Science.gov

Sample records for steady-state fluid flow

  1. Steady State Transportation Cooling in Porous Media Under Local, Non-Thermal Equilibrium Fluid Flow

    NASA Technical Reports Server (NTRS)

    Rodriquez, Alvaro Che

    2002-01-01

    An analytical solution to the steady-state fluid temperature for 1-D (one dimensional) transpiration cooling has been derived. Transpiration cooling has potential use in the aerospace industry for protection against high heating environments for re-entry vehicles. Literature for analytical treatments of transpiration cooling has been largely confined to the assumption of thermal equilibrium between the porous matrix and fluid. In the present analysis, the fundamental fluid and matrix equations are coupled through a volumetric heat transfer coefficient and investigated in non-thermal equilibrium. The effects of varying the thermal conductivity of the solid matrix and the heat transfer coefficient are investigated. The results are also compared to existing experimental data.

  2. Two-fluid magnetohydrodynamic model of plasma flows in a quasi-steady-state accelerator with a longitudinal magnetic field

    NASA Astrophysics Data System (ADS)

    Kozlov, A. N.

    2009-05-01

    This paper reports the results of numerical studies of axisymmetric flows in a coaxial plasma accelerator in the presence of a longitudinal magnetic field. The calculations were performed using a two-dimensional two-fluid magnetohydrodynamic model taking into account the Hall effect and the conductivity tensor of the medium. The numerical experiments confirmed the main features of the plasmadynamic processes found previously using analytical and one-fluid models and made it possible to study plasma flows near the electrodes.

  3. Steady State Erosion of Granular Particles by Shear Flow

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin; Kudrolli, Arshad

    2015-11-01

    Despite decades of scientific observation of rivers, streams and laboratory experiments the process of erosion still is not understood. Empirical fits are used to determine when erosion starts with more than an order of magnitude scatter or a shifting power law determining how much material erodes away. In order to study the many body problem of multiple particles we first need to understand the basics of a single particle eroding from a potential well in laminar flow. Using different particle densities and different barrier heights we looked at the onset of erosion and the balance of forces and torques to create a predictive model of when a single particle will erode over a barrier of a given height as a function of shear rate and viscosity. We then create a steady state system in which to image erosion as it happens and simultaneously measure flow velocity and particle movement. Measuring particle movement allows us to determine when steady state erosion occurs and calculate the fluxes and slip velocities at the beginning of the erosion process as we transition from rolling particles to particles suspended in the fluid flow. NSF Grant Number CBET 1335928.

  4. Pressure updating methods for the steady-state fluid equations

    NASA Technical Reports Server (NTRS)

    Fiterman, A.; Turkel, E.; Vatsa, V.

    1995-01-01

    We consider the steady state equations for a compressible fluid. Since we wish to solve for a range of speeds we must consider the equations in conservation form. For transonic speeds these equations are of mixed type. Hence, the usual approach is to add time derivatives to the steady state equations and then march these equations in time. One then adds a time derivative of the density to the continuity equation, a derivative of the momentum to the momentum equation and a derivative of the total energy to the energy equation. This choice is dictated by the time consistent equations. However, since we are only interested in the steady state this is not necessary. Thus we shall consider the possibility of adding a time derivative of the pressure to the continuity equation and similar modifications for the energy equation. This can then be generalized to adding combinations of time derivatives to each equation since these vanish in the steady state. When using acceleration techniques such as residual smoothing, multigrid, etc. these are applied to the pressure rather than the density. Hence, the code duplicates the behavior of the incompressible equations for low speeds.

  5. Multiple steady states in coupled flow tank reactors

    NASA Astrophysics Data System (ADS)

    Hunt, Katharine L. C.; Kottalam, J.; Hatlee, Michael D.; Ross, John

    1992-05-01

    Coupling between continuous-flow, stirred tank reactors (CSTR's), each having multiple steady states, can produce new steady states with different concentrations of the chemical species in each of the coupled tanks. In this work, we identify a kinetic potential ψ that governs the deterministic time evolution of coupled tank reactors, when the reaction mechanism permits a single-variable description of the states of the individual tanks; examples include the iodate-arsenous acid reaction, a cubic model suggested by Noyes, and two quintic models. Stable steady states correspond to minima of ψ, and unstable steady states to maxima or saddle points; marginally stable states typically correspond to saddle-node points. We illustrate the variation in ψ due to changes in the rate constant for external material intake (k0) and for exchange between tanks (kx). For fixed k0 values, we analyze the changes in numbers and types of steady states as kx increases from zero. We show that steady states disappear by pairwise coalescence; we also show that new steady states may appear with increasing kx, when the reaction mechanism is sufficiently complex. For fixed initial conditions, the steady state ultimately reached in a mixing experiment may depend on the exchange rate constant as a function of time, kx(t) : Adiabatic mixing is obtained in the limit of slow changes in kx(t) and instantaneous mixing in the limit as kx(t)→∞ while t remains small. Analyses based on the potential ψ predict the outcome of mixing experiments for arbitrary kx(t). We show by explicit counterexamples that a prior theory developed by Noyes does not correctly predict the instability points or the transitions between steady states of coupled tanks, to be expected in mixing experiments. We further show that the outcome of such experiments is not connected to the relative stability of steady states in individual tank reactors. We find that coupling may effectively stabilize the tanks. We provide

  6. Effects of grazing flow on the steady-state flow resistance and acoustic impedance of thin porous-faced liners

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Walker, B.

    1978-01-01

    The effects of grazing flow on the steady state flow resistance and acoustic impedance of seven Feltmetal and three Rigimesh thin porous faced liners were studied. The steady-state flow resistance of the ten specimens was measured using standard fluid mechanical experimental techniques. The acoustic impedance was measured using the two microphone method. The principal findings of the study are that the effects of grazing flow were measured and found to be small; small differences were measured between steady-state and acoustic resistance, and a semi-empirical model was derived that correlated the steady-state resistance data of the seven Feltmetal liners and the face sheet reactance of both the Feltmetal and Rigimesh liners.

  7. Steady-state flow properties of amorphous materials

    NASA Astrophysics Data System (ADS)

    Jadhao, Vikram; O'Connor, Thomas; Robbins, Mark

    2015-03-01

    Molecular dynamics (MD) simulations are used to investigate the steady-state shear flow curves of a standard glass model: the bidisperse Lennard-Jones system. For a wide range of temperatures in the neighborhood of the glass transition temperature Tg predicted by the mode coupling theory, we compute the steady-state shear stress and viscosity as a function of the shear rate γ ˙. At temperatures near and above Tg, the stress crosses over from linear Newtonian behavior at low rates to power law shear-thinning at high rates. As T decreases below Tg, the stress shows a plateau, becoming nearly rate-independent at low γ ˙. There is a weak increase in stress that is consistent with Eyring theory for activated flow of a solid. We find that when the strain rate is reduced to extremely low values, Newtonian behavior appears once more. Insights gained from these simulations are applied to the computation of flow curves of a well-established boundary lubricant: squalane. In the elastohydrodynamic regime, squalane responds like a glassy solid with an Eyring-like response, but at low rates it has a relatively small Newtonian viscosity. Supported by the Army Research Laboratory under Grant W911NF-12-2-0022.

  8. Steady-state hydrodynamics of a viscous incompressible fluid with spinning particles.

    PubMed

    Felderhof, B U

    2011-12-21

    The steady-state hydrodynamics of a viscous incompressible fluid with spinning particles is studied on the basis of extended Stokes equations. The profiles of flow velocity and spin velocity in simple flow situations may be used to determine the vortex viscosity and spin viscosity of the molecular liquid or fluid suspension. As an example, one situation studied is the flow generated by a uniform torque density in a planar layer of infinite fluid. The spinning particles drive a nearly uniform flow on either side of the layer, in opposite directions on the two sides. The Green function of the extended Stokes equations is derived. The translational and rotational friction coefficients of a sphere with no-slip boundary conditions, and the corresponding flow profiles, are calculated. PMID:22191899

  9. Transient Velocity And Steady State Entropy Generation In A Microfluidic Couette Flow Containing Charged Nano Particles

    NASA Astrophysics Data System (ADS)

    Gorla, R. S. R.; Gireesha, B. J.

    2015-12-01

    An analysis has been provided to determine the transient velocity and steady state entropy generation in a microfluidic Couette flow influenced by electro-kinetic effect of charged nanoparticles. The equation for calculating the Couette flow velocity profile is derived for transient flow. The solutions for momentum and energy equations are used to get the exact solution for the dimensionless velocity ratio and dimensionless entropy generation number. The effects of the dimensionless entropy generation number, Bejan number, irreversibility ratio, entropy generation due to fluid friction and due to heat transfer on dimensionless time, relative channel height, Brinkman number, dimensionless temperature ratio, nanoparticle volume fraction are analyzed.

  10. Modeling of the blood rheology in steady-state shear flows

    SciTech Connect

    Apostolidis, Alex J.; Beris, Antony N.

    2014-05-15

    We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling.

  11. Steady State Performance Characteristics of a Single Pad Externally Adjustable Fluid Film Bearing

    NASA Astrophysics Data System (ADS)

    Shenoy, Satish B.; Pai, Raghuvir

    The steady state performance characteristics of centrally loaded 60 degree single pad externally adjustable partial arc bearing is studied theoretically. Principal feature of the bearing is the facility to control its radial clearance and circumferential film thickness gradient, during operation. The bearing has aspect ratios of 1.0, 0.5 and 0.25 and operates over a wide range of eccentricity ratios and adjustments. Steady state performance characteristics of the bearing are presented in terms of attitude angle, load carrying capacity, oil flow and friction variable. The steady state form of Reynolds equation in two dimensions is solved numerically using the finite difference method. The effect of tilt and the radial adjustments on the steady state performance characteristics are presented in the form of plots. A comparative study predicts that negative radial and negative tilt adjustment results in better load carrying capacity with reduced oil flow and friction.

  12. Vesicle dynamics in a confined Poiseuille flow: From steady state to chaos

    NASA Astrophysics Data System (ADS)

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  13. Steady-State Axial Temperature and Flow Velocity in Triga Channel.

    Energy Science and Technology Software Center (ESTSC)

    2007-02-28

    Version 00 TRISTAN-IJS is a computer program for calculating steady-state axial temperature distribution and flow velocity through a vertical coolant channel in low power TRIGA reactor core, cooled by natural circulation. It is designed for steady-state thermohydraulic analysis of TRIGA research reactors operating at a low power level of 1-2 MW.

  14. Velocity dependence of biphasic flow structuration: steady-state and oscillating flow effects

    NASA Astrophysics Data System (ADS)

    Tore Tallakstad, Ken; Jankov, Mihailo; Løvoll, Grunde; Toussaint, Renaud; Jørgen Mâløy, Knut; Grude Flekkøy, Eirik; Schmittbuhl, Jean; Schäfer, Gerhard; Méheust, Yves; Arendt Knudsen, Henning

    2010-05-01

    We study various types of biphasic flows in quasi-two-dimensional transparent porous models. These flows imply a viscous wetting fluid, and a lowly viscous one. The models are transparent, allowing the displacement process and structure to be monitored in space and time. Three different aspects will be presented: 1. In stationary biphasic flows, we study the relationship between the macroscopic pressure drop (related to relative permeability) and the average flow rate, and how this arises from the cluster size distribution of the lowly viscous fluid [1]. 2. In drainage situations, we study how the geometry of the invader can be explained, and how it gives rise to apparent dynamic capillary effects. We show how these can be explained by viscous effects on evolving geometries of invading fluid [2]. 3. We study the impact of oscillating pressure fields superimposed to a background flow over the flow regimes patterns [3]. Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties. First, in stationary flow with a control of the flux of both fluids, we show how the pressure drop depends on the flow rate. We will show that the dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution of lowly viscous fluid in the system, as well as the relation |?P|∞√Ca--. This allows to explain so called relative permeability effects by the morphological changes of the cluster size distribution. Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Next, we study drainage in such models, and investigate the relationship between the pressure field and the morphology of the invading fluid. This allows to model

  15. A Conductivity Relationship for Steady-state Unsaturated Flow Processes under Optimal Flow Conditions

    SciTech Connect

    Liu, H. H.

    2010-09-15

    Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtained for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.

  16. A variational level set method for the topology optimization of steady-state Navier Stokes flow

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Li, Qing

    2008-12-01

    The smoothness of topological interfaces often largely affects the fluid optimization and sometimes makes the density-based approaches, though well established in structural designs, inadequate. This paper presents a level-set method for topology optimization of steady-state Navier-Stokes flow subject to a specific fluid volume constraint. The solid-fluid interface is implicitly characterized by a zero-level contour of a higher-order scalar level set function and can be naturally transformed to other configurations as its host moves. A variational form of the cost function is constructed based upon the adjoint variable and Lagrangian multiplier techniques. To satisfy the volume constraint effectively, the Lagrangian multiplier derived from the first-order approximation of the cost function is amended by the bisection algorithm. The procedure allows evolving initial design to an optimal shape and/or topology by solving the Hamilton-Jacobi equation. Two classes of benchmarking examples are presented in this paper: (1) periodic microstructural material design for the maximum permeability; and (2) topology optimization of flow channels for minimizing energy dissipation. A number of 2D and 3D examples well demonstrated the feasibility and advantage of the level-set method in solving fluid-solid shape and topology optimization problems.

  17. Velocity dependence of biphasic flow structuration: steady-state and oscillating flow effects

    NASA Astrophysics Data System (ADS)

    Tore Tallakstad, Ken; Jankov, Mihailo; Løvoll, Grunde; Toussaint, Renaud; Jørgen Mâløy, Knut; Grude Flekkøy, Eirik; Schmittbuhl, Jean; Schäfer, Gerhard; Méheust, Yves; Arendt Knudsen, Henning

    2010-05-01

    We study various types of biphasic flows in quasi-two-dimensional transparent porous models. These flows imply a viscous wetting fluid, and a lowly viscous one. The models are transparent, allowing the displacement process and structure to be monitored in space and time. Three different aspects will be presented: 1. In stationary biphasic flows, we study the relationship between the macroscopic pressure drop (related to relative permeability) and the average flow rate, and how this arises from the cluster size distribution of the lowly viscous fluid [1]. 2. In drainage situations, we study how the geometry of the invader can be explained, and how it gives rise to apparent dynamic capillary effects. We show how these can be explained by viscous effects on evolving geometries of invading fluid [2]. 3. We study the impact of oscillating pressure fields superimposed to a background flow over the flow regimes patterns [3]. Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties. First, in stationary flow with a control of the flux of both fluids, we show how the pressure drop depends on the flow rate. We will show that the dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution of lowly viscous fluid in the system, as well as the relation |?P|∞√Ca--. This allows to explain so called relative permeability effects by the morphological changes of the cluster size distribution. Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Next, we study drainage in such models, and investigate the relationship between the pressure field and the morphology of the invading fluid. This allows to model

  18. Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.

    PubMed

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles. PMID:25314533

  19. Steady-state magnetohydrodynamic flow around an unmagnetized conducting sphere

    SciTech Connect

    Romanelli, N.; Gómez, D.; Bertucci, C.; Delva, M. E-mail: Magda.Delva@oeaw.ac.at

    2014-07-01

    The noncollisional interaction between conducting obstacles and magnetized plasma winds can be found in different scenarios, from the interaction occurring between regions inside galaxy clusters to the interaction between the solar wind and Mars, Venus, and active comets, or even the interaction between Titan and the Saturnian magnetospheric flow. These objects generate, through several current systems, perturbations in the streaming magnetic field leading to its draping around the obstacle's effective conducting surface. Recent observational results suggest that several properties associated with magnetic field draping, such as the location of the polarity reversal layer of the induced magnetotail, are affected by variations in the conditions of the streaming magnetic field. To improve our understanding of these phenomena, we perform a characterization of several magnetic field draping signatures by analytically solving an ideal problem in which a perfectly conducting magnetized plasma (with frozen-in magnetic field conditions) flows around a spherical body for various orientations of the streaming magnetic field. In particular, we compute the shift of the inverse polarity reversal layer as the orientation of the background magnetic field is changed.

  20. Programmable calculator uses equation to figure steady-state gas-pipeline flow

    SciTech Connect

    Holmberg, E.

    1982-04-26

    Because it is accurate and consistent over a wide range of variables, the Colebrook-White (C-W) formula serves as the basis for many methods of calculating turbulent flow in gas pipelines. Oilconsult reveals a simple way to adapt the C-W formula to calculate steady-state pipeline flow using the TI-59 programmable calculator.

  1. Dust Devil Steady-State Structure from a Fluid Dynamics Perspective

    NASA Astrophysics Data System (ADS)

    Kurgansky, Michael V.; Lorenz, Ralph D.; Renno, Nilton O.; Takemi, Tetsuya; Gu, Zhaolin; Wei, Wei

    2016-09-01

    Simple analytical models for the flow structure of dust devils in steady state, and a "thermophysical" scaling theory that explains how these flow structures are maintained are reviewed. Then, results from high-resolution numerical simulations are used to provide insights into the structure of dust-devil-like vortices and study the impact of surface roughness on them. The article concludes with an overview of the influence of lofted dust on the flow structure of dust devils and a discussion of open questions.

  2. On the Numerical Convergence to Steady State of Hypersonic Flows Over Bodies with Concavities

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2002-01-01

    Two recent numerical studies of hypersonic flows over bodies with concavities revealed problems with convergence to a steady state with an oft-used application of local-time-stepping. Both simulated flows showed a time-like, periodic shedding of vortices in a subsonic domain bounded by supersonic external flow although the simulations, using local-time-stepping, were not time accurate. Simple modifications to the numerical algorithm were implemented to enable implicit, first-order accurate in time simulations. Subsequent time-accurate simulations of the two test problems converged to a steady state. The baseline algorithm and modifications for temporal accuracy are described. The requirement for sub-iterations to achieve convergence is demonstrated. Failure to achieve convergence without time accuracy is conjectured to arise from temporal errors being continuously refocused into a subsonic domain.

  3. Minimization of a free-energy-like potential for non-equilibrium flow systems at steady state

    PubMed Central

    Niven, Robert K.

    2010-01-01

    This study examines a new formulation of non-equilibrium thermodynamics, which gives a conditional derivation of the ‘maximum entropy production’ (MEP) principle for flow and/or chemical reaction systems at steady state. The analysis uses a dimensionless potential function ϕst for non-equilibrium systems, analogous to the free energy concept of equilibrium thermodynamics. Spontaneous reductions in ϕst arise from increases in the ‘flux entropy’ of the system—a measure of the variability of the fluxes—or in the local entropy production; conditionally, depending on the behaviour of the flux entropy, the formulation reduces to the MEP principle. The inferred steady state is also shown to exhibit high variability in its instantaneous fluxes and rates, consistent with the observed behaviour of turbulent fluid flow, heat convection and biological systems; one consequence is the coexistence of energy producers and consumers in ecological systems. The different paths for attaining steady state are also classified. PMID:20368250

  4. On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.

    PubMed

    Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie

    2016-01-01

    The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size. PMID:26901652

  5. On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow

    PubMed Central

    Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie

    2016-01-01

    The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size. PMID:26901652

  6. LHe Flow Regime/Pressure Drop for D0 Solenoid at Steady State Conditions

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-03-03

    This paper describes in a note taking format what was learned from several sources on two phase liquid helium flow regimes and pressure drops as applied to the D-Zero solenoid upgrade project. Calculations to estimate the steady state conditions for the D-Zero solenoid at 5, 10 and 15 g/s are also presented. For the lower flow rates a stratified type regime can be expected with a pressure drop less than 0.5 psi. For the higher flow rate a more homogeneous flow regime can be expected with a pressure drop between 0.4 to 1.5 psi.

  7. Evidence for forcing-dependent steady states in a turbulent swirling flow.

    PubMed

    Saint-Michel, B; Dubrulle, B; Marié, L; Ravelet, F; Daviaud, F

    2013-12-01

    We study the influence on steady turbulent states of the forcing in a von Karman flow, at constant impeller speed, or at constant torque. We find that the different forcing conditions change the nature of the stability of the steady states and reveal dynamical regimes that bear similarities to low-dimensional systems. We suggest that this forcing dependence may be applicable to other turbulent systems. PMID:24476277

  8. Columbia University Flow Instability Experimental Program, Volume 5: Single annulus tests, steady-state test program

    SciTech Connect

    Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.

    1991-07-01

    This report presents results for the steady state portion of the finless single annulus test program. The objective of the experimental study was to investigate the onset of flow instability in an annular geometry similar to the MARK 22 reactor. The test program involved testing of both a finless or ribless heater and a ribbed heater. The latter program is currently underway and will be reported separately. For finless heater, testing was conducted in both a steady state and transient mode. The present report presents steady state results for a series of experiments with uniform and asymmetric heating. The demand curves obtained under uniform heating yielded OFI flow-rates which were slightly below those obtained for a circular tube geometry with the same L/D ratio; however, the single annulus had a hydraulic diameter which was approximately fifty percent larger than the circular tube. The asymmetric heating cases were selected to provide the same average power input as the uniform cases. The results for these tests indicated that the flow-rate at OFI increased with the degree of asymmetry.

  9. The rate form of equilibrium equation for problems of steady-state, elastic, viscous flows

    NASA Astrophysics Data System (ADS)

    Tsai, Lung John

    1992-07-01

    The development of a numerical simulation for steady-state, elastic, viscous flows in two dimensions is presented. A mixed finite element method is used to couple the rate-equilibrium and the rate-constitutive equations by using successive substitution to solve for the velocity field and the stress field simultaneously. The method is applied to the flow analysis of co-rotational Maxwell (CRM), upper convective Maxwell (UCM), and four-element UCM fluid models. A flow through contraction problem is analyzed for the CRM, UCM and four-element UCM models. For both the CRM and UCM modles, the purely elastic case is compared to a solution found by using a linear formulation and it is found to compare favorably. For the purely viscous case, comparison is made with results obtained using the mixed formulation for velocity and pressure. Again, the results compare quite favorably. For the four-element UCM model, it is compared with the conventional UCM model. For the purely elastic and the purely viscous cases both models compare very well, and two examples are given for simulating both the Oldroyd-B and the Kelvin-Voigt models. From this illustration, the four-element UCM model is shown to work well for a wide range of constitutive behaviors. A second example presents an analysis of a metal forming rolling problem in the presence of free surfaces. For the purely elastic case, a decent solution of the velocity and stress distributions in the control volume for both CRM and UCM fluids is found. However, when the viscous effect is increased in the material, the free surface exhibits a continual swelling on the downstream side and the accuracy of the stress distribution deteriorates. In spite of the progress made on the free surface problem, the solutions for free surface problem presented in this dissertation are not yet of sufficient accuracy to be directly applicable to practical forming process design or analysis. The final example is an application of the rate

  10. On the Stress-Temperature Scaling for Steady-State Flow in Metallic Glasses

    SciTech Connect

    Guan, Pengfei; Chen, Mingwei; Egami, T.

    2010-01-01

    Through computer simulation of steady-state flow in a Zr50Cu40Al10 metallic glass using a set of realistic potentials we found a simple scaling relationship between temperature and stress as they affect viscosity. The scaling relationship provides new insights for the microscopic mechanism of shear flow in the glassy state, in terms of the elastic energy of the applied stress modifying the local energy landscape. The results suggest that the plastic flow and mechanical failure in metallic glasses are consequences of stress-induced glass transition.

  11. AEROSOL GROWTH IN A STEADY-STATE, CONTINUOUS FLOW CHAMBER: APPLICATION TO STUDIES OF SECONDARY AEROSOL FORMATION

    EPA Science Inventory

    An analytical solution for the steady-state aerosol size distribution achieved in a steady-state, continuous flow chamber is derived, where particle growth is occurring by gas-to-particle conversion and particle loss is occurring by deposition to the walls of the chamber. The s...

  12. Simulates the Forced-Flow Chemical Vapor Infiltration in Steady State

    Energy Science and Technology Software Center (ESTSC)

    1997-12-12

    GTCVI is a finite volume model for steady-state simulation of forced-flow chemical vapor infiltration in either Cartesian or cylindrical coordinates. The model solves energy and momentum balances simultaneously over a given domain discretized into an array of finite volume elements. The species balances and deposition rates are determined after the energy and momentum balances converge. Density-dependent preform properties are included in the model. Transient average density, backpressure, temperature gradient, and average radial deposition rates canmore » be summarized. Optimal infiltration conditions can be found by varying temperature, flow, and reactant concentration.« less

  13. Simulation of steady-state flow in three-dimensional fracture networks using the boundary-element method

    USGS Publications Warehouse

    Shapiro, A.M.; Andersson, J.

    1985-01-01

    An efficient method for simulating steady-state flow in three-dimensional fracture networks is formulated with the use of the boundary-element method. The host rock is considered to be impervious, and the fractures can be of any orientation and areal extent. The fractures are treated as surfaces where fluid movement is essentially two-dimensional. Fracture intersections are regarded as one-dimensional fluid conduits. Hence, the three-dimensional geometric characteristics of the fracture geometry is retained in solutions of coupled sets of one- and two-dimentional equations. Use of the boundary-element method to evaluate the fluid responses in the fractures precludes the need to internally discretize the areal extent of the fractures. ?? 1985.

  14. Network simulation of steady-state two-phase flow in consolidated porous media

    SciTech Connect

    Constantinides, G.N.; Payatakes, A.C.

    1996-02-01

    Multiphase flow in porous media is a complex process encountered in many fields of practical engineering interest, such as oil recovery from reservoir rocks, aquifer pollution by liquid wastes and soil reconstitution, and agricultural irrigation. A computer-aided simulator of steady-state two-phase flow in consolidated porous media is developed. The porous medium is modeled as a 3-D pore network of suitably shaped and randomly sized unit cells of the constricted-tube type. The problem of two-phase flow is solved using the network approach. The wetting phase saturation, the viscosity ratio, the capillary number, and the probability of coalescence between two colliding ganglia are changed systematically, where as the geometrical and topological characteristics of the porous medium and wettability (dynamic contact angles) are kept constant. In the range of the parameter values investigated, the flow behavior observed is ganglion population dynamics (intrinsically unsteady, but giving a time-averaged steady state). The mean ganglion size and fraction of the nonwetting phase in the form of stranded ganglia are studied as functions of the main dimensionless parameters. Fractional flows and relative permeabilities are determined and correlated with flow phenomena at pore level. Effects of the wetting phase saturation, the viscosity ratio, the capillary number, and the coalescence factor on relative permeabilities are examined.

  15. Steady-state response of a charcoal bed to radon in flowing air with water vapor

    SciTech Connect

    Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.

    1995-06-01

    Previously we have developed a mathematical model of radon adsorption in active air with water vapor on small U.S. Environmental Protection Agency charcoal canisters that are used for environmental measurements of radon. The purpose of this paper is to extend this mathematical model to describe the adsorption of radon by large charcoal beds with radon-laden air flowing through them. The resulting model equations are solved analytically to predict the steady-state adsorption of radon by such beds. 14 refs., 3 figs.

  16. A population balance model for transient and steady-state foam flow in Boise sandstone

    SciTech Connect

    Kovscek, A.; Patzek, T.; Radke, C.

    1995-07-01

    An experimental and mechanistic-modeling study is reported for the transient flow of aqueous foam through 1.3-{mu}m{sup 2} (1.3-D) Boise sandstone at backpressures in excess of 5 MPa (700 psi) over a quality range from 0.80 to 0.99. Total superficial velocities range from as little as 0.42 to 2.20 m/day (1.4 ft/day to 7 ft/day). Sequential pressure taps and gamma-ray densitometry measure flow resistance and in-situ liquid saturations, respectively. We garner experimental pressure and saturation profiles in both the transient and steady states. Adoption of a mean-size foam-bubble conservation equation along with the traditional reservoir simulation equations allows mechanistic foam simulation. Since foam mobility depends heavily upon its texture, the bubble population balance is both useful and necessary as the role of foam texture must be incorporated into any model which seeks accurate prediction of flow properties. Our model employs capillary-pressure-dependent kinetic expressions for lamellae generation and coalescence and also a term for trapping of lamellae. Additionally, the effects of surfactant chemical transport are included. We find quantitative agreement between experimental and theoretical saturation and pressure profiles in both the transient and steady states.

  17. Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes

    NASA Astrophysics Data System (ADS)

    Zhu, Yajun; Zhong, Chengwen; Xu, Kun

    2016-06-01

    This paper presents an implicit unified gas-kinetic scheme (UGKS) for non-equilibrium steady state flow computation. The UGKS is a direct modeling method for flow simulation in all regimes with the updates of both macroscopic flow variables and microscopic gas distribution function. By solving the macroscopic equations implicitly, a predicted equilibrium state can be obtained first through iterations. With the newly predicted equilibrium state, the evolution equation of the gas distribution function and the corresponding collision term can be discretized in a fully implicit way for fast convergence through iterations as well. The lower-upper symmetric Gauss-Seidel (LU-SGS) factorization method is implemented to solve both macroscopic and microscopic equations, which improves the efficiency of the scheme. Since the UGKS is a direct modeling method and its physical solution depends on the mesh resolution and the local time step, a physical time step needs to be fixed before using an implicit iterative technique with a pseudo-time marching step. Therefore, the physical time step in the current implicit scheme is determined by the same way as that in the explicit UGKS for capturing the physical solution in all flow regimes, but the convergence to a steady state speeds up through the adoption of a numerical time step with large CFL number. Many numerical test cases in different flow regimes from low speed to hypersonic ones, such as the Couette flow, cavity flow, and the flow passing over a cylinder, are computed to validate the current implicit method. The overall efficiency of the implicit UGKS can be improved by one or two orders of magnitude in comparison with the explicit one.

  18. Modeling steady-state dynamics of macromolecules in exponential-stretching flow using multiscale molecular-dynamics-multiparticle-collision simulations.

    PubMed

    Ghatage, Dhairyasheel; Chatterji, Apratim

    2013-10-01

    We introduce a method to obtain steady-state uniaxial exponential-stretching flow of a fluid (akin to extensional flow) in the incompressible limit, which enables us to study the response of suspended macromolecules to the flow by computer simulations. The flow field in this flow is defined by v(x) = εx, where v(x) is the velocity of the fluid and ε is the stretch flow gradient. To eliminate the effect of confining boundaries, we produce the flow in a channel of uniform square cross section with periodic boundary conditions in directions perpendicular to the flow, but simultaneously maintain uniform density of fluid along the length of the tube. In experiments a perfect elongational flow is obtained only along the axis of symmetry in a four-roll geometry or a filament-stretching rheometer. We can reproduce flow conditions very similar to extensional flow near the axis of symmetry by exponential-stretching flow; we do this by adding the right amounts of fluid along the length of the flow in our simulations. The fluid particles added along the length of the tube are the same fluid particles which exit the channel due to the flow; thus mass conservation is maintained in our model by default. We also suggest a scheme for possible realization of exponential-stretching flow in experiments. To establish our method as a useful tool to study various soft matter systems in extensional flow, we embed (i) spherical colloids with excluded volume interactions (modeled by the Weeks-Chandler potential) as well as (ii) a bead-spring model of star polymers in the fluid to study their responses to the exponential-stretched flow and show that the responses of macromolecules in the two flows are very similar. We demonstrate that the variation of number density of the suspended colloids along the direction of flow is in tune with our expectations. We also conclude from our study of the deformation of star polymers with different numbers of arms f that the critical flow gradient ε

  19. Modeling steady-state dynamics of macromolecules in exponential-stretching flow using multiscale molecular-dynamics-multiparticle-collision simulations

    NASA Astrophysics Data System (ADS)

    Ghatage, Dhairyasheel; Chatterji, Apratim

    2013-10-01

    We introduce a method to obtain steady-state uniaxial exponential-stretching flow of a fluid (akin to extensional flow) in the incompressible limit, which enables us to study the response of suspended macromolecules to the flow by computer simulations. The flow field in this flow is defined by vx=ɛx, where vx is the velocity of the fluid and ɛ is the stretch flow gradient. To eliminate the effect of confining boundaries, we produce the flow in a channel of uniform square cross section with periodic boundary conditions in directions perpendicular to the flow, but simultaneously maintain uniform density of fluid along the length of the tube. In experiments a perfect elongational flow is obtained only along the axis of symmetry in a four-roll geometry or a filament-stretching rheometer. We can reproduce flow conditions very similar to extensional flow near the axis of symmetry by exponential-stretching flow; we do this by adding the right amounts of fluid along the length of the flow in our simulations. The fluid particles added along the length of the tube are the same fluid particles which exit the channel due to the flow; thus mass conservation is maintained in our model by default. We also suggest a scheme for possible realization of exponential-stretching flow in experiments. To establish our method as a useful tool to study various soft matter systems in extensional flow, we embed (i) spherical colloids with excluded volume interactions (modeled by the Weeks-Chandler potential) as well as (ii) a bead-spring model of star polymers in the fluid to study their responses to the exponential-stretched flow and show that the responses of macromolecules in the two flows are very similar. We demonstrate that the variation of number density of the suspended colloids along the direction of flow is in tune with our expectations. We also conclude from our study of the deformation of star polymers with different numbers of arms f that the critical flow gradient ɛc at which

  20. Direct numerical simulation of steady state, three dimensional, laminar flow around a wall mounted cube

    NASA Astrophysics Data System (ADS)

    Liakos, Anastasios; Malamataris, Nikolaos A.

    2014-05-01

    The topology and evolution of flow around a surface mounted cubical object in three dimensional channel flow is examined for low to moderate Reynolds numbers. Direct numerical simulations were performed via a home made parallel finite element code. The computational domain has been designed according to actual laboratory experiment conditions. Analysis of the results is performed using the three dimensional theory of separation. Our findings indicate that a tornado-like vortex by the side of the cube is present for all Reynolds numbers for which flow was simulated. A horseshoe vortex upstream from the cube was formed at Reynolds number approximately 1266. Pressure distributions are shown along with three dimensional images of the tornado-like vortex and the horseshoe vortex at selected Reynolds numbers. Finally, and in accordance to previous work, our results indicate that the upper limit for the Reynolds number for which steady state results are physically realizable is roughly 2000.

  1. Steady-state simulation of ground-water flow in the Rush Springs Aquifer, western Oklahoma

    USGS Publications Warehouse

    Becker, M.F.

    1998-01-01

    A simplified steady-state ground-water flow model was prepared for the Rush Springs aquifer in western Oklahoma. A 3-kilometer square grid was established over the area containing two layers with 674 active nodes simulated in the model. The steady-state model simulation used a mean recharge rate of 3.05 x 10-4 feet per day and a hydraulic conductivity range from 0.8 to 10 feet per day. The error at each node in the model is defined as the difference between the measured and simulated water levels.The arithmetic mean error for 170 of the 674 active nodes was -0.11 feet, the absolute value mean error was 7.55 feet, and the standard deviation of the error was 10.21 feet. A net simulated recharge of 231 cubic feet per second is balanced by a discharge to drains and seeps of 190.6 cubic feet per second about 82 percent of the total recharge. Discharge to the main stem of the Washita River is about 41 cubic feet per second about 18 percent of the recharge.

  2. Stable Laser-Driven Electron Beams from a Steady-State-Flow Gas Cell

    SciTech Connect

    Osterhoff, J.; Popp, A.; Karsch, S.; Major, Zs.; Marx, B.; Fuchs, M.; Hoerlein, R.; Gruener, F.; Habs, D.; Krausz, F.; Rowlands-Rees, T. P.; Hooker, S. M.

    2009-01-22

    Quasi-monoenergetic, laser-driven electron beams of up to {approx}200 MeV in energy have been generated from steady-state-flow gas cells [1]. These beams are emitted within a low-divergence cone of 2.1{+-}0.5 mrad FWHM and feature unparalleled shot-to-shot stability in energy (2.5% rms), pointing direction (1.4 mrad rms) and charge (16% rms) owing to a highly reproducible plasma-density profile within the laser-plasma-interaction volume. Laser-wakefield acceleration (LWFA) in gas cells of this type constitutes a simple and reliable source of relativistic electrons with well defined properties, which should allow for applications such as the production of extreme-ultraviolet undulator radiation in the near future.

  3. Simultaneous confidence intervals for a steady-state leaky aquifer groundwater flow model

    USGS Publications Warehouse

    Christensen, S.; Cooley, R.L.

    1996-01-01

    Using the optimization method of Vecchia & Cooley (1987), nonlinear Scheffe??-type confidence intervals were calculated tor the parameters and the simulated heads of a steady-state groundwater flow model covering 450 km2 of a leaky aquifer. The nonlinear confidence intervals are compared to corresponding linear intervals. As suggested by the significant nonlinearity of the regression model, linear confidence intervals are often not accurate. The commonly made assumption that widths of linear confidence intervals always underestimate the actual (nonlinear widths was not correct for the head intervals. Results show that nonlinear effects can cause the nonlinear intervals to be offset from, and either larger or smaller than, the linear approximations. Prior information on some transmissivities helps reduce and stabilize the confidence intervals, with the most notable effects occurring for the parameters on which there is prior information and for head values in parameter zones for which there is prior information on the parameters.

  4. NEW APPROACHES: Keeping moving to stay where you are: energy flows and steady states

    NASA Astrophysics Data System (ADS)

    Boohan, Richard

    1996-01-01

    Many systems need to be actively maintained to keep them in a steady state - centrally-heated rooms, living things, the Earth. The use of commercially available 'temperature sensitive film' allows qualitative ideas about steady-state systems to be easily investigated by pupils from lower secondary school onwards. Some examples of more advanced quantitative ideas which can be developed are given.

  5. Nucleation of lamellar domains from a sponge phase under shear flow: Shape selection of nuclei in a nonequilibrium steady state

    NASA Astrophysics Data System (ADS)

    Miyazawa, Hideyuki; Tanaka, Hajime

    2007-07-01

    It is a fundamental physical problem how a state is selected in a nonequilibrium steady state where the energy is continuously dissipated. This problem is common to phase transitions in liquids under shear flow and those in solids under deformation or electric current. In particular, soft matter often exhibits a strong nonlinear response to an external field, since its structural susceptibility to the external field is extremely large due to its softness and flexibility. Here we study the nucleation and growth process of the lamellar phase from the sponge phase under shear flow in a bilayer-forming surfactant system. We found an interesting shape selection of lamellar nuclei under shear flow between multilamellar vesicles (onions) and cylinders (leeks). These two types of behavior are separated sharply at a critical shear rate: a slight change of the shear rate is enough to switch one behavior to the other. We also found that, under a sufficiently strong shear flow, nucleated onions decrease their size with time, and eventually transform into leeks. This suggests that leeks may be the stable morphology under steady shear flow. However, the stability is limited only to the lamellar-sponge coexistence region. When a system enters into the lamellar phase region by further cooling, leeks lose their stability and break up into rather monodisperse onions, presumably via Rayleigh-like instability of a fluid tube. On the basis of these results, we draw a dynamic state diagram of smectic membrane organization under shear flow.

  6. Direct numerical simulation of steady state, three dimensional, laminar flow around a wall mounted cube

    NASA Astrophysics Data System (ADS)

    Liakos, Anastasios; Malamataris, Nikolaos

    2014-11-01

    The topology and evolution of flow around a surface mounted cubical object in three dimensional channel flow is examined for low to moderate Reynolds numbers. Direct numerical simulations were performed via a home made parallel finite element code. The computational domain has been designed according to actual laboratory experimental conditions. Analysis of the results is performed using the three dimensional theory of separation. Our findings indicate that a tornado-like vortex by the side of the cube is present for all Reynolds numbers for which flow was simulated. A horse-shoe vortex upstream from the cube was formed at Reynolds number approximately 1266. Pressure distributions are shown along with three dimensional images of the tornado-like vortex and the horseshoe vortex at selected Reynolds numbers. Finally, and in accordance to previous work, our results indicate that the upper limit for the Reynolds number for which steady state results are physically realizable is roughly 2000. Financial support of author NM from the Office of Naval Research Global (ONRG-VSP, N62909-13-1-V016) is acknowledged.

  7. Flushing of a dense fluid from an urban canyon part 1: Steady state measurements

    NASA Astrophysics Data System (ADS)

    Kaye, Nigel; Baratian, Zahra

    2011-11-01

    We consider the role of buoyancy on the vertical transport of a dense gas due to a horizontal wind flow above a street canyon. The density of the pollutant suppresses vertical mixing as the turbulent shear flow at the top of the canyon must do work to raise the dense gas up above the canyon top. We present results of a series of experiments to measure the rate of removal of a dense miscible fluid from a two dimensional square canyon open at the top. The cavity is formed by square blocks up- and down-stream. Dense fluid is introduced at a constant rate at the base of the cavity and is removed by mixing with the flow passing over the top of the cavity. Two different steady flows are observed. For higher Richardson numbers, a two layer stratification develops in which there is a relatively sharp interface. In this case the mixing is parameterized in terms of an entrainment velocity across the interface that is a function of the Richardson number and the fractional depth of the interface below the cavity top. For lower Richardson numbers no interface is observed and the buoyancy increases linearly with height above the cavity base. We also found a range of Richardson numbers for which both steady stratifications are possible and for which the steady flow depends on the initial conditions.

  8. Three dimensional calculations of the primary coolant flow in a 900 MW PWR vessel. Steady state and transient computations

    SciTech Connect

    Martin, A.; Alvarez, D.; Cases, F.

    1996-06-01

    After the Tchernobyl accident a working group was created to analyze the French PWR Safety with a respect to potential risk of reactivity accident. Potentially risky situations are those which can lead to heterogeneous boron concentration or temperature of the primary coolant fluid. This paper reports a Research and Development action based on numerical simulations and experiments on the primary coolant temperature or boron mixing capabilities in a PWR vessel. New numerical results obtained with the thermal hydraulic Finite Element (FE) Code N3S are presented. In these calculations the FE mesh takes into account the geometry of the lower plenum plates and columns. Two configurations have been investigated The first one is a steady state fluid flow mixing case. The reactor is cooled by free convection and the three loops, balanced in mass flow rate, are in operation. The second is a free boron plug transient case. It is related to the mixing of a clear plug injected in the vessel when a primary coolant pump starts-up. Two clear plug volumes have been investigated (3 and 8 m{sup 3}). Comparisons between these new numerical results and the data previously obtained (see Alvarez et al., 1992, Alvarez, Martin and Schneider, 1994) are presented in this paper.

  9. A Steady State and Quasi-Steady Interface Between the Generalized Fluid System Simulation Program and the SINDA/G Thermal Analysis Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok; Tiller, Bruce

    2001-01-01

    A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasisteady (unsteady solid, steady fluid) conjugate heat transfer modeling.

  10. Floc morphology and size distributions of cohesive sediment in steady-state flow.

    PubMed

    Stone, M; Krishnappan, B G

    2003-06-01

    Fractal dimensions of particle populations of cohesive sediment were examined during deposition experiments in an annular flume at four conditions of steady-state flow (0.058, 0.123, 0.212 and 0.323Pa). Light microscopy and an image analysis system were used to determine area, longest axis and perimeter of suspended solids. Four fractal dimensions (D, D(1), D(2), D(k)) were calculated from the slopes of regression lines of the relevant variables on double log plots. The fractal dimension D, which relates the projected area (A) to the perimeter (P) of the particle (P proportional, variant A(D/2)), increased from 1.25+/-0.005 at a shear stress of 0.058Pa to a maximum of 1.36+/-0.003 at 0.121Pa then decreased to 1.34+/-0.001 at 0.323Pa. The change in D indicated that particle boundaries became more convoluted and the shape of larger particles was more irregular at higher levels of shear stress. At the highest shear stress, the observed decrease in D resulted from floc breakage due to increased particle collisions. The fractal dimension D(1), which relates the longest axis (l) to the perimeter of the particle (P proportional to l(D1)), increased from 1.00+/-0.006 at a shear stress of 0.058Pa to a maximum of 1.25+/-0.003 at 0.325Pa. The fractal dimension D(2), which relates the longest axis with the projected area of the particle (A proportional to l(D(2)), increased from 1.35+/-0.014 at a shear stress of 0.058Pa to a maximum of 1.81+/-0.005 at 0.323Pa. The observed increases in D(1) and D(2) indicate that particles became more elongated with increasing shear stress. Values of the fractal dimension D(k), resulting from the Korcak's empirical law for particle population, decreased from 3.68+/-0.002 at a shear stress of 0.058Pa to 1.33+/-0.001 at 0.323Pa and indicate that the particle size distribution changed from a population of similar sized particles at low shear to larger flocculated particles at higher levels of shear. The results show that small particle clusters

  11. Galactic cosmic-ray mediation of a spherical solar wind flow. 1: The steady state cold gas hydrodynamical approximation

    NASA Technical Reports Server (NTRS)

    Le Roux, J. A.; Ptuskin, V. S.

    1995-01-01

    Realistic models of the outer heliosphere should consider that the interstellar cosmic-ray pressure becomes comparable to pressures in the solar wind at distances more than 100 AU from the Sun. The cosmic-ray pressure dynamically affects solar wind flow through deceleration. This effect, which occurs over a scale length of the order of the effective diffusion length at large radial distances, has important implications for cosmic-ray modulation and acceleration. As a first step toward solution of this nonlinear problem, a steady state numerical model was developed for a relatively cold spherical solar wind flow which encounters the confining isotropic pressure of the surrounding Galactic medium. This pressure is assumed to be dominated by energetic particles (Galactic cosmic rays). The system of equations, which are solved self-consistently, includes the relevant hydrodynamical equations for the solar wind flow and the spherical cosmic-ray transport equation. To avoid the closure parameter problem of the two-fluid model, the latter equation is solved for the energy-dependent cosmic-ray distribution function.

  12. Experimental study of the swirl motion in direct injection diesel engines under steady state flow conditions (by LDA)

    SciTech Connect

    Snauwaert, P.; Sierens, R.

    1986-01-01

    A detailed three-dimensional study of the mean flow and the turbulence inside the liner of a direct injection diesel engine under steady state flow conditions has been carried out by laser doppler anemometer measurements. The influence of the valve lift, the port orientation (using a cylinder head with variable direction of the inlet channel) and the mass flow on flow characteristics (kinetic energy distributions, momentum flux, swirl parameters) has been analysed. These flow characteristics have been used to analyse the relation between the real flow pattern and swirl parameters as measured by the flow rectifier method and the paddle wheel anemometer.

  13. 2D steady-state general solution and fundamental solution for fluid-saturated, orthotropic, poroelastic materials

    NASA Astrophysics Data System (ADS)

    Pan, Li-Hua; Hou, Peng-Fei; Chen, Jia-Yun

    2016-08-01

    The 2D steady-state solutions regarding the expressions of stress and strain for fluid-saturated, orthotropic, poroelastic plane are derived in this paper. For this object, the general solutions of the corresponding governing equation are first obtained and expressed in harmonic functions. Based on these compact general solutions, the suitable harmonic functions with undetermined constants for line fluid source in the interior of infinite poroelastic body and a line fluid source on the surface of semi-infinite poroelastic body are presented, respectively. The fundamental solutions can be obtained by substituting these functions into the general solution, and the undetermined constants can be obtained by the continuous conditions, equilibrium conditions and boundary conditions.

  14. Relative efficiency of four parameter-estimation methods in steady-state and transient ground-water flow models

    USGS Publications Warehouse

    Hill, M.C.

    1990-01-01

    Parameters in numerical ground-water flow models have been successfully estimated using nonlinear-optimization methods such as the modified Gauss-Newton (GN) method and conjugate-direction methods. This paper investigates the relative efficiency of GN and three conjugate-direction parameter-estimation methods on two-dimensional, steady-state and transient ground-water flow test cases. The steady-state test cases are included to compare the performance of the algorithm with published examples. The three conjugate-direction methods are the Fletcher-Reeves (FR) and quasi-Newton (QN) regression methods, and combination Fletcher-Reeves quasi-Newton (FR-QN). All three are combined with Newton's method of calculating step size. The numerical ground-water flow model is described by McDonald and Harbaugh.

  15. Fractal dimension of cohesive sediment flocs at steady state under seven shear flow conditions

    SciTech Connect

    Zhu, Zhongfan; Yu, Jingshan; Wang, Hongrui; Dou, Jie; Wang, Cheng

    2015-08-12

    The morphological properties of kaolin flocs were investigated in a Couette-flow experiment at the steady state under seven shear flow conditions (shear rates of 5.36, 9.17, 14, 24, 31, 41 and 53 s-1). These properties include a one-dimensional (1-D) fractal dimension (D1), a two-dimensional (2-D) fractal dimension (D2), a perimeter-based fractal dimension (Dpf) and an aspect ratio (AR). They were calculated based on the projected area (A), equivalent size, perimeter (P) and length (L) of the major axis of the floc determined through sample observation and an image analysis system. The parameter D2, which characterizes the relationship between the projected area and the length of the major axis using a power function, A ∝ LD2, increased from 1.73 ± 0.03, 1.72 ± 0.03, and 1.75 ± 0.04 in the low shear rate group (G = 5.36, 9.17, and 14 s-1) to 1.92 ± 0.03, 1.82 ± 0.02, 1.85 ± 0.02, and 1.81 ± 0.02 in the high shear rate group (24, 31, 41 and 53 s-1), respectively. The parameter D1 characterizes the relationship between the perimeter and length of the major axis by the function P ∝ LD1 and decreased from 1.52 ± 0.02, 1.48 ± 0.02, 1.55 ± 0.02, and 1.63 ± 0.02 in the low shear group (5.36, 9.17, 14 and 24 s-1) to 1.45 ± 0.02, 1.39 ± 0.02, and 1.39 ± 0.02 in the high shear group (31, 41 and 53 s-1), respectively. The results indicate that with increasing shear rates, the flocs become less elongated and that their boundary lines become tighter and more regular, caused by more breakages and possible restructurings of the flocs. The parameter Dpf, which is related to the perimeter and the projected area through the function , decreased as the shear rate increased almost linearly. The parameter AR, which is the ratio of the length of the major axis and equivalent diameter, decreased from 1.56, 1

  16. Fractal dimension of cohesive sediment flocs at steady state under seven shear flow conditions

    DOE PAGESBeta

    Zhu, Zhongfan; Yu, Jingshan; Wang, Hongrui; Dou, Jie; Wang, Cheng

    2015-08-12

    The morphological properties of kaolin flocs were investigated in a Couette-flow experiment at the steady state under seven shear flow conditions (shear rates of 5.36, 9.17, 14, 24, 31, 41 and 53 s-1). These properties include a one-dimensional (1-D) fractal dimension (D1), a two-dimensional (2-D) fractal dimension (D2), a perimeter-based fractal dimension (Dpf) and an aspect ratio (AR). They were calculated based on the projected area (A), equivalent size, perimeter (P) and length (L) of the major axis of the floc determined through sample observation and an image analysis system. The parameter D2, which characterizes the relationship between the projectedmore » area and the length of the major axis using a power function, A ∝ LD2, increased from 1.73 ± 0.03, 1.72 ± 0.03, and 1.75 ± 0.04 in the low shear rate group (G = 5.36, 9.17, and 14 s-1) to 1.92 ± 0.03, 1.82 ± 0.02, 1.85 ± 0.02, and 1.81 ± 0.02 in the high shear rate group (24, 31, 41 and 53 s-1), respectively. The parameter D1 characterizes the relationship between the perimeter and length of the major axis by the function P ∝ LD1 and decreased from 1.52 ± 0.02, 1.48 ± 0.02, 1.55 ± 0.02, and 1.63 ± 0.02 in the low shear group (5.36, 9.17, 14 and 24 s-1) to 1.45 ± 0.02, 1.39 ± 0.02, and 1.39 ± 0.02 in the high shear group (31, 41 and 53 s-1), respectively. The results indicate that with increasing shear rates, the flocs become less elongated and that their boundary lines become tighter and more regular, caused by more breakages and possible restructurings of the flocs. The parameter Dpf, which is related to the perimeter and the projected area through the function , decreased as the shear rate increased almost linearly. The parameter AR, which is the ratio of the length of the major axis and equivalent diameter, decreased from 1.56, 1.59, 1.53 and 1.51 in the low shear rate group to 1.43, 1.47 and 1.48 in the high shear rate group. These changes in Dpf and AR show that the flocs become

  17. Flow mechanisms, relative permeabilities, and coupling effects in steady-state two-phase flow through porous media. The case of strong wettability

    SciTech Connect

    Avraam, D.G.; Payatakes, A.C.

    1999-03-01

    The pore-scale flow mechanisms and the relative permeabilities during steady-state two-phase flow in a glass model pore network were studied experimentally for the case of strong wettability ({theta}{sub e} < 10{degree}). The capillary number, the fluid flow rate ratio, and the viscosity ratio were changed systematically, while all other parameters were kept constant. The flow mechanisms at the microscopic and macroscopic scales were examined visually and videorecorded. As in the case of intermediate wettability, the authors observed that over a broad range of values of the system parameters the pore-scale flow mechanisms include many strongly nonlinear phenomena, specifically, breakup, coalescence, stranding, mobilization, etc. Such microscopically irreversible phenomena cause macroscopic nonlinearity and irreversibility, which make an Onsager-type theory inappropriate for this class of flows. The main effects of strong wettability are that it changes the domains of the system parameter values where the various flow regimes are observed and increases the relative permeability values, whereas the qualitative aspects of the flow remain the same. Currently, a new true-to-mechanism model is being developed for this class of flows.

  18. Simulation of advective flow under steady-state and transient recharge conditions, Camp Edwards, Massachusetts Military Reservation, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Masterson, John P.

    2003-01-01

    The U.S. Geological Survey has developed several ground-water models in support of an investigation of ground-water contamination being conducted by the Army National Guard Bureau at Camp Edwards, Massachusetts Military Reservation on western Cape Cod, Massachusetts. Regional and subregional steady-state models and regional transient models were used to (1) improve understanding of the hydrologic system, (2) simulate advective transport of contaminants, (3) delineate recharge areas to municipal wells, and (4) evaluate how model discretization and time-varying recharge affect simulation results. A water-table mound dominates ground-water-flow patterns. Near the top of the mound, which is within Camp Edwards, hydraulic gradients are nearly vertically downward and horizontal gradients are small. In downgradient areas that are further from the top of the water-table mound, the ratio of horizontal to vertical gradients is larger and horizontal flow predominates. The steady-state regional model adequately simulates advective transport in some areas of the aquifer; however, simulation of ground-water flow in areas with local hydrologic boundaries, such as ponds, requires more finely discretized subregional models. Subregional models also are needed to delineate recharge areas to municipal wells that are inadequately represented in the regional model or are near other pumped wells. Long-term changes in recharge rates affect hydraulic heads in the aquifer and shift the position of the top of the water-table mound. Hydraulic-gradient directions do not change over time in downgradient areas, whereas they do change substantially with temporal changes in recharge near the top of the water-table mound. The assumption of steady-state hydraulic conditions is valid in downgradient area, where advective transport paths change little over time. In areas closer to the top of the water-table mound, advective transport paths change as a function of time, transient and steady-state paths

  19. Numerical models of steady-state and pulsating flows of self-ionizing gas in plasma accelerator channels

    NASA Astrophysics Data System (ADS)

    Brushlinskii, K. V.; Kozlov, A. N.; Konovalov, V. S.

