant water status, and floral trait expression in fireweed, Epilobium angustifolium (Onagraceae).

    PubMed

    Carroll, A B; Pallardy, S G; Galen, C

    2001-03-01

    In a controlled environment, we artificially induced drought during flowering of Epilobium angustifolium, an animal-pollinated plant. Leaf water potential (ψ(l)) and floral traits were monitored over a 12-d period of soil moisture depletion. Soil moisture depletion induced drought stress over time, as revealed by significant treatment × day interactions for predawn and midday ψ(l). Nectar volume and flower size showed significant negative responses to drought stress, but nectar sugar concentration did not vary between treatments. Floral traits were more buffered from drought than leaf water potentials. We used path analysis to examine direct and indirect effects of ψ(l) on floral traits for plants in well-watered (control) vs. drought treatments. According to the best-fit path models, midday ψ(l) has significant positive effects on flower size and nectar volume in both environments. However, for controls midday ψ(l) also had a significant negative effect on nectar sugar concentration. Results indicate that traits influencing floral attractiveness to pollinators in E. angustifolium vary with plant water status, such that pollinator-mediated selection could indirectly target physiological or biochemical controls on ψ(l). Moreover, under mesic conditions selection for greater nectar sugar reward may be constrained by the antagonistic effects of plant water status on nectar volume and sugar concentration. PMID:11250821

  6. Emotional Expression at Work and at Home: Domain, Status, or Individual Characteristics?

    ERIC Educational Resources Information Center

    Lively, Kathryn J.; Powell, Brian

    2006-01-01

    Using the emotions module of the 1996 General Social Survey, we examine strategies that individuals use to express emotion. We focus on anger, one of the emotions most problematic or potentially disruptive to human interaction. Relying on insights from three theoretical approaches to emotion--the cultural perspective, the structural perspective,…

  7. Gene Expression and DNA Methylation Status of Glutathione S-Transferase Mu1 and Mu5 in Urothelial Carcinoma

    PubMed Central

    Wang, Shou-Chieh; Huang, Chin-Chin; Shen, Cheng-Huang; Lin, Lei-Chen; Zhao, Pei-Wen; Chen, Shih-Ying; Deng, Yu-Chiao; Liu, Yi-Wen

    2016-01-01

    Bladder cancer is highly recurrent after therapy, which has an enormous impact on the health and financial condition of the patient. It is worth developing diagnostic tools for bladder cancer. In our previous study, we found that the bladder carcinogen BBN increased urothelial global DNA CpG methylation and decreased GSTM1 protein expression in mice. Here, the correlation of BBN-decreased GSTM1 and GSTM gene CpG methylation status was analyzed in mice bladders. BBN treatment decreased the protein and mRNA expression of GSTM1, and the CpG methylation ratio of GSTM1 gene promoter was slightly increased in mice bladders. Unlike mouse GSTM1, the human GSTM1 gene tends to be deleted in bladder cancers. Among 7 human bladder cancer cell lines, GSTM1 gene is really null in 6 cell lines except one, T24 cells. The CpG methylation level of GSTM1 was 9.9% and 5-aza-dC did not significantly increase GSTM1 protein and mRNA expression in T24 cells; however, the GSTM5 gene was CpG hypermethylated (65.4%) and 5-aza-dC also did not affect the methylation ratio and mRNA expression. However, in other cell lines without GSTM1, 5-aza-dC increased GSTM5 expression and decreased its CpG DNA methylation ratio from 84.6% to 61.5% in 5637, and from 97.4% to 75% in J82 cells. In summary, two biomarkers of bladder tumor were provided. One is the GSTM1 gene which is down-regulated in mice bladder carcinogenesis and is usually deleted in human urothelial carcinoma, while the other is the GSTM5 gene, which is inactivated by DNA CpG methylation. PMID:27404495

  8. Expression regulation and targeting of the peroxisome proliferator-activated receptor γ following electrically-induced status epilepticus.

    PubMed

    Boes, Katharina; Russmann, Vera; Ongerth, Tanja; Licko, Thomas; Salvamoser, Josephine D; Siegl, Claudia; Potschka, Heidrun

    2015-09-14

    The neuroprotective and anti-inflammatory effects of the peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone are of particular interest for disease-modifying and antiepileptogenic approaches. We studied the expression of PPARγ and the impact of rosiglitazone on the consequences of status epilepticus (SE) in a rat post-SE model. Immunohistochemical analysis revealed a selective overexpression of PPARγ in the piriform cortex of rats with spontaneous seizures. Rosiglitazone administration initiated following SE failed to exert relevant effects on the development of spontaneous seizures and neuronal cell loss. Whereas spatial learning in the Morris water maze was delayed in SE animals with vehicle administration, the learning curve of rosiglitazone-treated SE rats showed no significant difference to that of controls. The study provides first evidence arguing against a robust antiepileptogenic effect. However, the findings in the spatial learning paradigm indicate disease-modifying effects. PMID:26259695

  9. Targeted Rejection Triggers Differential Pro- and Anti-Inflammatory Gene Expression in Adolescents as a Function of Social Status

    PubMed Central

    Murphy, Michael L. M.; Slavich, George M.; Rohleder, Nicolas; Miller, Gregory E.

    2013-01-01

    Social difficulties during adolescence influence life-span health. To elucidate underlying mechanisms, we examined whether a noxious social event, targeted rejection (TR), influences the signaling pathways that regulate inflammation, which is implicated in a number of health problems. For this study, 147 adolescent women at risk for developing a first episode of major depression were interviewed every 6 months for 2.5 years to assess recent TR exposure, and blood was drawn to quantify leukocyte messenger RNA (mRNA) for nuclear factor-κB (NF-κB) and inhibitor of κB (I-κB) and the inflammatory biomarkers C-reactive protein and interleukin-6. Participants had more NF-κB and I-κB mRNA at visits when TR had occurred. These shifts in inflammatory signaling were most pronounced for adolescents high in perceived social status. These findings demonstrate that social rejection upregulates inflammatory gene expression in youth at risk for depression, particularly for those high in status. If sustained, this heightened inflammatory signaling could have implications for life-span health. PMID:23638342

  10. Gene expression, glutathione status and indicators of hepatic oxidative stress in laughing gull (Larus atricilla) hatchlings exposed to methylmercury

    USGS Publications Warehouse

    Jenko, Kathryn; Karouna-Renier, Natalie K.; Hoffman, David J.

    2012-01-01

    Despite extensive studies of methylmercury (MeHg) toxicity in birds, molecular effects on birds are poorly characterized. To improve our understanding of toxicity pathways and identify novel indicators of avian exposure to Hg, the authors investigated genomic changes, glutathione status, and oxidative status indicators in liver from laughing gull (Larus atricilla) hatchlings that were exposed in ovo to MeHg (0.05–1.6 µg/g). Genes involved in the transsulfuration pathway, iron transport and storage, thyroid-hormone related processes, and cellular respiration were identified by suppression subtractive hybridization as differentially expressed. Quantitative polymerase chain reaction (qPCR) identified statistically significant effects of Hg on cytochrome C oxidase subunits I and II, transferrin, and methionine adenosyltransferase RNA expression. Glutathione-S-transferase activity and protein-bound sulfhydryl levels decreased, whereas glucose-6-phosphate dehydrogenase activity increased dose-dependently. Total sulfhydryl concentrations were significantly lower at 0.4 µg/g Hg than in controls. T ogether, these endpoints provided some evidence of compensatory effects, but little indication of oxidative damage at the tested doses, and suggest that sequestration of Hg through various pathways may be important for minimizing toxicity in laughing gulls. This is the first study to describe the genomic response of an avian species to Hg. Laughing gulls are among the less sensitive avian species with regard to Hg toxicity, and their ability to prevent hepatic oxidative stress may be important for surviving levels of MeHg exposures at which other species succumb.

