Science.gov

Sample records for steel reheat furnace

  1. 4. CLOSEUP VIEW INTO A REHEATING FURNACE IN THE No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. CLOSE-UP VIEW INTO A REHEATING FURNACE IN THE No. 2 FORGE SHOP. THE FURNACE IS MISSING ITS REFRACTORY BRICK LINING. - U.S. Steel Homestead Works, Press Shop No. 2, Along Monongahela River, Homestead, Allegheny County, PA

  2. Interior of shop, showing the reheat furnaces; the vehicle in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of shop, showing the reheat furnaces; the vehicle in the center is a charging machine the operator of which manipulates steel ingots in the furnace, as well as in the adjacent forging hammers - Bethlehem Steel Corporation, South Bethlehem Works, Tool Steel-Electric Furnace Shop, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  3. 7. NO. 2 CONTINUOUS SLAB REHEATING FURNACE OF THE 160' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. NO. 2 CONTINUOUS SLAB REHEATING FURNACE OF THE 160' PLATE MILL. INTERIOR REFRACTORY LINING VISIBLE BECAUSE OF DEMOLITION. - U.S. Steel Homestead Works, 160" Plate Mill, Along Monongahela River, Homestead, Allegheny County, PA

  4. 6. NO. 2 CONTINUOUS SLAB REHEATING FURNACE OF THE 160' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. NO. 2 CONTINUOUS SLAB REHEATING FURNACE OF THE 160' PLATE MILL. FURNACE SHOWING DURING DEMOLITION. C HOOK USED TO CHANGE ROLLS IS VISIBLE IN FRONT OF FURNACE. - U.S. Steel Homestead Works, 160" Plate Mill, Along Monongahela River, Homestead, Allegheny County, PA

  5. DISCHARGE END OF 8" MILL REHEATING FURNACE, SHOWING MOTOROPERATED PEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DISCHARGE END OF 8" MILL REHEATING FURNACE, SHOWING MOTOR-OPERATED PEEL BAR PUSHER WITH PINCH ROLLS FOR MOVING BILLETS ENDWISE OUT THE OPPOSITE SIDE OF THE FURNACE TOWARD THE CONTINUOUS ROUGHING TRAIN. - LTV Steel, 8-inch Bar Mill, Buffalo Plant, Buffalo, Erie County, NY

  6. Nitric oxide reductions in a multi-zone reheat furnace

    SciTech Connect

    Harder, R.F. )

    1994-04-01

    A reduced excess air combustion control technique was developed for an existing 3-zone reheat furnace that would reduce NO[sub x] emissions to conform with regulatory air quality requirements. The results indicate that reduced excess air combustion controls can be utilized for obtaining NO[sub x] reductions in a multi-zone steel reheat furnace. This study provides support for considering this control strategy as a possible first step toward reheat furnace NO[sub x] control. For new furnace installations, low NO[sub x] burners combined with other technologies provide the greatest benefit. However, for existing furnaces, a control system retrofit may be the most cost-effective short range option. Regarding actual NO[sub x] reduction costs after installation and testing were complete, this control methodology cost approximately $8,500/ton NO[sub x] reduction.

  7. CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CHARGING SIDE OF #130 ELECTRIC FURNACE CO. REHEAT FURNACE IN REROLL BAY. CAKES FROM THE CASTING SHOP ARE BROUGHT UP TO ROLLING TEMPERATURE IN ONE OF TWO (#130 AND 146) GAS-FIRED FURNACES. A RADIO-CONTROLLED OVERHEAD CRANE TRANSFERS CAKES FROM FLATCARS TO THE ROLLER LINE LEADING INTO THE FURNACE. CAKES ARE HEATED AT 900-1000 DEGREES FAHRENHEIT FOR THREE TO FOUR HOURS. RATED FURNACE CAPACITY IS 100,000 LBS.\\HOUR. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  8. Steel project fact sheet: Steel reheating for further processing

    SciTech Connect

    1998-04-01

    Steel reheating is an energy-intensive process requiring uniform temperature distribution within reheating furnaces. Historically, recuperators have ben used to preheat combustion air, thereby conserving energy. More recent innovations include oxygen enrichment and the use of regenerative burners, which provide higher preheat air temperatures than recuperators. These processes have limitations such as equipment deterioration, decreasing energy efficiency over time, high maintenance costs, and increased NO{sub x} emissions with increased air preheat temperature, unless special equipment is used. Praxair, Inc., supplier of oxygen and other industrial gases to the steel industry, proposes to introduce an innovative oxy-fuel burner technology (using 100% oxygen) to the steel reheating industry. Oxy-fuel combustion reduces or eliminates nitrogen in combustion air and substantially reduces waste heat carried out with flue gas. Based on technology currently used in the glass, hazardous waste, and aluminum industries, Praxair has developed and patented low temperature, oxy-fuel burners that can be used in high temperature industrial furnaces where temperature uniformity is critical and extremely low NO{sub x} emissions are desired. The technical goal of the project is to demonstrate the use of oxy-fuel burners in a slab reheat furnace while reducing energy consumption by 45% and NO{sub x} emissions by 90% within the converted furnace zones. Successful implementation of this technology also will eliminate the need to periodically replace recuperators and install NO{sub x} removal equipment.

  9. Reheat furnace upgrade results in production increase

    SciTech Connect

    Burns, A.H.; Fuhrman, F.L.

    1997-02-01

    This project is a unique example of the technique of high-intensity convective heating for generating significant material preheating that can be used to increase furnace production rate. The mathematical model predicted a production increase of 17%. The furnace has demonstrated a 22% higher sustained production rate. Oxidation rates have been gradually reduced and will be improved further by the installation of level 2 controls. The burner systems have proved to be reliable in a harsh operating environment. There has been a small improvement in the specific fuel consumption. In the case of a top-fired reheat furnace, convective pre-heating installed at the charge end of the furnace will result in a significant increase in production rate. The static thermal model developed for this project is a reliable tool for the prediction of performance of the modified furnace. The use of the high-velocity burners in the mixing zone was an effective substitute for the customary baffle wall. The installation had the benefit of preventing over-pressurization of the furnace discharge doors and enabled the operator to achieve a considerable improvement in pressure control. In addition, the removal of the baffle wall eliminated the shadowing effect where the incoming load is shaded from radiation from the heating zone. Additional turbulence in the mixing zone also had a significant impact by increasing the amount of heat removed from flue gas before it is vented from the furnace.

  10. Development of Next Generation Heating System for Scale Free Steel Reheating

    SciTech Connect

    Dr. Arvind C. Thekdi

    2011-01-27

    The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

  11. Numerical simulation for the high performance industrial reheating furnace design

    SciTech Connect

    Murakami, Hideki; Saito, Toshiaki; Hayashi, Junnichi; Hida, Atsushi

    1999-07-01

    The high performance industrial furnace, providing significant energy savings, low pollutant emission and high control ability on heating, has been developing. For designing the process, numerical simulations of a slab reheating furnace, with the advanced combustion system adopting highly preheated air have been performed, using a three-dimensional unsteady mathematical model. An essential feature of the model is the incorporation of the three-dimensional turbulent model (LES) and the Radiative Energy Absorption Distribution (READ) method. Numerical results has been verified with experimental results, velocity data of a water-model and heat flux data of a large unit furnace. The results have been, also, visualized by the thermal particle method. The numerical results lead to the conclusion that the regenerative burner system developed has the large advantage of heating slabs uniformly in a wide reheating furnace, and suggest possibility of a compact reheating furnace.

  12. Oxidation of low carbon steel in multicomponent gases. Part 2: Reaction mechanisms during reheating

    SciTech Connect

    Abuluwefa, H.T.; Guthrie, R.I.L.; Ajersch, F.

    1997-08-01

    Oxidation behavior of low carbon steel during reheating in an industrial walking-beam steel reheat furnace was investigated. It was observed that scaling (oxidation) rates were reduced by reducing the input air/fuel ratio to the furnace, thereby lowering concentrations of free oxygen in the combustion products from about 3 to 1.5 pct. Laboratory experiments involving isothermal and nonisothermal oxidation were carried out in atmospheres consisting of oxygen, carbon dioxide, water vapor, and nitrogen. A general equation for the prediction of weight gains due to oxidation during reheating, using isothermal oxidation rate constants, was developed. The prediction of weight gains from nonisothermal oxidation conducted in the laboratory was poor, owing to a separation of the scale from the metal substrate which took place at about 900 C. The predicted weight gains during reheating in the industrial reheat furnace indicated that oxidation rats during reheating were intermediate between linear and parabolic, especially during reheating with high air/fuel ratio. However, the linear mechanism predominated. Laboratory isothermal experiments for oxidation in atmospheres containing fee oxygen showed that the magnitude of the linear oxidation rates were determined by the oxygen concentration in the atmosphere. It was concluded that the observed reduction in scaling rates during reheating of low carbon steel in the industrial reheat furnace was a result of the lower free oxygen level in the furnace atmosphere.

  13. Benefits of ceramic fiber for saving energy in reheat furnaces

    SciTech Connect

    Norris, A. )

    1993-07-01

    Refractory ceramic fiber products offer thermal insulation investment in reheat furnaces by helping to keep operating cost low and product quality high. These products are used in a range of applications that include: furnace linings; charge and discharge door insulation; skidpipe insulation; and furnace repair and maintenance. The many product forms (blankets, modules, boards, textiles, and coatings) provide several key benefits: faster cycling, energy savings and personnel protection.

  14. Application of the Spectral Line-based Weighted-Sum-of-Gray-Gases model (SLWSGG) to the calculation of radiative heat transfer in steel reheating furnaces firing on low heating value gases

    NASA Astrophysics Data System (ADS)

    Nguyen, P. D.; Danda, A.; Embouazza, M.; Gazdallah, M.; Evrard, P.; Feldheim, V.

    2012-06-01

    The Spectral Line-based Weighted-Sum-of-Gray-Gases (SLWSGG) model is applied to calculate the gaseous radiative properties of the aero- or oxy-combustion products of low heating value gases issued from steel making process such as Blast Furnace Gas (BFG) as well as of high heating value gases such as Coke Oven Gas (COG) and conventional Natural Gas (NG). The comparison of total emissivities shows that the 3-gray-gases SLWSGG model is in very good agreement with the Hottel and Sarofim's database. The 3-gray-gases SLWSGG model is then integrated into AnsysFluent® Discrete Ordinates method under User Defined Function and CFD simulations are performed using these combined models. The simulations are done, with full combustion-radiation coupling, for steel reheating furnaces firing on three types of gases: BFG, COG and NG. The results are compared with the simulations realized with the 1-gray-gas WSGG model available in AnsysFluent®. The comparison shows that the 1-gray-gas WSGG model highly overestimates the steel discharging temperature as compared to the 3-gray-gases SLWSGG model. Significant temperature differences are observed between the two radiative models, i.e. 116°C, 55°C and 67°C for the BFG, COG and NG cases, respectively. It can be concluded that the 3-gray-gases SLWSGG model should be used to calculate the radiation heat transfer in large industrial furnaces with more accuracy not only for low heating value gases such as BFG but also for high heating value gases such as COG and NG.

  15. The development, verification, and application of a steady-state thermal model for the pusher-type reheat furnace

    SciTech Connect

    Barr, P.V.

    1995-08-01

    This article outlines the development of a steady-state thermal model for the pusher-type steel reheating furnace. Problems commonly encountered with this furnace type are skidmark generation, scale formation, and high energy consumption. The objective of the work is to provide a means by which furnace users might assess the effectiveness of changes to current operating practices, proposed furnace modifications, or new furnace designs in controlling these difficulties. The operation of the model, which develops the thermal history of an individual slab or billet as it passes through the furnace, is presented, and each of the three modules that comprise the model is described. Initial verification of the model has been carried out using data obtained in a separate campaign of plant trials on several 32-m furnace reheating slabs, and model predictions for steel temperatures at six locations within the steel are shown to be in good agreement with the experimental results. The model is used to examine the influence of two skid designs and several placement strategies on skidmark severity and energy losses to the skid system. Although skidmark severity at the intermediate stages of heating is shown to be dependent on both the skid type and the location of any offsets, it is demonstrated that the skidmark present in the discharged steel is determined primarily by the skid type employed over the final section of the furnace. The results suggest that, in the absence of a hearth section, the use of a well-insulated, cold-rider skid system over the majority of the furnace length, followed by a single offset of all skids occurring at the transition to a short section of hot-rider skids near the furnace discharge, is sufficient to suppress the final skidmark to a level very close to the minimum achievable with that particular skid design.

  16. Application of Advanced Process Control techniques to a pusher type reheating furnace

    NASA Astrophysics Data System (ADS)

    Zanoli, S. M.; Pepe, C.; Barboni, L.

    2015-11-01

    In this paper an Advanced Process Control system aimed at controlling and optimizing a pusher type reheating furnace located in an Italian steel plant is proposed. The designed controller replaced the previous control system, based on PID controllers manually conducted by process operators. A two-layer Model Predictive Control architecture has been adopted that, exploiting a chemical, physical and economic modelling of the process, overcomes the limitations of plant operators’ mental model and knowledge. In addition, an ad hoc decoupling strategy has been implemented, allowing the selection of the manipulated variables to be used for the control of each single process variable. Finally, in order to improve the system flexibility and resilience, the controller has been equipped with a supervision module. A profitable trade-off between conflicting specifications, e.g. safety, quality and production constraints, energy saving and pollution impact, has been guaranteed. Simulation tests and real plant results demonstrated the soundness and the reliability of the proposed system.

  17. Unique solution for accurate in-situ infrared profiling in reheat furnaces

    NASA Astrophysics Data System (ADS)

    Primhak, David; Wileman, Ben; Drögmöller, Peter

    2010-05-01

    As thermal imaging becomes a more accepted technology in industrial environments it can provide exciting new solutions to applications that have been previously dominated by single point pyrometers. The new development of an uncooled focal plane array thermal imager with a narrow band 3.9μm filter and background compensation processing enables measurements in industrial furnaces to provide temperature profiling of the product. This paper will show why the use of a 3.9μm camera with a borescope optic is the most accurate noncontact method for in-furnace temperature measurement. This will be done using the example of a reheat furnace where in a controlled trial using an instrumented billet the measurement from the IR device was shown to accurately track the thermocouple temperature during a variety of furnace operating conditions.

  18. A thermal system model for a radiant-tube continuous reheating furnace

    SciTech Connect

    Ramamurthy, H.; Ramadhyani, S.; Viskanta, R.

    1995-10-01

    A thermal system mathematical model developed for a gas-fired radiant-tube continuous reheating furnace is discussed. The mathematical model of the furnace integrates submodels for combustion and heat transfer within the radiant tube with models for the furnace enclosure. The transport processes occurring in the radiant tube are treated using a one-dimensional scheme, and the radiation exchange between the load, the radiant-tube surfaces, and the furnace refractories are analyzed using the radiosity method. The continuous furnace operation is simulated under steady-state conditions. Model simulations of load surface temperature variation compare well with measurements in an industrial galvannealing furnace. The scope and flexibility of the model are assessed by performing extensive parametric studies using furnace geometry, material properties, and operating conditions as input parameters in the model and predicting the thermal performance of the furnace. The various parameters studied include the effects of load and refractory emissivities, load velocities, properties o the stock material, and variations in the radiant-tube designs.

  19. A thermal system model for a radiant-tube continuous reheating furnace

    NASA Astrophysics Data System (ADS)

    Ramamurthy, H.; Ramadhyani, S.; Viskanta, R.

    1995-10-01

    A thermal system mathematical model developed for a gas-fired radiant-tube continuous reheating furnace is discussed. The mathematical model of the furnace integrates submodels for combustion and heat transfer within the radiant tube with models for the furnace enclosure. The transport processes occurring in the radiant tube are treated using a one-dimensional scheme, and the radiation exchange between the load, the radiant-tube surfaces, and the furnace refractories are analyzed using the radiosity method. The continuous furnace operation is simulated under steady-state conditions. Model simulations of load surface temperature variation compare well with measurements in an industrial galvannealing furnace. The scope and flexibility of the model are assessed by performing extensive parametric studies using furnace geometry, material properties, and operating conditions as input parameters in the model and predicting the thermal performance of the furnace. The various parameters studied include the effects of load and refractory emissivities, load velocities, properties of the stock material, and variations in the radiant-tube designs.

  20. Development of an advanced gas-fired furnace for high-temperature heating of continuously cast thin-section steel products. Final report, January-December 1986

    SciTech Connect

    Franz, D.G.

    1987-01-01

    The project involved the development of preliminary design parameters for two different types of gas-fired furnaces capable of reheating thin sections (i.e., 1-inch thick) of continuously cast steel. These reheated thin steel sections are sent directly into with Hot Strip Mill finishing stands without further reductions. For the Hot Strip Mill configurations where a thin section continuous caster may be close coupled in-line with the finishing stands, a roller hearth furnace was developed. This furnace was designed to reheat the as-cast thin section in flat form at a production rate of 250 tons/hour. For the Hot Strip Mill configuration where a thin section caster may have to be located remote from the finishing stands, a car bottom furnace was developed. This furnace was designed to reheat the thin section in coiled form at a production rate of 125 tons/hour. Either of these thin section reheat furnaces will require only 32% of the fuel requirement of existing reheat furnace operations that process continuously cast steel slabs.

  1. Blast furnace injection developments in British Steel

    SciTech Connect

    Jukes, M.H.

    1996-12-31

    British Steel has four integrated steel works, i.e., Llanwern, Port Talbot, Scunthorpe, Teesside, with a total of ten blast furnaces, nine of which are currently operating. The furnaces range in size from the 14 meters (45 feet 11 inches) hearth diameter Redcar No. 1 furnace at Teesside (a single furnace works) to the 8.33 meters (27 feet 4 inches) hearth Queen Mary and Queen Bess furnaces at Schunthorpe, with a total of four furnaces at that works. All have injection systems installed, those at Scunthorpe being equipped with granular coal injection and all others currently working with oil injection. The driving force behind the development of blast furnace injection has been as a means for introducing reducing agents (British Steel now refers to coke plus hydrocarbon injectants as total reductants) into the process as a part substitute/supplement for top charged coke and the technology is still being developed and used for that purpose. By utilizing practical experience and observing the work of others, British Steel has been assessing blast furnace injection technology experimentally for purposes other than the introduction of reducing agents.

  2. 20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAILED OBLIQUE VIEW SOUTHWEST FURNACE 2, SHOWING STEEL FRAME BOXES FOR COUNTERWEIGHTS, AND FURNACE HEATING PIPES AT RIGHT. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA

  3. 30. Photocopy of photograph. STEEL PLANT, OPEN HEARTH FURNACE CHARGING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photocopy of photograph. STEEL PLANT, OPEN HEARTH FURNACE CHARGING CREW, 1910. (From the Bethlehem Steel Corporation Colletion, Seattle, WA) - Irondale Iron & Steel Plant, Port Townsend, Jefferson County, WA

  4. On-line and in situ monitoring of oxygen concentration and gas temperature in a reheating furnace utilizing tunable diode-laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Sandström, Lars; Malmberg, Donald

    2002-09-01

    Increased demands on energy savings and quality control in metallurgical processes have created incentives for new methods to monitor and control the process. In this paper we will present a field trial that shows the potential of tunable diode-laser spectroscopy (TDLS) for simultaneous contact free measuring and monitoring of the oxygen concentration as well as the gas temperature in a reheating furnace during production. The field trials were carried out at an oil-fueled reheating furnace during 7 weeks of production. The tunable diode-laser spectrometer was measuring in situ across the preheating zone and the soaking zone in the furnace. During the campaign the oxygen concentration and the gas temperature in the furnace environment were simultaneously monitored and instantaneous variations in these parameters could easily be recorded and subsequently correlated to actual changes in the process. Furthermore, the much shorter response-time of the TDLS technique compared with conventional measurement methods such as thermocouples and extractive gas analyzers was also demonstrated during the trials. The results show the potential for the TDLS technique to be used for energy savings as well as product quality improvements by controlling the burners in the reheating furnace. The results show that it would be possible to control and optimize the oxygen concentration with TDLS in the control loop of the reheating furnace.

  5. Welding procedures to mitigate reheat-PWHT cracking in A710/A736 type steels

    SciTech Connect

    Lundin, C.D.; Upitis, E.

    1996-06-01

    In the mid 1980s research on the behavior of the HAZ of A710/A736 type materials, at The University of Tennessee, revealed that a distinct sensitivity to reheat/PWHT cracking in the weld HAZ was in evidence. Subsequent work, sponsored by the Pressure Vessel Research Council (PVRC) of the Welding Research Council (WRC), more clearly documented the reheat/PWHT cracking potential in terms of the weld HAZ thermal history and contrasted the behavior to other HSLA steels. Additional research was undertaken by PVRC/WRC and the Materials Properties Council (MPC) on the Cu precipitation-strengthened A710/A736 materials, and the work was extended to similar HSLA 80/100 alloys developed for US Navy applications. The follow-on PVRC/WRC work was conducted at The University of Tennessee and also at Lehigh University. This research resulted in fabrication controls, detailed here, which are considered effective in mitigating reheat/PWHT cracking.

  6. INTERIOR VIEW OF BASEMENT UNDER FURNACE NO. 2 SHOWING STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF BASEMENT UNDER FURNACE NO. 2 SHOWING STEEL AND REFRACTORY BRICK SUPPORT SYSTEM. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  7. 6. DETAIL VIEW OF SPIN FORM FURNACE FOR STAINLESS STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF SPIN FORM FURNACE FOR STAINLESS STEEL FABRICATION. STAINLESS STEEL WAS MACHINED IN SIDE A OF THE BUILDING, BEGINNING IN 1957. (4/24/78) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  8. Development of Bimodal Grain Structures in Nb-Containing High-Strength Low-Alloy Steels during Slab Reheating

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Debalay; Davis, Claire; Strangwood, Martin

    2008-08-01

    Bimodal (mixed coarse and fine) grain structures, which have been observed in some Nb-containing thermomechanically-controlled rolled steel plates, adversely affect their mechanical properties by causing scatter in cleavage fracture stress values. It is known that bimodal grain structures can develop during reheating prior to rolling; however, no quantitative predictions of the level of bimodality or the critical reheat temperatures for formation have been reported. In this article, three high-strength low-alloy (HSLA) steel slabs with varying microalloying additions (Ti, Nb, and V) have been characterized in the as-continuously cast and reheated (to various temperatures in the range 1050 °C to 1225 °C) conditions to determine the link between their grain size distribution (and any bimodality observed) and the microalloy precipitate type, size, and distribution. The as-cast slabs showed inhomogeneous microalloying precipitate distributions with the separation between precipitate-rich and precipitate-poor regions being consistent with interdendritic segregation and hence, the secondary dendrite arm spacing (SDAS). The susceptibility of the slabs to the formation of bimodality, based on the steel chemical compositions and critical reheat temperature ranges has been identified, both experimentally and theoretically using ThermoCalc (Thermo-Calc Software, Stockholm, Sweden) modeling of precipitate stability in the solute-rich and the solute-depleted regions formed during casting.

  9. Inland Steel's No. 7 blast furnace third reline

    SciTech Connect

    Lowrance, K.F. II ); Johansson, J.; Carter, W.L. )

    1994-09-01

    The background information, investigation and benchmarking that led to a decision by Inland Steel to partially reline No. 7 blast furnace is covered. This approach reduced actual downtime on the furnace and extended the current campaign. This alternative allowed for the rebalancing of the physical plant of No. 7 blast furnace. Areas of scope covered are hearth, stack, stoves, gas cleaning and furnace top. Included are highlights of the execution of the project including schedules, blowdown, salamander tap, quench, dig out/descale, scaffolding used and brick installation. A summary of the actual results of the work is presented along with information on production planned, blow-in and the first 20 days of production.

  10. RECYCLING OF ELECTRIC ARC FURNACE DUST: JORGENSEN STEEL FACILITY

    EPA Science Inventory

    This document is an evaluation of the Ek Glassification Process to recycle and convert K061-tested waste (Electric Arc Furnace) and other by products of the steel-making industry into usable products. he process holds potential for replacing the need for expensive disposal costs ...

  11. AISI/DOE Technology Roadmap Program: Development of an O2-Enriched Furnace System for Reduced CO2 and NOx Emissions For the Steel Industry

    SciTech Connect

    Edward W. Grandmaison; David J. Poirier; Eric Boyd

    2003-01-20

    An oxygen-enriched furnace system for reduced CO2 and NOx emission has been developed. The furnace geometry, with a sidewall-mounted burner, was similar to configurations commonly encountered in a steel reheat furnace. The effect of stack oxygen concentration, oxygen enrichment level and air infiltration on fuel savings/CO2 reduction, NOx emissions and scale formation were investigated. The firing rate required to maintain the furnace temperature at 1100 C decreased linearly with increasing oxygen enrichment. At full oxygen enrichment a reduction of 40-45% in the firing rate was required to maintain furnace temperature. NOx emissions were relatively constant at oxygen enrichment levels below 60% and decreased concentration at all oxygen enrichment levels. Air infiltration also had an effect on NOx levels leading to emissions similar to those observed with no air infiltration but with similar stack oxygen concentrations. At high oxygen enrichment levels, there was a larger variation in the refractory surface-temperature on the roof and blind sidewall of the furnace. Scale habit, intactness, adhesion and oxidation rates were examined for five grades of steel over a range of stack oxygen concentrations and oxygen enrichment levels at 1100 degree C. The steel grade had the largest effect on scaling properties examined in this work. The stack oxygen concentration and the oxygen enrichment level had much smaller effects on the scaling properties.

  12. Metallurgical factors on toughness in intercritically reheated HAZ of low-C low-alloy steel

    SciTech Connect

    Shiwaku, Toyoaki; Kobayashi, Yoichiro; Shimizu, Masato; Toyoda, Masao; Minami, Fumiyoshi

    1994-12-31

    Metallurgical factors on toughness in heat affected zone (HAZ) intercritically reheated between Ac1 and Ac3 were studied by welding thermal cycle simulation, because intercritically reheated HAZ has been, in general, recognized to be especially embrittled region in a multi-pass welded joint. The toughness of intercritical HAZ (ICHAZ) deteriorated with increasing cooling rate, while the toughness of intercritically reheated coarse grain HAZ (ICCGHAZ) deteriorated with decreasing cooling rate. It is found that the dominant metallurgical factor on toughness of ICHAZ is martensite-austenite (M-A) constituent, but those of ICCGHAZ are both M-A constituent and effective grain size depending on prior microstructure of ICCGHAZ.

  13. Evaluation of steel furnace slags as cement additives

    SciTech Connect

    Tuefekci, M.; Demirbas, A.; Genc, H.

    1997-11-01

    Chemical and physical properties and strength development have been studied for six granulated steel furnace slags from the normal steelmaking process. This paper reports results of research performed to develop cement mixture proportions using these slags. The influence of slag proportions, specific surface, and water demand on compressive strength and bulk density of cement blends are presented in this paper. The different test results, which were compared with the Turkish Standards, in general, were found to be within the limits.

  14. Development of a dynamic thermal system model for a low inertia reheating furnace: Comparison of test data with predictions

    SciTech Connect

    Yoshino, H.; Viskanta, R.

    1999-07-01

    The batch, indirectly-fired furnace, called low inertia furnace (LIF), is simulated using a dynamic thermal model. The load consisting of a basket filled with small parts is placed on the hearth (bottom) of the furnace, and the LIF is heated by flat radiant heaters (FRH) which are installed on the sidewalls, the ends and the roof of the furnace. Transient heat transfer in the load, walls, roof and gas are modeled. Natural gas is burned in the heaters, but the combustion and heat transfer processes in the FRHs are not treated. Instead, measured heater surface temperature vs. time is used to drive the dynamic thermal system model. The mathematical model of the furnace integrates the models for heat transfer within the enclosure and walls with the porous medium load model. Radiation heat exchange between the load, the radiant heaters and the furnace walls are analyzed using the radiosity method. Heat transfer in the porous medium is by conduction, radiation and convection between the solid and gas phases. Radiation within the load is considered to be a diffusion process. Two different porous medium models for the load are developed, and the model predictions are compared with test data obtained by the Institute of Gas Technology on a low inertia indirectly-fired furnace. Parametric calculations are performed to identify the important model parameters and validate the models.

  15. The influence of furnace wall emissivity on steel charge heating

    NASA Astrophysics Data System (ADS)

    Švantner, Michal; Honnerová, Petra; Veselý, Zdeněk

    2016-01-01

    Radiation heat transfer is one of the most important heat transfer modes in high-temperature applications. It is a strongly non-linear process, which depends on the temperature and emissivity of heat exchange surfaces, their geometrical configuration and properties of the surrounding atmosphere. Heat exchange intensity between the surfaces depends mainly on their temperature differences. However, their emissivities influence significantly the radiation heat transfer process as well. Emissivity is a function of surface state or atmospheric chemical reactions, temperature and wavelengths. Because of these non-linearities, it is very complicated to evaluate such a real problem by numerical simulation, and experimental work seems to be the most reliable evaluation procedure. We applied special high-temperature coatings of different emissivities on furnace walls to evaluate the dependence between the furnace wall emissivity and steel charge heating. The emissivity analyses of the coatings used and emissivity measurement results in dependence on wavelength are presented in this paper. The dependence of the charge heating on the furnace wall emissivity, the importance of emissivity wavelength dependence and significant differences of the emissivity effect in electrical and gas heated furnaces are shown. The possible consequences and practical benefits are also discussed in this paper.

  16. Recycling of electric arc furnace dust: Jorgensen steel facility

    SciTech Connect

    Jackson, T.W.; Chapman, J.S.

    1995-01-01

    This document is an evaluation of the Ek Glassification(TM) Process to recycle and convert K061-listed waste (Electric Arc Furnace or EAF dust) and other byproducts of the steel-making industry into usable products. The Process holds potential for replacing the need for expensive disposal costs associated with the listed waste with the generation of marketable products. The products include colored glass and glass-ceramics; ceramic glazes, colorants, and fillers; roofing granules and sandblasting grit; and materials for Portland cement production. Field testing of the technology was conducted by the U.S. Environmental Protection Agency (U.S. EPA) in early July of 1991 at the Earle M. Jorgensen Steel Co. (EMJ) plant in Seattle, Washington, and both technical and economic aspects of the technology were examined. TCLP testing of the product determined that leachability characteristics of metals in the product meet treatment standards for K061-listed waste. The Process was also shown to be economically viable, based on capital and operating cost estimates, and profit and revenue forecasts for a 21,000 ton-per-year operation. Although this effort showed that the technology holds promise, regulatory compliance should be evaluated on the basis of the actual hardware configuration and operating procedures along with the leachability of the specific product formulations to be used.

  17. Characterization of steel mill electric-arc furnace dust.

    PubMed

    Sofilić, Tahir; Rastovcan-Mioc, Alenka; Cerjan-Stefanović, Stefica; Novosel-Radović, Vjera; Jenko, Monika

    2004-06-18

    In order to make a complete characterization of electric-arc furnace (EAF) dust, as hazardous industrial waste, and to solve its permanent disposal and/or recovery, bearing in mind both the volumes formed in the Croatian steel industry and experiences of developed industrial countries, a study of its properties was undertaken. For this purpose, samples of EAF dust, taken from the regular production process in the Zeljezara Sisak Steel Mill between December 2000 and December 2001, were subjected to a series of tests. The chemical composition of EAF dust samples was investigated by means of a several different analytical methods. The results from the chemical analysis show that the approximate order of abundance of major elements in EAF dusts is as follows: Fe, Zn, Mn, Ca, Mg, Si, Pb, S, Cr, Cu, Al, C, Ni, Cd, As and Hg. Granular-metric composition of single samples was determined by applying sieve separation. Scanning electron micro-structural examination of EAF dust microstructure was performed and results indicated that all twelve EAF dusts were composed of solid spherical agglomerates with Fe, Zn, Pb, O, Si and Ca as the principal element. The investigation of grain morphology and the mineralogical composition of EAF dust were taken by combination of high resolution Auger electron spectroscopy (HR AES), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction analysis. The analysis of XPS-spectra determined the presence of zinc in the form of ZnO phase and the presence of lead in the form of PbO phase, i.e. PbSO3/PbSO4 forms. The results of the X-ray diffraction phase analysis show that the basis of the examined EAF dust samples is made of a mixture of metal oxides, silicates and sulphates. The metal concentration, anions, pH value and conductivity in water eluates was determined in order to define the influence of EAF dust on the environment. PMID:15177746

  18. Optimization of a Steel Plant with Multiple Blast Furnaces Under Biomass Injection

    NASA Astrophysics Data System (ADS)

    Wiklund, Carl-Mikael; Pettersson, Frank; Saxén, Henrik

    2013-04-01

    The allocation of resources between several blast furnaces in an integrated steelmaking plant is studied with the aim of finding the lowest specific operation cost for steel production. In order to reduce the use of fossil fuels, biomass was considered as an auxiliary reductant in the furnace after partial pyrolysis in an external unit, as a complement to heavy fuel oil. The optimization considers raw material, energy, and emission costs and a possible credit for sold power and heat. To decrease computational requirements and to guarantee that the global optimum is found, a piecewise linearized model of the blast furnace was used in combination with linear models of the sinter-, coke-, and power plants, hot stoves, and basic oxygen furnace. The optimization was carried out under different constraints on the availability of some raw materials as well as for different efficiencies of the hot stoves of the blast furnaces. The results indicate that a non-uniform distribution of the production between the furnaces can be advantageous, and some surprising findings concerning the optimal resource allocation under constrained operation are reported.

  19. POLLUTION EFFECTS OF ABNORMAL OPERATIONS IN IRON AND STEEL MAKING. VOLUME V. ELECTRIC ARC FURNACE, MANUAL OF PRACTICE

    EPA Science Inventory

    The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...

  20. POLLUTION EFFECTS OF ABNORMAL OPERATIONS IN IRON AND STEEL MAKING. VOLUME IV. OPEN HEARTH FURNACE, MANUAL OF PRACTICE

    EPA Science Inventory

    The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...

  1. POLLUTION EFFECTS OF ABNORMAL OPERATIONS IN IRON AND STEEL MAKING. VOLUME III. BLAST FURNACE IRONMAKING, MANUAL OF PRACTICE

    EPA Science Inventory

    The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...

  2. A Feasibility Study on Low Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    NASA Astrophysics Data System (ADS)

    Haruman, Esa; Sun, Yong; Triwiyanto, Askar; Manurung, Yupiter H. P.; Adesta, Erry Y.

    2011-04-01

    In this work, the feasibility of using an industrial fluidized bed furnace to perform low temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitridingcarburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen and carbon containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  3. A new direct steel making process based upon the blast furnace (Including scrap processing with recovery of tramp elements)

    SciTech Connect

    Nabi, G.

    1996-12-31

    Steel is produced from raw materials containing iron and alloying elements with direct elimination of oxygen and impurities in the blast furnace process. The blast furnace shaft is modified to take off load from the liquid bath and carbon is prevented from going into the liquid steel. In the gas purification system sulphur and CO{sub 2} removal facilities are included and purified reducing gases so obtained are combusted in the hearth with oxygen to produce heat for smelting. Scrap can be charged as raw material with the recovery of tramp elements with continuous production of liquid steel.

  4. Coke oven gas injection to blast furnaces

    SciTech Connect

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L.

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  5. Mathematical Model for Decarburization of Ultra-low Carbon Steel in Single Snorkel Refining Furnace

    NASA Astrophysics Data System (ADS)

    You, Zhimin; Cheng, Guoguang; Wang, Xinchao; Qin, Zhe; Tian, Jun; Zhang, Jian

    2014-09-01

    A dynamic model is developed to investigate decarburization behavior of a new type of refining equipment named Single Snorkel Refining Furnace (SSRF) in treating ultra-low carbon steel. Decarburization reactions in SSRF are considered to take place at three sites: Ar bubble surface, the bulk steel, and the bath surface. With the eccentricity of the porous plug (r e/R S) and the ratio of the snorkel diameter to the ladle diameter (D S/D L) of SSRF confirmed, circulation flow rate of molten steel is obtained through combined effects of vacuum pressure and gas flow rate. Besides, variation of the steel temperature is simulated associated with generated reaction heat and heat losses. The variation of C concentration with treatment time is divided into three stages in accordance with decarburization rates and the simulated C concentration is in reasonable agreement with actual production data. In the present study, both decarburization rates at three sites and their contributions to the overall decarburization at each stage are estimated for the first time. Through the present investigation, it is clear that vacuum pressure significantly influences decarburization efficiency of SSRF primarily by affecting the depth of CO nucleation in the bulk steel. Besides, effects of gas flow rate on decarburization rate of different stages are obtained and the opportunity of increasing gas flow rate during the treatment period has been clarified. The present model provides an efficient tool to comprehend the decarburization process in SSRF.

  6. Mathematical Model for Decarburization of Ultra-low Carbon Steel in Single Snorkel Refining Furnace

    NASA Astrophysics Data System (ADS)

    You, Zhimin; Cheng, Guoguang; Wang, Xinchao; Qin, Zhe; Tian, Jun; Zhang, Jian

    2015-02-01

    A dynamic model is developed to investigate decarburization behavior of a new type of refining equipment named Single Snorkel Refining Furnace (SSRF) in treating ultra-low carbon steel. Decarburization reactions in SSRF are considered to take place at three sites: Ar bubble surface, the bulk steel, and the bath surface. With the eccentricity of the porous plug ( r e/ R S) and the ratio of the snorkel diameter to the ladle diameter ( D S/ D L) of SSRF confirmed, circulation flow rate of molten steel is obtained through combined effects of vacuum pressure and gas flow rate. Besides, variation of the steel temperature is simulated associated with generated reaction heat and heat losses. The variation of C concentration with treatment time is divided into three stages in accordance with decarburization rates and the simulated C concentration is in reasonable agreement with actual production data. In the present study, both decarburization rates at three sites and their contributions to the overall decarburization at each stage are estimated for the first time. Through the present investigation, it is clear that vacuum pressure significantly influences decarburization efficiency of SSRF primarily by affecting the depth of CO nucleation in the bulk steel. Besides, effects of gas flow rate on decarburization rate of different stages are obtained and the opportunity of increasing gas flow rate during the treatment period has been clarified. The present model provides an efficient tool to comprehend the decarburization process in SSRF.

  7. Production of high quality steels using the scrap/electric arc furnace route

    SciTech Connect

    Houpert, C.; Lanteri, V.; Jolivet, J.M.; Guttmann, M.; Birat, J.P.; Jallon, M.; Confente, M.

    1996-12-31

    Europe, after North America, is increasing the share of electric arc furnace steelmaking at the expense of integrated steel production and the trend appears to be long term. The driving forces for this change are strong: availability of scrap, social pressure to recycle materials and economic benefits to be reaped from the small structure associated with this short and slim production route. The increasing use of scrap does raise some problems however, in terms of the tramp element build up within the scrap deposit over time. Scrap pretreatment, which aims at separating steel from non-ferrous material during preparation, is thus attracting a lot of attention. The purpose of the present work was to investigate quantitatively the potential problems related to increased levels in tramp elements, with two objectives: identify, on a case by case basis, the currently existing practical limits and devise countermeasures to further extend these limits by better controlling process parameters for instance.

  8. Onsite recycling of electric arc furnace dust: The Jorgensen Steel Facility

    SciTech Connect

    Licis, I.J.; Bermark, R.C.

    1995-10-01

    The steel-making industry produces a large amount of Electric Arc Furnace (EAF) dust as part of normal production. This waste is listed as KO61, defined as {open_quotes}emission control dust/sludge from the primary production of steel in electric arc furnaces{close_quotes} under 40 CFR 261.32. A glass making technology called Ek Glassification{trademark} (hereafter called {open_quotes}the Process{close_quotes}) has been developed by Roger B. Ek and Associates, Inc. (hereafter called {open_quotes}the Developer{close_quotes}) to recycle EAF dust and convert it, along with other byproducts of the steel-making industry, into marketable commodities. This Process was evaluated under the Waste Reduction Innovative Technology Evaluation (WRITE) Program. The project was designed and conducted in cooperation with the Washington State Department of Environmental Quality, the Process Developer and the host test site, the Earle M. Jorgensen (EMJ) Steel Company of Seattle, Washington. Test personnel for EPA were supplied by SAIC Inc., on contract to EPA. The overall objectives of the project were to conduct a pilot scale evaluation of the Process, investigate if toxic metals are leached from the products (such as colored glass and glass-ceramics; ceramic glazes, colorants, and fillers; roofing granules and sand-blasting grit; and materials for Portland cement production). Three glass recipes (Glass I, II, and III) were designed by the developer for potential use at EMJ. The EPA portion was focused on determining the toxic metals concentrations of the Glass II recipe, evaluating the P2 impact of using this Process in comparison to traditional methods of waste treatment and disposal, and assessing the economics of both.

  9. An Investigation on Low-Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    NASA Astrophysics Data System (ADS)

    Haruman, E.; Sun, Y.; Triwiyanto, A.; Manurung, Y. H. P.; Adesta, E. Y.

    2012-03-01

    In this study, the feasibility of using an industrial fluidized bed furnace to perform low-temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low-temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitriding-carburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low-temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen- and carbon-containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  10. Properties of steel foundry electric arc furnace dust solidified/stabilized with Portland cement.

