Sample records for stellar velocity field

  1. Mass-loss rates, ionization fractions, shock velocities, and magnetic fields of stellar jets

    NASA Technical Reports Server (NTRS)

    Hartigan, Patrick; Morse, Jon A.; Raymond, John

    1994-01-01

    In this paper we calculate emission-line ratios from a series of planar radiative shock models that cover a wide range of shock velocities, preshock densities, and magnetic fields. The models cover the initial conditions relevant to stellar jets, and we show how to estimate the ionization fractions and shock velocities in jets directly from observations of the strong emission lines in these flows. The ionization fractions in the HH 34, HH 47, and HH 111 jets are approximately 2%, considerably smaller than previous estimates, and the shock velocities are approximately 30 km/s. For each jet the ionization fractions were found from five different line ratios, and the estimates agree to within a factor of approximately 2. The scatter in the estimates of the shock velocities is also small (+/- 4 km/s). The low ionization fractions of stellar jets imply that the observed electron densities are much lower than the total densities, so the mass-loss rates in these flows are correspondingly higher (approximately greater than 2 x 10(exp -7) solar mass/yr). The mass-loss rates in jets are a significant fraction (1%-10%) of the disk accretion rates onto young stellar objects that drive the outflows. The momentum and energy supplied by the visible portion of a typical stellar jet are sufficient to drive a weak molecular outflow. Magnetic fields in stellar jets are difficult to measure because the line ratios from a radiative shock with a magnetic field resemble those of a lower velocity shock without a field. The observed line fluxes can in principle indicate the strength of the field if the geometry of the shocks in the jet is well known.

  2. The Local Stellar Velocity Field via Vector Spherical Harmonics

    NASA Technical Reports Server (NTRS)

    Markarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism. We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not corrected for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star. The Oort parameters determined by a straightforward least-squares adjustment in vector spherical harmonics are A=14.0 +/- 1.4, B=13.1 +/- 1.2, K=1.1 +/- 1.8, and C=2.9 +/- 1.4 km s(exp -1) kpc(exp -1). The physical meaning and the implications of these parameters are discussed in the framework of a general linear model of the velocity field. We find a few statistically significant higher degree harmonic terms that do not correspond to any parameters in the classical linear model. One of them, a third-degree electric harmonic, is tentatively explained as the response to a negative linear gradient of rotation velocity with distance from the Galactic plane, which we estimate at approximately -20 km s(exp -1) kpc(exp -1). A similar vertical gradient of rotation velocity has been detected for more distant stars representing the thick disk (z greater than 1 kpc

  3. The Local Stellar Velocity Field via Vector Spherical Harmonics

    NASA Technical Reports Server (NTRS)

    Makarov, V. V.; Murphy, D. W.

    2007-01-01

    We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...

  4. The BRAVE Program. I. Improved Bulge Stellar Velocity Dispersion Estimates for a Sample of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Batiste, Merida; Bentz, Misty C.; Manne-Nicholas, Emily R.; Onken, Christopher A.; Bershady, Matthew A.

    2017-02-01

    We present new bulge stellar velocity dispersion measurements for 10 active galaxies with secure MBH determinations from reverberation mapping. These new velocity dispersion measurements are based on spatially resolved kinematics from integral-field (IFU) spectroscopy. In all but one case, the field of view of the IFU extends beyond the effective radius of the galaxy, and in the case of Mrk 79 it extends to almost one half the effective radius. This combination of spatial resolution and field of view allows for secure determinations of stellar velocity dispersion within the effective radius for all 10 target galaxies. Spatially resolved maps of the first (V) and second (σ⋆) moments of the line of sight velocity distribution indicate the presence of kinematic substructure in most cases. In future projects we plan to explore methods of correcting for the effects of kinematic substructure in the derived bulge stellar velocity dispersion measurements.

  5. Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-06-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.

  6. Stellar Mass Versus Stellar Velocity Dispersion: Which is Better for Linking Galaxies to Their Dark Matter Halos?

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wang, Lixin; Jing, Y. P.