  11. DNA methylation status is more reliable than gene expression at detecting cancer in prostate biopsy

    PubMed Central

    Paziewska, A; Dabrowska, M; Goryca, K; Antoniewicz, A; Dobruch, J; Mikula, M; Jarosz, D; Zapala, L; Borowka, A; Ostrowski, J

    2014-01-01

    Background: We analysed critically the potential usefulness of RNA- and DNA-based biomarkers in supporting conventional histological diagnostic tests for prostate carcinoma (PCa) detection. Methods: Microarray profiling of gene expression and DNA methylation was performed on 16 benign prostatic hyperplasia (BPH) and 32 cancerous and non-cancerous prostate samples extracted by radical prostatectomy. The predictive value of the selected biomarkers was validated by qPCR-based methods using tissue samples extracted from the 58 prostates and, separately, using 227 prostate core biopsies. Results: HOXC6, AMACR and PCA3 expression showed the best discrimination between PCa and BPH. All three genes were previously reported as the most promising mRNA-based markers for distinguishing cancerous lesions from benign prostate lesions; however, none were sufficiently sensitive and specific to meet the criteria for a PCa diagnostic biomarker. By contrast, DNA methylation levels of the APC, TACC2, RARB, DGKZ and HES5 promoter regions achieved high discriminating sensitivity and specificity, with area under the curve (AUCs) reaching 0.95−1.0. Only a small overlap was detected between the DNA methylation levels of PCa-positive and PCa-negative needle biopsies, with AUCs ranging between 0.854 and 0.899. Conclusions: DNA methylation-based biomarkers reflect the prostate malignancy and might be useful in supporting clinical decisions for suspected PCa following an initial negative prostate biopsy. PMID:24937670

  12. Expression status of candidate genes in mesothelioma tissues and cell lines.

    PubMed

    Melaiu, Ombretta; Melissari, Erika; Mutti, Luciano; Bracci, Elisa; De Santi, Chiara; Iofrida, Caterina; Di Russo, Manuela; Cristaudo, Alfonso; Bonotti, Alessandra; Cipollini, Monica; Garritano, Sonia I; Foddis, Rudy; Lucchi, Marco; Pellegrini, Silvia; Gemignani, Federica; Landi, Stefano

    2015-01-01

    In order to broaden knowledge on the pathogenesis of malignant pleural mesothelioma (MPM), we reviewed studies on the MPM-transcriptome and identified 119 deregulated genes. However, there was poor consistency among the studies. Thus, the expression of these genes was further investigated in the present work using reverse transcriptase-quantitative PCR (RT-qPCR) in 15 MPM and 20 non-MPM tissue samples. Fifty-nine genes showed a statistically significant deregulation and were further evaluated in two epithelioid MPM cell lines (compared to MET-5A, a non-MPM cell line). Nine genes (ACSL1, CCNO, CFB, PDGFRB, SULF1, TACC1, THBS2, TIMP3, XPOT) were deregulated with statistical significance in both cell lines, 12 (ASS1, CCNB1, CDH11, COL1A1, CXADR, EIF4G1, GALNT7, ITGA4, KRT5, PTGIS, RAN, SOD1) in at least one cell line, whereas 7 (DSP, HEG1, MCM4, MSLN, NME2, NMU, TNPO2) were close but did not reach the statistical significance in any of the cell line. Patients whose MPM tissues expressed elevated mRNA levels of BIRC5, DSP, NME2, and THBS2 showed a statistically significant shorter overall survival. Although MPM is a poorly studied cancer, some features are starting to emerge. Novel cancer genes are suggested here, in particular those involved in cell-cell and cell-matrix interactions. PMID:25771974

  13. Placental Expression of the Heme Transporter, Feline Leukemia Virus Subgroup C Receptor, Is related to Maternal Iron Status in Pregnant Adolescents123

    PubMed Central

    Jaacks, Lindsay M.; Young, Melissa F.; Essley, Bridget V.; McNanley, Thomas J.; Cooper, Elizabeth M.; Pressman, Eva K.; McIntyre, Allison W.; Orlando, Mark S.; Abkowitz, Janis L.; Guillet, Ronnie; O'Brien, Kimberly O.

    2011-01-01

    Little is known about the expression of heme transporters in human placenta and possible associations between these transporters and maternal or neonatal iron status. To address this area of research, relative protein expression of 2 heme transporters, Feline Leukemia Virus, Subgroup C, Receptor 1 (FLVCR1) and Breast Cancer Resistance Protein (BCRP), was assessed using Western-blot analysis in human placental tissue in relation to maternal/neonatal iron status and placental iron concentration. Placental FLVCR1 (n = 71) and BCRP (n = 83) expression were assessed at term (36.6–41.7 wk gestation) in a cohort of pregnant adolescents (13–18 y of age) at high-risk of iron deficiency. Both FLVCR1 and BCRP were detected in all placental samples assayed. Placental FLVCR1 expression was positively related to placental BCRP expression (n = 69; R2 = 0.104; P < 0.05). Adolescents that were anemic at delivery had lower placental FLVCR1 expression (n = 49; P < 0.05). Placental FLVCR1 expression was positively associated with placental iron concentration at delivery (n = 61; R2 = 0.064; P < 0.05). In contrast, placental BCRP expression was not significantly associated with maternal iron status or placental iron content. Both FLVCR1 and BCRP are highly expressed in human placental tissue, but only FLVCR1 was significantly inversely associated with maternal iron status and placental iron concentration. Further analysis is needed to explore potential functional roles of FLVCR1 in human placental iron transport. PMID:21593354

  14. Expression of vascular endothelial growth factor in human oral squamous cell carcinoma: its association with tumour progression and p53 gene status.

    PubMed Central

    Maeda, T; Matsumura, S; Hiranuma, H; Jikko, A; Furukawa, S; Ishida, T; Fuchihata, H

    1998-01-01

    AIMS: To correlate vascular endothelial growth factor (VEGF) expression in oral squamous cell carcinoma with the clinicopathological characteristics and prognosis; and to assess whether p53 gene status is associated with VEGF expression in human cancers. METHODS: Tumour specimens from 45 patients with oral squamous cell carcinomas were examined. Expression of VEGF was determined using an immunohistochemical method, and a tumour was considered positive when more than 5% of the neoplastic cells showed VEGF immunoreactivity. The p53 gene status was screened using a polymerase chain reaction--single strand conformation polymorphism analysis. RESULTS: VEGF positive staining was detected in 19 (42.2%) of the 45 cases. VEGF immunoreactivity did not correlate with the histological degree of tumour differentiation, clinical stages, or lymph node metastasis. The patients with VEGF positive tumours had a significantly worse prognosis than those with VEGF negative tumours. The five year overall survival rate of the VEGF negative patients was 76.5%, as compared with 48.8% for the VEGF positive patients. No significant association between VEGF expression and the p53 gene status of the tumours was found. CONCLUSIONS: VEGF is a good prognostic indicator of the survival of patients with oral squamous cell carcinoma. The p53 gene status does not seem to be associated with VEGF expression in these cancers. Images PMID:10023341

  15. Status of the recommendations on the African cyberinfrastructure expressed by the scientific community written in 2007

    NASA Astrophysics Data System (ADS)

    Petitdidier, M.

    2009-04-01

    In today's Information Age, an effective cyber-infrastructure and Internet access underpins development and human welfare by strengthening education and training, expanding science, technology and innovation capability, opening up collaboration opportunities with the rest of the world, and generating the knowledge base for decision-making. Poor Internet connectivity prevents many countries in Africa, especially Sub-Saharan ones, from taking advantage of these opportunities. There are many initiatives from local, governmental, African, European and international organisations to promote, survey and fund networking. The eGY (electronic Geophysical Year) and Sharing Knowledge Foundation initiatives are based on African scientific communities, and are complementary of other initiatives. Their bottom-up role is twofold: firstly to motivate and support the scientists in each country (1) to ask their government or organisations for a better Internet for research and for education and (2) to organize themselves to welcome new technologies, secondly to promote a better cyber-infrastructure for their universities towards international organisations. In 2007 during the IHY workshop that gathered African scientists from 20 countries eGY provided the results of the questionnaire sent to all the participants to describe the status of internet in the Universities and Research institutes. Then recommendations were written. In 2007 Sharing the knowledge foundation organized a meeting devoted to internet and Grids in Africa. The participants, scientists, industrialists and members of NGO originating from 14 countries wrote also recommendations. In 2009 the presentation in this session of R.L.A Cottrell and U. Kalim will provide an overview of the evolution of the networking. In parallel to the improvement of internet the development of scientific collaboration among African countries and with Europe by using ICT was considered as an essential point. This presentation will be focused

  16. FOXA1 positively regulates gene expression by changing gene methylation status in human breast cancer MCF-7 cells

    PubMed Central

    Zheng, Lu; Qian, Bo; Tian, Duo; Tang, Tong; Wan, Shengyun; Wang, Lei; Zhu, Lixin; Geng, Xiaoping

    2015-01-01

    Objective: DNA methylation is an important epigenetic modification with tumor suppressor gene silencing in cancer. The mechanisms underlying DNA methylation patterns are still poorly understood. This study aims to evaluate the potential value of FOXA1 for controlling gene CpG island methylation in breast cancer. Methods: FOXA1 was down-regulated by transfection with siRNA and up-regulated by transfection with plasmid in MCF-7 cell lines. The DNA methylation and mRNA levels were examined by qMSP and qRT-PCR. The cell proliferation and apoptosis was detected by MTT and Flow cytometry. Results: Suppression of FOXA1 enhanced the methylation status of DAPK, MGMT, RASSF1A, p53, and depressed mRNA levels of these tumor suppressor genes, whereas over-expression of FOXA1 showed the opposite effects. DNMT1, DNMT3A and DNMT3B mRNA were up-regulated by siRNA knock-down of FOXA1. At the same time, FOXA1 suppression promoted cell growth and inhibited apoptosis. Conclusions: FOXA1 may be associated with methylation of the tumor suppressor genes promoter through changing DNMTs expression. FOXA1 could be a potential demethylation target for prevention and treatment of breast cancer. PMID:25755696

  17. Inactivation of the selB Gene in Methanococcus maripaludis: Effect on Synthesis of Selenoproteins and Their Sulfur-Containing Homologs

    PubMed Central

    Rother, Michael; Mathes, Isabella; Lottspeich, Friedrich; Böck, August

    2003-01-01

    The genome of Methanococcus maripaludis harbors genes for at least six selenocysteine-containing proteins and also for homologs that contain a cysteine codon in the position of the UGA selenocysteine codon. To investigate the synthesis and function of both the Se and the S forms, a mutant with an inactivated selB gene was constructed and analyzed. The mutant was unable to synthesize any of the selenoproteins, thus proving that the gene product is the archaeal translation factor (aSelB) specialized for selenocysteine insertion. The wild-type form of M. maripaludis repressed the synthesis of the S forms of selenoproteins, i.e., the selenium-independent alternative system, in selenium-enriched medium, but the mutant did not. We concluded that free selenium is not involved in regulation but rather a successional compound such as selenocysteyl-tRNA or some selenoprotein. Apart from the S forms, several enzymes from the general methanogenic route were affected by selenium supplementation of the wild type or by the selB mutation. Although the growth of M. maripaludis on H2/CO2 is only marginally affected by the selB lesion, the gene is indispensable for growth on formate because M. maripaludis possesses only a selenocysteine-containing formate dehydrogenase. PMID:12486046

  18. An insight into the functional role of thioredoxin reductase, a selenoprotein, in maintaining normal native microbiota in the Gulf Coast tick (Amblyomma maculatum).