    PubMed

    Salihoglu, Guray; Pinarli, Vedat; Salihoglu, Nezih Kamil; Karaca, Gizem

    2007-10-01

    Electric arc furnace dust from steel production is generated in considerable amounts worldwide and needs to be treated as hazardous waste. The aim of this study was to investigate the properties of electric arc furnace dust solidified/stabilized by using Portland cement. Mortar and paste samples were prepared with varying waste-to-binder ratios between 0% and 90%. A comprehensive experimental program was designed including XRF characterization, setting time, unconfined compressive strength, and toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), and acid neutralization capacity (ANC) tests. The results were evaluated in order to determine if the solidified /stabilized product can be disposed of at a landfill site with domestic waste or at a segregated landfill. The effect of using sand on S/S performance was also investigated. The results indicated that the solidification /stabilization process using PC helps the heavy metals to be bound in the cement matrix, but the TCLP leaching results exceeded the EPA landfilling limits. The SPLP leaching results conformed to the limits implying that the waste or S/S products can be disposed of at a segregated landfill; however the low ANC of the S/S products reveals that there may be leaching in the long-term. The sand used in the mortar samples adversely affected the S/S performance, causing higher heavy metal leaching levels, and lower pH levels in the leachate after the TCLP extraction than those measured in the leachate of the paste samples. PMID:17084503

  11. A Kinetic Ladle Furnace Process Simulation Model: Effective Equilibrium Reaction Zone Model Using FactSage Macro Processing

    NASA Astrophysics Data System (ADS)

    Van Ende, Marie-Aline; Jung, In-Ho

    2016-05-01

    The ladle furnace (LF) is widely used in the secondary steelmaking process in particular for the de-sulfurization, alloying, and reheating of liquid steel prior to the casting process. The Effective Equilibrium Reaction Zone model using the FactSage macro processing code was applied to develop a kinetic LF process model. The slag/metal interactions, flux additions to slag, various metallic additions to steel, and arcing in the LF process were taken into account to describe the variations of chemistry and temperature of steel and slag. The LF operation data for several steel grades from different plants were accurately described using the present kinetic model.

  12. Characterization and leachability of electric arc furnace dust made from remelting of stainless steel.

    PubMed

    Laforest, Guylaine; Duchesne, Josée

    2006-07-31

    Electric arc furnace dust (EAFD) is a toxic waste product made in the remelting of scrap steel. The results of a Toxicity Characteristic Leaching Procedure (TCLP) conducted on a sample of EAFD originating from the remelting of stainless steel scrap showed that the total Cr and Cr (VI) liquor concentrations (9.7 and 6.1 mg/L, respectively) exceeded the Toxicity Characteristic Regulatory Level (TCRL). The EAFD showed a complex heterogeneous mineralogy with spinel minerals group predominance. A sequential extractions method has permitted the determination of the amount of available metals (potentially mobile component) from the EAFD as follows: Cr (3%), Ni (6%), Pb (49%) and Zn (40%). Solubility controls on Cr, Pb, Zn and Ni were identified in the EAFD. This means that the Cr, Pb, Zn and Ni concentrations in solution were controlled by the solubility of some phases from EAFD. The concentrations of Ni and Zn, which are metals not regulated by TCRL were below 0.41 and 1.3 mg/L, respectively. The solubility control on Pb was sufficient to decrease its concentration (<0.24 mg/L) to a level below the TCRL. However, the control on Cr was not sufficient to decrease its concentration (between 117 and 331 mg/L) to below the TCRL. PMID:16361056

  13. The influence of the structure of the metal load removal from liquid steel in electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Pǎcurar, Cristina; Hepuť, Teodor; Crisan, Eugen

    2016-06-01

    One of the main technical and economic indicators in the steel industry and steel respectively the development it is the removal of liquid steel. This indicator depends on several factors, namely technology: the structure and the quality metal load, the degree of preparedness of it, and the content of non-metallic material accompanying the unit of drawing up, the technology for the elaboration, etc. research has been taken into account in drawing up steel electric arc furnace type spring EBT (Electric Bottom taping), seeking to load and removing components of liquid steel. Metal load has been composed of eight metal grades, in some cases with great differences in terms of quality. Data obtained were processed in the EXCEL spreadsheet programs and MATLAB, the results obtained being presented both graphically and analytically. On the basis of the results obtained may opt for a load optimal structure metal.

  14. EXTERIOR VIEW, BLAST FURNACE NO. 3 (JANE FURNACE) CENTER, NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, BLAST FURNACE NO. 3 (JANE FURNACE) CENTER, NO. 3 CAST HOUSE TO THE LEFT, WEST ORE BRIDGE TO THE RIGHT. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

  15. Factors Affecting Scale Adhesion on Steel Forgings

    NASA Astrophysics Data System (ADS)

    Zitterman, J. A.; Bacco, R. P.; Boggs, W. E.

    1982-04-01

    Occasionally, undesirable "sticky" adherent scale forms on low-carbon steel during reheating for hot forging. The mechanical abrading or chemical pickling required to remove this scale adds appreciably to the fabrication cost. Characterization of the steel-scale system by metallographic examination, x-ray diffraction, and electron-probe microanalysis revealed that nickel, silicon, and/or sulfur might be involved in the mechanism of sticky-scale formation. Laboratory reheating tests were conducted on steels with varied concentrations of nickel and silicon in atmospheres simulating those resulting from burning natural gas or sulfur-bearing fuels. Subsequent characterization of the scale formed during the tests tends to confirm that the composition of the steel, especially increased nickel and silicon contents, and the presence of the sulfur in the furnace atmosphere cause the formation of this undesirable scale.

  16. Observing inflationary reheating.

    PubMed

    Martin, Jérôme; Ringeval, Christophe; Vennin, Vincent

    2015-02-27

    Reheating is the epoch which connects inflation to the subsequent hot big-bang phase. Conceptually very important, this era is, however, observationally poorly known. We show that the current Planck satellite measurements of the cosmic microwave background (CMB) anisotropies constrain the kinematic properties of the reheating era for most of the inflationary models. This result is obtained by deriving the marginalized posterior distributions of the reheating parameter for about 200 models of slow-roll inflation. Weighted by the statistical evidence of each model to explain the data, we show that the Planck 2013 measurements induce an average reduction of the posterior-to-prior volume by 40%. Making some additional assumptions on reheating, such as specifying a mean equation of state parameter, or focusing the analysis on peculiar scenarios, can enhance or reduce this constraint. Our study also indicates that the Bayesian evidence of a model can substantially be affected by the reheating properties. The precision of the current CMB data is therefore such that estimating the observational performance of a model now requires incorporating information about its reheating history. PMID:25768752

  17. Observing Inflationary Reheating

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme; Ringeval, Christophe; Vennin, Vincent

    2015-02-01

    Reheating is the epoch which connects inflation to the subsequent hot big-bang phase. Conceptually very important, this era is, however, observationally poorly known. We show that the current Planck satellite measurements of the cosmic microwave background (CMB) anisotropies constrain the kinematic properties of the reheating era for most of the inflationary models. This result is obtained by deriving the marginalized posterior distributions of the reheating parameter for about 200 models of slow-roll inflation. Weighted by the statistical evidence of each model to explain the data, we show that the Planck 2013 measurements induce an average reduction of the posterior-to-prior volume by 40%. Making some additional assumptions on reheating, such as specifying a mean equation of state parameter, or focusing the analysis on peculiar scenarios, can enhance or reduce this constraint. Our study also indicates that the Bayesian evidence of a model can substantially be affected by the reheating properties. The precision of the current CMB data is therefore such that estimating the observational performance of a model now requires incorporating information about its reheating history.

  18. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOEpatents

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  19. Assessment of hexavalent chromium release in Malaysian electric arc furnace steel slag for fertilizer usage

    NASA Astrophysics Data System (ADS)

    Bankole, L. K.; Rezan, S. A.; Sharif, N. M.

    2014-03-01

    This study investigates the leaching of hexavalent chromium (Cr (VI)) from electric arc furnace steel slag as Cr (VI) is classified as human carcinogen. Batch leaching tests were performed for 16 days. The lixiviants used were alkaline, de-ionized and rain water. After 16 days, Cr (VI) was found to be highest in alkaline water (0.03 mg/L) and lowest in de-ionized water (0.01 mg/L). Besides the lixiviants used, slag stirring speed and liquid to solid ratio also affect Cr (VI) released. The experimental work was complimented with slag characterization using XRF, XRD and SEM/EDX analysis. The leaching process was also simulated via Factsage software to calculate isothermal pourbaix diagrams. The Cr (VI) released was low and below the threshold of 0.1 mg/L set for public water systems. Recycle the slag as fertilizer should be considered safe as it does not exceed the safety limit set for Cr (VI) dissolution.

  20. Environmental impacts of asphalt mixes with electric arc furnace steel slag.

    PubMed

    Milačič, Radmila; Zuliani, Tea; Oblak, Tina; Mladenovič, Ana; Ančar, Janez Šč

    2011-01-01

    Electric arc furnace (EAF) steel slag can be used as an alternative high-quality material in road construction. Although asphalts with slag aggregates have been recognized as environmentally acceptable, there is a lack of data concerning the potential leaching of toxic Cr(VI) due to the highly alkaline media of EAF slag. Leaching of selected water extractable metals from slag indicated elevated concentrations of total chromium and Cr(VI). To estimate the environmental impacts of asphalt mixes with slag, leachability tests based on diffusion were performed using pure water and salt water as leaching agents. Compact and ground asphalt composites with natural aggregates, and asphalt composites in which the natural aggregates were completely replaced by slag were prepared. The concentrations of total chromium and Cr(VI) were determined in leachates over a time period of 6 mo. After 1 and 6 mo, the concentrations of some other metals were also determined in the leachates. The results indicated that chromium in leachates from asphalt composites with the addition of slag was present almost solely in its hexavalent form. However, the concentrations were very low (below 25 μg L) and did not represent an environmental burden. The leaching of other metals from asphalt composites with the addition of slag was negligible. Therefore, the investigated EAF slag can be considered as environmentally safe substitute for natural aggregates in asphalt mixes. PMID:21712585

  1. Steel foundry electric arc furnace dust management: stabilization by using lime and Portland cement.

    PubMed

    Salihoglu, Guray; Pinarli, Vedat

    2008-05-30

    The purpose of this study was to determine an appropriate treatment for steel foundry electric arc furnace dust (EAFD) prior to permanent disposal. Lime and Portland cement (PC)-based stabilization was applied to treat the EAFD that contains lead and zinc above the landfilling limits, and is listed by USEPA as hazardous waste designation K061 and by EU as 10 02 07. Three types of paste samples were prepared with EAFD content varying between 0 and 90%. The first type contained the EAFD and Portland cement, the second contained the EAFD, Portland cement, and lime, and the third contained the EAFD and lime. All the samples were subjected to toxicity characteristics leaching procedure (TCLP) after an air-curing period of 28 days. pH changes were monitored and acid neutralization capacity of the samples were examined. Treatment effectiveness was evaluated in terms of reducing the heavy metal leachability to the levels below the USEPA landfilling criteria. An optimum composition for the EAFD stabilization was formulated as 30% EAFD +35% lime +35% Portland cement to achieve the landfilling criteria. The pH interval, where the solubility of the heavy metals in the EAFD was minimized, was found to be between 8.2 and 9.4. PMID:17977656

  2. Valorisation of electric arc furnace steel slag as raw material for low energy belite cements.

    PubMed

    Iacobescu, R I; Koumpouri, D; Pontikes, Y; Saban, R; Angelopoulos, G N

    2011-11-30

    In this paper, the valorisation of electric arc furnace steel slag (EAFS) in the production of low energy belite cements is studied. Three types of clinkers were prepared with 0 wt.% (BC), 5 wt.% (BC5) and 10 wt.% (BC10) EAFS, respectively. The design of the raw mixes was based on the compositional indices lime saturation factor (LSF), alumina ratio (AR) and silica ratio (SR). The clinkering temperature was studied for the range 1280-1400°C; firing was performed at 1380°C based on the results regarding free lime and the evolution of microstructure. In order to activate the belite, clinkers were cooled fast by blown air and concurrent crushing. The results demonstrate that the microstructure of the produced clinkers is dominated by belite and alite crystals, with tricalcium aluminate and tetracalcium-alumino-ferrite present as micro-crystalline interstitial phases. The prepared cements presented low early strength development as expected for belite-rich compositions; however the 28-day results were 47.5 MPa, 46.6 MPa and 42.8 MPa for BC, BC5 and BC10, respectively. These values are comparable with OPC CEMI 32.5 N (32.5-52.5 MPa) according to EN 197-1. A fast setting behaviour was also observed, particularly in the case of BC10, whereas soundness did not exceed 1mm. PMID:21944704

  3. Constraining curvatonic reheating

    NASA Astrophysics Data System (ADS)

    Hardwick, Robert J.; Vennin, Vincent; Koyama, Kazuya; Wands, David

    2016-08-01

    We derive the first systematic observational constraints on reheating in models of inflation where an additional light scalar field contributes to primordial density perturbations and affects the expansion history during reheating. This encompasses the original curvaton model but also covers a larger class of scenarios. We find that, compared to the single-field case, lower values of the energy density at the end of inflation and of the reheating temperature are preferred when an additional scalar field is introduced. For instance, if inflation is driven by a quartic potential, which is one of the most favoured models when a light scalar field is added, the upper bound Treh < 5 × 104 GeV on the reheating temperature Treh is derived, and the implications of this value on post-inflationary physics are discussed. The information gained about reheating is also quantified and it is found that it remains modest in plateau inflation (though still larger than in the single-field version of the model) but can become substantial in quartic inflation. The role played by the vev of the additional scalar field at the end of inflation is highlighted, and opens interesting possibilities for exploring stochastic inflation effects that could determine its distribution.

  4. Advances in chemical and physical properties of electric arc furnace carbon steel slag by hot stage processing and mineral mixing.

    PubMed

    Liapis, Ioannis; Papayianni, Ioanna

    2015-01-01

    Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector. PMID:25261762

  5. STACK GAS REHEAT EVALUATION

    EPA Science Inventory

    The report gives results of technical and economic evaluations of stack gas reheat (SGR) following wet flue gas desulfurization (FGD) for coal-fired power plants. The evaluations were based on information from literature and a survey of FGD users, vendors, and architect/engineer ...

  6. Inflection point inflation and reheating

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Min; Lee, Hyun Min

    2016-06-01

    We revisit the inflection point inflation with an extended discussion to large field values and consider the reheating effects on the inflationary predictions. Parametrizing the reheating dynamics in terms of the reheating temperature and the equation of state during reheating, we show how the observationally favored parameter space of inflection point inflation is affected by reheating dynamics. Consequently, we apply the general results to the inflation models with non-minimal coupling, such as the SM Higgs inflation and the B-L Higgs inflation.

  7. General view of blast furnace plant, with blast furnace "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of blast furnace plant, with blast furnace "A" (built in 1907) to the left; in the foreground is the turbo-blower and blast furnace gas-powered electric generating station (built in 1919), looking northwest - Bethlehem Steel Corporation, South Bethlehem Works, Blast Furnace "A", Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  8. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  9. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-12-31

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  10. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  11. Furnace veneering systems of special design help achieve energy reduction goals at Armco

    SciTech Connect

    Caspersen, L.J.

    1982-12-01

    A steel company conserves energy by veneering reheat furnaces with a ceramic fiber modular system. The furnace lining system incorporates several grades of veneering materials (modules, cements, coatings) whose application is matched to the exact conditions in the furnace. Zoned linings utilize a combination of grades of alumina-silica modules to achieve thermally efficient yet durable performance. High temperature cements exhibit good tackiness, easy module penetration and high strength retention after firing. A protective coating is sprayed in a thin layer over the modules and can be easily reapplied at a later date should it be necessary. Benefits include greater thermal control (temperature responsiveness and heating uniformity), less over-firing, less fuel use, and less heat loss. Fuel efficiency is increased by 20 to 50%.

  12. Steel: Energy-Efficient Arc Furnace Dust into Saleable Chemical Products

    SciTech Connect

    Ericksen, E.

    1999-01-29

    Drinkard Metalox, Inc., has developed an innovative new technology to completely process electric arc furnace dust into saleable products by means of a hydro metallurgical process. Order this fact sheet to read how this new technology can both lower energy costs and eliminate the need to dispose of and transport hazardous waste off site.

  13. Banking the Furnace: Restructuring of the Steel Industry in Eight Countries.

    ERIC Educational Resources Information Center

    Bain, Trevor

    A study examined how the cross-national differences in the social contract among managers, unions, and government influenced adjustment strategies in steel. The restructuring process in eight major steel-producing countries was studied to determine who bore the costs of restructuring--employers, employees, or government--and which industrial…

  14. Reducing BOF Hood Scrubber Energy Costs at a Steel Mill (Bethlehem Steel Corporation Basic Oxygen Furnace No. 3)

    SciTech Connect

    1999-01-01

    This Office of Industrial Technologies Technical Case Study reveals how Bethlehem Steel Corporation was able to save energy, reduce operational costs, and decrease system maintenance by installing a variable-frequency drive and making associated equipment modifications.

  15. Large-Scale Evaluation of Nickel Aluminide Rools In A Heat-Treat Furnace at Bethlehem Steel's (now ISG) Burns Harbor Plate Mill

    SciTech Connect

    John Mengel; Anthony Martocci; Larry Fabina; RObert Petrusha; Ronald Chango

    2003-09-01

    At Bethlehem Steel Burns Harbor Plate Division (now ISG Burns Harbor Plate Inc.)'s annealing furnace, new nickel aluminide intermetallic alloy rolls provide greater high-temperature strength and wear resistance compared to the conventional H series cast austenitic alloys currently used in the industry, Oak Ridge National Laboratory and Bethlehem (ISG) partnered under a U.S. Department of Energy, Office of Industrial Technology's Emerging Technology Deployment Program to demonstrate and evaluate the nickel aluminide intermetallic alloy rolls as part of an updated energy efficient large commercial annealing furnace system.

  16. Determination of the state of the hearth of BHP Steel's blast furnaces

    SciTech Connect

    Rex, A.; Skimmings, T.; Jelenich, L. . Rod and Bar Products Division); Zulli, P. . Newcastle Laboratories); Plat, P.; Tanzil, W.F. . Slab and Plate Products Division)

    1993-01-01

    A computer model has been developed which calculates the internal profile of the hearth from thermocouples placed in the bottom and side walls. The model accounts for both erosion of the refractory material, and the formation of skull on the refractory surfaces. Analysis of the hearth on a regular basis, by visualizing the three-dimensional hearth profile and by calculating the effective hearth liquid volume, has proved to be an effective means of evaluating the influence of feedstock (e.g. coke mean size) and operating practices on the hearth performance, and hence impacts on the furnace life.

  17. Basic Oxygen Furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands.

    PubMed

    Blanco, Ivan; Molle, Pascal; Sáenz de Miera, Luis E; Ansola, Gemma

    2016-02-01

    Basic Oxygen Furnace (BOF) steel slag aggregates from NW Spain were tested in batch and column experiments to evaluate its potential use as a substrate in constructed wetlands (CWs). The objectives of this study were to identify the main P removal mechanisms of BOF steel slag and determine its P removal capacity. Also, the results were used to discuss the suitability of this material as a substrate to be used in CWs. Batch experiments with BOF slag aggregates and increasing initial phosphate concentrations showed phosphate removal efficiencies between 84 and 99% and phosphate removal capacities from 0.12 to 8.78 mg P/g slag. A continuous flow column experiment filled with BOF slag aggregates receiving an influent synthetic solution of 15 mg P/L during 213 days showed a removal efficiency greater than 99% and a phosphate removal capacity of 3.1 mg P/g slag. In both experiments the main P removal mechanism was found to be calcium phosphate precipitation which depends on Ca(2+) and OH(-) release from the BOF steel slag after dissolution of Ca(OH)2 in water. P saturation of slag was reached within the upper sections of the column which showed phosphate removal capacities between 1.7 and 2.5 mg P/g slag. Once Ca(OH)2 was completely dissolved in these column sections, removal efficiencies declined gradually from 99% until reaching stable outlet concentrations with P removal efficiencies around 7% which depended on influent Ca(2+) for limited continuous calcium phosphate precipitation. PMID:26722756

  18. The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability.

    PubMed

    Mombelli, D; Mapelli, C; Barella, S; Gruttadauria, A; Le Saout, G; Garcia-Diaz, E

    2014-08-30

    Electric arc furnace slag (EAF) has the potential to be re-utilized as an alternative to stone material, however, only if it remains chemically stable on contact with water. The presence of hydraulic phases such as larnite (2CaO SiO2) could cause dangerous elements to be released into the environment, i.e. Ba, V, Cr. Chemical treatment appears to be the only way to guarantee a completely stable structure, especially for long-term applications. This study presents the efficiency of silica addition during the deslagging period. Microstructural characterization of modified slag was performed by SEM and XRD analysis. Elution tests were performed according to the EN 12457-2 standard, with the addition of silica and without, and the obtained results were compared. These results demonstrate the efficiency of the inertization process: the added silica induces the formation of gehlenite, which, even in caustic environments, does not exhibit hydraulic behaviour. PMID:25113518

  19. Reheating the Universe at Criticality

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Min

    2016-07-01

    We present the general discussion on the inflection point inflation with small or large inflaton fields and show the effects of reheating dynamics on the inflationary predictions. In order to compare the model predictions with precisely measured CMB anisotropies and constrain the inflation models, the knowledge of the reheating dynamics is required. Inflection point inflation extended to the trans-Planckian regime can accommodate a sizable tensor-to-scalar ratio at the detectable level in the future CMB experiments.

  20. Large-scale Evaluation of Nickel Aluminide Rolls in a Heat-Treat Furnace at Bethelehem Steel's (Now ISG) Burns Harbor Plate Mill

    SciTech Connect

    Mengel, J.

    2003-12-16

    At Bethlehem Steel Burns Harbor Plate Division (now ISG Burns Harbor Plate Inc.)'s annealing furnace, new nickel aluminide intermetallic alloy rolls provide greater high-temperature strength and wear resistance compared to the conventional H series cast austenitic alloys currently used in the industry. Oak Ridge National Laboratory and Bethlehem (ISG) partnered under a U.S. Department of Energy, Office of Industrial Technology's Emerging Technology Deployment Program to demonstrate and evaluate the nickel aluminide intermetallic alloy rolls as part of an updated energy efficient large commercial annealing furnace system. Many challenges were involved in this project, including developing welding procedures for joining nickel aluminide intermetallic alloys with H-series austenitic alloys, developing commercial cast roll manufacturing specifications, working with several commercial suppliers to produce a quantity of high quality, reproducible nickel aluminide rolls for a large steel industrial annealing furnace, installing and demonstrating the capability of the rolls in this furnace, performing processing trials to evaluate the benefits of new equipment and processes, and documenting the findings. Updated furnace equipment including twenty-five new automated furnace control dampers have been installed replacing older design, less effective units. These dampers, along with upgraded flame-safety control equipment and new AC motors and roll-speed control equipment, are providing improved furnace control and additional energy efficiency. Energy data shows up to a 34% energy reduction from baseline after the installation of upgraded furnace damper controls along with up to a 34% reduction in greenhouse gases, potential for an additional 3 to 6% energy reduction per campaign of light-up and shutdown, and a 46% energy reduction from baseline for limited trials of a combination of improved damper control and straight-through plate processing. The straight-through processing

  1. Energy audit of three energy-conserving devices in a steel-industry demonstration program. Task I. Hague forge furnaces. Final report

    SciTech Connect

    Lownie, H.W.; Holden, F.C.

    1982-06-01

    A program to demonstrate to industry the benefits of installing particular types of energy-conserving devices and equipment was carried out. One of these types of equipment and the results obtained under production conditions in commercial plants are described. The equipment under consideration includes improved forge furnaces and associated heat-recovery components. They are used to heat steel to about 2300 F prior to hot forging. The energy-conserving devices include improved insulation, automatic air-fuel ratio control, and a ceramic recuperator that recovers heat from hot combustion gases and delivers preheated air to high-temperature recirculating burners. Twelve Hague furnaces and retrofit packages were purchased and installed by eleven host forge shops that agree to furnish performance data for the purpose of demonstrating the energy and economic savings that can be achieved in comparison with existing equipment. Fuel savings were reported by comparing the specific energy consumption (Btu's per pound of steel heated) for each Hague furnace with that of a comparison furnace. Economic comparisons were made using payback period based on annual after-tax cash flow. Payback periods for the Hague equipment varied from less than two years to five years or more. In several cases, payback times were high only because the units were operated at a small fraction of their available capacity.

  2. Reheating Constraints to Inflationary Models

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Kamionkowski, Marc; Wang, Junpu

    2014-07-01

    Evidence from the BICEP2 experiment for a significant gravitational-wave background has focused attention on inflaton potentials V(ϕ)∝ϕα with α=2 ("chaotic" or "m2ϕ2" inflation) or with smaller values of α, as may arise in axion-monodromy models. Here we show that reheating considerations may provide additional constraints to these models. The reheating phase preceding the radiation era is modeled by an effective equation-of-state parameter wre. The canonical reheating scenario is then described by wre=0. The simplest α=2 models are consistent with wre=0 for values of ns well within the current 1σ range. Models with α=1 or α=2/3 require a more exotic reheating phase, with -1/31/3, unless ns is close to the lower limit of the 2σ range. For m2ϕ2 inflation and canonical reheating as a benchmark, we derive a relation log10(Tre/106 GeV)≃2000(ns-0.96) between the reheat temperature Tre and the scalar spectral index ns. Thus, if ns is close to its central value, then Tre≲106 GeV, just above the electroweak scale. If the reheat temperature is higher, as many theorists may prefer, then the scalar spectral index should be closer to ns≃0.965 (at the pivot scale k =0.05 Mpc-1), near the upper limit of the 1σ error range. Improved precision in the measurement of ns should allow m2ϕ2, axion monodromy, and ϕ4 models to be distinguished, even without precise measurement of r, and to test the m2ϕ2 expectation of ns≃0.965.

  3. [Health surveillance in a steel making industry with electric arc furnace: 15 years of experience].

    PubMed

    Corti, P

    2012-01-01

    This paper analyzes the results of health surveillance carried out in an electric steel mill for 15 years. We have analyzed the trend of audiometry, spirometry and main indicators of exposure to chemical risk: serum lead, urinary OH-pyrene, erythrocyte ZPP, and the results of risk assessment of stress work related. The analyses of the trend of audiometry, spirometry and biological monitoring shows an important improving in the working environment due to the progressive automation of production steps in the course of several years, consistent and correct use of DPI, information and training. PMID:23405576

  4. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    PubMed

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful. PMID:24405950

  5. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact.

    PubMed

    Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M

    2014-12-01

    Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant. PMID:24395402

  6. Enhanced humification by carbonated basic oxygen furnace steel slag--I. Characterization of humic-like acids produced from humic precursors.

    PubMed

    Qi, Guangxia; Yue, Dongbei; Fukushima, Masami; Fukuchi, Shigeki; Nie, Yongfeng

    2012-01-01

    Carbonated basic oxygen furnace steel slag (hereinafter referred to as "steel slag") is generated during iron and steel manufacturing and is often classified as waste. The effect of steel slag on humification process was investigated. Catechol, glycine and glucose were used as model humic precursors from degraded biowastes. To verify that humification occurred in the system, humic-like acids (HLAs) were isolated and characterized structurally by elemental analysis, FTIR spectra, solid-state CP-MAS (13)C NMR spectra, and TMAH-Py-GC/MS. Characteristics of the steel slag-HLA were compared with those of HLAs formed in the presence of zeolite and birnessite, and with that of mature compost humic acid. The results showed that steel slag-HLA, like zeolite- and birnessite-HLA, is complex organic material containing prominent aromatic structures. Steel slag substantially accelerated the humification process, which would be highly significant for accelerating the stabilization of biowastes during composting (e.g. municipal solid waste, sewage sludge, and food waste). PMID:22130079

  7. 3. VIEW OF DUQUESNE'S RAIL LINES AND BLAST FURNACE PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF DUQUESNE'S RAIL LINES AND BLAST FURNACE PLANT LOOKING NORTH. DOROTHY SIX IS THE CLOSEST FURNACE IN THE PHOTOGRAPH. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  8. INTERIOR VIEW LOOKING WEST, CAST HOUSE OF BLAST FURNACE NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING WEST, CAST HOUSE OF BLAST FURNACE NO. 1 AND BLAST FURNACE NO. 2. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

  9. Looking southwest at blast furnaces no. 5 and no. 6 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southwest at blast furnaces no. 5 and no. 6 with blast furnace trestle and Gondola Railroad cars in foreground. - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

  10. Looking southeast at blast furnaces no. 5 and no. 6 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southeast at blast furnaces no. 5 and no. 6 with blast furnace trestle and Gondola Railroad cars in foreground. - U.S. Steel Edgar Thomson Works, Blast Furnace Plant, Along Monongahela River, Braddock, Allegheny County, PA

  11. 56. LOOKING NORTH AT DOROTHY SIX BLAST FURNACE WITH CAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. LOOKING NORTH AT DOROTHY SIX BLAST FURNACE WITH CAST HOUSE IN FOREGROUND AND DUSTCATCHER AT RIGHT OF FURNACE (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  12. 50. Taken from highline; "B" furnace slag pots, pipe is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Taken from high-line; "B" furnace slag pots, pipe is main blast furnace gas line from "C" furnace dust catcher; levy, slag hauler, removing slag. Looking east - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  13. 41. Casting floor, "B" furnace, pour in progress; mudgun is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Casting floor, "B" furnace, pour in progress; mudgun is to right of furnace; photo taken from furnace operator's booth. Looking south/southwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  14. 2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR VIEW LOOKING SOUTHEAST AT ELECTRIC FURNACE BUILDING AND ELECTRIC FURNACE OFFICE & CHEMICAL LABORATORY BUILDING. INGOT MOLDS IN RIGHT FOREGROUND. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  15. Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

    SciTech Connect

    Shahla Keyvan

    2005-12-01

    A new approach for the detection of real-time properties of flames is used in this project to develop improved diagnostics and controls for natural gas fired furnaces. The system utilizes video images along with advanced image analysis and artificial intelligence techniques to provide virtual sensors in a stand-alone expert shell environment. One of the sensors is a flame sensor encompassing a flame detector and a flame analyzer to provide combustion status. The flame detector can identify any burner that has not fired in a multi-burner furnace. Another sensor is a 3-D temperature profiler. One important aspect of combustion control is product quality. The 3-D temperature profiler of this on-line system is intended to provide a tool for a better temperature control in a furnace to improve product quality. In summary, this on-line diagnostic and control system offers great potential for improving furnace thermal efficiency, lowering NOx and carbon monoxide emissions, and improving product quality. The system is applicable in natural gas-fired furnaces in the glass industry and reheating furnaces used in steel and forging industries.

  16. Dark radiation from modulated reheating

    SciTech Connect

    Kobayashi, Takeshi; Takahashi, Fuminobu; Takahashi, Tomo; Yamaguchi, Masahide E-mail: fumi@tuhep.phys.tohoku.ac.jp E-mail: gucci@phys.titech.ac.jp

    2012-03-01

    We show that the modulated reheating mechanism can naturally account for dark radiation, whose existence is hinted by recent observations of the cosmic microwave background radiation and the primordial Helium abundance. In this mechanism, the inflaton decay rate depends on a light modulus which acquires almost scale-invariant quantum fluctuations during inflation. We find that the light modulus is generically produced by the inflaton decay and therefore a prime candidate for the dark radiation. Interestingly, an almost scale-invariant power spectrum predicted in the modulated reheating mechanism gives a better fit to the observation in the presence of the extra radiation. We discuss the production mechanism of the light modulus in detail taking account of its associated isocurvature fluctuations. We also consider a case where the modulus becomes the dominant component of dark matter.

  17. Reasonable Temperature Schedules for Cold or Hot Charging of Continuously Cast Steel Slabs

    NASA Astrophysics Data System (ADS)

    Li, Yang; Chen, Xin; Liu, Ke; Wang, Jing; Wen, Jin; Zhang, Jiaquan

    2013-12-01

    Some continuously cast steel slabs are sensitive to transverse fracture problems during transportation or handling away from their storage state, while some steel slabs are sensitive to surface transverse cracks during the following rolling process in a certain hot charging temperature range. It is revealed that the investigated steel slabs with high fracture tendency under room cooling condition always contain pearlite transformation delayed elements, which lead to the internal brittle bainitic structure formation, while some microalloyed steels exhibit high surface crack susceptibility to hot charging temperatures due to carbonitride precipitation. According to the calculated internal cooling rates and CCT diagrams, the slabs with high fracture tendency during cold charging should be slowly cooled after cutting to length from hot strand or charged to the reheating furnace directly above their bainite formation temperatures. Based on a thermodynamic calculation for carbonitride precipitation in austenite, the sensitive hot charging temperature range of related steels was revealed for the determination of reasonable temperature schedules.

  18. Reheating for closed string inflation

    SciTech Connect

    Cicoli, Michele; Mazumdar, Anupam E-mail: a.mazumdar@lancaster.ac.uk

    2010-09-01

    We point out some of the outstanding challenges for embedding inflationary cosmology within string theory studying the process of reheating for models where the inflaton is a closed string mode parameterising the size of an internal cycle of the compactification manifold. A realistic model of inflation must explain the tiny perturbations in the cosmic microwave background radiation and also how to excite the ordinary matter degrees of freedom after inflation, required for the success of Big Bang Nucleosynthesis. We study these issues focusing on two promising inflationary models embedded in LARGE volume type IIB flux compactifications. We show that phenomenological requirements and consistency of the effective field theory treatment imply the presence at low energies of a hidden sector together with a visible sector, where the Minimal Supersymmetric Standard Model fields are residing. A detailed calculation of the inflaton coupling to the fields of the hidden sector, visible sector, and moduli sector, reveals that the inflaton fails to excite primarily the visible sector fields, instead hidden sector fields are excited copiously after the end of inflation. This sets severe constraints on hidden sector model building where the most promising scenario emerges as a pure N = 1 SYM theory, forbidding the kinematical decay of the inflaton to the hidden sector. In this case it is possible to reheat the Universe with the visible degrees of freedom even though in some cases we discover a new tension between TeV scale SUSY and reheating on top of the well-known tension between TeV scale SUSY and inflation.

  19. Theoretical and experimental studies of the composition and reducibility of the dust from arc steel-melting furnaces

    NASA Astrophysics Data System (ADS)

    Stovpchenko, A. P.; Kamkina, L. V.; Proidak, Yu. S.; Derevyanchenko, I. V.; Kucherenko, O. L.; Bondarenko, M. Yu.

    2010-06-01

    The chemical and mineralogical composition of the dust from electric gas-cleaning filters of the steelmaking furnaces at the Moldavian metallurgical works is studied. The conditions of effective removal of zinc and lead from the ASF gas-cleaning dust are determined.

  20. Reheating metastable O'Raifeartaigh models

    SciTech Connect

    Fox, Patrick; Craig, Nathaniel J.; Fox, Patrick J.; Wacker, Jay G.

    2006-11-01

    In theories with multiple vacua, reheating to a temperature greater than the height of a barrier can stimulate transitions from a desirable metastable vacuum to a lower energy state. We discuss the constraints this places on various theories and demonstrate that in a class of supersymmetric models this transition does not occur even for arbitrarily high reheating temperature.

  1. Reheating Metastable O'Raifeartaigh Models

    SciTech Connect

    Craig, Nathaniel J.; Fox, Patrick J.; Wacker, Jay G.

    2006-12-05

    In theories with multiple vacua, reheating to a temperature greater than the height of a barrier can stimulate transitions from a desirable metastable vacuum to a lower energy state. We discuss the constraints this places on various theories and demonstrate that in a class of supersymmetric models this transition does not occur even for arbitrarily high reheating temperature.

  2. Reheating Metastable O'Raifeartaigh Models

    SciTech Connect

    Craig, Nathaniel J.; Fox, Patrick J.; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2006-12-13

    In theories with multiple vacua, reheating to a temperature greater than the height of a barrier can stimulate transitions from a desirable metastable vacuum to a lower energy state. We discuss the constraints this places on various theories and demonstrate that in a class of supersymmetric models this transition does not occur even for arbitrarily high reheating temperature.

  3. 21. Photocopy of ca. 1951 view (when furnaces were still ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of ca. 1951 view (when furnaces were still in blast) looking north at central furnace complex with railroad cars of furnace charging materials in foreground and No. 2 Furnace at left. Photo marked on back 'David W. Corson from A. Devaney, N.Y.' - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  4. Axino dark matter with low reheating temperature

    NASA Astrophysics Data System (ADS)

    Roszkowski, L.; Trojanowski, S.; Turzyński, K.

    2015-11-01

    We examine axino dark matter in the regime of a low reheating temperature, T R , after inflation and taking into account that reheating is a non-instantaneous process. This can have a significant effect on the dark matter abundance, mainly due to entropy production in inflaton decays. We study both thermal and non-thermal production of axinos in the framework of the MSSM with ten free parameters. We identify the ranges of the axino mass and the reheating temperature allowed by the LHC and other particle physics data in different models of axino interactions. We confront these limits with cosmological constraints coming the observed dark matter density, large structures formation and big bang nucleosynthesis. We find a number of differences in the phenomenologically acceptable values of the axino mass m ã and the reheating temperature relative to previous studies. In particular, an upper bound on m ã becomes dependent on T R , reaching a maximum value at T R ≃ 102 GeV. If the lightest ordinary supersymmetric particle is a wino or a higgsino, we obtain a lower limit of approximately 10 GeV for the reheating temperature. We demonstrate also that entropy production during reheating affects the maximum allowed axino mass and lowest values of the reheating temperature.

  5. Analytical modeling in support of the development of fiber reinforced ceramic composite materials for re-heater burners

    SciTech Connect

    Kibler, J.J.; DiPietro, S.G.

    1995-10-01

    Development of Continuous Fiber reinforced Ceramic Composite (CFCC) materials is a process of identifying components which will benefit from CFCC properties, and defining appropriate composite constructions which will provide materials which will meet the structural and thermal requirements of the application. Materials Sciences Corporation (MSC) has been providing analytical support to Textron Specialty Materials in the development of re-heated tubes for metal reheating furnaces. As part of this support, a study has been made of the sensitivity of composite properties to fiber orientation as well as a number of matrix properties which control the stress-strain behavior of the composite.

  6. Flavour-dependent leptogenesis with reheating

    SciTech Connect

    Antusch, Stefan

    2007-11-20

    Upper bounds on the reheat temperature of the early universe, as they appear for example in classes of supergravity models, impose severe constraints on the thermal leptogenesis mechanism. To analyse these constraints, we extend the flavour-dependent treatment of leptogenesis to include reheating. We solve the flavour-dependent Boltzmann equations to obtain the leptogenesis efficiency as a function of the flavour dependent washout parameter m-tilde{sub 1,{alpha}} and of m{sub N{sub 1}}/T{sub RH}, the ratio of the mass of the lightest right-handed neutrino over the reheat temperature, and calculate the minimal values of the reheat temperature compatible with thermal leptogenesis in type I and type II seesaw scenarios.

  7. Reheating of the Universe as holographic thermalization

    NASA Astrophysics Data System (ADS)

    Kawai, Shinsuke; Nakayama, Yu

    2016-08-01

    Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS) spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds.

  8. 4. LOOKING SOUTHEAST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. LOOKING SOUTHEAST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND FLOOR OF CHARGING AISLE. VIEW OF 50 TON CAPACITY CHARGING BUCKET. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  9. 3. LOOKING WEST INSIDE ELECTRIC FURNACE BUILDING ON CHARGING FLOOR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. LOOKING WEST INSIDE ELECTRIC FURNACE BUILDING ON CHARGING FLOOR. VIEW OF 7 1/2 TON CAPACITY ALLIANCE SIDE DOOR CHARGING MACHINE. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  10. 1. GENERAL EXTERIOR VIEW OF THE ELECTRIC FURNACE STEELMAKING PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL EXTERIOR VIEW OF THE ELECTRIC FURNACE STEELMAKING PLANT LOOKING NORTHEAST. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  11. 5. LOOKING SOUTHWEST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. LOOKING SOUTHWEST INSIDE OF ELECTRIC FURNACE BUILDING ON GROUND FLOOR OF POURING AISLE. VIEW OF THE NATION'S FIRST VACUUM DEGASSING UNIT (1956). - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  12. 12. SOUTHWEST VIEW OF BASIC OXYGEN FURNACE No. 2 ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. SOUTHWEST VIEW OF BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  13. 13. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  14. 15. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 2 ON THE GROUND FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  15. 14. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. WESTERN VIEW OF INVERTED BASIC OXYGEN FURNACE No. 1 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. 42. Casting floor, "B" furnace, pour in progress; mudgun is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Casting floor, "B" furnace, pour in progress; mudgun is to right of furnace; operator takes temperature of iron in trough during pout. Looking south - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  17. 22. DETAIL OBLIQUE VIEW NORTHWEST OF FURNACE 2, SHOWING GENERAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DETAIL OBLIQUE VIEW NORTHWEST OF FURNACE 2, SHOWING GENERAL CONSTRUCTION. CONCRETE PAD AT LEFT IS SITE OF FORMER FURNACE USED TO HEAT URANIUM BILLETS. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA

  18. GENERAL VIEW OF TURBOBLOWER BUILDING (LEFT), BLAST FURNACE (CENTER), AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF TURBO-BLOWER BUILDING (LEFT), BLAST FURNACE (CENTER), AND HOT BLAST STOVES (RIGHT). - Republic Iron & Steel Company, Youngstown Works, Haselton Blast Furnaces, West of Center Street Viaduct, along Mahoning River, Youngstown, Mahoning County, OH

  19. 52. Winch located at base of No. 1 Furnace for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Winch located at base of No. 1 Furnace for pulling ladle cars from furnace to pig machine. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  20. INTERIOR VIEW LOOKING NORTHEAST, SHOWING FURNACE NO. 1 (ca. 1910. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING NORTHEAST, SHOWING FURNACE NO. 1 (ca. 1910. Nameplate reads: "Heroult Electric Furnace, Capacity 6 tons, Built by American Bridge Company, Pencoyd, PA, No. 33") - Braeburn Alloy Steel, Braeburn Road at Allegheny River, Lower Burrell, Westmoreland County, PA

  1. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.