    2013-01-01

    It was recently suggested that compared to its stellar mass (M *), the central stellar velocity dispersion (σ*) of a galaxy might be a better indicator for its host dark matter halo mass. Here we test this hypothesis by estimating the dark matter halo mass for central galaxies in groups as a function of M * and σ*. For this we have estimated the redshift-space cross-correlation function (CCF) between the central galaxies at given M * and σ* and a reference galaxy sample, from which we determine both the projected CCF, wp (rp ), and the velocity dispersion profile. A halo mass is then obtained from the average velocity dispersion within the virial radius. At fixed M *, we find very weak or no correlation between halo mass and σ*. In contrast, strong mass dependence is clearly seen even when σ* is limited to a narrow range. Our results thus firmly demonstrate that the stellar mass of central galaxies is still a good (if not the best) indicator for dark matter halo mass, better than the stellar velocity dispersion. The dependence of galaxy clustering on σ* at fixed M *, as recently discovered by Wake et al., may be attributed to satellite galaxies, for which the tidal stripping occurring within halos has stronger effect on stellar mass than on central stellar velocity dispersion.

  7. POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in

    2016-12-10

    For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-componentmore » supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.« less

  8. Stellar mass and velocity functions of galaxies. Backward evolution and the fate of Milky Way siblings

    NASA Astrophysics Data System (ADS)

    Boissier, S.; Buat, V.; Ilbert, O.

    2010-11-01

    Context. In recent years, stellar mass functions of both star-forming and quiescent galaxies have been observed at different redshifts in various fields. In addition, star formation rate (SFR) distributions (e.g. in the form of far infrared luminosity functions) were also obtained. Taken together, they offer complementary pieces of information concerning the evolution of galaxies. Aims: We attempt in this paper to check the consistency of the observed stellar mass functions, SFR functions, and the cosmic SFR density with simple backward evolutionary models. Methods: Starting from observed stellar mass functions for star-forming galaxies, we use backwards models to predict the evolution of a number of quantities, such as the SFR function, the cosmic SFR density and the velocity function. Because the velocity is a parameter attached to a galaxy during its history (contrary to the stellar mass), this approach allows us to quantify the number density evolution of galaxies of a given velocity, e.g. of the Milky Way siblings. Results: Observations suggest that the stellar mass function of star-forming galaxies is constant between redshift 0 and 1. To reproduce this result, we must quench star formation in a number of star-forming galaxies. The stellar mass function of these “quenched” galaxies is consistent with available data concerning the increase in the population of quiescent galaxies in the same redshift interval. The stellar mass function of quiescent galaxies is then mainly determined by the distribution of active galaxies that must stop star formation, with a modest mass redistribution during mergers. The cosmic SFR density and the evolution of the SFR functions are recovered relatively well, although they provide some clues to a minor evolution of the stellar mass function of star forming galaxies at the lowest redshifts. We thus consider that we have obtained in a simple way a relatively consistent picture of the evolution of galaxies at intermediate

  9. MERIDIONAL TILT OF THE STELLAR VELOCITY ELLIPSOID DURING BAR BUCKLING INSTABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Kanak; Pfenniger, Daniel; Taam, Ronald E., E-mail: saha@mpe.mpg.de

    2013-02-20

    The structure and evolution of the stellar velocity ellipsoid play an important role in shaping galaxies undergoing bar-driven secular evolution and the eventual formation of a boxy/peanut bulge such as is present in the Milky Way. Using collisionless N-body simulations, we show that during the formation of such a boxy/peanut bulge, the meridional shear stress of stars, which can be measured by the meridional tilt of the velocity ellipsoid, reaches a characteristic peak in its time evolution. It is shown that the onset of a bar buckling instability is closely connected to the maximum meridional tilt of the stellar velocitymore » ellipsoid. Our findings bring a new insight to this complex gravitational instability of the bar which complements the buckling instability studies based on orbital models. We briefly discuss the observed diagnostics of the stellar velocity ellipsoid during such a phenomenon.« less

  10. The impact of stellar feedback on the density and velocity structure of the interstellar medium

    NASA Astrophysics Data System (ADS)

    Grisdale, Kearn; Agertz, Oscar; Romeo, Alessandro B.; Renaud, Florent; Read, Justin I.

