Steady State Transportation Cooling in Porous Media Under Local, Non-Thermal Equilibrium Fluid Flow
NASA Technical Reports Server (NTRS)
Rodriquez, Alvaro Che
2002-01-01
An analytical solution to the steady-state fluid temperature for 1-D (one dimensional) transpiration cooling has been derived. Transpiration cooling has potential use in the aerospace industry for protection against high heating environments for re-entry vehicles. Literature for analytical treatments of transpiration cooling has been largely confined to the assumption of thermal equilibrium between the porous matrix and fluid. In the present analysis, the fundamental fluid and matrix equations are coupled through a volumetric heat transfer coefficient and investigated in non-thermal equilibrium. The effects of varying the thermal conductivity of the solid matrix and the heat transfer coefficient are investigated. The results are also compared to existing experimental data.
NASA Astrophysics Data System (ADS)
Kozlov, A. N.
2009-05-01
This paper reports the results of numerical studies of axisymmetric flows in a coaxial plasma accelerator in the presence of a longitudinal magnetic field. The calculations were performed using a two-dimensional two-fluid magnetohydrodynamic model taking into account the Hall effect and the conductivity tensor of the medium. The numerical experiments confirmed the main features of the plasmadynamic processes found previously using analytical and one-fluid models and made it possible to study plasma flows near the electrodes.
Steady State Erosion of Granular Particles by Shear Flow
NASA Astrophysics Data System (ADS)
Allen, Benjamin; Kudrolli, Arshad
2015-11-01
Despite decades of scientific observation of rivers, streams and laboratory experiments the process of erosion still is not understood. Empirical fits are used to determine when erosion starts with more than an order of magnitude scatter or a shifting power law determining how much material erodes away. In order to study the many body problem of multiple particles we first need to understand the basics of a single particle eroding from a potential well in laminar flow. Using different particle densities and different barrier heights we looked at the onset of erosion and the balance of forces and torques to create a predictive model of when a single particle will erode over a barrier of a given height as a function of shear rate and viscosity. We then create a steady state system in which to image erosion as it happens and simultaneously measure flow velocity and particle movement. Measuring particle movement allows us to determine when steady state erosion occurs and calculate the fluxes and slip velocities at the beginning of the erosion process as we transition from rolling particles to particles suspended in the fluid flow. NSF Grant Number CBET 1335928.
Pressure updating methods for the steady-state fluid equations
NASA Technical Reports Server (NTRS)
Fiterman, A.; Turkel, E.; Vatsa, V.
1995-01-01
We consider the steady state equations for a compressible fluid. Since we wish to solve for a range of speeds we must consider the equations in conservation form. For transonic speeds these equations are of mixed type. Hence, the usual approach is to add time derivatives to the steady state equations and then march these equations in time. One then adds a time derivative of the density to the continuity equation, a derivative of the momentum to the momentum equation and a derivative of the total energy to the energy equation. This choice is dictated by the time consistent equations. However, since we are only interested in the steady state this is not necessary. Thus we shall consider the possibility of adding a time derivative of the pressure to the continuity equation and similar modifications for the energy equation. This can then be generalized to adding combinations of time derivatives to each equation since these vanish in the steady state. When using acceleration techniques such as residual smoothing, multigrid, etc. these are applied to the pressure rather than the density. Hence, the code duplicates the behavior of the incompressible equations for low speeds.
Multiple steady states in coupled flow tank reactors
NASA Astrophysics Data System (ADS)
Hunt, Katharine L. C.; Kottalam, J.; Hatlee, Michael D.; Ross, John
1992-05-01
Coupling between continuous-flow, stirred tank reactors (CSTR's), each having multiple steady states, can produce new steady states with different concentrations of the chemical species in each of the coupled tanks. In this work, we identify a kinetic potential ψ that governs the deterministic time evolution of coupled tank reactors, when the reaction mechanism permits a single-variable description of the states of the individual tanks; examples include the iodate-arsenous acid reaction, a cubic model suggested by Noyes, and two quintic models. Stable steady states correspond to minima of ψ, and unstable steady states to maxima or saddle points; marginally stable states typically correspond to saddle-node points. We illustrate the variation in ψ due to changes in the rate constant for external material intake (k0) and for exchange between tanks (kx). For fixed k0 values, we analyze the changes in numbers and types of steady states as kx increases from zero. We show that steady states disappear by pairwise coalescence; we also show that new steady states may appear with increasing kx, when the reaction mechanism is sufficiently complex. For fixed initial conditions, the steady state ultimately reached in a mixing experiment may depend on the exchange rate constant as a function of time, kx(t) : Adiabatic mixing is obtained in the limit of slow changes in kx(t) and instantaneous mixing in the limit as kx(t)→∞ while t remains small. Analyses based on the potential ψ predict the outcome of mixing experiments for arbitrary kx(t). We show by explicit counterexamples that a prior theory developed by Noyes does not correctly predict the instability points or the transitions between steady states of coupled tanks, to be expected in mixing experiments. We further show that the outcome of such experiments is not connected to the relative stability of steady states in individual tank reactors. We find that coupling may effectively stabilize the tanks. We provide
NASA Technical Reports Server (NTRS)
Hersh, A. S.; Walker, B.
1978-01-01
The effects of grazing flow on the steady state flow resistance and acoustic impedance of seven Feltmetal and three Rigimesh thin porous faced liners were studied. The steady-state flow resistance of the ten specimens was measured using standard fluid mechanical experimental techniques. The acoustic impedance was measured using the two microphone method. The principal findings of the study are that the effects of grazing flow were measured and found to be small; small differences were measured between steady-state and acoustic resistance, and a semi-empirical model was derived that correlated the steady-state resistance data of the seven Feltmetal liners and the face sheet reactance of both the Feltmetal and Rigimesh liners.
Steady-state flow properties of amorphous materials
NASA Astrophysics Data System (ADS)
Jadhao, Vikram; O'Connor, Thomas; Robbins, Mark
2015-03-01
Molecular dynamics (MD) simulations are used to investigate the steady-state shear flow curves of a standard glass model: the bidisperse Lennard-Jones system. For a wide range of temperatures in the neighborhood of the glass transition temperature Tg predicted by the mode coupling theory, we compute the steady-state shear stress and viscosity as a function of the shear rate γ ˙. At temperatures near and above Tg, the stress crosses over from linear Newtonian behavior at low rates to power law shear-thinning at high rates. As T decreases below Tg, the stress shows a plateau, becoming nearly rate-independent at low γ ˙. There is a weak increase in stress that is consistent with Eyring theory for activated flow of a solid. We find that when the strain rate is reduced to extremely low values, Newtonian behavior appears once more. Insights gained from these simulations are applied to the computation of flow curves of a well-established boundary lubricant: squalane. In the elastohydrodynamic regime, squalane responds like a glassy solid with an Eyring-like response, but at low rates it has a relatively small Newtonian viscosity. Supported by the Army Research Laboratory under Grant W911NF-12-2-0022.
Steady-state hydrodynamics of a viscous incompressible fluid with spinning particles.
Felderhof, B U
2011-12-21
The steady-state hydrodynamics of a viscous incompressible fluid with spinning particles is studied on the basis of extended Stokes equations. The profiles of flow velocity and spin velocity in simple flow situations may be used to determine the vortex viscosity and spin viscosity of the molecular liquid or fluid suspension. As an example, one situation studied is the flow generated by a uniform torque density in a planar layer of infinite fluid. The spinning particles drive a nearly uniform flow on either side of the layer, in opposite directions on the two sides. The Green function of the extended Stokes equations is derived. The translational and rotational friction coefficients of a sphere with no-slip boundary conditions, and the corresponding flow profiles, are calculated. PMID:22191899
NASA Astrophysics Data System (ADS)
Gorla, R. S. R.; Gireesha, B. J.
2015-12-01
An analysis has been provided to determine the transient velocity and steady state entropy generation in a microfluidic Couette flow influenced by electro-kinetic effect of charged nanoparticles. The equation for calculating the Couette flow velocity profile is derived for transient flow. The solutions for momentum and energy equations are used to get the exact solution for the dimensionless velocity ratio and dimensionless entropy generation number. The effects of the dimensionless entropy generation number, Bejan number, irreversibility ratio, entropy generation due to fluid friction and due to heat transfer on dimensionless time, relative channel height, Brinkman number, dimensionless temperature ratio, nanoparticle volume fraction are analyzed.
Modeling of the blood rheology in steady-state shear flows
Apostolidis, Alex J.; Beris, Antony N.
2014-05-15
We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling.
Steady State Performance Characteristics of a Single Pad Externally Adjustable Fluid Film Bearing
NASA Astrophysics Data System (ADS)
Shenoy, Satish B.; Pai, Raghuvir
The steady state performance characteristics of centrally loaded 60 degree single pad externally adjustable partial arc bearing is studied theoretically. Principal feature of the bearing is the facility to control its radial clearance and circumferential film thickness gradient, during operation. The bearing has aspect ratios of 1.0, 0.5 and 0.25 and operates over a wide range of eccentricity ratios and adjustments. Steady state performance characteristics of the bearing are presented in terms of attitude angle, load carrying capacity, oil flow and friction variable. The steady state form of Reynolds equation in two dimensions is solved numerically using the finite difference method. The effect of tilt and the radial adjustments on the steady state performance characteristics are presented in the form of plots. A comparative study predicts that negative radial and negative tilt adjustment results in better load carrying capacity with reduced oil flow and friction.
Vesicle dynamics in a confined Poiseuille flow: From steady state to chaos
NASA Astrophysics Data System (ADS)
Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi
2014-09-01
Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.
Steady-State Axial Temperature and Flow Velocity in Triga Channel.
Energy Science and Technology Software Center (ESTSC)
2007-02-28
Version 00 TRISTAN-IJS is a computer program for calculating steady-state axial temperature distribution and flow velocity through a vertical coolant channel in low power TRIGA reactor core, cooled by natural circulation. It is designed for steady-state thermohydraulic analysis of TRIGA research reactors operating at a low power level of 1-2 MW.
Velocity dependence of biphasic flow structuration: steady-state and oscillating flow effects
NASA Astrophysics Data System (ADS)
Tore Tallakstad, Ken; Jankov, Mihailo; Løvoll, Grunde; Toussaint, Renaud; Jørgen Mâløy, Knut; Grude Flekkøy, Eirik; Schmittbuhl, Jean; Schäfer, Gerhard; Méheust, Yves; Arendt Knudsen, Henning
2010-05-01
We study various types of biphasic flows in quasi-two-dimensional transparent porous models. These flows imply a viscous wetting fluid, and a lowly viscous one. The models are transparent, allowing the displacement process and structure to be monitored in space and time. Three different aspects will be presented: 1. In stationary biphasic flows, we study the relationship between the macroscopic pressure drop (related to relative permeability) and the average flow rate, and how this arises from the cluster size distribution of the lowly viscous fluid [1]. 2. In drainage situations, we study how the geometry of the invader can be explained, and how it gives rise to apparent dynamic capillary effects. We show how these can be explained by viscous effects on evolving geometries of invading fluid [2]. 3. We study the impact of oscillating pressure fields superimposed to a background flow over the flow regimes patterns [3]. Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties. First, in stationary flow with a control of the flux of both fluids, we show how the pressure drop depends on the flow rate. We will show that the dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution of lowly viscous fluid in the system, as well as the relation |?P|∞√Ca--. This allows to explain so called relative permeability effects by the morphological changes of the cluster size distribution. Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Next, we study drainage in such models, and investigate the relationship between the pressure field and the morphology of the invading fluid. This allows to model
Liu, H. H.
2010-09-15
Optimality principles have been used for investigating physical processes in different areas. This work attempts to apply an optimal principle (that water flow resistance is minimized on global scale) to steady-state unsaturated flow processes. Based on the calculus of variations, we show that under optimal conditions, hydraulic conductivity for steady-state unsaturated flow is proportional to a power function of the magnitude of water flux. This relationship is consistent with an intuitive expectation that for an optimal water flow system, locations where relatively large water fluxes occur should correspond to relatively small resistance (or large conductance). Similar results were also obtained for hydraulic structures in river basins and tree leaves, as reported in other studies. Consistence of this theoretical result with observed fingering-flow behavior in unsaturated soils and an existing model is also demonstrated.
A variational level set method for the topology optimization of steady-state Navier Stokes flow
NASA Astrophysics Data System (ADS)
Zhou, Shiwei; Li, Qing
2008-12-01
The smoothness of topological interfaces often largely affects the fluid optimization and sometimes makes the density-based approaches, though well established in structural designs, inadequate. This paper presents a level-set method for topology optimization of steady-state Navier-Stokes flow subject to a specific fluid volume constraint. The solid-fluid interface is implicitly characterized by a zero-level contour of a higher-order scalar level set function and can be naturally transformed to other configurations as its host moves. A variational form of the cost function is constructed based upon the adjoint variable and Lagrangian multiplier techniques. To satisfy the volume constraint effectively, the Lagrangian multiplier derived from the first-order approximation of the cost function is amended by the bisection algorithm. The procedure allows evolving initial design to an optimal shape and/or topology by solving the Hamilton-Jacobi equation. Two classes of benchmarking examples are presented in this paper: (1) periodic microstructural material design for the maximum permeability; and (2) topology optimization of flow channels for minimizing energy dissipation. A number of 2D and 3D examples well demonstrated the feasibility and advantage of the level-set method in solving fluid-solid shape and topology optimization problems.
Velocity dependence of biphasic flow structuration: steady-state and oscillating flow effects
NASA Astrophysics Data System (ADS)
Tore Tallakstad, Ken; Jankov, Mihailo; Løvoll, Grunde; Toussaint, Renaud; Jørgen Mâløy, Knut; Grude Flekkøy, Eirik; Schmittbuhl, Jean; Schäfer, Gerhard; Méheust, Yves; Arendt Knudsen, Henning
2010-05-01
We study various types of biphasic flows in quasi-two-dimensional transparent porous models. These flows imply a viscous wetting fluid, and a lowly viscous one. The models are transparent, allowing the displacement process and structure to be monitored in space and time. Three different aspects will be presented: 1. In stationary biphasic flows, we study the relationship between the macroscopic pressure drop (related to relative permeability) and the average flow rate, and how this arises from the cluster size distribution of the lowly viscous fluid [1]. 2. In drainage situations, we study how the geometry of the invader can be explained, and how it gives rise to apparent dynamic capillary effects. We show how these can be explained by viscous effects on evolving geometries of invading fluid [2]. 3. We study the impact of oscillating pressure fields superimposed to a background flow over the flow regimes patterns [3]. Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties. First, in stationary flow with a control of the flux of both fluids, we show how the pressure drop depends on the flow rate. We will show that the dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution of lowly viscous fluid in the system, as well as the relation |?P|∞√Ca--. This allows to explain so called relative permeability effects by the morphological changes of the cluster size distribution. Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Next, we study drainage in such models, and investigate the relationship between the pressure field and the morphology of the invading fluid. This allows to model
Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.
Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi
2014-09-01
Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles. PMID:25314533
Steady-state magnetohydrodynamic flow around an unmagnetized conducting sphere
Romanelli, N.; Gómez, D.; Bertucci, C.; Delva, M. E-mail: Magda.Delva@oeaw.ac.at
2014-07-01
The noncollisional interaction between conducting obstacles and magnetized plasma winds can be found in different scenarios, from the interaction occurring between regions inside galaxy clusters to the interaction between the solar wind and Mars, Venus, and active comets, or even the interaction between Titan and the Saturnian magnetospheric flow. These objects generate, through several current systems, perturbations in the streaming magnetic field leading to its draping around the obstacle's effective conducting surface. Recent observational results suggest that several properties associated with magnetic field draping, such as the location of the polarity reversal layer of the induced magnetotail, are affected by variations in the conditions of the streaming magnetic field. To improve our understanding of these phenomena, we perform a characterization of several magnetic field draping signatures by analytically solving an ideal problem in which a perfectly conducting magnetized plasma (with frozen-in magnetic field conditions) flows around a spherical body for various orientations of the streaming magnetic field. In particular, we compute the shift of the inverse polarity reversal layer as the orientation of the background magnetic field is changed.
Programmable calculator uses equation to figure steady-state gas-pipeline flow
Holmberg, E.
1982-04-26
Because it is accurate and consistent over a wide range of variables, the Colebrook-White (C-W) formula serves as the basis for many methods of calculating turbulent flow in gas pipelines. Oilconsult reveals a simple way to adapt the C-W formula to calculate steady-state pipeline flow using the TI-59 programmable calculator.
Dust Devil Steady-State Structure from a Fluid Dynamics Perspective
NASA Astrophysics Data System (ADS)
Kurgansky, Michael V.; Lorenz, Ralph D.; Renno, Nilton O.; Takemi, Tetsuya; Gu, Zhaolin; Wei, Wei
2016-09-01
Simple analytical models for the flow structure of dust devils in steady state, and a "thermophysical" scaling theory that explains how these flow structures are maintained are reviewed. Then, results from high-resolution numerical simulations are used to provide insights into the structure of dust-devil-like vortices and study the impact of surface roughness on them. The article concludes with an overview of the influence of lofted dust on the flow structure of dust devils and a discussion of open questions.
On the Numerical Convergence to Steady State of Hypersonic Flows Over Bodies with Concavities
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2002-01-01
Two recent numerical studies of hypersonic flows over bodies with concavities revealed problems with convergence to a steady state with an oft-used application of local-time-stepping. Both simulated flows showed a time-like, periodic shedding of vortices in a subsonic domain bounded by supersonic external flow although the simulations, using local-time-stepping, were not time accurate. Simple modifications to the numerical algorithm were implemented to enable implicit, first-order accurate in time simulations. Subsequent time-accurate simulations of the two test problems converged to a steady state. The baseline algorithm and modifications for temporal accuracy are described. The requirement for sub-iterations to achieve convergence is demonstrated. Failure to achieve convergence without time accuracy is conjectured to arise from temporal errors being continuously refocused into a subsonic domain.
Minimization of a free-energy-like potential for non-equilibrium flow systems at steady state
Niven, Robert K.
2010-01-01
This study examines a new formulation of non-equilibrium thermodynamics, which gives a conditional derivation of the ‘maximum entropy production’ (MEP) principle for flow and/or chemical reaction systems at steady state. The analysis uses a dimensionless potential function ϕst for non-equilibrium systems, analogous to the free energy concept of equilibrium thermodynamics. Spontaneous reductions in ϕst arise from increases in the ‘flux entropy’ of the system—a measure of the variability of the fluxes—or in the local entropy production; conditionally, depending on the behaviour of the flux entropy, the formulation reduces to the MEP principle. The inferred steady state is also shown to exhibit high variability in its instantaneous fluxes and rates, consistent with the observed behaviour of turbulent fluid flow, heat convection and biological systems; one consequence is the coexistence of energy producers and consumers in ecological systems. The different paths for attaining steady state are also classified. PMID:20368250
On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.
Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie
2016-01-01
The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size. PMID:26901652
On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow
Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie
2016-01-01
The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size. PMID:26901652
LHe Flow Regime/Pressure Drop for D0 Solenoid at Steady State Conditions
Rucinski, R.; /Fermilab
1993-03-03
This paper describes in a note taking format what was learned from several sources on two phase liquid helium flow regimes and pressure drops as applied to the D-Zero solenoid upgrade project. Calculations to estimate the steady state conditions for the D-Zero solenoid at 5, 10 and 15 g/s are also presented. For the lower flow rates a stratified type regime can be expected with a pressure drop less than 0.5 psi. For the higher flow rate a more homogeneous flow regime can be expected with a pressure drop between 0.4 to 1.5 psi.
Evidence for forcing-dependent steady states in a turbulent swirling flow.
Saint-Michel, B; Dubrulle, B; Marié, L; Ravelet, F; Daviaud, F
2013-12-01
We study the influence on steady turbulent states of the forcing in a von Karman flow, at constant impeller speed, or at constant torque. We find that the different forcing conditions change the nature of the stability of the steady states and reveal dynamical regimes that bear similarities to low-dimensional systems. We suggest that this forcing dependence may be applicable to other turbulent systems. PMID:24476277
Dougherty, T.; Maciuca, C.; McAssey, E.V. Jr.; Reddy, D.G.; Yang, B.W.
1991-07-01
This report presents results for the steady state portion of the finless single annulus test program. The objective of the experimental study was to investigate the onset of flow instability in an annular geometry similar to the MARK 22 reactor. The test program involved testing of both a finless or ribless heater and a ribbed heater. The latter program is currently underway and will be reported separately. For finless heater, testing was conducted in both a steady state and transient mode. The present report presents steady state results for a series of experiments with uniform and asymmetric heating. The demand curves obtained under uniform heating yielded OFI flow-rates which were slightly below those obtained for a circular tube geometry with the same L/D ratio; however, the single annulus had a hydraulic diameter which was approximately fifty percent larger than the circular tube. The asymmetric heating cases were selected to provide the same average power input as the uniform cases. The results for these tests indicated that the flow-rate at OFI increased with the degree of asymmetry.
The rate form of equilibrium equation for problems of steady-state, elastic, viscous flows
NASA Astrophysics Data System (ADS)
Tsai, Lung John
1992-07-01
The development of a numerical simulation for steady-state, elastic, viscous flows in two dimensions is presented. A mixed finite element method is used to couple the rate-equilibrium and the rate-constitutive equations by using successive substitution to solve for the velocity field and the stress field simultaneously. The method is applied to the flow analysis of co-rotational Maxwell (CRM), upper convective Maxwell (UCM), and four-element UCM fluid models. A flow through contraction problem is analyzed for the CRM, UCM and four-element UCM models. For both the CRM and UCM modles, the purely elastic case is compared to a solution found by using a linear formulation and it is found to compare favorably. For the purely viscous case, comparison is made with results obtained using the mixed formulation for velocity and pressure. Again, the results compare quite favorably. For the four-element UCM model, it is compared with the conventional UCM model. For the purely elastic and the purely viscous cases both models compare very well, and two examples are given for simulating both the Oldroyd-B and the Kelvin-Voigt models. From this illustration, the four-element UCM model is shown to work well for a wide range of constitutive behaviors. A second example presents an analysis of a metal forming rolling problem in the presence of free surfaces. For the purely elastic case, a decent solution of the velocity and stress distributions in the control volume for both CRM and UCM fluids is found. However, when the viscous effect is increased in the material, the free surface exhibits a continual swelling on the downstream side and the accuracy of the stress distribution deteriorates. In spite of the progress made on the free surface problem, the solutions for free surface problem presented in this dissertation are not yet of sufficient accuracy to be directly applicable to practical forming process design or analysis. The final example is an application of the rate
On the Stress-Temperature Scaling for Steady-State Flow in Metallic Glasses
Guan, Pengfei; Chen, Mingwei; Egami, T.
2010-01-01
Through computer simulation of steady-state flow in a Zr50Cu40Al10 metallic glass using a set of realistic potentials we found a simple scaling relationship between temperature and stress as they affect viscosity. The scaling relationship provides new insights for the microscopic mechanism of shear flow in the glassy state, in terms of the elastic energy of the applied stress modifying the local energy landscape. The results suggest that the plastic flow and mechanical failure in metallic glasses are consequences of stress-induced glass transition.
An analytical solution for the steady-state aerosol size distribution achieved in a steady-state, continuous flow chamber is derived, where particle growth is occurring by gas-to-particle conversion and particle loss is occurring by deposition to the walls of the chamber. The s...
Simulates the Forced-Flow Chemical Vapor Infiltration in Steady State
Energy Science and Technology Software Center (ESTSC)
1997-12-12
GTCVI is a finite volume model for steady-state simulation of forced-flow chemical vapor infiltration in either Cartesian or cylindrical coordinates. The model solves energy and momentum balances simultaneously over a given domain discretized into an array of finite volume elements. The species balances and deposition rates are determined after the energy and momentum balances converge. Density-dependent preform properties are included in the model. Transient average density, backpressure, temperature gradient, and average radial deposition rates canmore » be summarized. Optimal infiltration conditions can be found by varying temperature, flow, and reactant concentration.« less
Shapiro, A.M.; Andersson, J.
1985-01-01
An efficient method for simulating steady-state flow in three-dimensional fracture networks is formulated with the use of the boundary-element method. The host rock is considered to be impervious, and the fractures can be of any orientation and areal extent. The fractures are treated as surfaces where fluid movement is essentially two-dimensional. Fracture intersections are regarded as one-dimensional fluid conduits. Hence, the three-dimensional geometric characteristics of the fracture geometry is retained in solutions of coupled sets of one- and two-dimentional equations. Use of the boundary-element method to evaluate the fluid responses in the fractures precludes the need to internally discretize the areal extent of the fractures. ?? 1985.
Network simulation of steady-state two-phase flow in consolidated porous media
Constantinides, G.N.; Payatakes, A.C.
1996-02-01
Multiphase flow in porous media is a complex process encountered in many fields of practical engineering interest, such as oil recovery from reservoir rocks, aquifer pollution by liquid wastes and soil reconstitution, and agricultural irrigation. A computer-aided simulator of steady-state two-phase flow in consolidated porous media is developed. The porous medium is modeled as a 3-D pore network of suitably shaped and randomly sized unit cells of the constricted-tube type. The problem of two-phase flow is solved using the network approach. The wetting phase saturation, the viscosity ratio, the capillary number, and the probability of coalescence between two colliding ganglia are changed systematically, where as the geometrical and topological characteristics of the porous medium and wettability (dynamic contact angles) are kept constant. In the range of the parameter values investigated, the flow behavior observed is ganglion population dynamics (intrinsically unsteady, but giving a time-averaged steady state). The mean ganglion size and fraction of the nonwetting phase in the form of stranded ganglia are studied as functions of the main dimensionless parameters. Fractional flows and relative permeabilities are determined and correlated with flow phenomena at pore level. Effects of the wetting phase saturation, the viscosity ratio, the capillary number, and the coalescence factor on relative permeabilities are examined.
Steady-state response of a charcoal bed to radon in flowing air with water vapor
Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.
1995-06-01
Previously we have developed a mathematical model of radon adsorption in active air with water vapor on small U.S. Environmental Protection Agency charcoal canisters that are used for environmental measurements of radon. The purpose of this paper is to extend this mathematical model to describe the adsorption of radon by large charcoal beds with radon-laden air flowing through them. The resulting model equations are solved analytically to predict the steady-state adsorption of radon by such beds. 14 refs., 3 figs.
A population balance model for transient and steady-state foam flow in Boise sandstone
Kovscek, A.; Patzek, T.; Radke, C.
1995-07-01
An experimental and mechanistic-modeling study is reported for the transient flow of aqueous foam through 1.3-{mu}m{sup 2} (1.3-D) Boise sandstone at backpressures in excess of 5 MPa (700 psi) over a quality range from 0.80 to 0.99. Total superficial velocities range from as little as 0.42 to 2.20 m/day (1.4 ft/day to 7 ft/day). Sequential pressure taps and gamma-ray densitometry measure flow resistance and in-situ liquid saturations, respectively. We garner experimental pressure and saturation profiles in both the transient and steady states. Adoption of a mean-size foam-bubble conservation equation along with the traditional reservoir simulation equations allows mechanistic foam simulation. Since foam mobility depends heavily upon its texture, the bubble population balance is both useful and necessary as the role of foam texture must be incorporated into any model which seeks accurate prediction of flow properties. Our model employs capillary-pressure-dependent kinetic expressions for lamellae generation and coalescence and also a term for trapping of lamellae. Additionally, the effects of surfactant chemical transport are included. We find quantitative agreement between experimental and theoretical saturation and pressure profiles in both the transient and steady states.
Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes
NASA Astrophysics Data System (ADS)
Zhu, Yajun; Zhong, Chengwen; Xu, Kun
2016-06-01
This paper presents an implicit unified gas-kinetic scheme (UGKS) for non-equilibrium steady state flow computation. The UGKS is a direct modeling method for flow simulation in all regimes with the updates of both macroscopic flow variables and microscopic gas distribution function. By solving the macroscopic equations implicitly, a predicted equilibrium state can be obtained first through iterations. With the newly predicted equilibrium state, the evolution equation of the gas distribution function and the corresponding collision term can be discretized in a fully implicit way for fast convergence through iterations as well. The lower-upper symmetric Gauss-Seidel (LU-SGS) factorization method is implemented to solve both macroscopic and microscopic equations, which improves the efficiency of the scheme. Since the UGKS is a direct modeling method and its physical solution depends on the mesh resolution and the local time step, a physical time step needs to be fixed before using an implicit iterative technique with a pseudo-time marching step. Therefore, the physical time step in the current implicit scheme is determined by the same way as that in the explicit UGKS for capturing the physical solution in all flow regimes, but the convergence to a steady state speeds up through the adoption of a numerical time step with large CFL number. Many numerical test cases in different flow regimes from low speed to hypersonic ones, such as the Couette flow, cavity flow, and the flow passing over a cylinder, are computed to validate the current implicit method. The overall efficiency of the implicit UGKS can be improved by one or two orders of magnitude in comparison with the explicit one.
Ghatage, Dhairyasheel; Chatterji, Apratim
2013-10-01
We introduce a method to obtain steady-state uniaxial exponential-stretching flow of a fluid (akin to extensional flow) in the incompressible limit, which enables us to study the response of suspended macromolecules to the flow by computer simulations. The flow field in this flow is defined by v(x) = εx, where v(x) is the velocity of the fluid and ε is the stretch flow gradient. To eliminate the effect of confining boundaries, we produce the flow in a channel of uniform square cross section with periodic boundary conditions in directions perpendicular to the flow, but simultaneously maintain uniform density of fluid along the length of the tube. In experiments a perfect elongational flow is obtained only along the axis of symmetry in a four-roll geometry or a filament-stretching rheometer. We can reproduce flow conditions very similar to extensional flow near the axis of symmetry by exponential-stretching flow; we do this by adding the right amounts of fluid along the length of the flow in our simulations. The fluid particles added along the length of the tube are the same fluid particles which exit the channel due to the flow; thus mass conservation is maintained in our model by default. We also suggest a scheme for possible realization of exponential-stretching flow in experiments. To establish our method as a useful tool to study various soft matter systems in extensional flow, we embed (i) spherical colloids with excluded volume interactions (modeled by the Weeks-Chandler potential) as well as (ii) a bead-spring model of star polymers in the fluid to study their responses to the exponential-stretched flow and show that the responses of macromolecules in the two flows are very similar. We demonstrate that the variation of number density of the suspended colloids along the direction of flow is in tune with our expectations. We also conclude from our study of the deformation of star polymers with different numbers of arms f that the critical flow gradient ε
NASA Astrophysics Data System (ADS)
Ghatage, Dhairyasheel; Chatterji, Apratim
2013-10-01
We introduce a method to obtain steady-state uniaxial exponential-stretching flow of a fluid (akin to extensional flow) in the incompressible limit, which enables us to study the response of suspended macromolecules to the flow by computer simulations. The flow field in this flow is defined by vx=ɛx, where vx is the velocity of the fluid and ɛ is the stretch flow gradient. To eliminate the effect of confining boundaries, we produce the flow in a channel of uniform square cross section with periodic boundary conditions in directions perpendicular to the flow, but simultaneously maintain uniform density of fluid along the length of the tube. In experiments a perfect elongational flow is obtained only along the axis of symmetry in a four-roll geometry or a filament-stretching rheometer. We can reproduce flow conditions very similar to extensional flow near the axis of symmetry by exponential-stretching flow; we do this by adding the right amounts of fluid along the length of the flow in our simulations. The fluid particles added along the length of the tube are the same fluid particles which exit the channel due to the flow; thus mass conservation is maintained in our model by default. We also suggest a scheme for possible realization of exponential-stretching flow in experiments. To establish our method as a useful tool to study various soft matter systems in extensional flow, we embed (i) spherical colloids with excluded volume interactions (modeled by the Weeks-Chandler potential) as well as (ii) a bead-spring model of star polymers in the fluid to study their responses to the exponential-stretched flow and show that the responses of macromolecules in the two flows are very similar. We demonstrate that the variation of number density of the suspended colloids along the direction of flow is in tune with our expectations. We also conclude from our study of the deformation of star polymers with different numbers of arms f that the critical flow gradient ɛc at which
NASA Astrophysics Data System (ADS)
Liakos, Anastasios; Malamataris, Nikolaos A.
2014-05-01
The topology and evolution of flow around a surface mounted cubical object in three dimensional channel flow is examined for low to moderate Reynolds numbers. Direct numerical simulations were performed via a home made parallel finite element code. The computational domain has been designed according to actual laboratory experiment conditions. Analysis of the results is performed using the three dimensional theory of separation. Our findings indicate that a tornado-like vortex by the side of the cube is present for all Reynolds numbers for which flow was simulated. A horseshoe vortex upstream from the cube was formed at Reynolds number approximately 1266. Pressure distributions are shown along with three dimensional images of the tornado-like vortex and the horseshoe vortex at selected Reynolds numbers. Finally, and in accordance to previous work, our results indicate that the upper limit for the Reynolds number for which steady state results are physically realizable is roughly 2000.
Steady-state simulation of ground-water flow in the Rush Springs Aquifer, western Oklahoma
Becker, M.F.
1998-01-01
A simplified steady-state ground-water flow model was prepared for the Rush Springs aquifer in western Oklahoma. A 3-kilometer square grid was established over the area containing two layers with 674 active nodes simulated in the model. The steady-state model simulation used a mean recharge rate of 3.05 x 10-4 feet per day and a hydraulic conductivity range from 0.8 to 10 feet per day. The error at each node in the model is defined as the difference between the measured and simulated water levels.The arithmetic mean error for 170 of the 674 active nodes was -0.11 feet, the absolute value mean error was 7.55 feet, and the standard deviation of the error was 10.21 feet. A net simulated recharge of 231 cubic feet per second is balanced by a discharge to drains and seeps of 190.6 cubic feet per second about 82 percent of the total recharge. Discharge to the main stem of the Washita River is about 41 cubic feet per second about 18 percent of the recharge.
Stable Laser-Driven Electron Beams from a Steady-State-Flow Gas Cell
Osterhoff, J.; Popp, A.; Karsch, S.; Major, Zs.; Marx, B.; Fuchs, M.; Hoerlein, R.; Gruener, F.; Habs, D.; Krausz, F.; Rowlands-Rees, T. P.; Hooker, S. M.
2009-01-22
Quasi-monoenergetic, laser-driven electron beams of up to {approx}200 MeV in energy have been generated from steady-state-flow gas cells [1]. These beams are emitted within a low-divergence cone of 2.1{+-}0.5 mrad FWHM and feature unparalleled shot-to-shot stability in energy (2.5% rms), pointing direction (1.4 mrad rms) and charge (16% rms) owing to a highly reproducible plasma-density profile within the laser-plasma-interaction volume. Laser-wakefield acceleration (LWFA) in gas cells of this type constitutes a simple and reliable source of relativistic electrons with well defined properties, which should allow for applications such as the production of extreme-ultraviolet undulator radiation in the near future.
Simultaneous confidence intervals for a steady-state leaky aquifer groundwater flow model
Christensen, S.; Cooley, R.L.
1996-01-01
Using the optimization method of Vecchia & Cooley (1987), nonlinear Scheffe??-type confidence intervals were calculated tor the parameters and the simulated heads of a steady-state groundwater flow model covering 450 km2 of a leaky aquifer. The nonlinear confidence intervals are compared to corresponding linear intervals. As suggested by the significant nonlinearity of the regression model, linear confidence intervals are often not accurate. The commonly made assumption that widths of linear confidence intervals always underestimate the actual (nonlinear widths was not correct for the head intervals. Results show that nonlinear effects can cause the nonlinear intervals to be offset from, and either larger or smaller than, the linear approximations. Prior information on some transmissivities helps reduce and stabilize the confidence intervals, with the most notable effects occurring for the parameters on which there is prior information and for head values in parameter zones for which there is prior information on the parameters.
NEW APPROACHES: Keeping moving to stay where you are: energy flows and steady states
NASA Astrophysics Data System (ADS)
Boohan, Richard
1996-01-01
Many systems need to be actively maintained to keep them in a steady state - centrally-heated rooms, living things, the Earth. The use of commercially available 'temperature sensitive film' allows qualitative ideas about steady-state systems to be easily investigated by pupils from lower secondary school onwards. Some examples of more advanced quantitative ideas which can be developed are given.
NASA Astrophysics Data System (ADS)
Miyazawa, Hideyuki; Tanaka, Hajime
2007-07-01
It is a fundamental physical problem how a state is selected in a nonequilibrium steady state where the energy is continuously dissipated. This problem is common to phase transitions in liquids under shear flow and those in solids under deformation or electric current. In particular, soft matter often exhibits a strong nonlinear response to an external field, since its structural susceptibility to the external field is extremely large due to its softness and flexibility. Here we study the nucleation and growth process of the lamellar phase from the sponge phase under shear flow in a bilayer-forming surfactant system. We found an interesting shape selection of lamellar nuclei under shear flow between multilamellar vesicles (onions) and cylinders (leeks). These two types of behavior are separated sharply at a critical shear rate: a slight change of the shear rate is enough to switch one behavior to the other. We also found that, under a sufficiently strong shear flow, nucleated onions decrease their size with time, and eventually transform into leeks. This suggests that leeks may be the stable morphology under steady shear flow. However, the stability is limited only to the lamellar-sponge coexistence region. When a system enters into the lamellar phase region by further cooling, leeks lose their stability and break up into rather monodisperse onions, presumably via Rayleigh-like instability of a fluid tube. On the basis of these results, we draw a dynamic state diagram of smectic membrane organization under shear flow.
NASA Astrophysics Data System (ADS)
Liakos, Anastasios; Malamataris, Nikolaos
2014-11-01
The topology and evolution of flow around a surface mounted cubical object in three dimensional channel flow is examined for low to moderate Reynolds numbers. Direct numerical simulations were performed via a home made parallel finite element code. The computational domain has been designed according to actual laboratory experimental conditions. Analysis of the results is performed using the three dimensional theory of separation. Our findings indicate that a tornado-like vortex by the side of the cube is present for all Reynolds numbers for which flow was simulated. A horse-shoe vortex upstream from the cube was formed at Reynolds number approximately 1266. Pressure distributions are shown along with three dimensional images of the tornado-like vortex and the horseshoe vortex at selected Reynolds numbers. Finally, and in accordance to previous work, our results indicate that the upper limit for the Reynolds number for which steady state results are physically realizable is roughly 2000. Financial support of author NM from the Office of Naval Research Global (ONRG-VSP, N62909-13-1-V016) is acknowledged.
Flushing of a dense fluid from an urban canyon part 1: Steady state measurements
NASA Astrophysics Data System (ADS)
Kaye, Nigel; Baratian, Zahra
2011-11-01
We consider the role of buoyancy on the vertical transport of a dense gas due to a horizontal wind flow above a street canyon. The density of the pollutant suppresses vertical mixing as the turbulent shear flow at the top of the canyon must do work to raise the dense gas up above the canyon top. We present results of a series of experiments to measure the rate of removal of a dense miscible fluid from a two dimensional square canyon open at the top. The cavity is formed by square blocks up- and down-stream. Dense fluid is introduced at a constant rate at the base of the cavity and is removed by mixing with the flow passing over the top of the cavity. Two different steady flows are observed. For higher Richardson numbers, a two layer stratification develops in which there is a relatively sharp interface. In this case the mixing is parameterized in terms of an entrainment velocity across the interface that is a function of the Richardson number and the fractional depth of the interface below the cavity top. For lower Richardson numbers no interface is observed and the buoyancy increases linearly with height above the cavity base. We also found a range of Richardson numbers for which both steady stratifications are possible and for which the steady flow depends on the initial conditions.
Martin, A.; Alvarez, D.; Cases, F.
1996-06-01
After the Tchernobyl accident a working group was created to analyze the French PWR Safety with a respect to potential risk of reactivity accident. Potentially risky situations are those which can lead to heterogeneous boron concentration or temperature of the primary coolant fluid. This paper reports a Research and Development action based on numerical simulations and experiments on the primary coolant temperature or boron mixing capabilities in a PWR vessel. New numerical results obtained with the thermal hydraulic Finite Element (FE) Code N3S are presented. In these calculations the FE mesh takes into account the geometry of the lower plenum plates and columns. Two configurations have been investigated The first one is a steady state fluid flow mixing case. The reactor is cooled by free convection and the three loops, balanced in mass flow rate, are in operation. The second is a free boron plug transient case. It is related to the mixing of a clear plug injected in the vessel when a primary coolant pump starts-up. Two clear plug volumes have been investigated (3 and 8 m{sup 3}). Comparisons between these new numerical results and the data previously obtained (see Alvarez et al., 1992, Alvarez, Martin and Schneider, 1994) are presented in this paper.
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Majumdar, Alok; Tiller, Bruce
2001-01-01
A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasisteady (unsteady solid, steady fluid) conjugate heat transfer modeling.
Floc morphology and size distributions of cohesive sediment in steady-state flow.
Stone, M; Krishnappan, B G
2003-06-01
Fractal dimensions of particle populations of cohesive sediment were examined during deposition experiments in an annular flume at four conditions of steady-state flow (0.058, 0.123, 0.212 and 0.323Pa). Light microscopy and an image analysis system were used to determine area, longest axis and perimeter of suspended solids. Four fractal dimensions (D, D(1), D(2), D(k)) were calculated from the slopes of regression lines of the relevant variables on double log plots. The fractal dimension D, which relates the projected area (A) to the perimeter (P) of the particle (P proportional, variant A(D/2)), increased from 1.25+/-0.005 at a shear stress of 0.058Pa to a maximum of 1.36+/-0.003 at 0.121Pa then decreased to 1.34+/-0.001 at 0.323Pa. The change in D indicated that particle boundaries became more convoluted and the shape of larger particles was more irregular at higher levels of shear stress. At the highest shear stress, the observed decrease in D resulted from floc breakage due to increased particle collisions. The fractal dimension D(1), which relates the longest axis (l) to the perimeter of the particle (P proportional to l(D1)), increased from 1.00+/-0.006 at a shear stress of 0.058Pa to a maximum of 1.25+/-0.003 at 0.325Pa. The fractal dimension D(2), which relates the longest axis with the projected area of the particle (A proportional to l(D(2)), increased from 1.35+/-0.014 at a shear stress of 0.058Pa to a maximum of 1.81+/-0.005 at 0.323Pa. The observed increases in D(1) and D(2) indicate that particles became more elongated with increasing shear stress. Values of the fractal dimension D(k), resulting from the Korcak's empirical law for particle population, decreased from 3.68+/-0.002 at a shear stress of 0.058Pa to 1.33+/-0.001 at 0.323Pa and indicate that the particle size distribution changed from a population of similar sized particles at low shear to larger flocculated particles at higher levels of shear. The results show that small particle clusters
NASA Technical Reports Server (NTRS)
Le Roux, J. A.; Ptuskin, V. S.
1995-01-01
Realistic models of the outer heliosphere should consider that the interstellar cosmic-ray pressure becomes comparable to pressures in the solar wind at distances more than 100 AU from the Sun. The cosmic-ray pressure dynamically affects solar wind flow through deceleration. This effect, which occurs over a scale length of the order of the effective diffusion length at large radial distances, has important implications for cosmic-ray modulation and acceleration. As a first step toward solution of this nonlinear problem, a steady state numerical model was developed for a relatively cold spherical solar wind flow which encounters the confining isotropic pressure of the surrounding Galactic medium. This pressure is assumed to be dominated by energetic particles (Galactic cosmic rays). The system of equations, which are solved self-consistently, includes the relevant hydrodynamical equations for the solar wind flow and the spherical cosmic-ray transport equation. To avoid the closure parameter problem of the two-fluid model, the latter equation is solved for the energy-dependent cosmic-ray distribution function.
Snauwaert, P.; Sierens, R.
1986-01-01
A detailed three-dimensional study of the mean flow and the turbulence inside the liner of a direct injection diesel engine under steady state flow conditions has been carried out by laser doppler anemometer measurements. The influence of the valve lift, the port orientation (using a cylinder head with variable direction of the inlet channel) and the mass flow on flow characteristics (kinetic energy distributions, momentum flux, swirl parameters) has been analysed. These flow characteristics have been used to analyse the relation between the real flow pattern and swirl parameters as measured by the flow rectifier method and the paddle wheel anemometer.
NASA Astrophysics Data System (ADS)
Pan, Li-Hua; Hou, Peng-Fei; Chen, Jia-Yun
2016-08-01
The 2D steady-state solutions regarding the expressions of stress and strain for fluid-saturated, orthotropic, poroelastic plane are derived in this paper. For this object, the general solutions of the corresponding governing equation are first obtained and expressed in harmonic functions. Based on these compact general solutions, the suitable harmonic functions with undetermined constants for line fluid source in the interior of infinite poroelastic body and a line fluid source on the surface of semi-infinite poroelastic body are presented, respectively. The fundamental solutions can be obtained by substituting these functions into the general solution, and the undetermined constants can be obtained by the continuous conditions, equilibrium conditions and boundary conditions.
Hill, M.C.
1990-01-01
Parameters in numerical ground-water flow models have been successfully estimated using nonlinear-optimization methods such as the modified Gauss-Newton (GN) method and conjugate-direction methods. This paper investigates the relative efficiency of GN and three conjugate-direction parameter-estimation methods on two-dimensional, steady-state and transient ground-water flow test cases. The steady-state test cases are included to compare the performance of the algorithm with published examples. The three conjugate-direction methods are the Fletcher-Reeves (FR) and quasi-Newton (QN) regression methods, and combination Fletcher-Reeves quasi-Newton (FR-QN). All three are combined with Newton's method of calculating step size. The numerical ground-water flow model is described by McDonald and Harbaugh.
Fractal dimension of cohesive sediment flocs at steady state under seven shear flow conditions
Zhu, Zhongfan; Yu, Jingshan; Wang, Hongrui; Dou, Jie; Wang, Cheng
2015-08-12
The morphological properties of kaolin flocs were investigated in a Couette-flow experiment at the steady state under seven shear flow conditions (shear rates of 5.36, 9.17, 14, 24, 31, 41 and 53 s^{-1}). These properties include a one-dimensional (1-D) fractal dimension (D_{1}), a two-dimensional (2-D) fractal dimension (D_{2}), a perimeter-based fractal dimension (D_{pf}) and an aspect ratio (AR). They were calculated based on the projected area (A), equivalent size, perimeter (P) and length (L) of the major axis of the floc determined through sample observation and an image analysis system. The parameter D_{2}, which characterizes the relationship between the projected area and the length of the major axis using a power function, A ∝ L^{D2}, increased from 1.73 ± 0.03, 1.72 ± 0.03, and 1.75 ± 0.04 in the low shear rate group (G = 5.36, 9.17, and 14 s^{-1}) to 1.92 ± 0.03, 1.82 ± 0.02, 1.85 ± 0.02, and 1.81 ± 0.02 in the high shear rate group (24, 31, 41 and 53 s^{-1}), respectively. The parameter D_{1} characterizes the relationship between the perimeter and length of the major axis by the function P ∝ L^{D1} and decreased from 1.52 ± 0.02, 1.48 ± 0.02, 1.55 ± 0.02, and 1.63 ± 0.02 in the low shear group (5.36, 9.17, 14 and 24 s^{-1}) to 1.45 ± 0.02, 1.39 ± 0.02, and 1.39 ± 0.02 in the high shear group (31, 41 and 53 s^{-1}), respectively. The results indicate that with increasing shear rates, the flocs become less elongated and that their boundary lines become tighter and more regular, caused by more breakages and possible restructurings of the flocs. The parameter D_{pf}, which is related to the perimeter and the projected area through the function , decreased as the shear rate increased almost linearly. The parameter AR, which is the ratio of the length of the major axis and equivalent diameter, decreased from 1.56, 1
Fractal dimension of cohesive sediment flocs at steady state under seven shear flow conditions
Zhu, Zhongfan; Yu, Jingshan; Wang, Hongrui; Dou, Jie; Wang, Cheng
2015-08-12
The morphological properties of kaolin flocs were investigated in a Couette-flow experiment at the steady state under seven shear flow conditions (shear rates of 5.36, 9.17, 14, 24, 31, 41 and 53 s-1). These properties include a one-dimensional (1-D) fractal dimension (D1), a two-dimensional (2-D) fractal dimension (D2), a perimeter-based fractal dimension (Dpf) and an aspect ratio (AR). They were calculated based on the projected area (A), equivalent size, perimeter (P) and length (L) of the major axis of the floc determined through sample observation and an image analysis system. The parameter D2, which characterizes the relationship between the projectedmore » area and the length of the major axis using a power function, A ∝ LD2, increased from 1.73 ± 0.03, 1.72 ± 0.03, and 1.75 ± 0.04 in the low shear rate group (G = 5.36, 9.17, and 14 s-1) to 1.92 ± 0.03, 1.82 ± 0.02, 1.85 ± 0.02, and 1.81 ± 0.02 in the high shear rate group (24, 31, 41 and 53 s-1), respectively. The parameter D1 characterizes the relationship between the perimeter and length of the major axis by the function P ∝ LD1 and decreased from 1.52 ± 0.02, 1.48 ± 0.02, 1.55 ± 0.02, and 1.63 ± 0.02 in the low shear group (5.36, 9.17, 14 and 24 s-1) to 1.45 ± 0.02, 1.39 ± 0.02, and 1.39 ± 0.02 in the high shear group (31, 41 and 53 s-1), respectively. The results indicate that with increasing shear rates, the flocs become less elongated and that their boundary lines become tighter and more regular, caused by more breakages and possible restructurings of the flocs. The parameter Dpf, which is related to the perimeter and the projected area through the function , decreased as the shear rate increased almost linearly. The parameter AR, which is the ratio of the length of the major axis and equivalent diameter, decreased from 1.56, 1.59, 1.53 and 1.51 in the low shear rate group to 1.43, 1.47 and 1.48 in the high shear rate group. These changes in Dpf and AR show that the flocs become
Avraam, D.G.; Payatakes, A.C.
1999-03-01
The pore-scale flow mechanisms and the relative permeabilities during steady-state two-phase flow in a glass model pore network were studied experimentally for the case of strong wettability ({theta}{sub e} < 10{degree}). The capillary number, the fluid flow rate ratio, and the viscosity ratio were changed systematically, while all other parameters were kept constant. The flow mechanisms at the microscopic and macroscopic scales were examined visually and videorecorded. As in the case of intermediate wettability, the authors observed that over a broad range of values of the system parameters the pore-scale flow mechanisms include many strongly nonlinear phenomena, specifically, breakup, coalescence, stranding, mobilization, etc. Such microscopically irreversible phenomena cause macroscopic nonlinearity and irreversibility, which make an Onsager-type theory inappropriate for this class of flows. The main effects of strong wettability are that it changes the domains of the system parameter values where the various flow regimes are observed and increases the relative permeability values, whereas the qualitative aspects of the flow remain the same. Currently, a new true-to-mechanism model is being developed for this class of flows.
Walter, Donald A.; Masterson, John P.
2003-01-01
The U.S. Geological Survey has developed several ground-water models in support of an investigation of ground-water contamination being conducted by the Army National Guard Bureau at Camp Edwards, Massachusetts Military Reservation on western Cape Cod, Massachusetts. Regional and subregional steady-state models and regional transient models were used to (1) improve understanding of the hydrologic system, (2) simulate advective transport of contaminants, (3) delineate recharge areas to municipal wells, and (4) evaluate how model discretization and time-varying recharge affect simulation results. A water-table mound dominates ground-water-flow patterns. Near the top of the mound, which is within Camp Edwards, hydraulic gradients are nearly vertically downward and horizontal gradients are small. In downgradient areas that are further from the top of the water-table mound, the ratio of horizontal to vertical gradients is larger and horizontal flow predominates. The steady-state regional model adequately simulates advective transport in some areas of the aquifer; however, simulation of ground-water flow in areas with local hydrologic boundaries, such as ponds, requires more finely discretized subregional models. Subregional models also are needed to delineate recharge areas to municipal wells that are inadequately represented in the regional model or are near other pumped wells. Long-term changes in recharge rates affect hydraulic heads in the aquifer and shift the position of the top of the water-table mound. Hydraulic-gradient directions do not change over time in downgradient areas, whereas they do change substantially with temporal changes in recharge near the top of the water-table mound. The assumption of steady-state hydraulic conditions is valid in downgradient area, where advective transport paths change little over time. In areas closer to the top of the water-table mound, advective transport paths change as a function of time, transient and steady-state paths
NASA Astrophysics Data System (ADS)
Brushlinskii, K. V.; Kozlov, A. N.; Konovalov, V. S.
2015-08-01
This paper continues the series of numerical investigations of self-ionizing gas flows in plasma accelerator channels with an azimuthal magnetic field. The mathematical model is based on the equations of dynamics of a three-component continuous medium consisting of atoms, ions, and electrons; the model is supplemented with the equation of ionization and recombination kinetics within the diffusion approximation with account for photoionization and photorecombination. It also takes into account heat exchange, which in this case is caused by radiative heat conductance. Upon a short history of the issue, the proposed model, numerical methods, and results for steady-state and pulsating flows are described.
Number of microstates and configurational entropy for steady-state two-phase flows in pore networks
NASA Astrophysics Data System (ADS)
Daras, T.; Valavanides, M. S.
2015-01-01
Steady-state two-phase flow in porous media is a process whereby a wetting phase displaces a non-wetting phase within a pore network. It is a stationary, off equilibrium process -in the sense that it is maintained in dynamic equilibrium on the expense of energy supplied to the system. The efficiency of the process depends on its spontaneity, measurable by the rate of global entropy production. The latter has been proposed to comprise two components: the rate of mechanical energy dissipation at constant temperature (a thermal entropy component, Q/T, in the continuum mechanics scale) and a configurational entropy production component (a Boltzmann-type statistical-entropy component, klnW), due to the existence of a canonical ensemble of flow configurations, physically admissible to the externally imposed macrostate stationary conditions. Here, the number of microstates, lnW, in steady-state two-phase flows in pore networks is estimated in three stages: Combinatorics are implemented to evaluate the number of identified microstates per physically admissible internal flow arrangement compatible with the imposed stationary flow conditions. Then, "Stirling's approximation limiting procedure" is applied to downscale the computational effort associated with the operations between large factorial numbers. Finally, the number of microstates is estimated by contriving a limiting procedure over the canonical ensemble of the physically admissible flow configurations. Counting the microstates is a prerequisite for estimating the process configurational entropy in order to implement the Maximum Entropy Production principle and justify the existence of optimum operating conditions.