    PubMed

    Song, Ha-Won; Saraswathy, Velu

    2006-11-16

    The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed. PMID:16930831

  2. Constraints on α -attractor inflation and reheating

    NASA Astrophysics Data System (ADS)

    Ueno, Yoshiki; Yamamoto, Kazuhiro

    2016-04-01

    We investigate a constraint on reheating followed by α -attractor-type inflation (the E-model and T-model) from an observation of the spectral index ns. When the energy density of the Universe is dominated by an energy component with the cosmic equation-of-state parameter wre during reheating, its e -folding number Nre and the reheating temperature Tre are bounded depending on wre. When the reheating epoch consists of two phases—where the energy density of the Universe is dominated by uniform inflaton field oscillations in the first phase and by relativistic nonthermalized particles in the second phase—we find a constraint on the e -folding number of the first oscillation phase, Nsc, depending on the parameters of the inflaton potential. For the simplest perturbative reheating scenario, we find the lower bound for a coupling constant of inflaton decay in the E-model and T-model depending on the model parameters. We also find a constraint on the α parameter, α ≳0.01 , for the T-model and E-model when we assume a broad resonance reheating scenario.

  3. The characteristics of high temperature air combustion and its practical application to high performance industrial furnace

    SciTech Connect

    Sugiyama, Shunichi; Suzukawa, Yutaka; Hino, Yoshimichi

    1999-07-01

    An experimental regenerative continuous slab reheat furnace was used for the data acquisition of high temperature air combustion. Obtainable preheated air temperature, gas temperature distribution of combustion field, NOx concentration in waste gas, heating pattern, furnace height etc were studied for this purpose. Main results were (1) preheated air temperature close to furnace temperature can be obtained, (2) gas temperature distribution is relatively uniform in main combustion field, (3) NOx concentration in waste gas is significantly reduced, (4) there exists the appropriate combustion capacity of a burner for every furnace width, (5) the optimum furnace height for regenerative continuous slab reheat furnace from the thermal efficiency point of view is lower than the convention one by about 0.5m.

  4. Blast furnace stove control

    SciTech Connect

    Muske, K.R.; Hansen, G.A.; Howse, J.W.; Cagliostro, D.J.; Chaubal, P.C.

    1998-12-31

    This paper outlines the process model and model-based control techniques implemented on the hot blast stoves for the No. 7 Blast Furnace at the Inland Steel facility in East Chicago, Indiana. A detailed heat transfer model of the stoves is developed. It is then used as part of a predictive control scheme to determine the minimum amount of fuel necessary to achieve the blast air requirements. The controller also considers maximum and minimum temperature constraints within the stove.

  5. Direct measurement of solids: High temperature sensing: Phase 2, Experimental development and testing on furnace-heated steel blocks

    SciTech Connect

    Lemon, D.K.; Daly, D.S.

    1985-12-01

    Using average velocity measurements to estimate average profile temperature shows promise and merits further investigation. The current generation of electromagnetic acoustic transducers (EMATs) can transmit and detect signals in steel below the magnetic transition temperature. Techniques for calibrating ultrasonic velocity to internal temperature need further development. EMATs are inadequate ultrasonic transmitters for these applications. A high-energy, pulsed laser capable of generating more intense ultrasonic signals should be investigated as a transmitter. Recommendations are given for further work.

  6. 1. GENERAL VIEW OF BLAST FURNACE PLANT, KNOWN AS THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF BLAST FURNACE PLANT, KNOWN AS THE CARRIE FURNACES, FROM THE TOP OF WATER TOWER. CARRIE FURNACES No. 6 AND No. 7 ARE ON THE LEFT, AND FURNACES No. 3 AND No. 4 ARE ON THE RIGHT. THE TOWN OF RANKIN IS IN THE BACKGROUND. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  7. GAS TURBINE REHEAT USING IN SITU COMBUSTION

    SciTech Connect

    D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

    2004-05-17

    In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

  8. Cupola Furnace Computer Process Model

    SciTech Connect

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  9. Rolling in the modulated reheating scenario

    SciTech Connect

    Kobayashi, Naoya; Kobayashi, Takeshi; Erickcek, Adrienne L. E-mail: takeshi@cita.utoronto.ca

    2014-01-01

    In the modulated reheating scenario, the field that drives inflation has a spatially varying decay rate, and the resulting inhomogeneous reheating process generates adiabatic perturbations. We examine the statistical properties of the density perturbations generated in this scenario. Unlike earlier analyses, we include the dynamics of the field that determines the inflaton decay rate. We show that the dynamics of this modulus field can significantly alter the amplitude of the power spectrum and the bispectrum, even if the modulus field has a simple potential and its effective mass is smaller than the Hubble rate. In some cases, the evolution of the modulus amplifies the non-Gaussianity of the perturbations to levels that are excluded by recent observations of the cosmic microwave background. Therefore, a proper treatment of the modulus dynamics is required to accurately calculate the statistical properties of the perturbations generated by modulated reheating.

  10. Quantifying the reheating temperature of the universe

    NASA Astrophysics Data System (ADS)

    Mazumdar, Anupam; Zaldívar, Bryan

    2014-09-01

    The aim of this paper is to determine an exact definition of the reheat temperature for a generic perturbative decay of the inflaton. In order to estimate the reheat temperature, there are two important conditions one needs to satisfy: (a) the decay products of the inflaton must dominate the energy density of the universe, i.e. the universe becomes completely radiation dominated, and (b) the decay products of the inflaton have attained local thermodynamical equilibrium. For some choices of parameters, the latter is a more stringent condition, such that the decay products may thermalise much after the beginning of radiation-domination. Consequently, we have obtained that the reheat temperature can be much lower than the standard-lore estimation. In this paper we describe under what conditions our universe could have efficient or inefficient thermalisation, and quantify the reheat temperature for both the scenarios. This result has an immediate impact on many applications which rely on the thermal history of the universe, in particular gravitino abundance. Instant thermalisation: when the inflaton decay products instantly thermalise upon decay. Efficient thermalisation: when the inflaton decay products thermalise right at the instant when radiation epoch starts dominating the universe. Delayed thermalisation: when the inflaton decay products thermalise deep inside the radiation dominated epoch after the transition from inflaton-to-radiation domination had occurred. This paper is organised as follows. In Section 2 we set the stage and write down the relevant equations for our analysis. The standard lore about the reheating epoch is briefly commented in Section 3. Section 4 is devoted to present our analysis, in which we study the conditions under which the plasma attains thermalisation. Later on, in Section 5 we discuss the concept of reheat temperature such as to properly capture the issues of thermalisation. Finally, we conclude in Section 6.

  11. Heat Pipe Precools and Reheats Dehumidified Air

    NASA Technical Reports Server (NTRS)

    Koning, R. C.; Boggs, W. H.; Barnett, U. R.; Dinh, K.

    1986-01-01

    Precooling and reheating by heat pipe reduces operating costs of air-conditioning. Warm air returned from air-conditioned space and cooled air supplied are precooled and reheated, respectively, by each other through a heat pipe. Heat-pipe technology brought to bear on problem of conserving airconditioning energy in hot, humid environments. Any increase in the cost of equipment due to installation of heat-pipe heat exchangers expected to be recovered in energy savings during service period of 2 years or less.

  12. Inflationary reheating classes via spectral methods

    NASA Astrophysics Data System (ADS)

    Bassett, Bruce A.

    1998-07-01

    Inflationary reheating is almost completely controlled by the Floquet indices, μk. Using spectral theory, we demonstrate that the stability bands (where μk=0) of the Mathieu and Lamé equations are destroyed even in Minkowski spacetime, leaving a fractal Cantor set or a measure zero set of stable modes in the cases, where the inflaton evolves in an almost-periodic or stochastic manner, respectively. These two types of potential model the expected multi-field and quantum back reaction effects during reheating.

  13. Thermal Goldstino production with low reheating temperatures

    NASA Astrophysics Data System (ADS)

    Monteux, Angelo; Shin, Chang Sub

    2015-08-01

    We discuss thermal production of (pseudo) Goldstinos, the Goldstone fermions emerging from (multiple) SUSY-breaking sectors, when the reheating temperature is well below the superpartner masses. In such a case, the production during the matter-dominated era induced by the inflaton decay stage is more important than after reheating. Depending on the SUSY-breaking scale, Goldstinos are produced by a freeze-in or freeze-out mechanism via 1 →2 decays and inverse decays. We solve the Boltzmann equation for the momentum distribution function of the Goldstino. In the freeze-out case, Goldstinos maintain chemical equilibrium far after they are kinetically decoupled by elastic scatterings and, consequently, Goldstinos with different momentum decouple at different temperatures. As a result, their momentum distribution function shows a peculiar shape, and the final yield is smaller than if kinetic equilibrium were assumed. We revisit the cosmological implications in both R -parity-conserving and R -parity-violating supersymmetric scenarios. For the former, thermally produced Goldstinos can still be abundant enough to be dark matter at present times even if the reheating temperature is low, of order 1 GeV. For the latter, if the reheating temperature is low, of order 0.1-1 GeV, they are safe from the BBN constraints.

  14. No-reheat air-conditioning

    NASA Technical Reports Server (NTRS)

    Obler, H. D.

    1980-01-01

    Air conditioning system, for environmentally controlled areas containing sensitive equipment, regulates temperature and humidity without wasteful and costly reheating. System blends outside air with return air as dictated by various sensors to ensure required humidity in cooled spaces (such as computer room).

  15. Reheating in Gauss-Bonnet-coupled inflation

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Longden, Chris; Dimopoulos, Konstantinos

    2016-07-01

    We investigate the feasibility of models of inflation with a large Gauss-Bonnet coupling at late times, which have been shown to modify and prevent the end of inflation. Despite the potential of Gauss-Bonnet models in predicting favorable power spectra, capable of greatly lowering the tensor-to-scalar ratio compared to now-disfavored models of standard chaotic inflation, it is important to also understand in what context it is possible for postinflationary (p)reheating to proceed and hence recover an acceptable late-time cosmology. We argue that in the previously studied inverse power law coupling case, reheating cannot happen due to a lack of oscillatory solutions for the inflaton, and that neither instant preheating nor gravitational particle production would avoid this problem due to the persistence of the inflaton's energy density, even if it were to partially decay. Hence we proceed to define a minimal generalization of the model which can permit perturbative reheating and study the consequences of this, including heavily modified dynamics during reheating and predictions of the power spectra.

  16. Curvaton reheating in a logamediate inflationary model

    SciTech Connect

    Campo, Sergio del; Herrera, Ramon; Saavedra, Joel; Campuzano, Cuauhtemoc; Rojas, Efrain

    2009-12-15

    In a logamediate inflationary universe model we introduce the curvaton field in order to bring this inflationary model to an end. In this approach we determine the reheating temperature. We also outline some interesting constraints on the parameters that describe our models. Thus, we give the parameter space in this scenario.

  17. VIEW LOOKING NORTH, VIEW OF BLAST FURNACE NO. 2 (LEFT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW LOOKING NORTH, VIEW OF BLAST FURNACE NO. 2 (LEFT) SHARING THE SAME CAST HOUSE WITH BLAST FURNACE NO. 1. ORE BRIDGE & BLOWER HOUSE TO RIGHT, HULETT CAR DUMPER IS IN LEFT FOREGROUND. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 1 & No. 2, Donner Avenue, Monessen, Westmoreland County, PA

  18. EXTERIOR VIEW, NO. 3 CAST HOUSE CENTER AND BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, NO. 3 CAST HOUSE CENTER AND BLAST FURNACE NO. 3 (JANE FURNACE)/ORE BRIDGE TO THE RIGHT, WITH SINTERING PLANT CONVEYORS & TRANSFER HOUSE IN FOREGROUND. - Pittsburgh Steel Company, Monessen Works, Blast Furnace No. 3, Donner Avenue, Monessen, Westmoreland County, PA

  19. 57. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES IS THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  20. 56. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES IS THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  1. 6. GENERAL VIEW OF FURNACES No. 3 AND No. 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENERAL VIEW OF FURNACES No. 3 AND No. 4 TO THE LEFT OF THE FURNACES ARE THE ORE BRIDGE, THE TURBO-GENERATOR BUILDING, AND THE WATER FILTER TANKS. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  2. Characteristics of a direct flame-fired annealing furnace

    SciTech Connect

    Kojima, Toshio

    1997-04-01

    The No. 3 continuous annealing and pickling line with a direct flame vertical furnace, incorporating a flexible furnace control, has been designed to achieve improvement in product quality, operating cost and productivity. The actual capability index indicates a smooth operation: the productivity with ferritic type steel is higher than with austenitic. The development and introduction of the new large vertical furnace, coupled with the development of the flexible furnace control, has contributed to the technique of operating annealing furnaces at high temperatures of more than 1,000 C. It has enhanced the production of stainless steel together with a reduction in cost.

  3. Continuous austempering fluidized bed furnace. Final report

    SciTech Connect

    Srinivasan, M.N.

    1997-09-23

    The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

  4. Blast furnace repairs, relines and modernizations

    SciTech Connect

    Carpenter, J.A.; Swanson, D.E; Chango, R.F. . Burns Harbor Div.)

    1994-09-01

    Bethlehem Steel's Burns Harbor Div. operates two 89,000-cu ft blast furnaces, D and C, built in 1969 and 1972. These furnaces have been in the forefront of blast furnace performance since they were blown-in. To maintain a credible operation throughout the past 25 years their performance has been improved continuously. Production was increased approximately 3%/year while fuel rate decreased 1%/year. This presentation summarizes the early repairs, relines and improvements that have sustained and enhanced the furnace's performance. The fourth reline of both furnaces will be discussed in detail. As part of the 1991 reline of D furnace its lines were improved and modern penstocks installed. The bosh, tuyere jacket, hearth jacket and both cast floors were replaced. The furnace now has a larger hearth making it easier to control and, liquid level is no longer a problem when pulling the wind to shut down. The new cast floor with its increased trough length has much improved separation of slag from iron and lowered refractory consumption. Since the cast floors on D furnace were changed, there has been a reduction in accidents and absenteeism. This may be related to the change in work practices on the new cast floors. The 1994 reline of C furnace incorporates those improvements made on D furnace in 1991. In addition, C furnace will have high-density cooling which is expected to double its campaign from 6 to 12 years, without interim repairs.

  5. Furnace assembly

    DOEpatents

    Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  6. Furnace assembly

    DOEpatents

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  7. Perturbative reheating and gravitino production in inflationary models

    SciTech Connect

    Rangarajan, Raghavan; Sahu, Narendra

    2009-05-15

    The low reheat temperature at the end of inflation from the gravitino bound constrains the creation of heavy Majorana neutrinos associated with models of leptogenesis. However, a detailed view of the reheating of the Universe at the end of inflation implies that the maximum temperature during reheating, T{sub max}, can be orders of magnitude higher than the final reheat temperature. This then allows for the production of the heavy Majorana neutrinos needed for leptogenesis. We carry out the complementary calculation of the gravitino production during reheating and its dependence on T{sub max}. We find that the gravitino abundance generated during reheating for a quartic potential is comparable to the standard estimate of the abundance generated after reheating and study its consequences for leptogenesis.

  8. Effects of Strings in Inflation and Reheating

    NASA Astrophysics Data System (ADS)

    Frey, Andrew R.

    We argue that many models of inflation in string theory require the usual ten-dimensional compactification geometry to be modified during inflation. Based on arguments from the four-dimensional effective theory, we propose a modified ten-dimensional geometry in which the four-dimensional effective theory is just consistent. We also discuss the implications of the light modes in reheating, following inflation. (Based on work in progress with Anupam Mazumdar and Robert Myers.)

  9. Primordial magnetic field amplification from turbulent reheating

    SciTech Connect

    Calzetta, Esteban; Kandus, Alejandra E-mail: kandus@uesc.br

    2010-08-01

    We analyze the possibility of primordial magnetic field amplification by a stochastic large scale kinematic dynamo during reheating. We consider a charged scalar field minimally coupled to gravity. During inflation this field is assumed to be in its vacuum state. At the transition to reheating the state of the field changes to a many particle/anti-particle state. We characterize that state as a fluid flow of zero mean velocity but with a stochastic velocity field. We compute the scale-dependent Reynolds number Re(k), and the characteristic times for decay of turbulence, t{sub d} and pair annihilation t{sub a}, finding t{sub a} << t{sub d}. We calculate the rms value of the kinetic helicity of the flow over a scale L and show that it does not vanish. We use this result to estimate the amplification factor of a seed field from the stochastic kinematic dynamo equations. Although this effect is weak, it shows that the evolution of the cosmic magnetic field from reheating to galaxy formation may well be more complex than as dictated by simple flux freezing.

  10. Low-Temperature Multiple-Reheat Closed Gas Power Cycles for the AHTR and LSFR

    SciTech Connect

    Haihua, Zhao; Peterson, Per F.

    2006-07-01

    High Temperature Gas Cooled Reactors (HTGR) such as GT-MHR and PBMR with direct closed gas-turbine Brayton cycle can achieve efficiency between 44% to 48% with core outlet temperatures from 850 deg. C to 900 deg. C. The use of multiple reheat and inter-cooling stages can further improve thermal efficiency. Low-temperature multiple reheat cycles for the AHTR-MI and liquid-salt fast reactors (LSFR), with core outlet temperatures ranging from 620 deg. C to 750 deg. C, can reach similar efficiency as these direct-cycle HTGRs but with reduced technical risk due to lower temperatures. This paper discusses design optimization at these lower temperatures for multiple reheat closed gas cycles and vertical and horizontal arrangement options for power conversion units (PCU). Figures of merit such as specific power density, specific steel input, and specific helium inventory are estimated for different PCU arrangement configurations. With similar components parameters and reasonable arrangement, different configurations such as horizontal or vertical shaft, integrated system or distributed system, were compared. Among those configurations, integrated systems basing on the GT-MHR PCU design result in the highest specific power density and lowest specific steel input. Because the differences in these high-level performance parameters are not large enough to de-select any configurations, further detailed design and comparison must be performed to select optimal system designs. (authors)

  11. 49. Taken from highline; "McKinley hat" remains on "B" furnace; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Taken from high-line; "McKinley hat" remains on "B" furnace; no longer used, "McKinley hat was open receptacle with bell below. Hat carried charge to furnace top, dumping it to bell; bell locked onto furnace top, dropping charge into furnace. Looking east - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  12. Gas Turbine Reheat Using In-Situ Combustion

    SciTech Connect

    Newby, R. A.; Bachovchin, D. M.; Lippert, T. E.

    2004-04-29

    Siemens Westinghouse Power Corporation (SWPC) is developing in-situ reheat (fuel injection via airfoil injection) as a means for increasing cycle efficiency and power output, with possibly reduced emissions. This report discusses engineering cycle evaluations on various reheat approaches, using GateCycle and ChemCad software simulations of typical F-class and G-class engines, modified for alternative reheat cycles. The conclusion that vane 1 reheat offers the most advantageous design agrees with the conclusions of the detailed chemical kinetics (Task 2) as verified by high temperature testing (Task 3) and Blade path CFD (Task 1) tasks. The second choice design option (vane 2 reheat after vane 1 reheat) is also validated in all tasks. A conceptual design and next recommended development tasks are presented.

  13. Bounds on very low reheating scenarios after Planck

    NASA Astrophysics Data System (ADS)

    de Salas, P. F.; Lattanzi, M.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.

    2015-12-01

    We consider the case of very low reheating scenarios [TRH˜O (MeV ) ] with a better calculation of the production of the relic neutrino background (with three-flavor oscillations). At 95% confidence level, a lower bound on the reheating temperature TRH>4.1 MeV is obtained from big bang nucleosynthesis, while TRH>4.7 MeV from Planck data (allowing neutrino masses to vary), the most stringent bound on the reheating temperature to date. Neutrino masses as large as 1 eV are possible for very low reheating temperatures.

  14. Leptogenesis and reheating in complex hybrid inflation

    SciTech Connect

    Martinez-Prieto, Carlos; Delepine, David; Urena-Lopez, L. Arturo

    2010-02-01

    We study the transformation into a baryon asymmetry of a charge initially stored in a complex (waterfall) scalar field at the end of a hybrid inflation phase as described by Delepine, Martinez, and Urena-Lopez [Phys. Rev. Lett. 98, 161302 (2007)]. The waterfall field is coupled to right-handed neutrinos, and is also responsible for their Majorana masses. The charge is finally transferred to the leptons of the standard model through the decay of the right-handed neutrinos without introducing new CP violating interactions. Other needed processes, like the decay of the inflaton field and the reheating of the Universe, are also discussed in detail.

  15. INTERIOR VIEW SHOWING QBOP FURNACE IN BLOW. OXYGEN AND NATURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING Q-BOP FURNACE IN BLOW. OXYGEN AND NATURAL GAS ARE BLOWN INTO THE FURNACE THROUGH THE TUYERES TO CHARGE 460,000 LBS. OF HOT METAL, 100,000 LBS. OF SCRAP WITH 30,000 LBS. OF LIME. BLOW TIME IS 16 MINUTES. THE TIME TO BLOW AND TAP THE FURNACES OF THE RESULTING 205,000 TONS OF STEEL AND SLAG IS 35 MINUTES. - U.S. Steel, Fairfield Works, Q-Bop Furnace, North of Valley Road & West of Ensley, Pleasant Grove Road, Fairfield, Jefferson County, AL

  16. TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates

    SciTech Connect

    Veena Sahajwalla; Sushil Gupta

    2005-04-15

    Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

  17. Profiles in garbage: Steel cans

    SciTech Connect

    Miller, C.

    1998-02-01

    Steel mills are the largest market for steel cans. Integrated mills use the basic oxygen process to manufacture tinplate, appliances, car bodies, and steel framing. Electric arc furnaces use 100% scrap to produce steel shapes such as railroad ties and bridge spans. Electric arc furnaces are more geographically diverse and tend to have smaller capacities than basic oxygen furnaces. Detinners remove the tin from steel cans for resale to tin using industries. With less tin use in steel cans, the importance of the detinning market has declined substantially. Foundries use scrap as a raw material in making castings and molds for industrial users.

  18. Equation-of-state parameter for reheating

    NASA Astrophysics Data System (ADS)

    Muñoz, Julian B.; Kamionkowski, Marc

    2015-02-01

    Constraints to the parameters of inflation models are often derived assuming some plausible range for the number—e.g., Nk=46 to Nk=60 —of e -folds of inflation that occurred between the time that our current observable Universe exited the horizon and the end of inflation. However, that number is, for any specific inflaton potential, related to an effective equation-of-state parameter wre and temperature Tre, for reheating. Although the physics of reheating is highly uncertain, there is a finite range of reasonable values for wre. Here we show that, by restricting wre to this range, more stringent constraints to inflation-model parameters can be derived than those obtained from the usual procedure. To do so, we focus in this work in particular on natural inflation and inflation with a Higgs-like potential and on power-law models as limiting cases of those. As one example, we show that the lower limit to the tensor-to-scalar ratio r , derived from current measurements of the scalar spectral index, is about 20%-25% higher (depending on the model) with this procedure than with the usual approach.

  19. Furnace afterburner

    SciTech Connect

    Angelo, J.F. II

    1987-01-13

    An afterburner is described for the exhaust effluvia of a furnace, which exhaust contains combustible material, the afterburner comprising: a. an elongated, generally cylindrical combustion chamber having an inlet for the exhaust at or adjacent one end thereof, and an outlet at or adjacent its other end, b. means operable to induce a draft through the combustion chamber from its inlet to its outlet, c. a series of air nozzles disposed to direct jets of air into the interior of the combustion chamber. Certain nozzles are arranged to direct air jets into the combustion chamber substantially tangentially thereto in a clockwise direction, and the remainder of the nozzles and arranged to direct air jets into the chamber substantially tangentially thereto in a counter-clockwise direction, whereby to induce turbulence within the chamber to intermix the air and the exhaust thoroughly, and d. means operable to deliver air to the air nozzles.

  20. Low reheating temperatures in monomial and binomial inflationary models

    NASA Astrophysics Data System (ADS)

    Rehagen, Thomas; Gelmini, Graciela B.

    2015-06-01

    We investigate the allowed range of reheating temperature values in light of the Planck 2015 results and the recent joint analysis of Cosmic Microwave Background (CMB) data from the BICEP2/Keck Array and Planck experiments, using monomial and binomial inflationary potentials. While the well studied phi2 inflationary potential is no longer favored by current CMB data, as well as phip with p>2, a phi1 potential and canonical reheating (0wre=) provide a good fit to the CMB measurements. In this last case, we find that the Planck 2015 68% confidence limit upper bound on the spectral index, ns, implies an upper bound on the reheating temperature of Trelesssim 6× 1010 GeV, and excludes instantaneous reheating. The low reheating temperatures allowed by this model open the possibility that dark matter could be produced during the reheating period instead of when the Universe is radiation dominated, which could lead to very different predictions for the relic density and momentum distribution of WIMPs, sterile neutrinos, and axions. We also study binomial inflationary potentials and show the effects of a small departure from a phi1 potential. We find that as a subdominant phi2 term in the potential increases, first instantaneous reheating becomes allowed, and then the lowest possible reheating temperature of Tre=4 MeV is excluded by the Planck 2015 68% confidence limit.

  1. Reheating, multifield inflation and the fate of the primordial observables

    SciTech Connect

    Leung, Godfrey; Tarrant, Ewan R.M.; Copeland, Edmund J.; Byrnes, Christian T. E-mail: ppxet@nottingham.ac.uk E-mail: ed.copeland@nottingham.ac.uk

    2012-09-01

    We study the effects of perturbative reheating on the evolution of the curvature perturbation ζ, in two-field inflation models. We use numerical methods to explore the sensitivity of f{sub NL}, n{sub ζ} and r to the reheating process, and present simple qualitative arguments to explain our results. In general, if a large non-Gaussian signal exists at the start of reheating, it will remain non-zero at the end of reheating. Unless all isocurvature modes have completely decayed before the start of reheating, we find that the non-linearity parameter, f{sub NL}, can be sensitive to the reheating timescale, and that this dependence is most appreciable for 'runaway' inflationary potentials that only have a minimum in one direction. For potentials with a minimum in both directions, f{sub NL} can also be sensitive to reheating if a mild hierarchy exists between the decay rates of each field. Within the class of models studied, we find that the spectral index n{sub ζ}, is fairly insensitive to large changes in the field decay rates, indicating that n{sub ζ} is a more robust inflationary observable, unlike the non-linearity parameter f{sub NL}. Our results imply that the statistics of ζ, especially f{sub NL}, can only be reliably used to discriminate between models of two-field inflation if the physics of reheating are properly accounted for.

  2. Material and cleaning options for cyclic reheat systems

    SciTech Connect

    Rosenberg, H.S.; Koch, G.H.; Krause, H.H.; Brockway, M.C. ); Keeth, R.J.; Ireland, P.A. . Stearns-Roger Div.)

    1990-03-01

    A cyclic reheat system employing tube-type heat exchangers can be used to transfer heat from the inlet flue gas to the outlet flue gas of a wet flue gas desulfurization (FGD) system. Because of the particularly aggressive environment in the heat extraction zone for plants burning high-sulfur coal, corrosion of the tubes can present a serious problem. An inlet gas heat exchanger (heat extractor) test apparatus was built and installed on a slipstream taken after the precipitator of a high-sulfur coal-fired power plant in order to test various tube materials and cleaning methods. The performance of metal and nonmetallic tubes was evaluated during six separate exposure periods that included two temperatures (175 and 205{degree}F, 79 and 96{degree}C) and two cleaning methods (water washing and steam soot blowing). Water washing was performed at two frequencies (1 min/24 hr and 1 min/ 4 hr) and, during one period, the tubes were not cleaned at all. Steam soot blowing was performed at a frequency of 15 sec/3 hr. The present report summarizes the results obtained from the last three exposure periods. Alloys selected for testing were of the following types: (1) austenitic, ferritic, and duplex stainless steels, and (2) nickel-base alloys. Teflon, graphite, silicon carbide, and Crystar were also tested. 12 refs., 36 figs., 9 tabs.

  3. Reheating the D-brane universe via instant preheating

    SciTech Connect

    Panda, Sudhakar; Sami, M.; Thongkool, I.

    2010-05-15

    We investigate a possibility of reheating in a scenario of D-brane inflation in a warped deformed conifold background which includes perturbative corrections to throat geometry sourced by a chiral operator of dimension 3/2 in the conformal field theory. The effective D-brane potential, in this case, belongs to the class of nonoscillatory models of inflation for which the conventional reheating mechanism does not work. We find that gravitational particle production is inefficient and leads to reheating temperature of the order of 10{sup 8} GeV. We show that instant preheating is quite suitable to the present scenario and can easily reheat the universe to a temperature which is higher by about 3 orders of magnitude than its counterpart associated with gravitational particle production. The reheating temperature is shown to be insensitive to a particular choice of inflationary parameters suitable to observations.

  4. Modified Claus furnace

    SciTech Connect

    Reed, R.L.

    1986-03-11

    A Claus thermal conversion furnace is described comprising a primary furnace chamber, a burner in the primary furnace chamber, an oxidant containing gas supply inlet connected to the burner, a hydrogen sulfide containing gas supply conduit connected to the burner, an outlet extending from the furnace, a secondary reaction chamber in heat but not gas exchange relationship with the primary furnace chamber, the secondary reaction chamber extending through the length of the primary furnace chamber to a point in the outlet extending from the furnace, a hydrogen sulfide decomposing catalyst in the secondary reaction chamber, a hydrogen sulfide containing gas supply conduit connected to the secondary reaction chamber.

  5. Minimizing Reheat Energy Use in Laboratories

    SciTech Connect

    Frenze, David; Mathew, Paul; Morehead, Michael; Sartor, Dale; Starr Jr., William

    2005-11-29

    HVAC systems that are designed without properly accounting for equipment load variation across laboratory spaces in a facility can significantly increase simultaneous heating and cooling, particularly for systems that use zone reheat for temperature control. This best practice guide describes the problem of simultaneous heating and cooling resulting from load variations, and presents several technological and design process strategies to minimize it. This guide is one in a series created by the Laboratories for the 21st century ('Labs21') program, a joint program of the U.S. Environmental Protection Agency and U.S. Department of Energy. Geared towards architects, engineers, and facilities managers, these guides provide information about technologies and practices to use in designing, constructing, and operating safe, sustainable, high-performance laboratories.

  6. Chilly dark sectors and asymmetric reheating

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Cui, Yanou; Shelton, Jessie

    2016-06-01

    In a broad class of theories, the relic abundance of dark matter is determined by interactions internal to a thermalized dark sector, with no direct involvement of the Standard Model (SM). We point out that these theories raise an immediate cosmological question: how was the dark sector initially populated in the early universe? Motivated in part by the difficulty of accommodating large amounts of entropy carried in dark radiation with cosmic microwave background measurements of the effective number of relativistic species at recombination, N eff , we aim to establish which admissible cosmological histories can populate a thermal dark sector that never reaches thermal equilibrium with the SM. The minimal cosmological origin for such a dark sector is asymmetric reheating, when the same mechanism that populates the SM in the early universe also populates the dark sector at a lower temperature. Here we demonstrate that the resulting inevitable inflaton-mediated scattering between the dark sector and the SM can wash out a would-be temperature asymmetry, and establish the regions of parameter space where temperature asymmetries can be generated in minimal reheating scenarios. Thus obtaining a temperature asymmetry of a given size either restricts possible inflaton masses and couplings or necessitates a non-minimal cosmology for one or both sectors. As a side benefit, we develop techniques for evaluating collision terms in the relativistic Boltzmann equation when the full dependence on Bose-Einstein or Fermi-Dirac phase space distributions must be retained, and present several new results on relativistic thermal averages in an appendix.

  7. VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE #67 HOLDING FURNACE POURING AT #04 COPPER STATION IN THE CASTING SHOP. (OTHER UNITS MELT BRASS ALLOYS.) THIS IS THE SOUTHERNMOST FURNACE OF THE FOUR PRESENTLY IN SITU. THE CURRENT CASTING SHOP WAS CONSTRUCTED DURING THE EARLY 1970'S, REPLACING THE ORIGINAL PRE-WWI FACILITY. STATIONS #02, 03, AND 04 EACH CONSIST OF A HOLDER FLANKED BY A PAIR OF 800 KW ELECTRIC MELTERS. THE HOLDER IS REHEATED AT 85,000 LBS. SHAKER BOX, LOCATED AT THE REAR OF EACH MELTER SUPPLY THE MIXTURE OF INGREDIENTS REQUIRED FOR EACH PARTICULAR ALLOY. ONE MEMBER OF THE THREE-MAN CASTING TEAMS IS RESPONSIBLE FOR SHAKING METAL INTO THE MELTERS. IN THE LOWER RIGHT ARE SHOWN THE MOLD STORAGE AREA AND THE FURNACE BUILDERS' AREA FOR CHIPPING AND REBRICKING OFF-LINE UNITS. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  8. 11. SOUTHWEST VIEW OF BASIC OXYGEN FURNACES No. 1 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SOUTHWEST VIEW OF BASIC OXYGEN FURNACES No. 1 AND No. 2 ON THE OPERATING FLOOR OF THE FURNACE AISLE IN THE BOP SHOP - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  9. Looking east at the basic oxygen furnace building with gas ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east at the basic oxygen furnace building with gas cleaning plants in foreground on the left and the right side of the furnace building. - U.S. Steel Edgar Thomson Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Braddock, Allegheny County, PA

  10. 9. GENERAL INTERIOR VIEW OF THE VERTICAL FURNACE BUILDING (PART ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. GENERAL INTERIOR VIEW OF THE VERTICAL FURNACE BUILDING (PART OF MACHINE SHOP No. 2). TWO FURNACES, WITH THEIR SUPPORT FRAMEWORK, ARE VISIBLE TO THE RIGHT. THE TALL STRUCTURE IN THE CENTER TOWARD THE BACKGROUND IS THE VERTICAL QUENCH TOWER. - U.S. Steel Homestead Works, Machine Shop No. 2, Along Monongahela River, Homestead, Allegheny County, PA

  11. 12. INTERIOR VIEW OF SINGLE BAY SLOTTED TYPE FURNACE (LEFT) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR VIEW OF SINGLE BAY SLOTTED TYPE FURNACE (LEFT) AND CHAMBERSBURG DROP HAMMER OPERATED BY JEFF HOHMAN (RIGHT); THE FURNACE IS USED TO PRE-HEAT THE STEEL PRIOR TO FORGING, TOOL IS POST HOLE DIGGER WITH TAMPING BAR - Warwood Tool Company, Foot of Nineteenth Street, Wheeling, Ohio County, WV

  12. 15. Photocopied June 1978. WHEEL HOUSE RUINS OF 'NEW' FURNACE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photocopied June 1978. WHEEL HOUSE RUINS OF 'NEW' FURNACE. SEGMENT GEAR REMNANTS VISIBLE STANDING IN WHEEL PIT IN FOREGROUND. SOURCE: MCINTYRE DEVELOPMENT, NL INDUSTRIES, TAHAWUS, N.Y. - Adirondack Iron & Steel Company, New Furnace, Hudson River, Tahawus, Essex County, NY

  13. 11. Photocopied June 1978. HOT BLAST STOVE ON 'NEW' FURNACE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Photocopied June 1978. HOT BLAST STOVE ON 'NEW' FURNACE. NOTE DOWNCOMER ON LEFT AND DAMPERS ON CHIMNEYS. CA. 1906. SOURCE: MACINTYRE DEVELOPMENT, NL INDUSTRIES, TAHAWUS, N.Y. - Adirondack Iron & Steel Company, New Furnace, Hudson River, Tahawus, Essex County, NY

  14. VIEW FROM THE SOUTH OF THE #2 BLAST FURNACE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM THE SOUTH OF THE #2 BLAST FURNACE AND CASTING SEED ON THE LEFT, THE #1 BLAST FURNACE AND CASTING SHED ON THE RIGHT, AND THE STOVES, BOILERS, AND AUXILIARY EQUIPMENT IN THE CENTER. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  15. 38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. DETAIL OF COOLING WATER BOOSTER PUMP FOR OXYGEN FURNACES, LANCES, AND FUME HOODS IN THE GAS WASHER PUMP HOUSE LOOKING EAST. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. 19. DETAILED OBLIQUE VIEW SOUTHSOUTHEAST OF FURNACE 2, SHOWING PLATFORM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. DETAILED OBLIQUE VIEW SOUTH-SOUTHEAST OF FURNACE 2, SHOWING PLATFORM AT UPPER LEFT HOLDING PULLEY SYSTEM AND ELECTRIC MOTOR TO ACTIVATE DOORS. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA

  17. 15. DETAILED OBLIQUE VIEW SOUTHWEST OF FURNACE 1, SHOWING COUNTERWEIGHTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. DETAILED OBLIQUE VIEW SOUTHWEST OF FURNACE 1, SHOWING COUNTER-WEIGHTED PIVOT ARMS TO RAISE AND LOWER DOORS. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA

  18. 21. DETAILED FRONTAL VIEW WEST OF FURNACE 2, SHOWING MOUTHS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DETAILED FRONTAL VIEW WEST OF FURNACE 2, SHOWING MOUTHS WITH ROLLERS FOR MOVING TRAYS IN AND OUT OF THE OVENS. - Vulcan Crucible Steel Company, Building No. 3, 100 First Street, Aliquippa, Beaver County, PA

  19. 102. Giullotine type gate (inclosed position to regulate furnace exhaust ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Giullotine type gate (inclosed position to regulate furnace exhaust gases to stoves during heating cycle. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  20. 38. Base of No. 2 Furnace showing iron runner to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Base of No. 2 Furnace showing iron runner to ladle car on floor of casting shed. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  1. 39. Detail view of No. 2 Furnace iron runner; rod ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Detail view of No. 2 Furnace iron runner; rod or poker at right was used to unplug iron notch. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  2. 47. No. 4 hot blast stove, furnace "A", showing checkerwork ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. No. 4 hot blast stove, furnace "A", showing checkerwork askew after collapse of support posts. Note pattern of checkerwork refractories. looking west - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  3. 1. EXTERIOR VIEW LOOKING NORTHWEST AT BATCH FURNACE BUILDING, 22' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW LOOKING NORTHWEST AT BATCH FURNACE BUILDING, 22' BAR MILL BUILDING, AND 22 BAR MILL MOTOR ROOM. - U.S. Steel Duquesne Works, 22-Inch Bar Mill, Along Monongahela River, Duquesne, Allegheny County, PA

  4. 8. QUENCHING MECHANISM FOR THE CONTINUOUS ELECTRIC FURNACE HEAT TREATING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. QUENCHING MECHANISM FOR THE CONTINUOUS ELECTRIC FURNACE HEAT TREATING LINE AT THE HEAT TREATMENT PLANT OF THE DUQUESNE WORKS. - U.S. Steel Duquesne Works, Heat Treatment Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  5. INTERIOR VIEW LOOKING EAST, SHOWING HEROULT NO. 2 FURNACE (ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING EAST, SHOWING HEROULT NO. 2 FURNACE (ca. 1920) AND DETAIL OF CABLES AND BUS BARS (which convey power to electrodes) - Braeburn Alloy Steel, Braeburn Road at Allegheny River, Lower Burrell, Westmoreland County, PA

  6. INTERIOR VIEW LOOKING SOUTHWEST SHOWING NO. 1 FURNACE. TO RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING SOUTHWEST SHOWING NO. 1 FURNACE. TO RIGHT ARE D.C. MOTORS (which raise and lower the bus bars) - Braeburn Alloy Steel, Braeburn Road at Allegheny River, Lower Burrell, Westmoreland County, PA

  7. INTERIOR VIEW LOOKING SOUTHWEST, SHOWING HEROULT NO. 2 FURNACE (ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW LOOKING SOUTHWEST, SHOWING HEROULT NO. 2 FURNACE (ca. 1920) AND DC MOTORS (which raise and lower the bus bars) - Braeburn Alloy Steel, Braeburn Road at Allegheny River, Lower Burrell, Westmoreland County, PA

  8. 13. Blast furnace plant embraces the east bank of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Blast furnace plant embraces the east bank of the Cuyahoga River. Plant was established in 1881 by the Cleveland Rolling Mill Co. It was absorbed by the American Steel and Wire Co. in 1899 and, two years later, by the U.S. Steel Corp., which closed it in 1978. View looking north. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  9. Low reheating temperatures in monomial and binomial inflationary models

    SciTech Connect

    Rehagen, Thomas; Gelmini, Graciela B.