    2015-08-01

    This paper continues the series of numerical investigations of self-ionizing gas flows in plasma accelerator channels with an azimuthal magnetic field. The mathematical model is based on the equations of dynamics of a three-component continuous medium consisting of atoms, ions, and electrons; the model is supplemented with the equation of ionization and recombination kinetics within the diffusion approximation with account for photoionization and photorecombination. It also takes into account heat exchange, which in this case is caused by radiative heat conductance. Upon a short history of the issue, the proposed model, numerical methods, and results for steady-state and pulsating flows are described.

  20. Number of microstates and configurational entropy for steady-state two-phase flows in pore networks

    NASA Astrophysics Data System (ADS)

    Daras, T.; Valavanides, M. S.

    2015-01-01

    Steady-state two-phase flow in porous media is a process whereby a wetting phase displaces a non-wetting phase within a pore network. It is a stationary, off equilibrium process -in the sense that it is maintained in dynamic equilibrium on the expense of energy supplied to the system. The efficiency of the process depends on its spontaneity, measurable by the rate of global entropy production. The latter has been proposed to comprise two components: the rate of mechanical energy dissipation at constant temperature (a thermal entropy component, Q/T, in the continuum mechanics scale) and a configurational entropy production component (a Boltzmann-type statistical-entropy component, klnW), due to the existence of a canonical ensemble of flow configurations, physically admissible to the externally imposed macrostate stationary conditions. Here, the number of microstates, lnW, in steady-state two-phase flows in pore networks is estimated in three stages: Combinatorics are implemented to evaluate the number of identified microstates per physically admissible internal flow arrangement compatible with the imposed stationary flow conditions. Then, "Stirling's approximation limiting procedure" is applied to downscale the computational effort associated with the operations between large factorial numbers. Finally, the number of microstates is estimated by contriving a limiting procedure over the canonical ensemble of the physically admissible flow configurations. Counting the microstates is a prerequisite for estimating the process configurational entropy in order to implement the Maximum Entropy Production principle and justify the existence of optimum operating conditions.

  1. Dynamic Structure Factor and Transport Coefficients of a Homogeneously Driven Granular Fluid in Steady State

    NASA Astrophysics Data System (ADS)

    Vollmayr-Lee, Katharina; Zippelius, Annette; Aspelmeier, Timo

    2011-03-01

    We study the dynamic structure factor of a granular fluid of hard spheres, driven into a stationary nonequilibrium state by balancing the energy loss due to inelastic collisions with the energy input due to driving. The driving is chosen to conserve momentum, so that fluctuating hydrodynamics predicts the existence of sound modes. We present results of computer simulations which are based on an event driven algorithm. The dynamic structure factor F (q , ω) is determined for volume fractions 0.05, 0.1 and 0.2 and coefficients of normal restitution 0.8 and 0.9. We observe sound waves, and compare our results for F (q , ω) with the predictions of generalized fluctuating hydrodynamics which takes into account that temperature fluctuations decay either diffusively or with a finite relaxation rate, depending on wave number and inelasticity. We determine the speed of sound and the transport coefficients and compare them to the results of kinetic theory. K.V.L. thanks the Institute of Theoretical Physics, University of Goettingen, for financial support and hospitality.

  2. Finite element and physical simulations of non-steady state metal flow and temperature distribution in twin roll strip casting

    SciTech Connect

    Shiomi, Masanori; Mori, Kenichiro; Osakada, Kozo

    1995-12-31

    Non-steady-state metal flow and temperature distribution in twin roll strip casting are simulated by the finite element method. In the present simulation, the viscoplastic finite element method is combined with that for heat conduction to calculate the metal flow and the temperature distribution during the casting process. The solid, mushy and liquid phases are assumed to be viscoplastic materials with individual flow stresses. In the temperature analysis, the latent heat due to solidification of the molten metal is taken into account by using the temperature recovery method. Since the metal flow and temperature distribution do not often attain to steady states, they are simulated by the stepwise calculation. To examine the accuracy of the calculated results, physical simulation of plane-strain twin roll strip casting is carried out by use of paraffin wax as a model material. The calculated profiles of the solid region agree qualitatively well with the experimental ones. Twin roll strip casting processes for stainless steel are also simulated. An optimum roll speed for obtaining a strip without a liquid zone under a minimum rolling load is obtained from the results of the simulation.

  3. Changes in cerebral blood flow during steady-state cycling exercise: a study using oxygen-15-labeled water with PET.

    PubMed

    Hiura, Mikio; Nariai, Tadashi; Ishii, Kenji; Sakata, Muneyuki; Oda, Keiichi; Toyohara, Jun; Ishiwata, Kiichi

    2014-03-01

    Cerebral blood flow (CBF) during dynamic exercise has never been examined quantitatively using positron emission tomography (PET). This study investigated changes in CBF that occur over the course of a moderate, steady-state cycling exercise. Global and regional CBF (gCBF and rCBF, respectively) were measured using oxygen-15-labeled water (H(2)(15)O) and PET in 10 healthy human subjects at rest (Rest), at the onset of exercise (Ex1) and at a later phase in the exercise (Ex2). At Ex1, gCBF was significantly (P<0.01) higher (27.9%) than at Rest, and rCBF was significantly higher than at Rest in the sensorimotor cortex for the bilateral legs (M1(Leg) and S1(Leg)), supplementary motor area (SMA), cerebellar vermis, cerebellar hemispheres, and left insular cortex, with relative increases ranging from 37.6% to 70.5%. At Ex2, gCBF did not differ from Rest, and rCBF was significantly higher (25.9% to 39.7%) than at Rest in only the M1(Leg), S1(Leg), and vermis. The areas showing increased rCBF at Ex1 were consistent with the central command network and the anatomic pathway for interoceptive stimuli. Our results suggest that CBF increases at Ex1 in parallel with cardiovascular responses then recovers to the resting level as the steady-state exercise continues. PMID:24301294

  4. A closed-form solution for steady-state coupled phloem/xylem flow using the Lambert-W function.

    PubMed

    Hall, A J; Minchin, P E H

    2013-12-01

    A closed-form solution for steady-state coupled phloem/xylem flow is presented. This incorporates the basic Münch flow model of phloem transport, the cohesion model of xylem flow, and local variation in the xylem water potential and lateral water flow along the transport pathway. Use of the Lambert-W function allows this solution to be obtained under much more general and realistic conditions than has previously been possible. Variation in phloem resistance (i.e. viscosity) with solute concentration, and deviations from the Van't Hoff expression for osmotic potential are included. It is shown that the model predictions match those of the equilibrium solution of a numerical time-dependent model based upon the same mechanistic assumptions. The effect of xylem flow upon phloem flow can readily be calculated, which has not been possible in any previous analytical model. It is also shown how this new analytical solution can handle multiple sources and sinks within a complex architecture, and can describe competition between sinks. The model provides new insights into Münch flow by explicitly including interactions with xylem flow and water potential in the closed-form solution, and is expected to be useful as a component part of larger numerical models of entire plants. PMID:23617886

  5. The steady-state flow quality in a model of a non-return wind tunnel

    NASA Technical Reports Server (NTRS)

    Mort, K. W.; Eckert, W. T.; Kelly, M. W.

    1972-01-01

    The structural cost of non-return wind tunnels is significantly less than that of the more conventional closed-circuit wind tunnels. However, because of the effects of external winds, the flow quality of non-return wind tunnels is an area of concern at the low test speeds required for V/STOL testing. The flow quality required at these low speeds is discussed and alternatives to the traditional manner of specifying the flow quality requirements in terms of dynamic pressure and angularity are suggested. The development of a non-return wind tunnel configuration which has good flow quality at low as well as at high test speeds is described.

  6. A numerical investigation of free surface—Seepage face relationship under steady state flow conditions

    NASA Astrophysics Data System (ADS)

    Shamsai, Abolfazl; Narasimhan, T. N.

    1991-03-01

    The relationship between free surface and seepage face under steady conditions of flow has been analyzed for radial and planar flow configurations. The numerical studies, carried out with a saturated-unsaturated flow model, included the simulation of a series of experimental observations documented by Hall (1955). The numerical analysis took into consideration effects of capillary fringe, model geometry, as well as converging and diverging patterns of flow. For the control series of three cases studied, discharge rates, free surface location, seepage face height and the spatial distribution of potentials closely matched the experimental observations. Additional parametric studies showed that converging patterns of flow favor more pronounced development of seepage face than divergent flows. In two-dimensional planar flow, larger drawdowns tend to favor relatively more pronounced development of seepage face. Comparison of the detailed simulation results (taking unsaturated flow into consideration) with results generated using Dupuit-Forchheimer assumptions suggest that the latter may provide discharge estimates that are in error by 12 to 20% both for radial and for two-dimensional planar flows.

  7. On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2015-01-01

    Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the

  8. On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow

    NASA Astrophysics Data System (ADS)

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A.

    2015-04-01

    Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the

  9. Effect of steady-state pressure distortion on flow characteristics entering a turbofan engine

    NASA Technical Reports Server (NTRS)

    Soeder, R. H.; Bobula, G. A.

    1979-01-01

    Flow angle, static-pressure, and total-pressure distributions were measured in the passage ahead of a turbofan engine operating with inlet pressure distortion. Distortions were generated with five screen configurations and one solid plate configuration. The screens and solid plate were circumferential and mounted on a rotatable assembly. Reynolds Number Index upstream of the distortion device was maintained at 0.5, 0.35, or 0.2, and engine corrected low-rotor speeds were held at 6000 rpm and 8600 rpm. Near the engine inlet, flow angle was largest at the hub and increased as flow approached the engine. The magnitude of static-pressure distortion measured along the inlet-duct and extended bullet nose walls increased exponentially as the flow approached the engine. Wall static-pressure distortion was also a function of distortion harmonic.

  10. A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits

    USGS Publications Warehouse

    Mastin, Larry G.; Ghiorso, Mark S.

    2000-01-01

    This report presents a model that calculates flow properties (pressure, vesicularity, and some 35 other parameters) as a function of vertical position within a volcanic conduit during a steady-state eruption. The model idealizes the magma-gas mixture as a single homogeneousfluid and calculates gas exsolution under the assumption of equilibrium conditions. These are the same assumptions on which classic conduit models (e.g. Wilson and Head, 1981) have been based. They are most appropriate when applied to eruptions of rapidly ascending magma (basaltic lava-fountain eruptions, and Plinian or sub-Plinian eruptions of intermediate or silicic magmas) that contains abundant nucleation sites (microlites, for example) for bubble growth.

  11. Signal processing and statistical descriptive reanalysis of steady state chute-flow experiments

    NASA Astrophysics Data System (ADS)

    truong, hoan; eckert, nicolas; keylock, chris; naaim, mohamed; bellot, hervé

    2014-05-01

    An accurate knowledge of snow rheology is needed for the mitigation against avalanche hazard. Indeed snow avalanches have a significant impact on the livelihoods and economies of alpine communities. To do so, 60 small-scale in-situ flow experiments were performed with various slopes, temperatures and flow depths. The investigation of these data previously seemed to show the dense flow of dry snow may be composed of two layers; a sheared basal layer made of single snow grains and a less sheared upper layer made of large aggregates. These outcomes were mainly based on the mean velocity profile of the flow and on interpretation in terms of rheological behavior of granular materials and snow microstructure [Pierre G. Rognon et al., 2007]. Here, the main objective remains the same, but the rheological and physical viewpoints are put aside to extract as much information contained in the data as possible various using signal processing methods and descriptive statistics methods as the maximum overlap discrete wavelet transform (MODWT), transfer entropy (TE) and maximum cross-correlation (MCC). Specifically, we aim at the improving the velocity estimations as function of the depth particularly the velocity fluctuations around the mean profile to better document the behavior of dense dry snow flows during a steady and uniform chute regime. The data are composed of pairs of voltage signals (right and left), which makes that the velocity is known indirectly only. The MCC method is classically used to determine the time lag between both signals. Previously, the MCC method that showed the mean velocity profile may be fitted by a simple bilinear function [Pierre G. Rognon et al., 2007], but no interesting temporal dynamics could be highlighted. Hence, a new process method was developed to provide velocity series with much better temporal resolution. The process is mainly made of a MODWT-based denoising method and the choice of window size for correlation. The results prove to be

  12. A full-Bayesian approach to the inverse problem for steady-state groundwater flow and heat transport

    NASA Astrophysics Data System (ADS)

    Jiang, Yefang; Woodbury, Allan D.

    2006-12-01

    The full (hierarchal) Bayesian approach proposed by Woodbury & Ulrych and Jiang et al. is extended to the inverse problem for 2-D steady-state groundwater flow and heat transport. A stochastic conceptual framework for the heat flow and groundwater flow is adopted. A perturbation of both the groundwater flow and the advection-conduction heat transport equations leads to a linear formulation between heads, temperature and logarithm transmissivity [denoted as ln (T)]. A Bayesian updating procedure similar to that of Woodbury & Ulrych can then be performed. This new algorithm is examined against a generic example through simulations. The prior mean, variance and integral scales of ln (T) (hyperparameters) are treated as random variables and their pdfs are determined from maximum entropy considerations. It is also assumed that the statistical properties of the noise in the hydraulic head and temperature measurements are also uncertain. Uncertainties in all pertinent hyperparameters are removed by marginalization. It is found that the use of temperature measurements is showed to further improve the ln (T) estimates for the test case in comparison to the updated ln (T) field conditioned on ln (T) and head data; the addition of temperature data without hydraulic head data to the update also aids refinement of the ln (T) field compared to simply interpolating ln (T) data alone these results suggest that temperature measurements are a promising data source for site characterization for heterogeneous aquifer, which can be accomplished through the full-Bayesian methodology.

  13. Nuclear magnetic resonance characterization of the stationary dynamics of partially saturated media during steady-state infiltration flow

    NASA Astrophysics Data System (ADS)

    Rassi, Erik M.; Codd, Sarah L.; Seymour, Joseph D.

    2011-01-01

    Flow in porous media and the resultant hydrodynamics are important in fields including but not limited to the hydrology, chemical, medical and petroleum industries. The observation and understanding of the hydrodynamics in porous media are critical to the design and optimal utilization of porous media, such as those seen in trickle-bed reactors, medical filters, subsurface flows and carbon sequestration. Magnetic resonance (MR) provides for a non-invasive technique that can probe the hydrodynamics on pore and bulk scale lengths; many previous works have characterized fully saturated porous media, while rapid MR imaging (MRI) methods in particular have previously been applied to partially saturated flows. We present time- and ensemble-averaged MR measurements to observe the effects on a bead pack partially saturated with air under flowing water conditions. The 10 mm internal diameter bead pack was filled with 100 μm borosilicate glass beads. Air was injected into the bead pack as water flowed simultaneously through the sample at 25 ml h-1. The initial partially saturated state was characterized with MRI density maps, free induction decay (FID) experiments, propagators and velocity maps before the water flow rate was increased incrementally from 25 to 500 ml h-1. After the maximum flow rate of 500 ml h-1, the MRI density maps, FID experiments, propagators and velocity maps were repeated and compared to the data taken before the maximum flow rate. This work shows that a partially saturated single-phase flow has global flow dynamics that return to characteristic flow statistics once a steady-state high flow rate has been reached. This high flow rate pushed out a significant amount of the air in the bead pack and caused the return of a preferential flow pattern. Velocity maps indicated that local flow statistics were not the same for the before and after blow out conditions. It has been suggested and shown previously that a flow pattern can return to

  14. Effect of Inlet Air Distortion on the Steady-State and Surge Characteristics of an Axial-Flow Turbojet Compressor

    NASA Technical Reports Server (NTRS)

    Ciepluch, Carl C.

    1948-01-01

    An investigation was conducted in an altitude test chamber to determine the effects of inlet airflow distortion on the compressor steady-state and surge characteristics of a high-pressure ratio, axial-flow turbojet engine. Circumferential-type inlet flow distortions were investigated, which covered a range of distortion sector angles from 20 deg to 168 deg and distortion levels up to 22 percent. The presence of inlet airflow distortions at the compressor face resulted in a substantial increase in the local pressure ratio in the distorted region, primarily for the inlet stages. The local pressure ratio in the distorted region for the inlet stages increased as either the distortion sector angle decreased or the percent distortion increased. The average compressor-surge pressure ratio was much more sensitive to inlet airflow distortions at lower engine speeds than at engine speeds near rated. Hence, compressor-surge margin reduction due to inlet airflow distortion was quite severe at the lower engine speeds. Although the average compressor-surge pressure ratio was generally reduced with inlet flow distortion, local pressure ratios across the distorted sector of the compressor were obtained during surge and were significantly greater than the normal compressor-surge pressure ratio. This was a result of increased loading of the inlet stages in the distorted region.

  15. Validation of the flow-through chamber (FTC) and steady-state (SS) methods for clearance rate measurements in bivalves

    PubMed Central

    Larsen, Poul S.; Riisgård, Hans Ulrik

    2012-01-01

    Summary To obtain precise and reliable laboratory clearance rate (filtration rate) measurements with the ‘flow-through chamber method’ (FTC) the design must ensure that only inflow water reaches the bivalve's inhalant aperture and that exit flow is fully mixed. As earlier recommended these prerequisites can be checked by a plot of clearance rate (CR) versus increasing through-flow (Fl) to reach a plateau, which is the true CR, but we also recommend to plot percent particles cleared versus reciprocal through-flow where the plateau becomes the straight line CR/Fl, and we emphasize that the percent of particles cleared is in itself neither a criterion for valid CR measurement, nor an indicator of appropriate ‘chamber geometry’ as hitherto adapted in many studies. For the ‘steady-state method’ (SS), the design must ensure that inflow water becomes fully mixed with the bivalve's excurrent flow to establish a uniform chamber concentration prevailing at its incurrent flow and at the chamber outlet. These prerequisites can be checked by a plot of CR versus increasing Fl, which should give the true CR at all through-flows. Theoretically, the experimental uncertainty of CR for a given accuracy of concentration measurements depends on the percent reduction in particle concentration (100×P) from inlet to outlet of the ideal ‘chamber geomety’. For FTC, it decreases with increasing values of P while for SS it first decreases but then increases again, suggesting the use of an intermediate value of P. In practice, the optimal value of P may depend on the given ‘chamber geometry’. The fundamental differences between the FTC and the SS methods and practical guidelines for their use are pointed out, and new data on CR for the blue mussel, Mytilus edulis, illustrate a design and use of the SS method which may be employed in e.g. long-term growth experiments at constant algal concentrations. PMID:23213362

  16. Validation of the flow-through chamber (FTC) and steady-state (SS) methods for clearance rate measurements in bivalves.

    PubMed

    Larsen, Poul S; Riisgård, Hans Ulrik

    2012-01-15

    To obtain precise and reliable laboratory clearance rate (filtration rate) measurements with the 'flow-through chamber method' (FTC) the design must ensure that only inflow water reaches the bivalve's inhalant aperture and that exit flow is fully mixed. As earlier recommended these prerequisites can be checked by a plot of clearance rate (CR) versus increasing through-flow (Fl) to reach a plateau, which is the true CR, but we also recommend to plot percent particles cleared versus reciprocal through-flow where the plateau becomes the straight line CR/Fl, and we emphasize that the percent of particles cleared is in itself neither a criterion for valid CR measurement, nor an indicator of appropriate 'chamber geometry' as hitherto adapted in many studies. For the 'steady-state method' (SS), the design must ensure that inflow water becomes fully mixed with the bivalve's excurrent flow to establish a uniform chamber concentration prevailing at its incurrent flow and at the chamber outlet. These prerequisites can be checked by a plot of CR versus increasing Fl, which should give the true CR at all through-flows. Theoretically, the experimental uncertainty of CR for a given accuracy of concentration measurements depends on the percent reduction in particle concentration (100×P) from inlet to outlet of the ideal 'chamber geomety'. For FTC, it decreases with increasing values of P while for SS it first decreases but then increases again, suggesting the use of an intermediate value of P. In practice, the optimal value of P may depend on the given 'chamber geometry'. The fundamental differences between the FTC and the SS methods and practical guidelines for their use are pointed out, and new data on CR for the blue mussel, Mytilus edulis, illustrate a design and use of the SS method which may be employed in e.g. long-term growth experiments at constant algal concentrations. PMID:23213362

  17. Dispersed-flow film boiling in rod-bundle geometry: steady-state heat-transfer data and correlation comparisons. [PWR; BWR

    SciTech Connect

    Yoder, G. L.; Morris, D. G.; Mullins, C. B.; Ott, L. J.; Reed, D. A.

    1982-03-01

    Assessment of six film boiling correlations and one single-phase vapor correlation has been made using data from 22 steady state upflow rod bundle tests (series 3.07.9). Bundle fluid conditions were calculated using energy and mass conservation considerations. Results of the steady state film boiling tests support the conclusions reached in the analysis of prior transient tests 3.03.6AR, 3.06.6B, and 3.08.6C. Comparisons between experimentally determined and correlation-predicted heat transfer coefficients, are presented.

  18. Two-dimensional, steady-state model of ground-water flow, Nevada Test Site and vicinity, Nevada-California

    USGS Publications Warehouse

    Waddell, R.K.

    1982-01-01

    A two-dimensional, steady-state model of ground-water flow beneath the Nevada Test Site and vicinity has been developed using inverse techniques. The area is underlain by clastic and carbonate rocks of Precambrian and Paleozoic age and by volcanic rocks and alluvium of Tertiary and Quaternary age that have been juxtaposed by normal and strike-slip faulting. Aquifers are composed of carbonate and volcanic rocks and alluvium. Characteristics of the flow system are determined by distribution of low-conductivity rocks (barriers); by recharge originating in the Spring Mountains, Pahranagat, Timpahute, and Sheep Ranges, and in Pahute Mesa; and by underflow beneath Pahute Mesa from Gold Flat and Kawich Valley. Discharge areas (Ash Meadows, Oasis Valley, Alkali Flat, and Furnace Creek Ranch) are upgradient from barriers. Sensitivities of simulated hydraulic heads and fluxes to variations in model parameters were calculated to guide field studies and to help estimate errors in predictions from transport modeling. Hydraulic heads and fluxes are very sensitive to variations in the greater magnitude recharge/discharge terms. Transmissivity at a location may not be the most important transmissivity for determining flux there. Transmissivities and geometries of large barriers that impede flow from Pahute Mesa have major effects on fluxes elsewhere; as their transmissivities are decreased, flux beneath western Jackass Flats and Yucca Mountains is increased as water is diverted around the barriers. Fortymile Canyon is underlain by highly transmissive rocks that cause potentiometric contours to vee upgradient; increasing their transmissivity increases flow through them, and decreases it beneath Yucca Mountain. (USGS)

  19. Explicit expression for the steady-state translation rate in the infinite-dimensional homogeneous ribosome flow model.

    PubMed

    Zarai, Yoram; Margaliot, Michael; Tuller, Tamir

    2013-01-01

    Gene translation is a central stage in the intracellular process of protein synthesis. Gene translation proceeds in three major stages: initiation, elongation, and termination. During the elongation step, ribosomes (intracellular macromolecules) link amino acids together in the order specified by messenger RNA (mRNA) molecules. The homogeneous ribosome flow model (HRFM) is a mathematical model of translation-elongation under the assumption of constant elongation rate along the mRNA sequence. The HRFM includes $(n)$ first-order nonlinear ordinary differential equations, where $(n)$ represents the length of the mRNA sequence, and two positive parameters: ribosomal initiation rate and the (constant) elongation rate. Here, we analyze the HRFM when $(n)$ goes to infinity and derive a simple expression for the steady-state protein synthesis rate. We also derive bounds that show that the behavior of the HRFM for finite, and relatively small, values of $(n)$ is already in good agreement with the closed-form result in the infinite-dimensional case. For example, for $(n=15)$, the relative error is already less than 4 percent. Our results can, thus, be used in practice for analyzing the behavior of finite-dimensional HRFMs that model translation. To demonstrate this, we apply our approach to estimate the mean initiation rate in M. musculus, finding it to be around 0.17 codons per second. PMID:24384716

  20. True-to-mechanism model of steady-state two-phase flow in porous media, using decomposition into prototype flows

    NASA Astrophysics Data System (ADS)

    Valavanides, M. S.; Payatakes, A. C.

    A true-to-mechanism model is proposed, which considers steady-state two-phase flow in porous media (SS2 ϕPM) as a composition of two prototype flows, namely ganglion dynamics (GD) and connected-oil pathway flow (CPF). Coupling of the prototype flows is effected with the simple rule that the macroscopic pressure gradient is the same in both. For a given set of values of the flow system parameters, a domain of admissible flow combinations is obtained. The solution is determined by assuming that each point in this domain has equal probability of being `visited'. This leads to unique values for the flow arrangement variables (FAV), the rate of mechanical energy dissipation, and the relative permeabilities. The new model accounts for the non-linearity of the flow as well as for the effects of all the system parameters (notably those affecting interfaces), and its predictions are in very good agreement with existing data.

  1. A Galerkin, finite-element analysis of steady-state flow and heat transport in the shallow hydrothermal system in the East Mesa area, Imperial Valley, California

    USGS Publications Warehouse

    Miller, R.E.

    1977-01-01

    A steady-state simulation model was applied to the shallow hydrothermal system in the East Mesa area of Imperial Valley, Calif. The steady-state equations of flow and heat transport were solved by use of a Galerkin, finite-element method. A solution was obtained by iterating between the temperature and pressure equations, using updated densities and viscosities. Temperature and pressure were obtained for each node, and corresponding head values were calculated. The simulated temperature and pressure patterns correlated well with the observed patterns. Additional data, mainly from test drilling, would be required for construction of a similar model of the deep hydrothermal system.

  2. Analysis of steady-state flow and advective transport in the eastern Snake River Plain aquifer system, Idaho

    USGS Publications Warehouse

    Ackerman, D.J.

    1995-01-01

    Quantitative estimates of ground-water flow directions and traveltimes for advective flow were developed for the regional aquifer system of the eastern Snake River Plain, Idaho. The work included: (1) descriptions of compartments in the aquifer that function as intermediate and regional flow systems, (2) descriptions of pathlines for flow originating at or near the water table, and (3) quantitative estimates of traveltimes for advective transport originating at or near the water table. A particle-tracking postprocessing program was used to compute pathlines on the basis of output from an existing three-dimensional steady-state flow model. The flow model uses 1980 conditions to approximate average annual conditions for 1950-80. The advective transport model required additional information about the nature of flow across model boundaries, aquifer thickness, and porosity. Porosity of two types of basalt strata has been reported for more than 1,500 individual cores from test holes, wells, and outcrops near the south side of the Idaho National Engineering Laboratory. The central 80 percent of samples had porosities of 0.08 to 0.25, the central 50 percent of samples, O. 11 to 0.21. Calibration of the model involved choosing a value for porosity that yielded the best solution. Two radiologic contaminants, iodine-129 and tritium, both introduced to the flow system about 40 years ago, are relatively conservative tracers. Iodine- 129 was considered to be more useful because of a lower analytical detection limit, longer half-life, and longer flow path. The calibration value for porosity was 0.21. Most flow in the aquifer is contained within a regional-scale compartment and follows paths that discharge to the Snake River downstream from Milner Dam. Two intermediate-scale compartments exist along the southeast side of the aquifer and near Mud Lake.One intermediate-scale compartment along the southeast side of the aquifer discharges to the Snake River near American Fails

  3. Dynamic stability analysis for capillary channel flow: One-dimensional and three-dimensional computations and the equivalent steady state technique

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Dreyer, Michael E.

    2010-01-01

    is based on the technique of the equivalent steady system, which is published for the first time in the present paper. This approach assumes that for every unsteady state an equivalent steady state with a special boundary condition can be formulated. The equivalent steady state technique enables a reformulation of the equation system and an efficient and reliable speed index computation. Furthermore, the existence of the numerical singularity at the critical point of the steady flow instability, postulated in previous publication, is demonstrated in detail. The numerical singularity is related to the stability criterion for steady flow and represents the numerical consequence of the liquid surface collapse. The evaluation and generation of the pressure diagram is demonstrated in detail with a series of numerical dynamic flow studies. The stability diagram, based on one-dimensional computation, gives a detailed overview of the stable and instable flow regimes. This prediction is in good agreement with the experimentally observed critical flow conditions and results of three-dimensional CFD computations.

  4. Efficiency trade-offs of steady-state methods using FEM and FDM. [iterative solutions for nonlinear flow equations

    NASA Technical Reports Server (NTRS)

    Gartling, D. K.; Roache, P. J.

    1978-01-01

    The efficiency characteristics of finite element and finite difference approximations for the steady-state solution of the Navier-Stokes equations are examined. The finite element method discussed is a standard Galerkin formulation of the incompressible, steady-state Navier-Stokes equations. The finite difference formulation uses simple centered differences that are O(delta x-squared). Operation counts indicate that a rapidly converging Newton-Raphson-Kantorovitch iteration scheme is generally preferable over a Picard method. A split NOS Picard iterative algorithm for the finite difference method was most efficient.

  5. Measurement of the effective thermal conductivity of particulate materials by the steady-state heat flow method in a cuvette

    NASA Astrophysics Data System (ADS)

    Abyzov, Andrey M.; Shakhov, Fedor M.

    2014-12-01

    To measure the thermal conductivity of particle beds, a specially designed cuvette is inserted into the chamber of an ITP-MG4 device fitted with a vertical heat flux sensor. The cuvette with a transparent wall makes it possible to reduce the amount of test material to 25 cm3, to monitor visually the uniformity of a charge, to determine the bulk density of the particle bed (and to increase it if necessary using vibrocompaction) and to apply external pressure to the bed from 2.5 to 30 kPa. Using various continuous-solid and particulate materials as references, a calibration equation is obtained for thermal conductivity in the range of 0.03-1.1 W (m K)-1. To eliminate thermal contact resistance when measuring references, the end faces of glass specimens with a departure from flatness of up to 50 μm are wetted with water. To model the calibration, a calculation is carried out by the electrical circuit analogy. The calculated curve is close to the experimental points if a value for the contact thermal resistances r# = 2  ×  10-3 m2 K W-1 is taken. Values of r# calculated by the Yovanovich model, based on the known roughnesses of the contact surfaces of the cuvette and the solid specimens, are an order of magnitude lower due to the decisive influence of nonflatness and not surface roughness at the low pressures used. The conditions under which our measurements were made are compared with the instructions of Russian, American and international standards for the measurement of thermal conductivity by the steady-state heat flow method (specimen size, flatness of working surfaces, etc). The sources of measurement inaccuracy and ways to improve the technique are examined.

  6. Steady-state flow distribution and monthly flow duration in selected branches of St. Clair and Detroit rivers within the Great Lakes waterway

    USGS Publications Warehouse

    Holtschlag, D.J.; Koschik, J.A.

    2001-01-01

    St. Clair and Detroit Rivers are connecting channels between Lake Huron and Lake Erie in the Great Lakes waterway, and form part of the boundary between the United States and Canada. St. Clair River, the upper connecting channel, drains 222,400 mi2 and has an average flow of about 182,000 ft3/s. Water from St. Clair River combines with local inflows and discharges into Lake St. Clair before flowing into Detroit River. In some reaches of St. Clair and Detroit Rivers, islands and dikes split the flow into two to four branches. Even when the flow in a reach is known, proportions of flows within individual branches of a reach are uncertain. Simple linear regression equations, subject to a flow continuity constraint, are developed to provide estimators of these proportions and flows. The equations are based on 533 paired measurements of flow in 13 reaches forming 31 branches. The equations provide a means for computing the expected values and uncertainties of steady-state flows on the basis of flow conditions specified at the upstream boundaries of the waterway. In 7 upstream reaches, flow is considered fixed because it can be determined on the basis of flows specified at waterway boundaries and flow continuity. In these reaches, the uncertainties of flow proportions indicated by the regression equations can be used directly to determine the uncertainties of the corresponding flows. In the remaining 6 downstream reaches, flow is considered uncertain because these reaches do not receive flow from all the branches of an upstream reach, or they receive flow from some branches of more than one upstream reach. Monte Carlo simulation analysis is used to quantify this increase in uncertainty associated with the propagation of uncertainties from upstream reaches to downstream reaches. To eliminate the need for Monte Carlo simulations for routine calculations, polynomial regression equations are developed to approximate the variation in uncertainties as a function of flow at the

  7. Theory and simulation of oscillations on near-steady state in crossed-field electron flow and the resulting transport

    NASA Astrophysics Data System (ADS)

    Cartwright, Keith Lewis

    The purpose of this study is to understand the oscillatory steady-state behavior of crossed-field electron flow in diodes for magnetic fields greater than the Hull field (B > BH) by the means of theory and self-consistent, electrostatic particle-in-cell (PIC) simulations. Many prior analytic studies of diode-like problems have been time-independent, which leaves the stability and time-dependence of these models unresolved. We investigate fluctuations through the system, including virtual cathode oscillations, and compare results for various cathode injection models. The dominant oscillations in magnetically insulated crossed-field diodes are found to be a series resonance, Z(ω s) = 0, between the pure electron plasma and vacuum impedance of the diode. The series resonance in crossed-field electron flow is shown to be the ky --> 0 (one-dimensional) limit of the diocotron/magnetron eigenmode equation. The wavenumber, ky, is perpendicular to the direction across the diode and magnetic field. The series resonance is derived theoretically and verified with self-consistent, electrostatic, PIC simulations. Electron transport across the magnetic field in a cutoff planar smooth-bore magnetron is described on the basis of surface waves (formed by the shear flow instability) perpendicular to the magnetic field and along the cathode. A self-consistent, 2d3v (two spatial dimensions and three velocity components), electrostatic PIC simulation of a crossed-field diode produces a near- Brillouin flow which slowly expands across the diode, punctuated by sudden transport across the diode. The theory of slow transport across the diode is explained by the addition of perturbed orbits to the Brillouin shear flow motion of the plasma in the diode. A slow drift compared to the shear flow is described which results from the fields caused by the surface wave inducing an electrostatic ponderomotive-like force in a dc external magnetic field. In order to perform the above

  8. Modeling microflow and stirring around a microrotor in creeping flow using a quasi-steady-state analysis.

    PubMed

    Vuppu, Anil K; Garcia, Antonio A; Saha, Sanjoy K; Phelan, Patrick E; Hayes, Mark A; Calhoun, Ronald

    2004-06-01

    The microflow and stirring around paramagnetic particle microchains, referred to as microrotors, are modeled as a circular cylinder rotating about its radial axis at very low Reynolds number. Time scales for momentum transfer under these conditions are determined to be much smaller than those for boundary movement, hence a quasi-steady approximation can be used. The flow is derived at every instant from the case of a steady motion of a horizontally translating cylinder, with the rotation approximated to a series of differential incremental translations. A numerical simulation is used to determine the pathlines and material lines of virtual point fluid elements, which were analyzed to understand the behavior of the flow around the microrotor. The results indicate the flow to be unsteady, with chaotic advection observed in the system. The fluid motion is primarily two-dimensional, parallel to the rotational plane, with mixing limited to the immediate area around the rotating cylinder. Fluid layers, up to many cylinder diameters, in the axial direction experience the disturbance. Elliptic and star shaped pathlines, including periodic orbits, are observed depending on the fluid element's initial location. The trajectories and phase angles compare well with the experimental results, as well as with data from particle dynamics simulations. Material lines and streaklines display stretching and folding, which are indicative of the chaotic behavior and stirring characteristics of the system. The material lines have similar lengths for the same amount of rotation at different speeds, and the effect of rotational speeds appears to be primarily to change the time of mixing. The results are expected to help in the design of a particle microrotor based sensing technique. PMID:15159779

  9. Steady-state simulation of ground-water flow in the Blaine Aquifer, southwestern Oklahoma and northwestern Texas

    USGS Publications Warehouse

    Runkle, Donna L.; McLean, J.S.

    1995-01-01

    A generalized finite-difference model was prepared for the Blaine aquifer in southwestern Oklahoma and northwestern Texas. This report releases the model for use and modification. A grid of 1-square-mile nodes was established over the area, with 1,030 of the nodes actively simulated in the model. The steady-state model simulation used a uniform recharge rate of 2.2 inches per year and three values of hydraulic conductivity: 80, 19, and 4.7 feet per day. About 44 percent of the recharge is discharged as pumpage from wells, and the remainder is discharged to rivers and creeks within and adjacent to the study area.

  10. Hydrogeology and steady-state simulation of ground-water flow in the San Juan Basin, New Mexico, Colorado, Arizona, and Utah

    USGS Publications Warehouse

    Kernodle, J.M.

    1996-01-01

    As part of a multidisciplinary regional aquifer-system analysis, a three-dimensional steady-state ground-water-flow model was constructed for the San Juan Basin in parts of New Mexico, Colorado, Arizona, and Utah. The model simulated ground- water flow in 12 hydrostratigraphic units representing all of the major sources of ground water from aquifers of Jurassic and younger age. Ten map reports in the U.S. Geological Survey Hydrologic Investigations Atlas 720 series were prepared in conjunction with this investigation. The units that were described in the atlases were the San Jose, Nacimiento, and Animas Formations; Ojo Alamo Sandstone; Kirtland Shale and Fruitland Formation; Pictured Cliffs Sandstone; Cliff House Sandstone; Menefee Formation; Point Lookout Sandstone; Gallup Sandstone; Dakota Sandstone; and Morrison Formation. Additional descriptions of the alluvial and landslide deposits, Chuska and Crevasse Canyon Sandstones, Lewis and Mancos Shales, Wanakah Formation, and Entrada Sandstone are included in this report. Much of the information in the HA-720 series was generated from digital computer data bases that were directly usable by the computer for compilation of input data for the model. In essence, the major components of the ground-water- flow model were described and documented in the series of hydrologic atlases. The primary finding resulting from the ground-water-flow simulation was that boundary conditions and internal geometry of the aquifers are the major controls of steady-state ground-water flow and hydraulic heads in the San Juan Basin. Another significant finding was that the computed steady-state ground- water flux is a very minor component (about 1 percent) of the total water budget of the basin.

  11. A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow

    NASA Astrophysics Data System (ADS)

    Nœtinger, B.

    2015-02-01

    Modeling natural Discrete Fracture Networks (DFN) receives more and more attention in applied geosciences, from oil and gas industry, to geothermal recovery and aquifer management. The fractures may be either natural, or artificial in case of well stimulation. Accounting for the flow inside the fracture network, and accounting for the transfers between the matrix and the fractures, with the same level of accuracy is an important issue for calibrating the well architecture and for setting up optimal resources recovery strategies. Recently, we proposed an original method allowing to model transient pressure diffusion in the fracture network only [1]. The matrix was assumed to be impervious. A systematic approximation scheme was built, allowing to model the initial DFN by a set of N unknowns located at each identified intersection between fractures. The higher N, the higher the accuracy of the model. The main assumption was using a quasi steady state hypothesis, that states that the characteristic diffusion time over one single fracture is negligible compared with the characteristic time of the macroscopic problem, e.g. change of boundary conditions. In that context, the lowest order approximation N = 1 has the form of solving a transient problem in a resistor/capacitor network, a so-called pipe network. Its topology is the same as the network of geometrical intersections between fractures. In this paper, we generalize this approach in order to account for fluxes from matrix to fractures. The quasi steady state hypothesis at the fracture level is still kept. Then, we show that in the case of well separated time scales between matrix and fractures, the preceding model needs only to be slightly modified in order to incorporate these fluxes. The additional knowledge of the so-called matrix to fracture transfer function allows to modify the mass matrix that becomes a time convolution operator. This is reminiscent of existing space averaged transient dual porosity models.

  12. Three-dimensional steady-state simulation of flow in the sand-and-gravel aquifer, southern Escambia County, Florida

    USGS Publications Warehouse

    Trapp, Henry; Geiger, L.H.

    1986-01-01

    The sand-and-gravel aquifer is the only freshwater aquifer in southern Escambia County, Florida and is the source of public water supply for the area, including the City of Pensacola. The aquifer was simulated by a two-layer, digital model to provide hydrologic information for water resource planning. The lower layer represents the main-producing zone; the upper layer represents all of the aquifer above the main-producing zone including an unconfined zone and discontinuous perched, confined , and confining zones. The model was designed for steady-state simulation and predicts the response of the aquifer (changes in water levels) to groundwater pumping where steady-state conditions have been reached. Input to the model includes matrices representing constant-head nodes, starting head, transmissivity of layer 1, leakance between layers 1 and 2, lateral hydraulic conductivity of layer 2, and altitude of the base layer 2. The sources of water to the model are from recharge by infiltrated precipitation (estimated from base runoff), inflow across boundaries, and induced recharge from river leakance in periods of prolonged groundwater pumping. Model output includes final head and drawdown for each layer and total values for discharge and recharge in the model area. The model was calibrated for 1972 pumping and tested by simulating pumpages during 1939-40, 1958, and 1977. Sensitivity analyses showed water levels in both layers were most sensitive to changes in the recharge matrix and least sensitive to river leakage. Suggestions for further development of the model include subdivision and expansion of the grid, assignment of storage coefficients for transient simulations, more intensive study of the stream-aquifer relations, and consideration of the effects of infiltration basins on recharge. (Author 's abstract)

  13. Steady-state and transient models of groundwater flow and advective transport, Eastern Snake River Plain aquifer, Idaho National Laboratory and vicinity, Idaho

    USGS Publications Warehouse

    Ackerman, Daniel J.; Rousseau, Joseph P.; Rattray, Gordon W.; Fisher, Jason C.

    2010-01-01

    Three-dimensional steady-state and transient models of groundwater flow and advective transport in the eastern Snake River Plain aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The steady-state and transient flow models cover an area of 1,940 square miles that includes most of the 890 square miles of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the eastern Snake River Plain aquifer. Model results can be used in numerical simulations to evaluate the movement of contaminants in the aquifer. Saturated flow in the eastern Snake River Plain aquifer was simulated using the MODFLOW-2000 groundwater flow model. Steady-state flow was simulated to represent conditions in 1980 with average streamflow infiltration from 1966-80 for the Big Lost River, the major variable inflow to the system. The transient flow model simulates groundwater flow between 1980 and 1995, a period that included a 5-year wet cycle (1982-86) followed by an 8-year dry cycle (1987-94). Specified flows into or out of the active model grid define the conditions on all boundaries except the southwest (outflow) boundary, which is simulated with head-dependent flow. In the transient flow model, streamflow infiltration was the major stress, and was variable in time and location. The models were calibrated by adjusting aquifer hydraulic properties to match simulated and observed heads or head differences using the parameter-estimation program incorporated in MODFLOW-2000. Various summary, regression, and inferential statistics, in addition to comparisons of model properties and simulated head to measured properties and head, were used to evaluate the model calibration. Model parameters estimated for the steady-state calibration included hydraulic conductivity for seven of nine hydrogeologic zones and a global value of vertical anisotropy. Parameters

  14. Generation of stable, low-divergence electron beams by laser-wakefield acceleration in a steady-state-flow gas cell.

    PubMed

    Osterhoff, J; Popp, A; Major, Zs; Marx, B; Rowlands-Rees, T P; Fuchs, M; Geissler, M; Hörlein, R; Hidding, B; Becker, S; Peralta, E A; Schramm, U; Grüner, F; Habs, D; Krausz, F; Hooker, S M; Karsch, S

    2008-08-22

    Laser-driven, quasimonoenergetic electron beams of up to approximately 200 MeV in energy have been observed from steady-state-flow gas cells. These beams emitted within a low-divergence cone of 2.1+/-0.5 mrad FWHM display unprecedented shot-to-shot stability in energy (2.5% rms), pointing (1.4 mrad rms), and charge (16% rms) owing to a highly reproducible gas-density profile within the interaction volume. Laser-wakefield acceleration in gas cells of this type provides a simple and reliable source of relativistic electrons suitable for applications such as the production of extreme-ultraviolet undulator radiation. PMID:18764625

  15. Three-dimensional model simulation of steady-state ground-water flow in the Albuquerque-Belen Basin, New Mexico

    USGS Publications Warehouse

    Kernodle, J.M.; Scott, W.B.

    1986-01-01

    As part of the Southwest Alluvial Basins study, model was constructed to simulate the alluvial aquifer system underlying the Albuquerque-Belen Basin. The model was used to simulate the steady-state flow condition assumed to have existed prior to 1960. Until this time there apparently were no long-term groundwater level changes of a significant magnitude outside the immediate vicinity of Albuquerque. Therefore, the construction of a steady-state flow model of the aquifer system based on reported hydrologic data predating 1960 was justified. During construction of the steady-state model, simulated hydraulic conductivity values were adjusted, within acceptable physical limits, until a best fit between measured or reported and computed heads at 34 control wells was achieved. The modeled area was divided into six sub-areas, or zones, within each of which hydraulic conductivity was assumed to be uniform. The model consisted of six layers for each of which simulated transmissivity was proportional to the layer thickness. Adjustments to simulated hydraulic conductivity values in the different zones resulted in final values that ranged from a low of 0.25 ft/day in the west to 50 ft/day in the eastern part of the basin. The error of the simulation, defined as the absolute difference between the computed and the measured or reported water level at the corresponding point in the physical system being modeled, ranged from 0.6 ft to 36 ft, with an average of 14.6 ft for the 34 control wells. (Author 's abstract)

  16. Effects of geological inhomogeneity on high Rayleigh number steady state heat and mass transfer in fluid-saturated porous media heated from below

    SciTech Connect

    Zhao, C.; Muehlaus, H.B.; Hobbs, B.E.

    1998-03-01

    A parametric study is carried out to investigate how geological inhomogeneity affects the pore-fluid convective flow field, the temperature distribution, and the mass concentration distribution in a fluid-saturated porous medium. The related numerical results have demonstrated that (1) the effects of both medium permeability inhomogeneity and medium thermal conductivity inhomogeneity are significant on the pore-fluid convective flow and the species concentration distribution in the porous medium; (2) the effect of medium thermal conductivity inhomogeneity is dramatic on the temperature distribution in the porous medium, but the effect of medium permeability inhomogeneity on the temperature distribution may be considerable, depending on the Rayleigh number involved in the analysis; (3) if the coupling effect between pore-fluid flow and mass transport is weak, the effect of the Lewis number is negligible on the pore-fluid convective flow and temperature distribution, but it is significant on the species concentration distribution in the medium.

  17. Geotherms and Thermal Parameters from the Curie Depth Constrained Solutions of the One-Dimensional Steady-State Heat-Flow Equation: A New Method and Its Applicability

    NASA Astrophysics Data System (ADS)

    Ravat, D.; Morgan, P.; Salem, A.; Lowry, A. R.

    2014-12-01

    We have developed a new method of constraining geotherms deep in the crust. Steady-state geotherms are most commonly derived by solving the heat flow differential equation with surface boundary conditions, and do not explicitly involve temperature constraints at depth. In a new method, we incorporate the magnetic Curie depth, derived from the spectral analysis of magnetic anomaly data, as an a posteriori condition into the solution of 1-D heat-flow equation to anchor geotherms at the Curie depth. The Curie depth is derived carefully from the Defractal Spectral Method where the fractal parameter of the field is also derived. The Curie depth constraint allows determination of an additional parameter: the ratio of radiogenic heat production (A) to thermal conductivity (K). When K is observed or can be estimated from geologic knowledge, A can be calculated. Furthermore, it is possible to renormalize the derived A to the value where radiogenic elements exponentially decrease with depth (the value of A at the surface denoted as As). The renormalization permits comparison of surface observed and computed values of As which we use to validate the method. We crosschecked observed values of As and K against the ratio As/K derived from the method in New Hampshire and across the border of Wyoming and Colorado. Excluding high heat-flow locations in these regions as anomalous, the difference between the observed and computed As in all these cases is less than 6-7%. There are also regions where both the derived parameters (As and K) are not within the acceptable range for the given reduced heat flow; these are generally the regions of complex active tectonics or anomalously high or low heat-flow values where the steady-state assumption is not valid. In the mid-oceanic ridge scenario of the Red Sea, the Curie depth corresponds to the Moho and reasonable values of K yield low values of A consistent with the expectation from mafic oceanic crust. There are many areas of the world

  18. Steady-state streaming potential coefficient measurements and modelling of sandstones as a function of pore fluid salinity and pH

    NASA Astrophysics Data System (ADS)

    Walker, Emilie; Glover, Paul W. J.

    2013-04-01

    The last twenty years has seen the steady increase in the quality and quantity of streaming potential coefficient and zeta potential determinations in the laboratory. More recently (Glover et al., 2012), a model has been developed that allows both the zeta potential and streaming potential coefficient of a porous rock to be calculated theoretically. We have carried out high quality streaming potential coupling coefficient measurements using a newly designed cell with both a steady-state methodology and a new pressure transient approach. We have shown the pressure transient approach to be particularly good in providing high quality streaming potential coefficient measurements as it allows thousands of measurements to be made at different pressures to which a good linear regression can be fitted. Nevertheless, the method is approximately five times as fast as the conventional measurement approaches. Measurements of streaming potential coefficient have been carried out on seven samples of Berea, Boise and Lochaline sandstones as a function of salinity (approximately 18 salinities between 10-5 M and 2 M) and pH (approximately 11 pHs between 8 and 2). The data have been inverted to obtain the zeta potential. The streaming potential coefficient becomes greater (more negative) for fluids with lower salinities and higher pHs, which is consistent with the corpus of existing measurements. Our measurements are also consistent with the high salinity streaming potential coefficient measurements made by Vinogradov et al. (2010). The streaming potential and zeta potential tend to zero as the pH approaches the point of zero net surface charge for quartz (approximately 3), which was 2.8±0.2 in our measurements. Both the streaming potential coefficient and the zeta potential have also been modelled using the theoretical approach of Glover et al. (2012). This modelling allows the microstructural, electro-chemical and fluid properties of the saturated rock to be taken into account in

  19. Application of an Upwind High Resolution Finite-Differencing Scheme and Multigrid Method in Steady-State Incompressible Flow Simulations

    NASA Technical Reports Server (NTRS)

    Yang, Cheng I.; Guo, Yan-Hu; Liu, C.- H.

    1996-01-01

    The analysis and design of a submarine propulsor requires the ability to predict the characteristics of both laminar and turbulent flows to a higher degree of accuracy. This report presents results of certain benchmark computations based on an upwind, high-resolution, finite-differencing Navier-Stokes solver. The purpose of the computations is to evaluate the ability, the accuracy and the performance of the solver in the simulation of detailed features of viscous flows. Features of interest include flow separation and reattachment, surface pressure and skin friction distributions. Those features are particularly relevant to the propulsor analysis. Test cases with a wide range of Reynolds numbers are selected; therefore, the effects of the convective and the diffusive terms of the solver can be evaluated separately. Test cases include flows over bluff bodies, such as circular cylinders and spheres, at various low Reynolds numbers, flows over a flat plate with and without turbulence effects, and turbulent flows over axisymmetric bodies with and without propulsor effects. Finally, to enhance the iterative solution procedure, a full approximation scheme V-cycle multigrid method is implemented. Preliminary results indicate that the method significantly reduces the computational effort.

  20. Uncertainties in vertical groundwater fluxes from 1-D steady state heat transport analyses caused by heterogeneity, multidimensional flow, and climate change

    NASA Astrophysics Data System (ADS)

    Irvine, Dylan J.; Cartwright, Ian; Post, Vincent E. A.; Simmons, Craig T.; Banks, Eddie W.

    2016-02-01

    Steady state 1-D analytical solutions to estimate groundwater fluxes from temperature profiles are an attractive option because they are simple to apply, with no complex boundary or initial conditions. Steady state solutions have been applied to estimate both aquifer scale fluxes as well as to estimate groundwater discharge to streams. This study explores the sources of uncertainty in flux estimates from regional scale aquifers caused by sensor precision, aquifer heterogeneity, multidimensional flow and variations in surface temperature due to climate change. Synthetic temperature profiles were generated using 2-D groundwater flow and heat transport models with homogeneous and heterogeneous hydraulic and thermal properties. Temperature profiles were analyzed assuming temperature can be determined with a precision between 0.1°C and 0.001°C. Analysis of synthetic temperature profiles show that the Bredehoeft and Papadopulos (1965) method can provide good estimates of the mean vertical Darcy flux over the length of the temperature profile. Reliable flux estimates were obtained when the ratio of vertical to horizontal flux was as low as 0.1, and in heterogeneous media, providing that temperature at the upper boundary was constant in time. However, temporal increases in surface temperature led to over-estimation of fluxes. Overestimates increased with time since the onset of, and with the rate of surface warming. Overall, the Bredehoeft and Papadopulos (1965) method may be more robust for the conditions with constant temperature distributions than previously thought, but that transient methods that account for surface warming should be used to determine fluxes in shallow aquifers.

  1. COMPARISON OF SEVERAL METHODS FOR THE SOLUTION OF THE INVERSE PROBLEM IN TWO-DIMENSIONAL STEADY STATE GROUNDWATER FLOW MODELING.

    USGS Publications Warehouse

    Kuiper, Logan K.

    1986-01-01

    Two geostatistical approaches for the estimation of hydraulic conductivity and hydraulic head from hydraulic conductivity and hydraulic head measurements are developed for two-dimensional steady flow with sinks. For both approaches the field of the logarithm of hydraulic conductivity (log-conductivity) is represented as a random field. The first approach uses linearization of the discretized flow equations to allow the construction of the joint covariance matrix of the hydraulic head and log-conductivity measurements. It then uses maximum likelihood estimation to obtain these parameters and also a parameter associated with log-conductivity measurement error. Having found values for the parameters, it then uses kriging to form predictors for log-conductivity and hydraulic head from measured values of hydraulic conductivity and hydraulic head. The second approach uses kriging to form a parameter-dependent predictor for log-conductivity from measured hydraulic conductivity, and then uses this predicted log-conductivity placed into the discretized flow equations to compute hydraulic head. The parameters are determined by the minimization of the sum of the squares of the difference between the measured and computed hydraulic heads. A third approach simply allows the hydraulic conductivity field to be a step function with a different value for hydraulic conductivity assigned to each of several chosen regions in the two-dimensional aquifer. The three approaches are tested for hydraulic head prediction accuracy on two generated test problems, one of which is statistically generated, and also on a field problem. The third approach, despite its simplicity, performs as well or better than the other approaches.