NASA Astrophysics Data System (ADS)
Vollmayr-Lee, Katharina; Zippelius, Annette; Aspelmeier, Timo
2011-03-01
We study the dynamic structure factor of a granular fluid of hard spheres, driven into a stationary nonequilibrium state by balancing the energy loss due to inelastic collisions with the energy input due to driving. The driving is chosen to conserve momentum, so that fluctuating hydrodynamics predicts the existence of sound modes. We present results of computer simulations which are based on an event driven algorithm. The dynamic structure factor F (q , ω) is determined for volume fractions 0.05, 0.1 and 0.2 and coefficients of normal restitution 0.8 and 0.9. We observe sound waves, and compare our results for F (q , ω) with the predictions of generalized fluctuating hydrodynamics which takes into account that temperature fluctuations decay either diffusively or with a finite relaxation rate, depending on wave number and inelasticity. We determine the speed of sound and the transport coefficients and compare them to the results of kinetic theory. K.V.L. thanks the Institute of Theoretical Physics, University of Goettingen, for financial support and hospitality.
Shiomi, Masanori; Mori, Kenichiro; Osakada, Kozo
1995-12-31
Non-steady-state metal flow and temperature distribution in twin roll strip casting are simulated by the finite element method. In the present simulation, the viscoplastic finite element method is combined with that for heat conduction to calculate the metal flow and the temperature distribution during the casting process. The solid, mushy and liquid phases are assumed to be viscoplastic materials with individual flow stresses. In the temperature analysis, the latent heat due to solidification of the molten metal is taken into account by using the temperature recovery method. Since the metal flow and temperature distribution do not often attain to steady states, they are simulated by the stepwise calculation. To examine the accuracy of the calculated results, physical simulation of plane-strain twin roll strip casting is carried out by use of paraffin wax as a model material. The calculated profiles of the solid region agree qualitatively well with the experimental ones. Twin roll strip casting processes for stainless steel are also simulated. An optimum roll speed for obtaining a strip without a liquid zone under a minimum rolling load is obtained from the results of the simulation.
Hiura, Mikio; Nariai, Tadashi; Ishii, Kenji; Sakata, Muneyuki; Oda, Keiichi; Toyohara, Jun; Ishiwata, Kiichi
2014-03-01
Cerebral blood flow (CBF) during dynamic exercise has never been examined quantitatively using positron emission tomography (PET). This study investigated changes in CBF that occur over the course of a moderate, steady-state cycling exercise. Global and regional CBF (gCBF and rCBF, respectively) were measured using oxygen-15-labeled water (H(2)(15)O) and PET in 10 healthy human subjects at rest (Rest), at the onset of exercise (Ex1) and at a later phase in the exercise (Ex2). At Ex1, gCBF was significantly (P<0.01) higher (27.9%) than at Rest, and rCBF was significantly higher than at Rest in the sensorimotor cortex for the bilateral legs (M1(Leg) and S1(Leg)), supplementary motor area (SMA), cerebellar vermis, cerebellar hemispheres, and left insular cortex, with relative increases ranging from 37.6% to 70.5%. At Ex2, gCBF did not differ from Rest, and rCBF was significantly higher (25.9% to 39.7%) than at Rest in only the M1(Leg), S1(Leg), and vermis. The areas showing increased rCBF at Ex1 were consistent with the central command network and the anatomic pathway for interoceptive stimuli. Our results suggest that CBF increases at Ex1 in parallel with cardiovascular responses then recovers to the resting level as the steady-state exercise continues. PMID:24301294
A closed-form solution for steady-state coupled phloem/xylem flow using the Lambert-W function.
Hall, A J; Minchin, P E H
2013-12-01
A closed-form solution for steady-state coupled phloem/xylem flow is presented. This incorporates the basic Münch flow model of phloem transport, the cohesion model of xylem flow, and local variation in the xylem water potential and lateral water flow along the transport pathway. Use of the Lambert-W function allows this solution to be obtained under much more general and realistic conditions than has previously been possible. Variation in phloem resistance (i.e. viscosity) with solute concentration, and deviations from the Van't Hoff expression for osmotic potential are included. It is shown that the model predictions match those of the equilibrium solution of a numerical time-dependent model based upon the same mechanistic assumptions. The effect of xylem flow upon phloem flow can readily be calculated, which has not been possible in any previous analytical model. It is also shown how this new analytical solution can handle multiple sources and sinks within a complex architecture, and can describe competition between sinks. The model provides new insights into Münch flow by explicitly including interactions with xylem flow and water potential in the closed-form solution, and is expected to be useful as a component part of larger numerical models of entire plants. PMID:23617886
NASA Astrophysics Data System (ADS)
Shamsai, Abolfazl; Narasimhan, T. N.
1991-03-01
The relationship between free surface and seepage face under steady conditions of flow has been analyzed for radial and planar flow configurations. The numerical studies, carried out with a saturated-unsaturated flow model, included the simulation of a series of experimental observations documented by Hall (1955). The numerical analysis took into consideration effects of capillary fringe, model geometry, as well as converging and diverging patterns of flow. For the control series of three cases studied, discharge rates, free surface location, seepage face height and the spatial distribution of potentials closely matched the experimental observations. Additional parametric studies showed that converging patterns of flow favor more pronounced development of seepage face than divergent flows. In two-dimensional planar flow, larger drawdowns tend to favor relatively more pronounced development of seepage face. Comparison of the detailed simulation results (taking unsaturated flow into consideration) with results generated using Dupuit-Forchheimer assumptions suggest that the latter may provide discharge estimates that are in error by 12 to 20% both for radial and for two-dimensional planar flows.
The steady-state flow quality in a model of a non-return wind tunnel
NASA Technical Reports Server (NTRS)
Mort, K. W.; Eckert, W. T.; Kelly, M. W.
1972-01-01
The structural cost of non-return wind tunnels is significantly less than that of the more conventional closed-circuit wind tunnels. However, because of the effects of external winds, the flow quality of non-return wind tunnels is an area of concern at the low test speeds required for V/STOL testing. The flow quality required at these low speeds is discussed and alternatives to the traditional manner of specifying the flow quality requirements in terms of dynamic pressure and angularity are suggested. The development of a non-return wind tunnel configuration which has good flow quality at low as well as at high test speeds is described.
On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.
Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A
2015-01-01
Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the
On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow
NASA Astrophysics Data System (ADS)
Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A.
2015-04-01
Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the
Effect of steady-state pressure distortion on flow characteristics entering a turbofan engine
NASA Technical Reports Server (NTRS)
Soeder, R. H.; Bobula, G. A.
1979-01-01
Flow angle, static-pressure, and total-pressure distributions were measured in the passage ahead of a turbofan engine operating with inlet pressure distortion. Distortions were generated with five screen configurations and one solid plate configuration. The screens and solid plate were circumferential and mounted on a rotatable assembly. Reynolds Number Index upstream of the distortion device was maintained at 0.5, 0.35, or 0.2, and engine corrected low-rotor speeds were held at 6000 rpm and 8600 rpm. Near the engine inlet, flow angle was largest at the hub and increased as flow approached the engine. The magnitude of static-pressure distortion measured along the inlet-duct and extended bullet nose walls increased exponentially as the flow approached the engine. Wall static-pressure distortion was also a function of distortion harmonic.
A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits
Mastin, Larry G.; Ghiorso, Mark S.
2000-01-01
This report presents a model that calculates flow properties (pressure, vesicularity, and some 35 other parameters) as a function of vertical position within a volcanic conduit during a steady-state eruption. The model idealizes the magma-gas mixture as a single homogeneousfluid and calculates gas exsolution under the assumption of equilibrium conditions. These are the same assumptions on which classic conduit models (e.g. Wilson and Head, 1981) have been based. They are most appropriate when applied to eruptions of rapidly ascending magma (basaltic lava-fountain eruptions, and Plinian or sub-Plinian eruptions of intermediate or silicic magmas) that contains abundant nucleation sites (microlites, for example) for bubble growth.
Signal processing and statistical descriptive reanalysis of steady state chute-flow experiments
NASA Astrophysics Data System (ADS)
truong, hoan; eckert, nicolas; keylock, chris; naaim, mohamed; bellot, hervé
2014-05-01
An accurate knowledge of snow rheology is needed for the mitigation against avalanche hazard. Indeed snow avalanches have a significant impact on the livelihoods and economies of alpine communities. To do so, 60 small-scale in-situ flow experiments were performed with various slopes, temperatures and flow depths. The investigation of these data previously seemed to show the dense flow of dry snow may be composed of two layers; a sheared basal layer made of single snow grains and a less sheared upper layer made of large aggregates. These outcomes were mainly based on the mean velocity profile of the flow and on interpretation in terms of rheological behavior of granular materials and snow microstructure [Pierre G. Rognon et al., 2007]. Here, the main objective remains the same, but the rheological and physical viewpoints are put aside to extract as much information contained in the data as possible various using signal processing methods and descriptive statistics methods as the maximum overlap discrete wavelet transform (MODWT), transfer entropy (TE) and maximum cross-correlation (MCC). Specifically, we aim at the improving the velocity estimations as function of the depth particularly the velocity fluctuations around the mean profile to better document the behavior of dense dry snow flows during a steady and uniform chute regime. The data are composed of pairs of voltage signals (right and left), which makes that the velocity is known indirectly only. The MCC method is classically used to determine the time lag between both signals. Previously, the MCC method that showed the mean velocity profile may be fitted by a simple bilinear function [Pierre G. Rognon et al., 2007], but no interesting temporal dynamics could be highlighted. Hence, a new process method was developed to provide velocity series with much better temporal resolution. The process is mainly made of a MODWT-based denoising method and the choice of window size for correlation. The results prove to be
A full-Bayesian approach to the inverse problem for steady-state groundwater flow and heat transport
NASA Astrophysics Data System (ADS)
Jiang, Yefang; Woodbury, Allan D.
2006-12-01
The full (hierarchal) Bayesian approach proposed by Woodbury & Ulrych and Jiang et al. is extended to the inverse problem for 2-D steady-state groundwater flow and heat transport. A stochastic conceptual framework for the heat flow and groundwater flow is adopted. A perturbation of both the groundwater flow and the advection-conduction heat transport equations leads to a linear formulation between heads, temperature and logarithm transmissivity [denoted as ln (T)]. A Bayesian updating procedure similar to that of Woodbury & Ulrych can then be performed. This new algorithm is examined against a generic example through simulations. The prior mean, variance and integral scales of ln (T) (hyperparameters) are treated as random variables and their pdfs are determined from maximum entropy considerations. It is also assumed that the statistical properties of the noise in the hydraulic head and temperature measurements are also uncertain. Uncertainties in all pertinent hyperparameters are removed by marginalization. It is found that the use of temperature measurements is showed to further improve the ln (T) estimates for the test case in comparison to the updated ln (T) field conditioned on ln (T) and head data; the addition of temperature data without hydraulic head data to the update also aids refinement of the ln (T) field compared to simply interpolating ln (T) data alone these results suggest that temperature measurements are a promising data source for site characterization for heterogeneous aquifer, which can be accomplished through the full-Bayesian methodology.
NASA Astrophysics Data System (ADS)
Rassi, Erik M.; Codd, Sarah L.; Seymour, Joseph D.
2011-01-01
Flow in porous media and the resultant hydrodynamics are important in fields including but not limited to the hydrology, chemical, medical and petroleum industries. The observation and understanding of the hydrodynamics in porous media are critical to the design and optimal utilization of porous media, such as those seen in trickle-bed reactors, medical filters, subsurface flows and carbon sequestration. Magnetic resonance (MR) provides for a non-invasive technique that can probe the hydrodynamics on pore and bulk scale lengths; many previous works have characterized fully saturated porous media, while rapid MR imaging (MRI) methods in particular have previously been applied to partially saturated flows. We present time- and ensemble-averaged MR measurements to observe the effects on a bead pack partially saturated with air under flowing water conditions. The 10 mm internal diameter bead pack was filled with 100 μm borosilicate glass beads. Air was injected into the bead pack as water flowed simultaneously through the sample at 25 ml h-1. The initial partially saturated state was characterized with MRI density maps, free induction decay (FID) experiments, propagators and velocity maps before the water flow rate was increased incrementally from 25 to 500 ml h-1. After the maximum flow rate of 500 ml h-1, the MRI density maps, FID experiments, propagators and velocity maps were repeated and compared to the data taken before the maximum flow rate. This work shows that a partially saturated single-phase flow has global flow dynamics that return to characteristic flow statistics once a steady-state high flow rate has been reached. This high flow rate pushed out a significant amount of the air in the bead pack and caused the return of a preferential flow pattern. Velocity maps indicated that local flow statistics were not the same for the before and after blow out conditions. It has been suggested and shown previously that a flow pattern can return to
NASA Technical Reports Server (NTRS)
Ciepluch, Carl C.
1948-01-01
An investigation was conducted in an altitude test chamber to determine the effects of inlet airflow distortion on the compressor steady-state and surge characteristics of a high-pressure ratio, axial-flow turbojet engine. Circumferential-type inlet flow distortions were investigated, which covered a range of distortion sector angles from 20 deg to 168 deg and distortion levels up to 22 percent. The presence of inlet airflow distortions at the compressor face resulted in a substantial increase in the local pressure ratio in the distorted region, primarily for the inlet stages. The local pressure ratio in the distorted region for the inlet stages increased as either the distortion sector angle decreased or the percent distortion increased. The average compressor-surge pressure ratio was much more sensitive to inlet airflow distortions at lower engine speeds than at engine speeds near rated. Hence, compressor-surge margin reduction due to inlet airflow distortion was quite severe at the lower engine speeds. Although the average compressor-surge pressure ratio was generally reduced with inlet flow distortion, local pressure ratios across the distorted sector of the compressor were obtained during surge and were significantly greater than the normal compressor-surge pressure ratio. This was a result of increased loading of the inlet stages in the distorted region.
Larsen, Poul S; Riisgård, Hans Ulrik
2012-01-15
To obtain precise and reliable laboratory clearance rate (filtration rate) measurements with the 'flow-through chamber method' (FTC) the design must ensure that only inflow water reaches the bivalve's inhalant aperture and that exit flow is fully mixed. As earlier recommended these prerequisites can be checked by a plot of clearance rate (CR) versus increasing through-flow (Fl) to reach a plateau, which is the true CR, but we also recommend to plot percent particles cleared versus reciprocal through-flow where the plateau becomes the straight line CR/Fl, and we emphasize that the percent of particles cleared is in itself neither a criterion for valid CR measurement, nor an indicator of appropriate 'chamber geometry' as hitherto adapted in many studies. For the 'steady-state method' (SS), the design must ensure that inflow water becomes fully mixed with the bivalve's excurrent flow to establish a uniform chamber concentration prevailing at its incurrent flow and at the chamber outlet. These prerequisites can be checked by a plot of CR versus increasing Fl, which should give the true CR at all through-flows. Theoretically, the experimental uncertainty of CR for a given accuracy of concentration measurements depends on the percent reduction in particle concentration (100×P) from inlet to outlet of the ideal 'chamber geomety'. For FTC, it decreases with increasing values of P while for SS it first decreases but then increases again, suggesting the use of an intermediate value of P. In practice, the optimal value of P may depend on the given 'chamber geometry'. The fundamental differences between the FTC and the SS methods and practical guidelines for their use are pointed out, and new data on CR for the blue mussel, Mytilus edulis, illustrate a design and use of the SS method which may be employed in e.g. long-term growth experiments at constant algal concentrations. PMID:23213362
Larsen, Poul S.; Riisgård, Hans Ulrik
2012-01-01
Summary To obtain precise and reliable laboratory clearance rate (filtration rate) measurements with the ‘flow-through chamber method’ (FTC) the design must ensure that only inflow water reaches the bivalve's inhalant aperture and that exit flow is fully mixed. As earlier recommended these prerequisites can be checked by a plot of clearance rate (CR) versus increasing through-flow (Fl) to reach a plateau, which is the true CR, but we also recommend to plot percent particles cleared versus reciprocal through-flow where the plateau becomes the straight line CR/Fl, and we emphasize that the percent of particles cleared is in itself neither a criterion for valid CR measurement, nor an indicator of appropriate ‘chamber geometry’ as hitherto adapted in many studies. For the ‘steady-state method’ (SS), the design must ensure that inflow water becomes fully mixed with the bivalve's excurrent flow to establish a uniform chamber concentration prevailing at its incurrent flow and at the chamber outlet. These prerequisites can be checked by a plot of CR versus increasing Fl, which should give the true CR at all through-flows. Theoretically, the experimental uncertainty of CR for a given accuracy of concentration measurements depends on the percent reduction in particle concentration (100×P) from inlet to outlet of the ideal ‘chamber geomety’. For FTC, it decreases with increasing values of P while for SS it first decreases but then increases again, suggesting the use of an intermediate value of P. In practice, the optimal value of P may depend on the given ‘chamber geometry’. The fundamental differences between the FTC and the SS methods and practical guidelines for their use are pointed out, and new data on CR for the blue mussel, Mytilus edulis, illustrate a design and use of the SS method which may be employed in e.g. long-term growth experiments at constant algal concentrations. PMID:23213362
Yoder, G. L.; Morris, D. G.; Mullins, C. B.; Ott, L. J.; Reed, D. A.
1982-03-01
Assessment of six film boiling correlations and one single-phase vapor correlation has been made using data from 22 steady state upflow rod bundle tests (series 3.07.9). Bundle fluid conditions were calculated using energy and mass conservation considerations. Results of the steady state film boiling tests support the conclusions reached in the analysis of prior transient tests 3.03.6AR, 3.06.6B, and 3.08.6C. Comparisons between experimentally determined and correlation-predicted heat transfer coefficients, are presented.
Waddell, R.K.
1982-01-01
A two-dimensional, steady-state model of ground-water flow beneath the Nevada Test Site and vicinity has been developed using inverse techniques. The area is underlain by clastic and carbonate rocks of Precambrian and Paleozoic age and by volcanic rocks and alluvium of Tertiary and Quaternary age that have been juxtaposed by normal and strike-slip faulting. Aquifers are composed of carbonate and volcanic rocks and alluvium. Characteristics of the flow system are determined by distribution of low-conductivity rocks (barriers); by recharge originating in the Spring Mountains, Pahranagat, Timpahute, and Sheep Ranges, and in Pahute Mesa; and by underflow beneath Pahute Mesa from Gold Flat and Kawich Valley. Discharge areas (Ash Meadows, Oasis Valley, Alkali Flat, and Furnace Creek Ranch) are upgradient from barriers. Sensitivities of simulated hydraulic heads and fluxes to variations in model parameters were calculated to guide field studies and to help estimate errors in predictions from transport modeling. Hydraulic heads and fluxes are very sensitive to variations in the greater magnitude recharge/discharge terms. Transmissivity at a location may not be the most important transmissivity for determining flux there. Transmissivities and geometries of large barriers that impede flow from Pahute Mesa have major effects on fluxes elsewhere; as their transmissivities are decreased, flux beneath western Jackass Flats and Yucca Mountains is increased as water is diverted around the barriers. Fortymile Canyon is underlain by highly transmissive rocks that cause potentiometric contours to vee upgradient; increasing their transmissivity increases flow through them, and decreases it beneath Yucca Mountain. (USGS)
Zarai, Yoram; Margaliot, Michael; Tuller, Tamir
2013-01-01
Gene translation is a central stage in the intracellular process of protein synthesis. Gene translation proceeds in three major stages: initiation, elongation, and termination. During the elongation step, ribosomes (intracellular macromolecules) link amino acids together in the order specified by messenger RNA (mRNA) molecules. The homogeneous ribosome flow model (HRFM) is a mathematical model of translation-elongation under the assumption of constant elongation rate along the mRNA sequence. The HRFM includes $(n)$ first-order nonlinear ordinary differential equations, where $(n)$ represents the length of the mRNA sequence, and two positive parameters: ribosomal initiation rate and the (constant) elongation rate. Here, we analyze the HRFM when $(n)$ goes to infinity and derive a simple expression for the steady-state protein synthesis rate. We also derive bounds that show that the behavior of the HRFM for finite, and relatively small, values of $(n)$ is already in good agreement with the closed-form result in the infinite-dimensional case. For example, for $(n=15)$, the relative error is already less than 4 percent. Our results can, thus, be used in practice for analyzing the behavior of finite-dimensional HRFMs that model translation. To demonstrate this, we apply our approach to estimate the mean initiation rate in M. musculus, finding it to be around 0.17 codons per second. PMID:24384716
NASA Astrophysics Data System (ADS)
Valavanides, M. S.; Payatakes, A. C.
A true-to-mechanism model is proposed, which considers steady-state two-phase flow in porous media (SS2 ϕPM) as a composition of two prototype flows, namely ganglion dynamics (GD) and connected-oil pathway flow (CPF). Coupling of the prototype flows is effected with the simple rule that the macroscopic pressure gradient is the same in both. For a given set of values of the flow system parameters, a domain of admissible flow combinations is obtained. The solution is determined by assuming that each point in this domain has equal probability of being `visited'. This leads to unique values for the flow arrangement variables (FAV), the rate of mechanical energy dissipation, and the relative permeabilities. The new model accounts for the non-linearity of the flow as well as for the effects of all the system parameters (notably those affecting interfaces), and its predictions are in very good agreement with existing data.
Miller, R.E.
1977-01-01
A steady-state simulation model was applied to the shallow hydrothermal system in the East Mesa area of Imperial Valley, Calif. The steady-state equations of flow and heat transport were solved by use of a Galerkin, finite-element method. A solution was obtained by iterating between the temperature and pressure equations, using updated densities and viscosities. Temperature and pressure were obtained for each node, and corresponding head values were calculated. The simulated temperature and pressure patterns correlated well with the observed patterns. Additional data, mainly from test drilling, would be required for construction of a similar model of the deep hydrothermal system.
Ackerman, D.J.
1995-01-01
Quantitative estimates of ground-water flow directions and traveltimes for advective flow were developed for the regional aquifer system of the eastern Snake River Plain, Idaho. The work included: (1) descriptions of compartments in the aquifer that function as intermediate and regional flow systems, (2) descriptions of pathlines for flow originating at or near the water table, and (3) quantitative estimates of traveltimes for advective transport originating at or near the water table. A particle-tracking postprocessing program was used to compute pathlines on the basis of output from an existing three-dimensional steady-state flow model. The flow model uses 1980 conditions to approximate average annual conditions for 1950-80. The advective transport model required additional information about the nature of flow across model boundaries, aquifer thickness, and porosity. Porosity of two types of basalt strata has been reported for more than 1,500 individual cores from test holes, wells, and outcrops near the south side of the Idaho National Engineering Laboratory. The central 80 percent of samples had porosities of 0.08 to 0.25, the central 50 percent of samples, O. 11 to 0.21. Calibration of the model involved choosing a value for porosity that yielded the best solution. Two radiologic contaminants, iodine-129 and tritium, both introduced to the flow system about 40 years ago, are relatively conservative tracers. Iodine- 129 was considered to be more useful because of a lower analytical detection limit, longer half-life, and longer flow path. The calibration value for porosity was 0.21. Most flow in the aquifer is contained within a regional-scale compartment and follows paths that discharge to the Snake River downstream from Milner Dam. Two intermediate-scale compartments exist along the southeast side of the aquifer and near Mud Lake.One intermediate-scale compartment along the southeast side of the aquifer discharges to the Snake River near American Fails
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Dreyer, Michael E.
2010-01-01
is based on the technique of the equivalent steady system, which is published for the first time in the present paper. This approach assumes that for every unsteady state an equivalent steady state with a special boundary condition can be formulated. The equivalent steady state technique enables a reformulation of the equation system and an efficient and reliable speed index computation. Furthermore, the existence of the numerical singularity at the critical point of the steady flow instability, postulated in previous publication, is demonstrated in detail. The numerical singularity is related to the stability criterion for steady flow and represents the numerical consequence of the liquid surface collapse. The evaluation and generation of the pressure diagram is demonstrated in detail with a series of numerical dynamic flow studies. The stability diagram, based on one-dimensional computation, gives a detailed overview of the stable and instable flow regimes. This prediction is in good agreement with the experimentally observed critical flow conditions and results of three-dimensional CFD computations.
NASA Technical Reports Server (NTRS)
Gartling, D. K.; Roache, P. J.
1978-01-01
The efficiency characteristics of finite element and finite difference approximations for the steady-state solution of the Navier-Stokes equations are examined. The finite element method discussed is a standard Galerkin formulation of the incompressible, steady-state Navier-Stokes equations. The finite difference formulation uses simple centered differences that are O(delta x-squared). Operation counts indicate that a rapidly converging Newton-Raphson-Kantorovitch iteration scheme is generally preferable over a Picard method. A split NOS Picard iterative algorithm for the finite difference method was most efficient.
NASA Astrophysics Data System (ADS)
Abyzov, Andrey M.; Shakhov, Fedor M.
2014-12-01
To measure the thermal conductivity of particle beds, a specially designed cuvette is inserted into the chamber of an ITP-MG4 device fitted with a vertical heat flux sensor. The cuvette with a transparent wall makes it possible to reduce the amount of test material to 25 cm3, to monitor visually the uniformity of a charge, to determine the bulk density of the particle bed (and to increase it if necessary using vibrocompaction) and to apply external pressure to the bed from 2.5 to 30 kPa. Using various continuous-solid and particulate materials as references, a calibration equation is obtained for thermal conductivity in the range of 0.03-1.1 W (m K)-1. To eliminate thermal contact resistance when measuring references, the end faces of glass specimens with a departure from flatness of up to 50 μm are wetted with water. To model the calibration, a calculation is carried out by the electrical circuit analogy. The calculated curve is close to the experimental points if a value for the contact thermal resistances r# = 2 × 10-3 m2 K W-1 is taken. Values of r# calculated by the Yovanovich model, based on the known roughnesses of the contact surfaces of the cuvette and the solid specimens, are an order of magnitude lower due to the decisive influence of nonflatness and not surface roughness at the low pressures used. The conditions under which our measurements were made are compared with the instructions of Russian, American and international standards for the measurement of thermal conductivity by the steady-state heat flow method (specimen size, flatness of working surfaces, etc). The sources of measurement inaccuracy and ways to improve the technique are examined.
Holtschlag, D.J.; Koschik, J.A.