    2015-06-23

    We investigate the allowed range of reheating temperature values in light of the Planck 2015 results and the recent joint analysis of Cosmic Microwave Background (CMB) data from the BICEP2/Keck Array and Planck experiments, using monomial and binomial inflationary potentials. While the well studied ϕ{sup 2} inflationary potential is no longer favored by current CMB data, as well as ϕ{sup p} with p>2, a ϕ{sup 1} potential and canonical reheating (w{sub re}=0) provide a good fit to the CMB measurements. In this last case, we find that the Planck 2015 68% confidence limit upper bound on the spectral index, n{sub s}, implies an upper bound on the reheating temperature of T{sub re}≲6×10{sup 10} GeV, and excludes instantaneous reheating. The low reheating temperatures allowed by this model open the possibility that dark matter could be produced during the reheating period instead of when the Universe is radiation dominated, which could lead to very different predictions for the relic density and momentum distribution of WIMPs, sterile neutrinos, and axions. We also study binomial inflationary potentials and show the effects of a small departure from a ϕ{sup 1} potential. We find that as a subdominant ϕ{sup 2} term in the potential increases, first instantaneous reheating becomes allowed, and then the lowest possible reheating temperature of T{sub re}=4 MeV is excluded by the Planck 2015 68% confidence limit.

  10. Unification models with reheating via primordial black holes

    NASA Astrophysics Data System (ADS)

    Hidalgo, J. C.; Ureña-López, L. Arturo; Liddle, Andrew R.

    2012-02-01

    We study the possibility of reheating the universe through the evaporation of primordial black holes created at the end of inflation. This is shown to allow for the unification of inflation with dark matter or dark energy, or both, under the dynamics of a single scalar field. We determine the necessary conditions to recover the standard big bang by the time of nucleosynthesis after reheating through black holes.

  11. Energy use in the U.S. steel industry: a historical perspective and future opportunities

    SciTech Connect

    Stubbles, John

    2000-09-01

    The U.S. steel industry has taken enormous strides over the past decades to reduce its energy consumption; since the end of World War II, the industry has reduced its energy intensity (energy use per shipped ton) by 60 percent. Between 1990 and 1998 alone, intensity has dropped from 20 to 18 million Btu (MBtu) per ton. This figure is projected to decrease to 15 MBtu/ton by 2010 with an asymptotic trend towards 14 MBtu/ton. Domestic shipments are projected to flatten out over the next decade to around 105 million tons which means that total energy consumption will also decrease. Historically, the steel industry has accounted for about 6 percent of U.S. energy consumption. Today, that figure is less than 2 percent and will decrease further to 1.5 percent by 2010. The primary causes for the decrease in energy consumption since WWII are: The use of pellets in the blast furnace and the application of new technology in the ironmaking process to further reduce fuel rates per net ton of hot metal (NTHM); The total replacement of the open hearth process by basic oxygen and electric furnaces; The almost total replacement of ingot casting by continuous casting (which improved yield dramatically and thus reduced the tons of raw steel required per ton of shipments); and The growth of the electric furnace sector of the industry at the expense of hot metal-based processes (which has also stimulated scrap recycling so that about 55 percent of ''new'' steel is now melted from scrap steel). This report focuses on the concept of good practices (i.e., those that are sustainable and can use today's technology). If all the industry could operate on this basis, the additional savings per ton could total 2 MBtu, As further restructuring occurs and the swing from hot metal-based to electric furnace-based production continues, the average consumption will approach the good practice energy per ton. Further savings will accrue through new technology, particularly in the areas of reduced blast

  12. Moisture Separator Reheater for NPP Turbines

    NASA Astrophysics Data System (ADS)

    Manabe, Jun; Kasahara, Jiro

    This paper introduces the development of the current model Moisture Separator Reheater (MSR) for nuclear power plant (NPP) turbines, commercially placed in service in the period 1984-1997, focusing on the mist separation performance of the MSR along with drainage from heat exchanger tubes. A method of predicting the mist separation performance was devised first based on the observation of mist separation behaviors under an air-water test. Then the method was developed for the application to predict under the steam conditions, followed by the verification in comparison with the actual results of a steam condition test. The instability of tube drainage associated with both sub-cooling and temperature oscillation might adversely affect the seal welding of tubes to tube sheet due to thermal fatigue. The instability was measured on an existing unit to clarify behaviors and the development of a method to suppress them. Both methods were applied to newly constructed units and the effectiveness of the methods was demonstrated.

  13. Reheating in the presence of inhomogeneous noise

    NASA Astrophysics Data System (ADS)

    Zanchin, V.; Maia, A., Jr.; Craig, W.; Brandenberger, R.

    1999-07-01

    Explosive particle production due to parametric resonance is a crucial feature of reheating in inflationary cosmology. Coherent oscillations of the inflaton field lead to a periodically varying mass in the evolution equation of matter and gravitational fluctuations and often induce a parametric resonance instability. In a previous paper [V. Zanchin et al., Phys. Rev. D 57, 4651 (1998)] it was shown that homogeneous (i.e. space-independent) noise leads to an increase of the generalized Floquet exponent for all modes, at least if the noise is temporally uncorrelated. Here we extend the results to the physically more realistic case of spatially inhomogeneous noise. We demonstrate-modulo some mathematical fine points which are addressed in a companion paper-that the Floquet exponent is a non-decreasing function of the amplitude of the noise. We provide numerical evidence for an even stronger statement, namely that in the presence of inhomogeneous noise, the Floquet exponent of each mode is larger than the maximal Floquet exponent of the system in the absence of noise.

  14. Inflation and reheating in spontaneously generated gravity

    SciTech Connect

    Cerioni, A.; Tronconi, A.; Venturi, G.; Finelli, F.

    2010-06-15

    Inflation is studied in the context of induced gravity (IG) {gamma}{sigma}{sup 2}R, where R is the Ricci scalar, {sigma} a scalar field and {gamma} a dimensionless constant, and diverse symmetry-breaking potentials V({sigma}) are considered. In particular we compared the predictions for Landau-Ginzburg and Coleman-Weinberg type potentials and their possible generalizations with the most recent data. We find that large field inflation generally leads to fewer constraints on the parameters and the shape of the potential whereas small field inflation is more problematic and, if viable, implies more constraints, in particular, on the parameter {gamma}. We also examined the reheating phase and obtained an accurate analytical solution for the dynamics of the inflaton and the Hubble parameter by using a multiple scale analysis. The solutions were then used to study the average expansion of the Universe, the average equation of state for the scalar field and both the perturbative and resonant decays of the inflaton field.

  15. Device and Container for Reheating and Sterilization

    NASA Technical Reports Server (NTRS)

    Sastry, Sudhir K.; Heskitt, Brian F.; Jun, Soojin; Marcy, Joseph E.; Mahna, Ritesh

    2012-01-01

    Long-duration space missions require the development of improved foods and novel packages that do not represent a significant disposal issue. In addition, it would also be desirable if rapid heating technologies could be used on Earth as well, to improve food quality during a sterilization process. For this purpose, a package equipped with electrodes was developed that will enable rapid reheating of contents via ohmic heating to serving temperature during space vehicle transit. Further, the package is designed with a resealing feature, which enables the package, once used, to contain and sterilize waste, including human waste for storage prior to jettison during a long-duration mission. Ohmic heating is a technology that has been investigated on and off for over a century. Literature indicates that foods processed by ohmic heating are of superior quality to their conventionally processed counterparts. This is due to the speed and uniformity of ohmic heating, which minimizes exposure of sensitive materials to high temperatures. In principle, the material may be heated rapidly to sterilization conditions, cooled rapidly, and stored. The ohmic heating device herein is incorporated within a package. While this by itself is not novel, a reusable feature also was developed with the intent that waste may be stored and re-sterilized within the packages. These would then serve a useful function after their use in food processing and storage. The enclosure should be designed to minimize mass (and for NASA's purposes, Equivalent System Mass, or ESM), while enabling the sterilization function. It should also be electrically insulating. For this reason, Ultem high-strength, machinable electrical insulator was used.

  16. Reheating in supersymmetric high scale inflation

    SciTech Connect

    Allahverdi, Rouzbeh; Mazumdar, Anupam

    2007-11-15

    Motivated by our earlier work, we analyze how the inflaton decay reheats the Universe within supersymmetry. In a nonsupersymmetric case the inflaton usually decays via preheating unless its couplings to other fields are very small. Naively one would expect that supersymmetry enhances bosonic preheating as it introduces new scalars such as squarks and sleptons. On the contrary, we point out that preheating is unlikely within supersymmetry. The reason is that flat directions in the scalar potential, classified by gauge-invariant combinations of slepton and squark fields, are generically displaced towards a large vacuum expectation value (VEV) in the early Universe. They induce supersymmetry preserving masses to the inflaton decay products through the standard model Yukawa couplings, which kinematically blocks preheating for VEVs>10{sup 13} GeV. The decay will become allowed only after the flat directions start oscillating, and once the flat direction VEV is sufficiently redshifted. For models with weak scale supersymmetry, this generically happens at a Hubble expansion rate: H{approx_equal}(10{sup -3}-10{sup -1}) TeV, at which time the inflaton decays in the perturbative regime. This is to our knowledge the first analysis where the inflaton decay to the standard model particles is treated properly within supersymmetry. There are a number of important consequences: no overproduction of dangerous supersymmetric relics (particularly gravitinos), no resonant excitation of superheavy dark matter, and no nonthermal leptogenesis through nonperturbative creation of the right-handed (s)neutrinos. Finally supersymmetric flat directions can even spoil hybrid inflation altogether by not allowing the auxiliary field to become tachyonic.

  17. Influence of reheating on the trispectrum and its scale dependence

    SciTech Connect

    Leung, Godfrey; Tarrant, Ewan R. M.; Copeland, Edmund J.; Byrnes, Christian T. E-mail: ppxet@nottingham.ac.uk E-mail: ed.copeland@nottingham.ac.uk

    2013-08-01

    We study the evolution of the non-linear curvature perturbation during perturbative reheating, and hence how observables evolve to their final values which we may compare against observations. Our study includes the evolution of the two trispectrum parameters, g{sub NL} and τ{sub NL}, as well as the scale dependence of both f{sub NL} and τ{sub NL}. In general the evolution is significant and must be taken into account, which means that models of multifield inflation cannot be compared to observations without specifying how the subsequent reheating takes place. If the trispectrum is large at the end of inflation, it normally remains large at the end of reheating. In the classes of models we study, it remains very hard to generate τ{sub NL} >> f{sub NL}{sup 2}, regardless of the decay rates of the fields. Similarly, for the classes of models in which g{sub NL} ≅ τ{sub NL} during slow-roll inflation, we find the relation typically remains valid during reheating. Therefore it is possible to observationally test such classes of models without specifying the parameters of reheating, even though the individual observables are sensitive to the details of reheating. It is hard to generate an observably large g{sub NL} however. The runnings, n{sub f{sub N{sub L}}} and n{sub τ{sub N{sub L}}}, tend to satisfy a consistency relation n{sub τ{sub N{sub L}}} = (3/2)n{sub f{sub N{sub L}}} regardless of the reheating timescale, but are in general too small to be observed for the class of models considered.

  18. Heat treatment furnace

    DOEpatents

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  19. Research, Development, and Field Testing of Thermochemical Recuperation for High Temperature Furnace

    SciTech Connect

    Kurek, Harry; Kozlov, Aleksandr

    2014-03-31

    Gas Technology Institute (GTI) evaluated the technical and economic feasibility of utilizing a non-catalytic ThermoChemical Recuperation System (TCRS) to recover a significant amount of energy from the waste gases of natural gas fired steel reheat furnaces. The project was related to DOE-AMO’s (formerly known as ITP) one of the technical areas of interest: Technologies to improve energy efficiency and reduce the carbon footprint of equipment currently used in energy-intensive industries such as iron and steel, and reduce by at least 30% energy consumption and carbon dioxide emission compared to the conventional technologies. ThermoChemical Recuperation (TCR) is a technique that recovers sensible heat in the exhaust gas from an industrial process, furnace, engine etc., when a hydrocarbon fuel is used for combustion. TCR enables waste heat recovery by both combustion air preheat and hydrocarbon fuel (natural gas, for example) reforming into a higher calorific fuel. The reforming process uses hot flue gas components (H2O and CO2) or steam to convert the fuel into a combustible mixture of hydrogen (H2), carbon monoxide (CO), and some unreformed hydrocarbons (CnHm). Reforming of natural gas with recycled exhaust gas or steam can significantly reduce fuel consumption, CO2 emissions and cost as well as increase process thermal efficiency. The calorific content of the fuel can be increased by up to ~28% with the TCR process if the original source fuel is natural gas. In addition, the fuel is preheated during the TCR process adding sensible heat to the fuel. The Research and Development work by GTI was proposed to be carried out in three Phases (Project Objectives). • Phase I: Develop a feasibility study consisting of a benefits-derived economic evaluation of a ThermoChemical Recuperation (TCR) concept with respect to high temperature reheat furnace applications within the steel industry (and cross-cutting industries). This will establish the design parameters and

  20. Effect of stress and temperature on mode of fracture after reheat cracking

    SciTech Connect

    Ferraresi, V.A.; Exaltacao Trevisan, R. da

    1996-12-01

    The phenomenon of stress-relief cracking or reheat cracking can occur in the heat affected zones (HAZ) or weld fillet during Post Weld Heat Treatment (PWHT). The parts of the HAZ most susceptible to reheat cracking are the coarse-grained regions which result from heating at elevated temperatures in the austenitic region. The aim of the research is to study the effect of stress and temperature during PWHT for stress relief on modes of fractures in High Strength Low Alloy (HSLA) steel produced commercially. The Modified Implant Test was applied along with simulation of thermal cycles typically used for stress-relief treatment of welded components. Basically two different modes of fracture have been identified on basis of fracture appearance. For the temperature range of 500 to 600C, under conditions of high and low stresses, a low-ductility intergranular fracture mode (brittle decohesion) was observed and fracture surfaces were characterized by almost featureless facets. At higher temperatures (680 C) and lower stresses, the fractures were slightly more ductile and occurred by creep cavitation on the grain boundaries. Although intergranular, these fractures were basically dimpled due to coalescence of individual creep cavities. Surfaces of fractures were examined by scanning electron microscopy. Tests with varying initial loads and different heat-treatment temperatures were realized in order to render separation of stress and temperature effects. It was observed that fracture mode depends mainly on the temperature level rather than on stress range.

  1. Nonperturbative dynamics of reheating after inflation: A review

    NASA Astrophysics Data System (ADS)

    Amin, Mustafa A.; Hertzberg, Mark P.; Kaiser, David I.; Karouby, Johanna

    2015-12-01

    Our understanding of the state of the universe between the end of inflation and big bang nucleosynthesis (BBN) is incomplete. The dynamics at the end of inflation are rich and a potential source of observational signatures. Reheating, the energy transfer between the inflaton and Standard Model fields (possibly through intermediaries) and their subsequent thermalization, can provide clues to how inflation fits in with known high-energy physics. We provide an overview of our current understanding of the nonperturbative, nonlinear dynamics at the end of inflation, some salient features of realistic particle physics models of reheating, and how the universe reaches a thermal state before BBN. In addition, we review the analytical and numerical tools available in the literature to study preheating and reheating and discuss potential observational signatures from this fascinating era.

  2. CMB and reheating constraints to α -attractor inflationary models

    NASA Astrophysics Data System (ADS)

    Eshaghi, Mehdi; Zarei, Moslem; Riazi, Nematollah; Kiasatpour, Ahmad

    2016-06-01

    After Planck 2013, a broad class of inflationary models called α -attractors was developed which has universal observational predictions. For small values of the parameter α , the models have good consistency with the recent cosmic microwave background data. In this work, we first calculate analytically (and verify numerically) the predictions of these models for spectral index, ns, and tensor-to-scalar ratio, r , and then, using BICEP2/Keck 2015 and Planck 2015 data, we impose constraints on α -attractors. Then, we study the reheating for α -attractors. The reheating temperature, Tre, and the number of e-folds during reheating, Nre, are calculated as functions of ns. Using these results, we determine the range of the free parameters of two classes of α -attractors which satisfy the constraints of recent cosmic microwave background data.

  3. Information gain on reheating: The one bit milestone

    NASA Astrophysics Data System (ADS)

    Martin, Jérôme; Ringeval, Christophe; Vennin, Vincent

    2016-05-01

    We show that the Planck 2015 and BICEP2/KECK measurements of the cosmic microwave background (CMB) anisotropies provide together an information gain of 0.82 ±0.13 bits on the reheating history over all slow-roll single-field models of inflation. This corresponds to a 40% improvement compared to the Planck 2013 constraints on the reheating. Our method relies on an exhaustive CMB data analysis performed over nearly 200 models of inflation to derive the Kullback-Leibler entropy between the prior and the fully marginalized posterior of the reheating parameter. This number is a weighted average by the Bayesian evidence of each model to explain the data thereby ensuring its fairness and robustness.

  4. Entropy mode loops and cosmological correlations during perturbative reheating

    SciTech Connect

    Kaya, Ali; Kutluk, Emine Seyma E-mail: seymakutluk@gmail.com

    2015-01-01

    Recently, it has been shown that during preheating the entropy modes circulating in the loops, which correspond to the inflaton decay products, meaningfully modify the cosmological correlation functions at superhorizon scales. In this paper, we determine the significance of the same effect when reheating occurs in the perturbative regime. In a typical two scalar field model, the magnitude of the loop corrections are shown to depend on several parameters like the background inflaton amplitude in the beginning of reheating, the inflaton decay rate and the inflaton mass. Although the loop contributions turn out to be small as compared to the preheating case, they still come out larger than the loop effects during inflation.

  5. Microstructure and properties of quenched-and-aged plates produced from a copper-bearing HSLA steel

    SciTech Connect

    Sen, S.K.; Ray, A.; Avtar, R.; Dhua, S.K.; Prasad, M.S.; Jha, P.; Sengupta, P.P.; Jha, S.

    1998-08-01

    For the first time in India, quenched-and-tempered (Q and T) plates of copper-bearing high-strength low-alloy (HSLA) steel have been commercially developed for naval structural applications. A 50 ton production heat was made through electric arc furnace (EAF)-vacuum are degassing (VAD) route and continuously cast into 170 mm thick slabs. These slabs were conditioned, reheated in walking-beam furnace and hot rolled in plate mill into plates of 10 to 16 mm thickness. The as-rolled plates were hardened through oil quenching and subsequently tempered (aged) at 630 C to achieve the combination of high-strength and good low-temperature impact toughness. The microstructures of heat treated plates showed fine acicular ferrite with grain sizes ranging between ASTM No. 9 and 10. From the standpoint of tensile properties, Q and T plates of all thicknesses exhibited significantly higher yield strengths than the minimum stipulated value of 552 MPa for HY-80/HSLA-80 steels. The elongation (22.20 to 26.00%) and reduction in area (62.12 to 67.62%) values achieved also exceeded the respective minimum requirements of 20 and 50% stipulated for such steels. The trend in variation of Charpy V-notch (CVN) impact energies at room temperature, {minus}18, and {minus}62 C not only showed significantly higher values than that stipulated for HY-80 and HSLA-100 steels at {minus}18 C, but also indicated that the CVN impact energies achieved (105.15 to 144.25 J) at {minus}62 C were higher than the estimated value of 90 J for HSLA-80/HSLA-100 steels at this temperature.

  6. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  7. Procurement and operation considerations for moisture separator reheaters. Final report

    SciTech Connect

    Gilcrest, J.D.; Mollerus, F.J.

    1984-09-01

    State-of-the-art technology can provide solutions for many of the problems that have beset moisture separator reheaters. Changes in design and operating procedures recommended in this study will improve the performance and extended the operation life of these major components.

  8. Nonmonotonic (reheating) thermal histories from contrasting kinetics of multiple thermochronometers

    NASA Astrophysics Data System (ADS)

    Reiners, P. W.; Thomson, S. N.; Min, K. K.

    2007-12-01

    Reheating events are often difficult to deduce in thermochronology, because the age resetting they cause can usually be modeled by varying the form of a presumably simpler monotonic cooling path (an exception to this is fission-track length modeling). However, reheating and full or partial resetting due to metamorphism, hydrothermal circulation, magmatism, wildfire, or (at least in the case of meteorites) impacts, are likely common in many settings. Such effects may be particularly important for samples that have resided for long periods at or near the surface with old cooling ages, where they are susceptible to brief, high-temperature events. Failure to recognize reheating may lead to erroneous tectonic interpretations. Nonmonotonic thermal histories may be resolved by using multiple thermochronometric systems with appropriately contrasting kinetic properties. At relatively high temperatures and short timescales, systems with different activation energy ( E), frequency factor ( D0) and domain size (a) display crossovers in diffusion (or annealing) rates that may be used to diagnose reheating episodes of particular intensity and duration. The most diagnostic effect of these kinetic crossovers are apparent "age inversions" in which systems with higher closure temperatures ( Tc) are more strongly reset (resulting in younger ages) than systems with lower Tc (e.g., apatite fission-track and He systems). In cases of complete resetting of the higher- Tc system and partial resetting of the lower- Tc system, reheating may be diagnosed and the intensity and duration of the event partially constrained. When both systems are partially reset, Dt/a2 of the reheating event can be calculated and used to estimate the specific form and timing of reheating thermal histories. Examples of high temperature thermochronometers with potentially useful kinetic crossovers include the Rb-Sr system in both biotite and muscovite coupled with many higher temperature systems such as Ar in

  9. Process to eliminate hazardous components from the electric arc furnace flue dust and recovering of metals

    SciTech Connect

    Lazcano-Navarro, A.

    1988-08-09

    This patent describes a method to recover metals from flue dust generated in an electric arc furnace, the method comprising: charging pelletized or powder flue dust into an electric induction furnace between induction susceptors; sealing of the furnace top to prevent entry of air; injecting natural gas through the bottom of the electric induction furnace as a solitary reducing agent; heating the charge by electromagnetic induction of the susceptors to provide reduction energy; recovering of heavy metals as a zinclead-cadmium alloy in a condenser at the top of the furnace; burning and scrubbing exiting gases in the condenser; and melting the remaining iron to produce steel and slag.

  10. Operational results of shaft repair by installing stave type cooler at Kimitsu Nos. 3 and 4 blast furnaces

    SciTech Connect

    Oda, Hiroshi; Amano, Shigeru; Sakamoto, Aiichiro; Anzai, Osamu; Nakagome, Michiru; Kuze, Toshisuke; Imuta, Akira

    1997-12-31

    Nos. 3 and 4 blast furnaces in Nippon Steel Corporation Kimitsu Works were both initially fitted with cooling plate systems. With the aging of each furnace, the damage to their respective inner-shaft profiles had become serious. Thus, in order to prevent operational change and prolong the furnace life, the inner-shaft profile of each furnace was repaired by replacing the former cooling plate system with the stave type cooler during the two-week-shutdowns. With this repair, stability of burden descent and gas flow near the wall part of the furnace have been achieved. Thus the prolongation of the furnace life is naturally expected.

  11. Reheating phase diagram for single-field slow-roll inflationary models

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Guo, Zong-Kuan; Wang, Shao-Jiang

    2015-09-01

    We investigate the influence on the inflationary predictions from the reheating processes characterized by the e -folding number Nreh and the effective equation-of-state parameter wreh during the reheating phase. For the first time, reheating processes can be constrained in the Nreh-wreh plane from Planck 2015. We find that for Higgs inflation with a nonminimal coupling to gravity, the predictions are insensitive to the reheating phase for current CMB measurements. We also find that the spontaneously broken SUSY inflation and axion monodromy inflation with ϕ2 /3 potential, which with instantaneous reheating lie outside or at the edge of the 95% confidence region in the ns-r plane from Planck 2015 TT, TE, EE +lowP , can well fit the data with the help of reheating processes. Future CMB experiments would put strong constraints on reheating processes.

  12. INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING FURNACE KEEPER OBSERVING FURNACE THROUGH BLUE GLASS EVERY TWENTY MINUTES TO DETERMINE SIZE AND TEXTURE OF BATCH AND OTHER VARIABLES. FAN IN FRONT COOLS WORKERS AS THEY CONDUCT REPAIRS. FURNACE TEMPERATURE AT 1572 DEGREES FAHRENHEIT. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  13. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  14. Space station furnace facility

    NASA Astrophysics Data System (ADS)

    Cobb, Sharon D.; Lehoczky, Sandor L.

    1996-07-01

    The Space Shuttle Furnace Facility (SSFF) is the modular, multi-user scientific instrumentation for conducting materials research in the reduced gravity environment of the International Space Station. The facility is divided into the Core System and two Instrument Racks. The core system provides the common electrical and mechanical support equipment required to operate experiment modules (EMs). The EMs are investigator unique furnaces or apparatus designed to accomplish specific science investigations. Investigations are peer selected every two years from proposals submitted in response to National Aeronautics and Space Administration Research Announcements. The SSFF Core systems are designed to accommodate an envelope of eight types of experiment modules. The first two modules to be developed for the first instrument rack include a high temperature gradient furnace with quench, and a low temperature gradient furnace. A new EM is planned to be developed every two years.

  15. Paired Straight Hearth Furnace

    SciTech Connect

    2009-04-01

    This factsheet describes a research project whose goals are to design, develop, and evaluate the scalability and commercial feasibility of the PSH Paired Straight Hearth Furnace alternative ironmaking process.

  16. Space Station Furnace Facility

    SciTech Connect

    Cobb, S.D.; Lehoczky, S.L.

    1996-12-31

    The Space Station Furnace Facility (SSFF) is the modular, multi-user scientific instrumentation for conducting materials research in the reduced gravity ({approximately}10{sup {minus}6} g) environment of the International Space Station (ISS). The facility is divided into the Core System and two Instrument Racks (IRs). The Core System provides the common electrical and mechanical support equipment required to operate Experiment Modules (EMs). The EMs are investigator unique furnaces or apparatus designed to accomplish specific science investigations. Investigations are peer selected every two years from proposals submitted in response to National Aeronautics and Space Administration (NASA) Research Announcements. The SSFF Core systems are designed to accommodate an envelope of eight types of experiment modules. The first two modules to be developed for the first Instrument Rack include a High Temperature Gradient Furnace with Quench (HGFQ), and a Low Temperature Gradient Furnace (LGF). A new EM is planned to be developed every two years.

  17. Reheating and primordial gravitational waves in generalized Galilean genesis

    NASA Astrophysics Data System (ADS)

    Nishi, Sakine; Kobayashi, Tsutomu

    2016-04-01

    Galilean genesis is an alternative to inflation, in which the universe starts expanding from Minkowski with the stable violation of the null energy condition. In this paper, we discuss how the early universe is reheated through the gravitational particle production at the transition from the genesis phase to the subsequent phase where the kinetic energy of the scalar field is dominant. We then study the consequences of gravitational reheating after Galilean genesis on the spectrum of primordial gravitational waves. The resultant spectrum is strongly blue, and at high frequencies Ωgwpropto f3 in terms of the energy density per unit logarithmic frequency. Though this cannot be detected in existing detectors, the amplitude can be as large as Ωgw~ 10‑12 at f~ 100 MHz, providing a future test of the genesis scenario. The analysis is performed within the framework of generalized Galilean genesis based on the Horndeski theory, which enables us to derive generic formulas.

  18. Inflaton decay and reheating in nonminimal derivative coupling

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo; Moon, Taeyoon

    2016-07-01

    We investigate the inflaton decay and reheating period after the end of inflation in the non-minimal derivative coupling (NDC) model with chaotic potential. In general, this model is known to provide an enhanced slow-roll inflation caused by gravitationally enhanced friction. We find violent oscillations of Hubble parameter which induces oscillations of the sound speed squared, implying the Lagrangian instability of curvature perturbation ζ under the comoving gauge varphi = 0. Also, it is shown that the curvature perturbation blows up at dot phi = 0, leading to the breakdown of the comoving gauge at dot phi = 0. Therefore, we use the Newtonian gauge to perform the perturbation analysis where the Newtonian potential is employed as a physical variable. The curvature perturbation is not considered as a physical variable which describes a relevant perturbation during reheating.

  19. Reheating processes after Starobinsky inflation in old-minimal supergravity

    NASA Astrophysics Data System (ADS)

    Terada, Takahiro; Watanabe, Yuki; Yamada, Yusuke; Yokoyama, Jun'ichi

    2015-02-01

    We study reheating processes and its cosmological consequences in the Starobinsky model embedded in the old-minimal supergravity. First, we consider minimal coupling between the gravity and matter sectors in the higher curvature theory, and transform it to the equivalent standard supergravity coupled to additional matter superfields. We then discuss characteristic decay modes of the inflaton and the reheating temperature T R. Considering a simple model of supersymmetry breaking sector, we estimate gravitino abundance from inflaton decay, and obtain limits on the masses of gravitino and supersymmetry breaking field. We find T R ≃ 1.0 × 109 GeV and the allowed range of gravitino mass as 104 GeV ≲ m 3/2 ≲ 105 GeV, assuming anomaly-induced decay into the gauge sector as the dominant decay channel.

  20. Gas Turbine Reheat Using In-Situ Combustion

    SciTech Connect

    T.E. Lippert; D.M. Bachovchin

    2004-03-31

    Siemens Westinghouse Power Corporation (SWPC) is developing in-situ reheat (fuel injection via airfoil injection) as a means for increasing cycle efficiency and power output, with possibly reduced emissions. In addition to kinetic modeling and experimental task, CFD modeling (by Texas A&M) of airfoil injection and its effects on blade aerodynamics and turbine performance. This report discusses validation of the model against single-vane combustion test data from Siemens Westinghouse, and parametric studies of injection reheat in a modern turbine. The best location for injection is at the trailing edge of the inlet guide vane. Combustion is incomplete at trailing edges of subsequent vanes. Recommendations for further development are presented.

  1. Inflation, baryogenesis, and gravitino dark matter at ultralow reheat temperatures

    SciTech Connect

    Kohri, Kazunori; Sahu, Narendra; Mazumdar, Anupam

    2009-11-15

    It is quite possible that the reheat temperature of the Universe is extremely low close to the scale of big bang nucleosynthesis, i.e. T{sub R}{approx}1-10 MeV. At such low reheat temperatures generating matter, antimatter asymmetry and synthesizing dark matter particles are challenging issues which need to be addressed within a framework of beyond the standard model physics. In this paper we point out that a successful cosmology can emerge naturally provided the R-parity violating interactions are responsible for the excess in baryons over antibaryons and at the same time they can explain the longevity of dark matter with the right abundance.

  2. Non-Gaussianity in the modulated reheating scenario

    SciTech Connect

    Suyama, Teruaki; Yamaguchi, Masahide

    2008-01-15

    We investigate the non-Gaussianity of primordial curvature perturbations in the modulated reheating scenario where the primordial perturbation is generated due to the spatial fluctuation of the rate of the inflaton decay to radiation. We use the {delta}N formalism to evaluate the trispectrum of the curvature perturbation as well as its bispectrum. We give expressions for three nonlinear parameters f{sub NL}, {tau}{sub NL}, and g{sub NL} in the modulated reheating scenario. If both the intrinsic non-Gaussianity of scalar field fluctuations and third derivative of the decay rate with respect to the scalar fields are negligibly small, g{sub NL} has at least the same order of magnitude as f{sub NL}. We also give a general inequality between f{sub NL} and {tau}{sub NL}, which is true for other inflationary scenarios as long as the primordial non-Gaussianity comes from superhorizon evolution.

  3. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  4. Programmable Multizone Furnace

    NASA Technical Reports Server (NTRS)

    Ting, Edmund Y.; Larson, David J., Jr.

    1990-01-01

    Moving thermal gradients created without mechanical motion. Furnace having multiple, individually programmable heating zones developed for use in experiments on directional solidification. Holds rod specimen and generates thermal gradients moving along specimen. Elimination of translation mechanism makes furnace more compact and reduces vibrations, which disturb experiment. Availability of different temperature profiles through programming makes it versatile tool for research at low thermal gradients traveling at moderate speeds.

  5. Reheating via a generalized nonminimal coupling of curvature to matter

    SciTech Connect

    Bertolami, Orfeu; Frazao, Pedro; Paramos, Jorge

    2011-02-15

    In this work, one shows that a generalized nonminimal coupling between geometry and matter is compatible with Starobinsky inflation and leads to a successful process of preheating, a reheating scenario based on the production of massive particles via parametric resonance. The model naturally extends the usual preheating mechanism, which resorts to an ad hoc scalar curvature-dependent mass term for a scalar field {chi}, and also encompasses a previously studied preheating channel based upon a nonstandard kinetic term.

  6. The dark matter annihilation boost from low-temperature reheating

    NASA Astrophysics Data System (ADS)

    Erickcek, Adrienne L.

    2015-11-01

    The evolution of the Universe between inflation and the onset of big bang nucleosynthesis is difficult to probe and largely unconstrained. This ignorance profoundly limits our understanding of dark matter: we cannot calculate its thermal relic abundance without knowing when the Universe became radiation dominated. Fortunately, small-scale density perturbations provide a probe of the early Universe that could break this degeneracy. If dark matter is a thermal relic, density perturbations that enter the horizon during an early matter-dominated era grow linearly with the scale factor prior to reheating. The resulting abundance of substructure boosts the annihilation rate by several orders of magnitude, which can compensate for the smaller annihilation cross sections that are required to generate the observed dark matter density in these scenarios. In particular, thermal relics with masses less than a TeV that thermally and kinetically decouple prior to reheating may already be ruled out by Fermi-LAT observations of dwarf spheroidal galaxies. Although these constraints are subject to uncertainties regarding the internal structure of the microhalos that form from the enhanced perturbations, they open up the possibility of using gamma-ray observations to learn about the reheating of the Universe.

  7. Fate of supersymmetric flat directions and their role in reheating

    SciTech Connect

    Olive, Keith A.; Peloso, Marco

    2006-11-15

    We consider the role of supersymmetric flat directions in reheating the Universe after inflation. One or more flat directions can develop large vevs during inflation, which can potentially affect reheating by slowing down scattering processes among inflaton decay products or by coming to dominate the energy density of the Universe. Both effects occur only if flat directions are sufficiently long-lived. The computation of their perturbative decay rate, and a simple estimate of their nonperturbative decay have led to the conclusion that this is indeed the case. In contrast, we show that flat directions can decay quickly through nonperturbative channels in realistic models. The mass matrix for minimal supersymmetric standard model (MSSM) excitations around flat directions has nondiagonal entries, which vary with the phase of the (complex) flat directions. The quasiperiodic motion of the flat directions results in a strong parametric resonance, leading to the rapid depletion of the flat direction within its first few rotations. This may preclude any significant role for the flat directions in reheating the Universe after inflation in models in which the inflaton decays perturbatively.

  8. Multiple reheat helium Brayton cycles for sodium fast reactors

    SciTech Connect

    Haihua Zhao; Per F. Peterson

    2008-07-01

    Sodium fast reactors (SFR) traditionally adopt the steam Rankine cycle for power conversion. The resulting potential for water-sodium reaction remains a continuing concern which at least partly delays the SFR technology commercialization and is a contributor to higher capital cost. Supercritical CO2 provides an alternative, but is also capable of sustaining energetic chemical reactions with sodium. Recent development on advanced inert-gas Brayton cycles could potentially solve this compatibility issue, increase thermal efficiency, and bring down the capital cost close to light water reactors. In this paper, helium Brayton cycles with multiple reheat and intercooling states are presented for SFRs with reactor outlet temperatures in the range of 510°C to 650°C. The resulting thermal efficiencies range from 39% and 47%, which is comparable with supercritical recompression CO2 cycles (SCO2 cycle). A systematic comparison between multiple reheat helium Brayton cycle and the SCO2 cycle is given, considering compatibility issues, plant site cooling temperature effect on plant efficiency, full plant cost optimization, and other important factors. The study indicates that the multiple reheat helium cycle is the preferred choice over SCO2 cycle for sodium fast reactors.

  9. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.

    PubMed

    Kehagia, Fotini

    2009-05-01

    Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented. PMID:19423603

  10. Advanced Process Heater for the Steel, Aluminum and Chemical Industries of the Future

    SciTech Connect

    Thomas D. Briselden

    2007-10-31

    The Roadmap for Process Heating Technology (March 16, 2001), identified the following priority R&D needs: “Improved performance of high temperature materials; improved methods for stabilizing low emission flames; heating technologies that simultaneously reduce emissions, increase efficiency, and increase heat transfer”. Radiant tubes are used in almost every industry of the future. Examples include Aluminum re-heat furnaces; Steel strip annealing furnaces, Petroleum cracking/ refining furnaces, Metal Casting/Heat Treating in atmosphere and fluidized bed furnaces, Glass lair annealing furnaces, Forest Products infrared paper driers, Chemical heat exchangers and immersion heaters, and the indirect grain driers in the Agriculture Industry. Several common needs among the industries are evident: (1) Energy Reductions, (2) Productivity Improvements, (3) Zero Emissions, and (4) Increased Component Life. The Category I award entitled “Proof of Concept of an Advanced Process Heater (APH) for Steel, Aluminum, and Petroleum Industries of the Future” met the technical feasibility goals of: (1) doubling the heat transfer rates (2) improving thermal efficiencies by 20%, (3) improving temperature uniformity by 100oF (38 oC) and (4) simultaneously reducing NOx and CO2 emissions. The APH addresses EERE’s primary mission of increasing efficiency/reducing fuel usage in energy intensive industries. The primary goal of this project was to design, manufacture and test a commercial APH prototype by integrating three components: (1) Helical Heat Exchanger, (2) Shared Wall Radiant U-tube, and (3) Helical Flame Stabilization Element. To accomplish the above, a near net shape powder ceramic Si-SiC low-cost forming process was used to manufacture the components. The project defined the methods for making an Advanced Process Heater that produced an efficiency between 70% to 80% with temperature uniformities of less than 5oF/ft (9oC/m). Three spin-off products resulted from this

  11. Scale formation and descaling in hot rolling of low carbon steel

    NASA Astrophysics Data System (ADS)

    Basabe Mancheno, Vladimir Vinicio

    In this research, the effects of gas composition, elapsed time of reaction and temperature on scale formation and descaling of low carbon steel were investigated and results were discussed from the viewpoint of the phase composition of the scales, oxidation rates, oxidation mechanisms, adhesion, fracture mechanics, porosity and residual scale. The phase composition and morphology of scales grown under conditions similar to those of reheating furnaces were analyzed. Low carbon steel was oxidized over the temperature range 1000-1250°C in gas mixtures of O 2-CO2-H2O-N2, O2-H 2O-N2 and O2-CO2-N2. The mole fraction of each phase, wustite (FeO), magnetite (Fe3O 4) and hematite (Fe2O3) was determined by the direct comparison method Two types of scales were observed. The first type was a crystalline scale with an irregular outer surface composed mostly of wustite, and a negligible amount of magnetite. The second type was the classical three-layer scale composed of wustite, magnetite and hematite. In general, the experiments showed that the furnace atmosphere, oxidation time and temperature influence the phase composition of the scales. Low carbon steel was oxidized in air over the temperature range 600-1200°C for 120 s to approximate the formation of secondary and tertiary scale in hot rolling. The mole fraction of wustite, magnetite and hematite was determined by the direct comparison method The phase composition of the scales changed with temperature and time. During the initial 30 s of oxidation, wustite was the predominant phase in the temperature range 800-1200°C, and as oxidation proceeded, the percentages of magnetite and hematite increased. In addition, the texture of the scales was investigated by orientation imaging microscopy (OIM); it was found that temperature influences the texture of the scales. The experiments indicated that 850°C is the ideal temperature for the finishing mill in order to reduce surface defects and work roll wear. The adhesion of

  12. DESTRUCTION AND REMOVAL OF POHCS (PRINCPAL ORGANIC HAZARDOUS CONSTITUENTS) IN IRON MAKING BLAST FURNACES

    EPA Science Inventory

    At least one steel company utilizes organic waste liquids as a heat and carbon content source to partially replace the coke that is used to charge the blast furnaces. The waste liquids fed to the blast furnace are likely to contain hazardous constituents. Temperature and residenc...

  13. 12. BIRD'SEYE VIEW OF VERTICAL FURNACES ALONG THE NORTH WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. BIRD'S-EYE VIEW OF VERTICAL FURNACES ALONG THE NORTH WALL OF BUILDING. HISTORIAN FOR SCALE. - U.S. Steel Homestead Works, Machine Shop No. 2, Along Monongahela River, Homestead, Allegheny County, PA

  14. Gas Turbine Reheat Using In-Situ Combustion

    SciTech Connect

    D.M. Bachovchin; T.E. Lippert

    2004-04-30

    Gas turbine reheat is a well-known technique for increasing the power output of gas turbine, as well as the efficiency in combined cycle operation with higher heat recovery inlet temperatures. The technique also could allow development of an advanced high efficiency turbine with an additional stage, but without a higher inlet temperature. A novel reheat approach, with fuel added via internal passages in turbine airfoils, has been proposed [1]. This avoids the bulky and possible high-NOx discrete reheat combustors used in traditional approaches. The key questions regarding this approach are whether there is sufficient residence time at high temperature for fuel burnout, and whether increased emissions of NOx and CO result. This project examines the chemical kinetics basis of these questions. In the present task detailed chemical kinetics models were used to evaluate injection reheat combustion. Models used included a Siemens Westinghouse diffusion flame model, the set of CHEMKIN gas-phase kinetics equation solvers, and the GRI 3.0 detailed kinetics data base. These modules are called by a reheat-specific main program, which also provides them with data, including gas path conditions that change with distance through the turbine. Conceptually, injection could occur in either of two ways: (1) direct injection via holes in airfoil trailing edges; or (2) injection at the downstream faces of small bluff bodies placed at these edges. In the former case, combustion could occur as a diffusion flame at the hole, as a plume or streak following this zone, or as a substantially mixed out homogeneous region downstream. In the latter case, combustion could occur as a lower temperature, well-mixed, recirculating flame in the wake of the bluff body, followed by burnout in the same sequence of diffusion flame, streak, and mixed out. The results were as follows. In the case of a conventional four-stage engine, vane 1 trailing edge injection can be achieved with complete burnout

  15. High gradient directional solidification furnace

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Whitt, W. D. (Inventor)

    1985-01-01

    A high gradient directional solidification furnace is disclosed which includes eight thermal zones throughout the length of the furnace. In the hot end of the furnace, furnace elements provide desired temperatures. These elements include Nichrome wire received in a grooved tube which is encapsulated y an outer alumina core. A booster heater is provided in the hot end of the furnace which includes toroidal tungsten/rhenium wire which has a capacity to put heat quickly into the furnace. An adiabatic zone is provided by an insulation barrier to separate the hot end of the furnace from the cold end. The old end of the furnace is defined by additional heating elements. A heat transfer plate provides a means by which heat may be extracted from the furnace and conducted away through liquid cooled jackets. By varying the input of heat via the booster heater and output of heat via the heat transfer plate, a desired thermal gradient profile may be provided.