  2. Exponential Decay of the Vorticity in the Steady-State Flow of a Viscous Liquid Past a Rotating Body

    NASA Astrophysics Data System (ADS)

    Deuring, Paul; Galdi, Giovanni P.

    2016-07-01

    Consider the flow of a Navier-Stokes liquid past a body rotating with a prescribed constant angular velocity, {ω}, and assume that the motion is steady with respect to a body-fixed frame. In this paper we show that the vorticity field associated to every "weak" solution corresponding to data of arbitrary "size" ( Leray Solution) must decay exponentially fast outside the wake region at sufficiently large distances from the body. Our result improves and generalizes in a non-trivial way famous results by Clark (Indiana Univ Math J 20:633-654, 1971) and Babenko and Vasil'ev (J Appl Math Mech 37:651-665, 1973) obtained in the case {ω=0}.

  3. Gas evolution in eruptive conduits: Combining insights from high temperature and pressure decompression experiments with steady-state flow modeling

    USGS Publications Warehouse

    Mangan, M.; Mastin, L.; Sisson, T.

    2004-01-01

    In this paper we examine the consequences of bubble nucleation mechanism on eruptive degassing of rhyolite magma. We use the results of published high temperature and pressure decompression experiments as input to a modified version of CONFLOW, the numerical model of Mastin and Ghiorso [(2000) U.S.G.S. Open-File Rep. 00-209, 53 pp.] and Mastin [(2002) Geochem. Geophys. Geosyst. 3, 10.1029/2001GC000192] for steady, two-phase flow in vertical conduits. Synthesis of the available experimental data shows that heterogeneous nucleation is triggered at ??P 120-150 MPa, and leads to disequilibrium degassing at extreme H2O supersaturation. In this latter case, nucleation is an ongoing process controlled by changing supersaturation conditions. Exponential bubble size distributions are often produced with number densities of 106-109 bubbles/cm3. Our numerical analysis adopts an end-member approach that specifically compares equilibrium degassing with delayed, disequilibrium degassing characteristic of homogeneously-nucleating systems. The disequilibrium simulations show that delaying nucleation until ??P =150 MPa restricts degassing to within ???1500 m of the surface. Fragmentation occurs at similar porosity in both the disequilibrium and equilibrium modes (???80 vol%), but at the distinct depths of ???500 m and ???2300 m, respectively. The vesiculation delay leads to higher pressures at equivalent depths in the conduit, and the mass flux and exit pressure are each higher by a factor of ???2.0. Residual water contents in the melt reaching the vent are between 0.5 and 1.0 wt%, roughly twice that of the equilibrium model. ?? 2003 Elsevier B.V. All rights reserved.

  4. Simulation of steady-state ground water and spring flow in the upper Floridan aquifer of coastal Citrus and Hernando Counties, Florida

    USGS Publications Warehouse

    Yobbi, D.K.

    1989-01-01

    A digital groundwater flow model was developed to approximate steady-state predevelopment flow conditions in the Upper Floridan aquifer of coastal west-central Florida. The aquifer is the major source of water and natural spring flow in the area. The aquifer was simulated as a one-layer system with constant vertical recharge and discharge rates. Calibrated transmissivities ranged from 8,640 sq ft/day in the northern part of the area to nearly 13,000,000 sq ft/day near large springs. Calibrated inflows were about 2,708 cu ft/sec; of this, about 2,565 cu ft/sec discharged as natural spring flow and 137 cu ft/sec discharged as upward leakage along the coast. The model was used to show how the system might respond to large manmade stresses. Withdrawal of 116 cu ft/sec from a hypothetical regional well field resulted in potentiometric-surface drawdowns ranging from 0.1 to 1.7 ft and declines of generally less than 0.2 ft along the coast. Total spring flow decreased 5%, and the effect on individual springs varied from 0.1 to 8.0%. Withdrawal of 62 cu ft/sec from the 4-sq-mi node at each spring resulted in six of seven springs to the south of the Chassahowitzka River contributing 50% of their flow to pumpage. Springs located north of the Chassahowitzka River contributed as much as 18% of their flow to pumpage. (USGS)

  5. Impact of typical steady-state conditions and transient conditions on flow ripple and its test accuracy for axial piston pump

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Hu, Min; Zhang, Junhui

    2015-09-01

    The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test

  6. A finite-element model for simulation of two-dimensional steady-state ground-water flow in confined aquifers

    USGS Publications Warehouse

    Kuniansky, E.L.

    1990-01-01

    A computer program based on the Galerkin finite-element method was developed to simulate two-dimensional steady-state ground-water flow in either isotropic or anisotropic confined aquifers. The program may also be used for unconfined aquifers of constant saturated thickness. Constant head, constant flux, and head-dependent flux boundary conditions can be specified in order to approximate a variety of natural conditions, such as a river or lake boundary, and pumping well. The computer program was developed for the preliminary simulation of ground-water flow in the Edwards-Trinity Regional aquifer system as part of the Regional Aquifer-Systems Analysis Program. Results of the program compare well to analytical solutions and simulations .from published finite-difference models. A concise discussion of the Galerkin method is presented along with a description of the program. Provided in the Supplemental Data section are a listing of the computer program, definitions of selected program variables, and several examples of data input and output used in verifying the accuracy of the program.

  7. A Mixing-Cell Model for Assessment of Contaminant Transport in the Unsaturated Zone Under Steady-State and Transient Flow Conditions

    SciTech Connect

    Arthur S. Rood

    2004-11-01

    A one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions was developed from the principles of the mixing-cell model. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations (ODE) describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes included explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. The system of ODEs was solved using a forth-order Runge-Kutta algorithm coupled with adaptive step size control. Computer run times for transient flow and solute transport were typically several seconds on a 2-GHz Intel Pentium IV® desktop computer. The model was benchmarked against analytical solutions and finite-element approximations to the partial differential equations (PDE) describing unsaturated flow and transport. Differences between the maximum solute flux estimated by the mixing-cell model and the PDE models were typically less than 2%.

  8. Computer simulation of the steady-state flow system of the Tertiary limestone (Floridan) aquifer system in east-central Florida

    USGS Publications Warehouse

    Tibbals, C.H.

    1981-01-01

    The predevelopment steady-state ground-water flow system for 13 ,700 square miles of the Tertiary limestone aquifer system (known as the Florida aquifer in Florida) in east-central Florida is simulated by means of a digital computer model. The model results indicate that about 1,900 cubic feet per second recharges the aquifer as downward leakage from the surficial aquifer. The average recharge rate where recharge actually occurs (approximately 6,550 square miles) is about 4 inches per year. The maximum recharge rate is about 14 inches per year. An additional 21 cubic feet per second is recharged to the modeled area of the aquifer by means of lateral boundary inflow along the northeast boundary. The Floridan aquifer system, as simulated, discharges 1,300 cubic feet per second as springflow, 540 cubic feet per second as diffuse upward leakage to the surficial aquifer in an area of approximately 7,150 square miles and 81 cubic feet per second as lateral boundary outflow to the southwest and to the east. The average transmissivity of the upper unit of the aquifer, as simulated, is about 120,000 square feet per day while that for the lower unit is about 60,000 square feet per day. (USGS)

  9. Gravity currents in a two-layer stratified ambient: The theory for the steady-state (front condition) and lock-released flows, and experimental confirmations

    NASA Astrophysics Data System (ADS)

    Flynn, M. R.; Ungarish, M.; Tan, A. W.

    2012-02-01

    We consider the propagation of a gravity current of density ρc at the bottom of a two-layer stratified ambient in a horizontal channel of height H, in the high-Reynolds number Boussinesq domain. The study emphasizes theoretical-analytical modeling, however, experimental and Navier-Stokes simulation data are also presented and their comparison with theory is discussed. The stratification parameters are S = (ρ1 - ρ2)/(ρc - ρ2) where ρ is the fluid density, and φ = h1R/H where h1R is the (unperturbed) ambient interface height. Here, 1 and 2 denote, respectively, the lower and upper layer and c denotes the gravity current. The reduced gravity is defined as g' = (ρc/ρ2 - 1)g. Rigorous results are obtained for the steady-state analogue of the classical problem of Benjamin [J. Fluid Mech. 31, 209 (1968)], 10.1017/S0022112068000133, in which the half-infinite gravity current has thickness h and speed U. We thereby demonstrate that the Froude number F= U/(g^' } h)^{1/2} is a function of a = h/H, S, and φ. In general, two solutions (or modes) may be realized. Issues of energy dissipation, sub- vs. supercriticality with respect to long internal waves and, more generally, the influence of upstream-propagating disturbances are discussed. For a gravity current released from a lock of height h0 and length x0, we derive an approximate shallow-water model and show that the motion is in this case governed by Ξ = H/h0, S, and φ. Although the shallow-water model neglects motion in the ambient layers and ignores the impact of propagation on stratification, the gravity current front speed in the slumping stage is in excellent agreement with measured data. Our theoretical solutions are consistent with previous results (in particular, Holyer and Huppert [J. Fluid Mech. 100, 739 (1980)] and Tan et al. [Environ. Fluid Mech. 11, 203 (2011)]), but have the advantages of being (i) derived without reliance on adjustable constants and ad hoc closures; (ii) applicable to a

  10. Steady State Dense Gas Dispersion

    Energy Science and Technology Software Center (ESTSC)

    1995-03-01

    SLAB-LLNL is a steady-state one-dimensional program which calculates the atmospheric dispersion of a heavier than air gas that is continuously released at ground level. The model is based on the steady-state crosswind-averaged conservation equations of species, mass, energy, and momentum. It uses the air entrainment concept to account for the turbulent mixing of the gas cloud with the surrounding atmosphere and similarity profiles to determine the crosswind dependence.

  11. Hydrogeology and steady-state numerical simulation of groundwater flow in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    USGS Publications Warehouse

    Arnold, L.R.

    2010-01-01

    The Lost Creek Designated Ground Water Basin (Lost Creek basin) is an important alluvial aquifer for irrigation, public supply, and domestic water uses in northeastern Colorado. Beginning in 2005, the U.S. Geological Survey, in cooperation with the Lost Creek Ground Water Management District and the Colorado Water Conservation Board, collected hydrologic data and constructed a steady-state numerical groundwater flow model of the Lost Creek basin. The model builds upon the work of previous investigators to provide an updated tool for simulating the potential effects of various hydrologic stresses on groundwater flow and evaluating possible aquifer-management strategies. As part of model development, the thickness and extent of regolith sediments in the basin were mapped, and data were collected concerning aquifer recharge beneath native grassland, nonirrigated agricultural fields, irrigated agricultural fields, and ephemeral stream channels. The thickness and extent of regolith in the Lost Creek basin indicate the presence of a 2- to 7-mile-wide buried paleovalley that extends along the Lost Creek basin from south to north, where it joins the alluvial valley of the South Platte River valley. Regolith that fills the paleovalley is as much as about 190 ft thick. Average annual recharge from infiltration of precipitation on native grassland and nonirrigated agricultural fields was estimated by using the chloride mass-balance method to range from 0.1 to 0.6 inch, which represents about 1-4 percent of long-term average precipitation. Average annual recharge from infiltration of ephemeral streamflow was estimated by using apparent downward velocities of chloride peaks to range from 5.7 to 8.2 inches. Average annual recharge beneath irrigated agricultural fields was estimated by using passive-wick lysimeters and a water-balance approach to range from 0 to 11.3 inches, depending on irrigation method, soil type, crop type, and the net quantity of irrigation water applied

  12. Episodic fluid flow in the Nankai accretionary complex: Timescale, geochemistry, flow rates, and fluid budget

    USGS Publications Warehouse

    Saffer, D.M.; Bekins, B.A.

    1998-01-01

    Down-hole geochemical anomalies encountered in active accretionary systems can be used to constrain the timing, rates, and localization of fluid flow. Here we combine a coupled flow and solute transport model with a kinetic model for smectite dehydration to better understand and quantify fluid flow in the Nankai accretionary complex offshore of Japan. Compaction of sediments and clay dehydration provide fluid sources which drive the model flow system. We explicitly include the consolidation rate of underthrust sediments in our calculations to evaluate the impact that variations in this unknown quantity have on pressure and chloride distribution. Sensitivity analysis of steady state pressure solutions constrains bulk and flow conduit permeabilities. Steady state simulations with 30% smectite in the incoming sedimentary sequence result in minimum chloride concentrations at site 808 of 550 mM, but measured chlorinity is as low as 447 mM. We simulate the transient effects of hydrofracture or a strain event by assuming an instantaneous permeability increase of 3-4 orders of magnitude along a flow conduit (in this case the de??collement), using steady state results as initial conditions. Transient results with an increase in de??collement permeability from 10-16 m2 to 10-13 m2 and 20% smectite reproduce the observed chloride profile at site 808 after 80-160 kyr. Modeled chloride concentrations are highly sensitive to the consolidation rate of underthrust sediments, such that rapid compaction of underthrust material leads to increased freshening. Pressures within the de??collement during transient simulations rise rapidly to a significant fraction of lithostatic and remain high for at least 160 kyr, providing a mechanism for maintaining high permeability. Flow rates at the deformation front for transient simulations are in good agreement with direct measurements, but steady state flow rates are 2-3 orders of magnitude smaller than observed. Fluid budget calculations

  13. NASA Lewis Steady-State Heat Pipe Code Architecture

    NASA Technical Reports Server (NTRS)

    Mi, Ye; Tower, Leonard K.

    2013-01-01

    NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given

  14. Staffing in a Steady State.

    ERIC Educational Resources Information Center

    Owens, J. A.

    1982-01-01

    Options for faculty utilization in a steady state are examined, with consideration for their economy or ability to increase turnover or flexibility: early retirement, part retirement, retraining, exchange with other institutions or industry, and fixed-term appointments or lecturer positions. (MSE)

  15. Hemodynamic analysis of renal artery stenosis using computational fluid dynamics technology based on unenhanced steady-state free precession magnetic resonance angiography: preliminary results.

    PubMed

    Zhang, Weisheng; Qian, Yi; Lin, Jiang; Lv, Peng; Karunanithi, Kaavya; Zeng, Mengsu

    2014-02-01

    This study aims to evaluate the feasibility of computational fluid dynamics (CFD) technology in analysis of renal artery stenosis (RAS) based on unenhanced MR angiography (MRA). Thirty hypertensive patients with unilateral RAS, and 10 normal volunteers, underwent unenhanced MRA on a 1.5 T MR scanner. 12 of 30 patients also underwent ultrasound (US) to detect peak systolic velocity. The patient-specific CFD based on MRA was carried out thereafter. Stenosis grades and hemodynamic variables at the stenosis of main renal artery, including pressure difference (PD), velocity and mass flow rate (MFR), were analysed. And the hemodynamic indices of stenoses were compared with the parameters of normal renal arteries and available US velocity profile. High intraclass correlation coefficient (value 0.995) and no significant difference (p > 0.05) was shown between maximum velocity of CFD and peak systolic velocity of US in 12 patients. For normal renal arteries, the average PD, velocity and MFR were all in the reported normal physiological range. However, for stenotic arteries, the translesional PD and velocity of main renal arteries increased with the severity of stenotic degrees, while the MFR decreased. 50 % diameter stenosis was the threshold at which all three hemodynamic parameters experienced significant changes (p < 0.01). This preliminary study shows that unenhanced-MRA-based CFD can be utilized to noninvasively analyse hemodynamic parameters of RAS. The acquired variables may provide meaningful information regarding stratification of the stenosis and further therapeutic treatment. PMID:24318538

  16. Mechanisms of steady-state nucleate pool boiling in microgravity.

    PubMed

    Lee, Ho Sung

    2002-10-01

    Research on nucleate pool boiling in microgravity using R-113 as a working fluid was conducted using a five-second drop tower and five space flights at a/g approximately 10(-4). A 19 x 38-mm flat gold film heater was used that allowed cine camera viewing both from the side and the bottom of the heater. It was concluded that for both subcooled and saturated liquids long-term steady-state pool boiling can take place in reduced gravity, but the effectiveness of the boiling heat transfer appears to depend on the heater geometry and on the size and the properties of fluids. Heat transfer is enhanced at lower heat flux levels and the CHF increases as the subcooling increases. It was found that several mechanisms are responsible for the steady-state nucleate pool boiling in the absence of buoyancy. The mechanisms considered here are defined and summarized as bubble removal, bubble coalescence, thermocapillary flow, bubble migration, and latent heat transport. PMID:12446341

  17. Documentation of a steady-state saltwater-intrusion model for three-dimensional ground-water flow, and user's guide

    USGS Publications Warehouse

    Sapik, D.B.

    1988-01-01

    A finite-difference model that simulates three-dimensional flow of groundwater was modified to simulate steady flow of freshwater in a multiple-aquifer system containing freshwater and static saltwater. The two fluids are assumed to be immiscible, with constant but different densities, and are separated by a sharp interface. The interface position computed by the model for a test problem was in good agreement with the analytic solution for this problem. The model was developed to simulate seawater intrusion in coastal aquifers, but it could be used to simulate flow in any aquifer system that is bounded by saltwater. This report describes modifications made to the existing numerical model and the method of locating an interface , and contains a user 's guide for the model. (USGS)

  18. Microwave fluid flow meter

    DOEpatents

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  19. Steady states and stability in metabolic networks without regulation.

    PubMed

    Ivanov, Oleksandr; van der Schaft, Arjan; Weissing, Franz J

    2016-07-21

    Metabolic networks are often extremely complex. Despite intensive efforts many details of these networks, e.g., exact kinetic rates and parameters of metabolic reactions, are not known, making it difficult to derive their properties. Considerable effort has been made to develop theory about properties of steady states in metabolic networks that are valid for any values of parameters. General results on uniqueness of steady states and their stability have been derived with specific assumptions on reaction kinetics, stoichiometry and network topology. For example, deep results have been obtained under the assumptions of mass-action reaction kinetics, continuous flow stirred tank reactors (CFSTR), concordant reaction networks and others. Nevertheless, a general theory about properties of steady states in metabolic networks is still missing. Here we make a step further in the quest for such a theory. Specifically, we study properties of steady states in metabolic networks with monotonic kinetics in relation to their stoichiometry (simple and general) and the number of metabolites participating in every reaction (single or many). Our approach is based on the investigation of properties of the Jacobian matrix. We show that stoichiometry, network topology, and the number of metabolites that participate in every reaction have a large influence on the number of steady states and their stability in metabolic networks. Specifically, metabolic networks with single-substrate-single-product reactions have disconnected steady states, whereas in metabolic networks with multiple-substrates-multiple-product reactions manifolds of steady states arise. Metabolic networks with simple stoichiometry have either a unique globally asymptotically stable steady state or asymptotically stable manifolds of steady states. In metabolic networks with general stoichiometry the steady states are not always stable and we provide conditions for their stability. In order to demonstrate the biological

  20. Steady state phreatic surfaces in sloping aquifers

    NASA Astrophysics Data System (ADS)

    LoáIciga, Hugo A.

    2005-08-01

    Steady state groundwater flow driven by constant recharge in an unconfined aquifer overlying sloping bedrock is shown to be represented, using the Dupuit approximation, by an ordinary differential equation of the Abel type y(x) · y'(x) + a · y(x) + x = 0, whose analytical solution is derived in this work. This article first investigates the case of zero saturated thickness at the upstream boundary, a flow system reminiscent of perched groundwater created by percolation of precipitation or irrigation in a sloping aquifer fully draining at its downstream boundary. A variant of this flow system occurs when the phreatic surface mounds and produces groundwater discharge toward the upstream boundary. This variant is a generalization of the classical groundwater flow problem involving two lakes connected by an aquifer, the latter being on sloping terrain in this instance. Analytical solutions for the phreatic surface's steady state geometry are derived for the case of monotonically declining hydraulic head as well as for the case of a mounded phreatic surface. These solutions are of practical interest in drainage studies, slope stability, and runoff formation investigations. It is shown that the flow factor a = -? tan β (where K, N, and tan β are the hydraulic conductivity, vertical recharge, and aquifer slope, respectively) has a commanding role on the phreatic surface's solutions. Two computational examples illustrate the implementation of this article's results.

  1. Steady state phreatic surfaces in sloping aquifers

    NASA Astrophysics Data System (ADS)

    Loáiciga, Hugo A.

    2005-08-01

    Steady state groundwater flow driven by constant recharge in an unconfined aquifer overlying sloping bedrock is shown to be represented, using the Dupuit approximation, by an ordinary differential equation of the Abel type y(x) . y'(x) + a . y(x) + x = 0, whose analytical solution is derived in this work. This article first investigates the case of zero saturated thickness at the upstream boundary, a flow system reminiscent of perched groundwater created by percolation of precipitation or irrigation in a sloping aquifer fully draining at its downstream boundary. A variant of this flow system occurs when the phreatic surface mounds and produces groundwater discharge toward the upstream boundary. This variant is a generalization of the classical groundwater flow problem involving two lakes connected by an aquifer, the latter being on sloping terrain in this instance. Analytical solutions for the phreatic surface's steady state geometry are derived for the case of monotonically declining hydraulic head as well as for the case of a mounded phreatic surface. These solutions are of practical interest in drainage studies, slope stability, and runoff formation investigations. It is shown that the flow factor a = -$\\sqrt{{\\rm K}/{\\rm N} tan β (where K, N, and tan β are the hydraulic conductivity, vertical recharge, and aquifer slope, respectively) has a commanding role on the phreatic surface's solutions. Two computational examples illustrate the implementation of this article's results.

  2. Geophysical fluid flow experiment

    NASA Technical Reports Server (NTRS)

    Broome, B. G.; Fichtl, G.; Fowlis, W.

    1979-01-01

    The essential fluid flow processes associated with the solar and Jovian atmospheres will be examined in a laboratory experiment scheduled for performance on Spacelab Missions One and Three. The experimental instrumentation required to generate and to record convective fluid flow is described. Details of the optical system configuration, the lens design, and the optical coatings are described. Measurement of thermal gradient fields by schlieren techniques and measurement of fluid flow velocity fields by photochromic dye tracers is achieved with a common optical system which utilizes photographic film for data recording. Generation of the photochromic dye tracers is described, and data annotation of experimental parameters on the film record is discussed.

  3. Shock waves, rarefaction waves, and nonequilibrium steady states in quantum critical systems

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew; Schalm, Koenraad; Doyon, Benjamin; Bhaseen, M. J.

    2016-07-01

    We reexamine the emergence of a universal nonequilibrium steady state following a local quench between quantum critical heat baths in spatial dimensions greater than one. We show that energy transport proceeds by the formation of an instantaneous shock wave and a broadening rarefaction wave on either side of the interface, and not by two shock waves as previously proposed. For small temperature differences the universal steady state energy currents of the two-shock and rarefaction-shock solutions coincide. Over a broad range of parameters, the difference in the energy flow across the interface between these two solutions is at the level of 2%. The properties of the energy flow remain fully universal and independent of the microscopic theory. We briefly discuss the width of the shock wave in a viscous fluid, the effects of momentum relaxation, and the generalization to charged fluids.

  4. Pressure drop and pumping power for fluid flow through round tubes

    NASA Technical Reports Server (NTRS)

    Jelinek, D.

    1973-01-01

    Program, written for Hewlett-Packard 9100A electronic desk computer provides convenient and immediate solution to problem of calculating pressure drop and fluid pumping power for flow through round tubes. Program was designed specifically for steady-state analysis and assumes laminar flow.

  5. Inconsistencies in steady state thermodynamics

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald; Motai, Ricardo

    2014-03-01

    We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic lattice gases, we ask whether consistent definitions of an effective chemical potential μ, and an effective temperature Te, are possible. These quantities are determined via zero-flux conditions of particles and energy between the driven system and a reservoir. For the models considered here, the fluxes are given in terms of certain stationary average densities, eliminating the need to perturb the system by actually exchanging particles; μ and Te are thereby obtained via open-circuit measurements, using a virtual reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven lattice gas, both μ and Te need to be defined. We show analytically that the zeroth law is violated, and determine the size of the violations numerically. Our results highlight a fundamental inconsistency in the extension of thermodynamics to nonequilibrium steady states. Research supported by CNPq, Brazil.

  6. Distant downstream steady-state flow studies of a mechanical heart valve: PIV study of secondary flow in a model aortic arch

    NASA Astrophysics Data System (ADS)

    Fix, Brandon R.; Popma, Christopher J.; Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    Each year, hundreds of thousands of aortic and mitral heart valves are replaced with prosthetic valves. In efforts to develop a valve that does not require lifelong anticoagulation therapy, previous experimental research has been devoted to analyzing the hemodynamics of various heart valve designs, limited to the flow up to only 2 diameters downstream of the valve. Two-component, two-dimensional (2C-2D) particle image velocimetry (PIV) was used in this study to examine secondary flow velocity fields in a curved tube modeling an aorta at five locations (0-, 45-, 90-, 135-, 180-degrees). A bileaflet valve, opened to 30-, 45-, and 59-degrees, and one (no-valve) baseline condition were examined under three steady flow inflows (Re = 218, 429, 634). In particular, variations in the two-dimensional turbulent shear stresses at each cross sectional plane were analyzed. The results suggest that bileaflet valves in the aortic model produce significant turbulence and vorticity up to 5.5 downstream diameters, i.e. up to the 90-degrees location. Expanding this research towards aortic heart valve hemodynamics highlights a need for additional studies extending beyond the typical few diameters downstream to fully characterize valvular function. Supported by the NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  7. Irreversible processes at nonequilibrium steady states

    PubMed Central

    Fox, Ronald Forrest

    1979-01-01

    It is shown that a Liapunov criterion exists for the stability of nonequilibrium steady states. This criterion is based upon the fluctuation-dissipation relation, as was first pointed out by Keizer. At steady states, the Liapunov function is constructed from the covariance matrix for the thermodynamic variables. Unlike the situation around equilibrium, at steady states the covariance matrix and the “excess entropy” matrix are not equivalent. The excess entropy, which serves as the Liapunov function around equilibrium, does not work in this capacity at steady states. Keizer's Liapunov function must be viewed as the first correct candidate for a proper Liapunov function for steady states. PMID:16592649

  8. Steady-state CO/sub 2/ laser model

    SciTech Connect

    Scott, M.W.; Myers, G.D.

    1984-09-01

    A steady-state CO/sub 2/ lase model is reported which can be used to predict and evaluate the performance of cw slow-flow and no-flow CO/sub 2/ lasers. Traditional CO/sub 2/ laser models require the solution of several simultaneous differential equations and can be used to model pulsed and fast-flow lasers in addition to cw and slow-flow devices. The model reported here is computationally simpler, requiring only a routine to solve one equation in one unknown, but is only useful for lasers which operate in the steady state.

  9. Non-equilibrium steady state in the hydro regime

    NASA Astrophysics Data System (ADS)

    Pourhasan, Razieh

    2016-02-01

    We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P=P({E}) . Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.

  10. Hydrogeology of well-field areas near Tampa, Florida; Phase 2, development and documentation of a quasi-three-dimensional finite-difference model for simulation of steady-state ground-water flow

    USGS Publications Warehouse

    Hutchinson, C.B.

    1984-01-01

    This report describes a quasi-three-dimensional finite-difference model for simulation of steady-state ground-water flow in the Floridan aquifer over a 932-square-mile area that contains 10 municipal well fields. The over-lying surficial aquifer contains a water table and is coupled to the Floridan aquifer by leakage term that represents flow through a confining layer separating the two aquifers. Under the steady-state condition, all storage terms are set to zero. Use of the head-controlled flux condition allows simulated head and flow changes to occur in the Floridan aquifer at the model boundaries. Procedures used to calibrate the model, test its sensitivity to input-parameter errors, and validate its accuracy for predictive purposes are described. Also included are attachments that describe setting up and running the model. Example model-interrogation runs show anticipated drawdowns under high, average, and low recharge conditions with 10 well fields pumping simultaneously at the maximum annual permitted rates totaling 186.9 million gallons per day. (USGS)

  11. Hydrogeology of well-field areas near Tampa, Florida; Phase I, development and documentation of a two-dimensional finite-difference model for simulation of steady-state ground-water flow

    USGS Publications Warehouse

    Hutchinson, C.B.; Johnson, Dale M.; Gerhart, James M.

    1981-01-01

    A two-dimensional finite-difference model was developed for simulation of steady-state ground-water flow in the Floridan aquifer throughout a 932-square-mile area, which contains nine municipal well fields. The overlying surficial aquifer contains a constant-head water table and is coupled to the Floridan aquifer by a leakage term that represents flow through a confining layer separating the two aquifers. Under the steady-state condition, all storage terms are set to zero. Utilization of the head-controlled flux condition allows head and flow to vary at the model-grid boundaries. Procedures are described to calibrate the model, test its sensitivity to input-parameter errors, and verify its accuracy for predictive purposes. Also included are attachments that describe setting up and running the model. An example model-interrogation run shows anticipated drawdowns that should result from pumping at the newly constructed Cross Bar Ranch and Morris Bridge well fields. (USGS)

  12. High power steady state MPD thrusters

    NASA Astrophysics Data System (ADS)

    Auweter-Kurtz, Monika; Habiger, Harald; Kurtz, Helmut; Schrade, Herbert; Sleziona, Cristian

    1993-04-01

    At the Institut fuer Raumfahrtsysteme (IRS) rotation symmetric magnetoplasmadynamic thrusters with self induced magnetic fields are investigated at high current levels in a steady state operation mode. MPD thrusters with different geometrics were compared, and the influence of mass flow rate and power input on the operating conditions of the thrusters explored. By optical and probe measurements, a systematic investigation of the plasma plume has been started. The investigation of the various instabilities of the arc and the plasma flow appearing at high power levels was continued. The computer code development for the geometry optimization of continuous self-field MPD thrusters, running with argon, was modified by considering higher degrees of ionization, which showed better agreement with the experiment.

  13. Magnetically stimulated fluid flow patterns

    ScienceCinema

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  14. Magnetically stimulated fluid flow patterns

    SciTech Connect

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  15. Venusian hydrology: Steady state reconsidered

    NASA Technical Reports Server (NTRS)

    Grinspoon, David H.

    1992-01-01

    In 1987, Grinspoon proposed that the data on hydrogen abundance, isotopic composition, and escape rate were consistent with the hypothesis that water on Venus might be in steady state rather than monotonic decline since the dawn of time. This conclusion was partially based on a derived water lifetime against nonthermal escape of approximately 10(exp 8) yr. De Bergh et al., preferring the earlier Pioneer Venus value of 200 ppm water to the significantly lower value detected by Bezard et al., found H2O lifetimes of greater than 10(exp 9) yr. Donahue and Hodges derived H2O lifetimes of 0.4-5 x 10 (exp 9) yr. Both these analyses used estimates of H escape flux between 0.4 x 10(exp 7) and 1 x 10(exp 7) cm(exp -2)s(exp -1) from Rodriguez et al. Yet in more recent Monte Carlo modeling, Hodges and Tinsley found an escape flux due to charge exchange with hot H(+) of 2.8 x 10(exp 7) cm(exp -2)s(exp -1). McElroy et al. estimated an escape flux of 8 x 10(exp 6) cm(exp -2)s(exp -1) from collisions with hot O produced by dissociative recombination of O2(+). Brace et al. estimated an escape flux of 5 x 10(exp 6) cm(exp -2)s(exp -1) from ion escape from the ionotail of Venus. The combined estimated escape flux from all these processes is approximately 4 x 10(exp 7) cm(exp -2)s(exp -1). The most sophisticated analysis to date of near-IR radiation from Venus' nightside reveals a water mixing ratio of approximately 30 ppm, suggesting a lifetime against escape for water of less than 10(exp 8) yr. Large uncertainties remain in these quantities, yet the data point toward a steady state. Further evaluation of these uncertainties, and new evolutionary modeling incorporating estimates of the outgassing rate from post-Magellan estimates of the volcanic resurfacing rate are presented.

  16. Three-dimensional hydrogeologic framework model for use with a steady-state numerical ground-water flow model of the Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Faunt, Claudia C.; D'Agnese, Frank A.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers an area of about 100,000 square kilometers from latitude 35? to 38?15' North to longitude 115? to 118? West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydrogeologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross sections; (3) borehole information, and (4

  17. Plastic Models Designed to Produce Large Height-to-Length Ratio Steady-State Planar and Axisymmetric (Radial) Viscous Liquid Laminar Flow Gravity Currents

    ERIC Educational Resources Information Center

    Blanck, Harvey F.

    2012-01-01

    Naturally occurring gravity currents include events such as air flowing through an open front door, a volcanic eruption's pyroclastic flow down a mountainside, and the spread of the Bhopal disaster's methyl isocyanate gas. Gravity currents typically have a small height-to-distance ratio. Plastic models were designed and constructed with a…

  18. Fluid flow and chemical reaction kinetics in metamorphic systems

    SciTech Connect

    Lasaga, A.C.; Rye, D.M. )

    1993-05-01

    The treatment and effects of chemical reaction kinetics during metamorphism are developed along with the incorporation of fluid flow, diffusion, and thermal evolution. The interplay of fluid flow and surface reaction rates, the distinction between steady state and equilibrium, and the possible overstepping of metamorphic reactions are discussed using a simple analytic model. This model serves as an introduction to the second part of the paper, which develops a reaction model that solves the coupled temperature-fluid flow-chemical composition differential equations relevant to metamorphic processes. Consideration of stable isotopic evidence requires that such a kinetic model be considered for the chemical evolution of a metamorphic aureole. A general numerical scheme is discussed to handle the solution of the model. The results of this kinetic model allow us to reach several important conclusions regarding the factors controlling the chemical evolution of mineral assemblages during a metamorphic event. 41 refs., 19 figs., 5 tabs.

  19. Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sokhan, Vladimir P.; Nicholson, David; Quirke, Nicholas

    2002-11-01

    Steady-state Poiseuille flow of a simple fluid in carbon nanopores under a gravitylike force is simulated using a realistic empirical many-body potential model for carbon. Building on our previous study of slit carbon nanopores we show that fluid flow in a nanotube is also characterized by a large slip length. By analyzing temporal profiles of the velocity components of particles colliding with the wall we obtain values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall and, for the first time, propose slip boundary conditions for smooth continuum surfaces such that they are equivalent in adsorption, diffusion, and fluid flow properties to fully dynamic atomistic models.

  20. Steady State Tokamak Equilibria without Current Drive

    SciTech Connect

    Shaing, K.C.; Aydemir, A.Y.; Lin-Liu, Y.R.; Miller, R.L.

    1997-11-01

    Steady state tokamak equilibria without current drive are found. This is made possible by including the potato bootstrap current close to the magnetic axis. Tokamaks with this class of equilibria do not need seed current or current drive, and are intrinsically steady state. {copyright} {ital 1997} {ital The American Physical Society}

  1. A model for the simulation of flow of variable-density ground water in three dimensions under steady-state conditions

    USGS Publications Warehouse

    Weiss, Emanuel

    1982-01-01

    A computer program has been developed as part of the U.S. Geological Survey's national program of Regional Aquifer System Analysis (RASA) that generates input to ground-water flow models to enable them to simulate variable-density ground-water flow. Information required for the program's operation is: aquifer elevation, thickness, and ground-water density. Included in the report is a computer program for calculating ground-water density from aquifer depth, temperature, and dissolved solids concentration. The 60-page report describes the theoretical development and documents two FORTRAN programs used to generate the necessary flow-model input. An example for a symmetrical basin is fully worked out.

  2. Steady state thermal radiation analysis between the TOPAZ-II radiator and a heat exchanger

    SciTech Connect

    Maveety, J.G.; Wold, S.K.

    1995-12-31

    In this study the authors investigate the feasibility and efficiency of coupling a single-pass heat exchanger to the TOPAZ-II space power system operating at steady state conditions. A first and second law analysis was performed in order to determine the optimal operating conditions which minimize the pumping power and maximize the flow exergy of the working fluid. The results of this study show that (1) the space power system is basically unaffected by the addition of this heat exchanger and (2) as much as 60% of the availability is destroyed by irreversibilities while operating at optimal flow conditions.

  3. Optical discharge with absorption of repetitive CO{sub 2} laser pulses in supersonic air flow: wave structure and condition of a quasi-steady state

    SciTech Connect

    Bobarykina, T A; Malov, A N; Orishich, A M; Chirkashenko, V F; Yakovlev, V I

    2014-09-30

    We report a study of the wave structure formed by an optical discharge plasma upon the absorption of repetitively pulsed CO{sub 2} laser radiation in a supersonic (M = 1.36) air flow. Experimental data are presented on the configuration of the head shock wave and the geometry and characteristic dimensions of breakdown regions behind a laser plasma pulsating in the flow at a frequency of up to 150 kHz. The data are compared to calculation in a point explosion model with allowance for counterpressure, which makes it possible to identify the relationship between laser radiation and supersonic flow parameters that ensures quasisteady- state energy delivery and is necessary for extending the possibilities of controlling the structure of supersonic flows. (interaction of laser radiation with matter)

  4. Estimation of steady-state and transcient power distributions for the RELAP analyses of the 1963 loss-of-flow and loss-of-pressure tests at BR2.

    SciTech Connect

    Dionne, B.; Tzanos, C. P.

    2011-05-23

    To support the safety analyses required for the conversion of the Belgian Reactor 2 (BR2) from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, the simulation of a number of loss-of-flow tests, with or without loss of pressure, has been undertaken. These tests were performed at BR2 in 1963 and used instrumented fuel assemblies (FAs) with thermocouples (TC) imbedded in the cladding as well as probes to measure the FAs power on the basis of their coolant temperature rise. The availability of experimental data for these tests offers an opportunity to better establish the credibility of the RELAP5-3D model and methodology used in the conversion analysis. In order to support the HEU to LEU conversion safety analyses of the BR2 reactor, RELAP simulations of a number of loss-of-flow/loss-of-pressure tests have been undertaken. Preliminary analyses showed that the conservative power distributions used historically in the BR2 RELAP model resulted in a significant overestimation of the peak cladding temperature during the transient. Therefore, it was concluded that better estimates of the steady-state and decay power distributions were needed to accurately predict the cladding temperatures measured during the tests and establish the credibility of the RELAP model and methodology. The new approach ('best estimate' methodology) uses the MCNP5, ORIGEN-2 and BERYL codes to obtain steady-state and decay power distributions for the BR2 core during the tests A/400/1, C/600/3 and F/400/1. This methodology can be easily extended to simulate any BR2 core configuration. Comparisons with measured peak cladding temperatures showed a much better agreement when power distributions obtained with the new methodology are used.

  5. Conjugate Compressible Fluid Flow and Heat Transfer in Ducts

    NASA Technical Reports Server (NTRS)

    Cross, M. F.

    2011-01-01

    A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.

  6. A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd

    1998-01-01

    This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.

  7. CONTROL OF CRYPTOSPORIDIUM OOCYSTS BY STEADY-STATE CONVENTIONAL TREATMENT

    EPA Science Inventory

    Pilot-scale experiments have been performed to assess the ability of conventional treatment to control Cryptosporidium oocysts under steady-state conditions. The work was performed with a pilot plant that was designed to minimize flow rates and, as a result, the number of oocyst...

  8. A steady state solution for ditch drainage problem with special reference to seepage face and unsaturated zone flow contribution: Derivation of a new drainage spacing eqaution

    NASA Astrophysics Data System (ADS)

    Yousfi, Ammar; Mechergui, Mohammed

    2016-04-01

    The seepage face is an important feature of the drainage process when recharge occurs to a permeable region with lateral outlets. Examples of the formation of a seepage face above the downstream water level include agricultural land drained by ditches. Flow problem to these drains has been investigated extensively by many researchers (e.g. Rubin, 1968; Hornberger et al. 1969; Verma and Brutsaert, 1970; Gureghian and Youngs, 1975; Vauclin et al., 1975; Skaggs and Tang, 1976; Youngs, 1990; Gureghian, 1981; Dere, 2000; Rushton and Youngs, 2010; Youngs, 2012; Castro-Orgaz et al., 2012) and may be tackled either using variably saturated flow models, or the complete 2-D solution of Laplace equation, or using the Dupuit-Forchheimer approximation; the most widely accepted methods to obtain analytical solutions for unconfined drainage problems. However, the investigation reported by Clement et al. (1996) suggest that accounting for the seepage face alone, as in the fully saturated flow model, does not improve the discharge estimate because of disregarding flow the unsaturated zone flow contribution. This assumption can induce errors in the location of the water table surface and results in an underestimation of the seepage face and the net discharge (e.g. Skaggs and Tang, 1976; Vauclin et al., 1979; Clement et al., 1996). The importance of the flow in the unsaturated zone has been highlighted by many authors on the basis of laboratory experiments and/or numerical experimentations (e.g. Rubin, 1968; Verma and Brutsaert, 1970; Todsen, 1973; Vauclin et al., 1979; Ahmad et al., 1993; Anguela, 2004; Luthin and Day, 1955; Shamsai and Narasimhan, 1991; Wise et al., 1994; Clement et al., 1996; Boufadel et al., 1999; Romano et al., 1999; Kao et al., 2001; Kao, 2002). These studies demonstrate the failure of fully saturated flow models and suggested that the error made when using these models not only depends on soil properties but also on the infiltration rate as reported by Kao et

  9. Comparison of viscous-shock-layer solutions by time-asymptotic and steady-state methods. [flow distribution around a Jupiter entry probe

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Moss, J. N.; Simmonds, A. L.

    1982-01-01

    Two flow-field codes employing the time- and space-marching numerical techniques were evaluated. Both methods were used to analyze the flow field around a massively blown Jupiter entry probe under perfect-gas conditions. In order to obtain a direct point-by-point comparison, the computations were made by using identical grids and turbulence models. For the same degree of accuracy, the space-marching scheme takes much less time as compared to the time-marching method and would appear to provide accurate results for the problems with nonequilibrium chemistry, free from the effect of local differences in time on the final solution which is inherent in time-marching methods. With the time-marching method, however, the solutions are obtainable for the realistic entry probe shapes with massive or uniform surface blowing rates; whereas, with the space-marching technique, it is difficult to obtain converged solutions for such flow conditions. The choice of the numerical method is, therefore, problem dependent. Both methods give equally good results for the cases where results are compared with experimental data.

  10. Hydromechanical Modeling of Fluid Flow in the Lower Crust

    NASA Astrophysics Data System (ADS)

    Connolly, J.

    2011-12-01

    The lower crust lies within an ambiguous rheological regime between the brittle upper crust and ductile sub-lithospheric mantle. This ambiguity has allowed two schools of thought to develop concerning the nature of fluid flow in the lower crust. The classical school holds that lower crustal rocks are inviscid and that any fluid generated by metamorphic devolatilization is squeezed out of rocks as rapidly as it is produced. According to this school, permeability is a dynamic property and fluid flow is upward. In contrast, the modern school uses concepts from upper crustal hydrology that presume implicitly, if not explicitly, that rocks are rigid or, at most, brittle. For the modern school, the details of crustal permeability determine fluid flow and as these details are poorly known almost anything is possible. Reality, to the extent that it is reflected by inference from field studies, offers some support to both schools. In particular, evidence of significant lateral and channelized fluid flow are consistent with flow in rigid media, while evidence for short (104 - 105 y) grain-scale fluid-rock interaction during much longer metamorphic events, suggests that reaction-generated grain-scale permeability is sealed rapidly by compaction; a phenomenon that is also essential to prevent extensive retrograde metamorphism. These observations provide a compelling argument for recognizing in conceptual models of lower crustal fluid flow that rocks are neither inviscid nor rigid, but compact by viscous mechanisms on a finite time-scale. This presentation will review the principle consequences of, and obstacles to, incorporating compaction in such models. The role of viscous compaction in the lower crust is extraordinarily uncertain, but ignoring this uncertainty in models of lower crustal fluid flow does not make the models any more certain. Models inevitably invoke an initial steady state hydraulic regime. This initial steady state is critical to model outcomes because it

  11. Numerical Modeling of Two-Phase Flow at the Main Endeavour Field, Juan de Fuca Ridge: Quasi-Steady State and Thermal Decline of the Vent Field

    NASA Astrophysics Data System (ADS)

    Singh, S.; Lowell, R. P.; Lewis, K. C.

    2012-12-01

    The Main Endeavour Field (MEF) on the Juan de Fuca Ridge consists of a large number of chimney structures occupying an area approximately 400 m x 150 m along the ridge axis. For nearly a decade, the MEF exhibited quasi-steady north-south trending spatial gradients of both temperature and salinity. We have constructed 2-D across-axis numerical models of two-phase flow using the code FISHES to investigate possible causes for this variation. We considered the effect of bottom boundary temperature and both a homogeneous permeability structure and a geometry incorporating a more-permeable layer 2A. From these model results we argue that such a trend is more likely to be the result of heterogeneous permeability structure of the shallow oceanic crust than a result of bottom boundary temperature variations. After a magmatic event in 1999, this trend was disrupted; and thermal data using the Autonomous Benthic Explorer (ABE) indicates that there has been a significant decline in the heat output from a value of approximately 450 MW in 2000 to approximately 300 MW in 2004. In the southern part of the vent field, vent salinities have also increased from values well below those of seawater to values close to seawater. We therefore extend our investigation to include the effect of a temporally-decaying basal heat flow, which may result from cooling, crystallizing magma chamber, on the system. Our aim is to determine whether such a phenomenon could cause the observed rapid decline of heat flow and changes in vent salinity at the MEF. We find that the thermal inertia in the system is such that changes in basal heat flow would be difficult to detect in the given time frame, if magma replenishment ceased following the 1999 magmatic event. The time delay between changes in bottom conditions and the observed decay in observed heat output suggests that the 1999 event represented a small replenishment event and that the AMC may have begun cooling some time before that. Moreover, because

  12. Simulation of steady-state and transient sodium boiling experiments in a seven-pin bundle under flow rundown conditions by using BODYFIT-1FE code

    SciTech Connect

    Chen, B.C.J.; Sha, W.T.

    1981-01-01

    A seven-pin rod bundle under flow rundown conditions was simulated by using the computer code BODYFIT-1FE (BOunDarY-FITted Coordinate System - 1 phase, Fully-Elliptic). In this code, the complicated rod bundle configuration is first transformed into rectangular geometry with uniform meshes. The transformed governing equations for all the thermal-hydraulic variables are then solved. The results of the simulation are presented here. All the predicted values agree favorably with the measured data. 7 refs., 20 figs.

  13. Morphodynamics: Rivers beyond steady state

    NASA Astrophysics Data System (ADS)

    Church, M.; Ferguson, R. I.

    2015-04-01

    The morphology of an alluvial river channel affects the movement of water and sediment along it, but in the longer run is shaped by those processes. This interplay has mostly been investigated empirically within the paradigm of Newtonian mechanics. In rivers, this has created an emphasis on equilibrium configurations with simple morphology and uniform steady flow. But transient adjustment, whether between equilibrium states or indefinitely, is to be expected in a world in which hydrology, sediment supply, and base level are not fixed. More fundamentally, water flows and all the phenomena that accompany them are inherently unsteady, and flows in natural channels are characteristically nonuniform. The morphodynamics of alluvial river channels is the striking consequence. In this paper, we develop the essential connection between the episodic nature of bed material transport and the production of river morphology, emphasizing the fundamental problems of sediment transport, the role of bar evolution in determining channel form, the role of riparian vegetation, and the wide range of time scales for change. As the key integrative exercise, we emphasize the importance of physics-based modeling of morphodynamics. We note consequences that can be of benefit to society if properly understood. These include the possibility to better be able to model how varying flows drive morphodynamic change, to understand the influence of the sediments themselves on morphodynamics, and to recognize the inherent necessity for rivers that transport bed material to deform laterally. We acknowledge pioneering contributions in WRR and elsewhere that have introduced some of these themes.

  14. Theory and verification for the GRASP II code for adjoint-sensitivity analysis of steady-state and transient ground-water flow

    SciTech Connect

    RamaRao, B.S.; Reeves, M. )

    1990-10-01

    Calibration of a numerical model of the regional ground-water flow in the Culebra dolomite at the Waste Isolation Pilot Plant in southeastern New Mexico, has been performed by an interative parameter-fitting procedure. Parameterization has been secured by choosing to assign the transmissivity values at a limited number of selected locations, designated as pilot points. The transmissivity distribution in the model is derived by kriging the combined pool of measured and pilot-plant transmissivities. Iterating on the twin steps of sequentially adding additional pilot point(s) and kriging leads to the model of required accuracy, as judged by a weighted least-square-error objective function. At the end of calibration, it must be ensured that the correlation structure of the measured transmissivities is broadly preserved by the pilot-plant transmissivities. Adjoint-sensitivity analysis of the model has been coupled with kriging to provide objectively the optimal location of the pilot points during an iteration. The pilot-point transmissivities have been adjusted by modeler's judgement incorporating information, where available, on local geologic conditions and large-scale hydraulic interference tests, in order to minimize the objective function. 43 refs., 5 figs., 5 tabs.

  15. Thermodynamics of the multi-stage DNA lesion recognition and repair by formamidopyrimidine-DNA glycosylase using pyrrolocytosine fluorescence—stopped-flow pre-steady-state kinetics

    PubMed Central

    Kuznetsov, Nikita A.; Vorobjev, Yuri N.; Krasnoperov, Lev N.; Fedorova, Olga S.

    2012-01-01

    Formamidopyrimidine-DNA glycosylase, Fpg protein from Escherichia coli, initiates base excision repair in DNA by removing a wide variety of oxidized lesions. In this study, we perform thermodynamic analysis of the multi-stage interaction of Fpg with specific DNA-substrates containing 7,8-dihydro-8-oxoguanosine (oxoG), or tetrahydrofuran (THF, an uncleavable abasic site analog) and non-specific (G) DNA-ligand based on stopped-flow kinetic data. Pyrrolocytosine, highly fluorescent analog of the natural nucleobase cytosine, is used to record multi-stage DNA lesion recognition and repair kinetics over a temperature range (10–30°C). The kinetic data were used to obtain the standard Gibbs energy, enthalpy and entropy of the specific stages using van’t Hoff approach. The data suggest that not only enthalpy-driven exothermic oxoG recognition, but also the desolvation-accompanied entropy-driven enzyme-substrate complex adjustment into the catalytically active state play equally important roles in the overall process. PMID:22584623

  16. Steady-State Solution of a Flexible Wing

    NASA Technical Reports Server (NTRS)

    Karkehabadi, Reza; Chandra, Suresh; Krishnamurthy, Ramesh

    1997-01-01

    A fluid-structure interaction code, ENSAERO, has been used to compute the aerodynamic loads on a swept-tapered wing. The code has the capability of using Euler or Navier-Stokes equations. Both options have been used and compared in the present paper. In the calculation of the steady-state solution, we are interested in knowing how the flexibility of the wing influences the lift coefficients. If the results of a flexible wing are not affected by the flexibility of the wing significantly, one could consider the wing to be rigid and reduce the problem from fluid-structure interaction to a fluid problem.

  17. Fluid flow monitoring device

    DOEpatents

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  18. Fluid flow monitoring device

    DOEpatents

    McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel

    1993-01-01

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  19. NASA Lewis steady-state heat pipe code users manual

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.; Baker, Karl W.; Marks, Timothy S.

    1992-01-01

    The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.

  20. NASA Lewis steady-state heat pipe code users manual

    SciTech Connect

    Tower, L.K.; Baker, K.W.; Marks, T.S.

    1992-06-01

    The NASA Lewis heat pipe code has been developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or, with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which the monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.

  1. A Comparison of Three Stochastic Approaches for Parameter Estimation and Prediction of Steady-State Groundwater Flow: Nonlocal Moment Equations and Monte Carlo Method Coupled with Ensemble Kalman Filter and Geostatistical Stochastic Inversion.

    NASA Astrophysics Data System (ADS)

    Morales-Casique, E.; Briseño-Ruiz, J. V.; Hernández, A. F.; Herrera, G. S.; Escolero-Fuentes, O.

    2014-12-01

    We present a comparison of three stochastic approaches for estimating log hydraulic conductivity (Y) and predicting steady-state groundwater flow. Two of the approaches are based on the data assimilation technique known as ensemble Kalman filter (EnKF) and differ in the way prior statistical moment estimates (PSME) (required to build the Kalman gain matrix) are obtained. In the first approach, the Monte Carlo method is employed to compute PSME of the variables and parameters; we denote this approach by EnKFMC. In the second approach PSME are computed through the direct solution of approximate nonlocal (integrodifferential) equations that govern the spatial conditional ensemble means (statistical expectations) and covariances of hydraulic head (h) and fluxes; we denote this approach by EnKFME. The third approach consists of geostatistical stochastic inversion of the same nonlocal moment equations; we denote this approach by IME. In addition to testing the EnKFMC and EnKFME methods in the traditional manner that estimate Y over the entire grid, we propose novel corresponding algorithms that estimate Y at a few selected locations and then interpolate over all grid elements via kriging as done in the IME method. We tested these methods to estimate Y and h in steady-state groundwater flow in a synthetic two-dimensional domain with a well pumping at a constant rate, located at the center of the domain. In addition, to evaluate the performance of the estimation methods, we generated four unconditional different realizations that served as "true" fields. The results of our numerical experiments indicate that the three methods were effective in estimating h, reaching at least 80% of predictive coverage, although both EnKF were superior to the IME method. With respect to estimating Y, the three methods reached similar accuracy in terms of the mean absolute value error. Coupling the EnKF methods with kriging to estimate Y reduces to one fourth the CPU time required for data

  2. Quantitative investigation of the brain-to-cerebrospinal fluid unbound drug concentration ratio under steady-state conditions in rats using a pharmacokinetic model and scaling factors for active efflux transporters.