    PubMed

    Budachetri, K; Karim, S

    2015-10-01

    Tick selenoproteins have been associated with antioxidant activity in ticks. Thioredoxin reductase (TrxR), also a selenoprotein, belongs to the pyridine nucleotide-disulphide oxidoreductase family of proteins and is an important antioxidant. Molecular interactions between native microbiota and tick hosts have barely been investigated to date. In this study, we determined the functional role of TrxR in tick feeding and in maintenance of the native microbial community. TrxR transcript levels remained high and microbial load was reduced throughout tick attachment to the vertebrate host. RNA interference (RNAi) showed that depletion of TrxR activity did not interfere with tick haematophagy or phenotype but did reduce the viability of the microbiome within the tick tissues, presumably by perturbing redox homeostasis. The transcriptional activity of various antioxidant genes remained unaffected whereas the antioxidant genes Manganese superoxide dismutase (MnSOD), copper/zinc superoxide dismutase (Cu/Zn SOD) and selenoprotein M (SelM) were significantly down-regulated in salivary glands of the ticks subjected to RNAi. The perturbed TrxR enzymatic activity in the knocked-down tick tissues negatively affected the bacterial load as well. Furthermore, we observed the altered bacterial profiles in TrxR-silenced tick tissues. Taken together, these results indicate an essential functional role for TrxR in maintaining the bacterial community associated with ticks. PMID:26184979

  19. Puerperal influence of bovine uterine health status on the mRNA expression of pro-inflammatory factors.

    PubMed

    Peter, S; Michel, G; Hahn, A; Ibrahim, M; Lubke-Becker, A; Jung, M; Einspanier, R; Gabler, C

    2015-06-01

    After parturition, uterine bacterial infections lead to inflammatory processes such as subclinical/clinical endometritis with high prevalence in dairy cows. Endometrial epithelial cells participate in this immune response with the production of pro-inflammatory factors. The objective of the present study was to evaluate the endometrial mRNA expression pattern of pro-inflammatory factors during a selected postpartum (pp) period. Dairy cows with three different uterine health conditions on days 24-30 pp (healthy: n = 11, subclinical endometritis: n = 10, clinical endometritis: n = 10) were sampled using the cytobrush technique. Subsequently, each cow was sampled 3 more times in weekly intervals (days 31-37 pp; days 38-44 pp; days 45-51 pp). Samples were subjected to mRNA analysis performed by RT-qPCR. Additionally, an analysis of cultivable bacteria was performed at the early/late stage of the selected puerperal period. mRNA expression of 16 candidate genes was analyzed by using two different approaches. The first approach referred to the initial grouping on days 24-30 pp to reveal long-term effects of the uterine health on the subsequent puerperal period. The second approach considered the current uterine health status at each sampling to elucidate the impact of different points in time. Long-term effects seem to appear for chemokines, prostacyclin synthase and prostaglandin D2 synthase. If related to the current uterine health, the majority of candidate genes were significantly higher expressed in endometritic cows on days 45-51 pp in contrast to earlier stages of the puerperium. Microbiological analysis revealed the significantly higher prevalence of Trueperella pyogenes findings in cows with clinical endometritis on days 24-30 pp, but no correlations were found on days 45-51 pp. In conclusion, a strong immune response to subclinical/clinical endometritis in the late puerperium may be related to the negative impact of these conditions on reproductive performance

  20. Recombinant human erythropoietin-induced erythropoiesis regulates hepcidin expression over iron status in the rat.

    PubMed

    Ribeiro, Sandra; Garrido, Patrícia; Fernandes, João; Rocha, Susana; Rocha-Pereira, Petronila; Costa, Elísio; Belo, Luís; Reis, Flávio; Santos-Silva, Alice

    2016-07-01

    The crosstalk between several factors controlling hepcidin synthesis is poorly clarified for different physiological and pathological conditions. Our aim was to study the impact of increasing recombinant human erythropoietin (rHuEPO) doses on erythropoiesis, iron metabolism and hepcidin, using a rat model. Male Wistar rats were divided in 5 groups: control (vehicle) and rHuEPO-treated groups (100, 200, 400 and 600IU/kgbody weight/week), 3 times per week, during 3weeks. Hematological and iron data were evaluated. The expression of several genes involved in iron metabolism was analyzed by qPCR. Liver hepcidin protein was evaluated by Western Blot. The rHuEPO treatment induced erythropoiesis and increased transferrin saturation (TSAT) in a dose dependent manner. Tf receptor 2 (TfR2), hemojuvelin (HJV) and bone morphogenetic protein 6 (BMP6) were up-regulated in rHuEPO200 group. Matriptase-2 was down-regulated in rHuEPO200 group, and up-regulated in the other rHuEPO-treated groups. Hepcidin synthesis was increased in rHuEPO200 group, and repressed in the rHuEPO400 and rHuEPO600 groups. Our study showed that when a high erythropoietic stimulus occurs, hepcidin synthesis is mainly regulated by TSAT; however, when the erythropoiesis rate reaches a specific threshold, extramedullary hematopoiesis is triggered, and the control of hepcidin synthesis is switched to matriptase-2, thus inhibiting hepcidin synthesis. PMID:27282570

  1. A post-transcriptional mechanism pacing expression of neural genes with precursor cell differentiation status

    PubMed Central

    Dai, Weijun; Li, Wencheng; Hoque, Mainul; Li, Zhuyun; Tian, Bin; Makeyev, Eugene V.

    2015-01-01

    Nervous system (NS) development relies on coherent upregulation of extensive sets of genes in a precise spatiotemporal manner. How such transcriptome-wide effects are orchestrated at the molecular level remains an open question. Here we show that 3′-untranslated regions (3′ UTRs) of multiple neural transcripts contain AU-rich cis-elements (AREs) recognized by tristetraprolin (TTP/Zfp36), an RNA-binding protein previously implicated in regulation of mRNA stability. We further demonstrate that the efficiency of ARE-dependent mRNA degradation declines in the neural lineage because of a decrease in the TTP protein expression mediated by the NS-enriched microRNA miR-9. Importantly, TTP downregulation in this context is essential for proper neuronal differentiation. On the other hand, inactivation of TTP in non-neuronal cells leads to dramatic upregulation of multiple NS-specific genes. We conclude that the newly identified miR-9/TTP circuitry limits unscheduled accumulation of neuronal mRNAs in non-neuronal cells and ensures coordinated upregulation of these transcripts in neurons. PMID:26144867

  2. Mars Express - Status and Science Highlights after Six Years in Orbit

    NASA Astrophysics Data System (ADS)

    Witasse, Olivier; Chicarro, Agustin

    2010-05-01

    The Mars Express mission, launched on a Soyuz rocket from Baikonur in June 2003, has provided a comprehensive and multidisciplinary view of Mars, including the surface morphology, geology and mineralogy, the subsurface structure, the state of the interior, the climate's evolution, the atmospheric dynamics and composition, and the aeronomy. Originally planned for one Martian year (687 days), the mission has been extended several times and has led to the publication of over 400 peer-reviewed papers in international scientific journals. A summary of the scientific highlights is presented: The history of Mars has been completely revisited after the detection by the OMEGA mapping spectrometer of alteration minerals and phyllosilicates in particular. Phyllosilicates record an era of potential habitability. The presence of methane has been detected from orbit by the PFS spectrometer and its spatial and vertical distribution are being mapped. The High-Resolution Stereo Colour Imager (HRSC) has shown breathtaking views of the planet and provided new insights into the planet's topography, allowing a much better understanding of the formation and evolution of the surface geological features. In particular, the combination of digital terrain models with coverage at high resolution (better than 20 m/pixel) indicates very young ages for both glacial and volcanic processes, from hundreds of thousands to a few million years old, respectively. The North and South Polar Layered Deposits consist of nearly pure water ice, as deduced from the MARSIS radar data. Unique maps of H2O ice and CO2 ice in the polar regions have been produced by OMEGA. The analyser of space plasma and energetic atoms (ASPERA) has found that the solar wind is slowly stripping off the high atmosphere down to 270 km altitude, and measured the current rate of atmospheric escape of planetary ions. The composition of the escaping plasma has been precisely measured. The ultraviolet and infrared atmospheric