2001-01-01
St. Clair and Detroit Rivers are connecting channels between Lake Huron and Lake Erie in the Great Lakes waterway, and form part of the boundary between the United States and Canada. St. Clair River, the upper connecting channel, drains 222,400 mi2 and has an average flow of about 182,000 ft3/s. Water from St. Clair River combines with local inflows and discharges into Lake St. Clair before flowing into Detroit River. In some reaches of St. Clair and Detroit Rivers, islands and dikes split the flow into two to four branches. Even when the flow in a reach is known, proportions of flows within individual branches of a reach are uncertain. Simple linear regression equations, subject to a flow continuity constraint, are developed to provide estimators of these proportions and flows. The equations are based on 533 paired measurements of flow in 13 reaches forming 31 branches. The equations provide a means for computing the expected values and uncertainties of steady-state flows on the basis of flow conditions specified at the upstream boundaries of the waterway. In 7 upstream reaches, flow is considered fixed because it can be determined on the basis of flows specified at waterway boundaries and flow continuity. In these reaches, the uncertainties of flow proportions indicated by the regression equations can be used directly to determine the uncertainties of the corresponding flows. In the remaining 6 downstream reaches, flow is considered uncertain because these reaches do not receive flow from all the branches of an upstream reach, or they receive flow from some branches of more than one upstream reach. Monte Carlo simulation analysis is used to quantify this increase in uncertainty associated with the propagation of uncertainties from upstream reaches to downstream reaches. To eliminate the need for Monte Carlo simulations for routine calculations, polynomial regression equations are developed to approximate the variation in uncertainties as a function of flow at the
NASA Astrophysics Data System (ADS)
Cartwright, Keith Lewis
The purpose of this study is to understand the oscillatory steady-state behavior of crossed-field electron flow in diodes for magnetic fields greater than the Hull field (B > BH) by the means of theory and self-consistent, electrostatic particle-in-cell (PIC) simulations. Many prior analytic studies of diode-like problems have been time-independent, which leaves the stability and time-dependence of these models unresolved. We investigate fluctuations through the system, including virtual cathode oscillations, and compare results for various cathode injection models. The dominant oscillations in magnetically insulated crossed-field diodes are found to be a series resonance, Z(ω s) = 0, between the pure electron plasma and vacuum impedance of the diode. The series resonance in crossed-field electron flow is shown to be the ky --> 0 (one-dimensional) limit of the diocotron/magnetron eigenmode equation. The wavenumber, ky, is perpendicular to the direction across the diode and magnetic field. The series resonance is derived theoretically and verified with self-consistent, electrostatic, PIC simulations. Electron transport across the magnetic field in a cutoff planar smooth-bore magnetron is described on the basis of surface waves (formed by the shear flow instability) perpendicular to the magnetic field and along the cathode. A self-consistent, 2d3v (two spatial dimensions and three velocity components), electrostatic PIC simulation of a crossed-field diode produces a near- Brillouin flow which slowly expands across the diode, punctuated by sudden transport across the diode. The theory of slow transport across the diode is explained by the addition of perturbed orbits to the Brillouin shear flow motion of the plasma in the diode. A slow drift compared to the shear flow is described which results from the fields caused by the surface wave inducing an electrostatic ponderomotive-like force in a dc external magnetic field. In order to perform the above
Vuppu, Anil K; Garcia, Antonio A; Saha, Sanjoy K; Phelan, Patrick E; Hayes, Mark A; Calhoun, Ronald
2004-06-01
The microflow and stirring around paramagnetic particle microchains, referred to as microrotors, are modeled as a circular cylinder rotating about its radial axis at very low Reynolds number. Time scales for momentum transfer under these conditions are determined to be much smaller than those for boundary movement, hence a quasi-steady approximation can be used. The flow is derived at every instant from the case of a steady motion of a horizontally translating cylinder, with the rotation approximated to a series of differential incremental translations. A numerical simulation is used to determine the pathlines and material lines of virtual point fluid elements, which were analyzed to understand the behavior of the flow around the microrotor. The results indicate the flow to be unsteady, with chaotic advection observed in the system. The fluid motion is primarily two-dimensional, parallel to the rotational plane, with mixing limited to the immediate area around the rotating cylinder. Fluid layers, up to many cylinder diameters, in the axial direction experience the disturbance. Elliptic and star shaped pathlines, including periodic orbits, are observed depending on the fluid element's initial location. The trajectories and phase angles compare well with the experimental results, as well as with data from particle dynamics simulations. Material lines and streaklines display stretching and folding, which are indicative of the chaotic behavior and stirring characteristics of the system. The material lines have similar lengths for the same amount of rotation at different speeds, and the effect of rotational speeds appears to be primarily to change the time of mixing. The results are expected to help in the design of a particle microrotor based sensing technique. PMID:15159779
Runkle, Donna L.; McLean, J.S.
1995-01-01
A generalized finite-difference model was prepared for the Blaine aquifer in southwestern Oklahoma and northwestern Texas. This report releases the model for use and modification. A grid of 1-square-mile nodes was established over the area, with 1,030 of the nodes actively simulated in the model. The steady-state model simulation used a uniform recharge rate of 2.2 inches per year and three values of hydraulic conductivity: 80, 19, and 4.7 feet per day. About 44 percent of the recharge is discharged as pumpage from wells, and the remainder is discharged to rivers and creeks within and adjacent to the study area.
Kernodle, J.M.
1996-01-01
As part of a multidisciplinary regional aquifer-system analysis, a three-dimensional steady-state ground-water-flow model was constructed for the San Juan Basin in parts of New Mexico, Colorado, Arizona, and Utah. The model simulated ground- water flow in 12 hydrostratigraphic units representing all of the major sources of ground water from aquifers of Jurassic and younger age. Ten map reports in the U.S. Geological Survey Hydrologic Investigations Atlas 720 series were prepared in conjunction with this investigation. The units that were described in the atlases were the San Jose, Nacimiento, and Animas Formations; Ojo Alamo Sandstone; Kirtland Shale and Fruitland Formation; Pictured Cliffs Sandstone; Cliff House Sandstone; Menefee Formation; Point Lookout Sandstone; Gallup Sandstone; Dakota Sandstone; and Morrison Formation. Additional descriptions of the alluvial and landslide deposits, Chuska and Crevasse Canyon Sandstones, Lewis and Mancos Shales, Wanakah Formation, and Entrada Sandstone are included in this report. Much of the information in the HA-720 series was generated from digital computer data bases that were directly usable by the computer for compilation of input data for the model. In essence, the major components of the ground-water- flow model were described and documented in the series of hydrologic atlases. The primary finding resulting from the ground-water-flow simulation was that boundary conditions and internal geometry of the aquifers are the major controls of steady-state ground-water flow and hydraulic heads in the San Juan Basin. Another significant finding was that the computed steady-state ground- water flux is a very minor component (about 1 percent) of the total water budget of the basin.
NASA Astrophysics Data System (ADS)
Nœtinger, B.
2015-02-01
Modeling natural Discrete Fracture Networks (DFN) receives more and more attention in applied geosciences, from oil and gas industry, to geothermal recovery and aquifer management. The fractures may be either natural, or artificial in case of well stimulation. Accounting for the flow inside the fracture network, and accounting for the transfers between the matrix and the fractures, with the same level of accuracy is an important issue for calibrating the well architecture and for setting up optimal resources recovery strategies. Recently, we proposed an original method allowing to model transient pressure diffusion in the fracture network only [1]. The matrix was assumed to be impervious. A systematic approximation scheme was built, allowing to model the initial DFN by a set of N unknowns located at each identified intersection between fractures. The higher N, the higher the accuracy of the model. The main assumption was using a quasi steady state hypothesis, that states that the characteristic diffusion time over one single fracture is negligible compared with the characteristic time of the macroscopic problem, e.g. change of boundary conditions. In that context, the lowest order approximation N = 1 has the form of solving a transient problem in a resistor/capacitor network, a so-called pipe network. Its topology is the same as the network of geometrical intersections between fractures. In this paper, we generalize this approach in order to account for fluxes from matrix to fractures. The quasi steady state hypothesis at the fracture level is still kept. Then, we show that in the case of well separated time scales between matrix and fractures, the preceding model needs only to be slightly modified in order to incorporate these fluxes. The additional knowledge of the so-called matrix to fracture transfer function allows to modify the mass matrix that becomes a time convolution operator. This is reminiscent of existing space averaged transient dual porosity models.
Trapp, Henry; Geiger, L.H.
1986-01-01
The sand-and-gravel aquifer is the only freshwater aquifer in southern Escambia County, Florida and is the source of public water supply for the area, including the City of Pensacola. The aquifer was simulated by a two-layer, digital model to provide hydrologic information for water resource planning. The lower layer represents the main-producing zone; the upper layer represents all of the aquifer above the main-producing zone including an unconfined zone and discontinuous perched, confined , and confining zones. The model was designed for steady-state simulation and predicts the response of the aquifer (changes in water levels) to groundwater pumping where steady-state conditions have been reached. Input to the model includes matrices representing constant-head nodes, starting head, transmissivity of layer 1, leakance between layers 1 and 2, lateral hydraulic conductivity of layer 2, and altitude of the base layer 2. The sources of water to the model are from recharge by infiltrated precipitation (estimated from base runoff), inflow across boundaries, and induced recharge from river leakance in periods of prolonged groundwater pumping. Model output includes final head and drawdown for each layer and total values for discharge and recharge in the model area. The model was calibrated for 1972 pumping and tested by simulating pumpages during 1939-40, 1958, and 1977. Sensitivity analyses showed water levels in both layers were most sensitive to changes in the recharge matrix and least sensitive to river leakage. Suggestions for further development of the model include subdivision and expansion of the grid, assignment of storage coefficients for transient simulations, more intensive study of the stream-aquifer relations, and consideration of the effects of infiltration basins on recharge. (Author 's abstract)
Ackerman, Daniel J.; Rousseau, Joseph P.; Rattray, Gordon W.; Fisher, Jason C.
2010-01-01
Three-dimensional steady-state and transient models of groundwater flow and advective transport in the eastern Snake River Plain aquifer were developed by the U.S. Geological Survey in cooperation with the U.S. Department of Energy. The steady-state and transient flow models cover an area of 1,940 square miles that includes most of the 890 square miles of the Idaho National Laboratory (INL). A 50-year history of waste disposal at the INL has resulted in measurable concentrations of waste contaminants in the eastern Snake River Plain aquifer. Model results can be used in numerical simulations to evaluate the movement of contaminants in the aquifer. Saturated flow in the eastern Snake River Plain aquifer was simulated using the MODFLOW-2000 groundwater flow model. Steady-state flow was simulated to represent conditions in 1980 with average streamflow infiltration from 1966-80 for the Big Lost River, the major variable inflow to the system. The transient flow model simulates groundwater flow between 1980 and 1995, a period that included a 5-year wet cycle (1982-86) followed by an 8-year dry cycle (1987-94). Specified flows into or out of the active model grid define the conditions on all boundaries except the southwest (outflow) boundary, which is simulated with head-dependent flow. In the transient flow model, streamflow infiltration was the major stress, and was variable in time and location. The models were calibrated by adjusting aquifer hydraulic properties to match simulated and observed heads or head differences using the parameter-estimation program incorporated in MODFLOW-2000. Various summary, regression, and inferential statistics, in addition to comparisons of model properties and simulated head to measured properties and head, were used to evaluate the model calibration. Model parameters estimated for the steady-state calibration included hydraulic conductivity for seven of nine hydrogeologic zones and a global value of vertical anisotropy. Parameters
Osterhoff, J; Popp, A; Major, Zs; Marx, B; Rowlands-Rees, T P; Fuchs, M; Geissler, M; Hörlein, R; Hidding, B; Becker, S; Peralta, E A; Schramm, U; Grüner, F; Habs, D; Krausz, F; Hooker, S M; Karsch, S
2008-08-22
Laser-driven, quasimonoenergetic electron beams of up to approximately 200 MeV in energy have been observed from steady-state-flow gas cells. These beams emitted within a low-divergence cone of 2.1+/-0.5 mrad FWHM display unprecedented shot-to-shot stability in energy (2.5% rms), pointing (1.4 mrad rms), and charge (16% rms) owing to a highly reproducible gas-density profile within the interaction volume. Laser-wakefield acceleration in gas cells of this type provides a simple and reliable source of relativistic electrons suitable for applications such as the production of extreme-ultraviolet undulator radiation. PMID:18764625
Kernodle, J.M.; Scott, W.B.
1986-01-01
As part of the Southwest Alluvial Basins study, model was constructed to simulate the alluvial aquifer system underlying the Albuquerque-Belen Basin. The model was used to simulate the steady-state flow condition assumed to have existed prior to 1960. Until this time there apparently were no long-term groundwater level changes of a significant magnitude outside the immediate vicinity of Albuquerque. Therefore, the construction of a steady-state flow model of the aquifer system based on reported hydrologic data predating 1960 was justified. During construction of the steady-state model, simulated hydraulic conductivity values were adjusted, within acceptable physical limits, until a best fit between measured or reported and computed heads at 34 control wells was achieved. The modeled area was divided into six sub-areas, or zones, within each of which hydraulic conductivity was assumed to be uniform. The model consisted of six layers for each of which simulated transmissivity was proportional to the layer thickness. Adjustments to simulated hydraulic conductivity values in the different zones resulted in final values that ranged from a low of 0.25 ft/day in the west to 50 ft/day in the eastern part of the basin. The error of the simulation, defined as the absolute difference between the computed and the measured or reported water level at the corresponding point in the physical system being modeled, ranged from 0.6 ft to 36 ft, with an average of 14.6 ft for the 34 control wells. (Author 's abstract)
Zhao, C.; Muehlaus, H.B.; Hobbs, B.E.
1998-03-01
A parametric study is carried out to investigate how geological inhomogeneity affects the pore-fluid convective flow field, the temperature distribution, and the mass concentration distribution in a fluid-saturated porous medium. The related numerical results have demonstrated that (1) the effects of both medium permeability inhomogeneity and medium thermal conductivity inhomogeneity are significant on the pore-fluid convective flow and the species concentration distribution in the porous medium; (2) the effect of medium thermal conductivity inhomogeneity is dramatic on the temperature distribution in the porous medium, but the effect of medium permeability inhomogeneity on the temperature distribution may be considerable, depending on the Rayleigh number involved in the analysis; (3) if the coupling effect between pore-fluid flow and mass transport is weak, the effect of the Lewis number is negligible on the pore-fluid convective flow and temperature distribution, but it is significant on the species concentration distribution in the medium.
NASA Astrophysics Data System (ADS)
Ravat, D.; Morgan, P.; Salem, A.; Lowry, A. R.
2014-12-01
We have developed a new method of constraining geotherms deep in the crust. Steady-state geotherms are most commonly derived by solving the heat flow differential equation with surface boundary conditions, and do not explicitly involve temperature constraints at depth. In a new method, we incorporate the magnetic Curie depth, derived from the spectral analysis of magnetic anomaly data, as an a posteriori condition into the solution of 1-D heat-flow equation to anchor geotherms at the Curie depth. The Curie depth is derived carefully from the Defractal Spectral Method where the fractal parameter of the field is also derived. The Curie depth constraint allows determination of an additional parameter: the ratio of radiogenic heat production (A) to thermal conductivity (K). When K is observed or can be estimated from geologic knowledge, A can be calculated. Furthermore, it is possible to renormalize the derived A to the value where radiogenic elements exponentially decrease with depth (the value of A at the surface denoted as As). The renormalization permits comparison of surface observed and computed values of As which we use to validate the method. We crosschecked observed values of As and K against the ratio As/K derived from the method in New Hampshire and across the border of Wyoming and Colorado. Excluding high heat-flow locations in these regions as anomalous, the difference between the observed and computed As in all these cases is less than 6-7%. There are also regions where both the derived parameters (As and K) are not within the acceptable range for the given reduced heat flow; these are generally the regions of complex active tectonics or anomalously high or low heat-flow values where the steady-state assumption is not valid. In the mid-oceanic ridge scenario of the Red Sea, the Curie depth corresponds to the Moho and reasonable values of K yield low values of A consistent with the expectation from mafic oceanic crust. There are many areas of the world
NASA Astrophysics Data System (ADS)
Walker, Emilie; Glover, Paul W. J.
2013-04-01
The last twenty years has seen the steady increase in the quality and quantity of streaming potential coefficient and zeta potential determinations in the laboratory. More recently (Glover et al., 2012), a model has been developed that allows both the zeta potential and streaming potential coefficient of a porous rock to be calculated theoretically. We have carried out high quality streaming potential coupling coefficient measurements using a newly designed cell with both a steady-state methodology and a new pressure transient approach. We have shown the pressure transient approach to be particularly good in providing high quality streaming potential coefficient measurements as it allows thousands of measurements to be made at different pressures to which a good linear regression can be fitted. Nevertheless, the method is approximately five times as fast as the conventional measurement approaches. Measurements of streaming potential coefficient have been carried out on seven samples of Berea, Boise and Lochaline sandstones as a function of salinity (approximately 18 salinities between 10-5 M and 2 M) and pH (approximately 11 pHs between 8 and 2). The data have been inverted to obtain the zeta potential. The streaming potential coefficient becomes greater (more negative) for fluids with lower salinities and higher pHs, which is consistent with the corpus of existing measurements. Our measurements are also consistent with the high salinity streaming potential coefficient measurements made by Vinogradov et al. (2010). The streaming potential and zeta potential tend to zero as the pH approaches the point of zero net surface charge for quartz (approximately 3), which was 2.8±0.2 in our measurements. Both the streaming potential coefficient and the zeta potential have also been modelled using the theoretical approach of Glover et al. (2012). This modelling allows the microstructural, electro-chemical and fluid properties of the saturated rock to be taken into account in
NASA Technical Reports Server (NTRS)
Yang, Cheng I.; Guo, Yan-Hu; Liu, C.- H.
1996-01-01
The analysis and design of a submarine propulsor requires the ability to predict the characteristics of both laminar and turbulent flows to a higher degree of accuracy. This report presents results of certain benchmark computations based on an upwind, high-resolution, finite-differencing Navier-Stokes solver. The purpose of the computations is to evaluate the ability, the accuracy and the performance of the solver in the simulation of detailed features of viscous flows. Features of interest include flow separation and reattachment, surface pressure and skin friction distributions. Those features are particularly relevant to the propulsor analysis. Test cases with a wide range of Reynolds numbers are selected; therefore, the effects of the convective and the diffusive terms of the solver can be evaluated separately. Test cases include flows over bluff bodies, such as circular cylinders and spheres, at various low Reynolds numbers, flows over a flat plate with and without turbulence effects, and turbulent flows over axisymmetric bodies with and without propulsor effects. Finally, to enhance the iterative solution procedure, a full approximation scheme V-cycle multigrid method is implemented. Preliminary results indicate that the method significantly reduces the computational effort.
NASA Astrophysics Data System (ADS)
Irvine, Dylan J.; Cartwright, Ian; Post, Vincent E. A.; Simmons, Craig T.; Banks, Eddie W.
2016-02-01
Steady state 1-D analytical solutions to estimate groundwater fluxes from temperature profiles are an attractive option because they are simple to apply, with no complex boundary or initial conditions. Steady state solutions have been applied to estimate both aquifer scale fluxes as well as to estimate groundwater discharge to streams. This study explores the sources of uncertainty in flux estimates from regional scale aquifers caused by sensor precision, aquifer heterogeneity, multidimensional flow and variations in surface temperature due to climate change. Synthetic temperature profiles were generated using 2-D groundwater flow and heat transport models with homogeneous and heterogeneous hydraulic and thermal properties. Temperature profiles were analyzed assuming temperature can be determined with a precision between 0.1°C and 0.001°C. Analysis of synthetic temperature profiles show that the Bredehoeft and Papadopulos (1965) method can provide good estimates of the mean vertical Darcy flux over the length of the temperature profile. Reliable flux estimates were obtained when the ratio of vertical to horizontal flux was as low as 0.1, and in heterogeneous media, providing that temperature at the upper boundary was constant in time. However, temporal increases in surface temperature led to over-estimation of fluxes. Overestimates increased with time since the onset of, and with the rate of surface warming. Overall, the Bredehoeft and Papadopulos (1965) method may be more robust for the conditions with constant temperature distributions than previously thought, but that transient methods that account for surface warming should be used to determine fluxes in shallow aquifers.
Kuiper, Logan K.
1986-01-01
Two geostatistical approaches for the estimation of hydraulic conductivity and hydraulic head from hydraulic conductivity and hydraulic head measurements are developed for two-dimensional steady flow with sinks. For both approaches the field of the logarithm of hydraulic conductivity (log-conductivity) is represented as a random field. The first approach uses linearization of the discretized flow equations to allow the construction of the joint covariance matrix of the hydraulic head and log-conductivity measurements. It then uses maximum likelihood estimation to obtain these parameters and also a parameter associated with log-conductivity measurement error. Having found values for the parameters, it then uses kriging to form predictors for log-conductivity and hydraulic head from measured values of hydraulic conductivity and hydraulic head. The second approach uses kriging to form a parameter-dependent predictor for log-conductivity from measured hydraulic conductivity, and then uses this predicted log-conductivity placed into the discretized flow equations to compute hydraulic head. The parameters are determined by the minimization of the sum of the squares of the difference between the measured and computed hydraulic heads. A third approach simply allows the hydraulic conductivity field to be a step function with a different value for hydraulic conductivity assigned to each of several chosen regions in the two-dimensional aquifer. The three approaches are tested for hydraulic head prediction accuracy on two generated test problems, one of which is statistically generated, and also on a field problem. The third approach, despite its simplicity, performs as well or better than the other approaches.
Exponential Decay of the Vorticity in the Steady-State Flow of a Viscous Liquid Past a Rotating Body
NASA Astrophysics Data System (ADS)
Deuring, Paul; Galdi, Giovanni P.
2016-07-01
Consider the flow of a Navier-Stokes liquid past a body rotating with a prescribed constant angular velocity, {ω}, and assume that the motion is steady with respect to a body-fixed frame. In this paper we show that the vorticity field associated to every "weak" solution corresponding to data of arbitrary "size" ( Leray Solution) must decay exponentially fast outside the wake region at sufficiently large distances from the body. Our result improves and generalizes in a non-trivial way famous results by Clark (Indiana Univ Math J 20:633-654, 1971) and Babenko and Vasil'ev (J Appl Math Mech 37:651-665, 1973) obtained in the case {ω=0}.
Mangan, M.; Mastin, L.; Sisson, T.
2004-01-01
In this paper we examine the consequences of bubble nucleation mechanism on eruptive degassing of rhyolite magma. We use the results of published high temperature and pressure decompression experiments as input to a modified version of CONFLOW, the numerical model of Mastin and Ghiorso [(2000) U.S.G.S. Open-File Rep. 00-209, 53 pp.] and Mastin [(2002) Geochem. Geophys. Geosyst. 3, 10.1029/2001GC000192] for steady, two-phase flow in vertical conduits. Synthesis of the available experimental data shows that heterogeneous nucleation is triggered at ??P 120-150 MPa, and leads to disequilibrium degassing at extreme H2O supersaturation. In this latter case, nucleation is an ongoing process controlled by changing supersaturation conditions. Exponential bubble size distributions are often produced with number densities of 106-109 bubbles/cm3. Our numerical analysis adopts an end-member approach that specifically compares equilibrium degassing with delayed, disequilibrium degassing characteristic of homogeneously-nucleating systems. The disequilibrium simulations show that delaying nucleation until ??P =150 MPa restricts degassing to within ???1500 m of the surface. Fragmentation occurs at similar porosity in both the disequilibrium and equilibrium modes (???80 vol%), but at the distinct depths of ???500 m and ???2300 m, respectively. The vesiculation delay leads to higher pressures at equivalent depths in the conduit, and the mass flux and exit pressure are each higher by a factor of ???2.0. Residual water contents in the melt reaching the vent are between 0.5 and 1.0 wt%, roughly twice that of the equilibrium model. ?? 2003 Elsevier B.V. All rights reserved.
Yobbi, D.K.
1989-01-01
A digital groundwater flow model was developed to approximate steady-state predevelopment flow conditions in the Upper Floridan aquifer of coastal west-central Florida. The aquifer is the major source of water and natural spring flow in the area. The aquifer was simulated as a one-layer system with constant vertical recharge and discharge rates. Calibrated transmissivities ranged from 8,640 sq ft/day in the northern part of the area to nearly 13,000,000 sq ft/day near large springs. Calibrated inflows were about 2,708 cu ft/sec; of this, about 2,565 cu ft/sec discharged as natural spring flow and 137 cu ft/sec discharged as upward leakage along the coast. The model was used to show how the system might respond to large manmade stresses. Withdrawal of 116 cu ft/sec from a hypothetical regional well field resulted in potentiometric-surface drawdowns ranging from 0.1 to 1.7 ft and declines of generally less than 0.2 ft along the coast. Total spring flow decreased 5%, and the effect on individual springs varied from 0.1 to 8.0%. Withdrawal of 62 cu ft/sec from the 4-sq-mi node at each spring resulted in six of seven springs to the south of the Chassahowitzka River contributing 50% of their flow to pumpage. Springs located north of the Chassahowitzka River contributed as much as 18% of their flow to pumpage. (USGS)
NASA Astrophysics Data System (ADS)
Xu, Bing; Hu, Min; Zhang, Junhui
2015-09-01
The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test
Kuniansky, E.L.
1990-01-01
A computer program based on the Galerkin finite-element method was developed to simulate two-dimensional steady-state ground-water flow in either isotropic or anisotropic confined aquifers. The program may also be used for unconfined aquifers of constant saturated thickness. Constant head, constant flux, and head-dependent flux boundary conditions can be specified in order to approximate a variety of natural conditions, such as a river or lake boundary, and pumping well. The computer program was developed for the preliminary simulation of ground-water flow in the Edwards-Trinity Regional aquifer system as part of the Regional Aquifer-Systems Analysis Program. Results of the program compare well to analytical solutions and simulations .from published finite-difference models. A concise discussion of the Galerkin method is presented along with a description of the program. Provided in the Supplemental Data section are a listing of the computer program, definitions of selected program variables, and several examples of data input and output used in verifying the accuracy of the program.
Arthur S. Rood
2004-11-01
A one-dimensional model for water flow and solute transport in the unsaturated zone under steady-state or transient flow conditions was developed from the principles of the mixing-cell model. The unsaturated zone is discretized into a series of independent mixing cells. Each cell may have unique hydrologic, lithologic, and sorptive properties. Ordinary differential equations (ODE) describe the material (water and solute) balance within each cell. Water flow equations are derived from the continuity equation assuming that unit-gradient conditions exist at all times in each cell. Pressure gradients are considered implicitly through model discretization. Unsaturated hydraulic conductivity and moisture contents are determined by the material-specific moisture characteristic curves. Solute transport processes included explicit treatment of advective processes, first-order chain decay, and linear sorption reactions. Dispersion is addressed through implicit and explicit dispersion. Implicit dispersion is an inherent feature of all mixing cell models and originates from the formulation of the problem in terms of mass balance around fully mixed volume elements. Expressions are provided that relate implicit dispersion to the physical dispersion of the system. The system of ODEs was solved using a forth-order Runge-Kutta algorithm coupled with adaptive step size control. Computer run times for transient flow and solute transport were typically several seconds on a 2-GHz Intel Pentium IV® desktop computer. The model was benchmarked against analytical solutions and finite-element approximations to the partial differential equations (PDE) describing unsaturated flow and transport. Differences between the maximum solute flux estimated by the mixing-cell model and the PDE models were typically less than 2%.
Tibbals, C.H.
1981-01-01
The predevelopment steady-state ground-water flow system for 13 ,700 square miles of the Tertiary limestone aquifer system (known as the Florida aquifer in Florida) in east-central Florida is simulated by means of a digital computer model. The model results indicate that about 1,900 cubic feet per second recharges the aquifer as downward leakage from the surficial aquifer. The average recharge rate where recharge actually occurs (approximately 6,550 square miles) is about 4 inches per year. The maximum recharge rate is about 14 inches per year. An additional 21 cubic feet per second is recharged to the modeled area of the aquifer by means of lateral boundary inflow along the northeast boundary. The Floridan aquifer system, as simulated, discharges 1,300 cubic feet per second as springflow, 540 cubic feet per second as diffuse upward leakage to the surficial aquifer in an area of approximately 7,150 square miles and 81 cubic feet per second as lateral boundary outflow to the southwest and to the east. The average transmissivity of the upper unit of the aquifer, as simulated, is about 120,000 square feet per day while that for the lower unit is about 60,000 square feet per day. (USGS)
NASA Astrophysics Data System (ADS)
Flynn, M. R.; Ungarish, M.; Tan, A. W.