    PubMed

    Kodaira, Hiroshi; Kusuhara, Hiroyuki; Fuse, Eiichi; Ushiki, Junko; Sugiyama, Yuichi

    2014-06-01

    A pharmacokinetic model was constructed to explain the difference in brain- and cerebrospinal fluid (CSF)-to-plasma and brain-to-CSF unbound drug concentration ratios (Kp,uu,brain, Kp,uu,CSF, and Kp,uu,CSF/brain, respectively) of drugs under steady-state conditions in rats. The passive permeability across the blood-brain barrier (BBB), PS1, was predicted by two methods using log(D/molecular weight(0.5)) for PS1(1) or the partition coefficient in octanol/water at pH 7.4 (LogD), topologic van der Waals polar surface area, and van der Waals surface area of the basic atoms for PS1(2). The coefficients of each parameter were determined using previously reported in situ rat BBB permeability. Active transport of drugs by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) measured in P-gp- and Bcrp-overexpressing cells was extrapolated to in vivo by introducing scaling factors. Brain- and CSF-to-plasma unbound concentration ratios (Kp,uu,brain and Kp,uu,CSF, respectively) of 19 compounds, including P-gp and Bcrp substrates (daidzein, dantrolene, flavopiridol, genistein, loperamide, quinidine, and verapamil), were simultaneously fitted to the equations in a three-compartment model comprising blood, brain, and CSF compartments. The calculated Kp,uu,brain and Kp,uu,CSF of 17 compounds were within a factor of three of experimental values. Kp,uu,CSF values of genistein and loperamide were outliers of the prediction, and Kp,uu,brain of dantrolene also became an outlier when PS1(2) was used. Kp,uu,CSF/brain of the 19 compounds was within a factor of three of experimental values. In conclusion, the Kp,uu,CSF/brain of drugs, including P-gp and Bcrp substrates, could be successfully explained by a kinetic model using scaling factors combined with in vitro evaluation of P-gp and Bcrp activities. PMID:24644297

  3. Experimental study of multiple steady states in homogeneous azeotropic distillation

    SciTech Connect

    Guettinger, T.E.; Dorn, C.; Morari, M.

    1997-03-01

    Bekiaris et al. (1993) explained the existence of multiple steady states in homogeneous ternary azeotropic distillation, on the basis of the analysis of the case of infinite reflux and infinite column length (infinite number of trays). They showed that the predictions of multiple steady states for such infinite columns have relevant implications for columns of finite length operated at finite reflux. In this article, experiments are described for the ternary homogeneous system methanol-methyl butyrate-toluene which demonstrate the existence of multiple steady states (output multiplicities) caused by the vapor-liquid-equilibrium. The experiments on an industrial pilot column show two stable steady states for the same feed flow rate and composition and the same set of operating parameters. The measurements are in excellent agreement with the predictions obtained for infinite columns using the {infinity}/{infinity} analysis tool as well as with stage-by-stage simulation results. These experiments represent the first published study reporting evidence for the predictions and simulations by various researchers showing that type of output multiplicities in distillation.

  4. CA_OPPUSST - Cantera OPUS Steady State

    Energy Science and Technology Software Center (ESTSC)

    2005-03-01

    The Cantera Opus Steady State (ca-opusst) applications solves steady reacting flow problems in opposed-flow geometries. It is a 1-0 application that represents axisymmetnc 3-0 physical systems that can be reduced via a similarity transformation to a 1-0 mathematical representation. The code contain solutions of the general dynamic equations for the particle distribution functions using a sectional model to describe the particle distribution function. Operators for particle nucleation, coagulation, condensation (i.e., growth/etching via reactions with themore » gas ambient), internal particle reactions. particle transport due to convection and due to molecular transport, are included in the particle general dynamics equation. Heat transport due to radiation exchange of the environment with particles in local thermal equilibrium to the surrounding gas will be included in the enthalpy conservation equation that is solved for the coupled gas! particle system in an upcoming version of the code due in June 2005. The codes use Cantera , a C++ Cal Tech code, for determination of gas phase species transport, reaction, and thermodynamics physical properties and source terms. The Codes use the Cantera Aerosol Dynamics Simulator (CADS) package, a general library for aerosol modeling, to calculate properties and source terms for the aerosol general dynamics equation, including particle formation from gas phase reactions, particle surface chemistry (growth and oxidation), bulk particle chemistry, particle transport by Brownian diffusion, thermophoresis, and diffusiophoresis, and thermal radiative transport involving particles. Also included are post-processing programs, cajost and cajrof, to extract ascii data from binary output files to produce plots.« less

  5. Acoustic concentration of particles in fluid flow

    DOEpatents

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  6. Fundamental experiments of steady-state high heat fluxes using spray cooling

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jorge E.; Ortiz, Lester

    1996-11-01

    Spray cooling has been considered as one of the most efficient alternatives for the removal of high heat fluxes and is currently used in several modern industrial and technological applications to dissipate high amounts of heat from their components such as in electronics, lasers, metallurgical, and nuclear. In many of these applications steady-state high heat fluxes (SSHHF) removal is required. In this research, experiments were conducted to determine parameters that affect the steady-state behavior of high heat fluxes when using spray cooling. The parameters taken in consideration included the mass flow rate, the heated surface roughness, the liquid subcooling temperature, and the spray angle. Water was used as the working fluid in the experiments. An experimental apparatus was built to carry- out the experiments, consisting of a copper heater with a disc shaped surface, an atomizer system that used commercial nozzles, and a data acquisition systems to accurately measure temperatures, heat fluxes, flow rates, and room conditions. The commercial nozzles generated mean droplet diameters ranging from 85 to 100 micrometers and flow rates between 1.48 and 1.9L/hr. Two surface conditions were sued; one polished with 0.25 micrometers liquid solution and the other polished with 600 grit silicon carbide grinding paper. The SSHHF was determined by observing the transient response of the surface temperature and the surface heat flux. Steady- state heat fluxes in the order of 100W/cm2 were obtained in most cases. Results indicated that higher SSHHF can be obtained with increasing mass flow rates and it was easier to achieve them with smooth surfaces. Results also showed that subcooling may not be significant when high mass flow rates. Curves indicating maximum SSHHF were generated as function of the parameters investigated.

  7. Parallel Plate Flow of a Third-Grade Fluid and a Newtonian Fluid With Variable Viscosity

    NASA Astrophysics Data System (ADS)

    Yıldız, Volkan; Pakdemirli, Mehmet; Aksoy, Yiğit

    2016-07-01

    Steady-state parallel plate flow of a third-grade fluid and a Newtonian fluid with temperature-dependent viscosity is considered. Approximate analytical solutions are constructed using the newly developed perturbation-iteration algorithms. Two different perturbation-iteration algorithms are used. The velocity and temperature profiles obtained by the iteration algorithms are contrasted with the numerical solutions as well as with the regular perturbation solutions. It is found that the perturbation-iteration solutions converge better to the numerical solutions than the regular perturbation solutions, in particular when the validity criteria of the regular perturbation solution are not satisfied. The new analytical approach produces promising results in solving complex fluid problems.

  8. Geophysical Fluid Flow Cell Simulation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Computer simulation of atmospheric flow corresponds well to imges taken during the second Geophysical Fluid Flow Cell (BFFC) mission. The top shows a view from the pole, while the bottom shows a view from the equator. Red corresponds to hot fluid rising while blue shows cold fluid falling. This simulation was developed by Anil Deane of the University of Maryland, College Park and Paul Fischer of Argorne National Laboratory. Credit: NASA/Goddard Space Flight Center

  9. Steady state response of unsymmetrically laminated plates

    SciTech Connect

    Hosokawa, Kenji; Kawashima, Katsuya; Sakata, Toshiyuki

    1995-11-01

    A numerical approach for analyzing the forced vibration problem of a symmetrically laminated FRP (fiber reinforced plastic) composite plate was proposed by the authors. In the present paper, this approach is modified for application to an unsymmetrically laminated FRP composite plate. Numerical calculations are carried out for the clamped antisymmetrically laminated rectangular and elliptical plates which are a kind of unsymmetrically laminated plate. Then,, the effects of the lamina material and the fiber orientation angle on the steady state response are discussed. Furthermore, it is investigated that what structural damping factor is most influenced on the steady state response of an antisymmetrically laminated plate.

  10. Programming fluid flow with microstructures

    NASA Astrophysics Data System (ADS)

    Amini, Hamed; Masaeli, Mahdokht; di Carlo, Dino

    2011-11-01

    Flow control and fluid interface manipulation in microfluidic platforms are of great importance in a variety of applications. Current approaches to manipulate fluids generally rely on complex designs, difficult-to-fabricate 3D platforms or use of active methods. Here we show that in the presence of simple cylindrical obstacles (i.e. pillars) in a microchannel, at moderate to high flow rates, streamlines tend to turn and stretch in a manner that, unlike intuition for Stokes flow, does not precisely reverse after passing the pillar. The asymmetric flow behavior up- and down-stream of the pillar due to fluid inertia manifests itself as a total deformation of the topology of streamlines that effectively creates a net secondary flow which resembles the recirculating Dean flow in curving channels. Confocal images were taken to investigate the secondary flow for a variety of microstructure settings. We also developed a numerical technique to map the fluid motion in the channel which is utilized to characterize the secondary flow as well as to engineer the fluid patterns within the channel. This passive method creates the possibility of exceptional control of the 3D structure of the fluid within a microfluidic platform which can significantly advance applications requiring fluid interface control (e.g. optofluidics), ultrafast mixing and solution control around cells.

  11. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I - The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1991-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  12. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1990-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  13. Relaminarization of fluid flows

    NASA Technical Reports Server (NTRS)

    Narasimha, R.; Sreenivasan, K. R.

    1979-01-01

    The mechanisms of the relaminarization of turbulent flows are investigated with a view to establishing any general principles that might govern them. Three basic archetypes of reverting flows are considered: the dissipative type, the absorptive type, and the Richardson type exemplified by a turbulent boundary layer subjected to severe acceleration. A number of other different reverting flows are then considered in the light of the analysis of these archetypes, including radial Poiseuille flow, convex boundary layers, flows reverting by rotation, injection, and suction, as well as heated horizontal and vertical gas flows. Magnetohydrodynamic duct flows are also examined. Applications of flow reversion for turbulence control are discussed.

  14. Fluid Flow Phenomena during Welding

    SciTech Connect

    Zhang, Wei

    2011-01-01

    MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.

  15. Steady-state inductive spheromak operation

    DOEpatents

    Janos, A.C.; Jardin, S.C.; Yamada, M.

    1985-02-20

    The inductively formed spheromak configuration (S-1) can be maintained in a highly stable and controlled fashion. The method described eliminates the restriction to pulsed spheromak plasmas or the use of electrodes for steady-state operation, and, therefore, is a reactor-relevant formation and sustainment method.

  16. The Politics of the Steady State

    ERIC Educational Resources Information Center

    Taylor, Charles

    1978-01-01

    A steady state society has limits pertaining to population size, non-renewable resources, and production which emits heat or substances into soil, water, or the atmosphere. Respecting these limits means renouncing exponential quantitative growth and accepting a universally available consumption standard. (SW)

  17. Thermodynamics of Stability of Nonequilibrium Steady States.

    ERIC Educational Resources Information Center

    Rastogi, R. P.; Shabd, Ram

    1983-01-01

    Presented is a concise and critical account of developments in nonequilibrium thermodynamics. The criterion for stability of nonequilibrium steady states is critically examined for consecutive and monomolecular triangular reactions, autocatalytic reactions, auto-inhibited reactions, and the Lotka-Volterra model. (JN)

  18. Steady-state spheromak reactor studies. Revision

    SciTech Connect

    Krakowski, R.A.; Hagenson, R.L.

    1985-01-01

    After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design point is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported.

  19. A p-version finite element method for steady incompressible fluid flow and convective heat transfer

    NASA Technical Reports Server (NTRS)

    Winterscheidt, Daniel L.

    1993-01-01

    A new p-version finite element formulation for steady, incompressible fluid flow and convective heat transfer problems is presented. The steady-state residual equations are obtained by considering a limiting case of the least-squares formulation for the transient problem. The method circumvents the Babuska-Brezzi condition, permitting the use of equal-order interpolation for velocity and pressure, without requiring the use of arbitrary parameters. Numerical results are presented to demonstrate the accuracy and generality of the method.

  20. Flow in left atrium using MR fluid motion estimation

    NASA Astrophysics Data System (ADS)

    Wong, Kelvin K. L.; Kelso, Richard M.; Worthley, Steve M.; Sanders, Prash; Mazumdar, Jagannath; Abbott, Derek

    2007-12-01

    A recent development based on optical flow applied onto Fast Imaging in Steady State Free Precession (TrueFISP) magnetic resonance imaging is able to deliver good estimation of the flow profile in the human heart chamber. The examination of cardiac flow based on tracking of MR signals emitted by moving blood is able to give medical doctors insight into the flow patterns within the human heart using standard MRI procedure without specifically subjecting the patient to longer scan times using more dedicated scan protocols such as phase contrast MRI. Although MR fluid motion estimation has its limitations in terms of accurate flow mapping, the use of a comparatively quick scan procedure and computational post-processing gives satisfactory flow quantification and can assist in management of cardiac patients. In this study, we present flow in the left atria of five human subjects using MR fluid motion tracking. The measured flow shows that vortices exist within the atrium of heart. Although the scan is two-dimensional, we have produced multiple slices of flow maps in a spatial direction to show that the vortex exist in a three-dimensional space.

  1. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    NASA Astrophysics Data System (ADS)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2016-05-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  2. Direct pore-level modeling of incompressible fluid flow in porous media

    SciTech Connect

    Ovaysi, Saeed; Piri, Mohammad

    2010-09-20

    We present a dynamic particle-based model for direct pore-level modeling of incompressible viscous fluid flow in disordered porous media. The model is capable of simulating flow directly in three-dimensional high-resolution micro-CT images of rock samples. It is based on moving particle semi-implicit (MPS) method. We modify this technique in order to improve its stability for flow in porous media problems. Using the micro-CT image of a rock sample, the entire medium, i.e., solid and fluid, is discretized into particles. The incompressible Navier-Stokes equations are then solved for each particle using the MPS summations. The model handles highly irregular fluid-solid boundaries effectively. An algorithm to split and merge fluid particles is also introduced. To handle the computational load, we present a parallel version of the model that runs on distributed memory computer clusters. The accuracy of the model is validated against the analytical, numerical, and experimental data available in the literature. The validated model is then used to simulate both unsteady- and steady-state flow of an incompressible fluid directly in a representative elementary volume (REV) size micro-CT image of a naturally-occurring sandstone with 3.398 {mu}m resolution. We analyze the quality and consistency of the predicted flow behavior and calculate absolute permeability using the steady-state flow rate.

  3. Insertable fluid flow passage bridgepiece and method

    DOEpatents

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  4. Bubble Formation in Yield Stress Fluids Using Flow-Focusing and T -Junction Devices

    NASA Astrophysics Data System (ADS)

    Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E.; Lorenceau, Elise

    2015-05-01

    We study the production of bubbles inside yield stress fluids (YSFs) in axisymmetric T -junction and flow-focusing devices. Taking advantage of yield stress over capillary stress, we exhibit a robust break-up mechanism reminiscent of the geometrical operating regime in 2D flow-focusing devices for Newtonian fluids. We report that when the gas is pressure driven, the dynamics is unsteady due to hydrodynamic feedback and YSF deposition on the walls of the channels. However, the present study also identifies pathways for potential steady-state production of bubbly YSFs at large scale.

  5. Steady state compact toroidal plasma production

    DOEpatents

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  6. On Typicality in Nonequilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto

    2016-06-01

    From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because "almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, "almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.

  7. On Typicality in Nonequilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto

    2016-08-01

    From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because " almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, " almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.

  8. Theory of Steady-State Superradiance

    NASA Astrophysics Data System (ADS)

    Xu, Minghui

    In this thesis, I describe the theoretical development of the superradiant laser, or laser in the extreme bad-cavity regime. In this regime, the cavity decay rate is much greater than the atomic dynamics. The atoms emit photons into the cavity mode superradiantly in steady state. We develop group-theoretic methods that enable us to exactly solve mesoscopic systems with hundreds of atoms. We demonstrate the synchronization of atomic dipoles in steady-state superradiance. With this synchronized system, we propose conditional Ramsey spectroscopy which allows us to observe Ramsey fringes indefinitely, even in the presence of atomic decoherence. Furthermore, we explore manifestations of synchronization in the quantum realm with two superradiant atomic ensembles. We show that two such ensembles exhibit a dynamical phase transition from two disparate oscillators to quantum phase-locked dynamics. Finally, we study the mechanical eect of the light-atom interaction in the steady-state superradiance. We find efficient many-body cooling of atoms. The work described in this thesis lays the theoretical foundation for the superradiant laser and for a potential future of active optical frequency standards.

  9. Rotational fluid flow experiment

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This project which began in 1986 as part of the Worcester Polytechnic Institute (WPI) Advanced Space Design Program focuses on the design and implementation of an electromechanical system for studying vortex behavior in a microgravity environment. Most of the existing equipment was revised and redesigned by this project team, as necessary. Emphasis was placed on documentation and integration of the electrical and mechanical subsystems. Project results include reconfiguration and thorough testing of all hardware subsystems, implementation of an infrared gas entrainment detector, new signal processing circuitry for the ultrasonic fluid circulation device, improved prototype interface circuits, and software for overall control of experiment operation.

  10. Siple Dome: Is it in Steady State?

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Waddington, E. D.; Nereson, N. A.; Zumberge, M. A.; Hamilton, G. S.

    2001-12-01

    Changes in the West Antarctic Ice Sheet since the end of the last ice age have implications for how we interpret its present behavior, in terms of both its stability and its record of climate history. Siple Dome, the ridge between Ice Streams C and D, is not presently thinning and is close to being in balance with present environmental conditions. We present three independent measurements of ice thickness change in the divide region of Siple Dome: a GPS surface horizontal strain network, fiber optic vertical strain measurements at depth, and precision GPS measurements of vertical motion of near-surface ice ("coffee-can" method). From the horizontal strain network, we calculate the divergence of the horizontal velocity. This divergence is equal to the gradient of vertical velocity at the surface and, with some assumptions about the distribution of strain rates with depth, we can calculate the vertical velocity at the surface. For steady state, the vertical velocity must be balanced by the local accumulation rate. The fiber optic instruments provide a profile of the relative vertical velocity with depth. We fit a theoretical vertical velocity pattern to these data and extrapolate to find the surface vertical velocity. Our third method (coffee-can) directly measures the vertical motion of a marker 20 meters deep using precision GPS and compares it with the local long-term rate of snow accumulation to calculate the net rate of ice sheet thickness change. All three methods reach the same conclusion: Siple Dome is currently very close to being in steady state. This result has two implications. First, ice dynamics models developed to interpret radar images or ice core data can assume steady state behavior, simplifying the models. Second, our result suggests that the central part of the Ross Embayment may have had a low-elevation profile during the late Holocene, even though other areas of the WAIS may have been thicker.

  11. Fluid flow effects in evaporation from liquid-vapor meniscus

    SciTech Connect

    Khrustalev, D.; Faghri, A.

    1996-12-31

    A mathematical model of the evaporating liquid-vapor meniscus in a capillary slot has been developed. The model includes two-dimensional steady-state momentum conservation and energy equations for both the vapor and liquid phases, and incorporates the existing simplified one-dimensional model of the evaporating microfilm. The numerical results, obtained for water, demonstrate the importance of accounting for the fluid flow in calculating the effective evaporative heat transfer coefficient and the superheat of the vapor over the liquid-vapor meniscus due to the heat transfer from the heated wall. With higher heat fluxes, a recirculation zone appears in the vapor near the heated wall due to the extensive evaporation in the thin-film region of the liquid-vapor meniscus.

  12. Intensity fluctuations in steady-state superradiance

    SciTech Connect

    Meiser, D.; Holland, M. J.

    2010-06-15

    Alkaline-earth-metal-like atoms with ultranarrow optical transitions enable superradiance in steady state. The emitted light promises to have an unprecedented stability with a linewidth as narrow as a few millihertz. In order to evaluate the potential usefulness of this light source as an ultrastable oscillator in clock and precision metrology applications, it is crucial to understand the noise properties of this device. In this paper, we present a detailed analysis of the intensity fluctuations by means of Monte Carlo simulations and semiclassical approximations. We find that the light exhibits bunching below threshold, is to a good approximation coherent in the superradiant regime, and is chaotic above the second threshold.

  13. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto

    1990-01-01

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.

  14. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

    1990-07-17

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

  15. Steady State Sedimentation in a Liquid Fluidized Bed

    NASA Technical Reports Server (NTRS)

    Segre, P. N.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The velocity fluctuations and the local particle concentration of a particle suspension exhibiting steady state sedimentation in a fluidized bed are determined as a function of height along the particle column. Both the velocity fluctuations and the particle volume fraction are found to strongly depend on height. We account for the stability of the bed by a simple model evoking a flux balance. Velocity fluctuations driving a downward particle flux are compensated by an upward particle flux stemming from an excess flow velocity due to the concentration gradient of the system.

  16. An Intuitive Approach to Steady-State Kinetics.

    ERIC Educational Resources Information Center

    Raines, Ronald T.; Hansen, David E.

    1988-01-01

    Attempts to provide an intuitive understanding of steady state kinetics. Discusses the meaning of steady state and uses free energy profiles to illustrate and follow complex kinetic and thermodynamic relationships. Provides examples with explanations. (MVL)

  17. Fluid flow and mass flux determinations at vent sites on the Cascadia margin accretionary prism

    SciTech Connect

    Carson, B.; Strasser, J.C. ); Suess, E. )

    1990-06-10

    Fluid venting from the toe of the accretionary prism off Oregon was measured in situ during a series of dives with DSRV Alvin in 1987 and 1988. A benthic chamber was place over active vent sites to sequentially collect samples of venting fluids and to make direct measurements of discharge rates. Calibrated flow meter measurements and flow rates determined from dissolved methane transfer indicate that discharge from two vent sites, Alvin 1428 and Alvin 1900, ranges roughly between 100 and 500 l/m{sup 2}d with the most reliable estimates falling in the range of 125-150 l/m{sup 2}d. These rates imply subsurface advective flow on the order of 100 m/yr. Comparison of observed discharge rates with rates calculated for steady state expulsion supported by accretion-related compaction indicates that the observed flow is greater than predicted flow by several orders of magnitude. The disparity dictates that fluids are not derived locally, but are transported laterally within the prism, or that flow is not steady state and that individual vents are short-lived features in the ongoing accretion process.

  18. Flow of two immiscible fluids in a periodically constricted tube: Transitions to stratified, segmented, churn, spray, or segregated flow

    NASA Astrophysics Data System (ADS)

    Fraggedakis, D.; Kouris, Ch.; Dimakopoulos, Y.; Tsamopoulos, J.

    2015-08-01

    We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our volume-of-fluid algorithm is used to solve the governing equations. First, the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then, it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow, or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray, and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results [I. Cohen et al., "Two fluid drop snap-off problem: Experiments and theory," Phys. Rev. Lett. 83, 1147-1150 (1999)]. Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our result provides deeper insights into the mechanism of the pattern transitions and is in agreement with previous studies on core-annular flow [Ch. Kouris and J. Tsamopoulos, "Core-annular flow in a periodically constricted circular tube, I. Steady state, linear stability and energy analysis," J. Fluid Mech. 432, 31-68 (2001) and Ch. Kouris et al., "Comparison of spectral and finite element methods applied to the study of interfacial instabilities of the core-annular flow in an undulating tube," Int. J. Numer. Methods Fluids 39(1), 41-73 (2002)], segmented flow [E. Lac and J. D. Sherwood, "Motion of a drop along the centreline of a capillary in a pressure-driven flow," J. Fluid Mech. 640, 27-54 (2009)], and churn flow [R. Y. Bai et al., "Lubricated pipelining—Stability of core annular-flow. 5. Experiments and comparison with theory," J. Fluid Mech. 240, 97-132 (1992)].

  19. Magnetic resonance measurement of fluid dynamics and transport in tube flow of a near-critical fluid

    NASA Astrophysics Data System (ADS)

    Bray, Joshua M.; Rassi, Erik M.; Seymour, Joseph D.; Codd, Sarah L.

    2014-07-01

    An ability to predict fluid dynamics and transport in supercritical fluids is essential for optimization of applications such as carbon sequestration, enhanced oil recovery, "green" solvents, and supercritical coolant systems. While much has been done to model supercritical velocity distributions, experimental characterization is sparse, owing in part to a high sensitivity to perturbation by measurement probes. Magnetic resonance (MR) techniques, however, detect signal noninvasively from the fluid molecules and thereby overcome this obstacle to measurement. MR velocity maps and propagators (i.e., probability density functions of displacement) were acquired of a flowing fluid in several regimes about the critical point, providing quantitative data on the transport and fluid dynamics in the system. Hexafluoroethane (C2F6) was pumped at 0.5 ml/min in a cylindrical tube through an MR system, and propagators as well as velocity maps were measured at temperatures and pressures below, near, and above the critical values. It was observed that flow of C2F6 with thermodynamic properties far above or below the critical point had the Poiseuille flow distribution of an incompressible Newtonian fluid. Flows with thermodynamic properties near the critical point exhibit complex flow distributions impacted by buoyancy and viscous forces. The approach to steady state was also observed and found to take the longest near the critical point, but once it was reached, the dynamics were stable and reproducible. These data provide insight into the interplay between the critical phase transition thermodynamics and the fluid dynamics, which control transport processes.

  20. Morphological evolution of voids by surface drift diffusion driven by capillary, electromigration, and thermal-stress gradients induced by steady-state heat flow in passivated metallic thin films and flip chip solder joints. I. Theory

    NASA Astrophysics Data System (ADS)

    Ogurtani, Tarik Omer; Akyildiz, Oncu

    2008-07-01

    The morphological evolution of intragranular voids induced by surface drift diffusion under the actions of capillary and electromigration (EM) forces and thermal-stress gradients (TSGs) associated with steady-state heat flow is investigated in passivated metallic thin films and flip chip solder joints via computer simulation using the front-tracking method. In the mesoscopic nonequilibrium thermodynamic formulation of the generalized driving forces for the thermal-stress-induced surface drift diffusion, not only the usual elastic strain energy density contribution but also the elastic dipole tensor interaction (EDTI) between the thermal-stress field and the mobile atomic species (monovacancies) are considered using the concept of elastic interaction energy promoted in unified linear instability analysis (ULISA) [T. O. Ogurtani, Phys. Rev. B 74, 155422 (2006)]. According to extensive computer experiments performed on voids, which are initially cylindrical in shape, two completely different and topographically distinct behaviors are observed during the development of quasistationary state void surface morphologies, even in the presence of strong EM forces. These behaviors strictly depend on whether or not heat flux crowding occurs in the regions between the void surface layer and the sidewalls of the interconnect lines due to proximity effects of the insulating boundaries. In both morphological cases, however, one also observes two well-defined regimes, namely, the EM and TSG dominated regimes in EM versus EDTI parametric space. In the case of the TSG dominated regime, the void center of gravity (centroid) exhibits uniform displacement (drift) velocity proportional and opposite to the induced TSG exactly as predicted by ULISA theory. These domains are bounded by a threshold level curve for the EDTI parameter, above which an extremely sharp crack tip nucleation and propagation occurs in the highly localized minima in the triaxial stress regions (i.e., hot spots

  1. Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Popok, Daniel

    1999-01-01

    A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.

  2. Fluid flow in nanopores: An examination of hydrodynamic boundary conditions

    NASA Astrophysics Data System (ADS)

    Sokhan, V. P.; Nicholson, D.; Quirke, N.

    2001-08-01

    Steady-state Poiseuille flow of a simple fluid in carbon slit pores under a gravity-like force is simulated using a realistic empirical many-body potential model for carbon. In this work we focus on the small Knudsen number regime, where the macroscopic equations are applicable, and simulate different wetting conditions by varying the strength of fluid-wall interactions. We show that fluid flow in a carbon pore is characterized by a large slip length even in the strongly wetting case, contrary to the predictions of Tolstoi's theory. When the surface density of wall atoms is reduced to values typical of a van der Waals solid, the streaming velocity profile vanishes at the wall, in accordance with earlier findings. From the velocity profiles we have calculated the slip length and by analyzing temporal profiles of the velocity components of particles colliding with the wall we obtained values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall.

  3. Steady-state wear and friction in boundary lubrication studies

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.; Jones, W. R., Jr.

    1980-01-01

    A friction and wear study was made at 20 C to obtain improved reproducibility and reliability in boundary lubrication testing. Ester-base and C-ether-base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a friction and wear apparatus. Conditions included loads of 1/2 and 1 kg and sliding velocities of 3.6 to 18.2 m/min in a dry air atmosphere and stepwise time intervals from 1 to 250 min for wear measurements. The wear rate results were compared with those from previous studies where a single 25 min test period was used. Satisfactory test conditions for studying friction and wear in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Highly reproducible steady-state wear rates and steady-state friction coefficients were determined under boundary conditions. Wear rates and coefficients of friction were constant following initially high values during run-in periods.

  4. SPH numerical simulation of fluid flow through a porous media

    NASA Astrophysics Data System (ADS)

    Klapp-Escribano, Jaime; Mayoral-Villa, Estela; Rodriguez-Meza, Mario Alberto; de La Cruz-Sanchez, Eduardo; di G Sigalotti, Leonardo; Inin-Abacus Collaboration; Ivic Collaboration

    2013-11-01

    We have tested an improved a method for 3D SPH simulations of fluid flow through a porous media using an implementation of this method with the Dual-Physics code. This improvement makes it possible to simulate many particles (of the order of several million) in reasonable computer times because its execution on GPUs processors makes it possible to reduce considerably the simulation cost for large systems. Modifications in the initial configuration have been implemented in order to simulate different arrays and geometries for the porous media. The basic tests were reproduced and the performance was analyzed. Our 3D simulations of fluid flow through a saturated homogeneous porous media shows a discharge velocity proportional to the hydraulic gradient reproducing Darcy's law at small body forces. The results are comparable with values obtained in previous work and published in the literature for simulations of flow through periodic porous media. Our simulations for a non saturated porous media produce adequate qualitative results showing that a non steady state is generated. The relaxation time for these systems were obtained. Work partially supported by Cinvestav-ABACUS, CONACyT grant EDOMEX-2011-C01-165873.

  5. Fluid-structure interaction of quasi-one-dimensional potential flow along channel bounded by symmetric cantilever beams

    NASA Astrophysics Data System (ADS)

    Jang, Gang-Won; Chang, Se-Myong; Gim, Gyun-Ho

    2013-07-01

    An analysis of fluid-structure interaction is presented for incompressible and inviscid flow in a channel bounded by symmetric cantilever beams. Small deflections of the beams and no flows normal to the beams are assumed, thus allowing the governing equations to be defined using quasi-one-dimensional pressure and flow velocity distribution; pressure and velocity are assumed to be uniform across the cross section of the channel. The steady-state solution of the present problem is analytically derived by the linearization of the governing equations. The solution is shown to consist of infinite modes, which is verified by comparing with numerical solutions obtained by the finite element method. The nonlinear effect in the steady-state solution is modeled by numerical method to estimate the error due to linearization. However, only a few leading modes are physically significant owing to the effects of flow compressibility and viscosity. The analytic solutions of the fluid-structure interaction are also presented for dynamic problems assuming harmonic vibration. The steady-state and stationary initial conditions are used, and the equilibrium frequency is determined to minimize the residual error of Euler equation. The fluid-structure interaction is characterized by a phase difference and distortion of waveform shape in the time history of the boundary velocity.

  6. Fluid flow electrophoresis in space

    NASA Technical Reports Server (NTRS)

    Griffin, R. N.

    1975-01-01

    Four areas relating to free-flow electrophoresis in space were investigated. The first was the degree of improvement over earthbound operations that might be expected. The second area of investigation covered the problems in developing a flowing buffer electrophoresis apparatus. The third area of investigation was the problem of testing on the ground equipment designed for use in space. The fourth area of investigation was the improvement to be expected in space for purification of biologicals. The results of some ground-based experiments are described. Other studies included cooling requirements in space, fluid sealing techniques, and measurement of voltage drop across membranes.

  7. Ferroelectric Fluid Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.

  8. General Transient Fluid Flow Algorithm

    Energy Science and Technology Software Center (ESTSC)

    1992-03-12

    SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude resultsmore » from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.« less

  9. Gas-turbine engine steady-state behavior

    NASA Astrophysics Data System (ADS)

    Curnock, Barry

    A set of graphics with explanations illustrating gas turbine engine steady state behavior are presented. Typical combinations of compressors and nozzles which occur in a gas turbine engine are shown. The basic effect of a nozzle is explained by considering a compressor on a test rig: typical compressor, fan, and turbine characteristics are illustrated. The following are discussed: the degrees of freedom of an aeroengine (the flow and the power); the 'working lines' of components (the locus of the off design steady state operating points of a component plotted on a chart of that components characteristics); bleed and whirl; offtakes; P1 effects (performance changes which modify the basic nondimensional behavior an engine (caused by the effect on Reynolds number levels and on engine mechanical configuration of basic engine inlet pressure level)), and T1 effects (performance changes which modify the basic nondimensional behavior of an engine and are caused by the effects of engine inlet temperature level on Reynolds number level, on engine mechanical configuration and on specific heat level); variable nozzles; and turbojet matching.

  10. Cerebrospinal fluid flow in adults.

    PubMed

    Bradley, William G; Haughton, Victor; Mardal, Kent-Andre

    2016-01-01

    This chapter uses magnetic resonance imaging phase-contrast cerebrospinal fluid (CSF) flow measurements to predict which clinical normal-pressure hydrocephalus (NPH) patients will respond to shunting as well as which patients with Chiari I are likely to develop symptoms of syringomyelia. Symptomatic NPH patients with CSF flow (measured as the aqueductal CSF stroke volume) which is shown to be hyperdynamic (defined as twice normal) are quite likely to respond to ventriculoperitoneal shunting. The hyperdynamic CSF flow results from normal systolic brain expansion compressing the enlarged ventricles. When atrophy occurs, there is less brain expansion, decreased aqueductal CSF flow, and less likelihood of responding to shunting. It appears that NPH is a "two-hit" disease, starting as benign external hydrocephalus in infancy, followed by deep white-matter ischemia in late adulthood, which causes increased resistance to CSF outflow through the extracellular space of the brain. Using computational flow dynamics (CFD), CSF flow can be modeled at the foramen magnum and in the upper cervical spine. As in the case of NPH, hyperdynamic CSF flow appears to cause the signs and symptoms in Chiari I and can provide an additional indication for surgical decompression. CFD can also predict CSF pressures over the cardiac cycle. It has been hypothesized that elevated pressure pulses may be a significant etiologic factor in some cases of syringomyelia. PMID:27432684

  11. Taylor dispersion in equilibrium gradient focusing at steady state.

    PubMed

    Ivory, Cornelius F

    2015-03-01

    An analytic expression is presented for the effective dispersion coefficient in the case where a solute is focused in a parabolic flow against a linear gradient in a restoring force. This expression was derived by employing a minor variation on the method of moments used by Aris in his development of the dispersion coefficients for a time-dependent, isocratic system. In the present case, dispersion is controlled by two dimensionless groups, a Peclet number which is proportional to the parabolic component of the flow, and a gradient number which is proportional to the slope of the restoring force. These results confirm that the Aris-Taylor expression for the dispersion coefficient should not be applied in cases where a solute is focused to a stationary steady state. PMID:25521436

  12. Steady state model of an industrial FCC unit

    SciTech Connect

    Lopez-Isunza, F.; Ancheyta-Juarez, J.

    1996-12-31

    A reactor model has been developed to simulate the steady-state of an industrial fluid catalytic cracking unit using a three-lump kinetic expression with parameters estimated from experiments in a microactivity test reactor. The model considers a transported bed reactor (riser) where gas-oil and catalyst are in contact to perform the endothermic cracking reactions, interacting with a two-phase moving bed regenerator with recirculation where the combustion of the coke deposited on the catalyst takes place. The model is used to find best operating conditions for maximizing gasoline yield in terms of gas-oil feed temperature (To) and recycled catalyst to gas-oil ratio (C/O). 12 refs., 4 figs.

  13. Steady State Vapor Bubble in Pool Boiling

    NASA Astrophysics Data System (ADS)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  14. Inconsistencies in steady-state thermodynamics

    NASA Astrophysics Data System (ADS)

    Dickman, Ronald; Motai, Ricardo

    2014-03-01

    We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic lattice gases, we ask whether consistent definitions of an effective chemical potential μ, and an effective temperature Te, are possible. μ and Te are determined via coexistence, i.e., zero flux of particles and energy between the driven system and a reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven lattice gas both μ and Te need to be defined. We show analytically that in this case the zeroth law is violated for Metropolis exchange rates, and determine the size of the violations numerically. The zeroth law appears to be violated for generic exchange rates. Remarkably, the system-reservoir coupling proposed by Sasa and Tasaki [J. Stat. Phys. 125, 125 (2006), 10.1007/s10955-005-9021-7] is free of inconsistencies, and the zeroth law holds. This is because the rate depends only on the state of the donor system, and is independent of that of the acceptor.

  15. Steady State Vapor Bubble in Pool Boiling.

    PubMed

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  16. Maximal lactate steady state in Judo

    PubMed Central

    de Azevedo, Paulo Henrique Silva Marques; Pithon-Curi, Tania; Zagatto, Alessandro Moura; Oliveira, João; Perez, Sérgio

    2014-01-01

    Summary Background: the purpose of this study was to verify the validity of respiratory compensation threshold (RCT) measured during a new single judo specific incremental test (JSIT) for aerobic demand evaluation. Methods: to test the validity of the new test, the JSIT was compared with Maximal Lactate Steady State (MLSS), which is the gold standard procedure for aerobic demand measuring. Eight well-trained male competitive judo players (24.3 ± 7.9 years; height of 169.3 ± 6.7cm; fat mass of 12.7 ± 3.9%) performed a maximal incremental specific test for judo to assess the RCT and performed on 30-minute MLSS test, where both tests were performed mimicking the UchiKomi drills. Results: the intensity at RCT measured on JSIT was not significantly different compared to MLSS (p=0.40). In addition, it was observed high and significant correlation between MLSS and RCT (r=0.90, p=0.002), as well as a high agreement. Conclusions: RCT measured during JSIT is a valid procedure to measure the aerobic demand, respecting the ecological validity of Judo. PMID:25332923

  17. Steady State Vapor Bubble in Pool Boiling

    PubMed Central

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  18. Steady state volcanism - Evidence from eruption histories of polygenetic volcanoes

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1982-01-01

    Cumulative volcano volume curves are presented as evidence for steady-state behavior at certain volcanoes and to develop a model of steady-state volcanism. A minimum criteria of five eruptions over a year was chosen to characterize a steady-state volcano. The subsequent model features a constant head of magmatic pressure from a reservoir supplied from depth, a sawtooth curve produced by the magma arrivals or discharge from the subvolcanic reservoir, large volume eruptions with long repose periods, and conditions of nonsupply of magma. The behavior of Mts. Etna, Nyamuragira, and Kilauea are described and show continuous levels of plasma output resulting in cumulative volume increases. Further discussion is made of steady-state andesitic and dacitic volcanism, long term patterns of the steady state, and magma storage, and the lack of a sufficient number of steady-state volcanoes in the world is taken as evidence that further data is required for a comprehensive model.

  19. Transient Wellbore Fluid Flow Model

    Energy Science and Technology Software Center (ESTSC)

    1982-04-06

    WELBORE is a code to solve transient, one-dimensional two-phase or single-phase non-isothermal fluid flow in a wellbore. The primary thermodynamic variables used in solving the equations are the pressure and specific energy. An equation of state subroutine provides the density, quality, and temperature. The heat loss out of the wellbore is calculated by solving a radial diffusion equation for the temperature changes outside the bore. The calculation is done at each node point in themore » wellbore.« less

  20. Steady-state hydrodynamic instabilities of active liquid crystals: Hybrid lattice Boltzmann simulations

    NASA Astrophysics Data System (ADS)

    Marenduzzo, D.; Orlandini, E.; Cates, M. E.; Yeomans, J. M.

    2007-09-01

    We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently “extensile” rods, in the case of flow-aligning liquid crystals, and for sufficiently “contractile” ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of “convection rolls.” These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.

  1. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations.

    PubMed

    Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M

    2007-09-01

    We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics. PMID:17930285

  2. Conveyor belt effect in the flow through a tube of a viscous fluid with spinning particles.

    PubMed

    Felderhof, B U

    2012-04-28

    The extended Navier-Stokes equations describing the steady-state hydrodynamics of a viscous fluid with spinning particles are solved for flow through a circular cylindrical tube. The flow caused by an applied torque density in the azimuthal direction and linear in the radial distance from the axis is compared with the flow caused by a uniform applied force density directed along the axis of the tube. In both cases the flow velocity is of Poiseuille type plus a correction. In the first case the flow velocity is caused by the conveyor belt effect of spinning particles. The corrections to the Poiseuille flow pattern in the two cases differ only by a proportionality factor. The spin velocity profiles in the two cases are also proportional. PMID:22559504

  3. Fluid flows around nanoelectromechanical resonators

    NASA Astrophysics Data System (ADS)

    Svitelskiy, O.; Sauer, V.; Liu, N.; Vick, D.; Cheng, K. M.; Freeman, M. R.; Hiebert, W. K.

    2012-02-01

    To explore properties of fluids on a nanosize scale, we fabricated by a standard top down technique a series of nanoelectromechanical resonators (cantilevers and bridges) with widths w and thicknesses t from 100 to 500 nm; lengths l from 0.5 to 12 micron; and resonant frequencies f from 10 to 400 MHz. For the sake of purity of the experiment, the undercut in the widest (w=500 nm) devices was eliminated using the focused ion beam. To model the fluidic environment the devices were placed in the atmosphere of compressed gases (He, N2, CO2, Ar, H2) at pressures from vacuum up to 20 MPa, and in liquid CO2; their properties were studied by the real time stroboscopic optical interferometry. Thus, we fully explored the Newtonian and non-Newtonian flow damping models. Observing free molecular flow extending above atmospheric pressure, we find the fluid relaxation time model to be the best approximation throughout, but not beyond, the non-Newtonian regime, and both, vibrating spheres model and the model based on Knudsen number, to be valid in the viscous limit.

  4. Method and Apparatus for Predicting Unsteady Pressure and Flow Rate Distribution in a Fluid Network

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K. (Inventor)

    2009-01-01

    A method and apparatus for analyzing steady state and transient flow in a complex fluid network, modeling phase changes, compressibility, mixture thermodynamics, external body forces such as gravity and centrifugal force and conjugate heat transfer. In some embodiments, a graphical user interface provides for the interactive development of a fluid network simulation having nodes and branches. In some embodiments, mass, energy, and specific conservation equations are solved at the nodes, and momentum conservation equations are solved in the branches. In some embodiments, contained herein are data objects for computing thermodynamic and thermophysical properties for fluids. In some embodiments, the systems of equations describing the fluid network are solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods.

  5. The puzzle of the steady-state rotation of a reverse sprinkler

    NASA Astrophysics Data System (ADS)

    Rueckner, Wolfgang

    2015-04-01

    The continuous rotation of the reverse sprinkler has been a puzzle for over two decades. This article presents a series of experiments that demonstrate that a properly designed reverse sprinkler experiences no steady-state torque and does not rotate. Ignoring transients when the flow starts and stops, if any sustained rotation of the reverse sprinkler occurs, it is because a force couple produces a torque accompanied by vortex flow inside the body of the sprinkler. No steady-state rotation occurs if the vortex is suppressed or prevented from forming in the first place. Demonstrative proof is given that an ideal reverse sprinkler does not rotate.

  6. Two-fluid model for two-phase flow

    NASA Astrophysics Data System (ADS)

    Ishii, M.

    1987-06-01

    The two-fluid model formulation is discussed in detail. The emphasis of the paper is on the three-dimensional formulation and the closure issues. The origin of the interfacial and turbulent transfer terms in the averaged formulation is explained and their original mathematical forms are examined. The interfacial transfer of mass, momentum, and energy is proportional to the interfacial area and driving force. This is not a postulate but a result of the careful examination of the mathematical form of the exact interfacial terms. These two effects are considered separately. Since all the interfacial transfer terms involve the interfacial area concentration, the accurate modeling of the local interfacial area concentration is the first step to be taken for a development of a reliable two-fluid model closure relations. The interfacial momentum interaction has been studied in terms of the standard-drag, lift, virtual mass, and Basset forces. Available analytical and semi-empirical correlations and closure relations are reviewed and existing shortcomings are pointed out. The other major area of importance is the modeling of turbulent transfer in two-phase flow. The two-phase flow turbulence problem is coupled with the phase separation problem even in a steady-state fully developed flow. Thus the two-phase turbulence cannot be understood without understanding the interfacial drag and lift forces accurately. There are some indications that the mixing length type model may not be sufficient to describe the three-dimensional turbulent and flow structures. Although it is a very difficult challenge, the two-phase flow turbulence should be investigated both experimentally and analytically with long time-scale research.

  7. Review and evaluation of recent developments in melic inlet dynamic flow distortion prediction and computer program documentation and user's manual estimating maximum instantaneous inlet flow distortion from steady-state total pressure measurements with full, limited, or no dynamic data

    NASA Technical Reports Server (NTRS)

    Schweikhard, W. G.; Dennon, S. R.

    1986-01-01

    A review of the Melick method of inlet flow dynamic distortion prediction by statistical means is provided. These developments include the general Melick approach with full dynamic measurements, a limited dynamic measurement approach, and a turbulence modelling approach which requires no dynamic rms pressure fluctuation measurements. These modifications are evaluated by comparing predicted and measured peak instantaneous distortion levels from provisional inlet data sets. A nonlinear mean-line following vortex model is proposed and evaluated as a potential criterion for improving the peak instantaneous distortion map generated from the conventional linear vortex of the Melick method. The model is simplified to a series of linear vortex segments which lay along the mean line. Maps generated with this new approach are compared with conventionally generated maps, as well as measured peak instantaneous maps. Inlet data sets include subsonic, transonic, and supersonic inlets under various flight conditions.

  8. Recent improvements to steady-state thermal-hydraulic analysis of research reactors in the RERTR Program at ANL.

    SciTech Connect

    Olson, A. P.; Kalimullah; Feldman, E. E.; Nuclear Engineering Division

    2006-01-01

    Recent reactor conversion studies in the RERTR Program have required expansion or revision of modeling capabilities for steady state thermalhydraulic analysis. For example, some reactors operate in laminar flow, necessitating new correlations for Nusselt number and for friction loss. Others have single-sided heating of edge channels. And some have geometrical details that require new modeling approaches to either simulate or validate. Computational fluid dynamics was compared with the 2-dimensional approximation to heat flow used by the PLTEMP/ANL V3.0 code. A very systematic approach to hot channel factors is implemented. A closed-form solution is now used in flat-plate geometry to improve both speed and accuracy of the solution. Direct heating to clad and coolant is now included. The Groenveld table lookup method is now available for determination of CHF. Flow excursion prediction is updated. All of these improvements have been incorporated in the PLTEMP/ANL V3.0 code.

  9. Adaptation of the Steady-state PERG in Early Glaucoma

    PubMed Central

    Porciatti, Vittorio; Bosse, Brandon; Parekh, Prashant K.; Shif, Olga A.; Feuer, William J.; Ventura, Lori M.

    2013-01-01

    Purpose Previous studies have shown that the onset of high-contrast, fast reversing patterned stimuli induces rapid blood flow increase in retinal vessels in association with slow changes of the steady-state PERG signal. We tested the hypothesis that adaptive PERG changes of normal controls (NC) differed from those of glaucoma suspects (GS) and patients with early manifest glaucoma (EMG). Methods Subjects were 42 GS (SAP MD −0.89 ±1.8 dB), 22 EMG (MD −2.12 ±2.4 dB) with visual acuity of ≥20/20 and 16 age-matched NC from a previous study. The PERG signal was sampled every ~15 s over 4 minutes in response to gratings (1.6 cyc/deg, 100% contrast) reversing 16.28 times/s. Amplitude/phase values of successive PERG samples were fitted with a non-parametric LOWESS smoothing function to retrieve the initial and final values and calculate their difference (delta) and the residual standard deviation around the fitted function (SDr). The magnitude of PERG adaptive change compared to random variability was calculated as log10 of percentage coefficient of variation CoV=100*SDr ÷ |delta|. Grand-average PERGs were also obtained by averaging all samples of the same series. Results The grand-average PERG amplitude (ANOVA, p=0.02), but not phase (ANOVA, p=0.63), decreased with increasing severity of disease. Adaptive changes (log10 (CoV) of PERG amplitude were not significantly associated with disease severity (ANOVA, p=0.27), but adaptive changes (log10 (CoV) of PERG phase were (ANOVA, p=0.037; linear trend, p=0.011). Conclusions The steady-state PERG signal displayed slow adaptive changes over time that could be isolated from random variability. PERG adaptive changes differed from those of grand-average PERGs (corresponding the standard steady-state PERG), thus representing a new source of biological information about retinal ganglion cell function that may have potential in the study of glaucoma and optic nerve diseases. PMID:23429613

  10. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases.

    PubMed

    Su, Yan; Peter Guengerich, F

    2016-01-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. © 2016 by John Wiley & Sons, Inc. PMID:27248785

  11. Steady-state analysis of activated sludge processes with a settler model including sludge compression.

    PubMed

    Diehl, S; Zambrano, J; Carlsson, B

    2016-01-01

    A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration. PMID:26476681

  12. Defining Features of Steady-State Timbres

    NASA Astrophysics Data System (ADS)

    Hall, Michael D.

    1995-01-01

    Three experiments were conducted to define steady -state features of timbre for a group of well-trained musicians. Experiment 1 evaluated whether or not pairs of three critical dimensions of timbre--spectral slope (6 or 12 dB/octave), formant structure (/a/ or /i/ vowel), and inharmonicity of partials (harmonic or inharmonic)--were processed in a separable or integral fashion. Accuracy and speed for classification of values along one dimension were examined under different conditions of variability along a second dimension (fixed, correlated, or orthogonal). Spectral slope and formant structure were integral, with classification speed for the target dimension depending upon variability along the orthogonal dimension. In contrast, evidence of asymmetric separability was obtained for inharmonicity. Classification speed for slope and formant structure did not depend on inharmonicity, whereas RT for the target dimension of inharmonicity was strongly influenced by variability along either slope or formant structure. Since the results of Experiment 1 provided a basis for manipulating spectral slope and formant structure as a single feature, these dimensions were correlated in Experiment 2. Subjects searched for targets containing potential features of timbre within arrays of 1-4 inharmonic distractor pitches. Distractors were homogeneous with respect to the dimensions of timbre. When targets had /a/ formants with shallow spectral slopes, search time increased nonlinearly with array size in a manner consistent with the parallel processing of items, and thus feature search. Feature search was not obtained for targets with /i/ formants and steep slopes. Thus, the feature was coded as the presence or absence of /a/ formants with shallow spectral slopes. A search task using heterogeneous distractor values along slope/formant structure was used in Experiment 3 to evaluate whether or not the feature of timbre and pitch were automatically conjoined (integral). Search times for

  13. Finite Element Analysis of Magnetic Damping Effects on G-Jitter Induced Fluid Flow

    NASA Technical Reports Server (NTRS)

    Pan, Bo; Li, Ben Q.; deGroh, Henry C., III

    1997-01-01

    This paper reports some interim results on numerical modeling and analyses of magnetic damping of g-jitter driven fluid flow in microgravity. A finite element model is developed to represent the fluid flow, thermal and solute transport phenomena in a 2-D cavity under g-jitter conditions with and without an applied magnetic field. The numerical model is checked by comparing with analytical solutions obtained for a simple parallel plate channel flow driven by g-jitter in a transverse magnetic field. The model is then applied to study the effect of steady state g-jitter induced oscillation and on the solute redistribution in the liquid that bears direct relevance to the Bridgman-Stockbarger single crystal growth processes. A selection of computed results is presented and the results indicate that an applied magnetic field can effectively damp the velocity caused by g-jitter and help to reduce the time variation of solute redistribution.

  14. Fluid Flow Experiment for Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Vilimpochapornkul, Viroj; Obot, Nsima T.

    1986-01-01

    The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)

  15. Fluid flow, mineral reactions, and metasomatism

    SciTech Connect

    Ferry, J.M.; Dipple, G.M. )

    1991-03-01

    A general model that relates fluid flow along a temnperature gradient to chemical reaction in rocks can be used to quantitatively interpret petrologic and geochemical data on metasomatism from ancient flow systems in terms of flow direction and time-integrated fluid flux. The model is applied to regional metamorphism, quartz veins, and a metasomatized ductile fault zone.

  16. The steady-state assumption in oscillating and growing systems.

    PubMed

    Reimers, Alexandra-M; Reimers, Arne C

    2016-10-01

    The steady-state assumption, which states that the production and consumption of metabolites inside the cell are balanced, is one of the key aspects that makes an efficient analysis of genome-scale metabolic networks possible. It can be motivated from two different perspectives. In the time-scales perspective, we use the fact that metabolism is much faster than other cellular processes such as gene expression. Hence, the steady-state assumption is derived as a quasi-steady-state approximation of the metabolism that adapts to the changing cellular conditions. In this article we focus on the second perspective, stating that on the long run no metabolite can accumulate or deplete. In contrast to the first perspective it is not immediately clear how this perspective can be captured mathematically and what assumptions are required to obtain the steady-state condition. By presenting a mathematical framework based on the second perspective we demonstrate that the assumption of steady-state also applies to oscillating and growing systems without requiring quasi-steady-state at any time point. However, we also show that the average concentrations may not be compatible with the average fluxes. In summary, we establish a mathematical foundation for the steady-state assumption for long time periods that justifies its successful use in many applications. Furthermore, this mathematical foundation also pinpoints unintuitive effects in the integration of metabolite concentrations using nonlinear constraints into steady-state models for long time periods. PMID:27363728

  17. Steady-state boundary lubrication with formulated C-ethers to 260 C

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.

    1981-01-01

    Steady state wear and friction studies were made at boundary lubrication conditions in a pin on disk (pure iron on rotating CVM M 50 steel) sliding friction apparatus with five C ether formulated fluids (modified polyphenyl ether containing phosphrous ester, organic acid, and other additives). Conditions included 20, 150, and 260 C disk temperatures, dry air test atmosphere, 1 kilogram load, 50 rpm disk speed, and test times to 130 minutes. Results were compared with those obtained with a formulated MIL L 27502 candidate ester and the C ether base fluid. Three of the C ether formulations gave better lubrication than both reference fluids under most conditions. The other two C ether formulations yielded higher wear rates and friction coefficients than the C ether base fluid for most of the temperature range. Only one C ether formulation showed consistently higher steady state wear rates than the ester.

  18. Steady State Growth of Continental Crust?

    NASA Astrophysics Data System (ADS)

    Bowring, S. A.; Bauer, A.; Dudas, F. O.; Schoene, B.; McLean, N. M.