  3. Human MiR-544a Modulates SELK Expression in Hepatocarcinoma Cell Lines

    PubMed Central

    Potenza, Nicoletta; Castiello, Filomena; Panella, Marta; Colonna, Giovanni; Ciliberto, Gennaro; Russo, Aniello; Costantini, Susan

    2016-01-01

    Hepatocellular carcinoma (HCC) is a multi-factorial cancer with a very poor prognosis; therefore, there are several investigations aimed at the comprehension of the molecular mechanisms leading to development and progression of HCC and at the definition of new therapeutic strategies. We have recently evaluated the expression of selenoproteins in HCC cell lines in comparison with normal hepatocytes. Recent results have shown that some of them are down- and others up-regulated, including the selenoprotein K (SELK), whose expression was also induced by sodium selenite treatment on cells. However, so far very few studies have been dedicated to a possible effect of microRNAs on the expression of selenoproteins and their implication in HCC. In this study, the analysis of SELK 3’UTR by bioinformatics tools led to the identification of eight sites potentially targeted by human microRNAs. They were then subjected to a validation test based on luciferase reporter constructs transfected in HCC cell lines. In this functional screening, miR-544a was able to interact with SELK 3’UTR suppressing the reporter activity. Transfection of a miR-544a mimic or inhibitor was then shown to decrease or increase, respectively, the translation of the endogenous SELK mRNA. Intriguingly, miR-544a expression was found to be modulated by selenium treatment, suggesting a possible role in SELK induction by selenium. PMID:27275761

  4. Human MiR-544a Modulates SELK Expression in Hepatocarcinoma Cell Lines.

    PubMed

    Potenza, Nicoletta; Castiello, Filomena; Panella, Marta; Colonna, Giovanni; Ciliberto, Gennaro; Russo, Aniello; Costantini, Susan

    2016-01-01

    Hepatocellular carcinoma (HCC) is a multi-factorial cancer with a very poor prognosis; therefore, there are several investigations aimed at the comprehension of the molecular mechanisms leading to development and progression of HCC and at the definition of new therapeutic strategies. We have recently evaluated the expression of selenoproteins in HCC cell lines in comparison with normal hepatocytes. Recent results have shown that some of them are down- and others up-regulated, including the selenoprotein K (SELK), whose expression was also induced by sodium selenite treatment on cells. However, so far very few studies have been dedicated to a possible effect of microRNAs on the expression of selenoproteins and their implication in HCC. In this study, the analysis of SELK 3'UTR by bioinformatics tools led to the identification of eight sites potentially targeted by human microRNAs. They were then subjected to a validation test based on luciferase reporter constructs transfected in HCC cell lines. In this functional screening, miR-544a was able to interact with SELK 3'UTR suppressing the reporter activity. Transfection of a miR-544a mimic or inhibitor was then shown to decrease or increase, respectively, the translation of the endogenous SELK mRNA. Intriguingly, miR-544a expression was found to be modulated by selenium treatment, suggesting a possible role in SELK induction by selenium. PMID:27275761

  5. Effects of dietary fatty acids on mitochondrial phospholipid compositions, oxidative status and mitochondrial gene expression of zebrafish at different ages.

    PubMed

    Betancor, M B; Almaida-Pagán, P F; Hernández, A; Tocher, D R

    2015-10-01

    Mitochondrial decay is generally associated with impairment in the organelle bioenergetics function and increased oxidative stress, and it appears that deterioration of mitochondrial inner membrane phospholipids (PL) and accumulation of mitochondrial DNA (mtDNA) mutations are among the main mechanisms involved in this process. In the present study, mitochondrial membrane PL compositions, oxidative status (TBARS content and SOD activity) and mtDNA gene expression of muscle and liver were analyzed in zebrafish fed two diets with lipid supplied either by rapeseed oil (RO) or a blend 60:40 of RO and DHA500 TG oil (DHA). Two feeding trials were performed using zebrafish from the same population of two ages (8 and 21 months). Dietary FA composition affected fish growth in 8-month-old animals, which could be related to an increase in stress promoted by diet composition. Lipid peroxidation was considerably higher in mitochondria of 8-month-old zebrafish fed the DHA diet than in animals fed the RO diet. This could indicate higher oxidative damage to mitochondrial lipids, very likely due to increased incorporation of DHA in PL of mitochondrial membranes. Lipids would be among the first molecules affected by mitochondrial reactive oxygen species, and lipid peroxidation could propagate oxidative reactions that would damage other molecules, including mtDNA. Mitochondrial lipid peroxidation and gene expression of 21-month-old fish showed lower responsiveness to diet composition than those of younger fish. Differences found in the effect of diet composition on mitochondrial lipids between the two age groups could be indicating age-related changes in the ability to maintain structural homeostasis of mitochondrial membranes. PMID:26156499

  6. Associations of beta-catenin alterations and MSI screening status with expression of key cell cycle regulating proteins and survival from colorectal cancer

    PubMed Central

    2013-01-01

    Background Despite their pivotal roles in colorectal carcinogenesis, the interrelationship and prognostic significance of beta-catenin alterations and microsatellite instability (MSI) in colorectal cancer (CRC) needs to be further clarified. In this paper, we studied the associations between beta-catenin overexpression and MSI status with survival from CRC, and with expression of p21, p27, cyclin D1 and p53, in a large, prospective cohort study. Methods Immunohistochemical MSI-screening status and expression of p21, p27 and p53 was assessed in tissue microarrays with tumours from 557 cases of incident CRC in the Malmö Diet and Cancer Study. Chi Square and Spearman’s correlation tests were used to explore the associations between beta-catenin expression, MSI status, clinicopathological characteristics and investigative parameters. Kaplan-Meier analysis and Cox proportional hazards modelling were used to assess the relationship between beta-catenin overexpression, MSI status and cancer specific survival (CSS). Results Positive MSI screening status was significantly associated with older age, female sex, proximal tumour location, non-metastatic disease, and poor differentiation, and inversely associated with beta-catenin overexpression. Beta-catenin overexpression was significantly associated with distal tumour location, low T-stage and well-differentiated tumours. Patients with MSI tumours had a significantly prolonged CSS in the whole cohort, and in stage III-IV disease, also in multivariable analysis, but not in stage I-II disease. Beta-catenin overexpression was associated with a favourable prognosis in the full cohort and in patients with stage III-IV disease. Neither MSI nor beta-catenin status were predictive for response to adjuvant chemotherapy in curatively treated stage III patients. P53 and p27 expression was positively associated with beta-catenin overexpression and inversely associated with MSI. Cyclin D1 expression was positively associated with MSI

  7. MDCK cells expressing constitutively active Yes-associated protein (YAP) undergo apical extrusion depending on neighboring cell status

    PubMed Central

    Chiba, Takanori; Ishihara, Erika; Miyamura, Norio; Narumi, Rika; Kajita, Mihoko; Fujita, Yasuyuki; Suzuki, Akira; Ogawa, Yoshihiro; Nishina, Hiroshi

    2016-01-01

    Cell competition is a cell-cell interaction by which a cell compares its fitness to that of neighboring cells. The cell with the relatively lower fitness level is the “loser” and actively eliminated, while the cell with the relatively higher fitness level is the “winner” and survives. Recent studies have shown that cells with high Yes-associated protein (YAP) activity win cell competitions but the mechanism is unknown. Here, we report the unexpected finding that cells overexpressing constitutively active YAP undergo apical extrusion and are losers, rather than winners, in competitions with normal mammalian epithelial cells. Inhibitors of metabolism-related proteins such as phosphoinositide-3-kinase (PI3K), mammalian target of rapamycin (mTOR), or p70S6 kinase (p70S6K) suppressed this apical extrusion, as did knockdown of vimentin or filamin in neighboring cells. Interestingly, YAP-overexpressing cells switched from losers to winners when co-cultured with cells expressing K-Ras (G12V) or v-Src. Thus, the role of YAP in deciding cell competitions depends on metabolic factors and the status of neighboring cells. PMID:27324860

  8. Age-specific oxidative status and the expression of pre- and postcopulatory sexually selected traits in male red junglefowl, Gallus gallus.