2012-02-01
We consider the propagation of a gravity current of density ρc at the bottom of a two-layer stratified ambient in a horizontal channel of height H, in the high-Reynolds number Boussinesq domain. The study emphasizes theoretical-analytical modeling, however, experimental and Navier-Stokes simulation data are also presented and their comparison with theory is discussed. The stratification parameters are S = (ρ1 - ρ2)/(ρc - ρ2) where ρ is the fluid density, and φ = h1R/H where h1R is the (unperturbed) ambient interface height. Here, 1 and 2 denote, respectively, the lower and upper layer and c denotes the gravity current. The reduced gravity is defined as g' = (ρc/ρ2 - 1)g. Rigorous results are obtained for the steady-state analogue of the classical problem of Benjamin [J. Fluid Mech. 31, 209 (1968)], 10.1017/S0022112068000133, in which the half-infinite gravity current has thickness h and speed U. We thereby demonstrate that the Froude number F= U/(g^' } h)^{1/2} is a function of a = h/H, S, and φ. In general, two solutions (or modes) may be realized. Issues of energy dissipation, sub- vs. supercriticality with respect to long internal waves and, more generally, the influence of upstream-propagating disturbances are discussed. For a gravity current released from a lock of height h0 and length x0, we derive an approximate shallow-water model and show that the motion is in this case governed by Ξ = H/h0, S, and φ. Although the shallow-water model neglects motion in the ambient layers and ignores the impact of propagation on stratification, the gravity current front speed in the slumping stage is in excellent agreement with measured data. Our theoretical solutions are consistent with previous results (in particular, Holyer and Huppert [J. Fluid Mech. 100, 739 (1980)] and Tan et al. [Environ. Fluid Mech. 11, 203 (2011)]), but have the advantages of being (i) derived without reliance on adjustable constants and ad hoc closures; (ii) applicable to a
Steady State Dense Gas Dispersion
Energy Science and Technology Software Center (ESTSC)
1995-03-01
SLAB-LLNL is a steady-state one-dimensional program which calculates the atmospheric dispersion of a heavier than air gas that is continuously released at ground level. The model is based on the steady-state crosswind-averaged conservation equations of species, mass, energy, and momentum. It uses the air entrainment concept to account for the turbulent mixing of the gas cloud with the surrounding atmosphere and similarity profiles to determine the crosswind dependence.
Arnold, L.R.
2010-01-01
The Lost Creek Designated Ground Water Basin (Lost Creek basin) is an important alluvial aquifer for irrigation, public supply, and domestic water uses in northeastern Colorado. Beginning in 2005, the U.S. Geological Survey, in cooperation with the Lost Creek Ground Water Management District and the Colorado Water Conservation Board, collected hydrologic data and constructed a steady-state numerical groundwater flow model of the Lost Creek basin. The model builds upon the work of previous investigators to provide an updated tool for simulating the potential effects of various hydrologic stresses on groundwater flow and evaluating possible aquifer-management strategies. As part of model development, the thickness and extent of regolith sediments in the basin were mapped, and data were collected concerning aquifer recharge beneath native grassland, nonirrigated agricultural fields, irrigated agricultural fields, and ephemeral stream channels. The thickness and extent of regolith in the Lost Creek basin indicate the presence of a 2- to 7-mile-wide buried paleovalley that extends along the Lost Creek basin from south to north, where it joins the alluvial valley of the South Platte River valley. Regolith that fills the paleovalley is as much as about 190 ft thick. Average annual recharge from infiltration of precipitation on native grassland and nonirrigated agricultural fields was estimated by using the chloride mass-balance method to range from 0.1 to 0.6 inch, which represents about 1-4 percent of long-term average precipitation. Average annual recharge from infiltration of ephemeral streamflow was estimated by using apparent downward velocities of chloride peaks to range from 5.7 to 8.2 inches. Average annual recharge beneath irrigated agricultural fields was estimated by using passive-wick lysimeters and a water-balance approach to range from 0 to 11.3 inches, depending on irrigation method, soil type, crop type, and the net quantity of irrigation water applied
Saffer, D.M.; Bekins, B.A.
1998-01-01
Down-hole geochemical anomalies encountered in active accretionary systems can be used to constrain the timing, rates, and localization of fluid flow. Here we combine a coupled flow and solute transport model with a kinetic model for smectite dehydration to better understand and quantify fluid flow in the Nankai accretionary complex offshore of Japan. Compaction of sediments and clay dehydration provide fluid sources which drive the model flow system. We explicitly include the consolidation rate of underthrust sediments in our calculations to evaluate the impact that variations in this unknown quantity have on pressure and chloride distribution. Sensitivity analysis of steady state pressure solutions constrains bulk and flow conduit permeabilities. Steady state simulations with 30% smectite in the incoming sedimentary sequence result in minimum chloride concentrations at site 808 of 550 mM, but measured chlorinity is as low as 447 mM. We simulate the transient effects of hydrofracture or a strain event by assuming an instantaneous permeability increase of 3-4 orders of magnitude along a flow conduit (in this case the de??collement), using steady state results as initial conditions. Transient results with an increase in de??collement permeability from 10-16 m2 to 10-13 m2 and 20% smectite reproduce the observed chloride profile at site 808 after 80-160 kyr. Modeled chloride concentrations are highly sensitive to the consolidation rate of underthrust sediments, such that rapid compaction of underthrust material leads to increased freshening. Pressures within the de??collement during transient simulations rise rapidly to a significant fraction of lithostatic and remain high for at least 160 kyr, providing a mechanism for maintaining high permeability. Flow rates at the deformation front for transient simulations are in good agreement with direct measurements, but steady state flow rates are 2-3 orders of magnitude smaller than observed. Fluid budget calculations
NASA Lewis Steady-State Heat Pipe Code Architecture
NASA Technical Reports Server (NTRS)
Mi, Ye; Tower, Leonard K.
2013-01-01
NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given
ERIC Educational Resources Information Center
Owens, J. A.
1982-01-01
Options for faculty utilization in a steady state are examined, with consideration for their economy or ability to increase turnover or flexibility: early retirement, part retirement, retraining, exchange with other institutions or industry, and fixed-term appointments or lecturer positions. (MSE)
Zhang, Weisheng; Qian, Yi; Lin, Jiang; Lv, Peng; Karunanithi, Kaavya; Zeng, Mengsu
2014-02-01
This study aims to evaluate the feasibility of computational fluid dynamics (CFD) technology in analysis of renal artery stenosis (RAS) based on unenhanced MR angiography (MRA). Thirty hypertensive patients with unilateral RAS, and 10 normal volunteers, underwent unenhanced MRA on a 1.5 T MR scanner. 12 of 30 patients also underwent ultrasound (US) to detect peak systolic velocity. The patient-specific CFD based on MRA was carried out thereafter. Stenosis grades and hemodynamic variables at the stenosis of main renal artery, including pressure difference (PD), velocity and mass flow rate (MFR), were analysed. And the hemodynamic indices of stenoses were compared with the parameters of normal renal arteries and available US velocity profile. High intraclass correlation coefficient (value 0.995) and no significant difference (p > 0.05) was shown between maximum velocity of CFD and peak systolic velocity of US in 12 patients. For normal renal arteries, the average PD, velocity and MFR were all in the reported normal physiological range. However, for stenotic arteries, the translesional PD and velocity of main renal arteries increased with the severity of stenotic degrees, while the MFR decreased. 50 % diameter stenosis was the threshold at which all three hemodynamic parameters experienced significant changes (p < 0.01). This preliminary study shows that unenhanced-MRA-based CFD can be utilized to noninvasively analyse hemodynamic parameters of RAS. The acquired variables may provide meaningful information regarding stratification of the stenosis and further therapeutic treatment. PMID:24318538
Mechanisms of steady-state nucleate pool boiling in microgravity.
Lee, Ho Sung
2002-10-01
Research on nucleate pool boiling in microgravity using R-113 as a working fluid was conducted using a five-second drop tower and five space flights at a/g approximately 10(-4). A 19 x 38-mm flat gold film heater was used that allowed cine camera viewing both from the side and the bottom of the heater. It was concluded that for both subcooled and saturated liquids long-term steady-state pool boiling can take place in reduced gravity, but the effectiveness of the boiling heat transfer appears to depend on the heater geometry and on the size and the properties of fluids. Heat transfer is enhanced at lower heat flux levels and the CHF increases as the subcooling increases. It was found that several mechanisms are responsible for the steady-state nucleate pool boiling in the absence of buoyancy. The mechanisms considered here are defined and summarized as bubble removal, bubble coalescence, thermocapillary flow, bubble migration, and latent heat transport. PMID:12446341
Sapik, D.B.
1988-01-01
A finite-difference model that simulates three-dimensional flow of groundwater was modified to simulate steady flow of freshwater in a multiple-aquifer system containing freshwater and static saltwater. The two fluids are assumed to be immiscible, with constant but different densities, and are separated by a sharp interface. The interface position computed by the model for a test problem was in good agreement with the analytic solution for this problem. The model was developed to simulate seawater intrusion in coastal aquifers, but it could be used to simulate flow in any aquifer system that is bounded by saltwater. This report describes modifications made to the existing numerical model and the method of locating an interface , and contains a user 's guide for the model. (USGS)
Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.
1976-01-01
A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.
Steady states and stability in metabolic networks without regulation.
Ivanov, Oleksandr; van der Schaft, Arjan; Weissing, Franz J
2016-07-21
Metabolic networks are often extremely complex. Despite intensive efforts many details of these networks, e.g., exact kinetic rates and parameters of metabolic reactions, are not known, making it difficult to derive their properties. Considerable effort has been made to develop theory about properties of steady states in metabolic networks that are valid for any values of parameters. General results on uniqueness of steady states and their stability have been derived with specific assumptions on reaction kinetics, stoichiometry and network topology. For example, deep results have been obtained under the assumptions of mass-action reaction kinetics, continuous flow stirred tank reactors (CFSTR), concordant reaction networks and others. Nevertheless, a general theory about properties of steady states in metabolic networks is still missing. Here we make a step further in the quest for such a theory. Specifically, we study properties of steady states in metabolic networks with monotonic kinetics in relation to their stoichiometry (simple and general) and the number of metabolites participating in every reaction (single or many). Our approach is based on the investigation of properties of the Jacobian matrix. We show that stoichiometry, network topology, and the number of metabolites that participate in every reaction have a large influence on the number of steady states and their stability in metabolic networks. Specifically, metabolic networks with single-substrate-single-product reactions have disconnected steady states, whereas in metabolic networks with multiple-substrates-multiple-product reactions manifolds of steady states arise. Metabolic networks with simple stoichiometry have either a unique globally asymptotically stable steady state or asymptotically stable manifolds of steady states. In metabolic networks with general stoichiometry the steady states are not always stable and we provide conditions for their stability. In order to demonstrate the biological
Geophysical fluid flow experiment
NASA Technical Reports Server (NTRS)
Broome, B. G.; Fichtl, G.; Fowlis, W.
1979-01-01
The essential fluid flow processes associated with the solar and Jovian atmospheres will be examined in a laboratory experiment scheduled for performance on Spacelab Missions One and Three. The experimental instrumentation required to generate and to record convective fluid flow is described. Details of the optical system configuration, the lens design, and the optical coatings are described. Measurement of thermal gradient fields by schlieren techniques and measurement of fluid flow velocity fields by photochromic dye tracers is achieved with a common optical system which utilizes photographic film for data recording. Generation of the photochromic dye tracers is described, and data annotation of experimental parameters on the film record is discussed.
Steady state phreatic surfaces in sloping aquifers
NASA Astrophysics Data System (ADS)
LoáIciga, Hugo A.
2005-08-01
Steady state groundwater flow driven by constant recharge in an unconfined aquifer overlying sloping bedrock is shown to be represented, using the Dupuit approximation, by an ordinary differential equation of the Abel type y(x) · y'(x) + a · y(x) + x = 0, whose analytical solution is derived in this work. This article first investigates the case of zero saturated thickness at the upstream boundary, a flow system reminiscent of perched groundwater created by percolation of precipitation or irrigation in a sloping aquifer fully draining at its downstream boundary. A variant of this flow system occurs when the phreatic surface mounds and produces groundwater discharge toward the upstream boundary. This variant is a generalization of the classical groundwater flow problem involving two lakes connected by an aquifer, the latter being on sloping terrain in this instance. Analytical solutions for the phreatic surface's steady state geometry are derived for the case of monotonically declining hydraulic head as well as for the case of a mounded phreatic surface. These solutions are of practical interest in drainage studies, slope stability, and runoff formation investigations. It is shown that the flow factor a = -? tan β (where K, N, and tan β are the hydraulic conductivity, vertical recharge, and aquifer slope, respectively) has a commanding role on the phreatic surface's solutions. Two computational examples illustrate the implementation of this article's results.
Steady state phreatic surfaces in sloping aquifers
NASA Astrophysics Data System (ADS)
Loáiciga, Hugo A.
2005-08-01
Steady state groundwater flow driven by constant recharge in an unconfined aquifer overlying sloping bedrock is shown to be represented, using the Dupuit approximation, by an ordinary differential equation of the Abel type y(x) . y'(x) + a . y(x) + x = 0, whose analytical solution is derived in this work. This article first investigates the case of zero saturated thickness at the upstream boundary, a flow system reminiscent of perched groundwater created by percolation of precipitation or irrigation in a sloping aquifer fully draining at its downstream boundary. A variant of this flow system occurs when the phreatic surface mounds and produces groundwater discharge toward the upstream boundary. This variant is a generalization of the classical groundwater flow problem involving two lakes connected by an aquifer, the latter being on sloping terrain in this instance. Analytical solutions for the phreatic surface's steady state geometry are derived for the case of monotonically declining hydraulic head as well as for the case of a mounded phreatic surface. These solutions are of practical interest in drainage studies, slope stability, and runoff formation investigations. It is shown that the flow factor a = -$\\sqrt{{\\rm K}/{\\rm N} tan β (where K, N, and tan β are the hydraulic conductivity, vertical recharge, and aquifer slope, respectively) has a commanding role on the phreatic surface's solutions. Two computational examples illustrate the implementation of this article's results.
Pressure drop and pumping power for fluid flow through round tubes
NASA Technical Reports Server (NTRS)
Jelinek, D.
1973-01-01
Program, written for Hewlett-Packard 9100A electronic desk computer provides convenient and immediate solution to problem of calculating pressure drop and fluid pumping power for flow through round tubes. Program was designed specifically for steady-state analysis and assumes laminar flow.
Shock waves, rarefaction waves, and nonequilibrium steady states in quantum critical systems
NASA Astrophysics Data System (ADS)
Lucas, Andrew; Schalm, Koenraad; Doyon, Benjamin; Bhaseen, M. J.
2016-07-01
We reexamine the emergence of a universal nonequilibrium steady state following a local quench between quantum critical heat baths in spatial dimensions greater than one. We show that energy transport proceeds by the formation of an instantaneous shock wave and a broadening rarefaction wave on either side of the interface, and not by two shock waves as previously proposed. For small temperature differences the universal steady state energy currents of the two-shock and rarefaction-shock solutions coincide. Over a broad range of parameters, the difference in the energy flow across the interface between these two solutions is at the level of 2%. The properties of the energy flow remain fully universal and independent of the microscopic theory. We briefly discuss the width of the shock wave in a viscous fluid, the effects of momentum relaxation, and the generalization to charged fluids.
NASA Astrophysics Data System (ADS)
Fix, Brandon R.; Popma, Christopher J.; Bulusu, Kartik V.; Plesniak, Michael W.
2013-11-01
Each year, hundreds of thousands of aortic and mitral heart valves are replaced with prosthetic valves. In efforts to develop a valve that does not require lifelong anticoagulation therapy, previous experimental research has been devoted to analyzing the hemodynamics of various heart valve designs, limited to the flow up to only 2 diameters downstream of the valve. Two-component, two-dimensional (2C-2D) particle image velocimetry (PIV) was used in this study to examine secondary flow velocity fields in a curved tube modeling an aorta at five locations (0-, 45-, 90-, 135-, 180-degrees). A bileaflet valve, opened to 30-, 45-, and 59-degrees, and one (no-valve) baseline condition were examined under three steady flow inflows (Re = 218, 429, 634). In particular, variations in the two-dimensional turbulent shear stresses at each cross sectional plane were analyzed. The results suggest that bileaflet valves in the aortic model produce significant turbulence and vorticity up to 5.5 downstream diameters, i.e. up to the 90-degrees location. Expanding this research towards aortic heart valve hemodynamics highlights a need for additional studies extending beyond the typical few diameters downstream to fully characterize valvular function. Supported by the NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.
Inconsistencies in steady state thermodynamics
NASA Astrophysics Data System (ADS)
Dickman, Ronald; Motai, Ricardo
2014-03-01
We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic lattice gases, we ask whether consistent definitions of an effective chemical potential μ, and an effective temperature Te, are possible. These quantities are determined via zero-flux conditions of particles and energy between the driven system and a reservoir. For the models considered here, the fluxes are given in terms of certain stationary average densities, eliminating the need to perturb the system by actually exchanging particles; μ and Te are thereby obtained via open-circuit measurements, using a virtual reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven lattice gas, both μ and Te need to be defined. We show analytically that the zeroth law is violated, and determine the size of the violations numerically. Our results highlight a fundamental inconsistency in the extension of thermodynamics to nonequilibrium steady states. Research supported by CNPq, Brazil.
Irreversible processes at nonequilibrium steady states
Fox, Ronald Forrest
1979-01-01
It is shown that a Liapunov criterion exists for the stability of nonequilibrium steady states. This criterion is based upon the fluctuation-dissipation relation, as was first pointed out by Keizer. At steady states, the Liapunov function is constructed from the covariance matrix for the thermodynamic variables. Unlike the situation around equilibrium, at steady states the covariance matrix and the “excess entropy” matrix are not equivalent. The excess entropy, which serves as the Liapunov function around equilibrium, does not work in this capacity at steady states. Keizer's Liapunov function must be viewed as the first correct candidate for a proper Liapunov function for steady states. PMID:16592649
Steady-state CO/sub 2/ laser model
Scott, M.W.; Myers, G.D.
1984-09-01
A steady-state CO/sub 2/ lase model is reported which can be used to predict and evaluate the performance of cw slow-flow and no-flow CO/sub 2/ lasers. Traditional CO/sub 2/ laser models require the solution of several simultaneous differential equations and can be used to model pulsed and fast-flow lasers in addition to cw and slow-flow devices. The model reported here is computationally simpler, requiring only a routine to solve one equation in one unknown, but is only useful for lasers which operate in the steady state.
Non-equilibrium steady state in the hydro regime
NASA Astrophysics Data System (ADS)
Pourhasan, Razieh
2016-02-01
We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P=P({E}) . Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.
Hutchinson, C.B.
1984-01-01
This report describes a quasi-three-dimensional finite-difference model for simulation of steady-state ground-water flow in the Floridan aquifer over a 932-square-mile area that contains 10 municipal well fields. The over-lying surficial aquifer contains a water table and is coupled to the Floridan aquifer by leakage term that represents flow through a confining layer separating the two aquifers. Under the steady-state condition, all storage terms are set to zero. Use of the head-controlled flux condition allows simulated head and flow changes to occur in the Floridan aquifer at the model boundaries. Procedures used to calibrate the model, test its sensitivity to input-parameter errors, and validate its accuracy for predictive purposes are described. Also included are attachments that describe setting up and running the model. Example model-interrogation runs show anticipated drawdowns under high, average, and low recharge conditions with 10 well fields pumping simultaneously at the maximum annual permitted rates totaling 186.9 million gallons per day. (USGS)
Hutchinson, C.B.; Johnson, Dale M.; Gerhart, James M.
1981-01-01
A two-dimensional finite-difference model was developed for simulation of steady-state ground-water flow in the Floridan aquifer throughout a 932-square-mile area, which contains nine municipal well fields. The overlying surficial aquifer contains a constant-head water table and is coupled to the Floridan aquifer by a leakage term that represents flow through a confining layer separating the two aquifers. Under the steady-state condition, all storage terms are set to zero. Utilization of the head-controlled flux condition allows head and flow to vary at the model-grid boundaries. Procedures are described to calibrate the model, test its sensitivity to input-parameter errors, and verify its accuracy for predictive purposes. Also included are attachments that describe setting up and running the model. An example model-interrogation run shows anticipated drawdowns that should result from pumping at the newly constructed Cross Bar Ranch and Morris Bridge well fields. (USGS)
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-08-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-03-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
High power steady state MPD thrusters
NASA Astrophysics Data System (ADS)
Auweter-Kurtz, Monika; Habiger, Harald; Kurtz, Helmut; Schrade, Herbert; Sleziona, Cristian
1993-04-01
At the Institut fuer Raumfahrtsysteme (IRS) rotation symmetric magnetoplasmadynamic thrusters with self induced magnetic fields are investigated at high current levels in a steady state operation mode. MPD thrusters with different geometrics were compared, and the influence of mass flow rate and power input on the operating conditions of the thrusters explored. By optical and probe measurements, a systematic investigation of the plasma plume has been started. The investigation of the various instabilities of the arc and the plasma flow appearing at high power levels was continued. The computer code development for the geometry optimization of continuous self-field MPD thrusters, running with argon, was modified by considering higher degrees of ionization, which showed better agreement with the experiment.
Venusian hydrology: Steady state reconsidered
NASA Technical Reports Server (NTRS)
Grinspoon, David H.
1992-01-01
In 1987, Grinspoon proposed that the data on hydrogen abundance, isotopic composition, and escape rate were consistent with the hypothesis that water on Venus might be in steady state rather than monotonic decline since the dawn of time. This conclusion was partially based on a derived water lifetime against nonthermal escape of approximately 10(exp 8) yr. De Bergh et al., preferring the earlier Pioneer Venus value of 200 ppm water to the significantly lower value detected by Bezard et al., found H2O lifetimes of greater than 10(exp 9) yr. Donahue and Hodges derived H2O lifetimes of 0.4-5 x 10 (exp 9) yr. Both these analyses used estimates of H escape flux between 0.4 x 10(exp 7) and 1 x 10(exp 7) cm(exp -2)s(exp -1) from Rodriguez et al. Yet in more recent Monte Carlo modeling, Hodges and Tinsley found an escape flux due to charge exchange with hot H(+) of 2.8 x 10(exp 7) cm(exp -2)s(exp -1). McElroy et al. estimated an escape flux of 8 x 10(exp 6) cm(exp -2)s(exp -1) from collisions with hot O produced by dissociative recombination of O2(+). Brace et al. estimated an escape flux of 5 x 10(exp 6) cm(exp -2)s(exp -1) from ion escape from the ionotail of Venus. The combined estimated escape flux from all these processes is approximately 4 x 10(exp 7) cm(exp -2)s(exp -1). The most sophisticated analysis to date of near-IR radiation from Venus' nightside reveals a water mixing ratio of approximately 30 ppm, suggesting a lifetime against escape for water of less than 10(exp 8) yr. Large uncertainties remain in these quantities, yet the data point toward a steady state. Further evaluation of these uncertainties, and new evolutionary modeling incorporating estimates of the outgassing rate from post-Magellan estimates of the volcanic resurfacing rate are presented.
Belcher, Wayne R.; Faunt, Claudia C.; D'Agnese, Frank A.
2002-01-01
The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers an area of about 100,000 square kilometers from latitude 35? to 38?15' North to longitude 115? to 118? West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydrogeologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross sections; (3) borehole information, and (4
Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes
NASA Astrophysics Data System (ADS)
Sokhan, Vladimir P.; Nicholson, David; Quirke, Nicholas
2002-11-01
Steady-state Poiseuille flow of a simple fluid in carbon nanopores under a gravitylike force is simulated using a realistic empirical many-body potential model for carbon. Building on our previous study of slit carbon nanopores we show that fluid flow in a nanotube is also characterized by a large slip length. By analyzing temporal profiles of the velocity components of particles colliding with the wall we obtain values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall and, for the first time, propose slip boundary conditions for smooth continuum surfaces such that they are equivalent in adsorption, diffusion, and fluid flow properties to fully dynamic atomistic models.
Fluid flow and chemical reaction kinetics in metamorphic systems
Lasaga, A.C.; Rye, D.M. )
1993-05-01
The treatment and effects of chemical reaction kinetics during metamorphism are developed along with the incorporation of fluid flow, diffusion, and thermal evolution. The interplay of fluid flow and surface reaction rates, the distinction between steady state and equilibrium, and the possible overstepping of metamorphic reactions are discussed using a simple analytic model. This model serves as an introduction to the second part of the paper, which develops a reaction model that solves the coupled temperature-fluid flow-chemical composition differential equations relevant to metamorphic processes. Consideration of stable isotopic evidence requires that such a kinetic model be considered for the chemical evolution of a metamorphic aureole. A general numerical scheme is discussed to handle the solution of the model. The results of this kinetic model allow us to reach several important conclusions regarding the factors controlling the chemical evolution of mineral assemblages during a metamorphic event. 41 refs., 19 figs., 5 tabs.
ERIC Educational Resources Information Center
Blanck, Harvey F.
2012-01-01
Naturally occurring gravity currents include events such as air flowing through an open front door, a volcanic eruption's pyroclastic flow down a mountainside, and the spread of the Bhopal disaster's methyl isocyanate gas. Gravity currents typically have a small height-to-distance ratio. Plastic models were designed and constructed with a…
Steady State Tokamak Equilibria without Current Drive
Shaing, K.C.; Aydemir, A.Y.; Lin-Liu, Y.R.; Miller, R.L.
1997-11-01
Steady state tokamak equilibria without current drive are found. This is made possible by including the potato bootstrap current close to the magnetic axis. Tokamaks with this class of equilibria do not need seed current or current drive, and are intrinsically steady state. {copyright} {ital 1997} {ital The American Physical Society}
Weiss, Emanuel
1982-01-01
A computer program has been developed as part of the U.S. Geological Survey's national program of Regional Aquifer System Analysis (RASA) that generates input to ground-water flow models to enable them to simulate variable-density ground-water flow. Information required for the program's operation is: aquifer elevation, thickness, and ground-water density. Included in the report is a computer program for calculating ground-water density from aquifer depth, temperature, and dissolved solids concentration. The 60-page report describes the theoretical development and documents two FORTRAN programs used to generate the necessary flow-model input. An example for a symmetrical basin is fully worked out.
Steady state thermal radiation analysis between the TOPAZ-II radiator and a heat exchanger
Maveety, J.G.; Wold, S.K.
1995-12-31
In this study the authors investigate the feasibility and efficiency of coupling a single-pass heat exchanger to the TOPAZ-II space power system operating at steady state conditions. A first and second law analysis was performed in order to determine the optimal operating conditions which minimize the pumping power and maximize the flow exergy of the working fluid. The results of this study show that (1) the space power system is basically unaffected by the addition of this heat exchanger and (2) as much as 60% of the availability is destroyed by irreversibilities while operating at optimal flow conditions.