    2012-12-01

    any age. If one accepts that the probability of preserving old crust decreases with increasing age, the few exposures of rocks older than 3.5 Ga should not be surprising. The thickness and compositional differences between Archean and younger lithospheric mantle are not fully understood nor is the role of thicker buoyant mantle in preserving continental crust; these lead to the question of whether the preserved rock record is representative of what formed. It is notable that the oldest known rocks, the ca. 4.0 Ga Acasta Gneisses, are tonalities-granodiorites-granites with evidence for the involvement of even older crust and that the oldest detrital zircons from Australia (ca. 4.0-4.4 Ga) are thought to have been derived from granitoid sources. The global Hf and Nd isotope databases are compatible with both depleted and enriched sources being present from at least 4.0 Ga to the present and that the lack of evolution of the MORB source or depleted mantle is due to recycling of continental crust throughout earth history. Using examples from the Slave Province and southern Africa, we argue that Armstrong's concept of steady state crustal growth and recycling via plate tectonics still best explains the modern geological and geochemical data.

  19. Vortex generator installation studies on steady state and dynamic inlet distortion

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Gibb, James

    1996-01-01

    The theoretical and experimental work carried out under the NASA/MOD Joint Aeronautical Program has shown that CFD vortex generator installations designs successfully managed inlet duct flow distortion and that significant benefits in flow unsteadiness at the engine face were also present. The main conclusions to date from the collaborative effort between NASA/Lewis and DRA/Bedford are as follows: (1) vortex generator installations can be designed to be effective over a wide range of inlet operating conditions using Computational Fluid Dynamics and formal optimization procedures, (2) reductions in steady state engine face distortion of up to 80% have been measured in the M2129 inlet S-duct using CFD designed vortex generator installations, (3) reductions in flow unsteadiness of up to 80% have been measured in the W129 inlet S-duct using CFD designed vortex generator installations, and (4) the Reduced Navier-Stokes code RNS3D is a useful tool to design vortex generator installations to manage engine face distortions over a wide range of inlet operating conditions.

  20. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    SciTech Connect

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

  1. Measurement of non-steady-state free fatty acid turnover

    SciTech Connect

    Jensen, M.D.; Heiling, V.; Miles, J.M. )

    1990-01-01

    The accuracy of non-steady-state equations for measuring changes in free fatty acid rate of appearance (Ra) is unknown. In the present study, endogenous lipolysis (traced with ({sup 14}C)-linoleate) was pharmacologically suppressed in six conscious mongrel dogs. A computer-responsive infusion pump was then used to deliver an intravenous oleic acid emulsion in both constant and linear gradient infusion modes. Both non-steady-state equations with various effective volumes of distribution (V) and steady-state equations were used to measure oleate Ra (({sup 14}C)oleate). Endogenous lipolysis did not change during the experiment. When oleate Ra increased in a linear gradient fashion, only non-steady-state equations with a large (150 ml/kg) V resulted in erroneous values (9% overestimate, P less than 0.05). In contrast, when oleate Ra decreased in a similar fashion, steady-state and standard non-steady-state equations (V = plasma volume = 50 ml/kg) overestimated total oleate Ra (18 and 7%, P less than 0.001 and P less than 0.05, respectively). Overall, non-steady-state equations with an effective V of 90 ml/kg (1.8 x plasma volume) allowed the most accurate estimates of oleate Ra.

  2. Criteria for shear banding in time-dependent flows of complex fluids.

    PubMed

    Moorcroft, Robyn L; Fielding, Suzanne M

    2013-02-22

    We study theoretically the onset of shear banding in the three most common time-dependent rheological protocols: step stress, finite strain ramp (a limit of which gives a step strain), and shear startup. By means of a linear stability analysis we provide a fluid-universal criterion for the onset of banding for each protocol, which depends only on the shape of the experimentally measured time-dependent rheological response function, independent of the constitutive law and internal state variables of the particular fluid in question. Our predictions thus have the same highly general status, in these time-dependent flows, as the widely known criterion for banding in steady state (of negatively sloping shear stress vs shear rate). We illustrate them with simulations of the Rolie-Poly model of polymer flows, and the soft glassy rheology model of disordered soft solids. PMID:23473166

  3. Steady and Unsteady Numerical Solution of Generalized Newtonian Fluids Flow by Runge-Kutta method

    NASA Astrophysics Data System (ADS)

    Keslerová, R.; Kozel, K.; Prokop, V.

    2010-09-01

    In this paper the laminar viscous incompressible flow for generalized Newtonian (Newtonian and non-Newtonian) fluids is considered. The governing system of equations is the system of Navier-Stokes equations and the continuity equation. The steady and unsteady numerical solution for this system is computed by finite volume method combined with an artificial compressibility method. For time discretization the explicit multistage Runge-Kutta numerical scheme is considered. Steady state solution is achieved for t→∞ using steady boundary conditions and followed by steady residual behavior. The dual time-stepping method is considered for unsteady computation. The high artificial compressibility coefficient is used in the artificial compressibility method applied in the dual time τ. The steady and unsteady numerical results of Newtonian and non-Newtonian (shear thickening and shear thinning) fluids flow in the branching channel are presented.

  4. Vectorization on the star computer of several numerical methods for a fluid flow problem

    NASA Technical Reports Server (NTRS)

    Lambiotte, J. J., Jr.; Howser, L. M.

    1974-01-01

    A reexamination of some numerical methods is considered in light of the new class of computers which use vector streaming to achieve high computation rates. A study has been made of the effect on the relative efficiency of several numerical methods applied to a particular fluid flow problem when they are implemented on a vector computer. The method of Brailovskaya, the alternating direction implicit method, a fully implicit method, and a new method called partial implicitization have been applied to the problem of determining the steady state solution of the two-dimensional flow of a viscous imcompressible fluid in a square cavity driven by a sliding wall. Results are obtained for three mesh sizes and a comparison is made of the methods for serial computation.

  5. Numerical analysis of the turbulent fluid flow through valves. Geometrical aspects influence at different positions

    NASA Astrophysics Data System (ADS)

    Rigola, J.; Aljure, D.; Lehmkuhl, O.; Pérez-Segarra, C. D.; Oliva, A.

    2015-08-01

    The aim of this paper is to carry out a group of numerical experiments over the fluid flow through a valve reed, using the CFD&HT code TermoFluids, an unstructured and parallel object-oriented CFD code for accurate and reliable solving of industrial flows. Turbulent flow and its solution is a very complex problem due to there is a non-lineal interaction between viscous and inertial effects further complicated by their rotational nature, together with the three-dimensionality inherent in these types of flow and the non-steady state solutions. In this work, different meshes, geometrical conditions and LES turbulence models (WALE, VMS, QR and SIGMA) are tested and results compared. On the other hand, the fluid flow boundary conditions are obtained by means of the numerical simulation model of hermetic reciprocating compressors tool, NEST-compressor code. The numerical results presented are based on a specific geometry, where the valve gap opening percentage is 11% of hole diameter and Reynolds numbers given by the one-dimensional model is 4.22 × 105, with density meshes of approximately 8 million CVs. Geometrical aspects related with the orifice's shape and its influence on fluid flow behaviour and pressure drop are analysed in detail, furthermore, flow results for different valve openings are also studied.

  6. Poroelastic analysis of interstitial fluid flow in a single lamellar trabecula subjected to cyclic loading.

    PubMed

    Kameo, Yoshitaka; Ootao, Yoshihiro; Ishihara, Masayuki

    2016-04-01

    Trabecula, an anatomical unit of the cancellous bone, is a porous material that consists of a lamellar bone matrix and interstitial fluid in a lacuno-canalicular porosity. The flow of interstitial fluid caused by deformation of the bone matrix is believed to initiate a mechanical response in osteocytes for bone remodeling. In order to clarify the effect of the lamellar structure of the bone matrix--i.e., variations in material properties--on the fluid flow stimuli to osteocytes embedded in trabeculae, we investigated the mechanical behavior of an individual trabecula subjected to cyclic loading based on poroelasticity. We focused on variations in the trabecular permeability and developed an analytical solution containing both transient and steady-state responses for interstitial fluid pressure in a single trabecular model represented by a multilayered two-dimensional poroelastic slab. Based on the obtained solution, we calculated the pressure and seepage velocity of the interstitial fluid in lacuno-canalicular porosity, within the single trabecula, under various permeability distributions. Poroelastic analysis showed that a heterogeneous distribution of permeability produces remarkable variations in the fluid pressure and seepage velocity in the cross section of the individual trabecula, and suggests that fluid flow stimuli to osteocytes are mostly governed by the value of permeability in the neighborhood of the trabecular surfaces if there is no difference in the average permeability in a single trabecula. PMID:26081726

  7. Autonomous quantum thermal machine for generating steady-state entanglement

    NASA Astrophysics Data System (ADS)

    Bohr Brask, Jonatan; Haack, Géraldine; Brunner, Nicolas; Huber, Marcus

    2015-11-01

    We discuss a simple quantum thermal machine for the generation of steady-state entanglement between two interacting qubits. The machine is autonomous in the sense that it uses only incoherent interactions with thermal baths, but no source of coherence or external control. By weakly coupling the qubits to thermal baths at different temperatures, inducing a heat current through the system, steady-state entanglement is generated far from thermal equilibrium. Finally, we discuss two possible implementations, using superconducting flux qubits or a semiconductor double quantum dot. Experimental prospects for steady-state entanglement are promising in both systems.

  8. Steady-state decoupling and design of linear multivariable systems

    NASA Technical Reports Server (NTRS)

    Thaler, G. J.

    1974-01-01

    A constructive criterion for decoupling the steady states of a linear time-invariant multivariable system is presented. This criterion consists of a set of inequalities which, when satisfied, will cause the steady states of a system to be decoupled. Stability analysis and a new design technique for such systems are given. A new and simple connection between single-loop and multivariable cases is found. These results are then applied to the compensation design for NASA STOL C-8A aircraft. Both steady-state decoupling and stability are justified through computer simulations.

  9. A Note on Equations for Steady-State Optimal Landscapes

    SciTech Connect

    Liu, H.H.

    2010-06-15

    Based on the optimality principle (that the global energy expenditure rate is at its minimum for a given landscape under steady state conditions) and calculus of variations, we have derived a group of partial differential equations for describing steady-state optimal landscapes without explicitly distinguishing between hillslopes and channel networks. Other than building on the well-established Mining's equation, this work does not rely on any empirical relationships (such as those relating hydraulic parameters to local slopes). Using additional constraints, we also theoretically demonstrate that steady-state water depth is a power function of local slope, which is consistent with field data.

  10. Armoring, stability, and transport driven by fluid flow over a granular bed

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin; Kudrolli, Arshad

    2015-03-01

    We discuss experiments investigating the evolution of a granular bed by a fluid flow as a function of shear rate at the fluid-bed interface. This is a model system to investigate a variety of physical examples including wind blowing over sand, sediment transport in rivers, tidal flows interacting with beaches, flows in slurry pipelines, and sand proppants in hydraulic fracturing. In order to examine the onset and entrainment of the granular bed under steady state conditions, we have constructed a novel conical rheometer system which allows a variable amount of shear to be applied to the granular bed. The grain-fluid system is index matched so that we can visualize the grains away from the sides as well as visualize the fluid flow above and below the interface by using fluorescent tracer particles. We demonstrate that the onset of erosion arises as particles rotate out of their stable position highlighting the importance of torque balance to onset. We find significant armoring of the bed, as the bed is sheared by the fluid flow. Above onset, at least three distinct regions of bed mobility can be found. We will discuss the measured integrated granular flux as a function of shear rate and compare them with empirical laws found in the geophysical literature. Supported by NSF Grant Number CBET 1335928.

  11. Development of steady-state model for MSPT and detailed analyses of receiver

    NASA Astrophysics Data System (ADS)

    Yuasa, Minoru; Sonoda, Masanori; Hino, Koichi

    2016-05-01

    Molten salt parabolic trough system (MSPT) uses molten salt as heat transfer fluid (HTF) instead of synthetic oil. The demonstration plant of MSPT was constructed by Chiyoda Corporation and Archimede Solar Energy in Italy in 2013. Chiyoda Corporation developed a steady-state model for predicting the theoretical behavior of the demonstration plant. The model was designed to calculate the concentrated solar power and heat loss using ray tracing of incident solar light and finite element modeling of thermal energy transferred into the medium. This report describes the verification of the model using test data on the demonstration plant, detailed analyses on the relation between flow rate and temperature difference on the metal tube of receiver and the effect of defocus angle on concentrated power rate, for solar collector assembly (SCA) development. The model is accurate to an extent of 2.0% as systematic error and 4.2% as random error. The relationships between flow rate and temperature difference on metal tube and the effect of defocus angle on concentrated power rate are shown.

  12. A Dipole Model for Negative Steady-State Resistance in Excitable Membranes

    PubMed Central

    Hamel, Bernard B.; Zimmerman, Irwin

    1970-01-01

    A dipole model is presented for ion flow in excitable membranes. This model considers the membrane to be composed of two distinct regions: a polar region and a nonpolar region. Further, the construction of an electrodiffusive formalism which takes explicit account of the energy of partition required by an ion for passage from external fluid to nonpolar region is presented. In the polar region a cooperative effect is considered which produces a configurational transition of the polar group dependent only on membrane voltage. A resulting change in voltage drop across the polar group is brought about by this configurational transition. This gives rise to a negative steady-state resistance for the equimolar case, in reasonable agreement with observation. The theory, in addition, is in reasonable accord with nonequimolar ion flow, and provides an explanation for such effects as the following: the intercept of the voltage-current characteristic, the ion membrane concentrations inferred from electrodiffusion theories, and the effects of polyvalent cations PMID:5471696

  13. Steady-state solidification of aqueous ammonium chloride

    NASA Astrophysics Data System (ADS)

    Peppin, S. S. L.; Huppert, Herbert E.; Worster, M. Grae

    We report on a series of experiments in which a Hele-Shaw cell containing aqueous solutions of NH4Cl was translated at prescribed rates through a steady temperature gradient. The salt formed the primary solid phase of a mushy layer as the solution solidified, with the salt-depleted residual fluid driving buoyancy-driven convection and the development of chimneys in the mushy layer. Depending on the operating conditions, several morphological transitions occurred. A regime diagram is presented quantifying these transitions as a function of freezing rate and the initial concentration of the solution. In general, for a given concentration, increasing the freezing rate caused the steady-state system to change from a convecting mushy layer with chimneys to a non-convecting mushy layer below a relatively quiescent liquid, and then to a much thinner mushy layer separated from the liquid by a region of active secondary nucleation. At higher initial concentrations the second of these states did not occur. At lower concentrations, but still above the eutectic, the mushy layer disappeared. A simple mathematical model of the system is developed which compares well with the experimental measurements of the intermediate, non-convecting state and serves as a benchmark against which to understand some of the effects of convection. Movies are available with the online version of the paper.

  14. Fluid dynamics and vibration of tube banks in fluid flow

    SciTech Connect

    Zukauskas, A.; Ulinskas, R.; Katinas, V.

    1988-01-01

    This work presents results derived in fluid dynamics, hydraulic drag and flow-induced vibrations within transverse and yawed tube banks. The studies encompass banks of smooth, rough and finned tubes at Reynolds numbers from 1 to 2x10/sup 6/. Highlighted in the text are fluid dynamic parameters of tube banks measured at inter-tube spaces and tube surfaces.

  15. Value for controlling flow of cryogenic fluid

    DOEpatents

    Knapp, Philip A.

    1996-01-01

    A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.

  16. Fluid Flow Control with Transformation Media

    NASA Astrophysics Data System (ADS)

    Urzhumov, Yaroslav A.; Smith, David R.

    2011-08-01

    We introduce a new concept for the manipulation of fluid flow around three-dimensional bodies. Inspired by transformation optics, the concept is based on a mathematical idea of coordinate transformations and physically implemented with anisotropic porous media permeable to the flow of fluids. In two situations—for an impermeable object placed either in a free-flowing fluid or in a fluid-filled porous medium—we show that the object can be coated with an inhomogeneous, anisotropic permeable medium, such as to preserve the flow that would have existed in the absence of the object. The proposed fluid flow cloak eliminates downstream wake and compensates viscous drag, hinting at the possibility of novel propulsion techniques.

  17. Characterizing the Relationship between Steady State and Response Using Analytical Expressions for the Steady States of Mass Action Models

    PubMed Central

    Loriaux, Paul Michael; Tesler, Glenn; Hoffmann, Alexander

    2013-01-01

    The steady states of cells affect their response to perturbation. Indeed, diagnostic markers for predicting the response to therapeutic perturbation are often based on steady state measurements. In spite of this, no method exists to systematically characterize the relationship between steady state and response. Mathematical models are established tools for studying cellular responses, but characterizing their relationship to the steady state requires that it have a parametric, or analytical, expression. For some models, this expression can be derived by the King-Altman method. However, King-Altman requires that no substrate act as an enzyme, and is therefore not applicable to most models of signal transduction. For this reason we developed py-substitution, a simple but general method for deriving analytical expressions for the steady states of mass action models. Where the King-Altman method is applicable, we show that py-substitution yields an equivalent expression, and at comparable efficiency. We use py-substitution to study the relationship between steady state and sensitivity to the anti-cancer drug candidate, dulanermin (recombinant human TRAIL). First, we use py-substitution to derive an analytical expression for the steady state of a published model of TRAIL-induced apoptosis. Next, we show that the amount of TRAIL required for cell death is sensitive to the steady state concentrations of procaspase 8 and its negative regulator, Bar, but not the other procaspase molecules. This suggests that activation of caspase 8 is a critical point in the death decision process. Finally, we show that changes in the threshold at which TRAIL results in cell death is not always equivalent to changes in the time of death, as is commonly assumed. Our work demonstrates that an analytical expression is a powerful tool for identifying steady state determinants of the cellular response to perturbation. All code is available at http://signalingsystems.ucsd.edu/models-and-code/ or

  18. An Operational Definition of the Steady State in Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Barnsley, E. A.

    1990-01-01

    The Briggs-Haldane assumption is used as the basis for the development of a kinetic model for enzyme catalysis. An alternative definition of the steady state and examples of realistic mechanisms are provided. (KR)

  19. VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1986-01-01

    This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.

  20. Frictional flow characteristics of microconvective flow for variable fluid properties

    NASA Astrophysics Data System (ADS)

    Kumar, Rajan; Mahulikar, Shripad P.

    2015-12-01

    The present work investigates the frictional flow characteristics of water flowing through a circular microchannel with variable fluid properties. The computational analysis reveals the importance of physical mechanisms due to variations in thermophysical fluid properties such as viscosity μ(T), thermal conductivity k(T) and density ρ(T) and also their contribution in the characteristics of frictional flow. Various combinations of thermophysical fluid properties have been used to find their effects on fluid friction. It is observed that the fluid friction attains the maximum value in the vicinity of the inlet and diminishes along the flow. The main reasons are attributed to this, (1) near the inlet, there is a flow undevelopment (the reverse process of flow development) due to μ(T) variation. (2) The viscosity of the water decreases with increasing temperature, which reduces fluid friction along the flow. It is noted that the skin friction coefficient (cf) reduces with increasing fluid mean velocity for a same value of constant wall heat flux ({q}{{w}}\\prime\\prime ). In the vicinity of the inlet, the deviation of Poiseuille number (Po) from 64 (constant properties solution) is also investigated in this paper. Additionally, the relationship between Reynolds number (Re) and cf, Po and Re have been proposed for different combinations of thermophysical fluid properties. This investigation also shows that the effect of fluid property variations on pressure drop is highly significant for microconvective water flow.

  1. Measurement of Diffusion in Flowing Complex Fluids

    PubMed Central

    Leonard, Edward F.; Aucoin, Christian P.; Nanne, Edgar E.

    2006-01-01

    A microfluidic device for the measurement of solute diffusion as well as particle diffusion and migration in flowing complex fluids is described. The device is particularly suited to obtaining diffusivities in such fluids, which require a desired flow state to be maintained during measurement. A method based on the Loschmidt diffusion theory and short times of exposure is presented to allow calculation of diffusivities from concentration differences in the flow streams leaving the cell. PMID:18560469

  2. Impact of aquifer desaturation on steady-state river seepage

    NASA Astrophysics Data System (ADS)

    Morel-Seytoux, Hubert J.; Miracapillo, Cinzia; Mehl, Steffen

    2016-02-01

    Flow exchange between surface and ground water is of great importance be it for beneficial allocation and use of the water resources or for the proper exercise of water rights. That exchange can take place under a saturated or unsaturated flow regime. Which regimes occur depend on conditions in the vicinity of the interactive area. Withdrawals partially sustained by seepage may not bring about desaturation but greater amounts eventually will. The problem considered in this paper deals only with the steady-state case. It is meant as a first step toward a simple, yet accurate and physically based treatment of the transient situation. The primary purpose of the article is to provide simple criteria for determination of the initiation of desaturation in an aquifer originally in saturated hydraulic connection with a river or a recharge area. The extent of the unsaturated zone in the aquifer will increase with increasing withdrawals while at the same time the seepage rate from the river increases. However the seepage increase will stop once infiltration takes place strictly by gravity in the aquifer and is no longer opposed by the capillary rise from the water table below the riverbed. Following desaturation simple criteria are derived and simple analytical formulae provided to estimate the river seepage based on the position of the water table mound below the clogging layer and at some distance away from the river bank. They fully account for the unsaturated flow phenomena, including the existence of a drainage entry pressure. Two secondary objectives were to verify that (1) the assumption of uniform vertical flow through a clogging layer and that (2) the approximation of the water table mound below the seepage area as a flat surface were both reasonably legitimate. This approach will be especially advantageous for the implementation of the methodology in large-scale applications of integrated hydrologic models used for management.

  3. Reactive fluid flow models and applications to diagenesis, mineral deposits and crustal rocks

    SciTech Connect

    Lasaga, A.C.; Rye, D.M.

    1992-01-01

    This project is obtaining new results and developing new techniques along three directions: (a) experimental studies of water-rock reactions (b) theoretical modeling of coupled fluid flow-chemical reactions and (c) isotopic measurements of both regional isotopic compositions as well as isotopic zoning within individual mineral grains. An important part of the project is the integration of all three approaches into a concerted effort aimed at new understanding of the behavior of fluids and their chemical reactions with minerals in the crust. The experimental work pioneered in our laboratories has produced several startling results on the kinetic rate laws of silicate-water reactions. The approach to equilibrium has been shown to follow a non-linear path in rate constant-free energy space. This behavior is quite distinct from most work done by geochemists on modeling silicate behavior in diagenesis, weathering, hydrothermal systems or environmental models. The work to date has involved albite, kaolinite and gibbsite, which together with silica would comprise a kinetic granite system prototype''. The theoretical modeling has produced a state-of-the-art computer code that can efficiently handle dozens of chemical species, many mineral reactions and variations of fluid flow properties and temperature in both one and two dimensions. In addition the code can now treat oxidation-reduction reactions and isotopic exchange between fluids and minerals. The main thrust of the theoretical modeling has been to develop further the differences between equilibrium, steady state, and non-steady-state behavior of the chemical evolution of open fluid-rock systems. These differences have not been fully appreciated in previous models.

  4. Reactive fluid flow models and applications to diagenesis, mineral deposits and crustal rocks. Progress report

    SciTech Connect

    Lasaga, A.C.; Rye, D.M.

    1992-10-01

    This project is obtaining new results and developing new techniques along three directions: (a) experimental studies of water-rock reactions (b) theoretical modeling of coupled fluid flow-chemical reactions and (c) isotopic measurements of both regional isotopic compositions as well as isotopic zoning within individual mineral grains. An important part of the project is the integration of all three approaches into a concerted effort aimed at new understanding of the behavior of fluids and their chemical reactions with minerals in the crust. The experimental work pioneered in our laboratories has produced several startling results on the kinetic rate laws of silicate-water reactions. The approach to equilibrium has been shown to follow a non-linear path in rate constant-free energy space. This behavior is quite distinct from most work done by geochemists on modeling silicate behavior in diagenesis, weathering, hydrothermal systems or environmental models. The work to date has involved albite, kaolinite and gibbsite, which together with silica would comprise a kinetic ``granite system prototype``. The theoretical modeling has produced a state-of-the-art computer code that can efficiently handle dozens of chemical species, many mineral reactions and variations of fluid flow properties and temperature in both one and two dimensions. In addition the code can now treat oxidation-reduction reactions and isotopic exchange between fluids and minerals. The main thrust of the theoretical modeling has been to develop further the differences between equilibrium, steady state, and non-steady-state behavior of the chemical evolution of open fluid-rock systems. These differences have not been fully appreciated in previous models.

  5. Reactive Fluid Flow and Applications to Diagenesis, Mineral Deposits, and Crustal Rocks

    SciTech Connect

    Rye, Danny M.; Bolton, Edward W.

    2002-11-04

    The objective is to initiate new: modeling of coupled fluid flow and chemical reactions of geologic environments; experimental and theoretical studies of water-rock reactions; collection and interpretation of stable isotopic and geochemical field data at many spatial scales of systems involving fluid flow and reaction in environments ranging from soils to metamorphic rocks. Theoretical modeling of coupled fluid flow and chemical reactions, involving kinetics, has been employed to understand the differences between equilibrium, steady-state, and non-steady-state behavior of the chemical evolution of open fluid-rock systems. The numerical codes developed in this project treat multi-component, finite-rate reactions combined with advective and dispersive transport in multi-dimensions. The codes incorporate heat, mass, and isotopic transfer in both porous and fractured media. Experimental work has obtained the kinetic rate laws of pertinent silicate-water reactions and the rates of Sr release during chemical weathering. Ab-initio quantum mechanical techniques have been applied to obtain the kinetics and mechanisms of silicate surface reactions and isotopic exchange between water and dissolved species. Geochemical field-based studies were carried out on the Wepawaug metamorphic schist, on the Irish base-metal sediment-hosted ore system, in the Dalradian metamorphic complex in Scotland, and on weathering in the Columbia River flood basalts. The geochemical and isotopic field data, and the experimental and theoretical rate data, were used as constraints on the numerical models and to determine the length and time scales relevant to each of the field areas.

  6. Mechanism of Non-Steady State Dissolution of Goethite in the Presence of Siderophores

    NASA Astrophysics Data System (ADS)

    Reichard, P. U.; Kretzschmar, R.; Kraemer, S. M.

    2003-12-01

    Iron is an essential micronutrient for almost all known organisms. Bacteria, fungi, and graminaceous plants are capable of exuding siderophores as part of an iron acquisition strategy. The production of these strong iron chelating ligands is induced by iron limited conditions. Grasses under iron stress, for example, exude phytosiderophores into the rhizosphere in a special diurnal rhythm (Roemheld and Marschner 1986). A few hours after sunrise the exudation starts, culminates around noon and is shut down again until about 4 hours after noon. The phytosiderophores diffuse into the rhizosphere (Marschner et al. 1986) and are passively back transported to the plants by advective flow induced by high transpiration around noon. Despite a fairly short residence time of the phytosiderophores in the rhizosphere, it is a very effective strategy for iron acquisition. To investigate the effect of such pulse inputs of siderophores on iron acquisition, we studied the dissolution mechanism of goethite (alpha-FeOOH), a mineral phase common in soils, under non-steady state conditions. In consideration of the chemical complexity of the rhizosphere, we also investigated the effect of other organic ligands commonly found in the rhizosphere (e. g. oxalate) on the dissolution kinetics. The dissolution experiments were conducted in batch reactors with a constant goethite solids concentration of 2.5 g/l, an ionic strength of 0.01 M, a pH of 6 and 100 microM oxalate. To induce non-steady state conditions, 3 mM phytosiderophores were added to a batch after the goethite-oxalate suspension reacted for a certain time period. Before the siderophore was added to the goethite-oxalate suspension, no dissolution of iron was observed. But, with the addition of the siderophore, a high rate was observed for the iron mobilization under these non-steady state conditions that subsequently was followed by a slow steady state dissolution rate. The results of these non-steady state experiments are very

  7. Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density

    DOEpatents

    Hamel, William R.

    1984-01-01

    This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.

  8. An implicit steady-state initialization package for the RELAP5 computer code

    SciTech Connect

    Paulsen, M.P.; Peterson, C.E.; Odar, F.

    1995-08-01

    A direct steady-state initialization (DSSI) method has been developed and implemented in the RELAP5 hydrodynamic analysis program. It provides a means for users to specify a small set of initial conditions which are then propagated through the remainder of the system. The DSSI scheme utilizes the steady-state form of the RELAP5 balance equations for nonequilibrium two-phase flow. It also employs the RELAP5 component models and constitutive model packages for wall-to-phase and interphase momentum and heat exchange. A fully implicit solution of the linearized hydrodynamic equations is implemented. An implicit coupling scheme is used to augment the standard steady-state heat conduction solution for steam generator use. It solves the primary-side tube region energy equations, heat conduction equations, wall heat flux boundary conditions, and overall energy balance equation as a coupled system of equations and improves convergence. The DSSI method for initializing RELAP5 problems to steady-state conditions has been compared with the transient solution scheme using a suite of test problems including; adiabatic single-phase liquid and vapor flow through channels with and without healing and area changes; a heated two-phase test bundle representative of BWR core conditions; and a single-loop PWR model.

  9. Steady State Turbulent Transport in Magnetic Fusion Plasmas

    SciTech Connect

    Lee, W. W.; Ethier, S.; Kolesnikov, R.; Wang, W. X.; Tang, W. M.

    2007-12-20

    For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers.

  10. On the time to steady state: insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Goren, L.; Willett, S.; McCoy, S. W.; Perron, J.

    2013-12-01

    How fast do fluvial landscapes approach steady state after an application of tectonic or climatic perturbation? While theory and some numerical models predict that the celerity of the advective wave (knickpoint) controls the response time for perturbations, experiments and other landscape evolution models demonstrate that the time to steady state is much longer than the theoretically predicted response time. We posit that the longevity of transient features and the time to steady state are controlled by the stability of the topology and geometry of channel networks. Evolution of a channel network occurs by a combination of discrete capture events and continuous migration of water divides, processes, which are difficult to represent accurately in landscape evolution models. We therefore address the question of the time to steady state using the DAC landscape evolution model that solves accurately for the location of water divides, using a combination of analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC also includes an explicit capture criterion. We have tested fundamental predictions from DAC and show that modeled networks reproduce natural network characteristics such as the Hack's exponent and coefficient and the fractal dimension. We define two steady-state criteria: a topographic steady state, defined by global, pointwise steady elevation, and a topological steady state defined as the state in which no further reorganization of the drainage network takes place. Analyzing block uplift simulations, we find that the time to achieve either topographic or topological steady state exceeds by an order of magnitude the theoretical response time of the fluvial network. The longevity of the transient state is the result of the area feedback, by which, migration of a divide changes the local contributing area. This change propagates downstream as a slope adjustment, forcing further divide migrations

  11. Visualizing vector field topology in fluid flows

    NASA Technical Reports Server (NTRS)

    Helman, James L.; Hesselink, Lambertus

    1991-01-01

    Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.

  12. Preconditioning and the limit to the incompressible flow equations

    NASA Technical Reports Server (NTRS)

    Turkel, E.; Fiterman, A.; Vanleer, B.

    1993-01-01

    The use of preconditioning methods to accelerate the convergence to a steady state for both the incompressible and compressible fluid dynamic equations are considered. The relation between them for both the continuous problem and the finite difference approximation is also considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Hence, the steady state of the preconditioned system is the same as the steady state of the original system. For finite difference methods the preconditioning can change and improve the steady state solutions. An application to flow around an airfoil is presented.

  13. Pseudo-compressibility methods for the incompressible flow equations

    NASA Technical Reports Server (NTRS)

    Turkel, Eli; Arnone, A.

    1993-01-01

    Preconditioning methods to accelerate convergence to a steady state for the incompressible fluid dynamics equations are considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Thus the steady state of the preconditioned system is the same as the steady state of the original system. The method is compared to other types of pseudo-compressibility. For finite difference methods preconditioning can change and improve the steady state solutions. An application to viscous flow around a cascade with a non-periodic mesh is presented.

  14. Experimental transonic steady state and unsteady pressure measurements on a supercritical wing during flutter and forced discrete frequency oscillations

    NASA Technical Reports Server (NTRS)

    Piette, Douglas S.; Cazier, Frank W., Jr.

    1989-01-01

    Present flutter analysis methods do not accurately predict the flutter speeds in the transonic flow region for wings with supercritical airfoils. Aerodynamic programs using computational fluid dynamic (CFD) methods are being developed, but these programs need to be verified before they can be used with confidence. A wind tunnel test was performed to obtain all types of data necessary for correlating with CFD programs to validate them for use on high aspect ratio wings. The data include steady state and unsteady aerodynamic measurements on a nominal stiffness wing and a wing four times that stiffness. There is data during forced oscillations and during flutter at several angles of attack, Mach numbers, and tunnel densities.

  15. Method and Apparatus for Measuring Fluid Flow

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1997-01-01

    Method and apparatus for making measurements on fluids related to their complex permeability are disclosed. A microwave probe is provided for exposure to the fluids. The probe can be non-intrusive or can also be positioned at the location where measurements are to be made. The impedance of the probe is determined. in part. by the complex dielectric constant of the fluids at the probe. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids. Multiple probes may be selectively positioned to monitor the behavior of the fluids including their flow rate. Fluids may be identified as between two or more different fluids as well as multiple phases of the same fluid based on differences between their complex permittivities.

  16. Fluid flow behavior through rock-slab micromodels in relation to other micromodels

    SciTech Connect

    Mahmood, S.M.

    1990-06-01

    A new technique was developed to visualize fluid movement and rock/fluid interaction in the pores of reservoir rocks. It consists of fabricating micromodels containing rock slabs of 3 millimeter thickness and using sensitive image acquisition, recording, and enhancement systems to perform time-and-motion analyses of high-speed events. Displacement experiments were performed using these rock-slab micromodels and two other types of micromodels: an etched-glass network model (HEG) and a chemically consolidated grain-packed (cryolite) model. The tests included several cycles of imbibition and drainage. Comprehensive steady-state tests were also performed in the two simplified (HEG and cryolite) models, which included two-phase and three-phase flows with gas/water, oil/water, and gas/oil/water systems. The results were compared to understand the scope and limitations of these micromodel techniques. 24 refs., 8 figs.

  17. A Steady-State Mass Transfer Model of Removing CPAs from Cryopreserved Blood with Hollow Fiber Modules

    PubMed Central

    Ding, Weiping; Zhou, Xiaoming; Heimfeld, Shelly; Reems, Jo-Anna; Gao, Dayong

    2010-01-01

    Hollow fiber modules are commonly used to conveniently and efficiently remove cryoprotective agents (CPAs) from cryopreserved cell suspensions. In this paper, a steady-state model coupling mass transfers across cell and hollow fiber membranes is theoretically developed to evaluate the removal of CPAs from cryopreserved blood using hollow fiber modules. This steady-state model complements the unsteady-state model which was presented in our previous study. As the steady-state model, unlike the unsteady-state model, can be used to evaluate the effect of ultrafiltration flow rates on the clearance of CPAs. The steady-state model is validated by experimental results and then is compared with the unsteady-state model. Using the steady-state model, the effects of ultrafiltration flow rates, NaCl concentrations in dialysate, blood flow rates and dialysate flow rates on CPA concentration variation and cell volume response are investigated in detail. According to the simulative results, the osmotic damage of red blood cells (RBCs) can easily be reduced by increasing ultrafiltration flow rates, increasing NaCl concentrations in dialysate, increasing blood flow rates or decreasing dialysate flow rates. PMID:20524740

  18. Overall reaction concept in premixed, laminar, steady-state flames. I - Stoichiometries

    SciTech Connect

    Coffee, T.P.; Kotlar, A.J.; Miller, M.S.

    1983-12-01

    Combustion processes normally involve a large number of chemical species, related through a complicated reaction network and strongly interacting with the fluid flow and molecular transport. A common approach is to simplify the system by assuming a single overall or 'global' reaction. In this paper, the adequacy of the overall reaction model for premixed, laminar, one-dimensional, steady-state flames are examined. The procedure is first to solve the equations governing the detailed chemistry model. The overall reaction rate parameters are then found from a least squares fit of the heat release profile. The overall reaction model equation can then be solved and the solution compared with the detailed model solution. This is done for three different flames over a range of stoichiometries. The single-reaction model gives quite accurate results for flame speed. The temperature and heat release profiles are also generally accurate. The accuracy of the major species profiles varies from fair to good. However, the optimal overall kinetic parameters do vary with stoichiometry. 17 references.

  19. Overall reaction concept in premixed, laminar, steady-state flames. I. Stoichiometries. Final report

    SciTech Connect

    Coffee, T.P.; Kotlar, A.J.; Miller, M.S.

    1983-10-01

    Combustion processes normally involve a large number of chemical species, related through a complicated reaction network and strongly interacting with the fluid flow and molecular transport. A common approach is to simplify the system by assuming a single overall or global reaction. In this paper, we will examine the adequacy of the overall reaction model for premixed, laminar, one-dimensional, steady-state flames. Our procedure is to first solve the equations governing the detailed chemistry model. The overall reaction rate parameters are then found from a least squares fit of the heat release profile. The overall reaction model equation can then be solved and the solution compared with the detailed model solution. This is done for three different flames over a range of stoichiometries. The single reaction model gives quite accurate results for flame speed. The temperature and heat release profiles are also generally accurate. The accuracy of the major species profiles varies from fair to good. However, the optimal overall kinetic parameters do vary with stoichiometry.

  20. Forced Convective Thermal Transport and Flow Stability Characteristics in Near-Critical Supercritical Fluid

    NASA Astrophysics Data System (ADS)

    Hasan, Nusair; Farouk, Bakhtier

    2013-11-01

    Forced convective thermal transport characteristics of supercritical carbon dioxide in vertical flow are numerically investigated. A tube with a circular cross-section and heated side-wall is considered. A real-fluid model for representing the thermo-physical properties of the supercritical fluid along with the fully compressible form of the Navier-Stokes equations and an implicit time-marching scheme is used to solve the problem. Thermo-physical properties of near-critical supercritical fluids show diverging characteristics. Large variations of density of near-critical supercritical fluid in forced convective flow can induce thermo-hydraulic instability similar to density wave oscillations. The developed numerical model is used for studying the effect of geometrical parameters of the tube, wall heat flux and pressure on steady-state convective thermal transport as well as the stability behavior of the supercritical fluid near its critical point. The enhancement or deterioration of heat transfer caused by the temperature-induced variation of physical properties (especially specific heat) is also investigated, as well as the effect of buoyancy on the forced convective flow.

  1. There are no steady state processes in compaction

    NASA Astrophysics Data System (ADS)

    Dysthe, D. K.

    2003-04-01

    Compaction of sediments is normally thought to start with grain sliding and cataclastic grain crushing. Then the ductile dissolution-precipitation creep processes take over. Modeling of this process normally neglects all collective rearrangement processes and regard simple packings of grains that slowly deform by steady state pressure solution creep. From simple geometrical reasoning we know, however that imperfect packings of plastic grains must undergo rearrangement during compaction. Such rearrangement will drastically alter the microscopic, or "primitive processes" of compaction. Recent research has questioned the fundamental mechanisms ("primitive processes") of dissolution-precipitation creep. Do grain contacts heal or dissolve? Why is there asymmetric dissolution? Does pressure solution creep in single contacts ever reach steady state? Can transient free face dissolution feed back on pressure solution creep in the contacts? The emerging radical change in our understanding of dissolution-precipitation creep as a dynamic, transient process is driven by new experiments and reevaluation of the fundamental theory. The same change in viewpoint is necessary on all time and length scales. I will present experiments [1-8] and simulations [9-11] of complex compaction behaviour [1], transient primitive processes of pressure solution creep in the contacts [2-4], free face dissolution [5] and crack healing [6]. I will also show that macroscopic observation of compaction shows smooth, universal behaviour [7]. Microscopic observation of compaction shows transient collective behaviour at all scales. Evidence points in the direction that compaction is dominated by transient processes with interacting instabilities. The interaction causes intermittency or switching between processes. A new, more complex theory of compaction is necessary to explain how the cooperative microscopic phenomena contribute to the simple, universal, macroscopic behaviour. 1. Uri, L., et. al., in

  2. Viscoelastic fluid flow in inhomogeneous porous media

    SciTech Connect

    Siginer, D.A.; Bakhtiyarov, S.I.

    1996-09-01

    The flow of inelastic and viscoelastic fluids in two porous media of different permeabilities and same priority arranged in series has been investigated both theoretically and experimentally. The fluids are an oil field spacer fluid and aqueous solutions of polyacrylamide. The porous medium is represented by a cylindrical tube randomly packed with glass spheres. Expressions for the friction factor and the resistance coefficient as a function of the Reynolds number have been developed both for shear thinning and viscoelastic fluids based on the linear fluidity and eight constant Oldroyd models, respectively. The authors show that the energy loss is higher if the viscoelastic fluid flows first through the porous medium with the smaller permeability rather than through the section of the cylinder with the larger permeability. This effect is not observed for Newtonian and shear thinning fluids flowing through the same configuration. Energy requirements for the same volume flow rate are much higher than a Newtonian fluid of the same zero shear viscosity as the polymeric solution. Energy loss increases with increasing Reynolds number at a fixed concentration. At a fixed Reynolds number, the loss is a strong function of the concentration and increases with increasing concentration. The behavior of all fluids is predicted qualitatively except the difference in energy requirements.

  3. Method and device for measuring fluid flow

    DOEpatents

    Atherton, Richard; Marinkovich, Phillip S.; Spadaro, Peter R.; Stout, J. Wilson

    1976-11-23

    This invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution.

  4. Autogenic variability and dynamic steady-state in sand-bedded rivers

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; McElroy, B.; Mohrig, D.

    2004-12-01

    In sand-bedded rivers, the local physics of sediment transport produces spatially varying topography that evolves unpredictably in time, even when the structure of the stream-bed varies little in a statistical sense. Understanding autogenic adjustments within trains of bedforms under conditions of steady and uniform flow is necessary before we can predict the response of channel morphology to changes in flow conditions, e.g. the stage-discharge relationship. Also, dunes may coalesce to form bars, which are capable of laterally deflecting flow and ultimately modifying the path and shape of a channel. Bedforms are the link between sediment transport and channel morphology in sandy rivers, and their collective interactions maintain a dynamic steady-state on the river bottom. We document the evolution of fields of dunes under steady flow in the N. Loup River, NE, using topographic maps generated from low-altitude aerial photography. The distributions of bedform height, length and migration rate are broad (coefficient of variation 0.5 for each), but remain stationary in time. Individual bedforms, however, undergo substantial deformation during migration, through interactions with neighboring bedforms and the associated spatially varying sediment flux. Cross-correlation techniques show that the spatial/temporal correlation coefficient of the sediment-fluid interface decays exponentially with migration distance and time. Hence, the dunes themselves are inherently unstable objects and become unrecognizable from their original form after migrating a few wavelengths, corresponding here to a distance of 2 m and a time of 1 hour. If bedload is the dominant style of sediment transport, then sediment flux may be treated as responding instantaneously to the flow field. We build a simple mathematical model in which instantaneous sediment flux is computed locally from a combination of bed elevation and slope, and we deduce the general form of a surface evolution equation for

  5. Engineering fluid flow using sequenced microstructures

    NASA Astrophysics Data System (ADS)

    Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A.; di Carlo, Dino

    2013-05-01

    Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.

  6. Poissonian steady states: From stationary densities to stationary intensities

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2012-10-01

    Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.

  7. Evaluation of a steady state MPD thruster test facility

    SciTech Connect

    Reed, C.B.; Carlson, L.W.; Herman, H.; Doss, E.D.; Kilgore, O.

    1985-01-01

    The successful development of multimegawatt MPD thrusters depends, to a great extent, on testing them under steady state high altitude space conditions. Steady state testing is required to provide thermal characteristics, life cycle, erosion, and other essential data. the major technical obstacle for ground testing of MPD thrusters in a space simulation facility is the inability of state-of-the-art vacuum systems to handle the tremendous pumping speeds required for multimegawatt MPD thrusters. This is true for other types of electric propulsion devices as well. This paper discusses the results of the first phase of an evaluation of steady state MPD thruster test facilities. The first phase addresses the conceptual design of vacuum systems required to support multimegawatt MPD thruster testing. Three advanced pumping system concepts were evaluated and are presented here.

  8. From Steady-State To Cyclic Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Montmitonnet, Pierre

    2007-05-01

    Continuous processes often exhibit a high proportion of steady state, and have been modeled with steady-state formulations for thirty years, resulting in very CPU-time efficient computations. On the other hand, incremental forming processes generally remain a challenge for FEM software, because of the local nature of deformation compared with the size of the part to be formed, and of the large number of deformation steps needed. Among them however, certain semi-continuous metal forming processes can be characterized as periodic, or cyclic. In this case, an efficient computational strategy can be derived from the ideas behind the steady-state models. This will be illustrated with the example of pilgering, a seamless tube cold rolling process.

  9. Fluid/structure interactions. Internal flows

    NASA Astrophysics Data System (ADS)

    Weaver, D. S.

    1991-05-01

    Flow-induced vibrations are found wherever structures are exposed to high velocity fluid flows. Internal flows are usually characterized by the close proximity of solid boundaries. There are surfaces against which separated flows may reattach, or from which pressure disturbances may be reflected resulting in acoustic resonance. When the fluid is a liquid, the close proximity of solid boundaries to a vibrating component can produce very high added mass effects. This paper presents three different experimental studies of flow-induced vibration problems associated with internal flows. The emphasis was on experimental techniques developed for understanding excitation mechanisms. In difficult flow-induced vibration problems, a useful experimental technique is flow visualization using a large scale model and strobe light triggered by the phenomenon being observed. This should be supported by point measurements of velocity and frequency spectra. When the flow excitation is associated with acoustic resonance, the sound can be fed back to enhance or eliminate the instability. This is potentially a very useful tool for studying and controlling fluid-structure interaction problems. Some flow-induced vibration problems involve a number of different excitation mechanisms and care must be taken to ensure that the mechanisms are properly identified. Artificially imposing structural vibrations or acoustic fields may induce flow structures not naturally present in the system.

  10. Apparatus for measuring fluid flow

    DOEpatents

    Smith, J.E.; Thomas, D.G.

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  11. Apparatus for measuring fluid flow

    DOEpatents

    Smith, Jack E.; Thomas, David G.

    1984-01-01

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  12. Directed flow fluid rinse trough

    DOEpatents

    Kempka, Steven N.; Walters, Robert N.

    1996-01-01

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

  13. Directed flow fluid rinse trough

    DOEpatents

    Kempka, S.N.; Walters, R.N.

    1996-07-02

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

  14. Testing density-dependent groundwater models: Two-dimensional steady state unstable convection in infinite, finite and inclined porous layers

    USGS Publications Warehouse

    Weatherill, D.; Simmons, C.T.; Voss, C.I.; Robinson, N.I.

    2004-01-01

    This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA-A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4??2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with

  15. Fluid Flow Within Fractured Porous Media

    SciTech Connect

    Crandall, D.M.; Ahmadi, G.; Smith, D.H.; Bromhal, G.S.

    2006-10-01

    Fractures provide preferential flow paths to subterranean fluid flows. In reservoir scale modeling of geologic flows fractures must be approximated by fairly simple formulations. Often this is accomplished by assuming fractures are parallel plates subjected to an applied pressure gradient. This is known as the cubic law. An induced fracture in Berea sandstone has been digitized to perform numerical flow simulations. A commercially available computational fluid dynamics software package has been used to solve the flow through this model. Single phase flows have been compared to experimental works in the literature to evaluate the accuracy with which this model can be applied. Common methods of fracture geometry classification are also calculated and compared to experimentally obtained values. Flow through regions of the fracture where the upper and lower fracture walls meet (zero aperture) are shown to induce a strong channeling effect on the flow. This model is expanded to include a domain of surrounding porous media through which the flow can travel. The inclusion of a realistic permeability in this media shows that the regions of small and zero apertures contribute to the greatest pressure losses over the fracture length and flow through the porous media is most prevalent in these regions. The flow through the fracture is shown to be the largest contributor to the net flow through the media. From this work, a novel flow relationship is proposed for flow through fractured media.

  16. Descriptive Linear modeling of steady-state visual evoked response

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Junker, A. M.; Kenner, K.

    1986-01-01

    A study is being conducted to explore use of the steady state visual-evoke electrocortical response as an indicator of cognitive task loading. Application of linear descriptive modeling to steady state Visual Evoked Response (VER) data is summarized. Two aspects of linear modeling are reviewed: (1) unwrapping the phase-shift portion of the frequency response, and (2) parsimonious characterization of task-loading effects in terms of changes in model parameters. Model-based phase unwrapping appears to be most reliable in applications, such as manual control, where theoretical models are available. Linear descriptive modeling of the VER has not yet been shown to provide consistent and readily interpretable results.

  17. Steady state decoupling and design of linear multivariable systems

    NASA Technical Reports Server (NTRS)

    Huang, J. Y.; Thaler, G. J.

    1974-01-01

    A constructive criterion for decoupling the steady states of linear multivariable systems is developed. The criterion consists of n(n-1) inequalities with the type numbers of the compensator transfer functions as the unknowns. These unknowns can be chosen to satisfy the inequalities and hence achieve a steady state decoupling scheme. It turns out that pure integrators in the loops play an important role. An extended root locus design method is then developed to take care of the stability and transient response. The overall procedure is applied to the compensation design for STOL C-8A aircraft in the approach mode.

  18. Steady-state entanglement activation in optomechanical cavities

    NASA Astrophysics Data System (ADS)

    Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio

    2014-02-01

    Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.

  19. Steady-state coherent transfer by adiabatic passage.

    PubMed

    Huneke, Jan; Platero, Gloria; Kohler, Sigmund

    2013-01-18

    We propose steady-state electron transport based on coherent transfer by adiabatic passage (CTAP) in a linearly arranged triple quantum dot with leads attached to the outer dots. Its main feature is repeated steering of single electrons from the first dot to the last dot without relevant occupation of the middle dot. The coupling to leads enables a steady-state current, whose shot noise is significantly suppressed provided that the CTAP protocol performs properly. This represents an indication for the direct transfer between spatially separated dots and, thus, may resolve the problem of finding experimental evidence for the nonoccupation of the middle dot. PMID:23373941

  20. Pattern formation in flowing electrorheological fluids.

    PubMed

    von Pfeil, Karl; Graham, Michael D; Klingenberg, Daniel J; Morris, Jeffrey F

    2002-05-01

    A two-fluid continuum model is developed to describe mass transport in electro- and magnetorheological suspensions. The particle flux is related to the field-induced stresses. Solutions of the resulting mass balance show column formation in the absence of flow, and stripe formation when a suspension is subjected simultaneously to an applied electric field and shear flow. PMID:12005727

  1. Instrument continuously measures density of flowing fluids

    NASA Technical Reports Server (NTRS)

    Jacobs, R. B.; Macinko, J.; Miller, C. E.

    1967-01-01

    Electromechanical densitometer continuously measures the densities of either single-phase or two-phase flowing cryogenic fluids. Measurement is made on actual flow. The instrument operates on the principle that the mass of any vibrating system is a primary factor in determining the dynamic characteristics of the system.

  2. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    SciTech Connect

    Vondy, D.R.

    1981-09-01

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity. The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.

  3. Steady state growth of E. Coli in low ammonium environment

    NASA Astrophysics Data System (ADS)

    Kim, Minsu; Deris, Barret; Zhang, Zhongge; Hwa, Terry

    2011-03-01

    Ammonium is the preferred nitrogen source for many microorganisms. In medium with low ammonium concentrations, enteric bacteria turn on the nitrogen responsive (ntr) genes to assimilate ammonium. Two proteins in E. coli, Glutamine synthetase (GS) and the Ammonium/methylammonium transporter AmtB play crucial roles in this regard. GS is the major ammonium assimilation enzyme below 1mM of NH4 + . AmtB is an inner membrane protein that transports NH4 + across the cell membrane against a concentration gradient. In order to study ammonium uptake at low NH4 + concentration at neutral pH, we developed a microfluidic flow chamber that maintains a homogenous nutrient environment during the course of exponential cell growth, even at very low concentration of nutrients. Cell growth can be accurately monitored using time-lapse microscopy. We followed steady state growth down to micro-molar range of NH4 + for the wild type and Δ amtB strains. The wild type strain is able to maintain the growth rate from 10mM down to a few uM of NH4 + , while the mutant exhibited reduced growth below ~ 20 ~uM of NH4 + . Simultaneous characterization of the expression levels of GS and AmtB using fluorescence reporters reveals that AmtB is turned on already at 1mM, but contributes to function only below ~ 30 ~uM in the wild-type. Down to ~ 20 ~uM of NH4 + , E.~coli can compensate the loss of AmtB by GS alone.

  4. Electromagnetic probe technique for fluid flow measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Carl, J. R.

    1994-01-01

    The probes described herein, in various configurations, permit the measurement of the volume fraction of two or more fluids flowing through a pipe. Each probe measures the instantaneous relative dielectric constant of the fluid in immediate proximity. As long as separation of the relative dielectric constant of the fluid is possible, several or even many fluids can be measured in the same flow stream. By using multiple probes, the velocity of each fluid can generally be determined as well as the distribution of each constituent in the pipe. The values are determined by statistical computation. There are many potential applications for probes of this type in industry and government. Possible NASA applications include measurements of helium/hydrazine flow during rocket tests at White Sands, liquid/gas flow in hydrogen or oxygen lines in Orbiter engines, and liquid/gaseous Freon flow in zero gravity tests with the KS135 aircraft at JSC. Much interest has been shown recently by the oil industry. In this a good method is needed to measure the fractions of oil, water, and natural gas flowing in a pipeline and the velocity of each. This particular problem involves an extension of what has been developed to date and our plans to solve this problem will be discussed herein.

  5. 40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 0.08 2 11 C 25 0.05 2 12 C 75 0.05 2 13 C 50 0.05 2 1 Speed terms are defined in 40 CFR part 1065. 2... Exhaust Test Procedures § 86.1363-2007 Steady-state testing with a discrete-mode cycle. This section... taking a sample proportional to the exhaust mass flow during each individual mode of the cycle. This...

  6. 40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 0.08 2 11 C 25 0.05 2 12 C 75 0.05 2 13 C 50 0.05 2 1 Speed terms are defined in 40 CFR part 1065. 2... Exhaust Test Procedures § 86.1363-2007 Steady-state testing with a discrete-mode cycle. This section... taking a sample proportional to the exhaust mass flow during each individual mode of the cycle. This...