    PubMed

    Noguera, Jose C; Dean, Rebecca; Isaksson, Caroline; Velando, Alberto; Pizzari, Tommaso

    2012-09-01

    Oxidative stress is emerging as a key factor underpinning life history and the expression of sexually selected traits. Resolving the role of oxidative stress in life history and sexual selection requires a pluralistic approach, which investigates how age affects the relationship between oxidative status (i.e., antioxidants and oxidative damage) and the multiple traits contributing to variation in reproductive success. Here, we investigate the relationship between oxidative status and the expression of multiple sexually selected traits in two-age classes of male red junglefowl, Gallus gallus, a species which displays marked male reproductive senescence. We found that, irrespective of male age, both male social status and comb size were strongly associated with plasma oxidative status, and there was a nonsignificant tendency for sperm motility to be associated with seminal oxidative status. Importantly, however, patterns of plasma and seminal antioxidant levels differed markedly in young and old males. While seminal antioxidants increased with plasma antioxidants in young males, the level of seminal antioxidants remained low and was independent of plasma levels in old males. In addition, old males also accumulated more oxidative damage in their sperm DNA. These results suggest that antioxidant allocation across different reproductive traits and somatic maintenance might change drastically as males age, leading to age-specific patterns of antioxidant investment. PMID:23139875

  9. Gene expression profiles of lung adenocarcinoma linked to histopathological grading and survival but not to EGF-R status: a microarray study

    PubMed Central

    2010-01-01

    Background Several different gene expression signatures have been proposed to predict response to therapy and clinical outcome in lung adenocarcinoma. Herein, we investigate if elements of published gene sets can be reproduced in a small dataset, and how gene expression profiles based on limited sample size relate to clinical parameters including histopathological grade and EGFR protein expression. Methods Affymetrix Human Genome U133A platform was used to obtain gene expression profiles of 28 pathologically and clinically annotated adenocarcinomas of the lung. EGFR status was determined by fluorescent in situ hybridization and immunohistochemistry. Results Using unsupervised clustering algorithms, the predominant gene expression signatures correlated with the histopathological grade but not with EGFR protein expression as detected by immunohistochemistry. In a supervised analysis, the signature of high grade tumors but not of EGFR overexpressing cases showed significant enrichment of gene sets reflecting MAPK activation and other potential signaling cascades downstream of EGFR. Out of four different previously published gene sets that had been linked to prognosis, three showed enrichment in the gene expression signature associated with favorable prognosis. Conclusions In this dataset, histopathological tumor grades but not EGFR status were associated with dominant gene expression signatures and gene set enrichment reflecting oncogenic pathway activation, suggesting that high immunohistochemistry EGFR scores may not necessarily be linked to downstream effects that cause major changes in gene expression patterns. Published gene sets showed association with patient survival; however, the small sample size of this study limited the options for a comprehensive validation of previously reported prognostic gene expression signatures. PMID:20196851

  10. Characterisation and Expression of Calpain Family Members in Relation to Nutritional Status, Diet Composition and Flesh Texture in Gilthead Sea Bream (Sparus aurata)

    PubMed Central

    Salmerón, Cristina; García de la serrana, Daniel; Jiménez-Amilburu, Vanesa; Fontanillas, Ramón; Navarro, Isabel; Johnston, Ian A.; Gutiérrez, Joaquim; Capilla, Encarnación

    2013-01-01

    Calpains are non-lysosomal calcium-activated neutral proteases involved in a wide range of cellular processes including muscle proteolysis linked to post-mortem flesh softening. The aims of this study were (a) to characterise several members of the calpain system in gilthead sea bream and (b) to examine their expression in relation to nutritional status and muscle tenderisation. We identified the complete open reading frame of gilthead sea bream calpains1-3, sacapn1, sacapn2, sacapn3, and two paralogs of the calpain small subunit1, sacapns1a and sacapns1b. Proteins showed 63–90% sequence identity compared with sequences from mammals and other teleost fishes, and the characteristic domain structure of vertebrate calpains. Transcripts of sacapn1, sacapn2, sacapns1a and sacapns1b had a wide tissue distribution, whereas sacapn3 was almost exclusively detected in skeletal muscle. Next, we assessed transcript expression in skeletal muscle following alteration of nutritional status by (a) fasting and re-feeding or (b) feeding four experimental diets with different carbohydrate-to-protein ratios. Fasting significantly reduced plasma glucose and increased free fatty acids and triglycerides, together with a significant increase in sacapns1b expression. Following 7 days of re-feeding, plasma parameters returned to fed values and sacapn1, sacapn2, sacapns1a and sacapns1b expression was significantly reduced. Furthermore, an increase in dietary carbohydrate content (11 to 39%) diminished growth but increased muscle texture, which showed a significant correlation with decreased sacapn1 and sacapns1a expression, whilst the other calpains remained unaffected. This study has demonstrated that calpain expression is modulated by nutritional status and diet composition in gilthead sea bream, and that the expression of several calpain members is correlated with muscle texture, indicating their potential use as molecular markers for flesh quality in aquaculture production. PMID

  11. Neurodegeneration in mice resulting from loss of functional selenoprotein P or its receptor apolipoprotein E receptor 2.

    PubMed

    Valentine, William M; Abel, Ty W; Hill, Kristina E; Austin, Lori M; Burk, Raymond F

    2008-01-01

    Selenoprotein P (Sepp1) is involved in selenium homeostasis. Mice with a deletion of Sepp1, replacement of it by the shortened form Sepp1(Delta240-361), or deletion of its receptor apolipoprotein E receptor 2 develop severe neurologic dysfunction when fed low-selenium diet. Because the brainstems of Sepp1(-/-) mice had been observed to contain degenerated axons, a study of these 3 strains was made under selenium-deficient and high-selenium (control) conditions. Selenium-deficient wild-type mice were additional controls. Serial sections of the brain were evaluated with amino cupric silver degeneration and anti-glial fibrillary acidic protein stains. All 3 strains with altered Sepp1 metabolism developed severe axonal injury when fed selenium deficient diet. This injury was mitigated by high-selenium diet and was absent from selenium-deficient wild-type mice. Injury was most severe in Sepp1(-/-) mice, with staining in at least 6 brain regions. Injury in Sepp1(Delta240-361) and apolipoprotein E receptor 2 mice was less severe and occurred only in areas injured in Sepp1(-/-) mice, suggesting a common selenium-related etiology. Affected brain regions were primarily associated with auditory and motor functions, consistent with the clinical signs. Those areas have high metabolic rates. We conclude that interference with Sepp1 function damages auditory and motor areas, at least in part by restricting selenium supply to the brain regions. PMID:18172410

  12. Increased Muscle Stress-Sensitivity Induced by Selenoprotein N Inactivation in Mouse: A Mammalian Model for SEPN1-Related Myopathy

    PubMed Central

    Arbogast, Sandrine; Lainé, Jeanne; Vassilopoulos, Stéphane; Beuvin, Maud; Dubourg, Odile; Vignaud, Alban; Ferry, Arnaud; Krol, Alain; Allamand, Valérie; Guicheney, Pascale; Ferreiro, Ana; Lescure, Alain

    2011-01-01

    Selenium is an essential trace element and selenoprotein N (SelN) was the first selenium-containing protein shown to be directly involved in human inherited diseases. Mutations in the SEPN1 gene, encoding SelN, cause a group of muscular disorders characterized by predominant affection of axial muscles. SelN has been shown to participate in calcium and redox homeostasis, but its pathophysiological role in skeletal muscle remains largely unknown. To address SelN function in vivo, we generated a Sepn1-null mouse model by gene targeting. The Sepn1−/− mice had normal growth and lifespan, and were macroscopically indistinguishable from wild-type littermates. Only minor defects were observed in muscle morphology and contractile properties in SelN-deficient mice in basal conditions. However, when subjected to challenging physical exercise and stress conditions (forced swimming test), Sepn1−/− mice developed an obvious phenotype, characterized by limited motility and body rigidity during the swimming session, as well as a progressive curvature of the spine and predominant alteration of paravertebral muscles. This induced phenotype recapitulates the distribution of muscle involvement in patients with SEPN1-Related Myopathy, hence positioning this new animal model as a valuable tool to dissect the role of SelN in muscle function and to characterize the pathophysiological process. PMID:21858002

  13. Association between plasma selenium level and NRF2 target genes expression in humans.

    PubMed

    Reszka, Edyta; Wieczorek, Edyta; Jablonska, Ewa; Janasik, Beata; Fendler, Wojciech; Wasowicz, Wojciech

    2015-04-01

    Animal studies in rodent and in vitro studies indicate compensatory role of nuclear factor (erythroid-derived 2)-like (Nrf2) and Nrf2-regulated antioxidant and phase II biotransformation enzymes for the dietary selenium (Se) deficiency or for the loss of selenoproteins. To explore associations between plasma Se level and NRF2-regulated cytoprotective genes expression, an observational study was conducted in a population of 96 healthy non-smoking men living in Central Poland aged 18-83 years with relatively low plasma Se level. NRF2, KEAP2, CAT, EPHX1, GCLC, GCLM, GPX2, GSR, GSTA1, GSTM1, GSTP1, GSTT1, HMOX1, NQO1, PRDX1, SOD1, SOD2, TXNRD1 transcript levels in peripheral blood leukocytes and polymorphism of NRF2-617C/A (rs6721961) in blood genomic DNA were determined by means of quantitative real-time PCR. Mean plasma Se level was found to be 51.10±15.25μg/L (range 23.86-96.18μg/L). NRF2 mRNA level was positively correlated with expression of investigated NRF2-target genes. The multivariate linear regression adjusting for selenium status showed that plasma Se level was significantly inversely associated only with expression of GSTP1 (β-coef.=-0.270, p=0.009), PRDXR1 (β-coef.=-0.245, p=0.017) and SOD2 with an inverse trend toward significance (β-coef.=-0.186, p=0.074), but without an effect of NRF2 gene variants. NRF2 expression was inversely associated with age (r=-0.23, p=0.03) and body mass index (r=-0.29, p<0.001). The findings may suggest a possible link between plasma Se level and cytoprotective response at gene level in humans. PMID:25524402

  14. Decreased expression of vitamin D receptor may contribute to the hyperimmune status of patients with acquired aplastic anemia.