    2017-04-01

    We study the impact of stellar feedback in shaping the density and velocity structure of neutral hydrogen (H I) in disc galaxies. For our analysis, we carry out ˜4.6 pc resolution N-body+adaptive mesh refinement hydrodynamic simulations of isolated galaxies, set up to mimic a Milky Way and a Large and Small Magellanic Cloud. We quantify the density and velocity structure of the interstellar medium using power spectra and compare the simulated galaxies to observed H I in local spiral galaxies from THINGS (The H I Nearby Galaxy Survey). Our models with stellar feedback give an excellent match to the observed THINGS H I density power spectra. We find that kinetic energy power spectra in feedback-regulated galaxies, regardless of galaxy mass and size, show scalings in excellent agreement with supersonic turbulence (E(k) ∝ k-2) on scales below the thickness of the H I layer. We show that feedback influences the gas density field, and drives gas turbulence, up to large (kpc) scales. This is in stark contrast to density fields generated by large-scale gravity-only driven turbulence. We conclude that the neutral gas content of galaxies carries signatures of stellar feedback on all scales.

  11. Stellar Velocity Dispersion and Anisotropy of the Milky Way Inner Halo

    NASA Astrophysics Data System (ADS)

    King, Charles, III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.

    2015-11-01

    We measure the three components of velocity dispersion, σR, σθ, σϕ, for stars within 6 < R < 30 kpc of the Milky Way using a new radial velocity sample from the MMT telescope. We combine our measurements with previously published data so that we can more finely sample the stellar halo. We use a maximum likelihood statistical method for estimating mean velocities, dispersions, and covariances assuming only that velocities are normally distributed. The alignment of the velocity ellipsoid is consistent with a spherically symmetric gravitational potential. From the spherical Jeans equation, the mass of the Milky Way is M≤ft(R≤slant 12 {kpc}\\right)=1.3× {10}11 {M}⊙ with an uncertainty of 40%. We also find a region of discontinuity, 15 ≲ R ≲ 25 kpc, where the estimated velocity dispersions and anisotropies diverge from their anticipated values, confirming the break observed by others. We argue that this break in anisotropy is physically explained by coherent stellar velocity structure in the halo, such as the Sgr stream. To significantly improve our understanding of halo kinematics will require combining radial velocities with future Gaia proper motions.

  12. SOAP. A tool for the fast computation of photometry and radial velocity induced by stellar spots

    NASA Astrophysics Data System (ADS)

    Boisse, I.; Bonfils, X.; Santos, N. C.

    2012-09-01

    We define and put at the disposal of the community SOAP, Spot Oscillation And Planet, a software tool that simulates the effect of stellar spots and plages on radial velocimetry and photometry. This paper describes the tool release and provides instructions for its use. We present detailed tests with previous computations and real data to assess the code's performance and to validate its suitability. We characterize the variations of the radial velocity, line bisector, and photometric amplitude as a function of the main variables: projected stellar rotational velocity, filling factor of the spot, resolution of the spectrograph, linear limb-darkening coefficient, latitude of the spot, and inclination of the star. Finally, we model the spot distributions on the active stars HD 166435, TW Hya and HD 189733, which reproduce the observations. We show that the software is remarkably fast, allowing several evolutions in its capabilities that could be performed to study the next challenges in the exoplanetary field connected with the stellar variability. The tool is available at http://www.astro.up.pt/soap

  13. The stellar wind velocity function for red supergiants determined in eclipsing binaries

    NASA Technical Reports Server (NTRS)

    Ahmad, Imad A.; Stencel, Robert E.

    1988-01-01

    The potential for direct measurement of the acceleration of stellar winds from the supergiant component of Zeta Aurigae-type binary stars is discussed. The aberration angle of the interaction shock cone centered on the hot star provides a measure of the velocity of the cool star wind at the orbit of the secondary. This is confirmed by direct observations of stellar wind (P Cygni) line profile variations. This velocity is generally smaller than the final (terminal) velocity of the wind, deduced from the P Cygni line profiles. The contrast between these results and previously published supergiant wind models is discussed. The implication on the physics of energy source dissipation predicted in the theoretical models is considered.