  7. Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure

    NASA Astrophysics Data System (ADS)

    Beckermann, C.; Ramadhyani, S.; Viskanta, R.

    1987-05-01

    A numerical and experimental study is performed to analyze the steady-state natural convection fluid flow and heat transfer in a vertical rectangular enclosure that is partially filled with a vertical layer of a fluid-saturated porous medium. The flow in the porous layer is modeled utilizing the Brinkman-Forchheimer-extended Darcy equations. The numerical model is verified by conducting a number of experiments, with spherical glass beads as the porous medium and water and glycerin as the fluids, in rectangular test cells. The agreement between the flow visualization results and temperature measurements and the numerical model is, in general, good. It is found that the amount of fluid penetrating from the fluid region into the porous layer depends strongly on the Darcy (Da) and Rayleigh (Ra) numbers. For a relatively low product of Ra x Da, the flow takes place primarily in the fluid layer, and heat transfer in the porous layer is by conduction only. On other hand, fluid penetration into a relatively highly permeable porous layer has a significant impact on the natural convection flow patterns in the entire enclosure.

  8. Salt loaded heat pipes: steady-state operation and related heat and mass transport

    NASA Astrophysics Data System (ADS)

    Simakin, A.; Ghassemi, A.

    2003-10-01

    Fluids in the deep-seated zones (3.5-4.5 km) of active geothermal zones are known to have increased salinity and acidity that can enhance interaction with surrounding porous rocks. A possible mechanism for brine generation is the separation of the rising magmatic fluid into a gas-like and a liquid-like component. This work illustrates the main features of this mechanism by investigating the conditions for heat pipe convection of natural brines in hydrothermal systems. The well-established heat pipe regime for convection of two-phase pure water (vapor-liquid) in a porous column is extended to the case of boiling brines. In particular, the NaCl-H 2O system is used to model the 1-D reactive flow with dissolution-precipitation in geothermal reservoirs. The quasi steady-state equations of the conservation of matter, Darcy's law for the gas and liquid phases, and the heat balance equation have been examined while neglecting the temporal variation of porosity. A semi-analytical procedure is used to solve these equations for a two-phase fluid in equilibrium with a solid salt. The solution is in the form of the dependence of liquid volume fraction as a function of temperature for different heat fluxes. The solution is separated into two isolated regions by the temperature T=596°C, at the maximum fluid pressure for three-phase (H-L-V) equilibrium. In the case of unsaturated two-phase flow at the reference permeability of porous rocks (3·10 -16 m 2), the maximum heat flux that can be transferred through the porous column via convection is analytically estimated to be 4.3 W/m 2. This is close to the corresponding value for the three-phase case that is numerically calculated to be 6 W/m 2. Due to dissolution (partial leaching of oxide components by acid condensates) and precipitation of salt at the boiling front, heat transfer in a heat pipe in soluble media occurs in a direction opposite to the associated mass transfer. This can cause deep hydrothermal karsting that is

  9. Fundamental Processes of Atomization in Fluid-Fluid Flows

    NASA Technical Reports Server (NTRS)

    McCready, M. J.; Chang, H.-C.; Leighton, D. T.

    2001-01-01

    This report outlines the major results of the grant "Fundamental Processes of Atomization in Fluid-Fluid Flows." These include: 1) the demonstration that atomization in liquid/liquid shear flow is driven by a viscous shear instability that triggers the formation of a long thin sheet; 2) discovery of a new mode of interfacial instability for oscillatory two-layer systems whereby a mode that originates within the less viscous liquid phase causes interfacial deformation as the oscillation proceeds; 3) the demonstration that rivulet formation from gravity front occurs because the local front shape specified by gravity and surface tension changes from a nose to a wedge geometry, thus triggering a large increase in viscous resistance; and 4) extension of the studies on nonlinear wave evolution on falling films and in stratified flow, particularly the evolution towards large-amplitude solitary waves that tend to generate drops.

  10. The Development of Strategies for the Steady State.

    ERIC Educational Resources Information Center

    Wolfman, Brunetta R.; Wolfman, Burton

    1980-01-01

    Presented is a matrix of institution types and institutional characteristics that can be used in planning for the steady state in colleges and universities. Case studies of six institutions are presented: Harvard University, Boston University, Dartmouth College, Colorado College, University of Massachusetts/Boston, and Massachusetts Community…

  11. Steady-State Pharmacokinetics of Bupropion SR in Juvenile Patients

    ERIC Educational Resources Information Center

    Daviss, W. Burleson; Perel, James M.; Rudolph, George R.; Axelson, David A.; Gilchrist, Richard; Nuss, Sharon; Birmaher, Boris; Brent, David A.

    2005-01-01

    Objective: To examine the steady-state pharmacokinetic properties of bupropion sustained release (SR) and their potential developmental differences in youths. Method: Eleven boys and eight girls aged 11 to 17 years old were prescribed bupropion SR monotherapy for attention-deficit/hyperactivity disorder (n = 16) and/or depressive disorders (n =…

  12. Is There More than One Steady State for Nox?

    NASA Technical Reports Server (NTRS)

    Bakas, G.

    1985-01-01

    The study of alternative steady states for nitrogen oxides is discussed: The production of these oxides and the reactions they undergo in the atmosphere are described. The computerized modelling of the atmosphere using a one dimensional time dependent photochemical model is attempted.

  13. Effects of curvature on asymmetric steady states in catalyst particles

    SciTech Connect

    Lucier, B J

    1981-02-01

    The effects of curvature on steady states of chemical catalytic reactions are investigated by studying the cases of the catalytic particle being a spherical or cylindrical shell. Existence and stability of solutions are studied. It is shown that the solutions converge to the solutions for the catalytic slab when the curvature goes to 0 in each case.

  14. Equilibrium Binding and Steady-State Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Dunford, H. Brian

    1984-01-01

    Points out that equilibrium binding and steady-state enzyme kinetics have a great deal in common and that related equations and error analysis can be cast in identical forms. Emphasizes that if one type of problem solution is taught, the other is also taught. Various methods of data analysis are evaluated. (JM)

  15. Steady-State Multiplicity Features of Chemically Reacting Systems.

    ERIC Educational Resources Information Center

    Luss, Dan

    1986-01-01

    Analyzes steady-state multiplicity in chemical reactors, focusing on the use of two mathematical tools, namely, the catastrophe theory and the singularity theory with a distinguished parameter. These tools can be used to determine the maximum number of possible solutions and the different types of bifurcation diagrams. (JN)

  16. Steady State Load Characterization Fact Sheet: 2012 Chevy Volt

    SciTech Connect

    Don Scoffield

    2015-01-01

    This fact sheet characterizes the steady state charging behavior of a 2012 Chevy Volt. Both level 1 charging (120 volt) and level 2 charging (208 volts) is investigated. This fact sheet contains plots of efficiency, power factor, and current harmonics as vehicle charging is curtailed. Prominent current harmonics are also displayed in a histogram for various charge rates.

  17. Steady-State Squeezing in the Micromaser Cavity Field

    NASA Technical Reports Server (NTRS)

    Nayak, N.

    1996-01-01

    It is shown that the radiation field in the presently operated micromaser cavity may be squeezed when pumped with polarized atoms. The squeezing is in the steady state field corresponding to the action similar to that of the conventional micromaser, with the effect of cavity dissipation during entire t(sub c) = tau + t(sub cav).

  18. Steady States of the Parametric Rotator and Pendulum

    ERIC Educational Resources Information Center

    Bouzas, Antonio O.

    2010-01-01

    We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…

  19. Density Functional Theory for Steady-State Nonequilibrium Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Shuanglong; Nurbawono, Argo; Zhang, Chun

    2015-10-01

    We present a density functional theory (DFT) for steady-state nonequilibrium quantum systems such as molecular junctions under a finite bias. Based on the steady-state nonequilibrium statistics that maps nonequilibrium to an effective equilibrium, we show that ground-state DFT (GS-DFT) is not applicable in this case and two densities, the total electron density and the density of current-carrying electrons, are needed to uniquely determine the properties of the corresponding nonequilibrium system. A self-consistent mean-field approach based on two densities is then derived. The theory is implemented into SIESTA computational package and applied to study nonequilibrium electronic/transport properties of a realistic carbon-nanotube (CNT)/Benzene junction. Results obtained from our steady-state DFT (SS-DFT) are compared with those of conventional GS-DFT based transport calculations. We show that SS-DFT yields energetically more stable nonequilibrium steady state, predicts significantly lower electric current, and is able to produce correct electronic structures in local equilibrium under a limiting case.

  20. Combined Steady-State and Dynamic Heat Exchanger Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  1. Fluid flow nozzle energy harvesters

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim

    2015-04-01

    Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.

  2. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow.

    PubMed

    Ryzhov, Evgeny A; Koshel, Konstantin V

    2015-10-01

    In a two-layer quasi-geostrophic approximation, we study the irregular dynamics of fluid particles arising due to two interacting point vortices embedded in a deformation flow consisting of shear and rotational components. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Vortices moving in one layer induce stirring of passive scalars in the other layer. This is of interest since point vortices induce singular velocity fields in the layer they belong to; however, in the other layer, they induce regular velocity fields that generally result in a change in passive particle stirring. If the vortices are located at stagnation points, there are three different types of the fluid flow. We examine how properties of each flow configuration are modified if the vortices are displaced from the stagnation points and thus circulate in the immediate vicinity of these points. To that end, an analysis of the steady-state configurations is presented with an emphasis on the frequencies of fluid particle oscillations about the elliptic stagnation points. Asymptotic relations for the vortex and fluid particle zero-oscillation frequencies are derived in the vicinity of the corresponding elliptic points. By comparing the frequencies of fluid particles with the ones of the vortices, relations between the parameters that lead to enhanced stirring of fluid particles are established. It is also demonstrated that, if the central critical point is elliptic, then the fluid particle trajectories in its immediate vicinity are mostly stable making it harder for the vortex perturbation to induce stirring. Change in the type of the central point to a hyperbolic one enhances drastically the size of the chaotic dynamics region. Conditions on the type of the central critical point also ensue from the derived asymptotic relations. PMID:26520074

  3. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow

    SciTech Connect

    Ryzhov, Evgeny A.; Koshel, Konstantin V.

    2015-10-15

    In a two-layer quasi-geostrophic approximation, we study the irregular dynamics of fluid particles arising due to two interacting point vortices embedded in a deformation flow consisting of shear and rotational components. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Vortices moving in one layer induce stirring of passive scalars in the other layer. This is of interest since point vortices induce singular velocity fields in the layer they belong to; however, in the other layer, they induce regular velocity fields that generally result in a change in passive particle stirring. If the vortices are located at stagnation points, there are three different types of the fluid flow. We examine how properties of each flow configuration are modified if the vortices are displaced from the stagnation points and thus circulate in the immediate vicinity of these points. To that end, an analysis of the steady-state configurations is presented with an emphasis on the frequencies of fluid particle oscillations about the elliptic stagnation points. Asymptotic relations for the vortex and fluid particle zero–oscillation frequencies are derived in the vicinity of the corresponding elliptic points. By comparing the frequencies of fluid particles with the ones of the vortices, relations between the parameters that lead to enhanced stirring of fluid particles are established. It is also demonstrated that, if the central critical point is elliptic, then the fluid particle trajectories in its immediate vicinity are mostly stable making it harder for the vortex perturbation to induce stirring. Change in the type of the central point to a hyperbolic one enhances drastically the size of the chaotic dynamics region. Conditions on the type of the central critical point also ensue from the derived asymptotic relations.

  4. MEANS FOR VISUALIZING FLUID FLOW PATTERNS

    DOEpatents

    Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.

    1961-05-16

    An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.

  5. Two-fluid equilibrium with flow: FLOW2

    SciTech Connect

    Guazzotto, L.; Betti, R.

    2015-09-15

    The effects of finite macroscopic velocities on axisymmetric ideal equilibria are examined using the two-fluid (ions and electrons) model. A new equilibrium solver, the code FLOW2, is introduced for the two-fluid model and used to investigate the importance of various flow patterns on the equilibrium of tight aspect ratio (NSTX) and regular tokamak (DIII-D) configurations. Several improvements to the understanding and calculation of two-fluid equilibria are presented, including an analytical and numerical proof of the single-fluid and static limits of the two-fluid model, a discussion of boundary conditions, a user-friendly free-function formulation, and the explicit evaluation of velocity components normal to magnetic surfaces.

  6. Electro-osmotic flow in bicomponent fluids

    NASA Astrophysics Data System (ADS)

    Bazarenko, Andrei; Sega, Marcello

    The electroosmotic flow (EOF) is a widely used technique that uses the action of external electric fields on solvated ions to move fluids around in microfluidics devices. For homogeneous fluids, the characteristics of the flow can be well approximated by simple analytical models, but in multicomponent systems such as oil-in-water droplets one has to rely to numerical simulations. The purpose of this study is to investigate physical properties of the EOF in a bicomponent fluid by solving the coupled equations of motions of explicit ions in interaction with a continuous model of the flow. To do so we couple the hydrodynamics equations as solved by a Shan-Chen Lattice-Boltzmann method to the molecular dynamics of the ions. The presence of explicit ions allows us to go beyond the simple Poisson-Boltzmann approximations, and investigate a variety of EOF regimes. ETN-COLLDENSE (H2020-MCSA-ITN-2014, Grant No. 642774).

  7. Tomographic reconstruction of stratified fluid flow.

    PubMed

    Winters, K B; Rouseff, D

    1993-01-01

    A method for imaging a moving fluid is proposed and evaluated by numerical simulation. A cross-section of a three-dimensional fluid is probed by high-frequency acoustic waves from several different directions. Assuming straight-ray geometric acoustics, the time of flight depends on both the scaler sound speed and the vector fluid velocity. By appropriately combining travel times, projections of both the sound speed and the velocity are isolated. The sound speed is reconstructed using the standard filtered backprojection algorithm. Though complete inversion of velocity is not possible, sufficient information is available to recover the component of fluid vorticity transverse to the plane of insonification. A new filtered backprojection algorithm for vorticity is developed and implemented. To demonstrate the inversion procedure, a 3-D stratified fluid is simulated and travel time data are calculated by path integration. These data are then inverted to recover both the scaler sound speed and the vorticity of the evolving flow. PMID:18263153

  8. Steady state temperature profiles in two simulated liquid metal reactor fuel assemblies with identical design specifications

    SciTech Connect

    Levin, A.E.; Carbajo, J.J.; Lloyd, D.B.; Montgomery, B.H.; Rose, S.D.; Wantland, J.L.

    1985-01-01

    Temperature data from steady state tests in two parallel, simulated liquid metal reactor fuel assemblies with identical design specifications have been compared to determine the extent to which they agree. In general, good agreement was found in data at low flows and in bundle-center data at higher flows. Discrepancies in the data wre noted near the bundle edges at higher flows. An analysis of bundle thermal boundary conditions showed that the possible eccentric placement of one bundle within the housing could account for these discrepancies.

  9. Method and Apparatus for Measuring Fluid Flow

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Than X. (Inventor); Carl, James R. (Inventor)

    1995-01-01

    The invention is a method and apparatus for monitoring the presence, concentration, and the movement of fluids. It is based on utilizing electromagnetic measurements of the complex permittivity of the fluids for detecting and monitoring the fluid. More particularly the apparatus uses one or more microwave probes which are placed at the locations where the measurements are to be made. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids, based on their dielectric constant at the probe. The apparatus can be used for multiple purposes including measures of flow rates, turbulence, dispersion, fluid identification, and changes in flow conditions of multiple fluids or multiple states of a single fluid in a flowline or a holding container. The apparatus includes a probe consisting of two electrical conductors separated by an insulator. A radio frequency signal is communicated to the probe and is reflected back from the portion of the probe exposed to the fluid. The radio frequency signal also provides a reference signal. An oscillator generates a second signal which combined with each of the reference signal and the reflected signal to produce signals of lower frequencies to facilitate filtering and amplifying those signals. The two signals are then mixed in a detector to produce an output signal that is representative of the phase and amplitude change caused by the reflection of the signal at the probe exposed to the fluid. The detector may be a dual phase detector that provides two such output signals that are in phase quadrature. A phase shifter may be provided for selectively changing the phase of the reference signal to improve the sensitivity of at least one of the output signals for more accurate readings and/or for calibration purposes. The two outputs that are in quadrature with respect to each other may be simultaneously monitored to account for

  10. Steady-state and dynamic models for particle engulfment during solidification

    NASA Astrophysics Data System (ADS)

    Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.

    2016-06-01

    Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.

  11. Steady-State and Transient Boundary Element Methods for Coupled Heat Conduction

    NASA Technical Reports Server (NTRS)

    Kontinos, Dean A.

    1997-01-01

    Boundary element algorithms for the solution of steady-state and transient heat conduction are presented. The algorithms are designed for efficient coupling with computational fluid dynamic discretizations and feature piecewise linear elements with offset nodal points. The steady-state algorithm employs the fundamental solution approach; the integration kernels are computed analytically based on linear shape functions, linear elements, and variably offset nodal points. The analytic expressions for both singular and nonsingular integrands are presented. The transient algorithm employs the transient fundamental solution; the temporal integration is performed analytically and the nonsingular spatial integration is performed numerically using Gaussian quadrature. A series solution to the integration is derived for the instance of a singular integrand. The boundary-only character of the algorithm is maintained by integrating the influence coefficients from initial time. Numerical results are compared to analytical solutions to verify the current boundary element algorithms. The steady-state and transient algorithms are numerically shown to be second-order accurate in space and time, respectively.

  12. Steady-state flow of solid CO2: preliminary results

    USGS Publications Warehouse

    Durham, William B.; Kirby, Stephen H.; Stern, Laura A.

    1999-01-01

    To help answer the question of how much solid CO2 exists in the Martian south polar cap, we performed a series of laboratory triaxial deformation experiments at constant displacement rate in compression on jacketed cylinders of pure, polycrystalline CO2. Test conditions were temperatures 150 −8 ≤ ε ≤4.3×10−4 s−1. Most of the measurements follow a constitutive law of the form ε = Aσnexp(−Q/RT), where σ is the applied differential stress, R is the gas constant, and the other constants have values as follows: A = 103 86 MPa−ns−1, n = 5.6, and Q = 33 kJ/mol. Solid CO2 is markedly weaker than water ice. Our results suggest that the south polar cap on Mars is unlikely to be predominately solid CO2, because the elevation and estimated age of the cap is difficult to reconcile with the very weak rheology of the material.

  13. Modeling Steady-State Groundwater Flow Using Microcomputer Spreadsheets.

    ERIC Educational Resources Information Center

    Ousey, John Russell, Jr.

    1986-01-01

    Describes how microcomputer spreadsheets are easily adapted for use in groundwater modeling. Presents spreadsheet set-ups and the results of five groundwater models. Suggests that this approach can provide a basis for demonstrations, laboratory exercises, and student projects. (ML)

  14. Second-law irreversibility and phase-space dimensionality loss from time-reversible nonequilibrium steady-state Lyapunov spectra

    NASA Astrophysics Data System (ADS)

    Hoover, W. G.; Posch, H. A.

    1994-03-01

    We consider steady-state nonequilibrium many-body flows of mass and momentum. For several such diffusive and viscous flows we estimate the phase-space strange-attractor Lyapunov dimensions from the complete spectrum of Lyapunov exponents. We vary the number of particles and the number of thermostated degrees of freedom, as well as the deviation from equilibrium. The resulting Lyapunov spectra provide numerical evidence that the fractal dimensionality loss in such systems remains extensive in a properly defined nonequilibrium analog of the equilibrium large-system thermodynamic limit. The data also suggest a variational principle in the vicinity of nonequilibrium steady states.

  15. Fluid Flow in An Evaporating Droplet

    NASA Technical Reports Server (NTRS)

    Hu, H.; Larson, R.

    1999-01-01

    Droplet evaporation is a common phenomenon in everyday life. For example, when a droplet of coffee or salt solution is dropped onto a surface and the droplet dries out, a ring of coffee or salt particles is left on the surface. This phenomenon exists not only in everyday life, but also in many practical industrial processes and scientific research and could also be used to assist in DNA sequence analysis, if the flow field in the droplet produced by the evaporation could be understood and predicted in detail. In order to measure the fluid flow in a droplet, small particles can be suspended into the fluid as tracers. From the ratio of gravitational force to Brownian force a(exp 4)(delta rho)(g)/k(sub B)T, we find that particle's tendency to settle is proportional to a(exp 4) (a is particle radius). So, to keep the particles from settling, the droplet size should be chosen to be in a range 0.1 -1.0 microns in experiments. For such small particles, the Brownian force will affect the motion of the particle preventing accurate measurement of the flow field. This problem could be overcome by using larger particles as tracers to measure fluid flow under microgravity since the gravitational acceleration g is then very small. For larger particles, Brownian force would hardly affect the motion of the particles. Therefore, accurate flow field could be determined from experiments in microgravity. In this paper, we will investigate the fluid flow in an evaporating droplet under normal gravity, and compare experiments to theories. Then, we will present our ideas about the experimental measurement of fluid flow in an evaporating droplet under microgravity.

  16. Messinian Salinity Crisis and basin fluid flow

    NASA Astrophysics Data System (ADS)

    Bertoni, Claudia; Cartwight, Joe

    2014-05-01

    Syn- and post-depositional movement of fluids through sediments is one of the least understood aspects in the evolution of a basin. The conventional hydrostratigraphic view on marine sedimentary basins assumes that compactional and meteoric groundwater fluid circulation drives fluid movement and defines its timing. However, in the past few years, several examples of instantaneous and catastrophic release of fluids have been observed even through low-permeability sediments. A particularly complex case-study involves the presence of giant salt bodies in the depocentres of marine basins. Evaporites dramatically change the hydrostratigraphy and fluid-dynamics of the basin, and influence the P/T regimes, e.g. through changes in the geothermal gradient and in the compaction of underlying sediments. Our paper reviews the impact of the Messinian Salinity Crisis (MSC) and evaporites on fluid flow in the Mediterranean sub-basins. The analysis of geological and geophysical sub-surface data provides examples from this basin, and the comparison with analogues in other well-known evaporitic provinces. During the MSC, massive sea-level changes occurred in a relatively limited time interval, and affected the balance of fluid dynamics, e.g. with sudden release or unusual trapping of fluids. Fluid expulsion events are here analysed and classified in relation to the long and short-term effects of the MSC. Our main aim is to build a framework for the correct identification of the fluid flow-related events, and their genetic mechanisms. On basin margins, where evaporites are thin or absent, the sea-level changes associated with the MSC force a rapid basinward shift of the mixing zone of meteoric/gravity flow and saline/compactional flow, 100s-km away from its pre-MSC position. This phenomenon changes the geometry of converging flows, creates hydraulic traps for fluids, and triggers specific diagenetic reactions in pre-MSC deep marine sediments. In basin-centre settings, unloading and

  17. Activity of synchronized cells of a steady-state biofilm recirculated reactor during xenobiotic biodegradation.

    PubMed Central

    Ascon-Cabrera, M A; Thomas, D; Lebeault, J M

    1995-01-01

    The maintenance of a steady-state biofilm in a continuous-flow fixed-bed reactor, as a consequence of the reproduction-detachment of cells (an interfacial cell physiology phenomenon of steady-state biofilm) during the biodegradation of 2,4,6-trichlorophenol by Pseudomonas cells, was determined. After cell adhesion on an open-pore glass support, the biofilm was formed in a packed-bed recirculated reactor. After the steady-state biofilm was reached, the mechanisms of the interfacial cell detachment (at the biofilm-liquid interface) were determined. It was established that (i) the hydrophobicity of immobilized sessile cells (parent cells) increased (from 50 to 80%) as the dilution rate increased, while the hydrophobicity of detached suspended cells (daughter cells) remained constant (about 45%); and (ii) the immediately detached suspended cells showed a synchronized growth in about three generations. These results indicate that (i) the immobilized sessile and suspended detached cells grew synchronically at the end and at the beginning of the cell cycle, respectively; and (ii) the hydrophobicity difference of immobilized sessile and suspended detached cells permitted the cells detachment. Therefore, it is probable that independent of shear stress (due to recirculated flow), the synchronized growth and hydrophobicity of cells (which vary during the cell cycle) are the main factors permitting the maintenance of a steady-state xenobiotic-degrading biofilm reactor (in which the overall accumulation of biofilm is determined by the average growth rate of the biofilm cells minus the rate of detachment of cells from the biofilm). PMID:7793923

  18. Fluid flow meter for measuring the rate of fluid flow in a conduit

    NASA Technical Reports Server (NTRS)

    White, P. R. (Inventor)

    1986-01-01

    A tube fluid flow rate meter consists of a reservoir divided by flexible diaphragm into two separate isolated compartments. The incoming and outgoing tubes open into the compartments. The orifice is sized to allow maximum tube fluid flow. Opposing compression springs are secured within the two compartments on opposite sides of the orifice to maintain orifice position when the tube fluid pressure is zero. A tapered element is centered in, and extends through the orifice into the compartment, leaving an annular opening between the element and the perimeter of the oriface. The size varies as the diaphragm flexes with changes in the tube fluid pressure to change the fluid flow through the opening. The light source directs light upon the element which in turn scatters the light through the opening into the compartment. The light detector in the compartment senses the scattered light to generate a signal indicating the amount of fluid.

  19. Method and apparatus for controlling fluid flow

    DOEpatents

    Miller, J.R.

    1980-06-27

    A method and apparatus for precisely controlling the rate (and hence amount) of fluid flow are given. The controlled flow rate is finely adjustable, can be extremely small (on the order of microliter-atmospheres per second), can be adjusted to zero (flow stopped), and is stable to better than 1% with time. The dead volume of the valve can be made arbitrarily small, in fact essentially zero. The valve employs no wearing mechanical parts (including springs, stems, or seals). The valve is finely adjustable, has a flow rate dynamic range of many decades, can be made compatible with any fluid, and is suitable for incorporation into an open or closed loop servo-control system.

  20. Fluid flow along faults in carbonate rocks

    NASA Astrophysics Data System (ADS)

    Romano, Valentina; Battaglia, Maurizio; Bigi, Sabina

    2015-04-01

    The study of fluid flow in fractured rocks plays a key role in reservoir management, including CO2 sequestration and waste isolation. We present a mathematical model of fluid flow in a fault zone, based on field data acquired in Majella Mountain, in the Central Apennines (Italy). The Majella is a thrust related, asymmetric, box shaped anticline. The mountain carbonate outcrops are part of a lower Cretaceous-Miocene succession, covered by a siliciclastic sequence of lower Pliocene age. We study a fault zone located in the Bolognano Formation (Oligo-Miocene age) and exposed in the Roman Valley Quarry near the town of Lettomanoppello, in the northern sector of the Majella Mountain. This is one of the best places in the Apennines to investigate a fault zone and has been the subject of numerous field studies. Faults are mechanical and permeability heterogeneities in the upper crust, so they strongly influence fluid flow. The distribution of the main components (core, damage zone) can lead a fault zone to act as a conduit, a barrier or a combined conduit-barrier system. We integrated existing and our own structural surveys of the area to better identify the major fault features (e.g., kind of fractures, statistical properties, geometry and pertrophysical characteristics). Our analytical model describe the Bolognano Formation using a dual porosity/dual permeability model: global flow occurs through the fracture network only, while rock matrix contain the majority of fluid storage and provide fluid drainage to the fractures. Pressure behavior is analyzed by examining the pressure drawdown curves, the derivative plots and the effects of the characteristic parameters. The analytical model has been calibrated against published data on fluid flow and pressure distribution in the Bolognano Formation.

  1. Steady state volcanism: Evidence from eruption histories of polygenetic volcanoes

    SciTech Connect

    Wadge, G.

    1982-05-10

    Some volcanoes erupt magma at average rates which are constant over periods of many years, even through this magma may appear in a complex series of eruptions. This constancy of output is tested by construction of a curve of cumulative volume of erupted magma, which is linear for steady state volcanism, and whose gradient defines the steady state rate Q/sub s/s. The assumption is made that Q/sub s/s is the rate at which magma is supplied to these polygenetic volcanoes. Five general types of eruptive behavior can be distinguished from the cumulative volume studied. These types are interpreted in terms of a simple model of batches of magma rising buoyantly through the crust and interacting with a small-capacity subvolcanic magma reservoir. Recognition of previous steady state behavior at a volcano may enable the cumulative volume curve to be used empirically as a constraint on the timing and volume of the next eruption. The steady state model thus has a limited predictive capability. With the exception of Kilauea (O/sub s/s = 4m/sup 3/ s/sup -1/) all the identified steady state volcanoes have values of Q/sub s/s of a few tenths of one cubic meter per second. These rates are consistent with the minimum flux rates required by theoretical cooling models of batches of magma traversing the crust. The similarity of these Q/sub s/s values of volcanoes (producing basalt, andesite, and dacite magmas) in very different tectonic settings suggests that the common factors of crustal buoyancy forces and the geotherm-controlled cooling rates control the dynamics of magma supply through the crust. Long-term dormancy at active volcanoes may be a manifestation of the steady accumulation of magma in large crustal reservoirs, a process that complements the intermittent periods of steady state output at the surface. This possibility has several implications, the most important of which is that it provides a constraint on the supply rate of new magma to the bases of plutons.

  2. Comparison of Steady State Method and Transient Methods for Water Permeability Measurement in Low Permeability Rocks

    NASA Astrophysics Data System (ADS)

    Boulin, P. F.; Bretonnier, P.; Gland, N.

    2010-12-01

    Very low permeability geomaterials (order of nanoDarcy (10-21 m2)), such as clays rocks, are studied for many industrial applications such as production from unconventional reserves of oil and gas, CO2 geological storage and deep geological disposal of high-level long-lived nuclear wastes. For these last two applications, clay efficiency as barrier relies mainly on their very low permeability. Laboratory measurement of low permeability to water (below 10-19 m2) remains a technical challenge. Some authors argue that steady state methods are irrelevant due to the time required to stabilize water fluxes in such low permeability media. Most of the authors measuring low permeabilities use a transient technique called pulse decay. This study aims to compare objectively these different types of permeability tests performed on a single clay sample. For the steady state method, a high precision pump was used to impose a pressure gradient and to measure the small resulting water flow rate at steady state. We show that with a suitable set-up, the steady state method enables to measure a very low permeability of 8 10-22 m2 in a period of three days. For a comparable duration, the pulse decay test, most commonly used for such low permeability measurements, provides only an average estimate of the permeability. Permeability measurements by pulse decay require to perform simulations to interpret the pressure relaxation signals. Many uncertainties remain such as the determination of the reservoirs storage factor, micro leakage effect, or the determination of the initial pulse pressure. All these uncertainties have a very significant impact on the determination of sample permeability and specific storage. Opposite to the wide-spread idea that transient techniques are required to measure very low permeability, we show that direct steady state measurement of water permeability with suitable equipments can be much faster and more accurate than measurement by pulse decay, especially in

  3. Fluid Flow with Logger Pro

    NASA Astrophysics Data System (ADS)

    Fairman, Stephen J.; Johnson, Joseph A.; Walkiewicz, Thomas A.

    2003-09-01

    Graphical analysis of experimental data that exhibit exponential behavior is typically postponed at many institutions until students are able to understand the theory underlying the concept of radioactive decay or of RC time constants in ac circuits. In 1960 Smithson and Pinkston described a laboratory exercise that uses the flow of water from a vertical column through a long horizontal capillary tube as a source of data that models radioactive decay. Many institutions have used this experiment simply as an early introduction to exponential behavior without reference to radioactive decay or ac circuits. Greenslade2 recently described a modification of this experiment to demonstrate the concept of secular equilibrium in radioactive decay. This paper presents results of similar experiments, but visual measurements are replaced in this work by data obtained with modern sensors interfaced to a computer. Experiments are described from simple exponential decay to an analogue of the complex interactions of three nuclides in a radioactive-series decay chain.

  4. Eddy flows in a fluid layer

    NASA Astrophysics Data System (ADS)

    Zavolzhenskii, M. V.

    1982-09-01

    Boussinesq equations are used in studying the spectral problem of the stability loss in the equilibrium state of a rotating layer of viscous fluid subjected to temperature inversion. It is shown that this loss can take the form of eddy flows localized around the axis of rotation. It is noted that flows of this type have properties similar to those of waterspouts, tornados, and other vortices.

  5. Automated analysis for fluid flow topology

    NASA Technical Reports Server (NTRS)

    Helman, James; Hesselink, Lambertus

    1989-01-01

    A new approach for visualizing vector data sets was developed by reducing the original vector field to a set of critical points and their connections, and was applied to fluid flow data sets. The critical point representation allows for considerable reduction in the data complexity. The representations are displayed as surfaces which are much simpler than the original data set, yet retain all the pertinent flow topology information. It is suggested that topological representations may be useful for database comparison.

  6. Maximal mixing by incompressible fluid flows

    NASA Astrophysics Data System (ADS)

    Seis, Christian

    2013-12-01

    We consider a model for mixing binary viscous fluids under an incompressible flow. We prove the impossibility of perfect mixing in finite time for flows with finite viscous dissipation. As measures of mixedness we consider a Monge-Kantorovich-Rubinstein transportation distance and, more classically, the H-1 norm. We derive rigorous a priori lower bounds on these mixing norms which show that mixing cannot proceed faster than exponentially in time. The rate of the exponential decay is uniform in the initial data.

  7. Advanced designs for fluid flow visualization

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Research was carried out on existing and new designs for minimally intrusive measurement of flow fields in the Geophysical Fluid Flow Cell and the proposed Atmospheric General Circulation Experiment. The following topics are discussed: (1) identification and removal of foreign particles, (2) search for higher dielectric photochromic solutions, (3) selection of uv light source, (4) analysis of refractive techniques and (5) examination of fresnel lens applicability.

  8. Geophysical Fluid Flow Cell (GFFC) Simulation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    These simulations of atmospheric flow use the same experimental parameters but started with slightly different initial conditions in the model. The simulations were part of data analysis for the Geophysical Fluid Flow Cell (GFFC), a planet in a test tube apparatus flown on Spacelab to mimic the atmospheres on gas giant planets and stars. (Credit: Dr. Tim Miller of Global Hydrology and Climate Center at the Marshall Space Flight Center)

  9. TopoDrive and ParticleFlow--Two Computer Models for Simulation and Visualization of Ground-Water Flow and Transport of Fluid Particles in Two Dimensions

    USGS Publications Warehouse

    Hsieh, Paul A.

    2001-01-01

    This report serves as a user?s guide for two computer models: TopoDrive and ParticleFlow. These two-dimensional models are designed to simulate two ground-water processes: topography-driven flow and advective transport of fluid particles. To simulate topography-driven flow, the user may specify the shape of the water table, which bounds the top of the vertical flow section. To simulate transport of fluid particles, the model domain is a rectangle with overall flow from left to right. In both cases, the flow is under steady state, and the distribution of hydraulic conductivity may be specified by the user. The models compute hydraulic head, ground-water flow paths, and the movement of fluid particles. An interactive visual interface enables the user to easily and quickly explore model behavior, and thereby better understand ground-water flow processes. In this regard, TopoDrive and ParticleFlow are not intended to be comprehensive modeling tools, but are designed for modeling at the exploratory or conceptual level, for visual demonstration, and for educational purposes.

  10. TEMPEST/N33.5. Computational Fluid Dynamics Package For Incompressible, 3D, Time Dependent Pro

    SciTech Connect

    Trent, Dr.D.S.; Eyler, Dr.L.L.

    1991-04-01

    TEMPESTN33.5 provides numerical solutions to general incompressible flow problems with coupled heat transfer in fluids and solids. Turbulence is created with a k-e model and gas, liquid or solid constituents may be included with the bulk flow. Problems may be modeled in Cartesian or cylindrical coordinates. Limitations include incompressible flow, Boussinesq approximation, and passive constituents. No direct steady state solution is available; steady state is obtained as the limit of a transient.

  11. Development and steady states of transverse dunes: A numerical analysis of dune pattern coarsening and giant dunes

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clément; Rozier, Olivier

    2015-10-01

    We investigate the development and steady states of transverse dunes for ranges of flow depths and velocities using a cellular automaton dune model. Subsequent to the initial bed instability, dune pattern coarsening is driven by bed form interactions. Collisions lead to two types of coalescence associated with upstream or downstream dominant dunes. In addition, a single collision-ejection mechanism enhances the exchange of mass between two adjacent bed forms (throughpassing dunes). The power law increases in wavelength and amplitude exhibit the same exponents, which are independent of flow properties. Contrary to the wavelength, dune height is limited not only by flow depth but also by the strength of the flow. Superimposed bed forms may propagate and continuously destabilize the largest dunes. We identify three classes of steady state transverse dune fields according to the periodicity in crest-to-crest spacing and the mechanism of size limitation. In all cases, the steady state is reached and maintained through the dynamic equilibrium between flow strength and dune aspect ratio. In the limit of low flow strength, where it becomes the primary factor of size limitation, the bed shear stress in the dune trough regions is close to its critical value for motion inception. Comparisons with natural dune fields suggest that many of them may have reached a steady state. Finally, we infer that the sedimentary patterns in the model may be used to bring new constraints on the development of modern and ancient dune fields.

  12. Finite scale equations for compressible fluid flow

    SciTech Connect

    Margolin, Len G

    2008-01-01

    Finite-scale equations (FSE) describe the evolution of finite volumes of fluid over time. We discuss the FSE for a one-dimensional compressible fluid, whose every point is governed by the Navier-Stokes equations. The FSE contain new momentum and internal energy transport terms. These are similar to terms added in numerical simulation for high-speed flows (e.g. artificial viscosity) and for turbulent flows (e.g. subgrid scale models). These similarities suggest that the FSE may provide new insight as a basis for computational fluid dynamics. Our analysis of the FS continuity equation leads to a physical interpretation of the new transport terms, and indicates the need to carefully distinguish between volume-averaged and mass-averaged velocities in numerical simulation. We make preliminary connections to the other recent work reformulating Navier-Stokes equations.

  13. The Geophysical Fluid Flow Cell Experiment

    NASA Technical Reports Server (NTRS)

    Hart, J. E.; Ohlsen, D.; Kittleman, S.; Borhani, N.; Leslie, F.; Miller, T.

    1999-01-01

    The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.

  14. Cryogenic fluid flow instabilities in heat exchangers

    NASA Technical Reports Server (NTRS)

    Fleming, R. B.; Staub, F. W.

    1969-01-01

    Analytical and experimental investigation determines the nature of oscillations and instabilities that occur in the flow of two-phase cryogenic fluids at both subcritical and supercritical pressures in heat exchangers. Test results with varying system parameters suggest certain design approaches with regard to heat exchanger geometry.

  15. Volcanic termor: Nonlinear excitation by fluid flow

    NASA Astrophysics Data System (ADS)

    Julian, Bruce R.

    1994-06-01

    A nonlinear process analogous to the excitation mechanism of musical wind instruments and human vocal cords can explain many characteristics of volcanic tremor, including (1) periodic and 'chaotic' oscillations, with peaked and irregular spectra respectively, (2) rapid pulsations in eruptions occurring at the same frequency as tremor, (3) systematic changes in tremor amplitude as channel geometry evolves during an eruption, (4) the period doubling reported for Hawaiian deep tremor, and (5) the fact that the onset of termor can be either gradual or abrupt. Volcanic 'long-period' earthquakes can be explained as oscillations excited by transient disturbances produced by nearby earthquakes, fluid heterogeneity, or changes in channel geometry, when the magma flow rate is too low to excite continuous tremor. A simple lumped-parameter tremor model involving the flow of an incompressible viscous fluid through a channel with movable elastic walls leads to a third-order system of nonlinear ordinary differential equations. For different driving fluid pressures, numerical solutions exhibit steady flow, simple limit-cycle oscillations, a cascade of period-doubling subharmonic bifurcations, and chaotic oscillations controlled by a strange attractor of Rossler type. In this model, tremor occurs most easily at local constrictions, and fluid discharge is lower than would occur in unstable steady flow.

  16. A numerical model of deformation and fluid-flow in an evolving thrust wedge

    NASA Astrophysics Data System (ADS)

    Strayer, Luther M.; Hudleston, Peter J.; Lorig, Loren J.

    2001-06-01

    To investigate deformation and fluid-flow in an actively deforming tectonic wedge, we model the evolution of a large, two-dimensional (100 km long, 5 km thick), mechanically and hydrologically homogeneous and isotropic pile of sedimentary strata that is deformed to become a thrust wedge. We compare both 'dry' and 'wet' cases, in order to illustrate: (1) the relative importance of fluids on wedge evolution, and (2) the effect of brittle deformation on fluid-flow. We use an elastic-plastic constitutive relation, including a Mohr-Coulomb failure criterion and a non-associated flow rule, and coupled fluid flow, with bulk rock properties that approximate typical foreland sedimentary strata. Simulations are made both with and without dilation. The model is fully dynamic, but inertial forces remain small. Results show that deformation within the wedge is accommodated by reverse-slip movement on shear bands, which migrate in both directions through the wedge as both fore- and back-thrusts. The model has features predicted by the critical-taper theory: (1) overall wedge geometry; (2) crudely self-similar growth during evolution; (3) more intense deformation toward the rear of the wedge. The models show strong overall in-sequence faulting behavior with major thrusts isolating relatively undeformed packages, which are moved in a piggyback manner upon the active thrusts. Intermittent out-of-sequence faulting does however occur, in order to maintain the wedge taper. Fluid-flow in the deforming wedge is dominated by topography, but is also strongly affected by dilational plastic deformation. In all simulations, there is focused fluid flow within fault zones. When mechanical time-stepping is shut off (uncoupled), flow systems evolve to steady-state where inflow equals outflow. By subtracting the two 'states' we isolate the mechanical fluid response from the total coupled system response. The mechanical fluid response is manifest as contours of head and pressure difference and

  17. Three-dimensional mathematical modeling of fluid flow in slab tundishes and its verification with water model experiments

    NASA Astrophysics Data System (ADS)

    Yeh, J.-L.; Hwang, W.-S.; Chou, C.-L.

    1992-10-01

    A three-dimensional mathematical model has been developed based on the incorporation of a computational fluid dynamics technique, called SOLA-SURF, and the K-ɛ turbulence model. Numerical solutions of the three-dimensional turbulent Navier-Stokes equations and the K and ɛ equations together with the free surface treatment are presented to study the turbulent flow behavior of molten steel in tundishes. Computed results describing the three-dimensional flow field, particle path lines, residence time distribution curve during steady-state operation are presented. The values of t min, t peak, and t mean derived from the residence time distribution curve are used to evaluate the effects of using various combinations of flow control devices such as dams, weirs, and dams with a hole in the flow field. The computed results were compared with the experimental data obtained from a full-scale plexiglas/water model of tundish. The comparisons exhibited good consistency.

  18. Persistent Probability Currents in Non-equilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Zia, Royce; Mellor, Andrew; Mobilia, Mauro; Fox-Kemper, Baylor; Weiss, Jeffrey

    For many interesting phenomena in nature, from all life forms to the global climate, the fundamental hypothesis of equilibrium statistical mechanics does not apply. Instead, they are perhaps better characterized by non-equilibrium steady states, evolving with dynamical rules which violate detailed balance. In particular, such dynamics leads to the existence of non-trivial, persistent probability currents - a principal characteristic of non-equilibrium steady states. In turn, they give rise to the notion of 'probability angular momentum'. Observable manifestations of such abstract concepts will be illustrated in two distinct contexts: a heterogeneous nonlinear voter model and our ocean heat content. Supported in part by grants from the Bloom Agency (Leeds, UK) and the US National Science Foundation: OCE-1245944. AM acknowledges the support of EPSRC Industrial CASE Studentship, Grant No. EP/L50550X/1.

  19. Nonequilibrium Steady States of a Stochastic Model System.

    NASA Astrophysics Data System (ADS)

    Zhang, Qiwei

    We study the nonequilibrium steady state of a stochastic lattice gas model, originally proposed by Katz, Lebowitz and Spohn (Phys. Rev. B 28: 1655 (1983)). Firstly, we solve the model on some small lattices exactly in order to see the general dependence of the steady state upon different parameters of the model. Nextly, we derive some analytical results for infinite lattice systems by taking some suitable limits. We then present some renormalization group results for the continuum version of the model via field theoretical techniques, the supersymmetry of the critical dynamics in zero field is also explored. Finally, we report some very recent 3-D Monte Carlo simulation results, which have been obtained by applying Multi-Spin-Coding techniques on a CDC vector supercomputer - Cyber 205 at John von Neumann Center.

  20. Steady States in Fermionic Interacting Dissipative Floquet Systems

    NASA Astrophysics Data System (ADS)

    Seetharam, Karthik; Bardyn, Charles; Lindner, Netanel; Rudner, Mark; Refael, Gil

    The possibility to drive quantum systems periodically in time offers unique ways to deeply modify their fundamental properties, as exemplified by Floquet topological insulators. It also opens the door to a variety of non-equilibrium effects. Resonant driving fields, in particular, lead to excitations which can expose the system to heating. We previously demonstrated that the analog of thermal states can be achieved and controlled in a fermionic Floquet system in the presence of phonon scattering, spontaneous emission, and an energy filtered fermionic bath. However, interactions play an important role in thermalization and present additional sources of heating. We analyze the effects of weak interactions in the presence of dissipation and the role of coherences in determining the steady state of the driven system. Interactions generically create additional excitations and, in contrast to phonons, may sustain inter-Floquet-band coherences at steady state.

  1. Steady-state spin squeezing generation in diamond nanostructures

    NASA Astrophysics Data System (ADS)

    Ma, Yong-Hong; Zhang, Xue-Feng

    2014-04-01

    As one kind of many body entangled states, spin squeezed states can be used to implement the high precise measurement beyond the standard quantum limit. Inspired by the novel spin squeezing scheme based on phonon-induced spin-spin interactions [S. D. Bennett et al., Phys. Rev. Lett. 110, 156402 (2013), 10.1103/PhysRevLett.110.156402], we reexamine the steady-state behaviors for the spin ensemble in diamond nanostructures by exerting a controllable microwave field. By using the phase-space approach we calculate analytically fluctuations of collective spin operators. We find that there is bistability and spin squeezing for the steady-state spin ensemble, despite the mechanical damping considered. Moreover, our work shows that bistability and spin squeezing can be controlled by microwave field and Zeeman splitting. The present scheme can be used to increase the stability of spin clocks, magnetometers, and other measurements based on spin-spin interaction in diamond nanostructures.

  2. Analysis of slow transitions between nonequilibrium steady states

    NASA Astrophysics Data System (ADS)

    Mandal, Dibyendu; Jarzynski, Christopher

    2016-06-01

    Transitions between nonequilibrium steady states obey a generalized Clausius inequality, which becomes an equality in the quasistatic limit. For slow but finite transitions, we show that the behavior of the system is described by a response matrix whose elements are given by a far-from-equilibrium Green–Kubo formula, involving the decay of correlations evaluated in the nonequilibrium steady state. This result leads to a fluctuation-dissipation relation between the mean and variance of the nonadiabatic entropy production, Δ {{s}\\text{na}} . Furthermore, our results extend—to nonequilibrium steady states—the thermodynamic metric structure introduced by Sivak and Crooks for analyzing minimal-dissipation protocols for transitions between equilibrium states.

  3. Turnover of messenger RNA: Polysome statistics beyond the steady state

    NASA Astrophysics Data System (ADS)

    Valleriani, A.; Ignatova, Z.; Nagar, A.; Lipowsky, R.

    2010-03-01

    The interplay between turnover or degradation and ribosome loading of messenger RNA (mRNA) is studied theoretically using a stochastic model that is motivated by recent experimental results. Random mRNA degradation affects the statistics of polysomes, i.e., the statistics of the number of ribosomes per mRNA as extracted from cells. Since ribosome loading of newly created mRNA chains requires some time to reach steady state, a fraction of the extracted mRNA/ribosome complexes does not represent steady state conditions. As a consequence, the mean ribosome density obtained from the extracted complexes is found to be inversely proportional to the mRNA length. On the other hand, the ribosome density profile shows an exponential decrease along the mRNA for prokaryotes and becomes uniform in eukaryotic cells.

  4. Steady-state current transfer and scattering theory.

    PubMed

    Ben-Moshe, Vered; Rai, Dhurba; Skourtis, Spiros S; Nitzan, Abraham

    2010-08-01

    The correspondence between the steady-state theory of current transfer and scattering theory in a system of coupled tight-binding models of one-dimensional wires is explored. For weak interwire coupling both calculations give nearly identical results, except at singular points associated with band edges. The effect of decoherence in each of these models is studied using a generalization of the Liouville-von Neuman equation suitable for steady-state situations. An example of a single impurity model is studied in detail, leading to a lattice model of scattering off target that affects both potential scattering and decoherence. For an impurity level lying inside the energy band, the transmission coefficient diminishes with increasing dephasing rate, while the opposite holds for impurity energy outside the band. The efficiency of current transfer in the coupled wire system decreases with increasing dephasing. PMID:20707524

  5. Optimal Control of Transitions between Nonequilibrium Steady States

    PubMed Central

    Zulkowski, Patrick R.; Sivak, David A.; DeWeese, Michael R.

    2013-01-01

    Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines. PMID:24386112

  6. Master equation based steady-state cluster perturbation theory

    NASA Astrophysics Data System (ADS)

    Nuss, Martin; Dorn, Gerhard; Dorda, Antonius; von der Linden, Wolfgang; Arrigoni, Enrico

    2015-09-01

    A simple and efficient approximation scheme to study electronic transport characteristics of strongly correlated nanodevices, molecular junctions, or heterostructures out of equilibrium is provided by steady-state cluster perturbation theory. In this work, we improve the starting point of this perturbative, nonequilibrium Green's function based method. Specifically, we employ an improved unperturbed (so-called reference) state ρ̂S, constructed as the steady state of a quantum master equation within the Born-Markov approximation. This resulting hybrid method inherits beneficial aspects of both the quantum master equation as well as the nonequilibrium Green's function technique. We benchmark this scheme on two experimentally relevant systems in the single-electron transistor regime: an electron-electron interaction based quantum diode and a triple quantum dot ring junction, which both feature negative differential conductance. The results of this method improve significantly with respect to the plain quantum master equation treatment at modest additional computational cost.

  7. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  8. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  9. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  10. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  11. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  12. Analysis of steady-state characteristics of bistable laser diodes

    SciTech Connect

    Zhong Lichen; Guo Yili

    1987-05-01

    In this paper we analyze the steady-state characteristics of bistable semiconductor laser diode (BILD). A simple model for optical output of BILD is obtained using nonlinear rate equations for electron and photon densities. This model emphasizes the physical mechanisms and parameters responsible for the bistability, gives the state equation and explains the main features of BILD. Bistability with a very large hysteresis in P/sub 0/-P/sub 4/ characteristics is a distinctive feature of BILD.

  13. Steady state magnetic field configurations for the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.

    1989-01-01

    A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).

  14. Intense steady state neutron source. The CNR reactor

    SciTech Connect

    Difilippo, F.C.; Moon, R.M.; Gambill, W.R.; Moon, R.M.; Primm, R.T. III; West, C.D.

    1986-01-01

    The Center for Neutron Research (CNR) has been proposed in response to the needs - neutron flux, spectrum, and experimental facilities - that have been identified through workshops, studies, and discussions by the neutron-scattering, isotope, and materials irradiation research communities. The CNR is a major new experimental facility consisting of a reactor-based steady state neutron source of unprecedented flux, together with extensive facilities and instruments for neutron scattering, isotope production, materials irradiation, and other areas of research.

  15. Transitional steady states of exchange dynamics between finite quantum systems.

    PubMed

    Jeon, Euijin; Yi, Juyeon; Kim, Yong Woon

    2016-08-01

    We examine energy and particle exchange between finite-sized quantum systems and find a new form of nonequilibrium state. The exchange rate undergoes stepwise evolution in time, and its magnitude and sign dramatically change according to system size differences. The origin lies in interference effects contributed by multiply scattered waves at system boundaries. Although such characteristics are utterly different from those of true steady state for infinite systems, Onsager's reciprocal relation remains universally valid. PMID:27627275

  16. Analytic Steady-State Accuracy of a Spacecraft Attitude Estimator

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    2000-01-01

    This paper extends Farrenkopf's analysis of a single-axis spacecraft attitude estimator using gyro and angle sensor data to include the angle output white noise of a rate-integrating gyro. Analytic expressions are derived for the steady-state pre-update and post-update angle and drift bias variances and for the state update equations. It is shown that only part of the state update resulting from the angle sensor measurement is propagated to future times.

  17. Steady-state superradiance with alkaline-earth-metal atoms

    SciTech Connect

    Meiser, D.; Holland, M. J.

    2010-03-15

    Alkaline-earth-metal-like atoms with ultranarrow transitions open the door to a new regime of cavity quantum electrodynamics. That regime is characterized by a critical photon number that is many orders of magnitude smaller than what can be achieved in conventional systems. We show that it is possible to achieve superradiance in steady state with such systems. We discuss the basic underlying mechanisms as well as the key experimental requirements.

  18. COMPRESSIBLE FLOW, ENTRAINMENT, AND MEGAPLUME

    EPA Science Inventory

    It is generally believed that low Mach number, i.e., low-velocity, flow may be assumed to be incompressible flow. Under steady-state conditions, an exact equation of continuity may then be used to show that such flow is non-divergent. However, a rigorous, compressible fluid-dynam...

  19. Use of cosmogenic 129I to constrain numerical models of fluid flow in marine sediments: Application to the Blake Ridge Hydrate Province

    NASA Astrophysics Data System (ADS)

    Frederick, Jennifer M.; Buffett, Bruce A.

    2013-05-01

    of cosmogenic iodine, 129I, in the pore fluid of marine sediments often indicate that the pore fluid is much older than the host sediment, even when vertical flow due to sediment compaction is taken into account. Old pore fluid has been used in previous studies to argue for pervasive upward fluid flow and a deep methane source for hydrate deposits. Alternatively, old pore fluid age may reflect more complex flow patterns. We use a two-dimensional numerical transport model to account for the effects of topography and fractures on pore fluid pathlines when sediment permeability is anisotropic. We find that fluid focusing can cause significant lateral migration as well as regions where downward flow reverses direction and returns toward the seafloor. Longer pathlines can produce pore fluid ages much older than that expected with a one-dimensional compaction model. For steady-state models with geometry representative of Blake Ridge (USA), a well-studied hydrate province, we find pore fluid ages beneath regions of topography and within fractured zones that are up to 70 Ma old. Our results suggest that the measurements of 129I/127I reflect a mixture of new and old pore fluid. However, old pore fluid need not originate at great depths. Methane within pore fluids can travel laterally several kilometers, implying an extensive source region around the deposit. This type of focusing should aid hydrate formation beneath topographic highs.