    PubMed

    Yu, Wei; Ge, Meili; Lu, Shihong; Shi, Jun; Feng, Sizhou; Li, Xingxin; Zhang, Jizhou; Wang, Min; Huang, Jinbo; Shao, Yingqi; Huang, Zhendong; Zhang, Jing; Nie, Neng; Zheng, Yizhou

    2016-05-01

    Acquired aplastic anemia (AA) is an immune-mediated bone marrow failure syndrome. 1α,25-Dihydroxyvitamin D3 [1,25(OH)2 D3 ], the biologically active metabolite of vitamin D, is a critical modulator of immune response via binding with vitamin D receptor (VDR). Previous studies have established that 1,25(OH)2 D3 and VDR were involved in the pathogenesis of some autoimmune diseases. In this study, we evaluated the involvement of 1,25(OH)2 D3 and VDR on T-cell responses in AA. Plasma 25(OH)D3 levels were comparable between patients with AA and healthy controls. Surprisingly, VDR mRNA was significantly lower in untreated patients with AA than in healthy controls. Subsequent in vitro experiments revealed that 1,25(OH)2 D3 treatment suppressed the proliferation of lymphocytes and inhibited the secretion of interferon-γ, tumor necrosis factor-α, and interleukin-17A, meanwhile promoting the production of transforming growth factor-β1 in patients with AA. Moreover, 1,25(OH)2 D3 inhibited the differentiation of type 1 and Th17 cells but induced the differentiation of type 2 and regulatory T cells. Interestingly, VDR mRNA was elevated in healthy controls after 1,25(OH)2 D3 treatment, but not in patients with AA. In conclusion, decreased expression of VDR might contribute to the hyperimmune status of AA and appropriate vitamin D supplementation could partly correct the immune dysfunction by strengthening signal transduction through VDR in patients with AA. PMID:26152509

  15. Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors

    PubMed Central

    Morrison, Kathleen E.; Swallows, Cody L.; Cooper, Matthew A.

    2011-01-01

    Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat. PMID:21362435

  16. Propofol effectively inhibits lithium-pilocarpine- induced status epilepticus in rats via downregulation of N-methyl-D-aspartate receptor 2B subunit expression

    PubMed Central

    Wang, Henglin; Wang, Zhuoqiang; Mi, Weidong; Zhao, Cong; Liu, Yanqin; Wang, Yongan; Sun, Haipeng

    2012-01-01

    Status epilepticus was induced via intraperitoneal injection of lithium-pilocarpine. The inhibitory effects of propofol on status epilepticus in rats were judged based on observation of behavior, electroencephalography and 24-hour survival rate. Propofol (12.5–100 mg/kg) improved status epilepticus in a dose-dependent manner, and significantly reduced the number of deaths within 24 hours of lithium-pilocarpine injection. Western blot results showed that, 24 hours after induction of status epilepticus, the levels of N-methyl-D-aspartate receptor 2A and 2B subunits were significantly increased in rat cerebral cortex and hippocampus. Propofol at 50 mg/kg significantly suppressed the increase in N-methyl-D-aspartate receptor 2B subunit levels, but not the increase in N-methyl-D-aspartate receptor 2A subunit levels. The results suggest that propofol can effectively inhibit status epilepticus induced by lithium-pilocarpine. This effect may be associated with downregulation of N-methyl-D-aspartate receptor 2B subunit expression after seizures. PMID:25737709

  17. Promoter methylation status of tumor suppressor genes and inhibition of expression of DNA methyltransferase 1 in non-small cell lung cancer.

    PubMed

    Liu, Bangqing; Song, Jianfei; Luan, Jiaqiang; Sun, Xiaolin; Bai, Jian; Wang, Haiyong; Li, Angui; Zhang, Lifei; Feng, Xiaoyan; Du, Zhenzong

    2016-08-01

    DNA methylation is an epigenetic DNA modification catalyzed by DNA methyltransferase 1 (DNMT1). The purpose of this study was to investigate DNMT1 gene and protein expression and the effects of methylation status on tumor suppressor genes in human non-small cell lung cancer (NSCLC) cell lines grown in vitro and in vivo Human lung adenocarcinoma cell lines, A549 and H838, were grown in vitro and inoculated subcutaneously into nude mice to form tumors and were then treated with the DNA methylation inhibitor, 5-aza-2'-deoxycytidine, with and without treatment with the benzamide histone deacetylase inhibitor, entinostat (MS-275). DNMT1 protein expression was quantified by Western blot. Promoter methylation status of tumor suppressor genes (RASSF1A, ASC, APC, MGMT, CDH13, DAPK, ECAD, P16, and GATA4) was evaluated by methylation-specific polymerase chain reaction. Methylation status of the tumor suppressor genes was regulated by the DNMT1 gene, with the decrease of DNMT1 expression following DNA methylation treatment. Demethylation of tumor suppressor genes (APC, ASC, and RASSF1A) restored tumor growth in nude mice. The results of this study support a role for methylation of DNA as a potential epigenetic clinical biomarker of prognosis or response to therapy and for DNMT1 as a potential therapeutic target in NSCLC. PMID:27190263

  18. Folate status, folate-related genes and serum miR-21 expression: Implications for miR-21 as a biomarker

    PubMed Central

    Beckett, Emma Louise; Martin, Charlotte; Choi, Jeong Hwa; King, Katrina; Niblett, Suzanne; Boyd, Lyndell; Duesing, Konsta; Yates, Zoe; Veysey, Martin; Lucock, Mark

    2015-01-01

    Background Free circulating microRNA (miRNA) in serum may be valuable biomarkers for disease diagnosis and prognosis. miR-21, the archetypal oncogenic miRNA, has been proposed as a biomarker for colorectal cancer and its benign precursor, adenomatous polyps. However, it is now becoming clear that circulating miRNA profiles may be sensitive to lifestyle and environmental influences. Dietary components involved in one-carbon metabolism are particularly well placed to modulate miRNA expression through an influence on DNA methylation pathways. Methods We investigated the role of methyl group donors (folate, B12, cysteine, homocysteine), polymorphisms of the enzymes of one-carbon metabolism, and serum miR-21 expression in a primary case–control cohort (colonoscopy confirmed adenomatous colon polyps vs controls; n = 253) and a secondary cross-sectional cohort (over 65s; n = 649). The relationships between these parameters and serum miR-21 levels were assessed, stratified by gender. Conclusions Serum miR-21 expression was related to occurrence of adenomatous polyps in females, but not males. Folate levels and MTHFR-C677T genotype was associated with miR-21 expression in both genders. Additionally, DHFR-19 del and MSR-A66G were associated with miR-21 expression in females and males, respectively. Stimulation with excess folate increased expression of miR-21 in colon cancer cell lines. General significance This study demonstrates that serum miR-21 expression correlates with folate status and related genetic status. This may have consequences for the proposed use of miR-21 as a colorectal cancer biomarker. PMID:26674922

  19. The Study of HFE Genotypes and Its Expression Effect on Iron Status of Iranian Haemochromatosis, Iron Deficiency Anemia Patients, Iron-Taker and Non Iron-Taker Controls.