  14. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P., E-mail: jcortes@alma.cl, E-mail: ehardy@nrao.cl, E-mail: jeff.kenney@yale.edu

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between themore » optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.« less

  15. Global Properties of M31’s Stellar Halo from the SPLASH Survey. III. Measuring the Stellar Velocity Dispersion Profile

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline M.; Tollerud, Erik; Beaton, Rachael L.; Guhathakurta, Puragra; Bullock, James S.; Chiba, Masashi; Kalirai, Jason S.; Kirby, Evan N.; Majewski, Steven R.; Tanaka, Mikito

    2018-01-01

    We present the velocity dispersion of red giant branch stars in M31’s halo, derived by modeling the line-of-sight velocity distribution of over 5000 stars in 50 fields spread throughout M31’s stellar halo. The data set was obtained as part of the Spectroscopic and Photometric Landscape of Andromeda’s Stellar Halo (SPLASH) Survey, and covers projected radii of 9 to 175 kpc from M31’s center. All major structural components along the line of sight in both the Milky Way (MW) and M31 are incorporated in a Gaussian Mixture Model, including all previously identified M31 tidal debris features in the observed fields. The probability that an individual star is a constituent of M31 or the MW, based on a set of empirical photometric and spectroscopic diagnostics, is included as a prior probability in the mixture model. The velocity dispersion of stars in M31’s halo is found to decrease only mildly with projected radius, from 108 km s‑1 in the innermost radial bin (8.2 to 14.1 kpc) to ∼80 to 90 km s‑1 at projected radii of ∼40–130 kpc, and can be parameterized with a power law of slope ‑0.12 ± 0.05. The quoted uncertainty on the power-law slope reflects only the precision of the method, although other sources of uncertainty we consider contribute negligibly to the overall error budget. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  16. Dependence of the clustering properties of galaxies on stellar velocity dispersion in the Main galaxy sample of SDSS DR10

    NASA Astrophysics Data System (ADS)

    Deng, Xin-Fa; Song, Jun; Chen, Yi-Qing; Jiang, Peng; Ding, Ying-Ping

    2014-08-01

    Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters ( n≥200) than the large stellar velocity dispersion subsample.

  17. A method to deconvolve stellar rotational velocities II. The probability distribution function via Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Christen, Alejandra; Escarate, Pedro; Curé, Michel; Rial, Diego F.; Cassetti, Julia

    2016-10-01

    Aims: Knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. Because we measure the projected rotational speed v sin I, we need to solve an ill-posed problem given by a Fredholm integral of the first kind to recover the "true" rotational velocity distribution. Methods: After discretization of the Fredholm integral we apply the Tikhonov regularization method to obtain directly the probability distribution function for stellar rotational velocities. We propose a simple and straightforward procedure to determine the Tikhonov parameter. We applied Monte Carlo simulations to prove that the Tikhonov method is a consistent estimator and asymptotically unbiased. Results: This method is applied to a sample of cluster stars. We obtain confidence intervals using a bootstrap method. Our results are in close agreement with those obtained using the Lucy method for recovering the probability density distribution of rotational velocities. Furthermore, Lucy estimation lies inside our confidence interval. Conclusions: Tikhonov regularization is a highly robust method that deconvolves the rotational velocity probability density function from a sample of v sin I data directly without the need for any convergence criteria.

  18. Radial velocities of K-M dwarfs and local stellar kinematics

    NASA Astrophysics Data System (ADS)

    Sperauskas, J.; Bartašiūtė, S.; Boyle, R. P.; Deveikis, V.; Raudeliūnas, S.; Upgren, A. R.

    2016-12-01

    Aims: The goal of this paper is to present complete radial-velocity data for the spectroscopically selected McCormick sample of nearby K-M dwarfs and, based on these and supplementary data, to determine the space-velocity distributions of late-type stars in the solar neighborhood. Methods: We analyzed nearly 3300 measurements of radial velocities for 1049 K-M dwarfs, that we obtained during the past decade with a CORAVEL-type instrument, with a primary emphasis on detecting and eliminating from kinematic calculations the spectroscopic binaries and binary candidates. Combining radial-velocity data with Hipparcos/Tycho-2 astrometry we calculated the space-velocity components and parameters of the galactic orbits in a three-component model potential for the stars in the sample, that we use for kinematical analysis and for the identification of possible candidate members of nearby stellar kinematic groups. Results: We present the catalog of our observations of radial velocities for 959 stars which are not suspected of velocity variability, along with the catalog of U,V,W velocities and Galactic orbital parameters for a total of 1088 K-M stars which are used in the present kinematic analysis. Of these, 146 stars were identified as possible candidate members of the known nearby kinematic groups and suspected subgroups. The distributions of space-velocity components, orbital eccentricities, and maximum distances from the Galactic plane are consistent with the presence of young, intermediate-age and old populations of the thin disk and a small fraction ( 3%) of stars with the thick disk kinematics. The kinematic structure gives evidence that the bulk of K-M type stars in the immediate solar vicinity represents a dynamically relaxed stellar population. The star MCC 869 is found to be on a retrograde Galactic orbit (V = -262 km s-1) of low inclination (4°) and can be a member of stellar stream of some dissolved structure. The Sun's velocity with respect to the Local