  16. Plasma furnace treatment of metallurgical by-product streams

    SciTech Connect

    Whellock, J.G.; Heanley, C.P.; Chapman, C.S.

    1997-12-31

    It is a common misconception that plasma furnace technology only has application for exotic and very high temperature processes. With the increasing importance placed on waste minimization and the environmental constraints imposed on heavy metals present in byproducts from mainstream operations, plasma technology is finding widespread application. Tetronics is a premier supplier of plasma tundish heating systems for the steel industry. More recently the company has found growing interest in electric arc furnace dust treatment, lead blast furnace slag treatment and metal recovery, copper, nickel and cobalt scavenging from primary smelter slags, dross treatment, platinum group metals (PGM) recovery from catalysts and vitrification and detoxification of heavy metal contaminated waste byproducts. The principal advantages of the plasma arc technology are the close metallurgical control of the furnace environment, minimal off-gas handling requirements and overall high energy efficiency of the processes. A number of applications in the ferrous and non-ferrous metals industry are described.

  17. An update on blast furnace granular coal injection

    SciTech Connect

    Hill, D.G.; Strayer, T.J.; Bouman, R.W.

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  18. Looking Northwest at Furnace Control Panels and Gas Control Furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northwest at Furnace Control Panels and Gas Control Furnace in Red Room Within Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  19. INTERIOR VIEW SHOWING DISPLAY OF INSIDE OF BLAST FURNACE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW SHOWING DISPLAY OF INSIDE OF BLAST FURNACE AND MACHINERY AND ARTIFACTS INCLUDING A STEAM ENGINE HUB MADE AT THE BRIERFIELD ROLLING MILL (INSCRIBED C.C. HUCKABEE AND DATED 1863) AND OTHER STEAM ENGINES. - Iron & Steel Museum of Alabama, 12632 Confederate Pkwy., Bucksville, Tuscaloosa County, AL

  20. Southwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Southwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  1. Southwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Southwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Skelp Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  2. Northwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Skelp Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  3. Northwest view of rotary hearth furnace of the no. 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northwest view of rotary hearth furnace of the no. 2 seamless line in bays 17 and 18 of the main pipe mill building. - U.S. Steel National Tube Works, Main Pipe Mill Building, Along Monongahela River, McKeesport, Allegheny County, PA

  4. FRACTIONAL EFFICIENCY OF AN ELECTRIC ARC FURNACE BAGHOUSE

    EPA Science Inventory

    The report gives results of an evaluation of the performance of a fabric filter system controlling emissions from either one or two 30-ton electric arc furnaces producing a high-strength, low-alloy specialty steel. The evaluation involved measuring the system's total mass collect...

  5. VIEW FROM THE SOUTH OF THE #1 BLAST FURNACE WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM THE SOUTH OF THE #1 BLAST FURNACE WITH SKIP HOIST AND DUST CATCHER. STOCK BINS FOR RAW MATERIALS ARE IN THE FOREGROUND, THE #2 CASTING SHED BEYOND. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  6. VIEW FROM THE EAST, SHOWING THE #2 BLAST FURNACE WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM THE EAST, SHOWING THE #2 BLAST FURNACE WITH SKIP HOIST, DUST CATCHER AND STOCK BINS FOR RAW MATERIALS IN THE FOREGROUND. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  7. INTERIOR VIEW OF TRANSFORMER ROOM FOR FURNACE NO. 2 LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF TRANSFORMER ROOM FOR FURNACE NO. 2 LOOKING SOUTHEAST, SHOWING BACK OF CONTROL PANEL AND TRANSFORMER (GE, 3000 KUA water cooled, 60 cycles, U.S. patent 1900585. Transformer dates from 1937, control panel GE resistors) - Braeburn Alloy Steel, Braeburn Road at Allegheny River, Lower Burrell, Westmoreland County, PA

  8. 15. TAKING A CAST AT FURNACE NO. 1 HOT SLAG, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. TAKING A CAST AT FURNACE NO. 1 HOT SLAG, BY-PRODUCT IN SMELTING OF PIG IRON, CAN BE SEEN FLOWING INTO THE SLAG YARD. VIEW IS LOOKING SOUTH. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH

  9. GENERAL VIEW FROM THE SOUTHWEST, SHOWING THE #2 BLAST FURNACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW FROM THE SOUTHWEST, SHOWING THE #2 BLAST FURNACE IN THE RIGHT; THE CENTRAL COMPLEX WITH STOVES IN THE CENTER. ELECTRICAL POWER HOUSE IS ON THE LEFT BEYOND THE CONVEYOR LIFT. - Sloss-Sheffield Steel & Iron, First Avenue North Viaduct at Thirty-second Street, Birmingham, Jefferson County, AL

  10. 20. TAKING A CAST AT BLAST FURNACE NO. 1. WORKERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. TAKING A CAST AT BLAST FURNACE NO. 1. WORKERS, LIKE THE ONE STANDING ON THE BRIDGE ABOVE THE 'BOTTLE' INTO WHICH THE HOT IRON FLOWS, ARE PROTECTED BY HEAVY FIREPROOF GARMENTS. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH

  11. CLOSEUP AERIAL VIEW OF BLAST FURNACES 1 & 2. SHARED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSE-UP AERIAL VIEW OF BLAST FURNACES 1 & 2. SHARED CAST HOUSE LIES IN BETWEEN TWO SKIP INCLINES. HIP ROOF AT RIGHT COVERS BLOWING ENGINE HOUSE. VIEW FACING NORTH. - Pittsburgh Steel Company, Monessen Works, Donner Avenue, Monessen, Westmoreland County, PA

  12. Interior of shop, detail of charging machine Bethlehem Steel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of shop, detail of charging machine - Bethlehem Steel Corporation, South Bethlehem Works, Tool Steel-Electric Furnace Shop, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  13. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  14. The metallic microstructures and thermal histories of severely reheated chondrites

    NASA Technical Reports Server (NTRS)

    Smith, B. A.; Goldstein, J. I.

    1977-01-01

    The metallographic structures of eight severely reheated chondrites - Farmington, Ramsdorf, Orvinio, Wickenburg, Lubbock, Rose City, Arapahoe, and Tadjera - were studied using optical, SEM and electron microprobe techniques. The following metallographic criteria were used to estimate the post-shock residual temperature of the chondrites: melted metal-troilite appearance, presence of martensite, phosphorus enrichment of metal and averaging of central metal grain compositions. The presence of phosphides and secondary kamacite are due to slow post-shock cooling rates. Ni rim gradients indicate both extensive remelting of metal grains and relatively fast cooling.

  15. Non-conformal evolution of magnetic fields during reheating

    NASA Astrophysics Data System (ADS)

    Calzetta, Esteban; Kandus, Alejandra

    2015-03-01

    We consider the evolution of electromagnetic fields coupled to conduction currents during the reheating era after inflation, and prior to the establishing of the proton-electron plasma. We assume that the currents may be described by second order causal hydrodynamics. The resulting theory is not conformally invariant. The expansion of the Universe produces temperature gradients which couple to the current and generally oppose Ohmic dissipation. Although the effect is not strong, it suggests that the unfolding of hydrodynamic instabilities in these models may follow a different pattern than in first order theories, and even than in second order theories on non expanding backgrounds.

  16. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    SciTech Connect

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  17. Aspects of reheating in first-order inflation

    SciTech Connect

    Watkins, R.; Widrow, L.M.

    1991-06-01

    Studied here is reheating in theories where inflation is completed by a first-order phase transition. In the scenarios, the Universe decays from its false vacuum state by bubble nucleation. In the first stage of reheating, vacuum energy is converted into kinetic energy for the bubble walls. To help understand this phase, researchers derive a simple expression for the equation of state of a universe filled with expanding bubbles. Eventually, the bubble walls collide. Researchers present numerical simulations of two-bubble collisions clarifying and extending previous work by Hawking, Moss, and Stewart. The researchers' results indicate that wall energy is efficiently converted into coherent scalar waves. Also discussed is particle production due to quantum effects. These effects lead to the decay of the coherent scalar waves. They also lead to direct particle production during bubble-wall collisions. Researchers calculate particle production for colliding walls in both sine-Gordon and theta (4) theories and show that it is far more efficient in the theta (4) case. The relevance of this work for recently proposed models of first order inflation is discussed.

  18. Aspects of reheating in first-order inflation

    NASA Technical Reports Server (NTRS)

    Watkins, Richard; Widrow, Lawrence M.

    1991-01-01

    Studied here is reheating in theories where inflation is completed by a first-order phase transition. In the scenarios, the Universe decays from its false vacuum state by bubble nucleation. In the first stage of reheating, vacuum energy is converted into kinetic energy for the bubble walls. To help understand this phase, researchers derive a simple expression for the equation of state of a universe filled with expanding bubbles. Eventually, the bubble walls collide. Researchers present numerical simulations of two-bubble collisions clarifying and extending previous work by Hawking, Moss, and Stewart. The researchers' results indicate that wall energy is efficiently converted into coherent scalar waves. Also discussed is particle production due to quantum effects. These effects lead to the decay of the coherent scalar waves. They also lead to direct particle production during bubble-wall collisions. Researchers calculate particle production for colliding walls in both sine-Gordon and theta (4) theories and show that it is far more efficient in the theta (4) case. The relevance of this work for recently proposed models of first order inflation is discussed.

  19. 2. Copy of Drawing, 'American Steel & Wire Company, Central ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Copy of Drawing, 'American Steel & Wire Company, Central Furnaces & Docks, General Plan of Works Showing Trestle, 1-3-39.' Drawing courtesy of United States Steel Corporation, Lorain, Ohio. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  20. 1. Copy of Drawing, 'American Steel & Wire Co., Central ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Copy of Drawing, 'American Steel & Wire Co., Central Furnace Works -- Sketch of Plant Showing Tracks & Buildings, 1913, Revised 3/10/31.' Drawing courtesy United States Steel Corporation, Lorain, Ohio. Credit Berni Rich, Score Photographs, August 1979, for photos 1 through 4 and 7 through 11. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  1. New possibilities of Consteel furnaces

    NASA Astrophysics Data System (ADS)

    Tuluevskii, Yu. N.; Zinurov, I. Yu.; Shver, V. G.

    2012-06-01

    The disadvantages of Consteel electric furnaces, which are mainly caused by the low efficiency of heating of a charged metal scrap by effluent furnace gases, are considered. A new concept of an electric-arc furnace with scrap heating on a conveyer by powerful burners, which provide fast scrap heating to 800°C, is proposed. As follows from calculations, the capacity of such a furnace increases substantially, the specific electric power consumption decreases, and the emission of toxic substances into the atmosphere decreases as compared to the existing Consteel furnaces.

  2. Effect of storage and subsequent re-heating on viability of Listeria monocytogenes on pork scrapple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the fate of Listeria monocytogenes on pork scrapple, a regionally-popular, ready-to-eat (RTE) meat product, both during storage and following re-heating. We also conducted an informal survey to address consumer practices for storing and re-heating scrapple. Regarding the survey, of some...

  3. Modeling fuzzy state space of reheater system for simulation and analysis

    NASA Astrophysics Data System (ADS)

    Munirah, W. M. Wan; Ahmad, T.; Ashaari, A.; Abdullah, M. Adib

    2014-07-01

    Reheater is one of the important heat exchange components in a high capacity power plant of a boiler system. The aim of this study is to improve heat transfer of a reheater system. The method is to maximize steam production and at the same time, keeping variables within constraints. Fuzzy arithmetic is a powerful tool used to solve engineering problems with uncertain parameters. Therefore, in order to determine heat transfer efficiency, the state space of reheater is simulated using fuzzy arithmetic by taking into account the uncertainties in the reheater system. The uncertain model parameters and the model inputs are represented by fuzzy numbers with their shape derived from quasi-Gaussian function. Finally, this paper discusses how the mathematical model can be manipulated in order to produce maximum heat transfer with least loss of energy. Furthermore, the improvement of the reheater efficiency and the quantification of the heat supplied parameters are presented in this paper.

  4. Cleavage initiation in the intercritically reheated coarse-grained heat affected zone. Part 2: Failure criteria and statistical effects

    SciTech Connect

    Davis, C.L.; King, J.E.

    1996-10-01

    In part 1 of this article, cleavage initiation in the intercritically reheated coarse-grained heat affected zone (IC CG HAZ) of high-strength low-alloy (HSLA) steels was determined to occur between two closely spaced blocky MA particles. Blunt notch, crack tip opening displacement (CTOD), and precracked Charpy testing were used in this investigation to determine the failure criteria required for cleavage initiation to occur by this mechanism in the IC CG HAZ. It was found that the attainment of a critical level of strain was required in addition to a critical level of stress. This does not occur in the case of high strain rate testing, for example, during precracked Charpy testing. A different cleavage initiation mechanism is then found to operate. The precise fracture criteria and microstructural requirements (described in part 1 of this article) result in competition between potential cleavage initiation mechanisms in the IC CG HAZ.

  5. Blast furnace coal injection system design for high rates

    SciTech Connect

    Snowden, B.

    1994-12-31

    Coal injection into blast furnaces is now well established as a basic technology. However, high rates of coal injection between 300 and 500 lb/thm (160 to 250 kg/thm) are a rarity. Special consideration must be given to the overall concept regarding strategic coal storage, expected equipment reliability, and back-up available to prevent furnace problems, should any of the coal feeding systems fail. British Steel and Simon Macawber now have considerable operational experience at high rates for sustained periods. The paper will discuss the points to be considered and describe the ATSI-Simon Macawber approach to providing a high level of confidence in the coal injection system.

  6. Effects of Silicon and Furnace Conditions on Hot Shortness

    NASA Astrophysics Data System (ADS)

    Sampson, Erica E.

    Residual Cu in scrap based steel manufactured in the Electric Arc Furnace (EAF) leads to a surface cracking phenomenon known as surface hot shortness. Si is known to provide a potential reduction in hot shortness; however, the mechanisms involved are not fully understood for low Si quantities. This study aims to determine a window of Si contents with a given Ni content needed to counteract the negative effects of Sn and Cu to reduce hot shortness and to determine the mechanism. Thermogravimetric Analysis, SEM-EDS, XRD, and TEM were used to study the hot shortness behavior of a Fe alloy containing 0.2% Cu, 0.05% Ni, 0.01% Sn and with varying Si-content (0.02%, 0.1%, 0.15%, and 0.2% Si). It was found that fayalite formation at the metal/oxide interface resulted in a reduction of oxidation and subsequent Cu-rich liquid formation for all Si contents examined. Under isothermal air oxidation experiments, the range of Si contents between 0.1-0.2 wt% Si exhibited a mechanism that was a combination of fayalite formation impeding oxidation as well as occlusion of the Cu-rich liquid due to internal oxidation. This range was acceptable to alleviate hot shortness under these conditions. Following continuous casting, steel undergoes a cooling process known as secondary cooling where water is sprayed on the surface to promote cooling followed by a radiant cooling stage where the steel is cooled in air to room temperature. The secondary cooling regime leads to oxidation of the alloy in an air + water vapor atmosphere. Experiments were completed to determine the effect of the non-isothermal secondary cooling cycle, the effect of water vapor during secondary cooling, and the effect of the radiant cooling regime down to room temperature. In the case of secondary cooling atmospheres, the non-isothermal cooling cycle resulted in a slight increase in liquid quantity and grain boundary penetration as compared to the isothermal heating cycles due to the higher temperatures experienced in

  7. High Efficiency Furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-08-27

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  8. High efficiency furnace

    SciTech Connect

    Hwang, K. S.; Koestler, D. J.

    1985-12-31

    Disclosed is a dwelling furnace having at least one clam-shell type primary heat exchanger in parallel orientation with a secondary heat exchanger, both the primary and secondary heat exchangers being vertically oriented relative to a furnace housing and parallel to the flow of air to be heated. The primary heat exchanger has a combustion chamber in the lower end thereof, and the lower end of the secondary heat exchanger exhausts into a tertiary heat exchanger oriented approximately perpendicular to the primary and secondary heat exchangers and horizontally relative to the housing, below the combustion chambers of the primary heat exchangers and below the exhaust outlet of the secondary heat exchanger. The tertiary heat exchanger includes a plurality of condensation tubes for retrieving the latent heat of condensation of the combustion gases. The furnace further comprises an induced draft blower for drawing combustion gases through the heat exchangers and inducting sufficient air to the combustion chamber of the primary heat exchanger for efficient combustion.

  9. Blast Furnace Granulated Coal Injection

    SciTech Connect

    1998-09-30

    Production levels on each furnace exceeded 7000 NTHM/day during July. The combined production of 14,326 was a result of lower coke rates and below average delay rates on both furnaces, The combined production was at its highest level since September 1997. In August, the combined productivity declined to less than 13,500 NTHM/day. Although D furnace maintained a production rate in excess of 7000 NTHM/day, C furnace was lower because of a castfloor breakout and subsequent five day repair from August 26-30. Despite the lower productivity in August, injected coal and furnace coke rates were very good during the month. During September, the operation was difficult as a result of higher delays on both furnaces. The combined average monthly delay rate was considerably above the twenty-month average of 113 minutes per day and the combined average monthly production was less than 14,000 NTHM/day. Higher furnace coke rates at lower coal injection levels also contributed to the decrease. Additionally, the coke rate on both furnaces was increased substantially and the injected coal rate was decreased in preparation for the high volatile Colorado coal trial that started on September 28. The furnace process results for this quarter are shown in Tables 1A and 1B. In addition, the last twelve months of injected coal and coke rates for each furnace are shown in Figures 1 and 2.

  10. Reheating-volume measure for random-walk inflation

    NASA Astrophysics Data System (ADS)

    Winitzki, Sergei

    2008-09-01

    The recently proposed “reheating-volume” (RV) measure promises to solve the long-standing problem of extracting probabilistic predictions from cosmological multiverse scenarios involving eternal inflation. I give a detailed description of the new measure and its applications to generic models of eternal inflation of random-walk type. For those models I derive a general formula for RV-regulated probability distributions that is suitable for numerical computations. I show that the results of the RV cutoff in random-walk type models are always gauge invariant and independent of the initial conditions at the beginning of inflation. In a toy model where equal-time cutoffs lead to the “youngness paradox,” the RV cutoff yields unbiased results that are distinct from previously proposed measures.

  11. Partial oxidation power plant with reheating and method thereof

    DOEpatents

    Newby, R.A.; Yang, W.C.; Bannister, R.L.

    1999-08-10

    A system and method are disclosed for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom. 2 figs.

  12. Partial oxidation power plant with reheating and method thereof

    DOEpatents

    Newby, Richard A.; Yang, Wen-Ching; Bannister, Ronald L.

    1999-01-01

    A system and method for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom.

  13. Thermal history of chondrites - Hot accretion vs. metamorphic reheating

    NASA Technical Reports Server (NTRS)

    Haack, Henning; Taylor, G. J.; Scott, E. R. D.; Keil, Klaus

    1992-01-01

    The thermal evolution of chondrules is investigated for the stages including primary heating through accretion to parent-body processing to determine whether the chondrules could be hot during accretion. Theoretical attention is given to whether chondrites of different petrologic types could have originated by means of hot accretion or metamorphic reheating. Data are presented from cooling-rate experiments and from calculations of heat retention required for the hot-accretion scenario. The accretion of chondrules hotter than 800 C is shown to be inconsistent with constraints on chondrule thermal evolution, in particular the slow cooling environment of chondrules vs the apparent cooling of chondrites in cold environments. It is argued that petrologic chondrites are formed by cold accretion and subsequently by metamorphic heating.

  14. Reheating-volume measure for random-walk inflation

    SciTech Connect

    Winitzki, Sergei

    2008-09-15

    The recently proposed 'reheating-volume' (RV) measure promises to solve the long-standing problem of extracting probabilistic predictions from cosmological multiverse scenarios involving eternal inflation. I give a detailed description of the new measure and its applications to generic models of eternal inflation of random-walk type. For those models I derive a general formula for RV-regulated probability distributions that is suitable for numerical computations. I show that the results of the RV cutoff in random-walk type models are always gauge invariant and independent of the initial conditions at the beginning of inflation. In a toy model where equal-time cutoffs lead to the 'youngness paradox', the RV cutoff yields unbiased results that are distinct from previously proposed measures.

  15. On the breakdown of the curvature perturbation ζ during reheating

    NASA Astrophysics Data System (ADS)

    Tarman Algan, Merve; Kaya, Ali; Seyma Kutluk, Emine

    2015-04-01

    It is known that in single scalar field inflationary models the standard curvature perturbation ζ, which is supposedly conserved at superhorizon scales, diverges during reheating at times 0dot phi=, i.e. when the time derivative of the background inflaton field vanishes. This happens because the comoving gauge 0varphi=, where varphi denotes the inflaton perturbation, breaks down when 0dot phi=. The issue is usually bypassed by averaging out the inflaton oscillations but strictly speaking the evolution of ζ is ill posed mathematically. We solve this problem in the free theory by introducing a family of smooth gauges that still eliminates the inflaton fluctuation varphi in the Hamiltonian formalism and gives a well behaved curvature perturbation ζ, which is now rigorously conserved at superhorizon scales. At the linearized level, this conserved variable can be used to unambiguously propagate the inflationary perturbations from the end of inflation to subsequent epochs. We discuss the implications of our results for the inflationary predictions.

  16. Curvaton reheating mechanism in a scale invariant two measures theory

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo I.; Herrera, Ramón

    2016-01-01

    The curvaton reheating mechanism in a scale invariant two measures theory defined in terms of two independent non-Riemannian volume forms (alternative generally covariant integration measure densities) on the space-time manifold which are metric independent is studied. The model involves two scalar matter fields, a dilaton, that transforms under scale transformations and it will be used also as the inflaton of the model and another scalar, which does not transform under scale transformations and which will play the role of a curvaton field. Potentials of appropriate form so that the pertinent action is invariant under global Weyl-scale symmetry are introduced. Scale invariance is spontaneously broken upon integration of the equations of motion. After performing transition to the physical Einstein frame we obtain: (1) For given value of the curvaton field an effective potential for the scalar field with two flat regions for the dilaton which allows for a unified description of both early universe inflation as well as of present dark energy epoch; (2) In the phase corresponding to the early universe, the curvaton has a constant mass and can oscillate decoupled from the dilaton and that can be responsible for both reheating and perturbations in the theory. In this framework, we obtain some interesting constraints on different parameters that appear in our model; (3) For a definite parameter range the model possesses a non-singular "emergent universe" solution which describes an initial phase of evolution that precedes the inflationary phase. Finally we discuss generalizations of the model, through the effect of higher curvature terms, where inflaton and curvaton can have coupled oscillations.

  17. Non-carbon induction furnace

    DOEpatents

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  18. Carbon-free induction furnace

    DOEpatents

    Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.

    1985-01-01

    An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  19. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  20. Effects of packaging, equipment, and storage time on energy used for reheating beef stew.

    PubMed

    Cremer, M L; Pizzimenti, K V

    1992-08-01

    Energy used to reheat 3 kg of a standard beef stew to 74 degrees C was measured to determine (a) the benefits of a retort pouch packaging processing system that keeps food microbially safe at room temperature compared with a system that packages food in a plastic bag that requires refrigerated storage; (b) the most economical form for reheating (in bulk in bags, in bulk out of bags, or in portions); (c) the most economical equipment for reheating (convection oven, infrared oven, microwave oven, compartment steamer, or steam-jacketed kettle); and (d) the influence of storage time (7, 28, or 85 days). Energy used for reheating the retort product was 18,883.7 British thermal units (BTU) compared with 31,035.6 BTU for the plastic bag product. Reheating in portions used 6,857 BTU; reheating in bulk out of bag used 23,419 BTU; and reheating in bulk in bag used 64,247 BTU. The order of least to greatest energy use for equipment was microwave oven, 324 BTU; infrared oven, 5,406 BTU; convection oven, 11,399 BTU; steam-jacketed kettle, 30,713 BTU; and steamer, 51,412 BTU. Storage time in the plastic bag significantly (P less than .05) affected initial product temperature and the energy required for reheating; this was not true for the retort product. Our findings indicate that microwave heating, heating in portions rather than in larger quantities, refrigerated storage of 7 days instead of 28 days, and use of retort pouch products achieve the least energy cost in reheating a product such as beef stew. PMID:1640038

  1. Implement proper furnace safety interlocks

    SciTech Connect

    Thomas, C.D.; Schoenmaker, G.J.W.

    1996-07-01

    Cracking furnaces are among some of the most complex operations in chemical process industries (CPI) plants. Consider, for example, the cracking furnaces in ethylene plants. Furnace explosions can occur during the light-off process or from accumulations of unburned fuel, incomplete combustion, or introduction of flammable products into the combustion spaces of the furnace. Over half of all furnace explosions occur during the initial light-off process for the furnace. The deficiencies that cause these events can be grouped into three broad categories: (1) human error; (2) incorrect or incomplete safety controls and equipment arrangement; and (3) equipment malfunction. This article presents a safety system that helps address all three of these categories for light-off events. No system is totally foolproof, but the use of a safety system, along with strict operating discipline, will reduce the number of furnace events encountered over the lifetime of the equipment. (Note that the controls typically referred to as ``combustion control,`` which include process temperature control, fuel-gas control, oxygen trim/draft control, and the like, are not part of the control described here.) Note also that although this system was developed for cracking furnaces in ethylene plants, it is equally applicable to other types of radiant-wall multiple-burner furnaces. It can be used for both new installations and retrofit situations. This safety system is not applicable to boilers or other devices with only one or two burners.

  2. Multi-zone furnace system

    SciTech Connect

    Orbeck, G.A.

    1986-05-06

    A multi-zone furnace is described which consists of: a furnace chamber having at least one heat zone and at least one zone adjacent to the heat zone and disposed along the length of the furnace chamber; the heat zone having a hearth at a level different from the hearth level of the adjacent zone; a walking beam conveyor disposed in the furnace chamber and operative in a short stroke mode to convey a product along the hearth of the heat zone, and in a long stroke mode to convey a product from the heat zone to the adjacent zone.

  3. Magnetically Damped Furnace (MDF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.

  4. Radiantly heated furnace

    SciTech Connect

    Pargeter, J.K.

    1987-06-30

    This patent describes a travelling hearth furnace comprising at least one impermeable hearth member adapted to travel generally horizontally along a path from a first locus to a second locus, means to cause the hearth member to travel along the path. Means directs radiant hat toward the upper surface of the hearth member. Means at the first locus positions a thin layer of objects on the upper surface of the hearth member. Means at the second locus removes objects from the hearth member. Means, positioned intermediate the first locus and the second locus, positions additional objects on the thin layer of objects on the upper surface of the hearth member.

  5. Water gas furnace

    SciTech Connect

    Gallaro, C.

    1985-12-03

    A water gas furnace comprising an outer container to provide a housing in which coke is placed into its lower part. A water container is placed within the housing. The coke is ignited and heats the water in the container converting it into steam. The steam is ejected into the coke, which together with air, produces water gas. Preferably, pumice stones are placed above the coke. The water gas is accepted into the pores of the pumice stones, where the heated pumice stones ignite the water gas, producing heat. The heat is extracted by a heat exchanger provided about the housing.

  6. Exothermic furnace module

    NASA Technical Reports Server (NTRS)

    Poorman, R. M. (Inventor)

    1982-01-01

    An exothermic furnace module is disclosed for processing materials in space which includes an insulated casing and a sample support, carried within the casing which supports a sample container. An exothermic heat source includes a plurality of segments of exothermic material stacked one upon another to produce a desired temperature profile when ignited. The exothermic material segments are constructed in the form of an annular element having a recess opening which defines an open central core throughout the vertical axis of the stacked exothermic material. The sample container is arranged within the core of the stacked exothermic heating material.

  7. Fuel stoker and furnace

    SciTech Connect

    Schafer, T.L.; Schafer, G.L.; Swett, H.D.

    1984-02-14

    A furnace having a primary heat exchange unit also providing a combustion chamber, a secondary heat exchange unit connected by an upper crossover conduit to the primary heat exchange unit, and a tertiary heat exchange unit connected by a lower V-shaped crossover conduit to the secondary heat exchange unit. A third crossover conduit connects the V-shaped crossover conduit with the primary heat exchange unit. Vibrating means are provided between the secondary and tertiary heat exchange units to vibrate the walls thereof and dislodge clinging fly ash so that it falls into the V-shaped crossover conduit for removal by the screw conveyor. A burner assembly of a furnace includes a combustion air housing carrying a circular, stationary grate with an annular valley for carrying fuel during combustion. A central opening is connected to a fuel conveyor for introduction of fuel to the grate through the lower portion of the housing. Combustion air introduction conduits on the housing are remote from the fuel introduction passages and introduce air under pressure at the lower portion of the grate. An agitator and discharge ring is provided on the grate and is rotated on the grate by a suitable drive sprocket mechanism to agitate the fuel for more complete burning thereof and to remove burned ash. A horizontal burner plate is supported by a plurality of legs connected to the agitator and discharge ring over the grate to promote more complete combustion of the fuel.

  8. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  9. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  10. Extremely long-lived charged massive particles as a probe for reheating of the Universe

    NASA Astrophysics Data System (ADS)

    Takayama, Fumihiro

    2008-06-01

    We discuss the impact of charged massive particle big bang nucleosynthesis to explore the nature of the reheating of the Universe in the case that a new extremely long-lived charged massive particle (CHAMP) exists. If the mass of the CHAMP is within collider reach and its lifetime is longer than 104s, the comparison between the charged big bang nucleosynthesis prediction and observed Li6 abundances may indicate nonstandard reheating in the early Universe without relying on details of the decay properties. Even if the CHAMP mass is outside the reach of colliders, the cosmological considerations may provide a nontrivial hint for the existence of such very heavy long-lived CHAMPs from the late Universe if the daughter particles are the dominant component of the present dark matter. We consider a low reheating temperature model as an example of the nonstandard reheating scenarios.

  11. Modelling of furnaces and combustors

    SciTech Connect

    Kahil, E.E.

    1985-01-01

    This book presents an account of the art of modelling for heat transfer and fluid flows in furnaces and combustors. After describing the different types of furnace flows, the author deals with the conservation equations. The different turbulence modelling assumptions, the more complicated problem of turbulent combustion modelling, and various types of turbulent flames are also described and reviewed, with appropriate models being assigned.

  12. A General Viscosity Model for Molten Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Gan, Lei; Lai, Chaobin

    2014-06-01

    Blast furnace slag is the most abundant slag in the steel industry. Its metallurgical properties are determined to a great extent by its viscosity. Therefore, it is necessary to establish a reliable viscosity model for blast furnace slag. In the current work, a simple, accurate, and physically meaningful viscosity model for a wide composition range of blast furnace slags is developed based on the Vogel-Fulcher-Tammann (VFT) equation: log η = A + B/( T - C). The model is calibrated by a database containing 365 compositions and 1233 measurements of synthetic and industrial slags. The parameter A has a value of -3.10. The parameters B and C are related to the mass fraction ratio of (CaO + MgO) to (SiO2 + Al2O3) and liquidus temperature of the slag, respectively. Present viscosity model accurately predicts the viscosity of blast furnace slag with relative average error (Δ) of 0.211 (±0.180) and root mean square error (RMSE) of 0.239 Pa·s. A slight modification of this model can also predict the glass transition temperature of blast furnace slag satisfactorily.

  13. Heat Treatment Procedure Qualification for Steel Castings

    SciTech Connect

    Mariol Charles; Nicholas Deskevich; Vipin Varkey; Robert Voigt; Angela Wollenburg

    2004-04-29

    Heat treatment practices used by steel foundries have been carefully studied as part of comprehensive heat treatment procedure qualification development trials. These studies highlight the relationships between critical heat treatment process control parameters and heat treatment success. Foundry heat treatment trials to develop heat treatment procedure qualifications have shed light on the relationship between heat treatment theory and current practices. Furnace load time-temperature profiles in steel foundries exhibit significant differences depending on heat treatment equipment, furnace loading practice, and furnace maintenance. Time-temperature profiles of furnace control thermocouples can be very different from the time-temperature profiles observed at the center of casting loads in the furnace. Typical austenitization temperatures and holding times used by steel foundries far exceed what is required for transformation to austenite. Quenching and hardenability concepts were also investigated. Heat treatment procedure qualification (HTPQ) schema to demonstrate heat treatment success and to pre-qualify other alloys and section sizes requiring lesser hardenability have been developed. Tempering success is dependent on both tempering time and temperature. As such, furnace temperature uniformity and control of furnace loading during tempering is critical to obtain the desired mechanical properties. The ramp-up time in the furnace prior to the establishment of steady state heat treatment conditions contributes to the extent of heat treatment performed. This influence of ramp-up to temperature during tempering has been quantified.

  14. Appeals court upholds electric arc furnace dust disposal restrictions

    SciTech Connect

    1995-01-01

    On July 8, 1994, the US Court of Appeals for the District of Columbia upheld EPA`s 1991 final rule governing the land disposal of electric arc furnace dust, listed as K061 in the RCRA regulations. The Steel Manufacturers Association (SMA), believing that EPA had acted {open_quotes}arbitrarily and capriciously,{close_quotes} had petitioned for review of this rule. SMA members argued that K061 is reclaimed-not discarded-to recover metals as part of the steel production process; therefore, the petitioners contended that the agency has no right to regulate slag resulting from treatment of K061.

  15. Vitrification of fly ash by swirling-flow furnace

    SciTech Connect

    Ito, Tadashi

    1996-12-31

    According to the amendment of the Waste Disposal and Public Cleansing Law of 1992, fly ash is regulated as Specially controlled waste and wide attention is now being paid to the melting and vitrification treatment of fly ash, which can reduce overall volume, detoxify and recover sources. Kobe Steel has demonstrated its operation using a swirling-flow furnace and has perfected a vitrification technique. The demonstration test has confirmed stable melting, high decomposition ratio of dioxins and the soundness of the slag. Kobe Steel has successfully developed a new technique for heightening the quality of slag and a new process for the heavy metals recovery from collected dust.

  16. Processing electric arc furnace dust into saleable chemical products

    SciTech Connect

    1998-04-01

    The modern steel industry uses electric arc furnace (EAF) technology to manufacture steel. A major drawback of this technology is the production of EAF dust, which is listed by the U.S. Environmental Protection Agency as a hazardous waste under the Resource Conservation and Recovery Act. The annual disposal of approximately 0.65 million tons of EAF dust in the United States and Canada is an expensive, unresolved problem for the steel industry. EAF dust byproducts are generated during the manufacturing process by a variety of mechanisms. The dust consists of various metals (e.g., zinc, lead, cadmium) that occur as vapors at 1,600{degrees}C (EAF hearth temperature); these vapors are condensed and collected in a baghouse. The production of one ton of steel will generate approximately 25 pounds of EAF dust as a byproduct, which is currently disposed of in landfills.

  17. West façade of shop building, looking east Bethlehem Steel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    West façade of shop building, looking east - Bethlehem Steel Corporation, South Bethlehem Works, Tool Steel-Electric Furnace Shop, Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  18. Reheating the universe after multi-field inflation

    SciTech Connect

    Braden, Jonathan; Kofman, Lev; Barnaby, Neil E-mail: barnaby@cita.utoronto.ca

    2010-07-01

    We study in detail (p)reheating after multi-field inflation models with a particular focus on N-flation. We consider a variety of different couplings between the inflatons and the matter sector, including both quartic and trilinear interactions with a light scalar field. We show that the presence of multiple oscillating inflatons makes parametric resonance inefficient in the case of the quartic interactions. Moreover, perturbative processes do not permit a complete decay of the inflaton for this coupling. In order to recover the hot big bang, we must instead consider trilinear couplings. In this case we show that strong nonperturbative preheating is possible via multi-field tachyonic resonance. In addition, late-time perturbative effects do permit a complete decay of the condensate. We also study the production of gauge fields for several prototype couplings, finding similar results to the trilinear scalar coupling. During the course of our analysis we develop the mathematical theory of the quasi-periodic Mathieu equation, the multi-field generalization of the Floquet theory familiar from preheating after single field inflation. We also elaborate on the theory of perturbative decays of a classical inflaton condensate, which is applicable in single-field models also.

  19. Finite Element Modeling of Reheat Stretch Blow Molding of PET

    NASA Astrophysics Data System (ADS)

    Krishnan, Dwarak; Dupaix, Rebecca B.

    2004-06-01

    Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.

  20. Reheating-volume measure in the string theory landscape

    SciTech Connect

    Winitzki, Sergei

    2008-12-15

    I recently proposed the ''reheating-volume'' (RV) prescription as a possible solution to the measure problem in ''multiverse'' cosmology. The goal of this work is to extend the RV measure to scenarios involving bubble nucleation, such as the string theory landscape. In the spirit of the RV prescription, I propose to calculate the distribution of observable quantities in a landscape that is conditioned in probability to nucleate a finite total number of bubbles to the future of an initial bubble. A general formula for the relative number of bubbles of different types can be derived. I show that the RV measure is well defined and independent of the choice of the initial bubble type, as long as that type supports further bubble nucleation. Applying the RV measure to a generic landscape, I find that the abundance of Boltzmann brains is always negligibly small compared with the abundance of ordinary observers in the bubbles of the same type. As an illustration, I present explicit results for a toy landscape containing four vacuum states, and for landscapes with a single high-energy vacuum and a large number of low-energy vacua.

  1. High pressure furnace

    DOEpatents

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  2. High pressure furnace

    DOEpatents

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  3. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  4. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  5. Induction heat treatment of steel

    SciTech Connect

    Semiatin, S.L.; Stutz, D.E.

    1985-01-01

    This book discusses the induction heating. After reviewing heat treating operations for steel and the principles of the heat treatment of steel, an overview of induction heat treating is provided. Next, consideration is given to equipment and equipment selection, coil design, power requirements and temperature control. A discussion of surface and through hardening of steel is provided, including information on frequency and power selection and quenching apparatus. Tempering is considered, followed by information on control of residual stresses, cracking, temper brittleness and the important metallurgical and hardness differences between induction and furnace treated steel.

  6. Ceramic coating used on MWC furnace walls

    SciTech Connect

    Parker, P.R.; Zvosec, C.

    1996-12-31

    Fire-side corrosion of Municipal Waste Combustor (MWC) furnace walls has been a significant problem for these units. This corrosion can take place quite rapidly. Within less than a year major tube failures have occurred. The corrosion mechanisms and history of various units have been well documented previously. The commonly used answer to this corrosion is use of Inconel 625 weld overlay. It is often applied after erection of units, because the corrosion or its location is unforeseen. Two major problems with the Inconel 625 weld overlay is its high initial cost and the subsequent maintenance due to imperfections in the overlay during its application. Now, a thin, ceramic coating has proven its ability to protect the carbon steel tubes and survive the furnace environment. As of April, 1995, it will have about 10 months of service at the SPSA operated MWC plant. Its cost is a fraction of Inconel 625 weld overlay. Since it forms a continuous coating there are very few imperfections in the coating. One key feature of the ceramic coating is its thermal expansion rate is similar to carbon steel. This eliminates flaking of the ceramic coating. A brief review of the SPSA/NNSY Steam/Power Plant operating characteristics is presented. Maps showing loss of metal (based on ultrasonic testing) in a number of units are presented. Then physical and chemical properties of the ceramic coating are discussed. The costs of various alternatives are compared. This ceramic coating will prove to save MWCs millions of dollars. It can be used to go over poor Inconel overlay work.

  7. Challenges in Melt Furnace Tests

    NASA Astrophysics Data System (ADS)

    Belt, Cynthia

    2014-09-01

    Measurement is a critical part of running a cast house. Key performance indicators such as energy intensity, production (or melt rate), downtime (or OEE), and melt loss must all be understood and monitored on a weekly or monthly basis. Continuous process variables such as bath temperature, flue temperature, and furnace pressure should be used to control the furnace systems along with storing the values in databases for later analysis. While using measurement to track furnace performance over time is important, there is also a time and place for short-term tests.

  8. Chem I Supplement: Chemistry of Steel Making.

    ERIC Educational Resources Information Center

    Sellers, Neal

    1980-01-01

    Provides information about the chemistry of steel making applicable to teaching secondary school science. Generalized chemical reactions describe the manufacture of steel from iron ore. Also discussed are raw materials, processing choices, and how various furnaces (blast, direct reduction, open hearth, basic oxygen, electric) work. (CS)

  9. Modulated reheating and large non-gaussianity in string cosmology

    NASA Astrophysics Data System (ADS)

    Cicoli, M.; Tasinato, G.; Zavala, I.; Burgess, C. P.; Quevedo, F.