Bobarykina, T A; Malov, A N; Orishich, A M; Chirkashenko, V F; Yakovlev, V I
2014-09-30
We report a study of the wave structure formed by an optical discharge plasma upon the absorption of repetitively pulsed CO{sub 2} laser radiation in a supersonic (M = 1.36) air flow. Experimental data are presented on the configuration of the head shock wave and the geometry and characteristic dimensions of breakdown regions behind a laser plasma pulsating in the flow at a frequency of up to 150 kHz. The data are compared to calculation in a point explosion model with allowance for counterpressure, which makes it possible to identify the relationship between laser radiation and supersonic flow parameters that ensures quasisteady- state energy delivery and is necessary for extending the possibilities of controlling the structure of supersonic flows. (interaction of laser radiation with matter)
Dionne, B.; Tzanos, C. P.
2011-05-23
To support the safety analyses required for the conversion of the Belgian Reactor 2 (BR2) from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, the simulation of a number of loss-of-flow tests, with or without loss of pressure, has been undertaken. These tests were performed at BR2 in 1963 and used instrumented fuel assemblies (FAs) with thermocouples (TC) imbedded in the cladding as well as probes to measure the FAs power on the basis of their coolant temperature rise. The availability of experimental data for these tests offers an opportunity to better establish the credibility of the RELAP5-3D model and methodology used in the conversion analysis. In order to support the HEU to LEU conversion safety analyses of the BR2 reactor, RELAP simulations of a number of loss-of-flow/loss-of-pressure tests have been undertaken. Preliminary analyses showed that the conservative power distributions used historically in the BR2 RELAP model resulted in a significant overestimation of the peak cladding temperature during the transient. Therefore, it was concluded that better estimates of the steady-state and decay power distributions were needed to accurately predict the cladding temperatures measured during the tests and establish the credibility of the RELAP model and methodology. The new approach ('best estimate' methodology) uses the MCNP5, ORIGEN-2 and BERYL codes to obtain steady-state and decay power distributions for the BR2 core during the tests A/400/1, C/600/3 and F/400/1. This methodology can be easily extended to simulate any BR2 core configuration. Comparisons with measured peak cladding temperatures showed a much better agreement when power distributions obtained with the new methodology are used.
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
NASA Technical Reports Server (NTRS)
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd
1998-01-01
This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.
CONTROL OF CRYPTOSPORIDIUM OOCYSTS BY STEADY-STATE CONVENTIONAL TREATMENT
Pilot-scale experiments have been performed to assess the ability of conventional treatment to control Cryptosporidium oocysts under steady-state conditions. The work was performed with a pilot plant that was designed to minimize flow rates and, as a result, the number of oocyst...
NASA Astrophysics Data System (ADS)
Yousfi, Ammar; Mechergui, Mohammed
2016-04-01
The seepage face is an important feature of the drainage process when recharge occurs to a permeable region with lateral outlets. Examples of the formation of a seepage face above the downstream water level include agricultural land drained by ditches. Flow problem to these drains has been investigated extensively by many researchers (e.g. Rubin, 1968; Hornberger et al. 1969; Verma and Brutsaert, 1970; Gureghian and Youngs, 1975; Vauclin et al., 1975; Skaggs and Tang, 1976; Youngs, 1990; Gureghian, 1981; Dere, 2000; Rushton and Youngs, 2010; Youngs, 2012; Castro-Orgaz et al., 2012) and may be tackled either using variably saturated flow models, or the complete 2-D solution of Laplace equation, or using the Dupuit-Forchheimer approximation; the most widely accepted methods to obtain analytical solutions for unconfined drainage problems. However, the investigation reported by Clement et al. (1996) suggest that accounting for the seepage face alone, as in the fully saturated flow model, does not improve the discharge estimate because of disregarding flow the unsaturated zone flow contribution. This assumption can induce errors in the location of the water table surface and results in an underestimation of the seepage face and the net discharge (e.g. Skaggs and Tang, 1976; Vauclin et al., 1979; Clement et al., 1996). The importance of the flow in the unsaturated zone has been highlighted by many authors on the basis of laboratory experiments and/or numerical experimentations (e.g. Rubin, 1968; Verma and Brutsaert, 1970; Todsen, 1973; Vauclin et al., 1979; Ahmad et al., 1993; Anguela, 2004; Luthin and Day, 1955; Shamsai and Narasimhan, 1991; Wise et al., 1994; Clement et al., 1996; Boufadel et al., 1999; Romano et al., 1999; Kao et al., 2001; Kao, 2002). These studies demonstrate the failure of fully saturated flow models and suggested that the error made when using these models not only depends on soil properties but also on the infiltration rate as reported by Kao et
NASA Technical Reports Server (NTRS)
Gupta, R. N.; Moss, J. N.; Simmonds, A. L.
1982-01-01
Two flow-field codes employing the time- and space-marching numerical techniques were evaluated. Both methods were used to analyze the flow field around a massively blown Jupiter entry probe under perfect-gas conditions. In order to obtain a direct point-by-point comparison, the computations were made by using identical grids and turbulence models. For the same degree of accuracy, the space-marching scheme takes much less time as compared to the time-marching method and would appear to provide accurate results for the problems with nonequilibrium chemistry, free from the effect of local differences in time on the final solution which is inherent in time-marching methods. With the time-marching method, however, the solutions are obtainable for the realistic entry probe shapes with massive or uniform surface blowing rates; whereas, with the space-marching technique, it is difficult to obtain converged solutions for such flow conditions. The choice of the numerical method is, therefore, problem dependent. Both methods give equally good results for the cases where results are compared with experimental data.
Hydromechanical Modeling of Fluid Flow in the Lower Crust
NASA Astrophysics Data System (ADS)
Connolly, J.
2011-12-01
The lower crust lies within an ambiguous rheological regime between the brittle upper crust and ductile sub-lithospheric mantle. This ambiguity has allowed two schools of thought to develop concerning the nature of fluid flow in the lower crust. The classical school holds that lower crustal rocks are inviscid and that any fluid generated by metamorphic devolatilization is squeezed out of rocks as rapidly as it is produced. According to this school, permeability is a dynamic property and fluid flow is upward. In contrast, the modern school uses concepts from upper crustal hydrology that presume implicitly, if not explicitly, that rocks are rigid or, at most, brittle. For the modern school, the details of crustal permeability determine fluid flow and as these details are poorly known almost anything is possible. Reality, to the extent that it is reflected by inference from field studies, offers some support to both schools. In particular, evidence of significant lateral and channelized fluid flow are consistent with flow in rigid media, while evidence for short (104 - 105 y) grain-scale fluid-rock interaction during much longer metamorphic events, suggests that reaction-generated grain-scale permeability is sealed rapidly by compaction; a phenomenon that is also essential to prevent extensive retrograde metamorphism. These observations provide a compelling argument for recognizing in conceptual models of lower crustal fluid flow that rocks are neither inviscid nor rigid, but compact by viscous mechanisms on a finite time-scale. This presentation will review the principle consequences of, and obstacles to, incorporating compaction in such models. The role of viscous compaction in the lower crust is extraordinarily uncertain, but ignoring this uncertainty in models of lower crustal fluid flow does not make the models any more certain. Models inevitably invoke an initial steady state hydraulic regime. This initial steady state is critical to model outcomes because it
NASA Astrophysics Data System (ADS)
Singh, S.; Lowell, R. P.; Lewis, K. C.
2012-12-01
The Main Endeavour Field (MEF) on the Juan de Fuca Ridge consists of a large number of chimney structures occupying an area approximately 400 m x 150 m along the ridge axis. For nearly a decade, the MEF exhibited quasi-steady north-south trending spatial gradients of both temperature and salinity. We have constructed 2-D across-axis numerical models of two-phase flow using the code FISHES to investigate possible causes for this variation. We considered the effect of bottom boundary temperature and both a homogeneous permeability structure and a geometry incorporating a more-permeable layer 2A. From these model results we argue that such a trend is more likely to be the result of heterogeneous permeability structure of the shallow oceanic crust than a result of bottom boundary temperature variations. After a magmatic event in 1999, this trend was disrupted; and thermal data using the Autonomous Benthic Explorer (ABE) indicates that there has been a significant decline in the heat output from a value of approximately 450 MW in 2000 to approximately 300 MW in 2004. In the southern part of the vent field, vent salinities have also increased from values well below those of seawater to values close to seawater. We therefore extend our investigation to include the effect of a temporally-decaying basal heat flow, which may result from cooling, crystallizing magma chamber, on the system. Our aim is to determine whether such a phenomenon could cause the observed rapid decline of heat flow and changes in vent salinity at the MEF. We find that the thermal inertia in the system is such that changes in basal heat flow would be difficult to detect in the given time frame, if magma replenishment ceased following the 1999 magmatic event. The time delay between changes in bottom conditions and the observed decay in observed heat output suggests that the 1999 event represented a small replenishment event and that the AMC may have begun cooling some time before that. Moreover, because
Chen, B.C.J.; Sha, W.T.
1981-01-01
A seven-pin rod bundle under flow rundown conditions was simulated by using the computer code BODYFIT-1FE (BOunDarY-FITted Coordinate System - 1 phase, Fully-Elliptic). In this code, the complicated rod bundle configuration is first transformed into rectangular geometry with uniform meshes. The transformed governing equations for all the thermal-hydraulic variables are then solved. The results of the simulation are presented here. All the predicted values agree favorably with the measured data. 7 refs., 20 figs.
Morphodynamics: Rivers beyond steady state
NASA Astrophysics Data System (ADS)
Church, M.; Ferguson, R. I.
2015-04-01
The morphology of an alluvial river channel affects the movement of water and sediment along it, but in the longer run is shaped by those processes. This interplay has mostly been investigated empirically within the paradigm of Newtonian mechanics. In rivers, this has created an emphasis on equilibrium configurations with simple morphology and uniform steady flow. But transient adjustment, whether between equilibrium states or indefinitely, is to be expected in a world in which hydrology, sediment supply, and base level are not fixed. More fundamentally, water flows and all the phenomena that accompany them are inherently unsteady, and flows in natural channels are characteristically nonuniform. The morphodynamics of alluvial river channels is the striking consequence. In this paper, we develop the essential connection between the episodic nature of bed material transport and the production of river morphology, emphasizing the fundamental problems of sediment transport, the role of bar evolution in determining channel form, the role of riparian vegetation, and the wide range of time scales for change. As the key integrative exercise, we emphasize the importance of physics-based modeling of morphodynamics. We note consequences that can be of benefit to society if properly understood. These include the possibility to better be able to model how varying flows drive morphodynamic change, to understand the influence of the sediments themselves on morphodynamics, and to recognize the inherent necessity for rivers that transport bed material to deform laterally. We acknowledge pioneering contributions in WRR and elsewhere that have introduced some of these themes.
RamaRao, B.S.; Reeves, M. )
1990-10-01
Calibration of a numerical model of the regional ground-water flow in the Culebra dolomite at the Waste Isolation Pilot Plant in southeastern New Mexico, has been performed by an interative parameter-fitting procedure. Parameterization has been secured by choosing to assign the transmissivity values at a limited number of selected locations, designated as pilot points. The transmissivity distribution in the model is derived by kriging the combined pool of measured and pilot-plant transmissivities. Iterating on the twin steps of sequentially adding additional pilot point(s) and kriging leads to the model of required accuracy, as judged by a weighted least-square-error objective function. At the end of calibration, it must be ensured that the correlation structure of the measured transmissivities is broadly preserved by the pilot-plant transmissivities. Adjoint-sensitivity analysis of the model has been coupled with kriging to provide objectively the optimal location of the pilot points during an iteration. The pilot-point transmissivities have been adjusted by modeler's judgement incorporating information, where available, on local geologic conditions and large-scale hydraulic interference tests, in order to minimize the objective function. 43 refs., 5 figs., 5 tabs.
Kuznetsov, Nikita A.; Vorobjev, Yuri N.; Krasnoperov, Lev N.; Fedorova, Olga S.
2012-01-01
Formamidopyrimidine-DNA glycosylase, Fpg protein from Escherichia coli, initiates base excision repair in DNA by removing a wide variety of oxidized lesions. In this study, we perform thermodynamic analysis of the multi-stage interaction of Fpg with specific DNA-substrates containing 7,8-dihydro-8-oxoguanosine (oxoG), or tetrahydrofuran (THF, an uncleavable abasic site analog) and non-specific (G) DNA-ligand based on stopped-flow kinetic data. Pyrrolocytosine, highly fluorescent analog of the natural nucleobase cytosine, is used to record multi-stage DNA lesion recognition and repair kinetics over a temperature range (10–30°C). The kinetic data were used to obtain the standard Gibbs energy, enthalpy and entropy of the specific stages using van’t Hoff approach. The data suggest that not only enthalpy-driven exothermic oxoG recognition, but also the desolvation-accompanied entropy-driven enzyme-substrate complex adjustment into the catalytically active state play equally important roles in the overall process. PMID:22584623
McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.
1993-11-30
A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.
McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel
1993-01-01
A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.
Steady-State Solution of a Flexible Wing
NASA Technical Reports Server (NTRS)
Karkehabadi, Reza; Chandra, Suresh; Krishnamurthy, Ramesh
1997-01-01
A fluid-structure interaction code, ENSAERO, has been used to compute the aerodynamic loads on a swept-tapered wing. The code has the capability of using Euler or Navier-Stokes equations. Both options have been used and compared in the present paper. In the calculation of the steady-state solution, we are interested in knowing how the flexibility of the wing influences the lift coefficients. If the results of a flexible wing are not affected by the flexibility of the wing significantly, one could consider the wing to be rigid and reduce the problem from fluid-structure interaction to a fluid problem.
NASA Lewis steady-state heat pipe code users manual
NASA Technical Reports Server (NTRS)
Tower, Leonard K.; Baker, Karl W.; Marks, Timothy S.
1992-01-01
The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.
NASA Lewis steady-state heat pipe code users manual
Tower, L.K.; Baker, K.W.; Marks, T.S.
1992-06-01
The NASA Lewis heat pipe code has been developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or, with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which the monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.
NASA Astrophysics Data System (ADS)
Morales-Casique, E.; Briseño-Ruiz, J. V.; Hernández, A. F.; Herrera, G. S.; Escolero-Fuentes, O.
2014-12-01
We present a comparison of three stochastic approaches for estimating log hydraulic conductivity (Y) and predicting steady-state groundwater flow. Two of the approaches are based on the data assimilation technique known as ensemble Kalman filter (EnKF) and differ in the way prior statistical moment estimates (PSME) (required to build the Kalman gain matrix) are obtained. In the first approach, the Monte Carlo method is employed to compute PSME of the variables and parameters; we denote this approach by EnKFMC. In the second approach PSME are computed through the direct solution of approximate nonlocal (integrodifferential) equations that govern the spatial conditional ensemble means (statistical expectations) and covariances of hydraulic head (h) and fluxes; we denote this approach by EnKFME. The third approach consists of geostatistical stochastic inversion of the same nonlocal moment equations; we denote this approach by IME. In addition to testing the EnKFMC and EnKFME methods in the traditional manner that estimate Y over the entire grid, we propose novel corresponding algorithms that estimate Y at a few selected locations and then interpolate over all grid elements via kriging as done in the IME method. We tested these methods to estimate Y and h in steady-state groundwater flow in a synthetic two-dimensional domain with a well pumping at a constant rate, located at the center of the domain. In addition, to evaluate the performance of the estimation methods, we generated four unconditional different realizations that served as "true" fields. The results of our numerical experiments indicate that the three methods were effective in estimating h, reaching at least 80% of predictive coverage, although both EnKF were superior to the IME method. With respect to estimating Y, the three methods reached similar accuracy in terms of the mean absolute value error. Coupling the EnKF methods with kriging to estimate Y reduces to one fourth the CPU time required for data
Kodaira, Hiroshi; Kusuhara, Hiroyuki; Fuse, Eiichi; Ushiki, Junko; Sugiyama, Yuichi
2014-06-01
A pharmacokinetic model was constructed to explain the difference in brain- and cerebrospinal fluid (CSF)-to-plasma and brain-to-CSF unbound drug concentration ratios (Kp,uu,brain, Kp,uu,CSF, and Kp,uu,CSF/brain, respectively) of drugs under steady-state conditions in rats. The passive permeability across the blood-brain barrier (BBB), PS1, was predicted by two methods using log(D/molecular weight(0.5)) for PS1(1) or the partition coefficient in octanol/water at pH 7.4 (LogD), topologic van der Waals polar surface area, and van der Waals surface area of the basic atoms for PS1(2). The coefficients of each parameter were determined using previously reported in situ rat BBB permeability. Active transport of drugs by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) measured in P-gp- and Bcrp-overexpressing cells was extrapolated to in vivo by introducing scaling factors. Brain- and CSF-to-plasma unbound concentration ratios (Kp,uu,brain and Kp,uu,CSF, respectively) of 19 compounds, including P-gp and Bcrp substrates (daidzein, dantrolene, flavopiridol, genistein, loperamide, quinidine, and verapamil), were simultaneously fitted to the equations in a three-compartment model comprising blood, brain, and CSF compartments. The calculated Kp,uu,brain and Kp,uu,CSF of 17 compounds were within a factor of three of experimental values. Kp,uu,CSF values of genistein and loperamide were outliers of the prediction, and Kp,uu,brain of dantrolene also became an outlier when PS1(2) was used. Kp,uu,CSF/brain of the 19 compounds was within a factor of three of experimental values. In conclusion, the Kp,uu,CSF/brain of drugs, including P-gp and Bcrp substrates, could be successfully explained by a kinetic model using scaling factors combined with in vitro evaluation of P-gp and Bcrp activities. PMID:24644297
Experimental study of multiple steady states in homogeneous azeotropic distillation
Guettinger, T.E.; Dorn, C.; Morari, M.
1997-03-01
Bekiaris et al. (1993) explained the existence of multiple steady states in homogeneous ternary azeotropic distillation, on the basis of the analysis of the case of infinite reflux and infinite column length (infinite number of trays). They showed that the predictions of multiple steady states for such infinite columns have relevant implications for columns of finite length operated at finite reflux. In this article, experiments are described for the ternary homogeneous system methanol-methyl butyrate-toluene which demonstrate the existence of multiple steady states (output multiplicities) caused by the vapor-liquid-equilibrium. The experiments on an industrial pilot column show two stable steady states for the same feed flow rate and composition and the same set of operating parameters. The measurements are in excellent agreement with the predictions obtained for infinite columns using the {infinity}/{infinity} analysis tool as well as with stage-by-stage simulation results. These experiments represent the first published study reporting evidence for the predictions and simulations by various researchers showing that type of output multiplicities in distillation.
Acoustic concentration of particles in fluid flow
Ward, Michael D.; Kaduchak, Gregory
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
CA_OPPUSST - Cantera OPUS Steady State
Energy Science and Technology Software Center (ESTSC)
2005-03-01
The Cantera Opus Steady State (ca-opusst) applications solves steady reacting flow problems in opposed-flow geometries. It is a 1-0 application that represents axisymmetnc 3-0 physical systems that can be reduced via a similarity transformation to a 1-0 mathematical representation. The code contain solutions of the general dynamic equations for the particle distribution functions using a sectional model to describe the particle distribution function. Operators for particle nucleation, coagulation, condensation (i.e., growth/etching via reactions with themore » gas ambient), internal particle reactions. particle transport due to convection and due to molecular transport, are included in the particle general dynamics equation. Heat transport due to radiation exchange of the environment with particles in local thermal equilibrium to the surrounding gas will be included in the enthalpy conservation equation that is solved for the coupled gas! particle system in an upcoming version of the code due in June 2005. The codes use Cantera , a C++ Cal Tech code, for determination of gas phase species transport, reaction, and thermodynamics physical properties and source terms. The Codes use the Cantera Aerosol Dynamics Simulator (CADS) package, a general library for aerosol modeling, to calculate properties and source terms for the aerosol general dynamics equation, including particle formation from gas phase reactions, particle surface chemistry (growth and oxidation), bulk particle chemistry, particle transport by Brownian diffusion, thermophoresis, and diffusiophoresis, and thermal radiative transport involving particles. Also included are post-processing programs, cajost and cajrof, to extract ascii data from binary output files to produce plots.« less
Parallel Plate Flow of a Third-Grade Fluid and a Newtonian Fluid With Variable Viscosity
NASA Astrophysics Data System (ADS)
Yıldız, Volkan; Pakdemirli, Mehmet; Aksoy, Yiğit
2016-07-01
Steady-state parallel plate flow of a third-grade fluid and a Newtonian fluid with temperature-dependent viscosity is considered. Approximate analytical solutions are constructed using the newly developed perturbation-iteration algorithms. Two different perturbation-iteration algorithms are used. The velocity and temperature profiles obtained by the iteration algorithms are contrasted with the numerical solutions as well as with the regular perturbation solutions. It is found that the perturbation-iteration solutions converge better to the numerical solutions than the regular perturbation solutions, in particular when the validity criteria of the regular perturbation solution are not satisfied. The new analytical approach produces promising results in solving complex fluid problems.
Fundamental experiments of steady-state high heat fluxes using spray cooling
NASA Astrophysics Data System (ADS)
Gonzalez, Jorge E.; Ortiz, Lester
1996-11-01
Spray cooling has been considered as one of the most efficient alternatives for the removal of high heat fluxes and is currently used in several modern industrial and technological applications to dissipate high amounts of heat from their components such as in electronics, lasers, metallurgical, and nuclear. In many of these applications steady-state high heat fluxes (SSHHF) removal is required. In this research, experiments were conducted to determine parameters that affect the steady-state behavior of high heat fluxes when using spray cooling. The parameters taken in consideration included the mass flow rate, the heated surface roughness, the liquid subcooling temperature, and the spray angle. Water was used as the working fluid in the experiments. An experimental apparatus was built to carry- out the experiments, consisting of a copper heater with a disc shaped surface, an atomizer system that used commercial nozzles, and a data acquisition systems to accurately measure temperatures, heat fluxes, flow rates, and room conditions. The commercial nozzles generated mean droplet diameters ranging from 85 to 100 micrometers and flow rates between 1.48 and 1.9L/hr. Two surface conditions were sued; one polished with 0.25 micrometers liquid solution and the other polished with 600 grit silicon carbide grinding paper. The SSHHF was determined by observing the transient response of the surface temperature and the surface heat flux. Steady- state heat fluxes in the order of 100W/cm2 were obtained in most cases. Results indicated that higher SSHHF can be obtained with increasing mass flow rates and it was easier to achieve them with smooth surfaces. Results also showed that subcooling may not be significant when high mass flow rates. Curves indicating maximum SSHHF were generated as function of the parameters investigated.
Geophysical Fluid Flow Cell Simulation
NASA Technical Reports Server (NTRS)
1998-01-01
Computer simulation of atmospheric flow corresponds well to imges taken during the second Geophysical Fluid Flow Cell (BFFC) mission. The top shows a view from the pole, while the bottom shows a view from the equator. Red corresponds to hot fluid rising while blue shows cold fluid falling. This simulation was developed by Anil Deane of the University of Maryland, College Park and Paul Fischer of Argorne National Laboratory. Credit: NASA/Goddard Space Flight Center
Steady state response of unsymmetrically laminated plates
Hosokawa, Kenji; Kawashima, Katsuya; Sakata, Toshiyuki
1995-11-01
A numerical approach for analyzing the forced vibration problem of a symmetrically laminated FRP (fiber reinforced plastic) composite plate was proposed by the authors. In the present paper, this approach is modified for application to an unsymmetrically laminated FRP composite plate. Numerical calculations are carried out for the clamped antisymmetrically laminated rectangular and elliptical plates which are a kind of unsymmetrically laminated plate. Then,, the effects of the lamina material and the fiber orientation angle on the steady state response are discussed. Furthermore, it is investigated that what structural damping factor is most influenced on the steady state response of an antisymmetrically laminated plate.
Programming fluid flow with microstructures
NASA Astrophysics Data System (ADS)
Amini, Hamed; Masaeli, Mahdokht; di Carlo, Dino
2011-11-01
Flow control and fluid interface manipulation in microfluidic platforms are of great importance in a variety of applications. Current approaches to manipulate fluids generally rely on complex designs, difficult-to-fabricate 3D platforms or use of active methods. Here we show that in the presence of simple cylindrical obstacles (i.e. pillars) in a microchannel, at moderate to high flow rates, streamlines tend to turn and stretch in a manner that, unlike intuition for Stokes flow, does not precisely reverse after passing the pillar. The asymmetric flow behavior up- and down-stream of the pillar due to fluid inertia manifests itself as a total deformation of the topology of streamlines that effectively creates a net secondary flow which resembles the recirculating Dean flow in curving channels. Confocal images were taken to investigate the secondary flow for a variety of microstructure settings. We also developed a numerical technique to map the fluid motion in the channel which is utilized to characterize the secondary flow as well as to engineer the fluid patterns within the channel. This passive method creates the possibility of exceptional control of the 3D structure of the fluid within a microfluidic platform which can significantly advance applications requiring fluid interface control (e.g. optofluidics), ultrafast mixing and solution control around cells.
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.; Griffiths, D. F.
1991-01-01
Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.; Griffiths, D. F.
1990-01-01
Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.
Relaminarization of fluid flows
NASA Technical Reports Server (NTRS)
Narasimha, R.; Sreenivasan, K. R.
1979-01-01
The mechanisms of the relaminarization of turbulent flows are investigated with a view to establishing any general principles that might govern them. Three basic archetypes of reverting flows are considered: the dissipative type, the absorptive type, and the Richardson type exemplified by a turbulent boundary layer subjected to severe acceleration. A number of other different reverting flows are then considered in the light of the analysis of these archetypes, including radial Poiseuille flow, convex boundary layers, flows reverting by rotation, injection, and suction, as well as heated horizontal and vertical gas flows. Magnetohydrodynamic duct flows are also examined. Applications of flow reversion for turbulence control are discussed.
Fluid Flow Phenomena during Welding
Zhang, Wei
2011-01-01
MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.
The Politics of the Steady State
ERIC Educational Resources Information Center
Taylor, Charles
1978-01-01
A steady state society has limits pertaining to population size, non-renewable resources, and production which emits heat or substances into soil, water, or the atmosphere. Respecting these limits means renouncing exponential quantitative growth and accepting a universally available consumption standard. (SW)
Steady-state inductive spheromak operation
Janos, A.C.; Jardin, S.C.; Yamada, M.
1985-02-20
The inductively formed spheromak configuration (S-1) can be maintained in a highly stable and controlled fashion. The method described eliminates the restriction to pulsed spheromak plasmas or the use of electrodes for steady-state operation, and, therefore, is a reactor-relevant formation and sustainment method.
Steady-state spheromak reactor studies. Revision
Krakowski, R.A.; Hagenson, R.L.
1985-01-01
After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design point is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported.
Thermodynamics of Stability of Nonequilibrium Steady States.
ERIC Educational Resources Information Center
Rastogi, R. P.; Shabd, Ram
1983-01-01
Presented is a concise and critical account of developments in nonequilibrium thermodynamics. The criterion for stability of nonequilibrium steady states is critically examined for consecutive and monomolecular triangular reactions, autocatalytic reactions, auto-inhibited reactions, and the Lotka-Volterra model. (JN)
A p-version finite element method for steady incompressible fluid flow and convective heat transfer
NASA Technical Reports Server (NTRS)
Winterscheidt, Daniel L.