  19. Binaries at Birth: Stellar multiplicity in embedded clusters from radial velocity variations in the IN-SYNC survey

    NASA Astrophysics Data System (ADS)

    Oskar Jaehnig, Karl; Stassun, Keivan; Tan, Jonathan C.; Covey, Kevin R.; Da Rio, Nicola

    2016-01-01

    We study the nature of stellar multiplicity in young stellar systems using the INfrared Spectroscopy of Young Nebulous Clusters (IN-SYNC) survey, carried out in SDSS III with the APOGEE spectrograph. Multi-epoch observations of thousands of low-mass stars in Orion A, NGC2264, NGC1333 and IC348 have been carried out, yielding H-band spectra with R=22,500 for sources with H<12 mag. Radial velocity sensitivities ~0.3 km/s can be achieved, depending on the spectral type of the star. We search the IN-SYNC radial velocity catalog to identify sources with radial velocity variations indicative of spectroscopically undetected companions, analyze their spectral properties and discuss the implications for the overall multiplicity of stellar populations in young, embedded star clusters.

  20. The MASSIVE survey - VIII. Stellar velocity dispersion profiles and environmental dependence of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Veale, Melanie; Ma, Chung-Pei; Greene, Jenny E.; Thomas, Jens; Blakeslee, John P.; Walsh, Jonelle L.; Ito, Jennifer

    2018-02-01

    We measure the radial profiles of the stellar velocity dispersions, σ(R), for 90 early-type galaxies (ETGs) in the MASSIVE survey, a volume-limited integral-field spectroscopic (IFS) galaxy survey targeting all northern-sky ETGs with absolute K-band magnitude MK < -25.3 mag, or stellar mass M* ≳ 4 × 1011M⊙, within 108 Mpc. Our wide-field 107 arcsec × 107 arcsec IFS data cover radii as large as 40 kpc, for which we quantify separately the inner (2 kpc) and outer (20 kpc) logarithmic slopes γinner and γouter of σ(R). While γinner is mostly negative, of the 56 galaxies with sufficient radial coverage to determine γouter we find 36 per cent to have rising outer dispersion profiles, 30 per cent to be flat within the uncertainties and 34 per cent to be falling. The fraction of galaxies with rising outer profiles increases with M* and in denser galaxy environment, with 10 of the 11 most massive galaxies in our sample having flat or rising dispersion profiles. The strongest environmental correlations are with local density and halo mass, but a weaker correlation with large-scale density also exists. The average γouter is similar for brightest group galaxies, satellites and isolated galaxies in our sample. We find a clear positive correlation between the gradients of the outer dispersion profile and the gradients of the velocity kurtosis h4. Altogether, our kinematic results suggest that the increasing fraction of rising dispersion profiles in the most massive ETGs are caused (at least in part) by variations in the total mass profiles rather than in the velocity anisotropy alone.

  1. The MUSE Hubble Ultra Deep Field Survey. V. Spatially resolved stellar kinematics of galaxies at redshift 0.2 ≲ z ≲ 0.8

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Krajnović, Davor; Epinat, Benoit; Contini, Thierry; Emsellem, Eric; Bouché, Nicolas; Bacon, Roland; Michel-Dansac, Leo; Richard, Johan; Weilbacher, Peter M.; Schaye, Joop; Marino, Raffaella Anna; den Brok, Mark; Erroz-Ferrer, Santiago