  20. Cyclic steady state stress-strain behavior of UHMW polyethylene.

    PubMed

    Krzypow, D J; Rimnac, C M

    2000-10-01

    To increase the long-term performance of total joint replacements, finite element analyses of ultra high molecular weight polyethylene (UHMWPE) components have been conducted to predict the effect of load on the stress and strain distributions occurring on and within these components. Early models incorporated the monotonic behavior of UHMWPE without considering the unloading and cyclic loading behavior. However, UHMWPE components undergo cyclic loading during use and at least two wear damage modes (pitting and delamination) are thought to be associated with the fatigue fracture properties of UHMWPE. The objective of this study was to examine the fully reversed uniaxial tension/compression cyclic steady state stress-strain behavior of UHMWPE as a first step towards developing a cyclic constitutive relationship for UHMWPE. The hypothesis that cycling results in a permanent change in the stress-strain relationship, that is, that the cyclic steady state represents a new cyclically stabilized state, was examined. It was found that, like other ductile polymers, UHMWPE substantially cyclically softens under fully reversed uniaxial straining. More cyclic softening occurred in tension than in compression. Furthermore, cyclic steady state was attained, but not cyclic stability. It is suggested that it may be more appropriate to base a material constitutive relationship for UHMWPE for finite element analyses of components upon a cyclically modified stress-strain relationship. PMID:10966018

  1. Ideal MHD Stability of ITER Steady State Scenarios with ITBs

    SciTech Connect

    F.M. Poli, C.E. Kessel, S. Jardin, J. Manickam, M. Chance, J. Chen

    2011-07-27

    One of ITER goals is to demonstrate feasibility of continuous operations using non-inductive current drive. Two main candidates have been identified for advanced operations: the long duration, high neutron fluency hybrid scenario and the steady state scenario, both operating at a plasma current lower than the reference ELMy scenario [1][2] to minimize the required current drive. The steady state scenario targets plasmas with current 7-10 MA in the flat-top, 50% of which will be provided by the self-generated, pressure-driven bootstrap current. It has been estimated that, in order to obtain a fusion gain Q > 5 at a current of 9 MA, it should be ΒN > 2.5 and H > 1.5 [3]. This implies the presence of an Internal Transport Barrier (ITB). This work discusses how the stability of steady state scenarios with ITBs is affected by the external heating sources and by perturbations of the equilibrium profiles.

  2. Enhanced fluid flow through nanoscale carbon pipes.

    PubMed

    Whitby, Max; Cagnon, Laurent; Thanou, Maya; Quirke, Nick

    2008-09-01

    Recent experimental and theoretical studies demonstrate that pressure driven flow of fluids through nanoscale ( d < 10 nm) carbon pores occurs 4 to 5 orders of magnitude faster than predicted by extrapolation from conventional theory. Here, we report experimental results for flow of water, ethanol, and decane through carbon nanopipes with larger inner diameters (43 +/- 3 nm) than previously investigated. We find enhanced transport up to 45 times theoretical predictions. In contrast to previous work, in our systems, decane flows faster than water. These nanopipes were composed of amorphous carbon deposited from ethylene vapor in alumina templates using a single step fabrication process. PMID:18680352

  3. A Series RCL Circuit Theory for Analyzing Non-Steady-State Water Uptake of Maize Plants

    PubMed Central

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-01-01

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths. PMID:25335512

  4. A series RCL circuit theory for analyzing non-steady-state water uptake of maize plants.

    PubMed

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-01-01

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths. PMID:25335512

  5. A Series RCL Circuit Theory for Analyzing Non-Steady-State Water Uptake of Maize Plants

    NASA Astrophysics Data System (ADS)

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-10-01

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths.

  6. Analytical determination of transition time between transient and steady state water infiltration

    NASA Astrophysics Data System (ADS)

    Lassabatere, Laurent; Angulo-Jaramillo, Rafael; di Prima, Simone; Bagarello, Vincenzo; Iovino, Massimo

    2016-04-01

    The hydraulic characterization of soil hydraulic properties is a prerequisite to the modelling of flow in the vadose zone. Since many years, numerous methods were developed to determine soil hydraulic properties. Many of these methods rely on water infiltration experiments and their analysis using analytical or numerical models. At the beginning, most models were developed for water infiltration at steady state. These models had the advantage to be easy to develop from a theoretical point of view. Yet, many drawbacks remain including the need to wait for a long time, leading to time-consuming experiments, the risk to infiltrate water in large volumes of soil, leading to a response affected by soil variability, and the uncertainty regarding the attainment of steady state (i.e. constant infiltration rate). More recently, infiltration models and mathematical developments addressed the case of consecutive transient and steady states. Yet, one main problem remain. In the field, the operator is never sure about the state of water infiltration data. This paper present analytical formulations for the estimation of a transition time. We consider the model developed by Haverkamp et al. (1994) linking 1D infiltration flux to cumulative infiltration and related approximated expansions. An analytical method based on scaling is proposed to define transition time values in terms of both scaled cumulative infiltration and times. Dimensional times are then calculated for a large variety of soils and initial conditions. These time database can be considered as a relevant tool for the guidance for operators who conduct water infiltration experiments and wants to know when to stop and also for modelers who want to know how to select the data to fit transient or steady state models. Haverkamp, R., Ross, P. J., Smetten, K. R. J., Parlange, J. Y. (1994), Three-dimensional analysis of infiltration from the disc infiltrometer: 2 Physically based infiltration equation. Water Resour. Res

  7. Granular Material Flows with Interstitial Fluid Effects

    NASA Technical Reports Server (NTRS)

    Hunt, Melany L.; Brennen, Christopher E.

    2004-01-01

    The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.

  8. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2010-01-01

    Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.

  9. Flow behaviour of extremely bidisperse magnetizable fluids

    NASA Astrophysics Data System (ADS)

    Susan-Resiga, Daniela; Bica, Doina; Vékás, L.

    2010-10-01

    In this paper we investigated the rheological and magnetorheological behaviours of an extremely bidisperse (nano-micro) magnetizable fluid (sample D1) for comparison of a commercial magnetorheological fluid (MRF-140CG; LORD Co. (USA)) with the same magnetic solid volume fraction, using the Physica MCR-300 rheometer with a 20 mm diameter plate-plate magnetorheological cell (MRD180). D1 sample is a suspension of micrometer range Fe particles in a transformer oil based magnetic fluid as carrier. For both types of samples, the experimental data for zero and non-zero magnetic field conditions were fitted to equations derived from the Newtonian and Cross type flow equations, as well as the Herschel-Bulkley model. The main advantage of both rheological equations for the quantitative description of the magnetic field behaviour of samples is that they can be used in regular CFD codes to compute the flow properties of the magnetorheological fluid and of the bidisperse magnetizable fluid for practical applications.

  10. Ultrasonic fluid flow measurement method and apparatus

    DOEpatents

    Kronberg, J.W.

    1993-10-12

    An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.

  11. Ultrasonic fluid flow measurement method and apparatus

    DOEpatents

    Kronberg, James W.

    1993-01-01

    An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.

  12. 2-Phase Fluid Flow & Heat Transport

    Energy Science and Technology Software Center (ESTSC)

    1993-03-13

    GEOTHER is a three-dimensional, geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. Itmore » can simulate heat transport and the flow of compressed water, two-phase mixtures, and superheated steam in porous media over a temperature range of 10 to 300 degrees C. In addition, it can treat the conversion from single to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials.« less

  13. Monotectic composite growth with fluid flow

    NASA Astrophysics Data System (ADS)

    Stöcker, C.; Ratke, L.

    It is a well-known fluid-mechanical phenomenon that thermocapillary forces induce surface convection on a fluid-fluid interface. This so-called Marangoni convection depends on the variation of the surface energy along the interface. In our present work we focus our attention on the evolution of a fibrous monotectic microstructure with liquid L 2 fibers. We will show, that the Marangoni convection has a strong influence on the transport of solute in front of the solidification front, despite the flow induced by density differences. The resulting flow field affects the constitutional undercooling and therefore the mean undercooling of a monotectic solidification front. In a previous paper we discussed qualitatively the influence of fluid flow on the microstructure evolution of composite monotetic growth (C. Stöcker, L. Ratke, J. Crystal Growth 203 (1999) 582). We introduced an analytical model that takes the density differences of the phases and the surface convection on the L 1-L 2 surface into consideration. With this extended Jackson and Hunt theory for composite monotectic growth we derived a characteristic equation for the inter-rod distance depending on solidification velocity and temperature gradient. In this paper we develop a more accurate model. We solve numerically the diffusion equation coupled with the Navier-Stokes equation in the L 1 phase to find the minimal undercooling for a given velocity and temperature gradient. We derive a Jackson and Hunt diagram and show that the fluid flow leads to a strong dependence of the inter-rod distance on the temperature gradient opposite to eutectic solidification.

  14. Modeling Tools Predict Flow in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."

  15. Slip mechanisms in complex fluid flows.

    PubMed

    Hatzikiriakos, Savvas G

    2015-10-28

    The classical no-slip boundary condition of fluid mechanics is not always a valid assumption for the flow of several classes of complex fluids including polymer melts, their blends, polymer solutions, microgels, glasses, suspensions and pastes. In fact, it appears that slip effect in these systems is the rule and not the exemption. The occurrence of slip complicates the analysis of rheological data, although it provides new opportunities to understand their behavior in restricted environments delineating additional molecular mechanisms i.e. entropic restrictions due to limitations in the number of molecular conformations. This article discusses these complexities and provides future research opportunities. PMID:26345121

  16. A consistent model for fluid distribution, viscosity distribution, and flow-thermal structure in subduction zone

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shun-suke; Iwamori, Hikaru

    2016-05-01

    Water plays crucial roles in the subduction zone dynamics affecting the thermal-flow structure through the fluid processes. We aim to understand what controls the dynamics and construct a model to solve consistently fluid generation, fluid transport, its reaction with the solid and resultant viscosity, and thermal-flow structure. We highlight the effect of mechanical weakening of rocks associated with hydration. The viscosity of serpentinite (ηserp) in subduction zones critically controls the flow-thermal structure via extent of mechanical coupling between the subducting slab and overlying mantle wedge. When ηserp is greater than 1021 Pa s, the thermal-flow structure reaches a steady state beneath the volcanic zone, and the melting region expands until Cin (initial water content in the subducting oceanic crust) reaches 3 wt %, and it does not expand from 3 wt %. On the other hand, when ηserp is less than 1019 Pa s, the greater water dependence of viscosity (expressed by a larger fv) confines a hot material to a narrower channel intruding into the wedge corner from a deeper part of the back-arc region. Consequently, the overall heat flux becomes less for a larger fv. When ageba (age of back-arc basin as a rifted lithosphere) = 7.5 Ma, the increase in fv weakens but shifts the melting region toward the trench side because of the narrow channel flow intruding into the wedge corner, where as it shuts down melting when ageba=20 Ma. Several model cases (particularly those with ηserp=1020 to 1021 Pa s and a relatively large fv for Cin=2 to 3 wt %) broadly account for the observations in the Northeast Japan arc (i.e., location and width of volcanic chain, extent of serpentinite, surface heat flow, and seismic tomography), although the large variability of surface heat flow and seismic tomographic images does not allow us to constrain the parameter range tightly.

  17. A diagonal algorithm for the method of pseudocompressibility. [for steady-state solution to incompressible Navier-Stokes equation

    NASA Technical Reports Server (NTRS)

    Rogers, S. E.; Kwak, D.; Chang, J. L. C.

    1986-01-01

    The method of pseudocompressibility has been shown to be an efficient method for obtaining a steady-state solution to the incompressible Navier-Stokes equations. Recent improvements to this method include the use of a diagonal scheme for the inversion of the equations at each iteration. The necessary transformations have been derived for the pseudocompressibility equations in generalized coordinates. The diagonal algorithm reduces the computing time necessary to obtain a steady-state solution by a factor of nearly three. Implicit viscous terms are maintained in the equations, and it has become possible to use fourth-order implicit dissipation. The steady-state solution is unchanged by the approximations resulting from the diagonalization of the equations. Computed results for flow over a two-dimensional backward-facing step and a three-dimensional cylinder mounted normal to a flat plate are presented for both the old and new algorithms. The accuracy and computing efficiency of these algorithms are compared.

  18. Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study

    USGS Publications Warehouse

    Illman, W.A.; Zhu, J.; Craig, A.J.; Yin, D.

    2010-01-01

    Groundwater modeling has become a vital component to water supply and contaminant transport investigations. An important component of groundwater modeling under steady state conditions is selecting a representative hydraulic conductivity (K) estimate or set of estimates which defines the K field of the studied region. Currently, there are a number of characterization approaches to obtain K at various scales and in varying degrees of detail, but there is a paucity of information in terms of which characterization approach best predicts flow through aquifers or drawdowns caused by some drawdown inducing events. The main objective of this paper is to assess K estimates obtained by various approaches by predicting drawdowns from independent cross-hole pumping tests and total flow rates through a synthetic heterogeneous aquifer from flow-through tests. Specifically, we (1) characterize a synthetic heterogeneous aquifer built in the sandbox through various techniques (permeameter analyses of core samples, single-hole, cross-hole, and flow-through testing), (2) obtain mean K fields through traditional analysis of test data by treating the medium to be homogeneous, (3) obtain heterogeneous K fields through kriging and steady state hydraulic tomography, and (4) conduct forward simulations of 16 independent pumping tests and six flowthrough tests using these homogeneous and heterogeneous K fields and comparing them to actual data. Results show that the mean K and heterogeneous K fields estimated through kriging of small-scale K data (core and single-hole tests) yield biased predictions of drawdowns and flow rates in this synthetic heterogeneous aquifer. In contrast, the heterogeneous K distribution or ?K tomogram? estimated via steady state hydraulic tomography yields excellent predictions of drawdowns of pumping tests not used in the construction of the tomogram and very good estimates of total flow rates from the flowthrough tests. These results suggest that steady state

  19. A case study of fluid flow in fractured rock mass based on 2-D DFN modeling

    NASA Astrophysics Data System (ADS)

    Han, Jisu; Noh, Young-Hwan; Um, Jeong-Gi; Choi, Yosoon

    2014-05-01

    A two dimensional steady-state fluid flow through fractured rock mass of an abandoned copper mine in Korea is addressed based on discrete fracture network modeling. An injection well and three observation wells were installed at the field site to monitor the variations of total heads induced by injection of fresh water. A series of packer tests were performed to estimate the rock mass permeability. First, the two dimensional stochastic fracture network model was built and validated for a granitic rock mass using the geometrical and statistical data obtained from surface exposures and borehole logs. This validated fracture network model was combined with the fracture data observed on boreholes to generate a stochastic-deterministic fracture network system. Estimated apertures for each of the fracture sets using permeability data obtained from borehole packer tests were discussed next. Finally, a systematic procedure for fluid flow modeling in fractured rock mass in two dimensional domain was presented to estimate the conductance, flow quantity and nodal head in 2-D conceptual linear pipe channel network. The results obtained in this study clearly show that fracture geometry parameters (orientation, density and size) play an important role in the hydraulic behavior of fractured rock masses.

  20. An inverse technique for developing models for fluid flow in fracture systems using simulated annealing

    SciTech Connect

    Mauldon, A.D.; Karasaki, K.; Martel, S.J.; Long, J.C.S.; Landsfield, M.; Mensch, A. ); Vomvoris, S. )

    1993-11-01

    One of the characteristics of flow and transport in fractured rock is that the flow may be largely confined to a poorly connected network of fractures. In order to represent this condition, Lawrence Berkeley Laboratory has been developing a new type of fracture hydrology model called an equivalent discontinuum model. In this model we represent the discontinuous nature of the problem through flow on a partially filled lattice. This is done through a statistical inverse technique called [open quotes]simulated annealing.[close quotes] The fracture network model is [open quotes]annealed[close quotes] by continually modifying a base model, or [open quotes]template,[close quotes] so that with each modification, the model behaves more and more like the observed system. This template is constructed using geological and geophysical data to identify the regions that possibly conduct fluid an the probable orientations of channels that conduct fluid. In order to see how the simulated annealing algorithm works, we have developed a synthetic case. In this case, the geometry of the fracture network is completely known, so that the results of annealing to steady state data can be evaluated absolutely. We also analyze field data from the Migration Experiment at the Grimsel Rock Laboratory in Switzerland. 28 refs., 14 figs., 3 tabs.

  1. Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems

    Energy Science and Technology Software Center (ESTSC)

    1994-06-20

    FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less

  2. Analysis of Fluid Flow over a Surface

    NASA Technical Reports Server (NTRS)

    McCloud, Peter L. (Inventor)

    2013-01-01

    A method, apparatus, and computer program product for modeling heat radiated by a structure. The flow of a fluid over a surface of a model of the structure is simulated. The surface has a plurality of surface elements. Heat radiated by the plurality of surface elements in response to the fluid flowing over the surface of the model of the structure is identified. An effect of heat radiated by at least a portion of the plurality of surface elements on each other is identified. A model of the heat radiated by the structure is created using the heat radiated by the plurality of surface elements and the effect of the heat radiated by at least a portion of the plurality of surface elements on each other.

  3. Visualization of working fluid flow in gravity assisted heat pipe

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2015-05-01

    Heat pipe is device working with phase changes of working fluid inside hermetically closed pipe at specific pressure. The phase changes of working fluid from fluid to vapor and vice versa help heat pipe to transport high heat flux. The article deal about construction and processes casing in heat pipe during operation. Experiment visualization of working fluid flow is performed with glass heat pipe filed with ethanol. The visualization of working fluid flow explains the phenomena as working fluid boiling, nucleation of bubbles, vapor flow, vapor condensation on the wall, vapor and condensate flow interaction, flow down condensate film thickness on the wall, occurred during the heat pipe operation.

  4. Steady state free radical budgets and ozone photochemistry during TOPSE

    NASA Astrophysics Data System (ADS)

    Cantrell, Christopher A.; Mauldin, L.; Zondlo, M.; Eisele, F.; Kosciuch, E.; Shetter, R.; Lefer, B.; Hall, S.; Campos, T.; Ridley, B.; Walega, J.; Fried, A.; Wert, B.; Flocke, F.; Weinheimer, A.; Hannigan, J.; Coffey, M.; Atlas, E.; Stephens, S.; Heikes, B.; Snow, J.; Blake, D.; Blake, N.; Katzenstein, A.; Lopez, J.; Browell, E. V.; Dibb, J.; Scheuer, E.; Seid, G.; Talbot, R.

    2003-02-01

    A steady state model, constrained by a number of measured quantities, was used to derive peroxy radical levels for the conditions of the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign. The analysis is made using data collected aboard the NCAR/NSF C-130 aircraft from February through May 2000 at latitudes from 40° to 85°N, and at altitudes from the surface to 7.6 km. HO2 + RO2 radical concentrations were measured during the experiment, which are compared with model results over the domain of the study showing good agreement on the average. Average measurement/model ratios are 1.04 (σ = 0.73) and 0.96 (σ = 0.52) for the MLB and HLB, respectively. Budgets of total peroxy radical levels as well as of individual free radical members were constructed, which reveal interesting differences compared to studies at lower latitudes. The midlatitude part of the study region is a significant net source of ozone, while the high latitudes constitute a small net sink leading to the hypothesis that transport from the middle latitudes can explain the observed increase in ozone in the high latitudes. Radical reservoir species concentrations are modeled and compared with the observations. For most conditions, the model does a good job of reproducing the formaldehyde observations, but the peroxide observations are significantly less than steady state for this study. Photostationary state (PSS) derived total peroxy radical levels and NO/NO2 ratios are compared with the measurements and the model; PSS-derived results are higher than observations or the steady state model at low NO concentrations.

  5. The requirements of a next step large steady state tokamak

    NASA Astrophysics Data System (ADS)

    Janeschitz, G.; Barabaschi, P.; Federici, G.; Ioki, K.; Ladd, P.; Mukhovatov, V.; Sugihara, M.; Tivey, R.; ITER-JCT; Home Team

    2000-06-01

    After a decision by the ITER parties to investigate the possibility of designing a reduced cost version of ITER several possible machine layouts with different aspect ratios were studied. Relatively early in this process it became clear that there is no significant cost difference between different aspect ratios and that there is a maximum realistically possible aspect ratio for a machine with 6 m major radius and rather high plasma shaping. Following this study a machine with an intermediate aspect ratio (3.1) called the ITER Fusion Energy Advanced Tokamak (ITER FEAT) was chosen as the basis for the outline design of a reduced cost ITER. Several potential steady state scenarios can be investigated in ITER FEAT, i.e. monotonic or reversed shear at full or reduced minor radius. In addition, so-called hybrid discharges, are feasible where a mixture of inductive and non-inductive current drive as well as bootstrap current allows long pulse discharges of the order of 2500 s. The βN values and H factors required for these discharges are in the same range as those observed on present machines, which provides confidence that such discharges can be studied in ITER FEAT. However, due to uncertainties in physics knowledge, for example the current drive efficiency off-axis, it is impossible at present to generate a completely self-consistent scenario taking all boundary conditions, for example engineering or heating system constraints, into account. In addition, all of these regimes have a potential problem with divertor operation compatibility (low edge density) and with helium exhaust which has to be addressed in existing experiments. For the engineering design of the in-vessel components and for the balance of the plant there is practically no difference between inductive (500 s) and steady state operation. However, the choice of heating systems and the distribution of power between them will be strongly influenced by the envisaged steady state scenarios.

  6. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    NASA Astrophysics Data System (ADS)

    Raz, O.; Subaşı, Y.; Jarzynski, C.

    2016-04-01

    Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP)—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.

  7. Bernoulli theorem generalized to rheologically complex viscous fluid flow

    NASA Astrophysics Data System (ADS)

    Brutyan, M. A.; Krapivskii, P. L.

    1992-08-01

    The Bernoulli theorem is generalized to two-dimensional and axisymmetric micropolar incompressible fluid flows. It is shown that the approach developed is also applicable to magnetohydrodynamic flows of a viscous Newtonian fluid.

  8. Results from a scaled reactor cavity cooling system with water at steady state

    SciTech Connect

    Lisowski, D. D.; Albiston, S. M.; Tokuhiro, A.; Anderson, M. H.; Corradini, M. L.

    2012-07-01

    We present a summary of steady-state experiments performed with a scaled, water-cooled Reactor Cavity Cooling System (RCCS) at the Univ. of Wisconsin - Madison. The RCCS concept is used for passive decay heat removal in the Next Generation Nuclear Plant (NGNP) design and was based on open literature of the GA-MHTGR, HTR-10 and AVR reactor. The RCCS is a 1/4 scale model of the full scale prototype system, with a 7.6 m structure housing, a 5 m tall test section, and 1,200 liter water storage tank. Radiant heaters impose a heat flux onto a three riser tube test section, representing a 5 deg. radial sector of the actual 360 deg. RCCS design. The maximum heat flux and power levels are 25 kW/m{sup 2} and 42.5 kW, and can be configured for variable, axial, or radial power profiles to simulate prototypic conditions. Experimental results yielded measurements of local surface temperatures, internal water temperatures, volumetric flow rates, and pressure drop along the test section and into the water storage tank. The majority of the tests achieved a steady state condition while remaining single-phase. A selected number of experiments were allowed to reach saturation and subsequently two-phase flow. RELAP5 simulations with the experimental data have been refined during test facility development and separate effects validation of the experimental facility. This test series represents the completion of our steady-state testing, with future experiments investigating normal and off-normal accident scenarios with two-phase flow effects. The ultimate goal of the project is to combine experimental data from UW - Madison, UI, ANL, and Texas A and M, with system model simulations to ascertain the feasibility of the RCCS as a successful long-term heat removal system during accident scenarios for the NGNP. (authors)

  9. Tracking and controlling unstable steady states of dynamical systems

    NASA Astrophysics Data System (ADS)

    Tamaševičiūtė, Elena; Mykolaitis, Gytis; Bumelienė, Skaidra; Tamaševičius, Arūnas

    2014-03-01

    An adaptive controller for stabilization of unknown unstable steady states (spirals, nodes and saddles) of nonlinear dynamical systems is considered and its robustness under the changes of the location of the fixed point in the phase space is demonstrated. An analog electronic controller, based on a low-pass filter technique, is described. It can be easily switched between a stable and an unstable mode of operation for stabilizing either spirals/nodes or saddles, respectively. Numerical and experimental results for two autonomous systems, the damped Duffing-Holmes oscillator and the chaotic Lorenz system, are presented.

  10. Quantum-classical correspondence in steady states of nonadiabatic systems

    SciTech Connect

    Fujii, Mikiya; Yamashita, Koichi

    2015-12-31

    We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels.

  11. Steady State Vacuum Ultraviolet Exposure Facility With Automated Calibration Capability

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Sechkar, Edward A.; Dever, Joyce A.; Banks, Bruce A.

    2000-01-01

    NASA Glenn Research Center at Lewis Field designed and developed a steady state vacuum ultraviolet automated (SSVUVa) facility with in situ VUV intensity calibration capability. The automated feature enables a constant accelerated VUV radiation exposure over long periods of testing without breaking vacuum. This test facility is designed to simultaneously accommodate four isolated radiation exposure tests within the SSVUVa vacuum chamber. Computer-control of the facility for long, term continuous operation also provides control and recording of thermocouple temperatures, periodic recording of VUV lamp intensity, and monitoring of vacuum facility status. This paper discusses the design and capabilities of the SSVUVa facility.

  12. Long Pulse Operation on Tore-Supra: Towards Steady State

    SciTech Connect

    Moreau, P.; Bucalossi, J.; Brosset, C.; Dufour, E.; Loarer, T.; Monier-Garbet, P.; Pegourie, B.; Tsitrone, E.; Basiuk, V.; Bremond, S.; Chantant, M.; Colas, L.; Commaux, N.; Geraud, A.; Guirlet, R.; Gunn, J.; Hertout, P.; Hoang, G. T.; Kazarian, F.; Mazon, D.

    2006-01-15

    The experimental programme of Tore Supra is devoted to the study of technology and physics issues associated to long-duration high performance discharges. This new domain of operation requires simultaneously and in steady state: heat removal capability, particle exhaust, fully non-inductive current drive, advanced technology integration and real time plasma control. The long discharge allows for addressing new time scale physic such as the wall particle retention and erosion. Moreover, the physics of fully non-inductive discharges is full of novelty, namely: the MHD stability, the slow spontaneous oscillation of the central electron temperature or the outstanding inward particle pinch.

  13. Ergodicity, mixing, and time reversibility for atomistic nonequilibrium steady states

    SciTech Connect

    Hoover, W.G.; Kum, O.

    1997-11-01

    Ergodic mixing is prerequisite to any statistical-mechanical calculation of properties derived from atomistic dynamical simulations. Thus the time-reversible thermostats and ergostats used in simulating Gibbsian equilibrium dynamics or nonequilibrium steady-state dynamics should impose ergodicity and mixing. Though it is hard to visualize many-dimensional phase-space distributions, recent developments provide several practical numerical approaches to the problem of ergodic mixing. Here we apply three of these approaches to a useful nonequilibrium test problem, an oscillator in a temperature gradient. {copyright} {ital 1997} {ital The American Physical Society}

  14. A Spreadsheet Program for Steady-State Temperature Distributions

    SciTech Connect

    Hutchens, G.J.

    2000-11-01

    A desktop program is developed in Microsoft EXCEL using Visual Basic for Applications (VBA) to solve a two-dimensional steady state heat conduction problem with a radiation boundary condition. The resulting partial differential equation and boundary conditions are solved using finite difference techniques and the results are compared with a finite element solution using the commercially available software package MSC/THERMAL. The results from the two methods are found to be within 1 percent. The VBA solution demonstrates how spreadsheet programs, like EXCEL, can be used to solve practical engineering problems with good accuracy.

  15. Paleoenvironmental evolution in a steady state foredeep, Taiwan

    NASA Astrophysics Data System (ADS)

    Nagel, S.; Castelltort, S.; Willett, S. D.; Mouthereau, F.; Lin, A. T.; Granjeon, D.; Kaus, B.

    2012-04-01

    The evolution of mountain ranges to steady state is an important concept in the study of the interrelationships between climate, mountain building and topography. The young and active Taiwan orogeny situated in the western pacific typhoon belt has often been regarded as the type locality of a steady state orogeny, and an ideal case study for tectonic and climatic geomorphology. One prediction of the steady-state theory applied to mountains is the attainment of a constant sediment flux. Our aim in the present study is to estimate the material flux out of the Taiwan orogeny through its evolution. To do so, we have studied the basin wide sedimentary facies distribution at five key stratigraphic horizons to construct detailed paleogeographic maps that include paleobathymetric information and sediment feeding systems. The maps highlight the complicated basin-wide dynamics of sediment dispersal within an evolving foreland basin. The basin physiography changed very little from the middle Miocene (around 12.5 Ma) to the late Pliocene (around 3 Ma); the paleoenvironments were essentially maintained from the passive margin to the foreland basin stage. At 3 Ma, during deposition of the mud-dominated Chinshui Shale, the main depositional basin started to widen and deepen. This clearly marks the increased subsidence associated with the approach of the growing orogen to the east. The basin started to become filled in the late early Pleistocene when a shallow marine wedge in front of the growing orogen initiated to propagate towards the south. We use Dionisos, a forward stratigraphic model, to simulate the evolution of the Taiwan foreland basin in terms of sediment flux (in and out of the basin) towards steady state. We constrain the model with our paleogeographic and sedimentary reconstructions. As an initial input data we utilize the paleoenvironmental maps and a primary sediment supply from the hinterland (topography). The model enables us to look at the long-term basin

  16. Steady state simulator using alternate left right approach

    NASA Astrophysics Data System (ADS)

    Ng, Yit Hoe; Hasan, Mohammad Khatim

    2013-04-01

    Partial difference equation plays important role in simulating a wide variety of science and engineering problem. In this paper, we develop numerical application which implements the iterative methods for steady state simulation and its numerical engine. A new approach names Alternate Left Right is applied onto Successive Overrelaxation (SOR) called as the Alternate Left Right Successive Overrelaxation (ALRSOR) iterative method. The experiment's results are compared amongst SOR and ALRSOR to reveal the performance of these numerical engines. From the results, Alternate Left Right approach successfully increases the speed computation. In conclusion, ALRSOR method performs the fastest amongst the compared method.

  17. Linear modeling of steady-state behavioral dynamics.

    PubMed Central

    Palya, William L; Walter, Donald; Kessel, Robert; Lucke, Robert

    2002-01-01

    The observed steady-state behavioral dynamics supported by unsignaled periods of reinforcement within repeating 2,000-s trials were modeled with a linear transfer function. These experiments employed improved schedule forms and analytical methods to improve the precision of the measured transfer function, compared to previous work. The refinements include both the use of multiple reinforcement periods that improve spectral coverage and averaging of independently determined transfer functions. A linear analysis was then used to predict behavior observed for three different test schedules. The fidelity of these predictions was determined. PMID:11831782

  18. Skewness of steady-state current fluctuations in nonequilibrium systems

    NASA Astrophysics Data System (ADS)

    Belousov, Roman; Cohen, E. G. D.; Wong, Chun-Shang; Goree, John A.; Feng, Yan

    2016-04-01

    A skewness of the probability for instantaneous current fluctuations, in a nonequilibrium steady state, is observed experimentally in a dusty plasma. This skewness is attributed to the spatial asymmetry, which is imminent to the nonequilibrium systems due to the external hydrodynamic gradient. Using the modern framework of the large deviation theory, we extend the Onsager-Machlup ansatz for equilibrium fluctuations to systems with a preferred spatial direction, and provide a modulated Gaussian probability distribution, which is tested by simulations. This probability distribution is also of potential interest for other statistical disciplines. Connections with the principles of statistical mechanics, due to Boltzmann and Gibbs, are discussed as well.

  19. Geometry of the steady-state approximation: Perturbation and accelerated convergence methods

    NASA Astrophysics Data System (ADS)

    Roussel, Marc R.; Fraser, Simon J.

    1990-07-01

    The time evolution of two model enzyme reactions is represented in phase space Γ. The phase flow is attracted to a unique trajectory, the slow manifold M, before it reaches the point equilibrium of the system. Locating M describes the slow time evolution precisely, and allows all rate constants to be obtained from steady-state data. The line set M is found by solution of a functional equation derived from the flow differential equations. For planar systems, the steady-state (SSA) and equilibrium (EA) approximations bound a trapping region containing M, and direct iteration and perturbation theory are formally equivalent solutions of the functional equation. The iteration's convergence is examined by eigenvalue methods. In many dimensions, the nullcline surfaces of the flow in Γ form a prism-shaped region containing M, but this prism is not a simple trap for the flow. Two of its edges are EA and SSA. Perturbation expansion and direct iteration are now no longer equivalent procedures; they are compared in a three-dimensional example. Convergence of the iterative scheme can be accelerated by a generalization of Aitken's δ2 extrapolation, greatly reducing the global error. These operations can be carried out using an algebraic manipulative language. Formally, all these techniques can be carried out in many dimensions.

  20. A steady state pressure drop model for screen channel liquid acquisition devices

    NASA Astrophysics Data System (ADS)

    Hartwig, J. W.; Darr, S. R.; McQuillen, J. B.; Rame, E.; Chato, D. J.

    2014-11-01

    This paper presents the derivation of a simplified one dimensional (1D) steady state pressure drop model for flow through a porous liquid acquisition device (LAD) inside a cryogenic propellant tank. Experimental data is also presented from cryogenic LAD tests in liquid hydrogen (LH2) and liquid oxygen (LOX) to compare against the simplified model and to validate the model at cryogenic temperatures. The purpose of the experiments was to identify the various pressure drop contributions in the analytical model which govern LAD channel behavior during dynamic, steady state outflow. LH2 pipe flow of LAD screen samples measured the second order flow-through-screen (FTS) pressure drop, horizontal LOX LAD outflow tests determined the relative magnitude of the third order frictional and dynamic losses within the channel, while LH2 inverted vertical outflow tests determined the magnitude of the first order hydrostatic pressure loss and validity of the full 1D model. When compared to room temperature predictions, the FTS pressure drop is shown to be temperature dependent, with a significant increase in flow resistance at LH2 temperatures. Model predictions of frictional and dynamic losses down the channel compare qualitatively with LOX LADs data. Meanwhile, the 1D model predicted breakdown points track the trends in the LH2 inverted outflow experimental results, with discrepancies being due to a non-uniform injection velocity across the LAD screen not accounted for in the model.

  1. Steady-State Computation of Constant Rotational Rate Dynamic Stability Derivatives

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Green, Lawrence L.

    2000-01-01

    Dynamic stability derivatives are essential to predicting the open and closed loop performance, stability, and controllability of aircraft. Computational determination of constant-rate dynamic stability derivatives (derivatives of aircraft forces and moments with respect to constant rotational rates) is currently performed indirectly with finite differencing of multiple time-accurate computational fluid dynamics solutions. Typical time-accurate solutions require excessive amounts of computational time to complete. Formulating Navier-Stokes (N-S) equations in a rotating noninertial reference frame and applying an automatic differentiation tool to the modified code has the potential for directly computing these derivatives with a single, much faster steady-state calculation. The ability to rapidly determine static and dynamic stability derivatives by computational methods can benefit multidisciplinary design methodologies and reduce dependency on wind tunnel measurements. The CFL3D thin-layer N-S computational fluid dynamics code was modified for this study to allow calculations on complex three-dimensional configurations with constant rotation rate components in all three axes. These CFL3D modifications also have direct application to rotorcraft and turbomachinery analyses. The modified CFL3D steady-state calculation is a new capability that showed excellent agreement with results calculated by a similar formulation. The application of automatic differentiation to CFL3D allows the static stability and body-axis rate derivatives to be calculated quickly and exactly.

  2. Piezoelectric energy harvesting in internal fluid flow.

    PubMed

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim

    2015-01-01

    We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879

  3. Piezoelectric Energy Harvesting in Internal Fluid Flow

    PubMed Central

    Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim

    2015-01-01

    We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well. PMID:26473879

  4. Steady-state temperature distribution in living tissue modeled as cylindrical shells.

    NASA Technical Reports Server (NTRS)

    Shitzer, A.; Chato, J. C.

    1971-01-01

    Closed form, analytical solutions to the problem of steady-state heat transfer in living tissue modeled as cylindrical shells are presented and discussed. These solutions are particularly useful for the study of temperature distributions in the extremities. Metabolic heat generation, conduction, and heat transported by the blood perfusing the tissue are considered in the model. The results demonstrate the important role that the blood stream plays in the transfer of heat inside living tissue. Solutions are also presented for the limiting cases of diminishing blood flow that would occur during vasoconstriction or occlusion of blood by external means.

  5. Zeroth law and nonequilibrium thermodynamics for steady states in contact

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sayani; Pradhan, Punyabrata; Mohanty, P. K.

    2015-06-01

    We ask what happens when two nonequilibrium systems in steady state are kept in contact and allowed to exchange a quantity, say mass, which is conserved in the combined system. Will the systems eventually evolve to a new stationary state where a certain intensive thermodynamic variable, like equilibrium chemical potential, equalizes following the zeroth law of thermodynamics and, if so, under what conditions is it possible? We argue that an equilibriumlike thermodynamic structure can be extended to nonequilibrium steady states having short-ranged spatial correlations, provided that the systems interact weakly to exchange mass with rates satisfying a balance condition—reminiscent of a detailed balance condition in equilibrium. The short-ranged correlations would lead to subsystem factorization on a coarse-grained level and the balance condition ensures both equalization of an intensive thermodynamic variable as well as ensemble equivalence, which are crucial for construction of a well-defined nonequilibrium thermodynamics. This proposition is proved and demonstrated in various conserved-mass transport processes having nonzero spatial correlations.

  6. Driven, steady-state RFP computations. [reversed field pinch

    NASA Technical Reports Server (NTRS)

    Dahlburg, J. P.; Montgomery, D.; Doolen, G. D.; Turner, L.

    1988-01-01

    The pseudospectral three-dimensional MHD code of Dahlburg et al. (1986 and 1987) is used to compute the dynamical behavior of a channel of magnetofluid carrying an axial current and magnetic flux. This situation contains the essential MHD behavior of the reversed-field pinch (RFP). An externally imposed electric field is applied to an initially current-free magnetofluid and drives currents that rise and eventually fluctuate about values corresponding to pinch ratios Theta of about 1.3, 2.2, and 4.5. A period of violent turbulence leads to an approximately force-free core, surrounded by an active MHD boundary layer that is not force-free. A steady state is reached that can apparently be sustained indefinitely (for several hundred Alfven transit times or longer). The turbulence level and time variability in the steady state increase with increasing Theta. The average toroidal magnetic field at the wall reverses for Theta = 2.2 and 4.5, but not for Theta = 1.3. Negative toroidal current filaments are observed. The Lundquist numbers are of the order of a few hundred.

  7. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism

    PubMed Central

    Fleming, R.M.T.; Thiele, I.; Provan, G.; Nasheuer, H.P.

    2010-01-01

    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in E. coli and compare favourably with in silico prediction by flux balance analysis. PMID:20230840

  8. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.

    PubMed

    Fleming, R M T; Thiele, I; Provan, G; Nasheuer, H P

    2010-06-01

    The quantitative analysis of biochemical reactions and metabolites is at frontier of biological sciences. The recent availability of high-throughput technology data sets in biology has paved the way for new modelling approaches at various levels of complexity including the metabolome of a cell or an organism. Understanding the metabolism of a single cell and multi-cell organism will provide the knowledge for the rational design of growth conditions to produce commercially valuable reagents in biotechnology. Here, we demonstrate how equations representing steady state mass conservation, energy conservation, the second law of thermodynamics, and reversible enzyme kinetics can be formulated as a single system of linear equalities and inequalities, in addition to linear equalities on exponential variables. Even though the feasible set is non-convex, the reformulation is exact and amenable to large-scale numerical analysis, a prerequisite for computationally feasible genome scale modelling. Integrating flux, concentration and kinetic variables in a unified constraint-based formulation is aimed at increasing the quantitative predictive capacity of flux balance analysis. Incorporation of experimental and theoretical bounds on thermodynamic and kinetic variables ensures that the predicted steady state fluxes are both thermodynamically and biochemically feasible. The resulting in silico predictions are tested against fluxomic data for central metabolism in Escherichia coli and compare favourably with in silico prediction by flux balance analysis. PMID:20230840

  9. Drug Sanctuaries, Low Steady State Viral Loads and Viral Blips.

    SciTech Connect

    Perelson, Alan S.,; Callaway, D.; Pomerantz, R. J.; Chen, H. Y.; Markowitz, M.; Ho, David D.; Di Mascio, M.

    2002-01-01

    Patients on HAART for long periods of time obtain viral loads (VLs) below 50 copies/ml. Ultrasensitive VL assays show that some of these patients obtain a low steady state VL, while others continue to exhibit VL declines to below 5 copies/ml. Low steady states can be explained by two-compartment models that incorporate a drug sanctuary. Interestingly, when patients exhibit continued declines below 50 copies/ml the rate of decline has a half-life of {approx} 6 months, consistent with some estimates of the rate of latent cell decline. Some patients, despite having sustained undetectable VLs show periods of transient viremia (blips). I will present some statistical characterization of the blips observed in a set of 123 patients, suggesting that blips are generated largely by random processes, that blips tend to correspond to periods of a few weeks in which VLs are elevated, and that VL decay from the peak of a blip may have two-phases. Using new results suggesting that the viral burst size, N {approx} 5 x 10{sup 4}, we estimate the number of cells needed to produce a blip.

  10. Nonequilibrium many-body steady states via Keldysh formalism

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad F.; Gorshkov, Alexey V.

    2016-01-01

    Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under nonequilibrium dynamics. While these states and their phase transitions have been studied extensively with mean-field theory, the validity of the mean-field approximation has not been systematically investigated. In this paper, we employ a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in a variety of models. In all cases, a complete description via the Keldysh formalism indicates a partial or complete failure of the mean-field analysis. Furthermore, we find that an effective temperature emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is generically described by a thermodynamic universality class.

  11. Steady state magnetic field configurations for the earth's magnetotail

    SciTech Connect

    Hau, L.N.; Wolf, R.A.; Voigt, G.H. ); Wu, C.C. )

    1989-02-01

    The authors present a two-dimensional, force-balanced magnetic field model in which flux tubes have constant pV{gamma} throughout an extended region of the nightside plasma sheet, between approximately 36 R{sub E} geocentric distance and the region of the inner edge of the plasma sheet. They have thus demonstrated the theoretical existence of a steady state magnetic field configuration that is force-balanced and also consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD (isotropic pressure, perfect conductivity). The numerical solution was constructed for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The primary characteristics of the steady state convection solution are (1) a pressure maximum just tailward of the inner edge of the plasma sheet and (2) a deep, broad minimum in equatorial magnetic field strength B{sub ze}, also just tailward of the inner edge. The results are consistent with Erickson's (1985) convection time sequences, which exhibited analogous pressure peaks and B{sub ze} minima. Observations do not indicate the existence of a B{sub ze} minimum, on the average. They suggest that the configurations with such deep minima in B{sub ze} may be tearing-mode unstable, thus leading to substorm onset in the inner plasma sheet.

  12. Non-steady state tidal heating of Enceladus

    NASA Astrophysics Data System (ADS)

    Shoji, D.; Hussmann, H.; Sohl, F.; Kurita, K.

    2014-06-01

    Enceladus is one of the most geologically active bodies in the Solar System. The satellite's diverse surface suggests that Enceladus was subject to past episodic heating. It is largely probable that the activity of Enceladus is not in a steady state. In order to analyze the non-steady state heating, thermal and orbital coupled calculation is needed because they affect each other. We perform the coupled calculation assuming conductive ice layer and low melting temperature. Although the heating state of Enceladus strongly depends on the rheological parameters used, episodic heating is induced if the Q-value of Saturn is less than 23,000 and Enceladus' core radius is less than 161 km. The duration of one episodic heating cycle is around one hundred million years. The cyclic change in ice thickness is consistent with the origin of a partial ocean which is suggested by plume emissions and diverse surface states of Enceladus. Although the obtained tidal heating rate is smaller than the observed heat flux of a few giga watt, other heating mechanisms involving e.g., liquid water and/or specific chemical reactions may be initiated by the formation of a partial or global subsurface ocean.

  13. Steady-State ALPS for Real-Valued Problems

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.

    2009-01-01

    The two objectives of this paper are to describe a steady-state version of the Age-Layered Population Structure (ALPS) Evolutionary Algorithm (EA) and to compare it against other GAs on real-valued problems. Motivation for this work comes from our previous success in demonstrating that a generational version of ALPS greatly improves search performance on a Genetic Programming problem. In making steady-state ALPS some modifications were made to the method for calculating age and the method for moving individuals up layers. To demonstrate that ALPS works well on real-valued problems we compare it against CMA-ES and Differential Evolution (DE) on five challenging, real-valued functions and on one real-world problem. While CMA-ES and DE outperform ALPS on the two unimodal test functions, ALPS is much better on the three multimodal test problems and on the real-world problem. Further examination shows that, unlike the other GAs, ALPS maintains a genotypically diverse population throughout the entire search process. These findings strongly suggest that the ALPS paradigm is better able to avoid premature convergence then the other GAs.

  14. Physical aspects of computing the flow of a viscous fluid

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.

    1984-01-01

    One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.

  15. Characterization of the Prostate-Specific Antigen (PSA) Catalytic Mechanism: A Pre-Steady-State and Steady-State Study

    PubMed Central

    Tomao, Luigi; Sbardella, Diego; Gioia, Magda; Di Masi, Alessandra; Marini, Stefano; Ascenzi, Paolo; Coletta, Massimo

    2014-01-01

    Prostate-specific antigen (PSA), an enzyme of 30 kDa grouped in the kallikrein family is synthesized to high levels by normal and malignant prostate epithelial cells. Therefore, it is the main biomarker currently used for early diagnosis of prostate cancer. Here, presteady-state and steady-state kinetics of the PSA-catalyzed hydrolysis of the fluorogenic substrate Mu-His-Ser-Ser-Lys-Leu-Gln-AMC (spanning from pH 6.5 to pH 9.0, at 37.0°C) are reported. Steady-state kinetics display at every pH value a peculiar feature, represented by an initial “burst” phase of the fluorescence signal before steady-state conditions are taking place. This behavior, which has been already observed in other members of the kallikrein family, suggests the occurrence of a proteolytic mechanism wherefore the acylation step is faster than the deacylation process. This feature allows to detect the acyl intermediate, where the newly formed C-terminal carboxylic acid of the cleaved substrate forms an ester bond with the -OH group of the Ser195 catalytic residue, whereas the AMC product has been already released. Therefore, the pH-dependence of the two enzymatic steps (i.e., acylation and deacylation) has been separately characterized, allowing the determination of pKa values. On this basis, possible residues are tentatively identified in PSA, which might regulate these two steps by interacting with the two portions of the substrate. PMID:25068395

  16. Polymer dynamics and fluid flow in actin-based cell motility

    NASA Astrophysics Data System (ADS)

    Theriot, Julie

    2005-03-01

    In living cells, nonequilibrium protein polymerization reactions are frequently used to convert chemical energy into mechanical energy and thereby generate useful force for cellular movements. We have examined the polymer and fluid dynamics in two biological cases where the assembly of branched actin filament networks generates force: the intracellular movement of the bacterial pathogen Listeria monocytogenes, and the extension of the leading edge of skin epithelial cells during wound-healing. In both cases, net actin filament assembly occurs at the front of the network structure and net disassembly occurs at the rear. Actin protein subunits and other network components must be recycled through the fluid phase to the front of the polymerizing network in order for forward movement to continue at steady state. For actin-based movement of Listeria monocytogenes, we have found that actin recycling is not rate-limiting; instead, the speed of movement is governed by the cooperative dissociation of groups of noncovalent protein-protein bonds attaching the filamentous network to the bacterial surface. In contrast, rapid actin-based extension at the leading edge of moving epithelial cells is associated with unusual perturbations in intracellular fluid flow.

  17. Velocity profiles and rheology of a granular bed sheared by a fluid flow

    NASA Astrophysics Data System (ADS)

    Allen, Benjamin; Kudrolli, Arshad

    We discuss an experimental investigation of motion of a granular bed driven by a laminar fluid flow as a function of applied shear rate. This is a model system to investigate a variety of examples where such a situation arises including wind blowing over sand, sediment transport in rivers, slurries, and turbidity currents. We have developed an experimental apparatus which allows examination of the fluid as well as the grain dynamics both at the surface as well as deep into the bed under steady state conditions with refractive index matching technique. This allows us to obtain both the applied local shear stress by the fluid as well as the local strain rate inside the bed. We find that that the granular flux as a function of depth decays exponentially into the bed. Further, the velocity profile is observed to exhibit a crossover from a regime where particles are fully suspended to where there is bed load transport. We will discuss the observed velocity and density profiles in light of various models of granular suspensions. Supported by NSF CBET - 1335928.

  18. Fluid flow in solidifying monotectic alloys

    NASA Technical Reports Server (NTRS)

    Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.

    1989-01-01

    Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. The relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy are discussed. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.

  19. Testing the Markov hypothesis in fluid flows

    NASA Astrophysics Data System (ADS)

    Meyer, Daniel W.; Saggini, Frédéric

    2016-05-01

    Stochastic Markov processes are used very frequently to model, for example, processes in turbulence and subsurface flow and transport. Based on the weak Chapman-Kolmogorov equation and the strong Markov condition, we present methods to test the Markov hypothesis that is at the heart of these models. We demonstrate the capabilities of our methodology by testing the Markov hypothesis for fluid and inertial particles in turbulence, and fluid particles in the heterogeneous subsurface. In the context of subsurface macrodispersion, we find that depending on the heterogeneity level, Markov models work well above a certain scale of interest for media with different log-conductivity correlation structures. Moreover, we find surprising similarities in the velocity dynamics of the different media considered.

  20. Fluid flow in solidifying monotectic alloys

    NASA Astrophysics Data System (ADS)

    Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.

    1989-11-01

    Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. A shadowgraph technique is employed for flow visualization. By these methods, flow regimes are identified and related to particular melt compositions. We discuss the relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). While buoyancy forces arise due to density differences between the droplet and the host phase, thermocapillary forces (associated with temperature gradients in the droplet surface) may predominate. In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.

  1. Fluid flow through packings of rotating obstacles

    NASA Astrophysics Data System (ADS)

    Oliveira, Rafael S.; Andrade, José S.; Andrade, Roberto F. S.

    2015-03-01

    We investigate through numerical simulation the nonstationary flow of a Newtonian fluid through a two-dimensional channel filled with an array of circular obstacles of distinct sizes. The disks may rotate around their respective centers, modeling a nonstationary, inhomogeneous porous medium. Obstacle sizes and positions are defined by the geometry of an Apollonian packing (AP). To allow for fluid flow, the radii of the disks are uniformly reduced by a factor 0.6 ≤s ≤0.8 for assemblies corresponding to the four first AP generations. The investigation is targeted to elucidate the main features of the rotating regime as compared to the fixed disk condition. It comprises the evaluation of the region of validity of Darcy's law as well as the study of the nonlinear hydraulic resistance as a function of the channel Reynolds number, the reduction factor s , and the AP generation. Depending on a combination of these factors, the resistance of rotating disks may be larger or smaller than that of the corresponding static case. We also analyze the flow redistribution in the interdisk channels as a result of the rotation pattern and characterize the angular velocity of the disks. Here, the striking feature is the emergence of a stable oscillatory behavior of the angular velocity for almost all disks that are inserted into the assemblies after the second generation.

  2. Code System to Calculate Waste-Isolation Flow and Transport.

    Energy Science and Technology Software Center (ESTSC)

    1999-10-18

    Version 00 SWIFT solves the coupled or individual equations governing fluid flow, heat transport, brine displacement, and radionuclide displacement in geologic media. Fluid flow may be transient or steady state. One, two, or three dimensions are available, and transport of radionuclides chains is possible.

  3. Flow of Compressible Fluids Through Cracks in Elastic Bodies and Excitation of Volcanic Tremor

    NASA Astrophysics Data System (ADS)

    Dunham, E. M.; Ogden, D. E.

    2010-12-01

    system becomes unstable and the conduit walls begin to vibrate, such that the fluid is alternately being compressed and expanded, with characteristic periods of ~0.1-1 s. Synthetic seismograms at the surface feature pronounced Rayleigh waves excited by the initial suction of the conduit walls when the dike first breaks the surface, followed by emergent oscillatory signals arising the conduit wall vibrations. The latter are reminiscent of volcanic tremor. The origin of conduit wall oscillations is investigated further by performing a stability analysis of steady flows. The governing equations are linearized by considering small perturbations about the steady state. In the short wavelength limit the response of the fluid and solid is fully decoupled, and the perturbations take the form of neutrally stable propagating waves: sound waves in the fluid and Rayleigh waves in the solid propagating along the conduit walls. As the wavelength exceeds a critical wavelength, the response becomes increasingly coupled. In certain parts of parameter space (generally for sufficiently rapid unperturbed fluid velocities), these coupled waves become unstable and grow exponentially in time. The connection between this instability and the conduit wall oscillations is presently being explored.

  4. Fluid flow dynamics in MAS systems

    NASA Astrophysics Data System (ADS)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  5. Fluid flow dynamics in MAS systems.

    PubMed

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. PMID:26073599

  6. Fluid Physics of Foam Evolution and Flow

    NASA Technical Reports Server (NTRS)

    Aref, H.; Thoroddsen, S. T.; Sullivan, J. M.

    2003-01-01

    The grant supported theoretical, numerical and experimental work focused on the elucidation of the fluid physics of foam structure, evolution and flow. The experimental work concentrated on these subject areas: (a) Measurements of the speed of reconnections within a foam; (b) statistics of bubble rearrangements; and (c) three-dimensional reconstruction of the foam structure. On the numerical simulation and theory side our efforts concentrated on the subjects: (a) simulation techniques for 2D and 3D foams; (b) phase transition in a compressible foam; and (c) TCP structures.

  7. Extensional Flow of a Polystyrene Boger Fluid Through a 4:1:4 Axisymmetric Contraction/Expansion

    NASA Technical Reports Server (NTRS)

    Rothstein, Jonathan P.; McKinley, Gareth H.