    2012-05-01

    A generic feature of the known string inflationary models is that the same physics that makes the inflaton lighter than the Hubble scale during inflation often also makes other scalars this light. These scalars can acquire isocurvature fluctuations during inflation, and given that their VEVs determine the mass spectrum and the coupling constants of the effective low-energy field theory, these fluctuations give rise to couplings and masses that are modulated from one Hubble patch to another. These seem just what is required to obtain primordial adiabatic fluctuations through conversion into density perturbations through the `modulation mechanism', wherein reheating takes place with different efficiency in different regions of our Universe. Fluctuations generated in this way can generically produce non-gaussianity larger than obtained in single-field slow-roll inflation; potentially observable in the near future. We provide here the first explicit example of the modulation mechanism at work in string cosmology, within the framework of LARGE Volume Type-IIB string flux compactifications. The inflationary dynamics involves two light Kähler moduli: a fibre divisor plays the rôle of the inflaton whose decay rate to visible sector degrees of freedom is modulated by the primordial fluctuations of a blow-up mode (which is made light by the use of poly-instanton corrections). We find the challenges of embedding the mechanism into a concrete UV completion constrains the properties of the non-gaussianity that is found, since for generic values of the underlying parameters, the model predicts a local bi-spectrum with fNL of order `a few'. However, a moderate tuning of the parameters gives also rise to explicit examples with fNL ~ Script O(20) potentially observable by the Planck satellite.

  10. Modulated reheating and large non-gaussianity in string cosmology

    SciTech Connect

    Cicoli, M.; Quevedo, F.; Tasinato, G.; Zavala, I.; Burgess, C.P. E-mail: gianmassimo.tasinato@port.ac.uk E-mail: cburgess@perimeterinstitute.ca

    2012-05-01

    A generic feature of the known string inflationary models is that the same physics that makes the inflaton lighter than the Hubble scale during inflation often also makes other scalars this light. These scalars can acquire isocurvature fluctuations during inflation, and given that their VEVs determine the mass spectrum and the coupling constants of the effective low-energy field theory, these fluctuations give rise to couplings and masses that are modulated from one Hubble patch to another. These seem just what is required to obtain primordial adiabatic fluctuations through conversion into density perturbations through the 'modulation mechanism', wherein reheating takes place with different efficiency in different regions of our Universe. Fluctuations generated in this way can generically produce non-gaussianity larger than obtained in single-field slow-roll inflation; potentially observable in the near future. We provide here the first explicit example of the modulation mechanism at work in string cosmology, within the framework of LARGE Volume Type-IIB string flux compactifications. The inflationary dynamics involves two light Kähler moduli: a fibre divisor plays the rôle of the inflaton whose decay rate to visible sector degrees of freedom is modulated by the primordial fluctuations of a blow-up mode (which is made light by the use of poly-instanton corrections). We find the challenges of embedding the mechanism into a concrete UV completion constrains the properties of the non-gaussianity that is found, since for generic values of the underlying parameters, the model predicts a local bi-spectrum with f{sub NL} of order 'a few'. However, a moderate tuning of the parameters gives also rise to explicit examples with f{sub NL} ∼ O(20) potentially observable by the Planck satellite.

  11. Study of hot hardness characteristics of tool steels

    NASA Technical Reports Server (NTRS)

    Chevalier, J. L.; Dietrich, M. W.; Zaretsky, E. V.

    1972-01-01

    Hardness measurements of tool steel materials in electric furnace at elevated temperatures and low oxygen environment are discussed. Development of equation to predict short term hardness as function of intial room temperature hardness of steel is reported. Types of steel involved in the process are identified.

  12. OPTIMAL OPERATION OF ELECTRIC ARC FURNACES (EAF) TO MINIMIZE THE GENERATION OF AIR POLLUTANTS AT THE SOURCE

    EPA Science Inventory

    The manufacture of steel by electric arc furnaces (EAF) is continuing to increase in usage in the United States with current production estimated to be over 63 million tons per year. The reduction of emissions from steel producers has been slow for two main reasons: the nee...

  13. Glass Furnace Model Version 2

    Energy Science and Technology Software Center (ESTSC)

    2003-05-06

    GFM2.0 is a derivative of the GFM code with substantially altered and enhanced capabilities. Like its predecessor, it is a fully three-dimensional, furnace simulation model that provides a more accurate representation of the entire furnace, and specifically, the glass melting process, by coupling the combustion space directly to the glass batch and glass melt via rigorous radiation heat transport models for both the combustion space and the glass melt. No assumptions are made with regardmore » to interfacial parameters of heat, flux, temperature distribution, and batch coverage as must be done using other applicable codes available. These critical parameters are calculated. GFM2.0 contains a processor structured to facilitate use of the code, including the entry of teh furnace geometry and operating conditions, the execution of the program, and display of the computational results. Furnace simulations can therefore be created in a straightforward manner.« less

  14. Coal combustion under conditions of blast furnace injection. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect

    Crelling, J.C.; Case, E.R.

    1993-12-31

    A potentially new use for Illinois coal is as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. During the first phase of this project a number of the objectives were realized, specifically: (1) a blast furnace sampling system was developed and used successfully to collect samples inside an active furnace; (2) two sets of blast furnace samples were collected and petrographic analysis showed that char derived from injected coal is entering the reduction zone of the furnace; (3) a coal/char sampling probe was designed and fabricated; (4) the completion of a program of reactivity experiments on the injected coal char, blast furnace coke and Herrin No. 6 char. The results of the reactivity experiments indicate that Herrin No. 6 coal is similar or even superior to coals now being used in blast furnace injection and that additional testing is warranted.

  15. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  16. Variable frequency microwave furnace system

    DOEpatents

    Bible, D.W.; Lauf, R.J.

    1994-06-14

    A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

  17. Variable frequency microwave furnace system

    DOEpatents

    Bible, Don W.; Lauf, Robert J.

    1994-01-01

    A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

  18. Re-heating effect of Ni-rich cathode material on structure and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Jo, Jae Hyeon; Jo, Chang-Heum; Yashiro, Hitoshi; Kim, Sun-Jae; Myung, Seung-Taek

    2016-05-01

    The re-heating effect for Ni-rich Li[Ni0.7Mn0.3]O2 is investigated because the process is required in surface modification and removal of adhered water molecules. A representative binary Ni-rich Li[Ni0.7Mn0.3]O2 (in which cationic distribution in Li layers is not affected by heteroelements) is selected and synthesized via co-precipitation. The as-synthesized Ni-rich Li[Ni0.7Mn0.3]O2 is re-heated at 200 °C, 400 °C, and 600 °C, so that the resulting structural and electrochemical properties are compared by means of X-ray diffraction, transmission electron microscopy, time of flight-secondary ion spectroscopy, thermogravimetric analysis, high temperature X-ray diffraction, and electrochemical tests. Raising the re-heating temperature increases the occupancy of Ni2+ in Li layers and accelerates the aggregation of lithium-related compounds such as Li2CO3 and LiOH towards the particle surface. Among the several conditions tested, re-heating at 200 °C results in a negligible change in the crystal structure; specifically, Ni2+ occupation in Li layers, higher capacity with good reversibility upon cycling tests, better rate capability, and thermal properties. Therefore, re-heating of cathode active materials, in particular Ni-rich compositions, should be considered to stabilize both electrode performances and thermal properties.

  19. What can the CMB tell about the microphysics of cosmic reheating?

    NASA Astrophysics Data System (ADS)

    Drewes, Marco

    2016-03-01

    In inflationary cosmology, cosmic reheating after inflation sets the initial conditions for the hot big bang. We investigate how CMB data can be used to study the effective potential and couplings of the inflaton during reheating to constrain the underlying microphysics. If there is a phase of preheating that is driven by a parametric resonance or other instability, then the thermal history and expansion history during the reheating era depend on a large number of microphysical parameters in a complicated way. In this case the connection between CMB observables and microphysical parameters can only established with intense numerical studies. Such studies can help to improve CMB constraints on the effective inflaton potential in specific models, but parameter degeneracies usually make it impossible to extract meaningful best-fit values for individual microphysical parameters. If, on the other hand, reheating is driven by perturbative processes, then it can be possible to constrain the inflaton couplings and the reheating temperature from CMB data. This provides an indirect probe of fundamental microphysical parameters that most likely can never be measured directly in the laboratory, but have an immense impact on the evolution of the cosmos by setting the stage for the hot big bang.

  20. Vitrification of electric arc furnace dusts.

    PubMed

    Pelino, M; Karamanov, A; Pisciella, P; Crisucci, S; Zonetti, D

    2002-01-01

    Electric arc furnace baghouse dust (EAFD), a waste by-product of the steelmaking process, contains the elements that are volatilized from the charge during the melting (Cr, Pb, Zn, Cu and Cd). The results of leaching tests show that the concentration of these elements exceeds the regulatory limits. Consequently, EAFD cannot be disposed of in ordinary landfill sites without stabilization of the heavy metals. In this work, the vitrification of EAFD, from both carbon and stainless steel productions, were studied. The vitrification process was selected as the inertizing process because it permits the immobilization of the hazardous elements in the glass network and represents an environmentally acceptable method for the stabilization of this waste. Classes of various compositions were obtained by mixing EAFD with glass cullet and sand. The EAFD and the glass products were characterized by DTA, TG, X-ray analysis and by the TCLP test. The results show that the stability of the product is influenced by the glass structure, which mainly depends on the Si/O ratio. Secondary crystallization heat-treatment were carried out on some samples. The results highlighted the formation of spinel phases, which reduced the chemical durability in acid media. The possibility to recover Zn from carbon steel production EAFD was investigated and about 60-70% of metal recovery was obtained. The resulting glass show higher chemical stability than glasses obtained without metal recovery. PMID:12423059

  1. Development of mesoscale burner arrays for gas turbine reheat

    NASA Astrophysics Data System (ADS)

    Lee, Sunyoup

    Mesoscale burner arrays allow combustion to be conducted in a distributed fashion at a millimeter (meso) scale. At this scale, diffusive processes are fast, but not yet dominant, such that numerous advantages over conventional gas turbine combustion can be achieved without giving up the possibility to use fluid inertia to advantage. Since the scale of the reaction zone follows from the scale at which the reactants are mixed, very compact flames result. This compact, distributed form of combustion can provide the opportunity of inter-turbine reheat as well as the potential for lean premixed or highly vitiated combustion to suppress NOx emissions. As a proof-of-concept, a 4x4 array with burner elements on 5-mm centers was fabricated in silicon nitride via assembly mold SDM. Each burner element was designed in a single monolithic unit with its own combination of reactant inlets, fuel plenum and injection nozzles, and swirler to induce flame stabilization. Results using methane, including pressure drop, flame stability, temperature distribution in the burnt gas, and NO emissions are reported for both fully premixed (mixing prior to injection) and nonpremixed (mixing in the array) configurations. These results demonstrate the degree to which premixed performance can be achieved with this design and pointed to ways in which the array design could be improved over this first-generation unit. Given what was learned from the 4x4 array, a next-generation 6x6 array was developed. Major design changes include addition of a bluff-body stabilizer to each burner element to improve stability and use of a multilayer architecture to enhance the degree of reactant mixing. Tests using methane in both operating conditions were performed for two stabilization configurations---with and without the bluff bodies. The results for nonpremixed operation show that nearly complete air/fuel mixing was achieved using the 6x6 design, leading to NO emission levels obtainable under fully premixed

  2. On finite density effects on cosmic reheating and moduli decay and implications for Dark Matter production

    SciTech Connect

    Drewes, Marco

    2014-11-01

    We study the damping of an oscillating scalar field in a Friedmann-Robertson-Walker spacetime by perturbative processes, taking into account the back-reaction of the plasma of decay products on the damping rate. The scalar field may be identified with the inflaton, in which case this process resembles the reheating of the universe after inflation. It can also model a modulus that dominates the energy density of the universe at later times. We find that the finite density corrections to the damping rate can have a drastic effect on the thermal history and considerably increase both, the maximal temperature in the early universe and the reheating temperature at the onset of the radiation dominated era. As a result the abundance of some Dark Matter candidates may be considerably larger than previously estimated. We give improved analytic estimates for the maximal and the reheating temperatures and confirm them numerically in a simple model.

  3. Acoustic emission monitoring for inspection of seam-welded hot reheat piping in fossil power plants

    NASA Astrophysics Data System (ADS)

    Rodgers, John M.; Morgan, Bryan C.; Tilley, Richard M.

    1996-11-01

    Although failure of the seam weld on reheat steam piping has been an infrequent occurrence, such failure is still a major safety concern for fossil plant operations. EPRI has provided guidelines for a piping management program base don periodic inspection. More recently, EPRI has also sponsored research to develop inspection techniques to both improve the quality and reduce the cost of piping inspections. Foremost in this research has been the use of acoustic emission (AE) techniques to detect crack damage in seam welds. AE has the substantial cost advantages of both allowing inspection without full removal of the thermal insulation on the reheat piping and making short-re- inspection intervals practical. This paper reviews the EPRI guidelines for performing an AE inspection on seam-welded hot reheat piping.

  4. Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993

    SciTech Connect

    Crelling, J.C.

    1993-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

  5. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Oxygen-Based PC Boiler

    SciTech Connect

    Andrew Seltzer

    2005-01-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by natural circulation to the waterwalls and divisional wall panels. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) without over-fire air and (2) with 20% over-fire air. The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H{sub 2}O and CO{sub 2} concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O{sub 2}. Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from carbon steel to T91. The total heat transfer surface required in the oxygen-fired heat recovery area (HRA) is 25% less than the air-fired HRA due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are practically the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are very similar.

  6. FUGITIVE EMISSIONS FROM INTEGRATED IRON AND STEEL PLANTS

    EPA Science Inventory

    The report gives results of an engineering investigation of fugitive (non-ducted) emissions in the iron and steel industry. Operations excluded from the study are coke ovens, basic oxygen furnace (BOF) charging, and blast furnace cast houses. Fugitive emission factors for iron an...

  7. EAST (FRONT) AND NORTH SIDE OF DOUBLE FURNACE AND NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST (FRONT) AND NORTH SIDE OF DOUBLE FURNACE AND NORTH SIDE OF SINGLE FURNACE, SOUTHWEST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  8. Impact of different fules on reheat and nonreheat combined cycle plant performance

    SciTech Connect

    Tawney, R.K.; Kamali, K. ); Yeager, W.L. )

    1988-01-01

    The combustion turbine is capable of firing a variety of gaseous and/or liquid fuels. This ability offers the power industry the advantage of utilizing the most economical fuel available in the market. The purpose of this paper is to evaluate qualitative and quantitative performance differences of combined cycle reheat versus non-reheat configurations when burning three different fuels--natural gas, distillate fuel, and coal-derived gas (coal gas). The performance data include power output, heat rates, steam produced, stack temperatures and other associated design factors.

  9. Thermal Spray Coatings for Blast Furnace Tuyere Application

    NASA Astrophysics Data System (ADS)

    Pathak, A.; Sivakumar, G.; Prusty, D.; Shalini, J.; Dutta, M.; Joshi, S. V.

    2015-12-01

    The components in an integrated steel plant are invariably exposed to harsh working environments involving exposure to high temperatures, corrosive gases, and erosion/wear conditions. One such critical component in the blast furnace is the tuyere, which is prone to thermal damage by splashing of molten metal/slag, erosive damage by falling burden material, and corrosion from the ensuing gases. All the above, collectively or independently, accelerate tuyere failure, which presents a potential explosion hazard in a blast furnace. Recently, thermal spray coatings have emerged as an effective solution to mitigate such severe operational challenges. In the present work, five different coatings deposited using detonation spray and air plasma spray techniques were comprehensively characterized. Performance evaluation involving thermal cycling, hot corrosion, and erosion tests was also carried out. Based on the studies, a coating system was suggested for possible tuyere applications and found to yield substantial improvement in service life during actual field trials.

  10. Titanium addition practice, and maintenance for the hearths in AHMSA`s blast furnaces

    SciTech Connect

    Boone, A.G.; Jimenez, G.; Castillo, J.

    1997-12-31

    Altos Hornos de Mexico (AHMSA) is a steel company located in Northern Mexico, in the state of Coahuila. Currently there are three blast furnaces in operation and one more about to finish its general repair. This last one is to remain as a back-up unit. Because of blast furnace hearth wear outs AHMSA has developed some maintenance procedures. These procedures are based on titanium ore additions and hearth thermic control monitoring. There are also some other maintenance practices adopted to the working operations to assure that such operations detect and avoid in time hearth wear outs that place personnel and/or the unit in danger (due to hearth leaks). This paper describes titanium ore addition to No. 2 blast furnace during the final campaign and it also illustrates maintenance practices and continuous monitoring of temperature trends both of which were implemented at AHMSA`s No. 5 blast furnace.

  11. BLAST FURNACE GRANULAR COAL INJECTION SYSTEM. Final Report Volume 2: Project Performance and Economics

    SciTech Connect

    Unknown

    1999-10-01

    Bethlehem Steel Corporation (BSC) requested financial assistance from the Department of Energy (DOE), for the design, construction and operation of a 2,800-ton-per-day blast furnace granulated coal injection (BFGCI) system for two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. The demonstration project proposal was selected by the DOE and awarded to Bethlehem in November 1990. The design of the project was completed in December 1993 and construction was completed in January 1995. The equipment startup period continued to November 1995 at which time the operating and testing program began. The blast furnace test program with different injected coals was completed in December 1998.

  12. Study on blast furnace cooling stave for various refractory linings based on numerical modeling

    NASA Astrophysics Data System (ADS)

    Mohanty, T. R.; Sahoo, S. K.; Moharana, M. K.

    2016-02-01

    Cooling technology for refractory lining of blast furnace is very important for the metallurgical industry, because it can substantially increase output and operation life of furnaces. A three dimensional mathematical model for the temperature field of the blast furnace stave cooler with refractory lining has been developed and analyzed. The temperature and heat dissipated by stave cooler is examined by using the finite element method. The cast steel stave is studied and computational analysis is made to know the effect of the cooling water velocity, temperature, and the lining material on the maximum temperature of the stave hot surface. The refractory lining materials, which are used in this experiment, are high alumina bricks with different stave materials (copper, aluminum and cast iron). The obtained numerical calculations are compared with that obtained from experiments performed at Rourkela Steel Plant, Odisha taking a stave in belly zone having maximum heat load shows very good agreement.

  13. Sulfur Transfer via Gas Phase in Iron-making Blast Furnace under Intensive Coal Injection

    NASA Astrophysics Data System (ADS)

    Yoshiyuki, Matsui; Rikizou, Tadai; Kenji, Ito; Tadasu, Matsuo; Korehito, Kadoguchi; Reiji, Ono

    The steel industry will move toward more value additive products in the future. In order to support the value additive steel products, iron sources have to be secured with stable operation of furnaces and control of furnace have to be evolved. Environment consciousness including CO2 reduction leads more toward lower reducing agents ratio operation. It is common technical issue on both the more value additive products the environment consciousness to control the sulfur in the hot metal, slag and gas phase.In the present study, the amount of sulfur gasification was measured by combustion experiments with the attention on the simultaneous gasification of sulfur with carbon. By description of sulfurization from gas to burden materials based on the temperature distribution measured in actual furnace, the amount of sulfur transferred to gas was evaluated.

  14. Floor furnace burns to children.

    PubMed

    Berger, L R; Kalishman, S

    1983-01-01

    Three children with grid-like second-degree burns of their extremities from contact with floor furnace registers prompted an examination of this thermal hazard. Average temperature of the gratings was 294 degrees F (146 degrees C), with a range of 180 degrees to 375 degrees F (82.2 degrees to 191 degrees C). All of the furnaces tested were positioned at the entrance to bedrooms and had so little clearance that it was impossible to walk around them without contact with their surface. Infants and toddlers are at particular risk: 1 or 2 seconds of exposure would be expected to produce a serious burn. Suggestions for preventing burns from floor furnaces include turning them off when young children are at home; installing barrier gates to prevent children from coming in contact with the registers; and developing a surface coating or replacement grate with less hazardous thermal properties. PMID:6848984

  15. Clean Coal III Project: Blast Furnace Granular Coal Injection Project Trail 1 Report - Blast Furnace Granular Coal Injection - Results with Low Volatile Coal

    SciTech Connect

    None, None

    1997-11-01

    This report describes the first coal trial test conducted with the Blast Furnace Granular Coal Injection System at Bethlehem Steel Corporation's Burns Harbor Plant. This demonstration project is divided into three phases: Phase I - Design Phase II - Construction Phase III - Operation The design phase was conducted in 1991-1993, Construction of the facility began in August 1993 and was completed in late 1994. The coal injection facility began operating in January 1995 and Phase III began in November 1995. The Trial 1 base test on C furnace was carried out in October 1996 as a comparison period for the analysis of the operation during subsequent coal trials.

  16. Recycling and reheating of pyroclasts as possible mechanism for increased groundmass crystallization in basaltic tephra

    NASA Astrophysics Data System (ADS)

    Deardorff, N.; Cashman, K.

    2012-12-01

    Tephra produced by explosive eruptions provides important information about magma ascent, vesiculation, fragmentation, and deposition. Mafic pyroclasts from strombolian eruptions are characterized by a wide range in groundmass crystallinity and can range from dense microlite-rich matrix to glassy microlite-poor clasts, often within the same eruption deposit and even within a single clast. However, the origin of these clast types, and the ascent and eruption conditions, is not well understood. The presence of both microlite-rich and microlite-poor matrix is a common feature of tephra deposits from cinder cone eruptions. Microlite-poor clasts are generally assumed to represent primary (deeper) magma that ascends rapidly and erupts. Microlite-rich clasts have been interpreted as slow-moving magma incorporated from along conduit walls, or stored temporarily in shallow dikes and sills; both scenarios call upon sufficiently long residence times within the upper crust to allow magma degassing and crystallization prior to eruption. An alternative explanation is additional residence time in the vent by recycling previously erupted clasts. In this study we induced groundmass crystallization in tephra by heating natural basaltic lapilli in a one-atmosphere Deltec furnace at oxygen fugacity (fO2) conditions of ambient air. Each clast was split in half (saving one half as a control) and heated isothermally for variable time intervals. Experiments were 5-60 minutes at T = 600-1000°C and 5-30 minutes at temperatures (T) ≥1100°C. Images of both the control and the experimental samples permitted classification according to differences in groundmass texture caused by heating. We observed from our experiments that microlite crystallization initiates near the glass transition temperature (Tg ~690°C) within 20 minutes. The extent of crystallization increases with time and increased temperature. At greater temperatures (≥800°C) rapid nucleation occurs within ≤5 minutes

  17. Reheating effects in the matter power spectrum and implications for substructure

    SciTech Connect

    Erickcek, Adrienne L.; Sigurdson, Kris

    2011-10-15

    The thermal and expansion history of the Universe before big bang nucleosynthesis is unknown. We investigate the evolution of cosmological perturbations through the transition from an early matter era to radiation domination. We treat reheating as the perturbative decay of an oscillating scalar field into relativistic plasma and cold dark matter. After reheating, we find that subhorizon perturbations in the decay-produced dark matter density are significantly enhanced, while subhorizon radiation perturbations are instead suppressed. If dark matter originates in the radiation bath after reheating, this suppression may be the primary cutoff in the matter power spectrum. Conversely, for dark matter produced nonthermally from scalar decay, enhanced perturbations can drive structure formation during the cosmic dark ages and dramatically increase the abundance of compact substructures. For low reheat temperatures, we find that as much as 50% of all dark matter is in microhalos with M > or approx. 0.1M{sub +} at z{approx_equal}100, compared to a fraction of {approx}10{sup -10} in the standard case. In this scenario, ultradense substructures may constitute a large fraction of dark matter in galaxies today.

  18. Electrostatic Levitation Furnace for the ISS

    NASA Technical Reports Server (NTRS)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  19. Crystal growth and furnace analysis

    NASA Technical Reports Server (NTRS)

    Dakhoul, Youssef M.

    1986-01-01

    A thermal analysis of Hg/Cd/Te solidification in a Bridgman cell is made using Continuum's VAST code. The energy equation is solved in an axisymmetric, quasi-steady domain for both the molten and solid alloy regions. Alloy composition is calculated by a simplified one-dimensional model to estimate its effect on melt thermal conductivity and, consequently, on the temperature field within the cell. Solidification is assumed to occur at a fixed temperature of 979 K. Simplified boundary conditions are included to model both the radiant and conductive heat exchange between the furnace walls and the alloy. Calculations are performed to show how the steady-state isotherms are affected by: the hot and cold furnace temperatures, boundary condition parameters, and the growth rate which affects the calculated alloy's composition. The Advanced Automatic Directional Solidification Furnace (AADSF), developed by NASA, is also thermally analyzed using the CINDA code. The objective is to determine the performance and the overall power requirements for different furnace designs.

  20. Acoustical Measurement Of Furnace Temperatures

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai; Venkateshan, Shakkottai P.

    1989-01-01

    Simple probes withstand severe conditions, yet give spatially-resolved temperature readings. Prototype acoustical system developed to measure temperatures from ambient to 1,800 degree F in such structures as large industrial lime kilns and recovery-boiler furnaces. Pulses of sound reflected from obstructions in sensing tube. Speed of sound and temperature in each segment deduced from travel times of pulses.

  1. Training Guidelines: Glass Furnace Operators.

    ERIC Educational Resources Information Center

    Ceramics, Glass, and Mineral Products Industry Training Board, Harrow (England).

    Technological development in the glass industry is constantly directed towards producing high quality glass at low operating costs. Particularly, changes have taken place in melting methods which mean that the modern furnace operator has greater responsibilities than any of his predecessors. The complexity of control systems, melting rates, tank…

  2. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  3. Hopewell Furnace National Historic Site. Teacher's Guide.

    ERIC Educational Resources Information Center

    National Park Service (Dept. of Interior), Washington, DC.

    This teacher's guide contains activities to use in conjunction with a site visit to the Hopewell Furnace National Historic Site (Elverson, Pennsylvania). The guide provides diagrams of the furnace, a cold-blast smelting operation, and the furnace operation. It presents a timeline of iron production from ancient times through contemporary times.…

  4. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  5. 10 CFR 429.18 - Residential furnaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Residential furnaces. 429.18 Section 429.18 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.18 Residential furnaces. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential furnaces;...

  6. A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace

    SciTech Connect

    Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

    2002-01-21

    This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

  7. High productivity injection practices at Rouge Steel

    SciTech Connect

    Barker, D.H.; Hegler, G.L.; Falls, C.E.

    1995-12-01

    Rouge Steel Company, located in Dearborn, Michigan, operates two blast furnaces. The smaller of the pair, ``B`` Furnace, has a hearth diameter of 20 feet and 12 tuyeres. It has averaged 2,290 NTHM (net ton of hot metal) per day of 8.2 NTHM per 100 cubic feet of working volume. ``C`` Furnace has a hearth diameter of 29 feet and 20 tuyeres. Both of these furnaces are single tap hole furnaces. Prior to its reline in 1991, ``C`` Furnace was producing at a rate of 3,300 NTHM/day or about 6.25 NTHM/100 cfwv. In November, 1994 it averaged 5,106 NTHM/day or 9.6 NTHM/100 cfwv. This paper discusses how the current production rates were achieved. Also, the areas that needed to be addressed as production increased will be described. These areas include casthouse arrangement and workload, hot metal ladle capacity, slag pot capacity and charging capability. Coupled with the high blast temperature capability, the furnace was provided with a new natural gas injection system that injected the gas through the blowpipes and a natural gas injection system to enrich the stove gas. Following the furnace reline, natural gas has been used in three ways: tuyere level control; combination injection; and stove gas enrichment. Coke consumption rate has also decreased per NTHM.

  8. Direct current, closed furnace silicon technology

    SciTech Connect

    Dosaj, V.D.; May, J.B.; Arvidson, A.N.

    1994-05-01

    The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

  9. Coal combustion under conditions of blast furnace injection. Technical report, March 1, 1994--May 31, 1994

    SciTech Connect

    Crelling, J.C.

    1994-09-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposal is a follow-up to one funded for the 1992-93 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter samples of two feed coals and the IBCSP 112 (Herrin No. 6) were prepared for reactivity testing and compared to blast furnace coke, and char fines taken from an active blast furnace. As the initial part of a broad reactivity analysis program, these same samples were also analyzed on a thermogravimetric analyzer (TGA) to determine their combustion and reactivity properties.

  10. Recycling of electric-arc-furnace dust

    SciTech Connect

    Sresty, G.C.

    1990-05-01

    Electric arc furnace (EAF) dust is one of the largest solid waste streams produced by steel mills, and is classified as a waste under the Resource Conservation and Recovery Act (RCRA) by the U.S. Environmental Protection Agency (EPA). Successful recycle of the valuable metals (iron, zinc, and lead) present in the dust will result in resource conservation while simultaneously reducing the disposal problems. Technical feasibility of a novel recycling method based on using hydrogen as the reductant was established under this project through laboratory experiments. Sponge iron produced was low in zinc, cadmium, and lead to permit its recycle, and nontoxic to permit its safe disposal as an alternative to recycling. Zinc oxide was analyzed to contain 50% to 58% zinc by weight, and can be marketed for recovering zinc and lead. A prototype system was designed to process 2.5 tons per day (600 tons/year) of EAF dust, and a preliminary economic analysis was conducted. The cost of processing dust by this recycling method was estimated to be comparable to or lower than existing methods, even at such low capacities.

  11. Peculiarity of the process of quenching carburized steel parts

    SciTech Connect

    Kobasko, N.I.

    1995-12-31

    The intensive steel quenching methods are widely used for the thermohardening of alloy and high alloy steels. In the present work an opportunity for the application of intensive steel quenching methods with reference to carburized steel parts is justified. Advantages and disadvantages are discussed. The advantages consist of an opportunity to reduce the duration of the carburizing process, increase the quality and durability of carburized steel parts, achieve additional strengthening of material and optimize the distribution of residual stresses after quenching carburized steel parts. Disadvantages consist of a necessity to modify continuous gas carburizing furnaces.

  12. Electric arc furnace dust treatment: investigation on mechanical and magnetic separation methods.

    PubMed

    Sekula, R; Wnek, M; Selinger, A; Wróbel, M

    2001-08-01

    Electric arc furnace dust (EAFD) is a major issue for processing technologies: Several million tons per year are generated, it contains both valuable and hazardous metals and yet no available treatment process has proven to be superior to all others. Processes currently applied or being developed are either of hydro- or pyrometallurgical type, which are very costly. In the paper testing of some physical separation methods of electric arc furnace dust from Polish steel industry were investigated. SEM, EDX analyses as well as grain size observations of dust particles were additionally performed. All investigations confirmed a possibility of effective magnetic and mechanical separation of EAFD particles. PMID:11720260

  13. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1992-01-01

    Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.

  14. Automated, High Temperature Furnace for Glovebox Operation

    SciTech Connect

    Neikirk, K.

    2001-01-26

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River Site (SRS) as part of a two track approach for the disposition of weapons usable plutonium. As such, the Department of Energy is funding a development and testing effort for the PIP. This effort is being performed jointly by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulting package and resistance heating elements located within a nuclear glovebox. Other furnaces considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment. Due to the radiation levels and contamination associated with the plutonium material, the sintering process will be fully automated and contained within nuclear material gloveboxes. As such, the furnace currently under development incorporates water and air cooling to minimize heat load to the glovebox. This paper will describe the furnace equipment and systems needed to employ a fully automated puck sintering process within nuclear gloveboxes as part of the Plutonium Immobilization Plant.

  15. Higgs inflation, reheating and gravitino production in no-scale Supersymmetric GUTs

    NASA Astrophysics Data System (ADS)

    Ellis, John; He, Hong-Jian; Xianyu, Zhong-Zhi

    2016-08-01

    We extend our previous study of supersymmetric Higgs inflation in the context of no-scale supergravity and grand unification, to include models based on the flipped SU(5) and the Pati-Salam group. Like the previous SU(5) GUT model, these yield a class of inflation models whose inflation predictions interpolate between those of the quadratic chaotic inflation and Starobinsky-like inflation, while avoiding tension with proton decay limits. We further analyse the reheating process in these models, and derive the number of e-folds, which is independent of the reheating temperature. We derive the corresponding predictions for the scalar tilt and the tensor-to-scalar ratio in cosmic microwave background perturbations, as well as discussing the gravitino production following inflation.

  16. Big-bang nucleosynthesis with unstable gravitino and upper bound on the reheating temperature

    NASA Astrophysics Data System (ADS)

    Kohri, Kazunori; Moroi, Takeo; Yotsuyanagi, Akira

    2006-06-01

    We study the effects of unstable gravitino on big-bang nucleosynthesis. If the gravitino mass is smaller than ˜10TeV, primordial gravitinos produced after inflation are likely to decay after big-bang nucleosynthesis starts, and light-element abundances may be significantly affected by hadro and photodissociation processes as well as by p↔n conversion process. We calculate the light-element abundances and derive upper bounds on the reheating temperature after inflation. In our analysis, we calculate decay parameters of the gravitino (i.e. lifetime and branching ratios) in detail. In addition, we perform a systematic study of the hadron spectrum produced by the gravitino decay, taking account of all the hadrons produced by the decay products of the gravitino (including the daughter superparticles). We discuss model dependence of the upper bound on the reheating temperature.

  17. THERMODYNAMIC ANALYSIS OF OPEN-CYCLE MULTISHAFT POWER SYSTEM WITH MULTIPLE REHEAT AND INTERCOOL

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    This program computes the specific power output, specific fuel consumption, and cycle efficiency functions of turbine-inlet temperature, compressor pressure ratio, and component performance factors for power systems having any number of shafts up to a maximum of five. On each shaft there can be any number of compressors and turbines up to a maximum of five each, along with any specified number of intervening intercoolers and reheaters. A recuperator can be included in the system and turbine coolant flow can be accounted for. The combustion-gas thermodynamic properties are valid for any fuel consisting of hydrogen and/or carbon only. The program should be used with maximum temperatures no higher than about 2000 K (3140 degrees Fahrenheit) because molecular dissociation is not included in the stoichiometry. Improvements in cycle performance resulting from the use of intercooling, reheating, and recuperation can also be determined. This program has been implemented on the IBM 7094.

  18. Automatic furnace downloading to SUPREM format

    NASA Astrophysics Data System (ADS)

    Fallon, Martin; Findlater, Keith; McGinty, Jim; Rankin, N.; Yarr, A.

    1999-04-01

    Technology CAD (TCAD) is a commonly used tool in process development and analysis. The task of creating the process in the required format for the TCAD deck is non-trivial and often prone to error due to the detailed nature of the furnace processing. Ensuring that the simulation deck is matched to the actual furnace process is also a key area. There is a difference between what is programmed into the furnace and what the wafers actually see. This work presents a method of automatic download of the actual furnace parameters to a format directly readable by the process simulator SUPREM, and examines the consequences of the furnace variability inherent in batch processing. The three furnace zones can be seen to interact and product best-worst case simulations to aid in the prediction of manufacturability.

  19. Energy aspects of a lead blast furnace

    NASA Astrophysics Data System (ADS)

    Cowperthwaite, Janice E.; Dugdale, Peter J.; Landry, Christian J. F.; R. Morris, David; Steward, Frank R.; Wilson, Timothy C. W.

    1980-06-01

    The energy effects accompanying the processing of the feed material to a lead blast furnace are considered in terms of a reversible model. Relative to this model the efficiencies of operating furnaces are found to be in the range 18 to 35 pct. The effects of the effluent gas CO2/CO ratio and temperature and oxygen enrichment of the blast air in the thermodynamic efficiency are quantified. Improvements in efficiency achieved in industrial furnaces as a result of oxygen enrichment of the blast air are substantially greater than those predicted. Mass and enthalpy balances on an industrial lead blast furnace are presented from which it is estimated that approximately 9 pct of the carbon charged to the furnace is lost due to the solution loss reaction in the upper regions of the furnace.

  20. Ferrosilicon smelting in a direct current furnace

    DOEpatents

    Dosaj, V.D.; May, J.B.

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode. 1 figure.

  1. Crystal growth furnace with trap doors

    DOEpatents

    Sachs, Emanual M.; Mackintosh, Brian H.

    1982-06-15

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  2. Ferrosilicon smelting in a direct current furnace

    DOEpatents

    Dosaj, Vishu D.; May, James B.

    1992-12-29

    The present invention is a process for smelting ferrosilicon alloy. The process comprises adding a carbon source and tailings comprising oxides of silicon and iron to a substantially closed furnace. Heat is supplied to the furnace by striking a direct current arc between a cathode electrode and an anode functional hearth. In a preferred embodiment of the present invention, the cathode electrode is hollow and feed to the substantially closed furnace is through the hollow electrode.

  3. Crystal growth furnace with trap doors

    NASA Technical Reports Server (NTRS)

    Sachs, Emanual M. (Inventor); Mackintosh, Brian H. (Inventor)

    1982-01-01

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  4. Stainless steel recycle FY94 progress report

    SciTech Connect

    Imrich, K.J.

    1994-10-28

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft{sup 3}) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program.

  5. Condensing furnaces: Lessons from a utility

    SciTech Connect

    Beers, J.

    1994-11-01

    for the last several years about 90% of the new natural gas furnaces installed in Wisconsin have been condensing furnaces and a number of lessons have been learned. If you avoid the common mistakes, condensing furnaces typically can deliver heating savings of 20-35 % assuming the old furnace was in the 60% AFUE range. This article describes the common mistakes and how to avoid them: outside air needed 100%; benefits of sealed combustion; follow the installation manual scrupulously; how to avoid potential problems; tips on venting.

  6. Measurement of airflow in residential furnaces

    SciTech Connect

    Biermayer, Peter J.; Lutz, James; Lekov, Alex

    2004-01-24

    In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

  7. Steel industry wastes. [Wastewater treatment

    SciTech Connect

    Vachon, D.T.; Schmidt, J.W.; Schmidtke, N.W.

    1982-06-01

    A literature review dealing with waste processing of steel industry wastes is presented. The costs for the U.S. steel industry to comply with environmental standards are such that water reuse and recycling may be necessary. The review examines conventional coke plant wastewater treatments such as flotation, phenol extraction, ammonia stripping, and biological nitrification, and alternative treatment processes for blast furnace scrubber blowdown such as alkaline chlorination, ozonation, and reverse osmosis. A review of pickling operations and finishing processes is also included with their appropriate waste methods highlighted.

  8. Great Lakes Steel -- PCI facility

    SciTech Connect

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.; Brown, G.S.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  9. VAPOR SHIELD FOR INDUCTION FURNACE

    DOEpatents

    Reese, S.L.; Samoriga, S.A.

    1958-03-11

    This patent relates to a water-cooled vapor shield for an inductlon furnace that will condense metallic vapors arising from the crucible and thus prevent their condensation on or near the induction coils, thereby eliminating possible corrosion or shorting out of the coils. This is accomplished by placing, about the top, of the crucible a disk, apron, and cooling jacket that separates the area of the coils from the interior of the cruclbIe and provides a cooled surface upon whlch the vapors may condense.

  10. Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 December 1993--28 February 1994

    SciTech Connect

    Crelling, J.C.

    1994-06-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter a sample of the feed coal that is being used for injection into the No. 7 Blast Furnace of Inland Steel has been analyzed petrographically and compared to both the Herrin No. 6 coal and Armco feed coal. Additional characterization is underway and an advanced program of pyrolysis and reactivity testing has been initiated.

  11. POLLUTION EFFECTS OF ABNORMAL OPERATIONS IN IRON AND STEEL MAKING. VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report is the first in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, ge...

  12. POLLUTION EFFECTS OF ABNORMAL OPERATIONS IN IRON AND STEEL MAKING. VOLUME II. SINTERING, MANUAL OF PRACTICE

    EPA Science Inventory

    The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...

  13. Blast Furnace Granulated Coal Injection System Demonstration Project public design report. Topical report

    SciTech Connect

    1995-03-01

    The public design report describes the Blast Furnace Granulated Coal Injection (BFGCI) project under construction at Bethlehem Steel Corporation`s (BSC) Burns Harbor, Indiana, plant. The project is receiving cost-sharing from the U.S. Department of Energy (DOE), and is being administrated by the Morgantown Energy Technology Center in accordance with the DOE Cooperative Agreement No. DE-FC21-91MC27362. The project is the first installation in the United States for the British Steel technology using granular coal in blast furnaces. The objective is to demonstrate that granular coal is an economic and reliable fuel which can successfully be applied to large North American blast furnaces. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. To achieve the program objectives, the demonstration project is divided into the following three Phases: Phase I-Design; Phase II-Procurement & Construction; and Phase III-Operation. Preliminary design (Phase I) began in 1991 with detailed design commencing in April 1993. Construction at Burns Harbor (Phase II) began August 1993. Construction is expected to be complete in the first quarter of 1995 which will be followed by a demonstration test program (Phase III).

  14. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  15. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  16. Bethlehem Steel Corporation Blast Furnace Granulated Coal Injection Demonstration Project

    SciTech Connect

    Not Available

    1993-05-01

    Construction of the proposed BFGCI system is not expected to have significant impacts on air quality, noise, and land use at the Burns Harbor Plant area. Operation of the proposed BFGCI system is not expected to have significant impacts on the environment at the Burns Harbor Plant area. An increase of approximately 30 tons/yr for NO{sub x} and approximately 13 tons/yr for particulate matter (from the coal storage area) is expected. These emissions are within the currently permitted levels. Carbon dioxide emissions, which are unregulated, would increase by about 220,000 tons/yr at the Burns Harbor Plant. Water withdrawn and returned to Lake Michigan would increase by 1.3 million gal/d (0.4 percent of existing permitted discharge) for non-contact cooling water. No protected species, floodplains, wetlands, or cultural resources would be affected by operation of the proposed facility. Small economic benefits would occur from the creation of 5 or 6 permanent new jobs during the operation of the proposed demonstration project and subsequent commercial operation. Under the No Action Alternative, the proposed project would not receive cost-shared funding support from DOE.