1993-01-01
A new p-version finite element formulation for steady, incompressible fluid flow and convective heat transfer problems is presented. The steady-state residual equations are obtained by considering a limiting case of the least-squares formulation for the transient problem. The method circumvents the Babuska-Brezzi condition, permitting the use of equal-order interpolation for velocity and pressure, without requiring the use of arbitrary parameters. Numerical results are presented to demonstrate the accuracy and generality of the method.
Flow in left atrium using MR fluid motion estimation
NASA Astrophysics Data System (ADS)
Wong, Kelvin K. L.; Kelso, Richard M.; Worthley, Steve M.; Sanders, Prash; Mazumdar, Jagannath; Abbott, Derek
2007-12-01
A recent development based on optical flow applied onto Fast Imaging in Steady State Free Precession (TrueFISP) magnetic resonance imaging is able to deliver good estimation of the flow profile in the human heart chamber. The examination of cardiac flow based on tracking of MR signals emitted by moving blood is able to give medical doctors insight into the flow patterns within the human heart using standard MRI procedure without specifically subjecting the patient to longer scan times using more dedicated scan protocols such as phase contrast MRI. Although MR fluid motion estimation has its limitations in terms of accurate flow mapping, the use of a comparatively quick scan procedure and computational post-processing gives satisfactory flow quantification and can assist in management of cardiac patients. In this study, we present flow in the left atria of five human subjects using MR fluid motion tracking. The measured flow shows that vortices exist within the atrium of heart. Although the scan is two-dimensional, we have produced multiple slices of flow maps in a spatial direction to show that the vortex exist in a three-dimensional space.
Hydrodynamics of stratified epithelium: Steady state and linearized dynamics
NASA Astrophysics Data System (ADS)
Yeh, Wei-Ting; Chen, Hsuan-Yi
2016-05-01
A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.
Direct pore-level modeling of incompressible fluid flow in porous media
Ovaysi, Saeed; Piri, Mohammad
2010-09-20
We present a dynamic particle-based model for direct pore-level modeling of incompressible viscous fluid flow in disordered porous media. The model is capable of simulating flow directly in three-dimensional high-resolution micro-CT images of rock samples. It is based on moving particle semi-implicit (MPS) method. We modify this technique in order to improve its stability for flow in porous media problems. Using the micro-CT image of a rock sample, the entire medium, i.e., solid and fluid, is discretized into particles. The incompressible Navier-Stokes equations are then solved for each particle using the MPS summations. The model handles highly irregular fluid-solid boundaries effectively. An algorithm to split and merge fluid particles is also introduced. To handle the computational load, we present a parallel version of the model that runs on distributed memory computer clusters. The accuracy of the model is validated against the analytical, numerical, and experimental data available in the literature. The validated model is then used to simulate both unsteady- and steady-state flow of an incompressible fluid directly in a representative elementary volume (REV) size micro-CT image of a naturally-occurring sandstone with 3.398 {mu}m resolution. We analyze the quality and consistency of the predicted flow behavior and calculate absolute permeability using the steady-state flow rate.
Insertable fluid flow passage bridgepiece and method
Jones, Daniel O.
2000-01-01
A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.
Bubble Formation in Yield Stress Fluids Using Flow-Focusing and T -Junction Devices
NASA Astrophysics Data System (ADS)
Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E.; Lorenceau, Elise
2015-05-01
We study the production of bubbles inside yield stress fluids (YSFs) in axisymmetric T -junction and flow-focusing devices. Taking advantage of yield stress over capillary stress, we exhibit a robust break-up mechanism reminiscent of the geometrical operating regime in 2D flow-focusing devices for Newtonian fluids. We report that when the gas is pressure driven, the dynamics is unsteady due to hydrodynamic feedback and YSF deposition on the walls of the channels. However, the present study also identifies pathways for potential steady-state production of bubbly YSFs at large scale.
Steady state compact toroidal plasma production
Turner, William C.
1986-01-01
Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.
On Typicality in Nonequilibrium Steady States
NASA Astrophysics Data System (ADS)
Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto
2016-06-01
From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because "almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, "almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.
On Typicality in Nonequilibrium Steady States
NASA Astrophysics Data System (ADS)
Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto
2016-08-01
From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because " almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, " almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.
Theory of Steady-State Superradiance
NASA Astrophysics Data System (ADS)
Xu, Minghui
In this thesis, I describe the theoretical development of the superradiant laser, or laser in the extreme bad-cavity regime. In this regime, the cavity decay rate is much greater than the atomic dynamics. The atoms emit photons into the cavity mode superradiantly in steady state. We develop group-theoretic methods that enable us to exactly solve mesoscopic systems with hundreds of atoms. We demonstrate the synchronization of atomic dipoles in steady-state superradiance. With this synchronized system, we propose conditional Ramsey spectroscopy which allows us to observe Ramsey fringes indefinitely, even in the presence of atomic decoherence. Furthermore, we explore manifestations of synchronization in the quantum realm with two superradiant atomic ensembles. We show that two such ensembles exhibit a dynamical phase transition from two disparate oscillators to quantum phase-locked dynamics. Finally, we study the mechanical eect of the light-atom interaction in the steady-state superradiance. We find efficient many-body cooling of atoms. The work described in this thesis lays the theoretical foundation for the superradiant laser and for a potential future of active optical frequency standards.
Rotational fluid flow experiment
NASA Technical Reports Server (NTRS)
1991-01-01
This project which began in 1986 as part of the Worcester Polytechnic Institute (WPI) Advanced Space Design Program focuses on the design and implementation of an electromechanical system for studying vortex behavior in a microgravity environment. Most of the existing equipment was revised and redesigned by this project team, as necessary. Emphasis was placed on documentation and integration of the electrical and mechanical subsystems. Project results include reconfiguration and thorough testing of all hardware subsystems, implementation of an infrared gas entrainment detector, new signal processing circuitry for the ultrasonic fluid circulation device, improved prototype interface circuits, and software for overall control of experiment operation.
Fluid flow effects in evaporation from liquid-vapor meniscus
Khrustalev, D.; Faghri, A.
1996-12-31
A mathematical model of the evaporating liquid-vapor meniscus in a capillary slot has been developed. The model includes two-dimensional steady-state momentum conservation and energy equations for both the vapor and liquid phases, and incorporates the existing simplified one-dimensional model of the evaporating microfilm. The numerical results, obtained for water, demonstrate the importance of accounting for the fluid flow in calculating the effective evaporative heat transfer coefficient and the superheat of the vapor over the liquid-vapor meniscus due to the heat transfer from the heated wall. With higher heat fluxes, a recirculation zone appears in the vapor near the heated wall due to the extensive evaporation in the thin-film region of the liquid-vapor meniscus.
Siple Dome: Is it in Steady State?
NASA Astrophysics Data System (ADS)
Pettit, E. C.; Waddington, E. D.; Nereson, N. A.; Zumberge, M. A.; Hamilton, G. S.
2001-12-01
Changes in the West Antarctic Ice Sheet since the end of the last ice age have implications for how we interpret its present behavior, in terms of both its stability and its record of climate history. Siple Dome, the ridge between Ice Streams C and D, is not presently thinning and is close to being in balance with present environmental conditions. We present three independent measurements of ice thickness change in the divide region of Siple Dome: a GPS surface horizontal strain network, fiber optic vertical strain measurements at depth, and precision GPS measurements of vertical motion of near-surface ice ("coffee-can" method). From the horizontal strain network, we calculate the divergence of the horizontal velocity. This divergence is equal to the gradient of vertical velocity at the surface and, with some assumptions about the distribution of strain rates with depth, we can calculate the vertical velocity at the surface. For steady state, the vertical velocity must be balanced by the local accumulation rate. The fiber optic instruments provide a profile of the relative vertical velocity with depth. We fit a theoretical vertical velocity pattern to these data and extrapolate to find the surface vertical velocity. Our third method (coffee-can) directly measures the vertical motion of a marker 20 meters deep using precision GPS and compares it with the local long-term rate of snow accumulation to calculate the net rate of ice sheet thickness change. All three methods reach the same conclusion: Siple Dome is currently very close to being in steady state. This result has two implications. First, ice dynamics models developed to interpret radar images or ice core data can assume steady state behavior, simplifying the models. Second, our result suggests that the central part of the Ross Embayment may have had a low-elevation profile during the late Holocene, even though other areas of the WAIS may have been thicker.
Intensity fluctuations in steady-state superradiance
Meiser, D.; Holland, M. J.
2010-06-15
Alkaline-earth-metal-like atoms with ultranarrow optical transitions enable superradiance in steady state. The emitted light promises to have an unprecedented stability with a linewidth as narrow as a few millihertz. In order to evaluate the potential usefulness of this light source as an ultrastable oscillator in clock and precision metrology applications, it is crucial to understand the noise properties of this device. In this paper, we present a detailed analysis of the intensity fluctuations by means of Monte Carlo simulations and semiclassical approximations. We find that the light exhibits bunching below threshold, is to a good approximation coherent in the superradiant regime, and is chaotic above the second threshold.
Intense steady state electron beam generator
Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto
1990-01-01
An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.
Intense steady state electron beam generator
Hershcovitch, A.; Kovarik, V.J.; Prelec, K.
1990-07-17
An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.
Steady State Sedimentation in a Liquid Fluidized Bed
NASA Technical Reports Server (NTRS)
Segre, P. N.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The velocity fluctuations and the local particle concentration of a particle suspension exhibiting steady state sedimentation in a fluidized bed are determined as a function of height along the particle column. Both the velocity fluctuations and the particle volume fraction are found to strongly depend on height. We account for the stability of the bed by a simple model evoking a flux balance. Velocity fluctuations driving a downward particle flux are compensated by an upward particle flux stemming from an excess flow velocity due to the concentration gradient of the system.
Fluid flow and mass flux determinations at vent sites on the Cascadia margin accretionary prism
Carson, B.; Strasser, J.C. ); Suess, E. )
1990-06-10
Fluid venting from the toe of the accretionary prism off Oregon was measured in situ during a series of dives with DSRV Alvin in 1987 and 1988. A benthic chamber was place over active vent sites to sequentially collect samples of venting fluids and to make direct measurements of discharge rates. Calibrated flow meter measurements and flow rates determined from dissolved methane transfer indicate that discharge from two vent sites, Alvin 1428 and Alvin 1900, ranges roughly between 100 and 500 l/m{sup 2}d with the most reliable estimates falling in the range of 125-150 l/m{sup 2}d. These rates imply subsurface advective flow on the order of 100 m/yr. Comparison of observed discharge rates with rates calculated for steady state expulsion supported by accretion-related compaction indicates that the observed flow is greater than predicted flow by several orders of magnitude. The disparity dictates that fluids are not derived locally, but are transported laterally within the prism, or that flow is not steady state and that individual vents are short-lived features in the ongoing accretion process.
An Intuitive Approach to Steady-State Kinetics.
ERIC Educational Resources Information Center
Raines, Ronald T.; Hansen, David E.
1988-01-01
Attempts to provide an intuitive understanding of steady state kinetics. Discusses the meaning of steady state and uses free energy profiles to illustrate and follow complex kinetic and thermodynamic relationships. Provides examples with explanations. (MVL)
NASA Astrophysics Data System (ADS)
Fraggedakis, D.; Kouris, Ch.; Dimakopoulos, Y.; Tsamopoulos, J.
2015-08-01
We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our volume-of-fluid algorithm is used to solve the governing equations. First, the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then, it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow, or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray, and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results [I. Cohen et al., "Two fluid drop snap-off problem: Experiments and theory," Phys. Rev. Lett. 83, 1147-1150 (1999)]. Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our result provides deeper insights into the mechanism of the pattern transitions and is in agreement with previous studies on core-annular flow [Ch. Kouris and J. Tsamopoulos, "Core-annular flow in a periodically constricted circular tube, I. Steady state, linear stability and energy analysis," J. Fluid Mech. 432, 31-68 (2001) and Ch. Kouris et al., "Comparison of spectral and finite element methods applied to the study of interfacial instabilities of the core-annular flow in an undulating tube," Int. J. Numer. Methods Fluids 39(1), 41-73 (2002)], segmented flow [E. Lac and J. D. Sherwood, "Motion of a drop along the centreline of a capillary in a pressure-driven flow," J. Fluid Mech. 640, 27-54 (2009)], and churn flow [R. Y. Bai et al., "Lubricated pipelining—Stability of core annular-flow. 5. Experiments and comparison with theory," J. Fluid Mech. 240, 97-132 (1992)].
Magnetic resonance measurement of fluid dynamics and transport in tube flow of a near-critical fluid
NASA Astrophysics Data System (ADS)
Bray, Joshua M.; Rassi, Erik M.; Seymour, Joseph D.; Codd, Sarah L.
2014-07-01
An ability to predict fluid dynamics and transport in supercritical fluids is essential for optimization of applications such as carbon sequestration, enhanced oil recovery, "green" solvents, and supercritical coolant systems. While much has been done to model supercritical velocity distributions, experimental characterization is sparse, owing in part to a high sensitivity to perturbation by measurement probes. Magnetic resonance (MR) techniques, however, detect signal noninvasively from the fluid molecules and thereby overcome this obstacle to measurement. MR velocity maps and propagators (i.e., probability density functions of displacement) were acquired of a flowing fluid in several regimes about the critical point, providing quantitative data on the transport and fluid dynamics in the system. Hexafluoroethane (C2F6) was pumped at 0.5 ml/min in a cylindrical tube through an MR system, and propagators as well as velocity maps were measured at temperatures and pressures below, near, and above the critical values. It was observed that flow of C2F6 with thermodynamic properties far above or below the critical point had the Poiseuille flow distribution of an incompressible Newtonian fluid. Flows with thermodynamic properties near the critical point exhibit complex flow distributions impacted by buoyancy and viscous forces. The approach to steady state was also observed and found to take the longest near the critical point, but once it was reached, the dynamics were stable and reproducible. These data provide insight into the interplay between the critical phase transition thermodynamics and the fluid dynamics, which control transport processes.
NASA Astrophysics Data System (ADS)
Ogurtani, Tarik Omer; Akyildiz, Oncu
2008-07-01
The morphological evolution of intragranular voids induced by surface drift diffusion under the actions of capillary and electromigration (EM) forces and thermal-stress gradients (TSGs) associated with steady-state heat flow is investigated in passivated metallic thin films and flip chip solder joints via computer simulation using the front-tracking method. In the mesoscopic nonequilibrium thermodynamic formulation of the generalized driving forces for the thermal-stress-induced surface drift diffusion, not only the usual elastic strain energy density contribution but also the elastic dipole tensor interaction (EDTI) between the thermal-stress field and the mobile atomic species (monovacancies) are considered using the concept of elastic interaction energy promoted in unified linear instability analysis (ULISA) [T. O. Ogurtani, Phys. Rev. B 74, 155422 (2006)]. According to extensive computer experiments performed on voids, which are initially cylindrical in shape, two completely different and topographically distinct behaviors are observed during the development of quasistationary state void surface morphologies, even in the presence of strong EM forces. These behaviors strictly depend on whether or not heat flux crowding occurs in the regions between the void surface layer and the sidewalls of the interconnect lines due to proximity effects of the insulating boundaries. In both morphological cases, however, one also observes two well-defined regimes, namely, the EM and TSG dominated regimes in EM versus EDTI parametric space. In the case of the TSG dominated regime, the void center of gravity (centroid) exhibits uniform displacement (drift) velocity proportional and opposite to the induced TSG exactly as predicted by ULISA theory. These domains are bounded by a threshold level curve for the EDTI parameter, above which an extremely sharp crack tip nucleation and propagation occurs in the highly localized minima in the triaxial stress regions (i.e., hot spots
Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Popok, Daniel
1999-01-01
A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.
Fluid flow in nanopores: An examination of hydrodynamic boundary conditions
NASA Astrophysics Data System (ADS)
Sokhan, V. P.; Nicholson, D.; Quirke, N.
2001-08-01
Steady-state Poiseuille flow of a simple fluid in carbon slit pores under a gravity-like force is simulated using a realistic empirical many-body potential model for carbon. In this work we focus on the small Knudsen number regime, where the macroscopic equations are applicable, and simulate different wetting conditions by varying the strength of fluid-wall interactions. We show that fluid flow in a carbon pore is characterized by a large slip length even in the strongly wetting case, contrary to the predictions of Tolstoi's theory. When the surface density of wall atoms is reduced to values typical of a van der Waals solid, the streaming velocity profile vanishes at the wall, in accordance with earlier findings. From the velocity profiles we have calculated the slip length and by analyzing temporal profiles of the velocity components of particles colliding with the wall we obtained values of the Maxwell coefficient defining the fraction of molecules thermalized by the wall.
Steady-state wear and friction in boundary lubrication studies
NASA Technical Reports Server (NTRS)
Loomis, W. R.; Jones, W. R., Jr.
1980-01-01
A friction and wear study was made at 20 C to obtain improved reproducibility and reliability in boundary lubrication testing. Ester-base and C-ether-base fluids were used to lubricate a pure iron rider in sliding contact with a rotating M-50 steel disk in a friction and wear apparatus. Conditions included loads of 1/2 and 1 kg and sliding velocities of 3.6 to 18.2 m/min in a dry air atmosphere and stepwise time intervals from 1 to 250 min for wear measurements. The wear rate results were compared with those from previous studies where a single 25 min test period was used. Satisfactory test conditions for studying friction and wear in boundary lubrication for this apparatus were found to be 1 kg load; sliding velocities of 7.1 to 9.1 m/min (50 rpm disk speed); and use of a time stepwise test procedure. Highly reproducible steady-state wear rates and steady-state friction coefficients were determined under boundary conditions. Wear rates and coefficients of friction were constant following initially high values during run-in periods.
SPH numerical simulation of fluid flow through a porous media
NASA Astrophysics Data System (ADS)
Klapp-Escribano, Jaime; Mayoral-Villa, Estela; Rodriguez-Meza, Mario Alberto; de La Cruz-Sanchez, Eduardo; di G Sigalotti, Leonardo; Inin-Abacus Collaboration; Ivic Collaboration
2013-11-01
We have tested an improved a method for 3D SPH simulations of fluid flow through a porous media using an implementation of this method with the Dual-Physics code. This improvement makes it possible to simulate many particles (of the order of several million) in reasonable computer times because its execution on GPUs processors makes it possible to reduce considerably the simulation cost for large systems. Modifications in the initial configuration have been implemented in order to simulate different arrays and geometries for the porous media. The basic tests were reproduced and the performance was analyzed. Our 3D simulations of fluid flow through a saturated homogeneous porous media shows a discharge velocity proportional to the hydraulic gradient reproducing Darcy's law at small body forces. The results are comparable with values obtained in previous work and published in the literature for simulations of flow through periodic porous media. Our simulations for a non saturated porous media produce adequate qualitative results showing that a non steady state is generated. The relaxation time for these systems were obtained. Work partially supported by Cinvestav-ABACUS, CONACyT grant EDOMEX-2011-C01-165873.
NASA Astrophysics Data System (ADS)
Jang, Gang-Won; Chang, Se-Myong; Gim, Gyun-Ho
2013-07-01
An analysis of fluid-structure interaction is presented for incompressible and inviscid flow in a channel bounded by symmetric cantilever beams. Small deflections of the beams and no flows normal to the beams are assumed, thus allowing the governing equations to be defined using quasi-one-dimensional pressure and flow velocity distribution; pressure and velocity are assumed to be uniform across the cross section of the channel. The steady-state solution of the present problem is analytically derived by the linearization of the governing equations. The solution is shown to consist of infinite modes, which is verified by comparing with numerical solutions obtained by the finite element method. The nonlinear effect in the steady-state solution is modeled by numerical method to estimate the error due to linearization. However, only a few leading modes are physically significant owing to the effects of flow compressibility and viscosity. The analytic solutions of the fluid-structure interaction are also presented for dynamic problems assuming harmonic vibration. The steady-state and stationary initial conditions are used, and the equilibrium frequency is determined to minimize the residual error of Euler equation. The fluid-structure interaction is characterized by a phase difference and distortion of waveform shape in the time history of the boundary velocity.
Fluid flow electrophoresis in space
NASA Technical Reports Server (NTRS)
Griffin, R. N.
1975-01-01
Four areas relating to free-flow electrophoresis in space were investigated. The first was the degree of improvement over earthbound operations that might be expected. The second area of investigation covered the problems in developing a flowing buffer electrophoresis apparatus. The third area of investigation was the problem of testing on the ground equipment designed for use in space. The fourth area of investigation was the improvement to be expected in space for purification of biologicals. The results of some ground-based experiments are described. Other studies included cooling requirements in space, fluid sealing techniques, and measurement of voltage drop across membranes.
Ferroelectric Fluid Flow Control Valve
NASA Technical Reports Server (NTRS)
Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)
1999-01-01
An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.
General Transient Fluid Flow Algorithm
Energy Science and Technology Software Center (ESTSC)
1992-03-12
SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude resultsmore » from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.« less
Cerebrospinal fluid flow in adults.
Bradley, William G; Haughton, Victor; Mardal, Kent-Andre
2016-01-01
This chapter uses magnetic resonance imaging phase-contrast cerebrospinal fluid (CSF) flow measurements to predict which clinical normal-pressure hydrocephalus (NPH) patients will respond to shunting as well as which patients with Chiari I are likely to develop symptoms of syringomyelia. Symptomatic NPH patients with CSF flow (measured as the aqueductal CSF stroke volume) which is shown to be hyperdynamic (defined as twice normal) are quite likely to respond to ventriculoperitoneal shunting. The hyperdynamic CSF flow results from normal systolic brain expansion compressing the enlarged ventricles. When atrophy occurs, there is less brain expansion, decreased aqueductal CSF flow, and less likelihood of responding to shunting. It appears that NPH is a "two-hit" disease, starting as benign external hydrocephalus in infancy, followed by deep white-matter ischemia in late adulthood, which causes increased resistance to CSF outflow through the extracellular space of the brain. Using computational flow dynamics (CFD), CSF flow can be modeled at the foramen magnum and in the upper cervical spine. As in the case of NPH, hyperdynamic CSF flow appears to cause the signs and symptoms in Chiari I and can provide an additional indication for surgical decompression. CFD can also predict CSF pressures over the cardiac cycle. It has been hypothesized that elevated pressure pulses may be a significant etiologic factor in some cases of syringomyelia. PMID:27432684
Gas-turbine engine steady-state behavior
NASA Astrophysics Data System (ADS)
Curnock, Barry
A set of graphics with explanations illustrating gas turbine engine steady state behavior are presented. Typical combinations of compressors and nozzles which occur in a gas turbine engine are shown. The basic effect of a nozzle is explained by considering a compressor on a test rig: typical compressor, fan, and turbine characteristics are illustrated. The following are discussed: the degrees of freedom of an aeroengine (the flow and the power); the 'working lines' of components (the locus of the off design steady state operating points of a component plotted on a chart of that components characteristics); bleed and whirl; offtakes; P1 effects (performance changes which modify the basic nondimensional behavior an engine (caused by the effect on Reynolds number levels and on engine mechanical configuration of basic engine inlet pressure level)), and T1 effects (performance changes which modify the basic nondimensional behavior of an engine and are caused by the effects of engine inlet temperature level on Reynolds number level, on engine mechanical configuration and on specific heat level); variable nozzles; and turbojet matching.
Taylor dispersion in equilibrium gradient focusing at steady state.
Ivory, Cornelius F
2015-03-01
An analytic expression is presented for the effective dispersion coefficient in the case where a solute is focused in a parabolic flow against a linear gradient in a restoring force. This expression was derived by employing a minor variation on the method of moments used by Aris in his development of the dispersion coefficients for a time-dependent, isocratic system. In the present case, dispersion is controlled by two dimensionless groups, a Peclet number which is proportional to the parabolic component of the flow, and a gradient number which is proportional to the slope of the restoring force. These results confirm that the Aris-Taylor expression for the dispersion coefficient should not be applied in cases where a solute is focused to a stationary steady state. PMID:25521436
Steady state model of an industrial FCC unit
Lopez-Isunza, F.; Ancheyta-Juarez, J.
1996-12-31
A reactor model has been developed to simulate the steady-state of an industrial fluid catalytic cracking unit using a three-lump kinetic expression with parameters estimated from experiments in a microactivity test reactor. The model considers a transported bed reactor (riser) where gas-oil and catalyst are in contact to perform the endothermic cracking reactions, interacting with a two-phase moving bed regenerator with recirculation where the combustion of the coke deposited on the catalyst takes place. The model is used to find best operating conditions for maximizing gasoline yield in terms of gas-oil feed temperature (To) and recycled catalyst to gas-oil ratio (C/O). 12 refs., 4 figs.
Inconsistencies in steady-state thermodynamics
NASA Astrophysics Data System (ADS)
Dickman, Ronald; Motai, Ricardo
2014-03-01
We address the issue of extending thermodynamics to nonequilibrium steady states. Using driven stochastic lattice gases, we ask whether consistent definitions of an effective chemical potential μ, and an effective temperature Te, are possible. μ and Te are determined via coexistence, i.e., zero flux of particles and energy between the driven system and a reservoir. In the lattice gas with nearest-neighbor exclusion, temperature is not relevant, and we find that the effective chemical potential, a function of density and drive strength, satisfies the zeroth law, and correctly predicts the densities of coexisting systems. In the Katz-Lebowitz-Spohn driven lattice gas both μ and Te need to be defined. We show analytically that in this case the zeroth law is violated for Metropolis exchange rates, and determine the size of the violations numerically. The zeroth law appears to be violated for generic exchange rates. Remarkably, the system-reservoir coupling proposed by Sasa and Tasaki [J. Stat. Phys. 125, 125 (2006), 10.1007/s10955-005-9021-7] is free of inconsistencies, and the zeroth law holds. This is because the rate depends only on the state of the donor system, and is independent of that of the acceptor.
Steady State Vapor Bubble in Pool Boiling.
Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C
2016-01-01
Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464
Steady State Vapor Bubble in Pool Boiling
NASA Astrophysics Data System (ADS)
Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.
2016-02-01
Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.
Maximal lactate steady state in Judo
de Azevedo, Paulo Henrique Silva Marques; Pithon-Curi, Tania; Zagatto, Alessandro Moura; Oliveira, João; Perez, Sérgio
2014-01-01
Summary Background: the purpose of this study was to verify the validity of respiratory compensation threshold (RCT) measured during a new single judo specific incremental test (JSIT) for aerobic demand evaluation. Methods: to test the validity of the new test, the JSIT was compared with Maximal Lactate Steady State (MLSS), which is the gold standard procedure for aerobic demand measuring. Eight well-trained male competitive judo players (24.3 ± 7.9 years; height of 169.3 ± 6.7cm; fat mass of 12.7 ± 3.9%) performed a maximal incremental specific test for judo to assess the RCT and performed on 30-minute MLSS test, where both tests were performed mimicking the UchiKomi drills. Results: the intensity at RCT measured on JSIT was not significantly different compared to MLSS (p=0.40). In addition, it was observed high and significant correlation between MLSS and RCT (r=0.90, p=0.002), as well as a high agreement. Conclusions: RCT measured during JSIT is a valid procedure to measure the aerobic demand, respecting the ecological validity of Judo. PMID:25332923
Steady State Vapor Bubble in Pool Boiling
Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.