    PubMed

    Beiranvand, Elham; Abediankenari, Saeid; Rostamian, Mosayeb; Beiranvand, Behnoush; Naazeri, Saeed

    2015-01-01

    The role of HFE gene mutations or its expression in regulation of iron metabolism of hereditary haemochromatosis (HH) patients is remained controversial. Therefore here the correlation between two common HFE genotype (p.C282Y, p.H63D) and HFE gene expression with iron status in HH, iron deficiency anemia (IDA) and healthy Iranian participants was studied. For this purpose genotype determination was done by polymerase chain reaction--restriction fragment length polymorphism (PCR-RFLP). Real-Time PCR was applied for evaluation of HFE gene expression. Biochemical parameters and iron consumption were also assessed. Homozygote p.H63D mutation was seen in all HH patients and p.C282Y was not observed in any member of the population. A significant correlation was observed between serum ferritin (SF) level and gender or age of HH patients. p.H63D homozygote was seen to be able to significantly increase SF and transferrin saturation (TS) level without affecting on liver function. Our results also showed that iron consumption affects on TS level increasing. HFE gene expression level of IDA patients was significantly higher than other groups. Also the HFE gene expression was negatively correlated with TS. Finally, the main result of our study showed that loss of HFE function in HH is not derived from its gene expression inhibition and much higher HFE gene expression might lead to IDA. However we propose repeating of the study for more approval of our finding. PMID:25687342

  20. Selenium status in neonates with connatal infection.

    PubMed

    Wiehe, Lennart; Cremer, Malte; Wisniewska, Monika; Becker, Niels-Peter; Rijntjes, Eddy; Martitz, Janine; Hybsier, Sandra; Renko, Kostja; Bührer, Christoph; Schomburg, Lutz

    2016-08-01

    Infectious diseases impair Se metabolism, and low Se status is associated with mortality risk in adults with critical disease. The Se status of neonates is poorly characterised, and a potential impact of connatal infection is unknown. We hypothesised that an infection negatively affects the Se status of neonates. We conducted an observational case-control study at three intensive care units at the Charité-Universitätsmedizin Berlin, Germany. Plasma samples were collected from forty-four neonates. On the basis of clinical signs for bacterial infection and concentrations of IL-6 or C-reactive protein, neonates were classified into control (n 23) and infected (n 21) groups. Plasma Se and selenoprotein P (SePP) concentrations were determined by X-ray fluorescence and ELISA, respectively, at day of birth (day 1) and 48 h later (day 3). Se and SePP showed a positive correlation in both groups of neonates. Se concentrations indicative of Se deficit in adults (500 ng/l). During antibiotic therapy, SePP increased significantly from day 1 (1·03 (sd 0·10) mg/l) to day 3 (1·34 (sd 0·10) mg/l), indicative of improved hepatic Se metabolism. We conclude that both Se and SePP are suitable biomarkers for assessing Se status in neonates and for identifying subjects at risk of deficiency. PMID:27267586

  1. Delayed cell cycle progression in selenoprotein W depleted cells is regulated by a mitogen-activated protein kinase kinase 4–p38–p53 pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenoprotein W (SEPW1) is a ubiquitous, highly conserved thioredoxin-like protein whose depletion causes a p53- and p21Cip1-dependent G1-phase cell cycle arrest in breast and prostate epithelial cells. SEPW1 depletion increases phosphorylation of Ser33 in p53, which is associated with decreased p53...

  2. Selenoprotein R Protects Human Lens Epithelial Cells against d-Galactose-Induced Apoptosis by Regulating Oxidative Stress and Endoplasmic Reticulum Stress

    PubMed Central

    Dai, Jie; Liu, Hongmei; Zhou, Jun; Huang, Kaixun

    2016-01-01

    Selenium is an essential micronutrient for humans. Much of selenium’s beneficial influence on health is attributed to its presence within 25 selenoproteins. Selenoprotein R (SelR), known as methionine sulfoxide reductase B1 (MsrB1), is a selenium-dependent enzyme that, like other Msrs, is required for lens cell viability. In order to investigate the roles of SelR in protecting human lens epithelial (hLE) cells against damage, the influences of SelR gene knockdown on d-galactose-induced apoptosis in hLE cells were studied. The results showed that both d-galactose and SelR gene knockdown by siRNA independently induced oxidative stress. When SelR-gene-silenced hLE cells were exposed to d-galactose, glucose-regulated protein 78 (GRP78) protein level was further increased, mitochondrial membrane potential was significantly decreased and accompanied by a release of mitochondrial cytochrome c. At the same time, the apoptosis cells percentage and the caspase-3 activity were visibly elevated in hLE cells. These results suggested that SelR might protect hLE cell mitochondria and mitigating apoptosis in hLE cells against oxidative stress and endoplasmic reticulum (ER) stress induced by d-galactose, implying that selenium as a micronutrient may play important roles in hLE cells. PMID:26875981

  3. The SBP2 protein central to selenoprotein synthesis contacts the human ribosome at expansion segment 7L of the 28S rRNA.

    PubMed

    Kossinova, Olga; Malygin, Alexey; Krol, Alain; Karpova, Galina

    2014-07-01

    SBP2 is a pivotal protein component in selenoprotein synthesis. It binds the SECIS stem-loop in the 3' UTR of selenoprotein mRNA and interacts with both the specialized translation elongation factor and the ribosome at the 60S subunit. In this work, our goal was to identify the binding partners of SBP2 on the ribosome. Cross-linking experiments with bifunctional reagents demonstrated that the SBP2-binding site on the human ribosome is mainly formed by the 28S rRNA. Direct hydroxyl radical probing of the entire 28S rRNA revealed that SBP2 bound to 80S ribosomes or 60S subunits protects helix ES7L-E in expansion segment 7 of the 28S rRNA. Diepoxybutane cross-linking confirmed the interaction of SBP2 with helix ES7L-E. Additionally, binding of SBP2 to the ribosome led to increased reactivity toward chemical probes of a few bases in ES7L-E and in the universally conserved helix H89, indicative of conformational changes in the 28S rRNA in response to SBP2 binding. This study revealed for the first time that SBP2 makes direct contacts with a discrete region of the human 28S rRNA. PMID:24850884

  4. Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy.

    PubMed

    Ashhab, Muhammad Usman; Omran, Ahmed; Kong, Huimin; Gan, Na; He, Fang; Peng, Jing; Yin, Fei

    2013-11-01

    Recently, the role of inflammation has attracted great attention in the pathogenesis of mesial temporal lobe epilepsy (MTLE), and microRNAs start to emerge as promising new players in MTLE pathogenesis. In this study, we investigated the dynamic expression patterns of tumor necrosis factor alpha (TNF-α) and microRNA-155 (miR-155) in the hippocampi of an immature rat model of status epilepticus (SE) and children with MTLE. The expressions of TNF-α and miR-155 were significantly upregulated in the seizure-related acute and chronic stages of MTLE in the immature rat model and also in children with MTLE. Modulation of TNF-α expression, either by stimulation using myeloid-related protein (MRP8) or lipopolysaccharide or inhibition using lenalidomide on astrocytes, leads to similar dynamic changes in miR-155 expression. Our study is the first to focus on the dynamic expression pattern of miR-155 in the immature rat of SE lithium-pilocarpine model and children with MTLE and to detect their relationship at the astrocyte level. TNF-α and miR-155, having similar expression patterns in the three stages of MTLE development, and their relationship at the astrocyte level may suggest a direct interactive relationship during MTLE development. Therefore, modulation of the TNF-α/miR-155 axis may be a novel therapeutic target for the treatment of MTLE. PMID:23636891

  5. High expression of myoferlin is associated with poor outcome in oropharyngeal squamous cell carcinoma patients and is inversely associated with HPV-status

    PubMed Central

    Kumar, Bhavna; Brown, Nicole V.; Swanson, Benjamin J.; Schmitt, Alessandra C.; Old, Matthew; Ozer, Enver; Agrawal, Amit; Schuller, David E.; Teknos, Theodoros N.; Kumar, Pawan

    2016-01-01

    Myoferlin (MYOF) is a member of ferlin family of membrane proteins that was originally discovered as a muscle specific protein. Recent studies have shown that myoferlin is also expressed in other cell types including endothelial cells and cancer cells. However, very little is known about the expression and biological role of myoferlin in head and neck cancer. In this study, we examined expression profile of myoferlin in oropharyngeal squamous cell carcinoma (OPSCC) and assessed its correlation with disease progression and patient outcome. In univariate analyses, nuclear MYOF was associated with poor overall survival (p<0.001) and these patients had 5.5 times increased hazard of death (95% Cl 3.4-8.8). Nuclear myoferlin expression was also directly associated with tumor recurrence (p<0.001), perineural invasion (p=0.008), extracapsular spread (p=0.009), higher T-stage (p=0.0015) and distant metastasis (p<0.001). In addition, nuclear MYOF expression was directly associated with IL-6 (p<0.001) and inversely with HPV status (p=0.0014). In a subgroup survival analysis, MYOF nuclear+/IL-6+ group had worst survival (84.6% mortality), whereas MYOF nuclear-/IL-6- had the best survival. Similarly, patients with HPV-negative/MYOF-positive tumors had worse survival compared to HPV-positive/MYOF-negative. Taken together, our results demonstrate for the first time that nuclear myoferlin expression independently predicts poor clinical outcome in OPSCC patients. PMID:26919244

  6. The mRNA Expression Status of Dopamine Receptor D2, Dopamine Receptor D3 and DARPP-32 in T Lymphocytes of Patients with Early Psychosis

    PubMed Central

    Cui, Yin; Prabhu, Vishwanath; Nguyen, Thong Ba; Yadav, Binod Kumar; Chung, Young-Chul