    1999-01-01

    The creeping flow of a dilute (0.025 wt%) monodisperse polystyrene/polystyrene Boger fluid through a 4:1:4 axisymmetric contraction/expansion is experimentally observed for a wide range of Deborah numbers. Pressure drop measurements across the orifice plate show a large extra pressure drop that increases monotonically with Deborah number above the value observed for a similar Newtonian fluid at the same flow rate. This enhancement in the dimensionless pressure drop is not associated with the onset of a flow instability, yet it is not predicted by existing steady-state or transient numerical computations with simple dumbbell models. It is conjectured that this extra pressure drop is the result of an additional dissipative contribution to the polymeric stress arising from a stress-conformation hysteresis in the strong non-homogeneous extensional flow near the contraction plane. Such a hysteresis has been independently measured and computed in recent studies of homogeneous transient uniaxial stretching of PS/PS Boger fluids. Flow visualization and velocity field measurements using digital particle image velocimetry (DPIV) show large upstream growth of the corner vortex with increasing Deborah number. At large Deborah numbers, the onset of an elastic instability is observed, first locally as small amplitude fluctuations in the pressure measurements, and then globally as an azimuthal precessing of the upstream corner vortex accompanied by periodic oscillations in the pressure drop across the orifice.

  8. Flow Diode and Method for Controlling Fluid Flow Origin of the Invention

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W (Inventor)

    2015-01-01

    A flow diode configured to permit fluid flow in a first direction while preventing fluid flow in a second direction opposite the first direction is disclosed. The flow diode prevents fluid flow without use of mechanical closures or moving parts. The flow diode utilizes a bypass flowline whereby all fluid flow in the second direction moves into the bypass flowline having a plurality of tortuous portions providing high fluidic resistance. The portions decrease in diameter such that debris in the fluid is trapped. As fluid only travels in one direction through the portions, the debris remains trapped in the portions.

  9. Effect of vadose zone on the steady-state leakage rates from landfill barrier systems

    SciTech Connect

    Celik, B. Rowe, R.K. Unlue, K.

    2009-01-15

    Leakage rates are evaluated for a landfill barrier system having a compacted clay liner (CCL) underlain by a vadose zone of variable thickness. A numerical unsaturated flow model SEEP/W is used to simulate the moisture flow regime and steady-state leakage rates for the cases of unsaturated zones with different soil types and thicknesses. The results of the simulations demonstrate that harmonic mean hydraulic conductivity of coarse textured vadose zones is 3-4 orders of magnitude less than saturated hydraulic conductivity; whereas, the difference is only one order of magnitude for fine textured vadose zones. For both coarse and fine textured vadose zones, the effective hydraulic conductivity of the barrier system and the leakage rate to an underlying aquifer increases with increasing thickness of the vadose zone and ultimately reaches an asymptotic value for a coarse textured vadose zone thickness of about 10 m and a fine textured vadose zone thickness of about 5 m. Therefore, the fine and coarse textured vadose zones thicker than about 5 m and 10 m, respectively, act as an effective part of the barrier systems examined. Although the thickness of vadose zone affects the effective hydraulic conductivity of the overall barrier system, the results demonstrated that the hydraulic conductivity of the CCL is the dominant factor controlling the steady-state leakage rates through barrier systems having single low permeability clay layers.

  10. Relative contributions of transient and steady state infiltration during ephemeral streamflow

    USGS Publications Warehouse

    Blasch, K.W.; Ferre, T. P. A.; Hoffmann, J.P.; Fleming, J.B.

    2006-01-01

    Simulations of infiltration during three ephemeral streamflow events in a coarse-grained alluvial channel overlying a less permeable basin-fill layer were conducted to determine the relative contribution of transient infiltration at the onset of streamflow to cumulative infiltration for the event. Water content, temperature, and piezometric measurements from 2.5-m vertical profiles within the alluvial sediments were used to constrain a variably saturated water flow and heat transport model. Simulated and measured transient infiltration rates at the onset of streamflow were about two to three orders of magnitude greater than steady state infiltration rates. The duration of simulated transient infiltration ranged from 1.8 to 20 hours, compared with steady state flow periods of 231 to 307 hours. Cumulative infiltration during the transient period represented 10 to 26% of the total cumulative infiltration, with an average contribution of approximately 18%. Cumulative infiltration error for the simulated streamflow events ranged from 9 to 25%. Cumulative infiltration error for typical streamflow events of about 8 hours in duration in is about 90%. This analysis indicates that when estimating total cumulative infiltration in coarse-grained ephemeral stream channels, consideration of the transient infiltration at the onset of streamflow will improve predictions of the total volume of infiltration that may become groundwater recharge. Copyright 2006 by the American Geophysical Union.

  11. Further Experimental Investigation of Freeze-Lining/Bath Interface at Steady-State Conditions

    NASA Astrophysics Data System (ADS)

    Fallah-Mehrjardi, Ata; Hayes, Peter; Jak, Evgueni

    2014-12-01

    In design of the freeze-lining deposits in high-temperature reaction systems, it has been widely assumed that the interface temperature between the deposit and bath at steady-state conditions, that is, when the deposit interface velocity is zero, is the liquidus of the bulk bath material. Current work provides conclusive evidence that the interface temperature can be lower than that of the bulk liquidus. The observations are consistent with a mechanism involving the nucleation and growth of solids on detached crystals in a subliquidus layer as this fluid material moves toward the stagnant deposit interface and the dissolution of these detached crystals as they are transported away from the interface by turbulent eddies. The temperature and position of the stable deposit/liquid interface are determined by the balance between the extent of crystallization on the detached crystals and mass transfer across the subliquidus layer from the bulk bath. A conceptual framework is developed to analyze the factors influencing the steady-state deposit/interface temperature and deposit thickness in chemical systems operating in a positive temperature gradient. The framework can be used to explain the experimental observations in a diverse range of chemical systems and conditions, including high-temperature melts and aqueous solutions, and to explain why the interface temperature under these conditions can be between T liquidus and T solidus.

  12. Flow rate measurement in aggressive conductive fluids

    NASA Astrophysics Data System (ADS)

    Dubovikova, Nataliia; Kolesnikov, Yuri; Karcher, Christian

    2014-03-01

    Two non-contact experimental methods of flow rate measurements for aggressive conductive liquids are described. The techniques are based on electromagnetic forces and Faraday's law: Lorentz force is induced inside moving conductive liquid under influence of variable magnetic field of permanent magnets. They are mounted along a liquid metal channel or (in case of the second method) inserted into rotated metal wheels. The force acts in the opposite of fluids' velocity direction and hence it is possible to measure reaction force of it that takes place according to Newton's law on magnetic field source - permanent magnets. And by knowing the force, which linearly depends on velocity, one can calculate mean flow rate of liquid. In addition experimental "dry" calibration and its results are described for one of the measurements' techniques.

  13. Geophysical Fluid Flow Cell (GFFC) Cross Section

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This drawing shows a cross-section view of the test cell at the heart of the Geophysical Fluid Flow Cell (GFFC) that flew on two Spacelab missions. The middle and lower drawings depict the volume of the silicone oil layer that served as the atmosphere as the steel ball rotated and an electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center (MSFC). An Acrobat PDF copy of this drawing is available at http://microgravity.nasa.gov/gallery. (Credit: NASA/Marshall Space Flight Center)

  14. Steady State Temperature Profile in a Cylinder Heated by Microwaves

    NASA Technical Reports Server (NTRS)

    Jackson, H. W.; Barmatz, M.; Wagner, P.

    1995-01-01

    A new theory has been developed to calculate the steady state temperature profile in a cylindrical sample positioned along the entire axis of a cylindrical microwave cavity. Temperature profiles where computed for- alumina rods of various radii contained in a cavity excite in one of the TM(sub OnO) modes with n = 1, 2 or 3. Calculations where also performed with a concentric outer cylindrical tube surrounding the rod to investigate hybrid heating. The parameters studies of the sample center and surface temperature where performed as a function of the total power transmitted into the cavity. Also, the total hemispherical emissivity was varied at boundaries of the rod, surrounding tube, and cavity walls. The result are discussed in the context of controlling the average rod temperature and the temperature distribution in the rod during microwave processing.

  15. Steady-State Density Functional Theory for Finite Bias Conductances.

    PubMed

    Stefanucci, G; Kurth, S

    2015-12-01

    In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade. PMID:26571349

  16. The thermal vacuum for non-equilibrium steady state

    NASA Astrophysics Data System (ADS)

    Imai, Ryosuke; Kuwahara, Yukiro; Nakamura, Yusuke; Yamanaka, Yoshiya

    Our purpose is to construct a theoretical description of non-equilibrium steady state (NESS), employing thermo field dynamics (TFD). TFD is the operator-based formalism of thermal quautum field theory, where every degree of freedom is doubled and thermal averages are given by expectation values of the thermal vacuum. To specify the thermal vacuum for NESS is a non-trivial issue, and we attempt it on the analogy between the superoperator formalism and TFD. Using the thermal vacuum thus obtained, we analyze the NESS which is realized in the two-reservoir model. It will be shown that the NESS vacuum of the model coincides with the fixed point solutions of the quantum transport equation derived by the self-consistent renormalization of the self-energy in non-equilibrium TFD.

  17. Entropy Production and Non-Equilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    2013-01-01

    The long-term issue of entropy production in transport phenomena is solved by separating the symmetry of the non-equilibrium density matrix ρ(t) in the von Neumann equation, as ρ(t) = ρs(t) + ρa(t) with the symmetric part ρs(t) and antisymmetric part ρa(t). The irreversible entropy production (dS/dt)irr is given in M. Suzuki, Physica A 390(2011)1904 by (dS/dt)irr = Tr( {H}(dρ s{(t)/dt))}/T for the Hamiltonian {H} of the relevant system. The general formulation of the extended von Neumann equation with energy supply and heat extraction is reviewed from the author's paper (M. S.,Physica A391(2012)1074). irreversibility; entropy production; transport phenomena; electric conduction; thermal conduction; linear response; Kubo formula; steady state; non-equilibrium density matrix; energy supply; symmetry-separated von Neumann equation; unboundedness.

  18. Steady-state plasma transition in the Venus ionosheath

    NASA Technical Reports Server (NTRS)

    Perez-De-tejada, H.; Intriligator, D. S.; Strangeway, R. J.

    1991-01-01

    The results of an extended analysis of the plasma and electric field data of the Pioneer Venus Orbiter (PVO) are presented. The persistent presence of a plasma transition embedded in the flanks of the Venus ionosheath between the bow shock and the ionopause is reported. This transition is identified by the repeated presence of characteristic bursts in the 30 kHz channel of the electric field detector of the PVO. The observed electric field signals coincide with the onset of different plasma conditions in the inner ionosheath where more rarified plasma fluxes are measured. The repeated identification of this intermediate ionosheath transition in the PVO data indicates that it is present as a steady state feature of the Venus plasma environment. The distribution of PVO orbits in which the transition is observed suggests that it is more favorably detected in the vicinity of and downstream from the terminator.

  19. Fueling Requirements for Steady State high butane current fraction discharges

    SciTech Connect

    R.Raman

    2003-10-08

    The CT injector originally used for injecting CTs into 1T toroidal field discharges in the TdeV tokamak was shipped PPPL from the Affiliated Customs Brokers storage facility in Montreal during November 2002. All components were transported safely, without damage, and are currently in storage at PPPL, waiting for further funding in order to begin advanced fueling experiments on NSTX. The components are currently insured through the University of Washington. Several technical presentations were made to investigate the feasibility of the CT injector installation on NSTX. These technical presentations, attached to this document, were: (1) Motivation for Compact Toroida Injection in NSTX; (2) Assessment of the Engineering Feasibility of Installing CTF-II on NSTX; (3) Assessment of the Cost for CT Installation on NSTX--A Peer Review; and (4) CT Fueling for NSTX FY 04-08 steady-state operation needs.

  20. Nuclide Importance and the Steady-State Burnup Equation

    SciTech Connect

    Sekimoto, Hiroshi; Nemoto, Atsushi

    2000-05-15

    Conventional methods for evaluating some characteristic values of nuclides relating to burnup in a given neutron spectrum are reviewed in a mathematically systematic way, and a new method based on the importance theory is proposed. In this method, these characteristic values of a nuclide are equivalent to the importances of the nuclide. By solving the equation adjoint to the steady-state burnup equation with a properly chosen source term, the importances for all nuclides are obtained simultaneously.The fission number importance, net neutron importance, fission neutron importance, and absorbed neutron importance are evaluated and discussed. The net neutron importance is a measure directly estimating neutron economy, and it can be evaluated simply by calculating the fission neutron importance minus the absorbed neutron importance, where only the absorbed neutron importance depends on the fission product. The fission neutron importance and absorbed neutron importance are analyzed separately, and detailed discussions of the fission product effects are given for the absorbed neutron importance.

  1. Quasi-steady-state analysis of coupled flashing ratchets

    NASA Astrophysics Data System (ADS)

    Levien, Ethan; Bressloff, Paul C.

    2015-10-01

    We perform a quasi-steady-state (QSS) reduction of a flashing ratchet to obtain a Brownian particle in an effective potential. The resulting system is analytically tractable and yet preserves essential dynamical features of the full model. We first use the QSS reduction to derive an explicit expression for the velocity of a simple two-state flashing ratchet. In particular, we determine the relationship between perturbations from detailed balance, which are encoded in the transitions rates of the flashing ratchet, and a tilted-periodic potential. We then perform a QSS analysis of a pair of elastically coupled flashing ratchets, which reduces to a Brownian particle moving in a two-dimensional vector field. We suggest that the fixed points of this vector field accurately approximate the metastable spatial locations of the coupled ratchets, which are, in general, impossible to identify from the full system.

  2. [Auditory steady-state responses--the state of art].

    PubMed

    Szymańska, Anna; Gryczyński, Maciej; Pajor, Anna

    2010-01-01

    The auditory steady-state responses (ASSR) is quite a new method of electrophysiological threshold estimation with no clinical standards. It was the aim of this study to review practical and theoretical thesis of ASSR and mention recent recommendations and achievements of this technique. The most common application of ASSR is diagnosis of hearing loss in children together with ABR test. In this paper we mentioned information about influence of physiological factors (age, sex, state of arousal, handedness) and type of recording technique (electrodes placement, air and bone stimulation, occlusion effect, amplitude and frequency stimulation, multiple or single frequency stimulation, dichotic and monotic recording technique and type of hearing loss) on ASSR. We conclude that putting ASSR in clinical use as an standardized method it is necessary to do research with numerous groups of patients using the same equipment and parameters of tests. PMID:21166136

  3. Steady state asymmetric planetary electrical induction. [by solar wind

    NASA Technical Reports Server (NTRS)

    Horning, B. L.; Schubert, G.

    1974-01-01

    An analytic solution is presented for the steady state electric and magnetic fields induced by the motional electric field of the solar wind in the atmosphere or interior of a planet that is asymmetrically surrounded by solar wind plasma. The electrically conducting ionosphere or interior must be in direct electrical contact with the solar wind over the day side of the planet. The conducting region of the planet is modeled by a sphere or a spherical shell of arbitrarily stratified electrical conductivity. A monoconducting cylindrical cavity is assumed to extend downstream on the night side of the planet. The solar wind is assumed to be highly conducting so that the induced fields are confined to the planet and cavity. Induced currents close as sheet currents at the solar wind-cavity and solar wind-planet interfaces. Numerical evaluations of the analytic formulas are carried out for a uniformly conducting spherical model.

  4. Steady States in SIRS Epidemical Model of Mobile Individuals

    NASA Astrophysics Data System (ADS)

    Zhang, Duan-Ming; He, Min-Hua; Yu, Xiao-Ling; Pan, Gui-Jun; Sun, Hong-Zhang; Su, Xiang-Ying; Sun, Fan; Yin, Yan-Ping; Li, Rui; Liu, Dan

    2006-01-01

    We consider an epidemical model within socially interacting mobile individuals to study the behaviors of steady states of epidemic propagation in 2D networks. Using mean-field approximation and large scale simulations, we recover the usual epidemic behavior with critical thresholds δc and pc below which infectious disease dies out. For the population density δ far above δc, it is found that there is linear relationship between contact rate λ and the population density δ in the main. At the same time, the result obtained from mean-field approximation is compared with our numerical result, and it is found that these two results are similar by and large but not completely the same.

  5. Modelling of pulsed and steady-state DEMO scenarios

    NASA Astrophysics Data System (ADS)

    Giruzzi, G.; Artaud, J. F.; Baruzzo, M.; Bolzonella, T.; Fable, E.; Garzotti, L.; Ivanova-Stanik, I.; Kemp, R.; King, D. B.; Schneider, M.; Stankiewicz, R.; Stępniewski, W.; Vincenzi, P.; Ward, D.; Zagórski, R.

    2015-07-01

    Scenario modelling for the demonstration fusion reactor (DEMO) has been carried out using a variety of simulation codes. Two DEMO concepts have been analysed: a pulsed tokamak, characterized by rather conventional physics and technology assumptions (DEMO1) and a steady-state tokamak, with moderately advanced physics and technology assumptions (DEMO2). Sensitivity to impurity concentrations, radiation, and heat transport models has been investigated. For DEMO2, the impact of current driven non-inductively by neutral beams has been studied by full Monte Carlo simulations of the fast ion distribution. The results obtained are a part of a more extensive research and development (R&D) effort carried out in the EU in order to develop a viable option for a DEMO reactor, to be adopted after ITER for fusion energy research.

  6. Dust remobilization in fusion plasmas under steady state conditions

    NASA Astrophysics Data System (ADS)

    Tolias, P.; Ratynskaia, S.; De Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; Bykov, I.; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.

    2016-02-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions—direct lift-up, sliding, rolling—are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.

  7. Waveguides formed by quasi-steady-state photorefractive spatial solitons

    NASA Astrophysics Data System (ADS)

    Morin, Matthew; Duree, Galen; Salamo, Gregory; Segev, Mordechai

    1995-10-01

    We show that a quasi-steady-state photorefractive spatial soliton forms a waveguide structure in the bulk of a photorefractive material. Although the optically induced waveguide is formed by a very low-power (microwatts) soliton beam, it can guide a powerful (watt) beam of a longer wavelength at which the medium is nonphotosensitive. Furthermore, the waveguide survives, either in the dark or when guiding the longer-wavelength beam, for a long time after the soliton beam is turned off. We take advantage of the solitons' property of evolution from a relatively broad input beam into a narrow channel and show that the soliton induces a tapered waveguide (an optical funnel) that improves the coupling efficiency of light into the waveguiding structure.

  8. Computational complexity of nonequilibrium steady states of quantum spin chains

    NASA Astrophysics Data System (ADS)

    Marzolino, Ugo; Prosen, Tomaž

    2016-03-01

    We study nonequilibrium steady states (NESS) of spin chains with boundary Markovian dissipation from the computational complexity point of view. We focus on X X chains whose NESS are matrix product operators, i.e., with coefficients of a tensor operator basis described by transition amplitudes in an auxiliary space. Encoding quantum algorithms in the auxiliary space, we show that estimating expectations of operators, being local in the sense that each acts on disjoint sets of few spins covering all the system, provides the answers of problems at least as hard as, and believed by many computer scientists to be much harder than, those solved by quantum computers. We draw conclusions on the hardness of the above estimations.

  9. Typical pure nonequilibrium steady states and irreversibility for quantum transport.

    PubMed

    Monnai, Takaaki; Yuasa, Kazuya

    2016-07-01

    It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's. PMID:27575115

  10. Steady-state magma discharge at Etna 1971-81

    NASA Technical Reports Server (NTRS)

    Wadge, G.; Guest, J. E.

    1981-01-01

    Throughout the past decade Mount Etna has been in almost continuous activity and even during periods of repose incandescent lava has often been visible in at least one of the summit vents. Using observations by Italian, British and French volcanological teams, the volumes of lava produced by each eruption from 1971 to July 1981 have been estimated. The computed output of magma for this period approximates to a rate of 0.7 cu m/s. This is compared with the output rate estimates for Etna's historic past. The steady-state nature of the output during the past decade has implications for the interpretation of the volcano's internal plumbing and the petrology of its lavas, and the assumption that this state will be maintained allows a discussion of the timing and magnitude of future eruptions.

  11. Non-Equilibrium Steady States for Chains of Four Rotors

    NASA Astrophysics Data System (ADS)

    Cuneo, N.; Eckmann, J.-P.

    2016-07-01

    We study a chain of four interacting rotors (rotators) connected at both ends to stochastic heat baths at different temperatures. We show that for non-degenerate interaction potentials the system relaxes, at a stretched exponential rate, to a non-equilibrium steady state (NESS). Rotors with high energy tend to decouple from their neighbors due to fast oscillation of the forces. Because of this, the energy of the central two rotors, which interact with the heat baths only through the external rotors, can take a very long time to dissipate. By appropriately averaging the oscillatory forces, we estimate the dissipation rate and construct a Lyapunov function. Compared to the chain of length three (considered previously by C. Poquet and the current authors), the new difficulty with four rotors is the appearance of resonances when both central rotors are fast. We deal with these resonances using the rapid thermalization of the two external rotors.

  12. Locating CVBEM collocation points for steady state heat transfer problems

    USGS Publications Warehouse

    Hromadka, T.V., II

    1985-01-01

    The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.

  13. Building steady-state simulators via hierarchical feedback decomposition

    SciTech Connect

    Rouquette, N.

    1996-12-31

    In recent years, compositional modeling and self-explanatory simulation techniques have simplified the process of building dynamic simulators of physical systems. Building steady-state simulators is, conceptually, a simpler task consisting in solving a set algebraic equations. This simplicity hides delicate technical issues of convergence and search-space size due to the potentially large number of unknown parameters. We present an automated technique for reducing the dimensionality of the problem by (1) automatically identifying feedback loops (a generally NP-complete problem), (2) hierarchically decomposing the set of equations in terms of feedback loops, and (3) structuring a simulator where equations are solved either serially without search or in isolation within a feedback loop. This paper describes the key algorithms and the results of their implementation on building simulators for a two-phase evaporator loop system across multiple combinations of causal and non-causal approximations.

  14. Thermal noise of mechanical oscillators in steady states with a heat flux.

    PubMed

    Conti, Livia; Lazzaro, Claudia; Karapetyan, Gagik; Bonaldi, Michele; Pegoraro, Matteo; Thakur, Ram-Krishna; De Gregorio, Paolo; Rondoni, Lamberto

    2014-09-01

    We present an experimental investigation of the statistical properties of the position fluctuations of low-loss oscillators in nonequilibrium steady states. The oscillators are coupled to a heat bath, and a nonequilibrium steady state is produced by flowing a constant heat flux, setting a temperature difference across the oscillators. We investigated the distribution of the measurements of the square of the oscillator position and searched for signs of changes with respect to the equilibrium case. We found that, after normalization by the mean value, the second, third, and fourth standardized statistical moments are not modified by the underlying thermodynamic state. This differs from the behavior of the absolute, i.e., not normalized, second moment, which is strongly affected by temperature gradients and heat fluxes. We illustrate this with a numerical experiment in which we study via molecular dynamics the fluctuations of the length of a one-dimensional chain of identical particles interacting via anharmonic interparticle potentials, with the extremes thermostated at different temperatures: we use the variance of the length in correspondence to its first elastic mode of resonance to define an effective temperature which we observe to depart from the thermodynamic one in the nonequilibrium states. We investigate the effect of changing the interparticle potential and show that the qualitative behavior of the nonequilibrium excess is unchanged. Our numerical results are consistent with the chain length being Gaussian distributed in the nonequilibrium states. Our experimental investigation reveals that the position variance is the only, and crucially easily accessible, observable for distinguishing equilibrium from nonequilibrium steady states. The consequences of this fact for the design of interferometric gravitational wave detectors are discussed. PMID:25314407

  15. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis.

    PubMed

    Czarnecki, Olaf; Peter, Enrico; Grimm, Bernhard

    2011-01-01

    Tetrapyrroles and carotenoids are required for many indispensable functions in photosynthesis. Tetrapyrroles are essential metabolites for photosynthesis, redox reaction, and detoxification of reactive oxygen species and xenobiotics, while carotenoids function as accessory pigments, in photoprotection and in attraction to animals. Their branched metabolic pathways of synthesis and degradation are tightly controlled to provide adequate amounts of each metabolite (carotenoids/tetrapyrroles) and to prevent accumulation of photoreactive intermediates (tetrapyrroles). Many Arabidopsis mutants and transgenic plants have been reported to show variations in steady-state levels of tetrapyrrole intermediates and contents of different carotenoid species. It is a challenging task to determine the minute amounts of these metabolites to assess the metabolic flow and the activities of both pigment-synthesising and degrading pathways, to unravel limiting enzymatic steps of these biosynthetic pathways, and to characterise mutants with accumulating intermediates. In this chapter, we present a series of methods to qualify and quantify anabolic and catabolic intermediates of Arabidopsis tetrapyrrole metabolism, and describe a common method for quantification of different plant carotenoid species. Additionally, we introduce two methods for quantification of non-covalently bound haem. The approach of analysing steady-state levels of tetrapyrrole intermediates in plants, when applied in combination with analyses of transcripts, proteins, and enzyme activities, enables the biochemical and genetic elucidation of the tetrapyrrole pathway in wild-type plants, varieties, and mutants. Steady-state levels of tetrapyrrole intermediates are only up to 1/1,000 of the amounts of the accumulating end-products, chlorophyll, and haem. Although present in very low amounts, the accumulation and availability of tetrapyrrole intermediates have major consequences on the physiology and activity of

  16. Design of long pulse/steady state negative hydrogen ion sources for fusion applications

    SciTech Connect

    Prelec, K.

    1980-01-01

    By using parameters of ion sources when operating in a pulsed mode and without cooling (pulse length < 0.1 s), requirements have been determined for a long pulse (several seconds) or steady state operating mode and two sources have been designed and fabricated. First of the two is a penning source, designed for a steady state operation with a cathode power density of 1 kW/cm/sup 2/. For the range of cathode power densities between 0.2 kW/cm/sup 2/ and 1 Kw/cm/sup 2/, nucleated boiling has to be used for heat removal; below 0.2 kW/cm/sup 2/ water flow cooling suffices. Although this source should deliver 0.3 to 0.5 A of H/sup -/ ions in a steady state operation and at full power, the other source, which has a magnetron geometry, is more promising. The latter incorporates two new features compared to first designs, geometrical focusing of fast, primary negative hydrogen ions from the cathode into the extraction slit, and a wider discharge gap in the back of the source. These two changes have resulted in an improvement of the power and gas efficiencies by a factor of 3 to 4 and in a reduction of the cathode power density by an order of magnitude. The source has water cooling for all the electrodes, because maximum power densities will not be higher than 0.2 kW/cm/sup 2/. Very recently a modification of this magnetron source is being considered; it consists of plasma injection into the source from a hollow cathode discharge.

  17. KIR channel activation contributes to onset and steady-state exercise hyperemia in humans.

    PubMed

    Crecelius, Anne R; Luckasen, Gary J; Larson, Dennis G; Dinenno, Frank A

    2014-09-01

    We tested the hypothesis that activation of inwardly rectifying potassium (KIR) channels and Na(+)-K(+)-ATPase, two pathways that lead to hyperpolarization of vascular cells, contributes to both the onset and steady-state hyperemic response to exercise. We also determined whether after inhibiting these pathways nitric oxide (NO) and prostaglandins (PGs) are involved in the hyperemic response. Forearm blood flow (FBF; Doppler ultrasound) was determined during rhythmic handgrip exercise at 10% maximal voluntary contraction for 5 min in the following conditions: control [saline; trial 1 (T1)]; with combined inhibition of KIR channels and Na(+)-K(+)-ATPase alone [via barium chloride (BaCl2) and ouabain, respectively; trial 2 (T2)]; and with additional combined nitric oxide synthase (N(G)-monomethyl-l-arginine) and cyclooxygenase inhibition [ketorolac; trial 3 (T3)]. In T2, the total hyperemic responses were attenuated ~50% from control (P < 0.05) at exercise onset, and there was minimal further effect in T3 (protocol 1; n = 11). In protocol 2 (n = 8), steady-state FBF was significantly reduced during T2 vs. T1 (133 ± 15 vs. 167 ± 17 ml/min; Δ from control: -20 ± 3%; P < 0.05) and further reduced during T3 (120 ± 15 ml/min; -29 ± 3%; P < 0.05 vs. T2). In protocol 3 (n = 8), BaCl2 alone reduced FBF during onset (~50%) and steady-state exercise (~30%) as observed in protocols 1 and 2, respectively, and addition of ouabain had no further impact. Our data implicate activation of KIR channels as a novel contributing pathway to exercise hyperemia in humans. PMID:24973385

  18. Steady-State Diffusion of Water through Soft-Contact LensMaterials

    SciTech Connect

    Fornasiero, Francesco; Krull, Florian; Radke, Clayton J.; Prausnitz, JohnM.

    2005-01-31

    Water transport through soft contact lenses (SCL) is important for acceptable performance on the human eye. Chemical-potential gradient-driven diffusion rates of water through soft-contact-lens materials are measured with an evaporation-cell technique. Water is evaporated from the bottom surface of a lens membrane by impinging air at controlled flow rate and humidity. The resulting weight loss of a water reservoir covering the top surface of the contact-lens material is recorded as a function of time. New results are reported for a conventional hydrogel material (SofLens{trademark} One Day, hilafilcon A, water content at saturation W{sub 10} = 70 weight %) and a silicone hydrogel material (PureVision{trademark}, balafilcon A, W{sub 10} = 36 %), with and without surface oxygen plasma treatment. Also, previously reported data for a conventional HEMA-SCL (W{sub 10} = 38 %) hydrogel are reexamined and compared with those for SofLens{trademark} One Day and PureVision{trademark} hydrogels. Measured steady-state water fluxes are largest for SofLens{trademark} One Day, followed by PureVision{trademark} and HEMA. In some cases, the measured steady-state water fluxes increase with rising relative air humidity. This increase, due to an apparent mass-transfer resistance at the surface (trapping skinning), is associated with formation of a glassy skin at the air/membrane interface when the relative humidity is below 55-75%. Steady-state water-fluxes are interpreted through an extended Maxwell-Stefan diffusion model for a mixture of species starkly different in size. Thermodynamic nonideality is considered through Flory-Rehner polymer-solution theory. Shrinking/swelling is self-consistently modeled by conservation of the total polymer mass. Fitted Maxwell-Stefan diffusivities increase significantly with water concentration in the contact lens.

  19. Electrically Evoked Auditory Steady State Responses in Cochlear Implant Users

    PubMed Central

    Wouters, Jan

    2009-01-01

    Auditory steady state responses are neural potentials in response to repeated auditory stimuli. This study shows that electrically evoked auditory steady state responses (EASSRs) to low-rate pulse trains can be reliably recorded by electrodes placed on the scalp of a cochlear implant (CI) user and separated from the artifacts generated by the electrical stimulation. Response properties are described, and the predictive value of EASSRs for behaviorally hearing thresholds is analyzed. For six users of a Cochlear Nucleus CI, EASSRs to symmetric biphasic pulse trains with rates between 35 and 47 Hz were recorded with seven scalp electrodes. The influence of various stimulus parameters was assessed: pulse rate, stimulus intensity, monopolar or bipolar stimulation mode, and presentation of either one pulse train on one electrode or interleaved pulse trains with different pulse rates on multiple electrodes. To compensate for the electrical artifacts caused by the stimulus pulses and radio frequency transmission, different methods of artifact reduction were employed. The validity of the recorded responses was confirmed by recording on–off responses, determination of response latency across the measured pulse rates, and comparison of amplitude growth of stimulus artifact and response amplitude. For stimulation in the 40 Hz range, response latencies of 35.6 ms (SD = 5.3 ms) were obtained. Responses to multiple simultaneous stimuli on different electrodes can be evoked, and the electrophysiological thresholds determined from EASSR amplitude growth in the 40 Hz range correlate well with behaviorally determined threshold levels for pulse rates of 41 Hz. PMID:20033246

  20. A mathematical model of pan evaporation under steady state conditions

    NASA Astrophysics Data System (ADS)

    Lim, Wee Ho; Roderick, Michael L.; Farquhar, Graham D.

    2016-09-01

    In the context of changing climate, global pan evaporation records have shown a spatially-averaged trend of ∼ -2 to ∼ -3 mm a-2 over the past 30-50 years. This global phenomenon has motivated the development of the "PenPan" model (Rotstayn et al., 2006). However, the original PenPan model has yet to receive an independent experimental evaluation. Hence, we constructed an instrumented US Class A pan at Canberra Airport (Australia) and monitored it over a three-year period (2007-2010) to uncover the physics of pan evaporation under non-steady state conditions. The experimental investigations of pan evaporation enabled theoretical formulation and parameterisation of the aerodynamic function considering the wind, properties of air and (with or without) the bird guard effect. The energy balance investigation allowed for detailed formulation of the short- and long-wave radiation associated with the albedos and the emissivities of the pan water surface and the pan wall. Here, we synthesise and generalise those earlier works to develop a new model called the "PenPan-V2" model for application under steady state conditions (i.e., uses a monthly time step). Two versions (PenPan-V2C and PenPan-V2S) are tested using pan evaporation data available across the Australian continent. Both versions outperformed the original PenPan model with better representation of both the evaporation rate and the underlying physics of a US Class A pan. The results show the improved solar geometry related calculations (e.g., albedo, area) for the pan system led to a clear improvement in representing the seasonal cycle of pan evaporation. For general applications, the PenPan-V2S is simpler and suited for applications including an evaluation of long-term trends in pan evaporation.

  1. Steady-state spectroscopy of new biological probes

    NASA Astrophysics Data System (ADS)

    Abou-Zied, Osama K.

    2007-02-01

    The steady state absorption and fluorescence spectroscopy of 2-(2'-hydroxyphenyl)benzoxazole (HBO) and (2,2'-bipyridine)-3,3'-diol (BP(OH) II) were studied here free in solution and in human serum albumin (HSA) in order to test their applicability as new biological probes. HBO and BP(OH) II are known to undergo intramolecular proton transfers in the excited state. Their absorption and fluorescence spectra are sensitive to environmental change from hydrophilic to hydrophobic, thus allowing the opportunity to use them as environment-sensitive probes. The effect of water on the steady state spectra of the two molecules also shows unique features which may position them as water sensors in biological systems. For HBO in buffer, fluorescence is only due to the syn-keto tautomer, whereas in HSA the fluorescence is due to four species in equilibrium in the excited state (the syn-keto tautomer, the anti-enol tautomer, the solvated syn-enol tautomer, and the anion species of HBO). Analysis of the fluorescence spectra of HBO in HSA indicates that HBO is exposed to less water in the HBO:HSA complex. For the BP(OH) II molecule, unique absorption due to water was observed in the spectral region of 400-450 nm. This absorption decreases in the presence of HSA due to less accessibility to water as a result of binding to HSA. Fluorescence of BP(OH) II is due solely to the di-keto tautomer after double proton transfer in the excited state. The fluorescence peak of BP(OH) II shows a red-shift upon HSA recognition which is attributed to the hydrophobic environment inside the binding site of HSA. We discuss also the effect of probe-inclusion inside well-defined hydrophobic cavities of cyclodextrins.

  2. Torque-balanced Steady States of Single-component Plasmas

    NASA Astrophysics Data System (ADS)

    Danielson, James R.

    2005-10-01

    Penning-Malmberg traps provide an excellent method to confine single-component plasmas. Specially tailored, high-density plasmas can be created in these devices by the application of azimuthally phased rf fields [i.e., the so-called ``rotating wall'' (RW) technique]. Recently, we reported a new regime of RW compression of electron (or positron) plasmas ootnotetextJ. R. Danielson and C. M. Surko, Phys. Rev. Lett. 95, 035001 (2005).. In this ``strong-drive'' regime, plasmas are compressed until the E x B rotation frequency, φE (with φE plasma density) approaches the applied frequency, φRW. Good compression is achieved over a broad range of RW frequencies, without the need to tune to a mode in the plasma. The resulting steady-state density is found to be only weakly dependent on the applied RW amplitude. A simple nonlinear dynamical model explains these observations as convergence to an attracting fixed point - the torque-balanced steady state. The applied RW torque, τRW, can be understood as a generic, linear coupling between the plasma and the Debye- shielded RW electric field. The thermodynamic equations ootnotetextT. M. O'Neil and D. H. E. Dubin, Phys. Plasmas 5, 2163 (1998). governing the evolution will be discussed and compared to the experiments. This new regime facilitates improved compression and colder plasmas (since less transport means less plasma heating). Factors limiting the utility of the technique and applications will be discussed, including the development of a multicell trap to confine large numbers (i.e., N >=10^ 12) of positrons ootnotetextC. M. Surko and R. G. Greaves, Phys. Plasmas 11, 2333 (2004)..

  3. Steady-state creep of metal-ceramic multilayered materials

    SciTech Connect

    Shen, Y.L.; Suresh, S.

    1996-04-01

    A general approach is presented for analyzing the steady-state creep response and its underlying mechanisms in metal-ceramic multilayers subjected to monotonic or cyclic variations in temperature. This approach combines the plate or beam theories of continuum mechanics with the mechanism-based classical constitutive equations for steady-state creep. The method is capable of predicting the evolution of overall curvature in the layered solid, the generation of thermal stresses within each layer, and the dominant deformation mechanisms at any through-thickness location of each layer at any instant of time or temperature for prescribed layer geometries, thermo-mechanical properties of the constituent layers, and the applied thermal history. Simulations are presented for Al-Al{sub 2}O{sub 3} bilayer and Al{sub 2}O{sub 3}-Al-Al{sub 2}O{sub 3} trilayer model systems. The predicted results are compared with appropriate experimental measurements for the bilayers subjected to thermal cycling up to 450 C. It is found that the multilayer creep calculations capture the essential features of cyclic thermal response; the extent of stress relaxation in the Al layer, however, is somewhat overestimated, especially at higher temperatures. Possible reasons for such discrepancy are discussed, and the significance and limitations of the overall approach are highlighted. The effects of the rate of heating or cooling on deformation, and the correlations between the present creep analyses and rate-independent elastoplastic formulations for multilayers are also considered. The influence of layer thickness on the evolution of creep mechanisms is also examined from thick multilayers to the limiting case of a thin metallic film on a brittle substrate.

  4. Steady state plasma operation in RF dominated regimes on EAST

    SciTech Connect

    Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.; Hu, C. D.; Liu, F. K.; Hu, L. Q.; Wan, B. N. Li, J. G.

    2015-12-10

    Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H{sub 98}∼1.2 or by combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te∼4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.

  5. Microscale imaging of cilia-driven fluid flow

    PubMed Central

    Huang, Brendan K.; Choma, Michael A.

    2015-01-01

    Cilia-driven fluid flow is important for multiple processes in the body, including respiratory mucus clearance, gamete transport in the oviduct, right-left patterning in the embryonic node, and cerebrospinal fluid circulation. Multiple imaging techniques have been applied towards quantifying ciliary flow. Here we review common velocimetry methods of quantifying fluid flow. We then discuss four important optical modalities, including light microscopy, epifluorescence, confocal microscopy, and optical coherence tomography, that have been used to investigate cilia-driven flow. PMID:25417211

  6. Hydrodynamics of Denver basin: explanation of subnormal fluid pressures

    USGS Publications Warehouse

    Belitz, K.; Bredehoeft, J.D.

    1988-01-01

    Shows that 1) subnormal fluid pressures can be explained as a consequence of steady-state regional ground-water flow, 2) shale is an important factor in the regional flow system, and 3) depth is an important control on the distribution of hydraulic conductivity. -from Authors

  7. Template Matching Using a Fluid Flow Model

    NASA Astrophysics Data System (ADS)

    Newman, William Curtis

    Template matching is successfully used in machine recognition of isolated spoken words. In these systems a word is broken into frames (20 millisecond time slices) and the spectral characteristics of each frame are found. Thus, each word is represented as a 2-dimensional (2-D) function of spectral characteristic and frame number. An unknown word is recognized by matching its 2-D representation to previously stored example words, or templates, also in this 2-D form. A new model for this matching step will be introduced. The 2-D representations of the template and unknown are used to determine the shape of a volume of viscous fluid. This volume is broken up into many small elements. The unknown is changed into the template by allowing flows between the element boundaries. Finally the match between the template and unknown is determined by calculating a weighted squared sum of the flow values. The model also allows the relative flow resistance between the element boundaries to be changed. This is useful for characterizing the important features of a given template. The flow resistances are changed according to the gradient of a simple performance function. This performance function is evaluated using a set of training samples provided by the user. The model is applied to isolated word and single character recognition tasks. Results indicate the applications where this model works best.

  8. Unified slip boundary condition for fluid flows.

    PubMed

    Thalakkottor, Joseph John; Mohseni, Kamran

    2016-08-01

    Determining the correct matching boundary condition is fundamental to our understanding of several everyday problems. Despite over a century of scientific work, existing velocity boundary conditions are unable to consistently explain and capture the complete physics associated with certain common but complex problems, such as moving contact lines and corner flows. The widely used Maxwell and Navier slip boundary conditions make an implicit assumption that velocity varies only in the wall normal direction. This makes their boundary condition inapplicable in the vicinity of contact lines and corner points, where velocity gradient exists both in the wall normal and wall tangential directions. In this paper, by identifying this implicit assumption we are able to extend Maxwell's slip model. Here, we present a generalized velocity boundary condition that shows that slip velocity is a function of not only the shear rate but also the linear strain rate. In addition, we present a universal relation for slip length, which shows that, for a general flow, slip length is a function of the principal strain rate. The universal relation for slip length along with the generalized velocity boundary condition provides a unified slip boundary condition to model a wide range of steady Newtonian fluid flows. We validate the unified slip boundary for simple Newtonian liquids by using molecular dynamics simulations and studying both the moving contact line and corner flow problems. PMID:27627398

  9. Lithium-Gettered Moving Surface Plasma-Facing Components for Particle Control in Steady State Magnetic Fusion Devices

    SciTech Connect

    Hirooka, Yoshi; Ohgaki, Hirotsugu; Hosaka, Souichirou; Ohtsuka, Yusuke; Nishikawa, Masahiro

    2005-04-15

    In our previous work, the first proof-of-principle experiments were successfully conducted on the particle control capability based on the concept of moving-surface plasma-facing component (MS-PFC). Over a continuously titanium-gettered rotating drum, hydrogen recycling was found to be reduced down to levels around 94% even at steady state. These experiments on the MS-PFC concept have now been extended to the second stage where lithium is employed as the getter material, while using the same rotating drum. These experiments are intended to pilot the potential use of lithium as a flowing liquid facing the edge plasmas in steady state reactors beyond ITER. Reported in this paper are rather dramatic findings that hydrogen recycling is reduced down to levels around 76% and 86% at steady state over the rotating drum at the lithium deposition rates of 9.5 A/s and 7.3 A/s, respectively. These steady state recycling data have been nicely reproduced by a simple zero-dimensional particle balance model.

  10. Counterflow quantum turbulence of He-II in a square channel: Numerical analysis with nonuniform flows of the normal fluid

    NASA Astrophysics Data System (ADS)

    Yui, Satoshi; Tsubota, Makoto

    2015-05-01

    We perform a numerical analysis of counterflow quantum turbulence of superfluid 4He with nonuniform flows by using the vortex filament model. In recent visualization experiments nonuniform laminar flows of the normal fluid, namely, Hagen-Poiseuille flow and tail-flattened flow, have been observed. Tail-flattened flow is a laminar flow in which the outer part of the Hagen-Poiseuille flow becomes flat. In our simulation, the velocity field of the normal fluid is prescribed to be two nonuniform profiles. This work addresses a square channel to obtain important physics not revealed in the preceding numerical works. In the studies of the two profiles we analyze the statistics of the physical quantities. Under Hagen-Poiseuille flow, inhomogeneous quantum turbulence appears as a statistically steady state. The vortex tangle shows a characteristic space-time oscillation. Under tail-flattened flow, the nature of the quantum turbulence depends strongly on that flatness. Vortex line density increases significantly as the profile becomes flatter, being saturated above a certain flatness. The inhomogeneity is significantly reduced in comparison to the case of Hagen-Poiseuille flow. Investigating the behavior of quantized vortices reveals that tail-flattened flow is an intermediate state between Hagen-Poiseuille flow and uniform flow. In both profiles we obtain a characteristic inhomogeneity in the physical quantities, which suggests that a boundary layer of superfluid appears near a solid boundary. The vortex tangle produces a velocity field opposite to the applied superfluid flow, and, consequently, the superfluid flow becomes smaller than the applied one.

  11. On a difficulty in eigenfunction expansion solutions for the start-up of fluid flow

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.

    2015-11-01

    Most mathematics and engineering textbooks describe the process of ``subtracting off'' the steady state of a linear parabolic partial differential equation as a technique for obtaining a boundary-value problem with homogeneous boundary conditions that can be solved by separation of variables (i.e., eigenfunction expansions). While this method produces the correct solution for the start-up of the flow of, e.g., a Newtonian fluid between parallel plates, it can lead to erroneous solutions to the corresponding problem for a class of non-Newtonian fluids. We show that the reason for this is the non-rigorous enforcement of the start-up condition in the textbook approach, which leads to a violation of the principle of causality. Nevertheless, these boundary-value problems can be solved correctly using eigenfunction expansions, and we present the formulation that makes this possible (in essence, an application of Duhamel's principle). The solutions obtained by this new approach are shown to agree identically with those obtained by using the Laplace transform in time only, a technique that enforces the proper start-up condition implicitly (hence, the same error cannot be committed). Supported, in part, by NSF Grant DMS-1104047 and the U.S. DOE (Contract No. DE-AC52-06NA25396) through the LANL/LDRD Program.

  12. Space Coffee Cup: Capillary Flow Driven Fluids in Space

    NASA Video Gallery

    Interested in learning more about how fluids react in Space? In this video, Professor Mark Weislogel, and Dr. Marshall Porterfield will discuss the Space Coffee Cup and Capillary Flow Driven Fluids...

  13. Thermal and Fluid Flow Brazing Simulations

    SciTech Connect

    HOSKING, FLOYD MICHAEL; GIANOULAKIS,STEVEN E.; GIVLER,RICHARD C.; SCHUNK,P. RANDALL

    1999-12-15

    The thermal response of fixtured parts in a batch-type brazing furnace can require numerous, time-consuming development runs before an acceptable furnace schedule or joint design is established. Powerful computational simulation tools are being developed to minimize the required number of verification experiments, improve furnace throughput, and increase product yields. Typical furnace simulations are based on thermal, fluid flow, and structural codes that incorporate the fundamental physics of the brazing process. The use of massively parallel computing to predict furnace and joint-level responses is presented. Measured and computed data are compared. Temperature values are within 1-270 of the expected peak brazing temperature for different loading conditions. Sensitivity studies reveal that the thermal response is more sensitive to the thermal boundary conditions of the heating enclosure than variability y in the materials data. Braze flow simulations predict fillet geometry and free surface joint defects. Dynamic wetting conditions, interfacial reactions, and solidification structure add a high degree of uncertainty to the flow results.

  14. Steady-state low thermal resistance characterization apparatus: The bulk thermal tester.

    PubMed

    Burg, Brian R; Kolly, Manuel; Blasakis, Nicolas; Gschwend, Dominic; Zürcher, Jonas; Brunschwiler, Thomas

    2015-12-01

    The reliability of microelectronic devices is largely dependent on electronic packaging, which includes heat removal. The appropriate packaging design therefore necessitates precise knowledge of the relevant material properties, including thermal resistance and thermal conductivity. Thin materials and high conductivity layers make their thermal characterization challenging. A steady state measurement technique is presented and evaluated with the purpose to characterize samples with a thermal resistance below 100 mm(2) K/W. It is based on the heat flow meter bar approach made up by two copper blocks and relies exclusively on temperature measurements from thermocouples. The importance of thermocouple calibration is emphasized in order to obtain accurate temperature readings. An in depth error analysis, based on Gaussian error propagation, is carried out. An error sensitivity analysis highlights the importance of the precise knowledge of the thermal interface materials required for the measurements. Reference measurements on Mo samples reveal a measurement uncertainty in the range of 5% and most accurate measurements are obtained at high heat fluxes. Measurement techniques for homogeneous bulk samples, layered materials, and protruding cavity samples are discussed. Ultimately, a comprehensive overview of a steady state thermal characterization technique is provided, evaluating the accuracy of sample measurements with thermal resistances well below state of the art setups. Accurate characterization of materials used in heat removal applications, such as electronic packaging, will enable more efficient designs and ultimately contribute to energy savings. PMID:26724058

  15. Uterine metabolism of the pregnant rabbit under chronic steady-state conditions

    SciTech Connect

    Johnson, R.L.; Gilbert, M.; Block, S.M.; Battaglia, F.C.

    1986-05-01

    The study of uterine metabolism in pregnancy under chronic steady-state conditions has been confined to large mammals and, more recently, to the guinea pig. The pregnant rabbit is of interest because of its short gestation and large litter size. We developed an indirect approach involving retrograde catheterization of the uterine venous drainage, permitting measurement of both uterine metabolic quotients and uterine uptakes. Radioactive microspheres were used to measure blood flow. A large lactate and ammonia efflux from the uterus was found. In the fed state, ketogenic substrates were taken up in small amounts. However, during starvation a significant increase in ketoacid uptake was observed with a concurrent fall in acetate uptake. There was a large glucose/oxygen quotient across the uterus, but the glucose plus lactate/oxygen quotient was comparable to that found in the sheep and guinea pig (0.6 +/- 0.1). It is apparent that in all three species studied under chronic steady-state conditions (sheep, guinea pig, and rabbit) there is a large glucose uptake associated with a net lactate production, and fuels other than glucose and lactate must be used by the uterus.

  16. Heating and current drive requirements towards steady state operation in ITER

    SciTech Connect

    Poli, F. M.; Kessel, C. E.; Gorelenkova, M.; Bonoli, P. T.; Batchelor, D. B.; Harvey, B.; Petrov, Y.

    2014-02-12

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.

  17. Effects of naphthalene on Swiss chard in a steady-state foliage exposure system

    SciTech Connect

    Love, S.D.; Hale, B.A.

    1995-12-31

    Little is known about air-to-foliage transfer of volatile organic pollutants: sink strength of leaves and toxicity to the plant via this route have not been widely documented. Using naphthalene as a model contaminant, a steady-state exposure system was developed in which a continuous stream of naphthalene vapor was generated from a chilled permeation tube. This stream was proportionately released into four separate clean airstreams to deliver four discrete concentrations of naphthalene vapor to large cuvettes in which potted plants were sealed. Each cuvette received a total flow rate of 5 LPM. Naphthalene concentration exiting the permeation tube was calculated twofold: using ideal gas laws and from the daily mass loss of the permeation tube. Daily mass loss from the permeation tube and indirect indication of naphthalene concentration by UV light attenuation indicated that the exposure system was capable of maintaining a logarithmic range of naphthalene vapor concentrations over four days. Deviation from predicted concentrations was associated with high moisture content of the air supply line used to vent the permeation tube. Swiss chard (Beta vulgaris cv. White King) plants were exposed for four days in controlled environment chambers under steady-state conditions. Gaseous naphthalene was mixed with air and applied to foliate during the day or night. Plant growth was not affected by shoot naphthalene dose. Foliar exposure increased stomatal conductance and net CO{sub 2} fixation rates.

  18. Steady-state low thermal resistance characterization apparatus: The bulk thermal tester

    NASA Astrophysics Data System (ADS)

    Burg, Brian R.; Kolly, Manuel; Blasakis, Nicolas; Gschwend, Dominic; Zürcher, Jonas; Brunschwiler, Thomas

    2015-12-01

    The reliability of microelectronic devices is largely dependent on electronic packaging, which includes heat removal. The appropriate packaging design therefore necessitates precise knowledge of the relevant material properties, including thermal resistance and thermal conductivity. Thin materials and high conductivity layers make their thermal characterization challenging. A steady state measurement technique is presented and evaluated with the purpose to characterize samples with a thermal resistance below 100 mm2 K/W. It is based on the heat flow meter bar approach made up by two copper blocks and relies exclusively on temperature measurements from thermocouples. The importance of thermocouple calibration is emphasized in order to obtain accurate temperature readings. An in depth error analysis, based on Gaussian error propagation, is carried out. An error sensitivity analysis highlights the importance of the precise knowledge of the thermal interface materials required for the measurements. Reference measurements on Mo samples reveal a measurement uncertainty in the range of 5% and most accurate measurements are obtained at high heat fluxes. Measurement techniques for homogeneous bulk samples, layered materials, and protruding cavity samples are discussed. Ultimately, a comprehensive overview of a steady state thermal characterization technique is provided, evaluating the accuracy of sample measurements with thermal resistances well below state of the art setups. Accurate characterization of materials used in heat removal applications, such as electronic packaging, will enable more efficient designs and ultimately contribute to energy savings.

  19. Steady-state low thermal resistance characterization apparatus: The bulk thermal tester

    SciTech Connect

    Burg, Brian R.; Kolly, Manuel; Blasakis, Nicolas; Gschwend, Dominic; Zürcher, Jonas; Brunschwiler, Thomas

    2015-12-15

    The reliability of microelectronic devices is largely dependent on electronic packaging, which includes heat removal. The appropriate packaging design therefore necessitates precise knowledge of the relevant material properties, including thermal resistance and thermal conductivity. Thin materials and high conductivity layers make their thermal characterization challenging. A steady state measurement technique is presented and evaluated with the purpose to characterize samples with a thermal resistance below 100 mm{sup 2} K/W. It is based on the heat flow meter bar approach made up by two copper blocks and relies exclusively on temperature measurements from thermocouples. The importance of thermocouple calibration is emphasized in order to obtain accurate temperature readings. An in depth error analysis, based on Gaussian error propagation, is carried out. An error sensitivity analysis highlights the importance of the precise knowledge of the thermal interface materials required for the measurements. Reference measurements on Mo samples reveal a measurement uncertainty in the range of 5% and most accurate measurements are obtained at high heat fluxes. Measurement techniques for homogeneous bulk samples, layered materials, and protruding cavity samples are discussed. Ultimately, a comprehensive overview of a steady state thermal characterization technique is provided, evaluating the accuracy of sample measurements with thermal resistances well below state of the art setups. Accurate characterization of materials used in heat removal applications, such as electronic packaging, will enable more efficient designs and ultimately contribute to energy savings.

  20. Code System for Transient and Steady-State Temperature Distribution in Multidimensional Systems.

    Energy Science and Technology Software Center (ESTSC)

    2005-10-24

    Version 01 TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady‑state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complexmore » shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position, and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time‑steps or on the computer time, and attainment of steady state.« less