2016-01-01
Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464
Steady state volcanism - Evidence from eruption histories of polygenetic volcanoes
NASA Technical Reports Server (NTRS)
Wadge, G.
1982-01-01
Cumulative volcano volume curves are presented as evidence for steady-state behavior at certain volcanoes and to develop a model of steady-state volcanism. A minimum criteria of five eruptions over a year was chosen to characterize a steady-state volcano. The subsequent model features a constant head of magmatic pressure from a reservoir supplied from depth, a sawtooth curve produced by the magma arrivals or discharge from the subvolcanic reservoir, large volume eruptions with long repose periods, and conditions of nonsupply of magma. The behavior of Mts. Etna, Nyamuragira, and Kilauea are described and show continuous levels of plasma output resulting in cumulative volume increases. Further discussion is made of steady-state andesitic and dacitic volcanism, long term patterns of the steady state, and magma storage, and the lack of a sufficient number of steady-state volcanoes in the world is taken as evidence that further data is required for a comprehensive model.
Transient Wellbore Fluid Flow Model
Energy Science and Technology Software Center (ESTSC)
1982-04-06
WELBORE is a code to solve transient, one-dimensional two-phase or single-phase non-isothermal fluid flow in a wellbore. The primary thermodynamic variables used in solving the equations are the pressure and specific energy. An equation of state subroutine provides the density, quality, and temperature. The heat loss out of the wellbore is calculated by solving a radial diffusion equation for the temperature changes outside the bore. The calculation is done at each node point in themore » wellbore.« less
Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M
2007-09-01
We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics. PMID:17930285
NASA Astrophysics Data System (ADS)
Marenduzzo, D.; Orlandini, E.; Cates, M. E.; Yeomans, J. M.
2007-09-01
We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently “extensile” rods, in the case of flow-aligning liquid crystals, and for sufficiently “contractile” ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of “convection rolls.” These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.
Conveyor belt effect in the flow through a tube of a viscous fluid with spinning particles.
Felderhof, B U
2012-04-28
The extended Navier-Stokes equations describing the steady-state hydrodynamics of a viscous fluid with spinning particles are solved for flow through a circular cylindrical tube. The flow caused by an applied torque density in the azimuthal direction and linear in the radial distance from the axis is compared with the flow caused by a uniform applied force density directed along the axis of the tube. In both cases the flow velocity is of Poiseuille type plus a correction. In the first case the flow velocity is caused by the conveyor belt effect of spinning particles. The corrections to the Poiseuille flow pattern in the two cases differ only by a proportionality factor. The spin velocity profiles in the two cases are also proportional. PMID:22559504
Fluid flows around nanoelectromechanical resonators
NASA Astrophysics Data System (ADS)
Svitelskiy, O.; Sauer, V.; Liu, N.; Vick, D.; Cheng, K. M.; Freeman, M. R.; Hiebert, W. K.
2012-02-01
To explore properties of fluids on a nanosize scale, we fabricated by a standard top down technique a series of nanoelectromechanical resonators (cantilevers and bridges) with widths w and thicknesses t from 100 to 500 nm; lengths l from 0.5 to 12 micron; and resonant frequencies f from 10 to 400 MHz. For the sake of purity of the experiment, the undercut in the widest (w=500 nm) devices was eliminated using the focused ion beam. To model the fluidic environment the devices were placed in the atmosphere of compressed gases (He, N2, CO2, Ar, H2) at pressures from vacuum up to 20 MPa, and in liquid CO2; their properties were studied by the real time stroboscopic optical interferometry. Thus, we fully explored the Newtonian and non-Newtonian flow damping models. Observing free molecular flow extending above atmospheric pressure, we find the fluid relaxation time model to be the best approximation throughout, but not beyond, the non-Newtonian regime, and both, vibrating spheres model and the model based on Knudsen number, to be valid in the viscous limit.
Method and Apparatus for Predicting Unsteady Pressure and Flow Rate Distribution in a Fluid Network
NASA Technical Reports Server (NTRS)
Majumdar, Alok K. (Inventor)
2009-01-01
A method and apparatus for analyzing steady state and transient flow in a complex fluid network, modeling phase changes, compressibility, mixture thermodynamics, external body forces such as gravity and centrifugal force and conjugate heat transfer. In some embodiments, a graphical user interface provides for the interactive development of a fluid network simulation having nodes and branches. In some embodiments, mass, energy, and specific conservation equations are solved at the nodes, and momentum conservation equations are solved in the branches. In some embodiments, contained herein are data objects for computing thermodynamic and thermophysical properties for fluids. In some embodiments, the systems of equations describing the fluid network are solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods.
The puzzle of the steady-state rotation of a reverse sprinkler
NASA Astrophysics Data System (ADS)
Rueckner, Wolfgang
2015-04-01
The continuous rotation of the reverse sprinkler has been a puzzle for over two decades. This article presents a series of experiments that demonstrate that a properly designed reverse sprinkler experiences no steady-state torque and does not rotate. Ignoring transients when the flow starts and stops, if any sustained rotation of the reverse sprinkler occurs, it is because a force couple produces a torque accompanied by vortex flow inside the body of the sprinkler. No steady-state rotation occurs if the vortex is suppressed or prevented from forming in the first place. Demonstrative proof is given that an ideal reverse sprinkler does not rotate.
Two-fluid model for two-phase flow
NASA Astrophysics Data System (ADS)
Ishii, M.
1987-06-01
The two-fluid model formulation is discussed in detail. The emphasis of the paper is on the three-dimensional formulation and the closure issues. The origin of the interfacial and turbulent transfer terms in the averaged formulation is explained and their original mathematical forms are examined. The interfacial transfer of mass, momentum, and energy is proportional to the interfacial area and driving force. This is not a postulate but a result of the careful examination of the mathematical form of the exact interfacial terms. These two effects are considered separately. Since all the interfacial transfer terms involve the interfacial area concentration, the accurate modeling of the local interfacial area concentration is the first step to be taken for a development of a reliable two-fluid model closure relations. The interfacial momentum interaction has been studied in terms of the standard-drag, lift, virtual mass, and Basset forces. Available analytical and semi-empirical correlations and closure relations are reviewed and existing shortcomings are pointed out. The other major area of importance is the modeling of turbulent transfer in two-phase flow. The two-phase flow turbulence problem is coupled with the phase separation problem even in a steady-state fully developed flow. Thus the two-phase turbulence cannot be understood without understanding the interfacial drag and lift forces accurately. There are some indications that the mixing length type model may not be sufficient to describe the three-dimensional turbulent and flow structures. Although it is a very difficult challenge, the two-phase flow turbulence should be investigated both experimentally and analytically with long time-scale research.
NASA Technical Reports Server (NTRS)
Schweikhard, W. G.; Dennon, S. R.
1986-01-01
A review of the Melick method of inlet flow dynamic distortion prediction by statistical means is provided. These developments include the general Melick approach with full dynamic measurements, a limited dynamic measurement approach, and a turbulence modelling approach which requires no dynamic rms pressure fluctuation measurements. These modifications are evaluated by comparing predicted and measured peak instantaneous distortion levels from provisional inlet data sets. A nonlinear mean-line following vortex model is proposed and evaluated as a potential criterion for improving the peak instantaneous distortion map generated from the conventional linear vortex of the Melick method. The model is simplified to a series of linear vortex segments which lay along the mean line. Maps generated with this new approach are compared with conventionally generated maps, as well as measured peak instantaneous maps. Inlet data sets include subsonic, transonic, and supersonic inlets under various flight conditions.
Olson, A. P.; Kalimullah; Feldman, E. E.; Nuclear Engineering Division
2006-01-01
Recent reactor conversion studies in the RERTR Program have required expansion or revision of modeling capabilities for steady state thermalhydraulic analysis. For example, some reactors operate in laminar flow, necessitating new correlations for Nusselt number and for friction loss. Others have single-sided heating of edge channels. And some have geometrical details that require new modeling approaches to either simulate or validate. Computational fluid dynamics was compared with the 2-dimensional approximation to heat flow used by the PLTEMP/ANL V3.0 code. A very systematic approach to hot channel factors is implemented. A closed-form solution is now used in flat-plate geometry to improve both speed and accuracy of the solution. Direct heating to clad and coolant is now included. The Groenveld table lookup method is now available for determination of CHF. Flow excursion prediction is updated. All of these improvements have been incorporated in the PLTEMP/ANL V3.0 code.
Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases.
Su, Yan; Peter Guengerich, F
2016-01-01
Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. © 2016 by John Wiley & Sons, Inc. PMID:27248785
Diehl, S; Zambrano, J; Carlsson, B
2016-01-01
A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration. PMID:26476681
Finite Element Analysis of Magnetic Damping Effects on G-Jitter Induced Fluid Flow
NASA Technical Reports Server (NTRS)
Pan, Bo; Li, Ben Q.; deGroh, Henry C., III
1997-01-01
This paper reports some interim results on numerical modeling and analyses of magnetic damping of g-jitter driven fluid flow in microgravity. A finite element model is developed to represent the fluid flow, thermal and solute transport phenomena in a 2-D cavity under g-jitter conditions with and without an applied magnetic field. The numerical model is checked by comparing with analytical solutions obtained for a simple parallel plate channel flow driven by g-jitter in a transverse magnetic field. The model is then applied to study the effect of steady state g-jitter induced oscillation and on the solute redistribution in the liquid that bears direct relevance to the Bridgman-Stockbarger single crystal growth processes. A selection of computed results is presented and the results indicate that an applied magnetic field can effectively damp the velocity caused by g-jitter and help to reduce the time variation of solute redistribution.
Adaptation of the Steady-state PERG in Early Glaucoma
Porciatti, Vittorio; Bosse, Brandon; Parekh, Prashant K.; Shif, Olga A.; Feuer, William J.; Ventura, Lori M.
2013-01-01
Purpose Previous studies have shown that the onset of high-contrast, fast reversing patterned stimuli induces rapid blood flow increase in retinal vessels in association with slow changes of the steady-state PERG signal. We tested the hypothesis that adaptive PERG changes of normal controls (NC) differed from those of glaucoma suspects (GS) and patients with early manifest glaucoma (EMG). Methods Subjects were 42 GS (SAP MD −0.89 ±1.8 dB), 22 EMG (MD −2.12 ±2.4 dB) with visual acuity of ≥20/20 and 16 age-matched NC from a previous study. The PERG signal was sampled every ~15 s over 4 minutes in response to gratings (1.6 cyc/deg, 100% contrast) reversing 16.28 times/s. Amplitude/phase values of successive PERG samples were fitted with a non-parametric LOWESS smoothing function to retrieve the initial and final values and calculate their difference (delta) and the residual standard deviation around the fitted function (SDr). The magnitude of PERG adaptive change compared to random variability was calculated as log10 of percentage coefficient of variation CoV=100*SDr ÷ |delta|. Grand-average PERGs were also obtained by averaging all samples of the same series. Results The grand-average PERG amplitude (ANOVA, p=0.02), but not phase (ANOVA, p=0.63), decreased with increasing severity of disease. Adaptive changes (log10 (CoV) of PERG amplitude were not significantly associated with disease severity (ANOVA, p=0.27), but adaptive changes (log10 (CoV) of PERG phase were (ANOVA, p=0.037; linear trend, p=0.011). Conclusions The steady-state PERG signal displayed slow adaptive changes over time that could be isolated from random variability. PERG adaptive changes differed from those of grand-average PERGs (corresponding the standard steady-state PERG), thus representing a new source of biological information about retinal ganglion cell function that may have potential in the study of glaucoma and optic nerve diseases. PMID:23429613
Defining Features of Steady-State Timbres
NASA Astrophysics Data System (ADS)
Hall, Michael D.
1995-01-01
Three experiments were conducted to define steady -state features of timbre for a group of well-trained musicians. Experiment 1 evaluated whether or not pairs of three critical dimensions of timbre--spectral slope (6 or 12 dB/octave), formant structure (/a/ or /i/ vowel), and inharmonicity of partials (harmonic or inharmonic)--were processed in a separable or integral fashion. Accuracy and speed for classification of values along one dimension were examined under different conditions of variability along a second dimension (fixed, correlated, or orthogonal). Spectral slope and formant structure were integral, with classification speed for the target dimension depending upon variability along the orthogonal dimension. In contrast, evidence of asymmetric separability was obtained for inharmonicity. Classification speed for slope and formant structure did not depend on inharmonicity, whereas RT for the target dimension of inharmonicity was strongly influenced by variability along either slope or formant structure. Since the results of Experiment 1 provided a basis for manipulating spectral slope and formant structure as a single feature, these dimensions were correlated in Experiment 2. Subjects searched for targets containing potential features of timbre within arrays of 1-4 inharmonic distractor pitches. Distractors were homogeneous with respect to the dimensions of timbre. When targets had /a/ formants with shallow spectral slopes, search time increased nonlinearly with array size in a manner consistent with the parallel processing of items, and thus feature search. Feature search was not obtained for targets with /i/ formants and steep slopes. Thus, the feature was coded as the presence or absence of /a/ formants with shallow spectral slopes. A search task using heterogeneous distractor values along slope/formant structure was used in Experiment 3 to evaluate whether or not the feature of timbre and pitch were automatically conjoined (integral). Search times for
Fluid Flow Experiment for Undergraduate Laboratory.
ERIC Educational Resources Information Center
Vilimpochapornkul, Viroj; Obot, Nsima T.
1986-01-01
The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)
Fluid flow, mineral reactions, and metasomatism
Ferry, J.M.; Dipple, G.M. )
1991-03-01
A general model that relates fluid flow along a temnperature gradient to chemical reaction in rocks can be used to quantitatively interpret petrologic and geochemical data on metasomatism from ancient flow systems in terms of flow direction and time-integrated fluid flux. The model is applied to regional metamorphism, quartz veins, and a metasomatized ductile fault zone.
The steady-state assumption in oscillating and growing systems.
Reimers, Alexandra-M; Reimers, Arne C
2016-10-01
The steady-state assumption, which states that the production and consumption of metabolites inside the cell are balanced, is one of the key aspects that makes an efficient analysis of genome-scale metabolic networks possible. It can be motivated from two different perspectives. In the time-scales perspective, we use the fact that metabolism is much faster than other cellular processes such as gene expression. Hence, the steady-state assumption is derived as a quasi-steady-state approximation of the metabolism that adapts to the changing cellular conditions. In this article we focus on the second perspective, stating that on the long run no metabolite can accumulate or deplete. In contrast to the first perspective it is not immediately clear how this perspective can be captured mathematically and what assumptions are required to obtain the steady-state condition. By presenting a mathematical framework based on the second perspective we demonstrate that the assumption of steady-state also applies to oscillating and growing systems without requiring quasi-steady-state at any time point. However, we also show that the average concentrations may not be compatible with the average fluxes. In summary, we establish a mathematical foundation for the steady-state assumption for long time periods that justifies its successful use in many applications. Furthermore, this mathematical foundation also pinpoints unintuitive effects in the integration of metabolite concentrations using nonlinear constraints into steady-state models for long time periods. PMID:27363728
Steady-state boundary lubrication with formulated C-ethers to 260 C
NASA Technical Reports Server (NTRS)
Loomis, W. R.
1981-01-01
Steady state wear and friction studies were made at boundary lubrication conditions in a pin on disk (pure iron on rotating CVM M 50 steel) sliding friction apparatus with five C ether formulated fluids (modified polyphenyl ether containing phosphrous ester, organic acid, and other additives). Conditions included 20, 150, and 260 C disk temperatures, dry air test atmosphere, 1 kilogram load, 50 rpm disk speed, and test times to 130 minutes. Results were compared with those obtained with a formulated MIL L 27502 candidate ester and the C ether base fluid. Three of the C ether formulations gave better lubrication than both reference fluids under most conditions. The other two C ether formulations yielded higher wear rates and friction coefficients than the C ether base fluid for most of the temperature range. Only one C ether formulation showed consistently higher steady state wear rates than the ester.
Vortex generator installation studies on steady state and dynamic inlet distortion
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Gibb, James
1996-01-01
The theoretical and experimental work carried out under the NASA/MOD Joint Aeronautical Program has shown that CFD vortex generator installations designs successfully managed inlet duct flow distortion and that significant benefits in flow unsteadiness at the engine face were also present. The main conclusions to date from the collaborative effort between NASA/Lewis and DRA/Bedford are as follows: (1) vortex generator installations can be designed to be effective over a wide range of inlet operating conditions using Computational Fluid Dynamics and formal optimization procedures, (2) reductions in steady state engine face distortion of up to 80% have been measured in the M2129 inlet S-duct using CFD designed vortex generator installations, (3) reductions in flow unsteadiness of up to 80% have been measured in the W129 inlet S-duct using CFD designed vortex generator installations, and (4) the Reduced Navier-Stokes code RNS3D is a useful tool to design vortex generator installations to manage engine face distortions over a wide range of inlet operating conditions.
Steady State Growth of Continental Crust?
NASA Astrophysics Data System (ADS)
Bowring, S. A.; Bauer, A.; Dudas, F. O.; Schoene, B.; McLean, N. M.
2012-12-01
any age. If one accepts that the probability of preserving old crust decreases with increasing age, the few exposures of rocks older than 3.5 Ga should not be surprising. The thickness and compositional differences between Archean and younger lithospheric mantle are not fully understood nor is the role of thicker buoyant mantle in preserving continental crust; these lead to the question of whether the preserved rock record is representative of what formed. It is notable that the oldest known rocks, the ca. 4.0 Ga Acasta Gneisses, are tonalities-granodiorites-granites with evidence for the involvement of even older crust and that the oldest detrital zircons from Australia (ca. 4.0-4.4 Ga) are thought to have been derived from granitoid sources. The global Hf and Nd isotope databases are compatible with both depleted and enriched sources being present from at least 4.0 Ga to the present and that the lack of evolution of the MORB source or depleted mantle is due to recycling of continental crust throughout earth history. Using examples from the Slave Province and southern Africa, we argue that Armstrong's concept of steady state crustal growth and recycling via plate tectonics still best explains the modern geological and geochemical data.
SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis
Basehore, K.L.; Todreas, N.E.
1980-08-01
Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.
Criteria for shear banding in time-dependent flows of complex fluids.
Moorcroft, Robyn L; Fielding, Suzanne M
2013-02-22
We study theoretically the onset of shear banding in the three most common time-dependent rheological protocols: step stress, finite strain ramp (a limit of which gives a step strain), and shear startup. By means of a linear stability analysis we provide a fluid-universal criterion for the onset of banding for each protocol, which depends only on the shape of the experimentally measured time-dependent rheological response function, independent of the constitutive law and internal state variables of the particular fluid in question. Our predictions thus have the same highly general status, in these time-dependent flows, as the widely known criterion for banding in steady state (of negatively sloping shear stress vs shear rate). We illustrate them with simulations of the Rolie-Poly model of polymer flows, and the soft glassy rheology model of disordered soft solids. PMID:23473166
Steady and Unsteady Numerical Solution of Generalized Newtonian Fluids Flow by Runge-Kutta method
NASA Astrophysics Data System (ADS)
Keslerová, R.; Kozel, K.; Prokop, V.
2010-09-01
In this paper the laminar viscous incompressible flow for generalized Newtonian (Newtonian and non-Newtonian) fluids is considered. The governing system of equations is the system of Navier-Stokes equations and the continuity equation. The steady and unsteady numerical solution for this system is computed by finite volume method combined with an artificial compressibility method. For time discretization the explicit multistage Runge-Kutta numerical scheme is considered. Steady state solution is achieved for t→∞ using steady boundary conditions and followed by steady residual behavior. The dual time-stepping method is considered for unsteady computation. The high artificial compressibility coefficient is used in the artificial compressibility method applied in the dual time τ. The steady and unsteady numerical results of Newtonian and non-Newtonian (shear thickening and shear thinning) fluids flow in the branching channel are presented.
Vectorization on the star computer of several numerical methods for a fluid flow problem
NASA Technical Reports Server (NTRS)
Lambiotte, J. J., Jr.; Howser, L. M.
1974-01-01
A reexamination of some numerical methods is considered in light of the new class of computers which use vector streaming to achieve high computation rates. A study has been made of the effect on the relative efficiency of several numerical methods applied to a particular fluid flow problem when they are implemented on a vector computer. The method of Brailovskaya, the alternating direction implicit method, a fully implicit method, and a new method called partial implicitization have been applied to the problem of determining the steady state solution of the two-dimensional flow of a viscous imcompressible fluid in a square cavity driven by a sliding wall. Results are obtained for three mesh sizes and a comparison is made of the methods for serial computation.
Measurement of non-steady-state free fatty acid turnover
Jensen, M.D.; Heiling, V.; Miles, J.M. )
1990-01-01
The accuracy of non-steady-state equations for measuring changes in free fatty acid rate of appearance (Ra) is unknown. In the present study, endogenous lipolysis (traced with ({sup 14}C)-linoleate) was pharmacologically suppressed in six conscious mongrel dogs. A computer-responsive infusion pump was then used to deliver an intravenous oleic acid emulsion in both constant and linear gradient infusion modes. Both non-steady-state equations with various effective volumes of distribution (V) and steady-state equations were used to measure oleate Ra (({sup 14}C)oleate). Endogenous lipolysis did not change during the experiment. When oleate Ra increased in a linear gradient fashion, only non-steady-state equations with a large (150 ml/kg) V resulted in erroneous values (9% overestimate, P less than 0.05). In contrast, when oleate Ra decreased in a similar fashion, steady-state and standard non-steady-state equations (V = plasma volume = 50 ml/kg) overestimated total oleate Ra (18 and 7%, P less than 0.001 and P less than 0.05, respectively). Overall, non-steady-state equations with an effective V of 90 ml/kg (1.8 x plasma volume) allowed the most accurate estimates of oleate Ra.
NASA Astrophysics Data System (ADS)
Rigola, J.; Aljure, D.; Lehmkuhl, O.; Pérez-Segarra, C. D.; Oliva, A.
2015-08-01
The aim of this paper is to carry out a group of numerical experiments over the fluid flow through a valve reed, using the CFD&HT code TermoFluids, an unstructured and parallel object-oriented CFD code for accurate and reliable solving of industrial flows. Turbulent flow and its solution is a very complex problem due to there is a non-lineal interaction between viscous and inertial effects further complicated by their rotational nature, together with the three-dimensionality inherent in these types of flow and the non-steady state solutions. In this work, different meshes, geometrical conditions and LES turbulence models (WALE, VMS, QR and SIGMA) are tested and results compared. On the other hand, the fluid flow boundary conditions are obtained by means of the numerical simulation model of hermetic reciprocating compressors tool, NEST-compressor code. The numerical results presented are based on a specific geometry, where the valve gap opening percentage is 11% of hole diameter and Reynolds numbers given by the one-dimensional model is 4.22 × 105, with density meshes of approximately 8 million CVs. Geometrical aspects related with the orifice's shape and its influence on fluid flow behaviour and pressure drop are analysed in detail, furthermore, flow results for different valve openings are also studied.
Kameo, Yoshitaka; Ootao, Yoshihiro; Ishihara, Masayuki
2016-04-01
Trabecula, an anatomical unit of the cancellous bone, is a porous material that consists of a lamellar bone matrix and interstitial fluid in a lacuno-canalicular porosity. The flow of interstitial fluid caused by deformation of the bone matrix is believed to initiate a mechanical response in osteocytes for bone remodeling. In order to clarify the effect of the lamellar structure of the bone matrix--i.e., variations in material properties--on the fluid flow stimuli to osteocytes embedded in trabeculae, we investigated the mechanical behavior of an individual trabecula subjected to cyclic loading based on poroelasticity. We focused on variations in the trabecular permeability and developed an analytical solution containing both transient and steady-state responses for interstitial fluid pressure in a single trabecular model represented by a multilayered two-dimensional poroelastic slab. Based on the obtained solution, we calculated the pressure and seepage velocity of the interstitial fluid in lacuno-canalicular porosity, within the single trabecula, under various permeability distributions. Poroelastic analysis showed that a heterogeneous distribution of permeability produces remarkable variations in the fluid pressure and seepage velocity in the cross section of the individual trabecula, and suggests that fluid flow stimuli to osteocytes are mostly governed by the value of permeability in the neighborhood of the trabecular surfaces if there is no difference in the average permeability in a single trabecula. PMID:26081726
Steady-state decoupling and design of linear multivariable systems
NASA Technical Reports Server (NTRS)
Thaler, G. J.
1974-01-01
A constructive criterion for decoupling the steady states of a linear time-invariant multivariable system is presented. This criterion consists of a set of inequalities which, when satisfied, will cause the steady states of a system to be decoupled. Stability analysis and a new design technique for such systems are given. A new and simple connection between single-loop and multivariable cases is found. These results are then applied to the compensation design for NASA STOL C-8A aircraft. Both steady-state decoupling and stability are justified through computer simulations.
A Note on Equations for Steady-State Optimal Landscapes
Liu, H.H.
2010-06-15
Based on the optimality principle (that the global energy expenditure rate is at its minimum for a given landscape under steady state conditions) and calculus of variations, we have derived a group of partial differential equations for describing steady-state optimal landscapes without explicitly distinguishing between hillslopes and channel networks. Other than building on the well-established Mining's equation, this work does not rely on any empirical relationships (such as those relating hydraulic parameters to local slopes). Using additional constraints, we also theoretically demonstrate that steady-state water depth is a power function of local slope, which is consistent with field data.
Autonomous quantum thermal machine for generating steady-state entanglement
NASA Astrophysics Data System (ADS)
Bohr Brask, Jonatan; Haack, Géraldine; Brunner, Nicolas; Huber, Marcus
2015-11-01
We discuss a simple quantum thermal machine for the generation of steady-state entanglement between two interacting qubits. The machine is autonomous in the sense that it uses only incoherent interactions with thermal baths, but no source of coherence or external control. By weakly coupling the qubits to thermal baths at different temperatures, inducing a heat current through the system, steady-state entanglement is generated far from thermal equilibrium. Finally, we discuss two possible implementations, using superconducting flux qubits or a semiconductor double quantum dot. Experimental prospects for steady-state entanglement are promising in both systems.
Armoring, stability, and transport driven by fluid flow over a granular bed
NASA Astrophysics Data System (ADS)
Allen, Benjamin; Kudrolli, Arshad
2015-03-01
We discuss experiments investigating the evolution of a granular bed by a fluid flow as a function of shear rate at the fluid-bed interface. This is a model system to investigate a variety of physical examples including wind blowing over sand, sediment transport in rivers, tidal flows interacting with beaches, flows in slurry pipelines, and sand proppants in hydraulic fracturing. In order to examine the onset and entrainment of the granular bed under steady state conditions, we have constructed a novel conical rheometer system which allows a variable amount of shear to be applied to the granular bed. The grain-fluid system is index matched so that we can visualize the grains away from the sides as well as visualize the fluid flow above and below the interface by using fluorescent tracer particles. We demonstrate that the onset of erosion arises as particles rotate out of their stable position highlighting the importance of torque balance to onset. We find significant armoring of the bed, as the bed is sheared by the fluid flow. Above onset, at least three distinct regions of bed mobility can be found. We will discuss the measured integrated granular flux as a function of shear rate and compare them with empirical laws found in the geophysical literature. Supported by NSF Grant Number CBET 1335928.