    2015-01-01

    Peripheral blood lymphocytes are an attractive tool because there is accumulating evidence indicating that lymphocytes may be utilized as a biomarker in the field of psychiatric study as they could reveal the condition of cells distributed in the brain. Here, we measured the mRNA expression status of dopamine receptor D2 (DRD2), DRD3, and dopamine and cyclic adenosine 3′,5′-monophosphate regulated phosphoprotein-32 (DARPP-32) in T lymphocytes of patients with early psychosis by quantitative real-time polymerase chain reaction (q-PCR) and explored the relationships between their mRNA levels and the psychopathological status of patients. The present study demonstrated that the mRNA expression levels of DRD3 in T lymphocytes were significantly different among controls, and in patients with psychotic disorder not otherwise specified (NOS) and schizophrenia/schizophreniform disorder. However, no significant differences in mRNA expression levels of DRD2 and DARPP-32 were found among the three groups. We found a significant positive correlation between the DRD2 mRNA level and the score of the excited factor of the Positive and Negative Syndrome Scale (PANSS) in patients with schizophrenia/schizophreniform disorder. These findings suggest that DRD3 mRNA levels may serve as a potential diagnostic biomarker differentiating patients with early psychosis from controls. PMID:26561806

  7. Expression of Tenascin C, EGFR, E-Cadherin, and TTF-1 in Medullary Thyroid Carcinoma and the Correlation with RET Mutation Status

    PubMed Central

    Steiner, Florian; Hauser-Kronberger, Cornelia; Rendl, Gundula; Rodrigues, Margarida; Pirich, Christian

    2016-01-01

    Tenascin C expression correlates with tumor grade and indicates worse prognosis in several tumors. Epidermal growth factor receptor (EGFR) plays an important role in driving proliferation in many tumors. Loss of E-cadherin function is associated with tumor invasion and metastasis. Thyroid transcription factor-1 (TTF-1) is involved in rearranged during transfection (RET) transcription in Hirschsprung’s disease. Tenascin C, EGFR, E-cadherin, TTF-1-expression, and their correlations with RET mutation status were investigated in 30 patients with medullary thyroid carcinoma (MTC) (n = 26) or C-cell hyperplasia (n = 4). Tenascin C was found in all, EGFR in 4/26, E-cadherin in 23/26, and TTF-1 in 25/26 MTC. Tenascin C correlated significantly with tumor proliferation (overall, r = 0.61, p < 0.005; RET-mutated, r = 0.81, p < 0.01). E-cadherin showed weak correlation, whereas EGFR and TTF-1 showed no significant correlation with tumor proliferation. EGFR, E-cadherin, and TTF-1 showed weak correlation with proliferation of RET-mutated tumors. Correlation between TTF-1 and tenascin C, E-cadherin, and EGFR was r = −0.10, 0.37, and 0.21, respectively. In conclusion, MTC express tenascin C, E-cadherin, and TTF-1. Tenascin C correlates significantly with tumor proliferation, especially in RET-mutated tumors. EGFR is low, and tumors expressing EGFR do not exhibit higher proliferation. TTF-1 does not correlate with RET mutation status and has a weak correlation with tenascin C, E-cadherin, and EGFR expression. PMID:27409604

  8. Expression of Tenascin C, EGFR, E-Cadherin, and TTF-1 in Medullary Thyroid Carcinoma and the Correlation with RET Mutation Status.

    PubMed

    Steiner, Florian; Hauser-Kronberger, Cornelia; Rendl, Gundula; Rodrigues, Margarida; Pirich, Christian

    2016-01-01

    Tenascin C expression correlates with tumor grade and indicates worse prognosis in several tumors. Epidermal growth factor receptor (EGFR) plays an important role in driving proliferation in many tumors. Loss of E-cadherin function is associated with tumor invasion and metastasis. Thyroid transcription factor-1 (TTF-1) is involved in rearranged during transfection (RET) transcription in Hirschsprung's disease. Tenascin C, EGFR, E-cadherin, TTF-1-expression, and their correlations with RET mutation status were investigated in 30 patients with medullary thyroid carcinoma (MTC) (n = 26) or C-cell hyperplasia (n = 4). Tenascin C was found in all, EGFR in 4/26, E-cadherin in 23/26, and TTF-1 in 25/26 MTC. Tenascin C correlated significantly with tumor proliferation (overall, r = 0.61, p < 0.005; RET-mutated, r = 0.81, p < 0.01). E-cadherin showed weak correlation, whereas EGFR and TTF-1 showed no significant correlation with tumor proliferation. EGFR, E-cadherin, and TTF-1 showed weak correlation with proliferation of RET-mutated tumors. Correlation between TTF-1 and tenascin C, E-cadherin, and EGFR was r = -0.10, 0.37, and 0.21, respectively. In conclusion, MTC express tenascin C, E-cadherin, and TTF-1. Tenascin C correlates significantly with tumor proliferation, especially in RET-mutated tumors. EGFR is low, and tumors expressing EGFR do not exhibit higher proliferation. TTF-1 does not correlate with RET mutation status and has a weak correlation with tenascin C, E-cadherin, and EGFR expression. PMID:27409604

  9. Cleaved NOTCH1 Expression Pattern in Head and Neck Squamous Cell Carcinoma Is Associated with NOTCH1 Mutation, HPV Status, and High-Risk Features.

    PubMed

    Rettig, Eleni M; Chung, Christine H; Bishop, Justin A; Howard, Jason D; Sharma, Rajni; Li, Ryan J; Douville, Christopher; Karchin, Rachel; Izumchenko, Evgeny; Sidransky, David; Koch, Wayne; Califano, Joseph; Agrawal, Nishant; Fakhry, Carole

    2015-04-01

    The Notch pathway is frequently altered in head and neck squamous cell carcinomas (HNSCC); however, the clinical significance of NOTCH1 dysregulation is poorly understood. This study was designed to characterize expression of the transcriptionally active NOTCH1 intracellular domain (NICD1) in HNSCCs and evaluate its association with NOTCH1 mutation status and clinical parameters. IHC for NICD1 was performed on 79 previously sequenced archival HNSCCs with known NOTCH1 mutation status. Three distinct immunohistochemical staining patterns were identified: positive/peripheral (47%), positive/nonperipheral (34%), and negative (19%). NICD1 expression was associated with NOTCH1 mutation status (P < 0.001). Most NOTCH1-wild-type tumors were peripheral (55%), whereas mutated NOTCH1 tumors were most commonly negative (47%). Nonperipheral tumors were more likely than peripheral tumors to have extracapsular spread [adjusted odds ratio (aOR), 16.01; 95% confidence interval (CI), 1.92-133.46; P = 0.010] and poor differentiation (aOR, 5.27; 95% CI, 0.90-30.86; P = 0.066). Negative staining tumors tended to be poorly differentiated (aOR, 24.71; 95% CI, 1.53-399.33; P = 0.024) and were less likely to be human papillomavirus (HPV) positive (aOR, 0.043; 95% CI, 0.001-1.59; P = 0.087). NOTCH1 mutagenesis was significantly associated with HPV status, with NOTCH1-wild-type tumors more likely to be HPV positive than NOTCH1-mutated tumors (aOR, 19.06; 95% CI, 1.31-276.15; P = 0.031). TP53 disruptive mutations were not associated with NICD1 expression or NOTCH1 mutation. In conclusion, NICD1 is expressed in three distinct patterns in HNSCC that are significantly associated with high-risk features. These findings further support a dual role for NOTCH1 as both tumor suppressor and oncogene in HNSCC. Further research is necessary to clarify the role of NOTCH1 in HNSCC and understand the clinical and therapeutic implications therein. PMID:25633867

  10. Changes in barrier health status of the gill for grass carp (Ctenopharyngodon idella) during valine deficiency: Regulation of tight junction protein transcript, antioxidant status and apoptosis-related gene expression.

    PubMed

    Feng, Lin; Luo, Jian-Bo; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-08-01

    This study investigated the effects of dietary valine on tight junction protein transcription, antioxidant status and apoptosis on grass carp gills (Ctenopharyngodon idella). Fish were fed six different experimental diets containing graded levels of valine (4.3, 8.0, 10.6, 13.1, 16.7, 19.1 g/kg). The results indicated that valine deficiency decreased Claudin b, Claudin 3, Occludin and ZO-1 transcription and increased Claudin 15 expression in the fish gill (P < 0.05). These effects were partly due to the down-regulation of interleukin 10 (IL-10), transforming growth factor β1 (TGF-β1) and IκB α and the up-regulation of relative mRNA expression of interleukin 1β (IL-1β), interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α) and nuclear factor κB P65 (NF-κB P65) (P < 0.05). However, valine deficiency and valine supplementation did not have a significant effect on Claudin c and Claudin 12 expression in grass carp gills (P > 0.05). Valine deficiency also disrupted antioxidant status in the gill by decreasing anti-superoxide radicals and hydroxyl radical capacity, glutathione contents and the activities and mRNA levels of Cu/Zn superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) (P < 0.05). These results may be ascribed to the down-regulation of NF-E2-related factor 2 (Nrf2), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1) and the up-regulation of Kelch-like-ECH-associated protein 1 (Keap1) (P < 0.05). Additionally, valine deficiency induced DNA fragmentation via the up-regulation of Caspase 3, Caspase 8 and Caspase 9 expressions (P < 0.05). These results may be ascribed to the improvement in ROS levels in the fish gill (P < 0.05). Taken together, the results showed that valine deficiency impaired the structural integrity of fish gill by disrupted fish antioxidant defenses and regulating the expression of tight junction protein, cytokines, antioxidant