  17. INTERIOR VIEW OF FURNACE NO. 2, DRAWING ROOM, SHOWING A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF FURNACE NO. 2, DRAWING ROOM, SHOWING A FLOOR INDICATING FOURCAULT DRAWING MACHINE AND FURNACE. - Chambers-McKee Window Glass Company, Furnace No. 2, Clay Avenue Extension, Jeannette, Westmoreland County, PA

  18. 19. Inside the cast house at Furnace A. Molten iron ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Inside the cast house at Furnace A. Molten iron flowed into eight ladles. The furnace was cast (or tapped) six times each day. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  19. Existing and prospective blast-furnace conditions

    SciTech Connect

    I.G. Tovarovskii; V.I. Bol'shakov; V.P. Lyalyuk; A.E. Merkulov; D. V. Pinchuk

    2009-07-15

    Blast-furnace conditions are investigated by means of a multizone model. The expected performance of prospective technologies is assessed, as well as the trends in blast-furnace processes. The model permits the identification of means of overcoming practical difficulties.

  20. Crystal growth furnace safety system validation

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.; Hartfield, R.; Bhavnani, S. H.; Belcher, V. M.

    1994-01-01

    The findings are reported regarding the safe operation of the NASA crystal growth furnace (CGF) and potential methods for detecting containment failures of the furnace. The main conclusions are summarized by ampoule leak detection, cartridge leak detection, and detection of hazardous species in the experiment apparatus container (EAC).

  1. Thermal Imaging Control of Furnaces and Combustors

    SciTech Connect

    David M. Rue; Serguei Zelepouga; Ishwar K. Puri

    2003-02-28

    The object if this project is to demonstrate and bring to commercial readiness a near-infrared thermal imaging control system for high temperature furnaces and combustors. The thermal imaging control system, including hardware, signal processing, and control software, is designed to be rugged, self-calibrating, easy to install, and relatively transparent to the furnace operator.

  2. Developmental testing of a programmable multizone furnace

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Larson, D. J., Jr.

    1986-01-01

    A multizone furnace was evaluated for its potential utilization for process experimentation on board the Space Shuttle. A temperature gradient can be created through the use of a series of connected temperature zones and can be translated by the coordinated sequencing of zone temperatures. The Bridgman-Stockbarger thermal configuration for directional solidification was implemented so that neither the sample nor furnace was translated. The thermal behavior of the furnace was measured and characterized. Limitations due to both thermal and electronic (computer) factors are identified. The results indicate that the multizone design is limited to low temperature gradients because of the indirect furnace-to-sample thermal coupling needed to blend the discrete thermal zones. The multizone furnace design inherently consumes more power than a similar (two temperature) conventional Bridgman type directional solidification furnace because every zone must be capable of the high cooling rates needed to produce the maximum desired temperature drop. Typical achievable static temperature gradients for the furnace tested were between 6 and 75 C/in. The maximum gradient velocity was approximately 10 in./hr. Several aspects of the tested system could be improved, but the dependence of the multizone design on high heat loss will limit Space Shuttle applications in the form tested unless additional power is available. The multizone furnace offers great flexibility but requires a high level of operator understanding for full advantage to be obtained.

  3. Refractory of Furnaces to Reduce Environmental Impact

    NASA Astrophysics Data System (ADS)

    Hanzawa, Shigeru

    2011-10-01

    The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO2 produced from this high energy load. To improve this situation, R&D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.

  4. ANALYSIS OF EMISSIONS FROM RESIDENTIAL OIL FURNACES

    EPA Science Inventory

    The paper gives results of a series of emission tests on a residential oil furnace to determine emissions from two types of burners. umber of analyses were performed on the emissions, including total mass, filterable particulate, total oil furnaces tested by the EPA in Roanoke, V...

  5. Tubular furnace for performance of gas reactions

    SciTech Connect

    Bruck, H.

    1984-04-03

    There is described a furnace for the performance of gas reactions in a ceramic assembly of tubes in which the heating chambers, the recuperators and the flue gas-branch channel are arranged in a compact, energy saving type of construction. The furnace is especially suited for the production of hydrocyanic acid according to the BMA process (hydrocyanic acid-methane-ammonia process).

  6. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    SciTech Connect

    Seaman, John

    2013-01-14

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  7. Service and repair of the rammed lining of a rotary furnace

    SciTech Connect

    Startsev, D.A.; Khamatova, V.G.; Murzin, V.N.

    1986-03-01

    The rotary furnace is designed for heating of carbon and alloy steel billets 100-150 mm in diameter and 1000-3800 mm long with a maximum weight of 350 kg to 1130-1260 degrees C. The furnace hearth lining is made in three layers. The top of the center layer is made of parts laid with gaps between them of 20-30 mm. The 80-90-mm-thick working layer is made of type MKhGP-35 rammed chromite-clay compound. To protect the top of the side parts of the hearth from impacts, they are covered with a 40-mm-thick layer of rammed MKhGP-35 compound. During operation of the furnace and heating of the billets, the rammed compound of the hearth is compacted and after 6-7 months of service waves up to 20-30 mm deep are formed on it from the action of the round billets. To avoid the condition in which the unloading machine is not able to take the heated billets from such a hearth, ramming compound is added to the depressions in the hearth through the charging door. The furnace temperature is brought up to the heating schedule and billets are charged. The rammed lining is completely replaced once every two or three years. The saving with such a method of repair of the worn rammed hearth during 2 years of operation of the rotary furnace is substantial.

  8. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1988-01-01

    Analytical, numerical and experimental studies were performed on two classes of high temperature materials processing furnaces. The research concentrates on a commercially available high temperature furnace using zirconia as the heating element and an arc furnace based on a ST International tube welder. The zirconia furnace was delivered and work is progressing on schedule. The work on the arc furnace was initially stalled due to the unavailability of the NASA prototype, which is actively being tested aboard the KC-135 experimental aircraft. A proposal was written and funded to purchase an additional arc welder to alleviate this problem. The ST International weld head and power supply were received and testing will begin in early November. The first 6 months of the grant are covered.

  9. Optical cavity furnace for semiconductor wafer processing

    DOEpatents

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  10. A multi-zone muffle furnace design

    NASA Technical Reports Server (NTRS)

    Rowe, Neil D.; Kisel, Martin

    1993-01-01

    A Multi-Zone Muffle-Tube Furnace was designed, built, and tested for the purpose of providing an in-house experience base with tubular furnaces for materials processing in microgravity. As such, it must not only provide the desired temperatures and controlled thermal gradients at several discrete zones along its length but must also be capable of sustaining the rigors of a Space Shuttle launch. The furnace is insulated to minimize radial and axial heat losses. It is contained in a water-cooled enclosure for purposes of dissipating un-wanted residual heat, keeping the outer surfaces of the furnace at a 'touch-safe' temperature, and providing a rugged housing. This report describes the salient features of the furnace, testing procedures and results, and concluding remarks evaluating the overall design.

  11. Precision control of high temperature furnaces

    SciTech Connect

    Pollock, G.G.

    1994-12-31

    It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

  12. GENERAL VIEW OF EAST (FRONT) OF DOUBLE FURNACE FROM ACROSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF EAST (FRONT) OF DOUBLE FURNACE FROM ACROSS THE CREEK, LOOKING SOUTHWEST. - Tannehill Furnace, 12632 Confederate Parkway, Tannehill Historical State Park, Bucksville, Tuscaloosa County, AL

  13. Impact of Cooking, Storage, and Reheating Conditions on the Formation of Cholesterol Oxidation Products in Pork Loin.

    PubMed

    Min, Joong-Seok; Khan, Muhammad I; Lee, Sang-Ok; Yim, Dong Gyun; Seol, Kuk Hwan; Lee, Mooha; Jo, Cheorun

    2016-01-01

    This study investigates the effect of cooking, storage, and reheating conditions on the formation of cholesterol oxidation products (COPs) in pork loin. Samples of pork loin procured 24 h postmortem were initially processed and assessed for total fat and cholesterol content. The cooking methods evaluated were pan roasting, steaming, oven grilling, and microwaving. Cooked pork loin samples were stored at 4℃ and reheated after 3 and 6 d of storage using the original method of preparation or alternately, microwaving. Fat content increased significantly with cooking as a result of the loss in moisture but cholesterol content remained unchanged. Pan roasting and microwave cooking caused a significantly higher production of COPs, as with the process of reheating using microwave, pan roasting, and oven grilling methods. The major COPs found in pork loin were cholestanetriol, 20-hydroxycholesterol, and 25-hydroxycholesterol, whose concentrations varied according to the different cooking and reheating methods used. Moreover, the aerobic storage of cooked pork loin under a refrigerated condition also increased the formation of cholesterol oxides on reheating. PMID:27499660

  14. Impact of Cooking, Storage, and Reheating Conditions on the Formation of Cholesterol Oxidation Products in Pork Loin

    PubMed Central

    Min, Joong-Seok; Khan, Muhammad I.; Lee, Sang-Ok; Yim, Dong Gyun; Seol, Kuk Hwan; Lee, Mooha; Jo, Cheorun

    2016-01-01

    This study investigates the effect of cooking, storage, and reheating conditions on the formation of cholesterol oxidation products (COPs) in pork loin. Samples of pork loin procured 24 h postmortem were initially processed and assessed for total fat and cholesterol content. The cooking methods evaluated were pan roasting, steaming, oven grilling, and microwaving. Cooked pork loin samples were stored at 4℃ and reheated after 3 and 6 d of storage using the original method of preparation or alternately, microwaving. Fat content increased significantly with cooking as a result of the loss in moisture but cholesterol content remained unchanged. Pan roasting and microwave cooking caused a significantly higher production of COPs, as with the process of reheating using microwave, pan roasting, and oven grilling methods. The major COPs found in pork loin were cholestanetriol, 20-hydroxycholesterol, and 25-hydroxycholesterol, whose concentrations varied according to the different cooking and reheating methods used. Moreover, the aerobic storage of cooked pork loin under a refrigerated condition also increased the formation of cholesterol oxides on reheating. PMID:27499660

  15. Microstructural studies of advanced austenitic steels

    SciTech Connect

    Todd, J. A.; Ren, Jyh-Ching

    1989-11-15

    This report presents the first complete microstructural and analytical electron microscopy study of Alloy AX5, one of a series of advanced austenitic steels developed by Maziasz and co-workers at Oak Ridge National Laboratory, for their potential application as reheater and superheater materials in power plants that will reach the end of their design lives in the 1990's. The advanced steels are modified with carbide forming elements such as titanium, niobium and vanadium. When combined with optimized thermo-mechanical treatments, the advanced steels exhibit significantly improved creep rupture properties compared to commercially available 316 stainless steels, 17--14 Cu--Mo and 800 H steels. The importance of microstructure in controlling these improvements has been demonstrated for selected alloys, using stress relaxation testing as an accelerated test method. The microstructural features responsible for the improved creep strengths have been identified by studying the thermal aging kinetics of one of the 16Ni--14Cr advanced steels, Alloy AX5, in both the solution annealed and the solution annealed plus cold worked conditions. Time-temperature-precipitation diagrams have been developed for the temperature range 600 C to 900 C and for times from 1 h to 3000 h. 226 refs., 88 figs., 10 tabs.

  16. Inflation and reheating in theories with spontaneous scale invariance symmetry breaking

    NASA Astrophysics Data System (ADS)

    Rinaldi, Massimiliano; Vanzo, Luciano

    2016-07-01

    We study a scale-invariant model of quadratic gravity with a nonminimally coupled scalar field. We focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale naturally emerges. Before the symmetry breaking, the Universe undergoes an inflationary expansion with nearly the same observational predictions of Starobinsky's model. At the end of inflation, the Hubble parameter and the scalar field converge to a stable fixed point through damped oscillations and the usual Einstein-Hilbert action is recovered. The oscillations around the fixed point can reheat the Universe in various ways, and we study in detail some of these possibilities.

  17. Computer program for thermodynamic analysis of open cycle multishaft power system with multiple reheat and intercool

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1974-01-01

    A computer program to analyze power systems having any number of shafts up to a maximum of five is presented. On each shaft there can be as many as five compressors and five turbines, along with any specified number of intervening intercoolers and reheaters. A recuperator can be included. Turbine coolant flow can be accounted for. Any fuel consisting entirely of hydrogen and/or carbon can be used. The program is valid for maximum temperatures up to about 2000 K (3600 R). The system description, the analysis method, a detailed explanation of program input and output including an illustrative example, a dictionary of program variables, and the program listing are explained.

  18. Trace metals related to historical iron smelting at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2011-01-01

    Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). The ore used at Hopewell Furnace was obtained from iron mines within 5 miles of the furnace. The iron-ore deposits were formed about 200 million years ago and contain abundant magnetite, the primary iron mineral, and accessory minerals enriched in arsenic, cobalt, copper, lead, and other metals. Hopewell Furnace, built by Mark Bird during 1770-71, was one of the last of the charcoal-burning, cold-blast iron furnaces operated in Pennsylvania. The most productive years for Hopewell Furnace were from 1830 to 1837. Castings were the most profitable product, especially the popular Hopewell Stove. More than 80,000 stoves were cast at Hopewell, which produced as many as 23 types and sizes of cooking and heating stoves. Beginning in the 1840s, the iron industry shifted to large-scale, steam-driven coke and anthracite furnaces. Independent rural enterprises like Hopewell could no longer compete when the iron and steel industries consolidated in urban manufacturing centers. The furnace ceased operation in 1883 (Kurjack, 1954). The U.S. Geological Survey (USGS), in cooperation with the National Park Service, completed a study at Hopewell Furnace National Historic Site (NHS) in Berks and Chester Counties, Pennsylvania, to determine the fate of toxic trace metals, such as arsenic, cobalt, and lead, released into the environment during historical iron-smelting operations. The results of the study, conducted during 2008-10, are presented in this fact sheet.

  19. Carbothermic Reduction of Titanium-Bearing Blast Furnace Slag

    NASA Astrophysics Data System (ADS)

    Zhen, Yu-Lan; Zhang, Guo-Hua; Chou, Kuo-Chih

    2016-03-01

    The carbothermic reduction experiments were carried out for titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company in argon atmosphere at high temperatures. The effects of reduction temperature, isothermal treatment time and carbon content on the formation of TiC were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD pattern results showed that MgAl2O4 phase disappeared and the main phase of the reduced sample was TiC when the reduction temperature was higher than 1,773 K. The SEM pictures showed that the reduction rate of the titanium-bearing blast furnace slag could be increased by enhancing the temperature and the C content (carbon ratio ≤1.0). Furthermore, it was also found that TiC had the tendency of concentrating around the iron. The effects of additives such as Fe and CaCl2 on the formation of TiC were also studied in the present study.

  20. Greener durable concretes through geopolymerisation of blast furnace slag

    NASA Astrophysics Data System (ADS)

    Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.

    2015-05-01

    The eco-friendliness of concrete is quantified by parameters such as ‘embodied energy’ (EE) and ‘embodied CO2 emission’ (ECO2e), besides duration of designed ‘service life’. It may be noted that ECO2e is also referred as carbon footprint (CF) in the literature. Geopolymer (GP) is an inorganic polymeric gel, a type of amorphous alumino-silicate product, which can be synthesised by polycondensation reactions. The concrete reported in this paper was prepared using industrial wastes in the form of blast furnace slag, fly ash as geopolymeric source materials and sodium silicate and sodium hydroxide as activators. Many mechanical properties such as compressive strength, chloride diffusion, steel corrosion, rapid chloride permeability test and rapid migration test are compared with Portland cement.

  1. Enriching blast furnace gas by removing carbon dioxide.

    PubMed

    Zhang, Chongmin; Sun, Zhimin; Chen, Shuwen; Wang, Baohai

    2013-12-01

    Blast furnace gas (BF gas) produced in the iron making process is an essential energy resource for a steel making work. As compared with coke oven gas, the caloric value of BF gas is too low to be used alone as fuel in hot stove because of its high concentrations of carbon dioxide and nitrogen. If the carbon dioxide in BF gas could be captured efficiently, it would meet the increasing need of high caloric BF gas, and develop methods to reusing and/or recycling the separated carbon dioxide further. Focused on this, investigations were done with simple evaluation on possible methods of removing carbon dioxide from BF gas and basic experiments on carbon dioxide capture by chemical absorption. The experimental results showed that in 100 minutes, the maximum absorbed doses of carbon dioxide reached 20 g/100 g with ionic liquid as absorbent. PMID:25078829

  2. Horizontal tapping furnace and method of operation

    SciTech Connect

    Wunsche, E.R.

    1987-07-14

    A metallurgical furnace is described including: a furnace floor and a furnace wall means extending generally upwardly about the floor, the furnace having a vertical axis and a horizontal axis, means mounting the furnace for pivotal tilting movement about the horizontal axis between a non-tilted, normal upright position, and a tilted discharge position with the furnace tilted less than 15/sup 0/ to the vertical axis; a hearth zone defined between the floor and wall means adapted to house a bath of liquid metal of predetermined volume, the hearth zone having an upper end defining a predetermined upper level for the bath and for a layer of liquid slag floating on the upper level, when the furnace is in a non-tilted, normal upright position; the hearth zone having a lower end adjacent the floor, a tapping passage extending through the wall means from a liquid metal discharge outlet at an outer end into the lower end of the hearth zone, at an inner end, the discharge outlet being defined by an outwardly facing passage wall and the passage at the outer end; the tapping passage disposed generally parallel to the horizontal axis and vertically below the predetermined upper level, when the furnace is in the non-tilted, normal, upright position; a discharge outlet closure having a closure surface and pivotally mounted externally of the passage for pivotal to and for movement towards and away from the furnace wall means between a first position. The closure surface engages the passage wall at the outer end to fully close the discharge outlet, and a second position spaced apart from the passage wall.

  3. Blast furnace on-line simulation model

    NASA Astrophysics Data System (ADS)

    Saxén, Henrik

    1990-10-01

    A mathematical model of the ironmaking blast furnace (BF) is presented. The model describes the steady-state operation of the furnace in one spatial dimension using real process data sampled at the steelworks. The measurement data are reconciled by an interface routine which yields boundary conditions obeying the conservation laws of atoms and energy. The simulation model, which provides a picture of the internal conditions of the BF, can be used to evaluate the current state of the process and to predict the effect of operating actions on the performance of the furnace.

  4. Contamination of furnace-drawn silica fibers.

    PubMed

    Kaiser, P

    1977-03-01

    Contamination originating in an electric resistance furnace was found to increase substantially the losses of unclad and plastic-clad silica fibers. In contrast, the losses of doped silica fibers with sufficient cladding thickness were unaffected by impure drawing conditions. Operating the furnace without muffle tube and protecting the preform with a pure, inert gas injected via a counter-flow resulted in practically contamination-free operation and unclad-fiber losses as low as 3 dB/km. The removal of the muffle tube significantly simplified the furnace operation and reduced the cycling time from many hours to a few minutes. PMID:20168565

  5. Local cooling, plasma reheating and thermal pinching induced by single aerosol droplets injected into an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2016-07-01

    The injection of a single micrometer-sized droplet into an analytical inductively coupled plasma (ICP) perturbs the plasma and involves three sequential effects: local cooling, thermal pinching and plasma reheating. Time-resolved two-dimensional monochromatic imaging of the load-coil region of an ICP was used to monitor this sequence of plasma perturbations. When a microdroplet enters the plasma, it acts as a local heat sink and cools the nearby plasma region. The cooling effect is considered local, although the cooling volume can be large and extends 6 mm from the physical location of the vaporizing droplet. The liberated hydrogen, from decomposition of water, causes a thermal pinch effect by increasing the thermal conductivity of the bulk plasma and accelerating heat loss at the plasma periphery. As a response to the heat loss, the plasma shrinks in size, which increases its power density. Plasma shrinkage starts around the same time when the microdroplet enters the plasma and lasts at least 2 ms after the droplet leaves the load-coil region. Once the vaporizing droplet passes through a particular plasma volume, that volume is reheated to an even higher temperature than under steady-state conditions. Because of the opposing effects of plasma cooling and reheating, the plasma conditions are different upstream (downward) and downstream (upward) from a vaporizing droplet - cooling dominates the downstream region whereas reheating controls in the upstream domain. The boundary between the local cooling and reheating zones is sharp and is only ~ 1 mm thick. The reheating effect persists a relatively long time in the plasma, at least up to 4 ms after the droplet moves out of the load-coil region. The restoration of plasma equilibrium after the perturbation induced by microdroplet injection is slow. Microdroplet injection also induces a momentary change in plasma impedance, and the impedance change was found to correlate qualitatively with the different stages of plasma

  6. More on loops in reheating: non-gaussianities and tensor power spectrum

    SciTech Connect

    Katirci, Nihan; Kaya, Ali; Tarman, Merve E-mail: ali.kaya@boun.edu.tr

    2014-06-01

    We consider the single field chaotic m{sup 2}φ{sup 2} inflationary model with a period of preheating, where the inflaton decays to another scalar field χ in the parametric resonance regime. In a recent work, one of us has shown that the χ modes circulating in the loops during preheating notably modify the (ζζ) correlation function. We first rederive this result using a different gauge condition hence reconfirm that superhorizon ζ modes are affected by the loops in preheating. Further, we examine how χ loops give rise to non-gaussianity and affect the tensor perturbations. For that, all cubic and some higher order interactions involving two χ fields are determined and their contribution to the non-gaussianity parameter f{sub NL} and the tensor power spectrum are calculated at one loop. Our estimates for these corrections show that while a large amount of non-gaussianity can be produced during reheating, the tensor power spectrum receive moderate corrections. We observe that the loop quantum effects increase with more χ fields circulating in the loops indicating that the perturbation theory might be broken down. These findings demonstrate that the loop corrections during reheating are significant and they must be taken into account for precision inflationary cosmology.

  7. Multisystem corrosion monitoring in a cyclic reheat test facility: Phase 1

    SciTech Connect

    Farrell, D.M.; Cox, W.M.; Gearey, D.

    1988-04-01

    The work described in this report was the first stage of an EPRI-sponsored corrosion investigation utilizing the CAPCIS electrochemical monitoring system installed in a cyclic reheat test facility on a flue gas slipstream at the Scholz Steam Plant of Gulf Power Company. The primary reasons for incorporating the continuous corrosion monitoring system in the cyclic reheat investigation were that unexpectedly high corrosion rates had been observed in earlier tests at certain locations within the test exchanger and the precise reasons for these high rates of attack were not well understood. The corrosion behavior was not typical of the limited service experience on full scale units and the reasons for this required clarification. Controlled temperature weight loss and electrochemical probes were installed in the unit in place of three of the 1-inch diameter heat exchanger tubes. The corrosion behavior of Inconel Alloy 625 over the temperature range 260/degree/ to 120/degree/F (127/degree/ to 49/degree/C) was evaluated at mid-stream and sidewall locations. The efects on corrosion of operational variables and cleaning procedures were also evaluated. The severe corrosion attack sustained on the Inconel Alloy 625 was proved to result from a combination of effects which included the flue gas flow pattern, local cool-spots within the unit and preferential locations at which ash deposits could accumulate. 5 refs., 50 figs., 17 tabs.

  8. More on loops in reheating: non-gaussianities and tensor power spectrum

    SciTech Connect

    Katırcı, Nihan; Kaya, Ali; Tarman, Merve

    2014-06-11

    We consider the single field chaotic m{sup 2}ϕ{sup 2} inflationary model with a period of preheating, where the inflaton decays to another scalar field χ in the parametric resonance regime. In a recent work, one of us has shown that the χ modes circulating in the loops during preheating notably modify the <ζζ> correlation function. We first rederive this result using a different gauge condition hence reconfirm that superhorizon ζ modes are affected by the loops in preheating. Further, we examine how χ loops give rise to non-gaussianity and affect the tensor perturbations. For that, all cubic and some higher order interactions involving two χ fields are determined and their contribution to the non-gaussianity parameter f{sub NL} and the tensor power spectrum are calculated at one loop. Our estimates for these corrections show that while a large amount of non-gaussianity can be produced during reheating, the tensor power spectrum receive moderate corrections. We observe that the loop quantum effects increase with more χ fields circulating in the loops indicating that the perturbation theory might be broken down. These findings demonstrate that the loop corrections during reheating are significant and they must be taken into account for precision inflationary cosmology.

  9. Calculations of inflaton decays and reheating: with applications to no-scale inflation models

    SciTech Connect

    Ellis, John; Garcia, Marcos A.G.; Nanopoulos, Dimitri V.; Olive, Keith A.

    2015-07-30

    We discuss inflaton decays and reheating in no-scale Starobinsky-like models of inflation, calculating the effective equation-of-state parameter, w, during the epoch of inflaton decay, the reheating temperature, T{sub reh}, and the number of inflationary e-folds, N{sub ∗}, comparing analytical approximations with numerical calculations. We then illustrate these results with applications to models based on no-scale supergravity and motivated by generic string compactifications, including scenarios where the inflaton is identified as an untwisted-sector matter field with direct Yukawa couplings to MSSM fields, and where the inflaton decays via gravitational-strength interactions. Finally, we use our results to discuss the constraints on these models imposed by present measurements of the scalar spectral index n{sub s} and the tensor-to-scalar perturbation ratio r, converting them into constraints on N{sub ∗}, the inflaton decay rate and other parameters of specific no-scale inflationary models.

  10. Pilot plant testing of Illinois coal for blast furnace injection. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect

    Crelling, J.C.

    1995-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1993--94 period. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900{degrees}C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter there were two major accomplishments.

  11. Regularities of heat transfer in the gas layers of a steam boiler furnace flame. Part II. Gas layer radiation laws and the procedure for calculating heat transfer in furnaces, fire boxes, and combustion chambers developed on the basis of these laws

    NASA Astrophysics Data System (ADS)

    Makarov, A. N.

    2014-10-01

    The article presents the results stemming from the scientific discovery of laws relating to radiation from the gas layers generated during flame combustion of fuel and when electric arc burns in electric-arc steel-melting furnaces. The procedure for calculating heat transfer in electric-arc and torch furnaces, fire-boxes, and combustion chambers elaborated on the basis of this discovery is described.

  12. 46 CFR 164.009-13 - Furnace calibration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Furnace calibration. 164.009-13 Section 164.009-13...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-13 Furnace calibration. A calibration is performed on each new furnace and on each existing furnace as often as...

  13. 46 CFR 164.009-13 - Furnace calibration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Furnace calibration. 164.009-13 Section 164.009-13...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-13 Furnace calibration. A calibration is performed on each new furnace and on each existing furnace as often as...

  14. 46 CFR 164.009-13 - Furnace calibration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Furnace calibration. 164.009-13 Section 164.009-13...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-13 Furnace calibration. A calibration is performed on each new furnace and on each existing furnace as often as...

  15. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-11 Furnace apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield,...

  16. 46 CFR 164.009-13 - Furnace calibration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Furnace calibration. 164.009-13 Section 164.009-13...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-13 Furnace calibration. A calibration is performed on each new furnace and on each existing furnace as often as...

  17. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-11 Furnace apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield,...

  18. 20. Detail, Furnace A, shows the drill used to tap ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail, Furnace A, shows the drill used to tap the furnace (at center left) and the 'mud gun' used to close it up with a clay plug (at lower right). Metal chute at center (next to drill) was used to clean out furnace prior to its abandonment. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  19. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 6 2013-10-01 2013-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-11 Furnace apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield,...

  20. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 6 2012-10-01 2012-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-11 Furnace apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield,...

  1. 46 CFR 164.009-11 - Furnace apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Furnace apparatus. 164.009-11 Section 164.009-11...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-11 Furnace apparatus. (a) The test furnace apparatus consists of a furnace tube, stabilizer, draft shield,...

  2. 46 CFR 164.009-13 - Furnace calibration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 6 2014-10-01 2014-10-01 false Furnace calibration. 164.009-13 Section 164.009-13...: SPECIFICATIONS AND APPROVAL MATERIALS Noncombustible Materials for Merchant Vessels § 164.009-13 Furnace calibration. A calibration is performed on each new furnace and on each existing furnace as often as...

  3. Toxic-Waste Disposal by Drain-in-Furnace Technique

    NASA Technical Reports Server (NTRS)

    Compton, L. E.; Stephens, J. B.; Moynihan, P. I.; Houseman, J.; Kalvinskas, J. J.

    1986-01-01

    Compact furnace moved from site to site. Toxic industrial waste destroyed using furnace concept developed for disposal of toxic munitions. Toxic waste drained into furnace where incinerated immediately. In furnace toxic agent rapidly drained and destroyed in small combustion chamber between upper and lower layers of hot ceramic balls

  4. Blast furnace granular coal injection project. Annual report, January--December 1994

    SciTech Connect

    1995-07-01

    This annual report describes the Blast Furnace Granular Coal Injection project being implemented at Bethlehem Steel Corporation`s (BSC) Burns Harbor Plant. The project is receiving cost-sharing from the US Department of Energy (DOE), and is being administrated by the Morgantown Energy Technology Center in accordance with the DOE Cooperative Agreement No. DE-FC21-91MC27362. This installation is the first in the United States to employ British Steel technology that uses granular coal to provide part of the fuel requirement of blast furnaces. The project will demonstrate/assess a broad range of technical/economic issues associated with the use of coal for this purpose. These include: coal grind size, coal injection rate, coal source (type) and blast furnace conversion method. To achieve the program objectives, the demonstration project is divided into the following three Phases: Phase I -- design; Phase II -- construction; and Phase III -- operation. Preliminary design (Phase I) began in 1991 with detailed design commencing in 1993. Construction at Burns Harbor (Phase II) began in August 1993 and was completed at the end of 1994. A 100% construction review meeting was held in December and attended by representatives of DOE, Fluor Daniel and Bethlehem Steel. The coal preparation mills were started up in December, 1994, and the first coal was injected into ``D`` blast furnace on December 19, 1994. Near the end of the year, the grinding mills and injection facility were being prepared for performance testing during the first quarter of 1995. The demonstration test program (phase III) will start in the fourth quarter of 1995.

  5. Coal combustion under conditions of blast furnace injection. Technical report, 1 December 1992--28 February 1993

    SciTech Connect

    Crelling, J.C.; Case, E.R.

    1993-05-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposed study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. The Amanda furnace of Armco is the only one in North America currently using coal injection and is, therefore, the only full scale testing facility available. During this quarter complete petrographic analyses of all of the samples so far collected were completed.

  6. New Gas Carburizing Method for Minimizing CO2 Emission by Saving Resources and Selective Removal of H2 in Furnace

    NASA Astrophysics Data System (ADS)

    Mizukoshi, Tomoyuki; Yokoyama, Yujiro; Hoshino, Hideaki; Ishigami, Itsuo; Usui, Tateo

    An attempt has been made to develop a new gas carburizing furnace with the system that discharges H2 gas selectively from the atmosphere in the furnace. Polyimide hollow-fiber membrane filter on the market was selected as a filter that was expected to have good H2 gas permeability and selectivity. The results of the various gas permeability measurements of this filter showed that it had superior H2 gas permeability and selectivity. Using this gas filter module, a new industrial gas carburizing furnace that had ‘H2 gas selective discharging system’ was produced as a trial. Use of this furnace made possible to stabilize the gas carburizing atmosphere in the furnace under the lower carrier gas flow rate condition (below 25% of standard condition). It was confirmed that the carbon concentration profile of the steel carburized with the new carburizing furnace under lower carrier gas flow rate condition was comparable to that of the specimen carburized under standard carrier gas flow rate condition.

  7. Multiple hearth furnace for reducing iron oxide

    DOEpatents

    Brandon, Mark M.; True, Bradford G.

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  8. Laboratory arc furnace features interchangeable hearths

    NASA Technical Reports Server (NTRS)

    Armstrong, J. L.; Kruger, O. L.

    1967-01-01

    Laboratory arc furnace using rapidly interchangeable hearths gains considerable versatility in casting so that buttons or special shaped castings can be produced. It features a sight glass for observation.

  9. Onboard photo: Crystal Growth Furnace experiment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Space Shuttle Columbia (STS-50) astronaut Bornie Dunbar wears protective goggles to assemble a zeolite sample cartridge for the Crystal Growth Furnace (CGF) in the United States Microgravity Laboratory-1 (USML-1) science module.

  10. Chamberless residential warm air furnace design

    SciTech Connect

    Godfree, J.

    1996-07-01

    This brief paper is an introduction to the concept of designing residential warm air furnaces without combustion chambers. This is possible since some small burners do not require the thermal support of a combustion chamber to complete the combustion process.

  11. Advanced Automated Directional Solidification Furnace (AADSF)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Advanced Automated Directional Solidification Furnace (AADSF) with the Experimental Apparatus Container (EAC) attached flew during the USMP-2 mission. This assembly consists of a furnace module, a muffle tube assembly and a translation mechanism which are enclosed in the EAC. During USMP-2, the AADSF was used to study the growth of mercury cadmium telluride crystals in microgravity by directional solidification, a process commonly used on earth to process metals and grow crystals. The furnace is tubular and has three independently controlled temperature zone . The sample travels from the hot zone of the furnace (1600 degrees F) where the material solidifies as it cools. The solidification region, known as the solid/liquid interface, moves from one end of the sample to the other at a controlled rate, thus the term directional solidification.

  12. Redesigned Electron-Beam Furnace Boosts Productivity

    NASA Technical Reports Server (NTRS)

    Williams, Gary A.

    1995-01-01

    Redesigned electron-beam furnace features carousel of greater capacity so more experiments conducted per loading, and time spent on reloading and vacuum pump-down reduced. Common mounting plate for electron source and carousel simplifies installation and reduces vibration.

  13. Multipurpose furnace for in situ studies of polycrystalline materials using synchrotron radiation

    SciTech Connect

    Sharma, Hemant; Zuidwijk, Thim; Geerlofs, Nico; Offerman, S. Erik; Wattjes, Alix C.; Amirthalingam, Murugaiyan

    2009-12-15

    We report a multipurpose furnace designed for studies using synchrotron radiation on polycrystalline materials, namely, metals, ceramics, and (semi)crystalline polymers. The furnace has been designed to carry out three-dimensional (3D) x-ray diffraction measurements but can also be used for other types of synchrotron radiation research. The furnace has a very low thermal gradient across the specimen (<0.2 degree sign C/mm). Accurate determination of the temperature can be carried out by welding a thermocouple to the specimen. The furnace can be rotated over an angle of 90 degree sign in order to determine the crystallographic orientation of each individual grain. It is possible to follow growth kinetics of all grains in the illuminated volume of the specimen. The specimen environment can be controlled varying from vacuum (up to 10{sup -5} mbar) to gas or air filled. The maximum temperature of operation is 1500 degree sign C, with the possibility of achieving high heating (up to 20 deg. C/s) and cooling rates (up to 30 deg. C/s without quenching gas). 3D maps of the microstructure of the specimen can be generated at elevated temperatures by bringing the high-resolution detector close to the specimen. We show an example of a simulation of the heat affected zone during the thermal cycle of a weld in a transformation-induced plasticity steel carried out using the furnace. The unique characteristics of the furnace open possibility of new fields in materials research using synchrotron radiation.

  14. Multipurpose furnace for in situ studies of polycrystalline materials using synchrotron radiation.

    PubMed

    Sharma, Hemant; Wattjes, Alix C; Amirthalingam, Murugaiyan; Zuidwijk, Thim; Geerlofs, Nico; Offerman, S Erik

    2009-12-01

    We report a multipurpose furnace designed for studies using synchrotron radiation on polycrystalline materials, namely, metals, ceramics, and (semi)crystalline polymers. The furnace has been designed to carry out three-dimensional (3D) x-ray diffraction measurements but can also be used for other types of synchrotron radiation research. The furnace has a very low thermal gradient across the specimen (<0.2 degrees C/mm). Accurate determination of the temperature can be carried out by welding a thermocouple to the specimen. The furnace can be rotated over an angle of 90 degrees in order to determine the crystallographic orientation of each individual grain. It is possible to follow growth kinetics of all grains in the illuminated volume of the specimen. The specimen environment can be controlled varying from vacuum (up to 10(-5) mbar) to gas or air filled. The maximum temperature of operation is 1500 degrees C, with the possibility of achieving high heating (up to 20 degrees C/s) and cooling rates (up to 30 degrees C/s without quenching gas). 3D maps of the microstructure of the specimen can be generated at elevated temperatures by bringing the high-resolution detector close to the specimen. We show an example of a simulation of the heat affected zone during the thermal cycle of a weld in a transformation-induced plasticity steel carried out using the furnace. The unique characteristics of the furnace open possibility of new fields in materials research using synchrotron radiation. PMID:20059134

  15. POLLUTION EFFECTS OF ABNORMAL OPERATIONS IN IRON AND STEEL MAKING. VOLUME VI. BASIC OXYGEN PROCESS, MANUAL OF PRACTICE

    EPA Science Inventory

    The report is one in a six-volume series considering abnormal operating conditions (AOCs) in the primary section (sintering, blast furnace ironmaking, open hearth, electric furnace, and basic oxygen steelmaking) of an integrated iron and steel plant. Pollution standards, generall...

  16. Solar Convective Furnace for Metals Processing

    NASA Astrophysics Data System (ADS)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  17. Chandra Observations of the Galaxy Group AWM 5: Cool Core Reheating and Thermal Conduction Suppression

    NASA Astrophysics Data System (ADS)

    Baldi, A.; Forman, W.; Jones, C.; Nulsen, P.; David, L.; Kraft, R.; Simionescu, A.

    2009-03-01

    We present an analysis of a 40 ks Chandra observation of the galaxy group AWM 5. It has a small (~8 kpc) dense cool core with a temperature of ~1.2 keV and the temperature profile decreases at larger radii, from ~3.5 keV just outside the core to ~2 keV at ~300 kpc from the center. The abundance distribution shows a "hole" in the central ~10 kpc, where the temperature declines sharply. An abundance of at least a few times solar is observed ~15-20 kpc from the center. The deprojected electron density profile shows a break in slope at ~13 kpc and can be fit by two β models, with β = 0.72+0.16 -0.11 and rc = 5.7+1.8 -1.5 kpc, for the inner part, and β = 0.34 ± 0.01 and rc = 31.3+5.8 -5.5 kpc, for the outer part. The mass fraction of hot gas is fairly flat in the center and increases for r > 30 kpc up to a maximum of ~6.5% at r ~ 380 kpc. The gas cooling time within the central 30 kpc is smaller than a Hubble time, although the temperature only declines in the central ~8 kpc region. This discrepancy suggests that an existing cooling core has been partially reheated. In particular, thermal conduction could have been a significant source of reheating. In order for heating due to conduction to balance cooling due to emission of X-rays, conductivity must be suppressed by a large factor (at least ~100). Past active galactic nuclei activity (still visible as a radio source in the center of the group) is, however, the most likely source that reheated the central regions of AWM 5. We also studied the properties of the ram pressure stripped tail in the group member NGC 6265. This galaxy is moving at M ≈ 3.4+0.5 -0.6 (v ~ 2300 km s-1) through the hot group gas. The physical length of the tail is ~42 kpc and its mass is 2.1 ± 0.2 × 109 M sun.

  18. Production increase with high rates of natural gas injection at Acme Steel and National Steel`s Granite City Division

    SciTech Connect

    Agarwal, J.C.; Brown, F.C.; Chin, D.L.

    1996-12-31

    Supplemental fuels are injected at the tuyere level of blast furnaces to reduce coke consumption and increase productivity. These fuels include natural gas, coke oven gas, oil, tar, and coal. The economic benefits derived from supplemental fuel are of two types: (1) the reduction in costs of hot metal production arising primarily from decreased coke consumption, and (2) the value of the increased production of hot metal- and steel - that can be sold. Essentially all blast furnaces in North America inject supplemental fuel. Approximately 70 percent inject natural gas in the range from 80-210 pounds per ton of hot metal (lb/THM) or from 1,800 to 4,700 standard cubic feet per ton of hot metal (scf/THM). Currently, natural gas injection rates average 110 lb/THM or 2,500 scf/THM. The total amount of gas consumed in North American blast furnaces now exceeds 101 billion cubic feet per year (bcfy).

  19. Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture.

    PubMed

    Xue, Yongjie; Wu, Shaopeng; Hou, Haobo; Zha, Jin

    2006-11-16

    Chinese researchers have commenced a great deal of researches on the development of application fields of basic oxygen steel making furnace slag (BOF slag) for many years. Lots of new applications and properties have been found, but few of them in asphalt mixture of road construction engineering. This paper discussed the feasibility of BOF steel slag used as aggregate in asphalt pavement by two points of view including BOF steel slag's physical and micro-properties as well as steel slag asphalt materials and pavement performances. For the former part, this paper mainly concerned the mechanochemistry and physical changes of the steel slag and studied it by performing XRD, SEM, TG and mercury porosimeter analysis and testing method. In the second part, this paper intended to use BOF steel slag as raw material, and design steel slag SMA mixture. By using traditional rutting test, soak wheel track and modified Lottman test, the high temperature stability and water resistance ability were tested. Single axes compression test and indirect tensile test were performed to evaluate the low temperature crack resistance performance and fatigue characteristic. Simultaneously, by observing steel slag SMA pavement which was paved successfully. A follow-up study to evaluate the performance of the experimental pavement confirmed that the experimental pavement was comparable with conventional asphalt pavement, even superior to the later in some aspects. All of above test results and analysis had only one main purpose that this paper validated the opinion that using BOF slag in asphalt concrete is feasible. So this paper suggested that treated and tested steel slag should be used in a more extensive range, especially in asphalt mixture paving projects in such an abundant steel slag resource region. PMID:16982138

  20. Hydrometallurgically recovering zinc from electric arc furnace dusts

    NASA Astrophysics Data System (ADS)

    Antrekowitsch, J.; Antrekowitsch, H.

    2001-12-01

    The increasing use of zinc-containing scrap for steel production has lead to a high zinc content in the electric arc furnace and converter flue dusts. The cost of disposing of this residue is high due to environmental restrictions. Various recycling processes have been developed for these dusts, but most never reached the pilot plant stage and many investigations were stopped because of metallurgical and economical inefficiencies. While pyrometallurgical methods have to deal with high energy consumption, low zinc yield, and valueless residues, hydrometallurgical processes could offer an economical recycling alternative. This paper describes hydrometallurgical methods for recovering zinc from steel industry dust. These methods can be integrated in the primary zinc-winning process or in galvanization. Investigations of sulfuric-acid leaching show high zinc solubility but also a high iron content in the final liquor. As a result, steps for purification are required that cannot be conducted economically. Alternatively, a NaOH leaching gives a satisfying zinc yield and a very low solubility for the iron that remains in the residue.

  1. Study of materials to resist corrosion in condensing gas fired furnaces

    NASA Astrophysics Data System (ADS)

    Lahtvee, T.; Khoo, S. W.; Schaus, O. O.

    1981-02-01

    Based on a thorough review of background information on the performance of materials in condensing gas fired furnace heat exchangers and in similar corrosive environments candidate materials were selected and tested on one of two identical test rigs built to provide the varying corrosive conditions encountered in an actual gas fired condensing system heat exchanger. The 32 different materials tested in a one month screening test included: mild, low alloy, galvanized, solder coated and CaCO3 dipped galvanized steel, porcelain, epoxy, teflon and nylon coated and alonized mild steel; austenitic, ferritic, low interstitial Ti stabilized ferritic, and high alloy stainless steels; aluminum alloy anodized and porcelain coated aluminum; copper and cupronickel alloys, solder coated copper; and titanium.

  2. Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust.

    PubMed

    Pickles, C A

    2010-07-15

    Electric arc furnace dust is generated when automobile scrap, containing galvanized steel, is remelted in an electric arc furnace. This dust is considered as a hazardous waste in most countries. Zinc is a major component of the dust and can be of significant commercial value. Typically, the majority of the zinc exists as zinc oxide (ZnO) and as a zinc-manganese ferrite spinel ((Zn(x)Mn(y)Fe(1-x-y))Fe(2)O(4)). The recovery of the zinc from the dust in metal recycling and recovery processes, particularly in the hydrometallurgical extraction processes, is often hindered by the presence of the mixed ferrite spinel. However, there is a paucity of information available in the literature on the formation of this spinel. Therefore, in the present research, the equilibrium module of HSC Chemistry 6.1 was utilized to investigate the thermodynamics of the formation of the spinel and the effect of variables on the amount and the composition of the mixed ferrite spinel. It is proposed that the mixed ferrite spinel forms due to the reaction of iron-manganese particulates with both gaseous oxygen and zinc, at the high temperatures in the freeboard of the furnace above the steel melt. Based on the thermodynamic predictions, methods are proposed for minimizing the formation of the mixed ferrite spinel. PMID:20356673

  3. Steamside Oxidation Behavior of Experimental 9%Cr Steels

    SciTech Connect

    Dogan, O.N.; Holcomb, G.R.; Alman, D.E.; Jablonski, P.D.

    2007-10-01

    Reducing emissions and increasing economic competitiveness require more efficient steam power plants that utilize fossil fuels. One of the major challenges in designing these plants is the availability of materials that can stand the supercritical and ultra-supercritical steam conditions at a competitive cost. There are several programs around the world developing new ferritic and austenitic steels for superheater and reheater tubes exposed to the advanced steam conditions. The new steels must possess properties better than current steels in terms of creep strength, steamside oxidation resistance, fireside corrosion resistance, and thermal fatigue resistance. This paper introduces a series of experimental 9%Cr steels containing Cu, Co, and Ti. Stability of the phases in the new steels is discussed and compared to the phases in the commercially available materials. The steels were tested under both the dry and moist conditions at 650ºC for their cyclical oxidation resistance. Results of oxidation tests are presented. Under the moist conditions, the experimental steels exhibited significantly less mass gain compared to the commercial P91 steel. Microstructural characterization of the scale revealed different oxide compositions.

  4. Generation of gravitational waves during early structure formation between cosmic inflation and reheating

    SciTech Connect

    Jedamzik, Karsten; Lemoine, Martin; Martin, Jérôme E-mail: lemoine@iap.fr

    2010-04-01

    In the pre-reheating era, following cosmic inflation and preceding radiation domination, the energy density may be dominated by an oscillating massive scalar condensate, such as is the case for V = m{sup 2}φ{sup 2}/2 chaotic inflation. We have found in a previous paper that during this period, a wide range of sub-Hubble scale perturbations are subject to a preheating instability, leading to the growth of density perturbations ultimately collapsing to form non-linear structures. We compute here the gravitational wave signal due to these structures in the linear limit and present estimates for emission in the non-linear limit due to various effects: the collapse of halos, the tidal interactions, the evaporation during the conversion of the inflaton condensate into radiation and finally the ensuing turbulent cascades. The gravitational wave signal could be rather large and potentially testable by future detectors.

  5. Sneutrino condensate source for density perturbations, leptogenesis, and low reheat temperature.

    PubMed

    Mazumdar, Anupam; Pérez-Lorenzana, Abdel

    2004-06-25

    We bring together some known ingredients beyond the standard model physics that can explain the hot big bang model with the observed baryon asymmetry and also the fluctuations in the cosmic microwave background radiation with a minimal set of assumptions. We propose an interesting scenario where the inflaton energy density is dumped into an infinitely large extra dimension. Instead of the inflaton it is the right handed sneutrino condensate, which is acquiring a nonzero vacuum expectation value during inflation, whose fluctuations are responsible for the density perturbations seen in the cosmic microwave background radiation with a spectral index n(s) approximately 1. The decay of the condensate is explaining the reheating of the Universe with a temperature, T(rh)< or =10(9) GeV, and the baryon asymmetry of order one part in 10(10) with no baryon-isocurvature fluctuations. PMID:15244992

  6. Furan formation during storage and reheating of sterilised vegetable purées.

    PubMed

    Palmers, Stijn; Grauwet, Tara; Buvé, Carolien; Van de Vondel, Lore; Kebede, Biniam T; Hendrickx, Marc E; Van Loey, Ann

    2015-01-01

    To this day, research for furan mitigation has mostly targeted the levels of food production and handling of prepared foods by the consumer. However, part of the furan concentrations found in commercially available food products might originate from chemical deterioration reactions during storage. A range of individual vegetable purées was stored at two different temperatures to investigate the effects of storage on the furan concentrations of shelf-stable, vegetable-based foods. After 5 months of storage at 35°C (temperature-abuse conditions), a general increase in furan concentrations was observed. The furan formation during storage could be reduced by storing the vegetable purées at a refrigerated temperature of 4°C, at which the furan concentrations remained approximately constant for at least 5 months. Following storage, the vegetable purées were briefly reheated to 90°C to simulate the effect of the final preparation step before consumption. Contrary to storage, furan concentrations decreased as a result of evaporative losses. Both refrigerated storage and the reheating step prior to consumption showed the potential of mitigation measures for furan formation in vegetable-based foods (e.g. canned vegetables, ready-to-eat soups, sauces or baby foods). Next to furan, the vegetable purées were analysed for 2- and 3-methylfuran. Tomato was very susceptible to the formation of both alkylated derivatives of furan, as opposed to the other vegetables in this study. Methylfuran concentrations rapidly decreased during storage, which was contrary to the results observed for furan. PMID:25522980

  7. Primordial curvature fluctuation and its non-Gaussianity in models with modulated reheating

    SciTech Connect

    Ichikawa, Kazuhide; Suyama, Teruaki; Takahashi, Tomo; Yamaguchi, Masahide

    2008-09-15

    We investigate non-Gaussianity in the modulated reheating scenario where fluctuations of the decay rate of the inflaton generate adiabatic perturbations, paying particular attention to the nonlinearity (NL) parameters f{sub NL}, {tau}{sub NL}, and g{sub NL} as well as the scalar spectral index and tensor-to-scalar ratio which characterize the nature of the primordial power spectrum. We also take into account the preexisting adiabatic perturbations produced from the inflaton fluctuations. It has been known that the nonlinearity between the curvature perturbations and the fluctuations of the decay rate can yield non-Gaussianity at the level of f{sub NL}{approx}O(1), but we find that the nonlinearity between the decay rate and the modulus field which determines the decay rate can generate much greater non-Gaussianity. We also discuss a consistency relation among nonlinearity parameters which holds in the scenario and find that the modulated reheating yields a different one from that of the curvaton model. In particular, they both can yield a large positive f{sub NL} but with a different sign of g{sub NL}. This provides a possibility to discriminate these two competitive models by looking at the sign of g{sub NL}. Furthermore, we work on some concrete inflation models and investigate in what cases models predict the spectral index and the tensor-to-scalar ratio allowed by the current data while generating large non-Gaussianity, which may have many implications for model buildings of the inflationary universe.

  8. Antilisterial properties of marinades during refrigerated storage and microwave oven reheating against post-cooking inoculated chicken breast meat.

    PubMed

    Fouladkhah, Aliyar; Geornaras, Ifigenia; Nychas, George-John; Sofos, John N

    2013-02-01

    This study evaluated growth of Listeria monocytogenes inoculated on cooked chicken meat with different marinades and survival of the pathogen as affected by microwave oven reheating. During aerobic storage at 7 °C, on days 0, 1, 2, 4, and 7, samples were reheated by microwave oven (1100 W) for 45 or 90 s and analyzed microbiologically. L. monocytogenes counts on nonmarinated (control) samples increased (P < 0.05) from 2.7 ± 0.1 (day-0) to 6.9 ± 0.1 (day-7) log CFU/g during storage. Initial (day-0) pathogen counts of marinated samples were <0.5 log CFU/g lower than those of the control, irrespective of marinating treatment. At 7 d of storage, pathogen levels on samples marinated with tomato juice were not different (P ≥ 0.05; 6.9 ± 0.1 log CFU/g) from those of the control, whereas for samples treated with the remaining marinades, pathogen counts were 0.7 (soy sauce) to 2.0 (lemon juice) log CFU/g lower (P < 0.05) than those of the control. Microwave oven reheating reduced L. monocytogenes counts by 1.9 to 4.1 (45 s) and >2.4 to 5.0 (90 s) log CFU/g. With similar trends across different marinates, the high levels of L. monocytogenes survivors found after microwave reheating, especially after storage for more than 2 d, indicate that length of storage and reheating time need to be considered for safe consumption of leftover cooked chicken. PMID:23311403

  9. Mercury mass flow in iron and steel production process and its implications for mercury emission control.

    PubMed

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Gao, Wei; Wu, Qingru; Hao, Jiming

    2016-05-01

    The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to 41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%-49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute 29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%-36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven, sintering machine and blast furnace were 0.039-0.047gHg/ton steel, and for the electric furnace it was 0.021gHg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%-73% of total mercury emissions to air. PMID:27155436

  10. Energy efficient operation of aluminum furnaces

    SciTech Connect

    King, Paul E.; Golchert, B.M.; Li, T.; Hassan, M.; Han, Q.

    2005-01-01

    Secondary Aluminium melting offers significant energy savings over the production of Aluminium from raw resources since it takes approximately 5% of the energy to re-melt the Aluminium for product than it does to generate the same amount of Aluminium from raw material. However, the industry faces technical challenges for further improving the efficiency of the secondary Aluminium melting furnaces and lacks tools that can aid in helping to understand the intricate interactions of combustion and heat transfer. The U. S. Dept. of Energy, Albany Research Center (ARC), in cooperation with the Argonne and Oak Ridge National Labs, the University of Kentucky, and with industrial support through Secat, Inc. of Lexington, KY (representing 8 Aluminium re-melt companies) built and operates a test-bed reverberatory furnace to study efficiency issues in Aluminium melting. The experimental reverberatory furnace (ERF) is a one ton nominal capacity research furnace capable of melting 1000 lbs per hour with its twin 0.8 MMBtu/hr burners. Studies in the ERF include melt efficiency as a function of combustion space volume, power input and charge alloy. This paper details the experimental equipment, conditions, procedures, and measurements and includes results and discussions of melt efficiency studies. Specific results reported include an analysis of the efficiency of the furnace as a function of power input and the effect that changing combustion space volume has on melting efficiency. In conjunction with this, a computational fluid dynamics (CFD) model has been developed to simulate fuel combustion, heat transfer, gaseous product flow and the production/transport of pollutants and greenhouse gases in an Aluminium furnace. Data from the ERF is utilized for computational model validation in order to have a high degree of confidence in the model results. Once validated, the CFD code can then be used to perform parametric studies and to investigate methods to optimize operation in

  11. Effect of electric arc furnace slag on growth and physiology of maize (Zea mays L.).

    PubMed

    Radić, Sandra; Crnojević, Helena; Sandev, Dubravka; Jelić, Sonja; Sedlar, Zorana; Glavaš, Katarina; Pevalek-Kozlina, Branka

    2013-12-01

    Basic slag, used in this study as a potential source of certain nutrients, is a byproduct of the production of steel in electric arc furnace (EAF). A pot experiment with two nutrient-poor substrates was conducted to investigate to compare the effect of EAF steel slag and fertilizers NPK + F e on growth and availability of specific nutrients to maize. Mineral content of both substrate and plant leaves, growth, chlorophyll fluorescence and photosynthetic pigments were measured following six weeks of cultivation. As steel slag also contains trace amounts of heavy metals, certain oxidative parameters (antioxidative enzyme activities and lipid peroxidation) were evaluated as well. The steel slag improved soil mineral composition, increased above ground maize biomass by providing Fe, Mn, Mg, K and partly P and improved photosynthetic parameters. The potential phytotoxicity of EAF slag containing substrates was not determined as evaluated by MDA (malondialdehyde), GR (glutathione reductase) and APX (ascorbate peroxidase) levels. The obtained results show that EAF steel slag is comparable to NPK + F e in supplying nutrients for maize growth, indicating the potential of EAF steel slag as an inexpensive and non-phytotoxic nutrient supplier especially in poor soils. PMID:24275594

  12. Induction furnace testing of the durability of prototype crucibles in a molten metal environment

    SciTech Connect

    Jablonski, Paul D.

    2005-09-01

    Engineered ceramic crucibles are commonly used to contain molten metal. Besides high temperature stability, other desired crucible characteristics include thermal shock resistance, minimal reaction with the molten metal and resistance to attack from the base metal oxide formed during melting. When used in an induction furnace, they can be employed as a “semi-permanent” crucible incorporating a dry ram backup and a ceramic cap. This report covers several 250-lb single melt crucible tests in an air melt induction furnace. These tests consisted of melting a charge of 17-4PH stainless steel, holding the charge molten for two hours before pouring off the heat and then subsequently sectioning the crucible to review the extent of erosion, penetration and other physical characteristics. Selected temperature readings were made throughout each melt. Chemistry samples were also taken from each heat periodically throughout the hold. The manganese level was observed to affect the rate of chromium loss in a non-linear fashion.

  13. Design of drying chamber and biomass furnace for sun-biomass hybrid rice-drying machine

    NASA Astrophysics Data System (ADS)

    Satria, Dhimas; Haryadi, Austin, Ruben; Kurniawan, Bobby

    2016-03-01

    In most Asian countries, rice drying is carried out manually by exposing rice to sunlight. However, problem occurs when rain season comes. Lack of sunlight deters the drying process. This paper proposes a design of mechanical rice drying machine with hybrid sun-biomass energy source. Pahl & Beitz method, which consists of four steps process: function planning and clarification, design concept, design prototype, and design details; are used as design methodology. Based on design result and calculation, in this paper propose specifications for drying machine and biomass furnace. Drying chamber is a continuous flow system with pneumatic-conveyor as blower. This hybrid utilizes two types of energy sources, sun and biomass. The proposed machine has capacity of 500 kilograms per cycle using 455 Watt of energy, which is more efficient than ordinary heater. Biomass furnace utilizes heat transfer by means of arranging 64 pieces of stainless steel pipes of 0.65 diameters in parallel.

  14. Standard operating procedure: Gas atmosphere MELCO brazing furnace

    SciTech Connect

    Waller, C.R.

    1988-08-01

    A hydrogen and argon gas atmosphere furnace facility using electric furnaces is located at the Clinton P. Anderson Meson Physics Facility (LAMPF). This furnace system was acquired to handle smaller jobs with a more rapid response time than was possible with the larger furnaces. Accelerator- and experimental-related components best assembled by atmosphere brazing techniques are routinely processed by this facility in addition to special heat treatment and bakeout heats. The detailed operation sequence and description of the MELCO furnace system are covered by this report. This document is to augment LA-10231-SOP, which describes the operation of the large furnace systems. 6 figs.

  15. 94. Photocopied August 1978. THE FURNACE ROOM ON THE SECOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    94. Photocopied August 1978. THE FURNACE ROOM ON THE SECOND FLOOR OF THE POWER HOUSE AT SAULT STE. MARIE. THE ROWS OF ROTARY FURNACES SHOWN HERE WERE REPLACED C. 1915-1920 BY 10,000 TO 20,000 H.P. TAPPING FURNACES. ONE TAPPING FURNACE WAS LOCATED TO THE WEST OF THE ROW OF HORRY FURNACES, THE OTHER WAS LOCATED IN A SEPARATE FURNACE HOUSE BUILT ON THE EAST OF THE POWER HOUSE. (E) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  16. Computational simulations and experimental validation of a furnace brazing process

    SciTech Connect

    Hosking, F.M.; Gianoulakis, S.E.; Malizia, L.A.

    1998-12-31

    Modeling of a furnace brazing process is described. The computational tools predict the thermal response of loaded hardware in a hydrogen brazing furnace to programmed furnace profiles. Experiments were conducted to validate the model and resolve computational uncertainties. Critical boundary conditions that affect materials and processing response to the furnace environment were determined. {open_quotes}Global{close_quotes} and local issues (i.e., at the furnace/hardware and joint levels, respectively) are discussed. The ability to accurately simulate and control furnace conditions is examined.

  17. Determination of trace and minor elements in alloys by atomic-absorption spectroscopy using an induction-heated graphite-well furnace as atom source-II.

    PubMed

    Ashy, M A; Headridge, J B; Sowerbutts, A

    1974-06-01

    Results are presented for the atomic-absorption spectrophotometric determination of zinc in aluminium and aluminium-silicon alloys, and aluminium, antimony and tin in steels, by means of solid samples dropped into an induction-heated graphite-well furnace to produce the atomic vapour. PMID:18961510

  18. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  19. Cogeneration from glass furnace waste heat recovery

    SciTech Connect

    Hnat, J.G.; Cutting, J.C.; Patten, J.S.

    1982-06-01

    In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

  20. Softened-Stainless-Steel O-Rings

    NASA Technical Reports Server (NTRS)

    Marquis, G. A.; Waters, William I.

    1993-01-01

    In fabrication of O-ring of new type, tube of 304 stainless steel bent around mandril into circle and welded closed into ring. Ring annealed in furnace to make it soft and highly ductile. In this condition, used as crushable, deformable O-ring seal. O-ring replacements used in variety of atmospheres and temperatures, relatively inexpensive, fabricated with minimum amount of work, amenable to one-of-a-kind production, reusable, and environmentally benign.

  1. Strain oxidation cracking of austenitic stainless steels at 610 C

    SciTech Connect

    Calvar, M. Le; Scott, P.M.; Magnin, T.; Rieux, P.

    1998-02-01

    Strain oxidation cracking of both forged and welded austenitic stainless steels (SS) was studied. Creep and slow strain rate tests (SSRT) were performed in vacuum, air, and a gas furnace environment (air + carbon dioxide [CO{sub 2}] + water [H{sub 2}O]). Results showed cracking was environmentally dependent. Almost no cracking was observed in vacuum, whereas intergranular cracking was observed with increasing severity in passing from an air to a gas furnace environment. The most severe cracking was associated with formation of a less protective film formed in the gas furnace environment (air: haematite-like M{sub 2}O{sub 3} oxide; gas furnace environment: spinel M{sub 3}O{sub 4} oxide). Cracking depended strongly on the carbon content and the sensitization susceptibility of the material: the higher the carbon content, the more susceptible the alloy. This cracking was believed to be similar to other oxidation-induced cracking phenomena.

  2. Improved Heat Treatment Of Steel Alloy 4340

    NASA Technical Reports Server (NTRS)

    Cooper, Lawrence B.

    1993-01-01

    New process takes significantly less time than prior heat-treatment processes. Involves placing steel plate directly in furnace and heat-treating. Plate then quenched in slowly moving oil to reduce stresses. Any deflection then pressed out. Possible uses of 4340 steel include new and improved bulletproof vests for military and police personnel and armor for bulletproof automobiles for military, police, diplomatic, and private users. Also used in other military land vehicles as tanks and in both military and civilian aircraft. Lighter armorplate enables land vehicles and aircraft to attain greater speed and maneuverability, consume less fuel, and afford better protection from snipers or terrorists.

  3. Measure Guideline. High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  4. Measure Guideline: High Efficiency Natural Gas Furnaces

    SciTech Connect

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  5. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, A.H.; Holcombe, C.E.

    1994-07-26

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

  6. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, Andrew H.; Holcombe, Cressie E.

    1994-01-01

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.

  7. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1991-01-01

    A two dimensional conduction/radiation problem for an alumina crucible in a zirconia heater/muffle tube enclosing a liquid iron sample was solved numerically. Variations in the crucible wall thickness were numerically examined. The results showed that the temperature profiles within the liquid iron sample were significantly affected by the crucible wall thicknesses. New zirconia heating elements are under development that will permit continued experimental investigations of the zirconia furnace. These elements have been designed to work with the existing furnace and have been shown to have longer lifetimes than commercially available zirconia heating elements. The first element has been constructed and tested successfully.

  8. Corrosion behavior of sensitized duplex stainless steel.

    PubMed

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures. PMID:9713683

  9. TiC reinforced cast Cr steels

    SciTech Connect

    Dogan, O.N.; Hawk, J.A.; Schrems, K.K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5–4.5Ti, and 1–1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  10. Thermal and impact histories of reheated group IVA, IVB, and ungrouped iron meteorites and their parent asteroids

    NASA Astrophysics Data System (ADS)

    Yang, J.; Goldstein, J. I.; Scott, E. R. D.; Michael, J. R.; Kotula, P. G.; Pham, T.; McCoy, T. J.

    2011-09-01

    Abstract- The microstructures of six reheated iron meteorites—two IVA irons, Maria Elena (1935), Fuzzy Creek; one IVB iron, Ternera; and three ungrouped irons, Hammond, Babb’s Mill (Blake’s Iron), and Babb’s Mill (Troost’s Iron)—were characterized using scanning and transmission electron microscopy, electron-probe microanalysis, and electron backscatter diffraction techniques to determine their thermal and shock history and that of their parent asteroids. Maria Elena and Hammond were heated below approximately 700-750 °C, so that kamacite was recrystallized and taenite was exsolved in kamacite and was spheroidized in plessite. Both meteorites retained a record of the original Widmanstätten pattern. The other four, which show no trace of their original microstructure, were heated above 600-700 °C and recrystallized to form 10-20 μm wide homogeneous taenite grains. On cooling, kamacite formed on taenite grain boundaries with their close-packed planes aligned. Formation of homogeneous 20 μm wide taenite grains with diverse orientations would have required as long as approximately 800 yr at 600 °C or approximately 1 h at 1300 °C. All six irons contain approximately 5-10 μm wide taenite grains with internal microprecipitates of kamacite and nanometer-scale M-shaped Ni profiles that reach approximately 40% Ni indicating cooling over 100-10,000 yr. Un-decomposed high-Ni martensite (α2) in taenite—the first occurrence in irons—appears to be a characteristic of strongly reheated irons. From our studies and published work, we identified four progressive stages of shock and reheating in IVA irons using these criteria: cloudy taenite, M-shaped Ni profiles in taenite, Neumann twin lamellae, martensite, shock-hatched kamacite, recrystallization, microprecipitates of taenite, and shock-melted troilite. Maria Elena and Fuzzy Creek represent stages 3 and 4, respectively. Although not all reheated irons contain evidence for shock, it was probably the main

  11. Energy Assessments under the Top 10,000 Program - A Case Study for a Steel Mill in China

    SciTech Connect

    Lu, Hongyou; Price, Lynn; Nimbalkar, Sachin U; Thekdi, Arvind; Degroot, Matthew; Shi, Jun

    2014-01-01

    introducing China s national energy intensity and carbon intensity reduction targets. Then, this paper explains the development of Top 10,000 program, including program requirements, the method for target allocation, key supporting policies, as well as challenges in implementing the program. By focusing on a process heating energy system assessment conducted in a Chinese steel mill, this paper presents an example of an energy system assessment conducted on steel reheating furnaces, including overall energy efficiency levels, areas of heat loss, and the potential for energy savings. In addition, the paper provides energy-savings recommendations that were identified during the assessment, as well as potential energy and energy costs savings. To conclude, this paper presents key findings that could further improve the Top 10,000 program by implementing a systems approach for energy assessments.

  12. Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 March 1993--31 May 1993

    SciTech Connect

    Crelling, J.C.; Case, E.R.

    1993-09-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. The basic program is designed to determine the reactivity of both coal and its derived char under blast furnace conditions and to compare the results to similar properties of blast furnace coke. The results of the first two experiments in which coal char pyrolyzed in nitrogen at 1000{degrees}C in an EPR were reacted isothermally in air at 1000{degrees}C and 1200{degrees}C. The reactivity values of the same char in these two experiments were different by an order of magnitude. The char reactivity at 1000{degrees}C was 9.7 {times} 10{sup {minus}4} grams per minute while the reactivity. of the char at 1200{degrees}C was 1.6 {times} 10{sup {minus}3} grams per minute. These results suggest that the temperature of the blast air in the tuyere may be critical in achieving complete carbon burnout.

  13. Distribution of radionuclides during melting of carbon steel

    SciTech Connect

    Thurber, W.C.; MacKinney, J.

    1997-02-01

    During the melting of steel with radioactive contamination, radionuclides may be distributed among the metal product, the home scrap, the slag, the furnace lining and the off-gas collection system. In addition, some radionuclides will pass through the furnace system and vent to the atmosphere. To estimate radiological impacts of recycling radioactive scrap steel, it is essential to understand how radionuclides are distributed within the furnace system. For example, an isotope of a gaseous element (e.g., radon) will exhaust directly from the furnace system into the atmosphere while a relatively non-volatile element (e.g., manganese) can be distributed among all the other possible media. This distribution of radioactive contaminants is a complex process that can be influenced by numerous chemical and physical factors, including composition of the steel bath, chemistry of the slag, vapor pressure of the particular element of interest, solubility of the element in molten iron, density of the oxide(s), steel melting temperature and melting practice (e.g., furnace type and size, melting time, method of carbon adjustment and method of alloy additions). This paper discusses the distribution of various elements with particular reference to electric arc furnace steelmaking. The first two sections consider the calculation of partition ratios for elements between metal and slag based on thermodynamic considerations. The third section presents laboratory and production measurements of the distribution of various elements among slag, metal, and the off-gas collection system; and the final section provides recommendations for the assumed distribution of each element of interest.

  14. 33. BOILER HOUSE FURNACE AND BOILER Close view of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. BOILER HOUSE - FURNACE AND BOILER Close view of the Dorward Engineering Company furnace and boiler which provided steam to the cooking retorts in the adjacent room. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  15. ROMPS critical design review. Volume 3: Furnace module design documentation

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1992-01-01

    As part of the furnace module design documentation, the furnace module Easylab programs definitions and command variables are described. Also included are Easylab commands flow charts and fault conditions.

  16. 6. Photocopy of a drawing of the lead blast furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photocopy of a drawing of the lead blast furnace from J.L. Bray, The Principles of Metallurgy, Ginn & Co. New York, 1929. - International Smelting & Refining Company, Tooele Smelter, Blast Furnace Building, State Route 178, Tooele, Tooele County, UT

  17. Miniaturized King furnace permits absorption spectroscopy of small samples

    NASA Technical Reports Server (NTRS)

    Ercoli, B.; Tompkins, F. S.

    1968-01-01

    Miniature King-type furnace, consisting of an inductively heated, small diameter tantalum tube supported in a radiation shield eliminates the disadvantages of the conventional furnace in obtaining absorption spectra of metal vapors.

  18. 36. REDUCTION PLANT CLOSE VIEW OF FURNACE AND BOILER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. REDUCTION PLANT - CLOSE VIEW OF FURNACE AND BOILER Reduction Plant furnace and boiler used to provide heat for drying the fish and fish offal, in their conversion to meal. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  19. TECHNOLOGY EVALUATION REPORT: RETECH'S PLASMA CENTRIFUGAL FURNACE - VOLUME I

    EPA Science Inventory

    A demonstration of the Retech, Inc. Plasma Centrifugal Furnace (PCF) was conducted under the Superfund Innovative Technology Evaluation (SITE) Program at the Department of Energy's (DOE's) Component Development and Integration Facility in Butte, Montana. The furnace uses heat gen...

  20. Volatilization of elemental mercury from fresh blast furnace sludge mixed with basic oxygen furnace sludge under different temperatures.

    PubMed

    Földi, Corinna; Dohrmann, Reiner; Mansfeldt, Tim

    2015-11-01

    Blast furnace sludge (BFS) is a waste with elevated mercury (Hg) content due to enrichment during the production process of pig iron. To investigate the volatilization potential of Hg, fresh samples of BFS mixed with basic oxygen furnace sludge (BOFS; a residue of gas purification from steel making, processed simultaneously in the cleaning devices of BFS and hence mixed with BFS) were studied in sealed column experiments at different temperatures (15, 25, and 35 °C) for four weeks (total Hg: 0.178 mg kg(-1)). The systems were regularly flushed with ambient air (every 24 h for the first 100 h, followed by every 72 h) for 20 min at a flow rate of 0.25 ± 0.03 L min(-1) and elemental Hg vapor was trapped on gold coated sand. Volatilization was 0.276 ± 0.065 ng (x m: 0.284 ng) at 15 °C, 5.55 ± 2.83 ng (x m: 5.09 ng) at 25 °C, and 2.37 ± 0.514 ng (x m: 2.34 ng) at 35 °C. Surprisingly, Hg fluxes were lower at 35 than 25 °C. For all temperature variants, an elevated Hg flux was observed within the first 100 h followed by a decrease of volatilization thereafter. However, the background level of ambient air was not achieved at the end of the experiments indicating that BFS mixed with BOFS still possessed Hg volatilization potential. PMID:26444147

  1. A recycling process for dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J. ); Morgan, W.A.; Kellner, A.W.; Harrison, J. )

    1992-01-01

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  2. A recycling process for dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Morgan, W.A.; Kellner, A.W.; Harrison, J.

    1992-08-01

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  3. Effects of experimental reheating of natural basaltic ash at different temperatures and redox conditions

    NASA Astrophysics Data System (ADS)

    D'Oriano, C.; Pompilio, M.; Bertagnini, A.; Cioni, R.; Pichavant, M.

    2013-05-01

    A set of experiments have been performed on volcanic materials from Etna, Stromboli and Vesuvius in order to evaluate how the exposure to thermal and redox conditions close to that of active craters affects the texture and composition of juvenile pyroclasts. Selected samples were placed within a quartz tube, in presence of air or under vacuum, and kept at T between 700 and 1,130 °C, for variable time (40 min to 12 h). Results show that reheating reactivates the melt, which, through processes of chemical and thermal diffusion, reaches new equilibrium conditions. In all the experiments performed at T = 700-750 °C, a large number of crystal nuclei and spherulites grows in the groundmass, suggesting conditions of high undercooling. This process creates textural heterogeneities at the scale of few microns but only limited changes of groundmass composition, which remains clustered around that of the natural glasses. Reheating at T = 1,000-1,050 °C promotes massive groundmass crystallization, with a different mineral assemblage as a function of the redox conditions. Morphological modifications of clasts, from softening to sintering as temperature increases, occur under these conditions, accompanied by progressive smoothing of external surfaces, and a reduction in size and abundance of vesicles, until the complete obliteration of the pre-existing vesicularity. The transition from sintering to welding, characteristic of high temperature, is influenced by redox conditions. Experiments at T = 1,100-1,130 °C and under vacuum produce groundmass textures and glass compositions similar to that of the respective starting material. Collapse and welding of the clasts cause significant densification of the whole charge. At the same temperature, but in presence of air, experimental products at least result sintered and show holocrystalline groundmass. In all experiments, sublimates grow on the external surfaces of the clasts or form a lining on the bubble walls. Their shape and

  4. A Solar Furnace for Your School

    ERIC Educational Resources Information Center

    Meyer, Edwin C.

    1978-01-01

    Industrial arts students at Litchfield (Minnesota) High School designed and built a solar furnace for research and experimentation and to help heat the industrial arts department. A teacher describes the construction process and materials and the temperature record keeping by the physics classes. Student and community interest has been high. (MF)

  5. Method of controlling a reclamation furnace

    SciTech Connect

    Mainord, K. R.

    1985-12-10

    This invention relates to an improved method of controlling temperatures within a cleaning or reclamation furnace which is normally used to reclaim metal parts contaminated with combustible materials by pyrolyzing the combustible materials. A reclamation furnace usually includes a primary heat-input burner employed to heat the contaminated parts in the primary heating chamber, an afterburner chamber contained within the heating chamber having a secondary burner to burn volatile gases which are given off by the combustible materials as the parts are heated, and two separately-controlled automatic valve and spray nozzle assemblies connected to the primary heating chamber. Each nozzle assembly is connected to a pressurized water source to deliver a water-spray injection into the heating chamber. First and second temperature sensors are located in the discharge stack leading from the afterburner chamber and in the furnace heating chamber respectively to actuate either one or both of the separately-controlled automatic valve and spray nozzle assemblies responsive to the temperature of the burned stack gases and the furnace interior temperature.

  6. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    EPA Science Inventory

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  7. Water-cooled furnace heads for use with standard muffle tube furnaces

    NASA Technical Reports Server (NTRS)

    Williams, R. J.; Mullins, O.

    1975-01-01

    The design of water-cooled furnace seals for use in high-temperature controlled-atmosphere gas and vacuum studies is presented in detailed engineering drawings. Limiting design factors and advantages are discussed.

  8. Proceedings of the 45th electric furnace conference

    SciTech Connect

    Not Available

    1988-01-01

    This book contains the proceedings of the 46th Electric Furnace Conference. Topics included are: EAF Dust Decomposition and Metals Recovery at ScanDust, Optimization of Electric Arc Furnace Process by Pneumatic Stirring, and Melt Down Control for Electric Arc Furnaces.

  9. 46 CFR 59.15-1 - Furnace repairs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Furnace repairs. 59.15-1 Section 59.15-1 Shipping COAST... VESSELS AND APPURTENANCES Miscellaneous Boiler Repairs § 59.15-1 Furnace repairs. (a) Where corrugated or plain furnaces or flues are distorted by 11/2 inches or more, they shall be repaired by either of...

  10. 46 CFR 59.15-1 - Furnace repairs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Furnace repairs. 59.15-1 Section 59.15-1 Shipping COAST... VESSELS AND APPURTENANCES Miscellaneous Boiler Repairs § 59.15-1 Furnace repairs. (a) Where corrugated or plain furnaces or flues are distorted by 11/2 inches or more, they shall be repaired by either of...

  11. 46 CFR 59.15-1 - Furnace repairs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Furnace repairs. 59.15-1 Section 59.15-1 Shipping COAST... VESSELS AND APPURTENANCES Miscellaneous Boiler Repairs § 59.15-1 Furnace repairs. (a) Where corrugated or plain furnaces or flues are distorted by 11/2 inches or more, they shall be repaired by either of...

  12. 8. Copy of a photograph taken c. 1912 of Furnace ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Copy of a photograph taken c. 1912 of Furnace 'D' blown-in 17 July 1911, the fourth experimental 'thin-lined furnace' to be built in the United States. Photo courtesy Ralph A. Dise, Cleveland Heights, Ohio. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  13. 46 CFR 59.15-1 - Furnace repairs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Furnace repairs. 59.15-1 Section 59.15-1 Shipping COAST... VESSELS AND APPURTENANCES Miscellaneous Boiler Repairs § 59.15-1 Furnace repairs. (a) Where corrugated or plain furnaces or flues are distorted by 11/2 inches or more, they shall be repaired by either of...

  14. 29. Blast furnace plant, looking southeast. The Machine Shop and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Blast furnace plant, looking southeast. The Machine Shop and Turbo Blower Building are at left, the pig-casting machine and Furnace A at center right. In foregound are the 50-ton ladle cars used to transport hot metal to Valley Mould & Iron Co. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  15. 46 CFR 59.15-1 - Furnace repairs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Furnace repairs. 59.15-1 Section 59.15-1 Shipping COAST... VESSELS AND APPURTENANCES Miscellaneous Boiler Repairs § 59.15-1 Furnace repairs. (a) Where corrugated or plain furnaces or flues are distorted by 11/2 inches or more, they shall be repaired by either of...

  16. 18. Furnace D, looking north. At far left is the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Furnace D, looking north. At far left is the 'tripper' car, which distributed ore and limestone into trestle bins below. The 'larryman' then weighed and discharged these materials into skip cars, which carried them to the top of the furnace. - Central Furnaces, 2650 Broadway, east bank of Cuyahoga River, Cleveland, Cuyahoga County, OH

  17. ANALYSIS OF EMISSIONS FROM RESIDENTIAL NATURAL GAS FURNACES

    EPA Science Inventory

    The paper gives emissions data from residential natural-gas furnaces and compares selected data to emissions data from residential oil furnaces and woodstoves. atural-gas furnace emissions data are given for carbon monoxide (CO), unburned hydrocarbons, aldehydes, volatile and sem...

  18. EAF steel producers and the K061 dilemma

    SciTech Connect

    Prichard, L.C.

    1995-12-31

    The scrap based steel producers in the United States generate an estimated 650,000 tons of electric arc furnace (EAF) dust annually which is classified as hazardous waste, K061. These scrap based producers commonly referred to as mini-mills represented 39% of the steel produced in 1994. Based upon the EAF plants being installed or planned today, it is a reasonable projection to anticipate 50% of the steel produced in the United States will be by EAF`S. Using a straight line projection of percent of steel produced to tonnage of EAF dust generated, this will result in 833,000 tons of dust being generated upon the completion of these new EAF producing plants, presumably by the year 2000. Because the United States is a capitalistic economy, a steel producer is in business to make a profit therefore dust management becomes a very important variable in the cost of making steel.

  19. [Measurement of chemical agents in metallurgy field: electric steel plant].

    PubMed

    Cottica, D; Grignani, E; Ghitti, R; Festa, D; Apostoli, P

    2012-01-01

    The steel industry maintains its important position in the context of the Italian production involving thousands of workers. The iron and steel processes are divided into primary steel industry, production of intermediate minerals, and secondary steel, scrap from the production of semi-finished industrial and consumer sector (metal inserted into components and metal used for dissipative uses, primarily coatings) and industrial waste. The paper presents the results of environmental monitoring carried out in some electric steel plant for the measurement of airborne chemicals that characterize the occupational exposure of workers employed in particular area like electric oven, to treatment outside the furnace, continuous casting area. For the sampling of the pollutants were used both personal and in fixed positions samplers. The pollutants measured are those typical of steel processes inhalable dust, metals, respirable dust, crystalline silica, but also Polycyclic Aromatic Hydrocarbons (PAH), polychlorinated dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). PMID:23213795

  20. Temperature profiles in high gradient furnaces

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Debnam, W. J.; Woodell, G. A.; Berry, R.; Crouch, R. K.; Sorokach, S. K.

    1989-01-01

    Accurate temperature measurement of the furnace environment is very important in both the science and technology of crystal growth as well as many other materials processing operations. A high degree of both accuracy and precision is acutely needed in the directional solidification of compound semiconductors in which the temperature profiles control the freezing isotherm which, in turn, affects the composition of the growth with a concomitant feedback perturbation on the temperature profile. Directional solidification requires a furnace configuration that will transport heat through the sample being grown. A common growth procedure is the Bridgman Stockbarger technique which basically consists of a hot zone and a cold zone separated by an insulator. In a normal growth procedure the material, contained in an ampoule, is melted in the hot zone and is then moved relative to the furnace toward the cold zone and solidification occurs in the insulated region. Since the primary path of heat between the hot and cold zones is through the sample, both axial and radial temperature gradients exist in the region of the growth interface. There is a need to know the temperature profile of the growth furnace with the crystal that is to be grown as the thermal load. However it is usually not feasible to insert thermocouples inside an ampoule and thermocouples attached to the outside wall of the ampoule have both a thermal and a mechanical contact problem as well as a view angle problem. The objective is to present a technique of calibrating a furnace with a thermal load that closely matches the sample to be grown and to describe procedures that circumvent both the thermal and mechanical contact problems.