    2017-11-01

    We present spatially resolved stellar kinematic maps, for the first time, for a sample of 17 intermediate redshift galaxies (0.2 ≲ z ≲ 0.8). We used deep MUSE/VLT integral field spectroscopic observations in the Hubble Deep Field South (HDFS) and Hubble Ultra Deep Field (HUDF), resulting from ≈30 h integration time per field, each covering 1' × 1' field of view, with ≈ 0.̋65 spatial resolution. We selected all galaxies brighter than 25 mag in the I band and for which the stellar continuum is detected over an area that is at least two times larger than the spatial resolution. The resulting sample contains mostly late-type disk, main-sequence star-forming galaxies with 108.5 M⊙ ≲ M∗ ≲ 1010.5 M⊙. Using a full-spectrum fitting technique, we derive two-dimensional maps of the stellar and gas kinematics, including the radial velocity V and velocity dispersion σ. We find that most galaxies in the sample are consistent with having rotating stellar disks with roughly constant velocity dispersions and that the second order velocity moments Vrms = √V2+σ2 of the gas and stars, a scaling proxy for the galaxy gravitational potential, compare well to each other. These spatially resolved observations of the stellar kinematics of intermediate redshift galaxies suggest that the regular stellar kinematics of disk galaxies that is observed in the local Universe was already in place 4-7 Gyr ago and that their gas kinematics traces the gravitational potential of the galaxy, thus is not dominated by shocks and turbulent motions. Finally, we build dynamical axisymmetric Jeans models constrained by the derived stellar kinematics for two specific galaxies and derive their dynamical masses. These are in good agreement (within 25%) with those derived from simple exponential disk models based on the gas kinematics. The obtained mass-to-light ratios hint towards dark matter dominated systems within a few effective radii. Based on observations made with ESO telescopes at

  2. [The radial velocity measurement accuracy of different spectral type low resolution stellar spectra at different signal-to-noise ratio].

    PubMed

    Wang, Feng-Fei; Luo, A-Li; Zhao, Yong-Heng

    2014-02-01

    The radial velocity of the star is very important for the study of the dynamics structure and chemistry evolution of the Milky Way, is also an useful tool for looking for variable or special objects. In the present work, we focus on calculating the radial velocity of different spectral types of low-resolution stellar spectra by adopting a template matching method, so as to provide effective and reliable reference to the different aspects of scientific research We choose high signal-to-noise ratio (SNR) spectra of different spectral type stellar from the Sloan Digital Sky Survey (SDSS), and add different noise to simulate the stellar spectra with different SNR. Then we obtain theradial velocity measurement accuracy of different spectral type stellar spectra at different SNR by employing a template matching method. Meanwhile, the radial velocity measurement accuracy of white dwarf stars is analyzed as well. We concluded that the accuracy of radial velocity measurements of early-type stars is much higher than late-type ones. For example, the 1-sigma standard error of radial velocity measurements of A-type stars is 5-8 times as large as K-type and M-type stars. We discuss the reason and suggest that the very narrow lines of late-type stars ensure the accuracy of measurement of radial velocities, while the early-type stars with very wide Balmer lines, such as A-type stars, become sensitive to noise and obtain low accuracy of radial velocities. For the spectra of white dwarfs stars, the standard error of radial velocity measurement could be over 50 km x s(-1) because of their extremely wide Balmer lines. The above conclusion will provide a good reference for stellar scientific study.

  3. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies - 2. Importance of AGN Feedback Suggested by Stellar Age - Velocity Dispersion Relation

    NASA Astrophysics Data System (ADS)

    Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Ishiyama, Tomoaki

    2017-09-01

    We present the galactic stellar age - velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs) against the best-fitting BH mass - velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martin-Navarro et al. (2016). We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.

  4. Binary stellar winds. [flow and magnetic field geometry

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Heinemann, M. A.

    1974-01-01

    Stellar winds from a binary star pair will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters is discussed.

  5. Binary stellar winds. [flow and magnetic field interactions

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Heinemann, M. A.

    1974-01-01

    Stellar winds from a binary star will interact with each other along a contact discontinuity. We discuss qualitatively the geometry of the flow and field resulting from this interaction in the simplest case where the stars and winds are identical. We consider the shape of the critical surface (defined as the surface where the flow speed is equal to the sound speed) as a function of stellar separation and the role of shock waves in the flow field. The effect of stellar spin and magnetic sectors on the field configuration is given. The relative roles of mass loss and magnetic torque in the evolution of orbital parameters are discussed.

  6. Radial velocity variability and stellar properties of FGK stars in the cores of NGC 2516 and NGC 2422

    NASA Astrophysics Data System (ADS)

    Bailey, John I.; Mateo, Mario; White, Russel J.; Shectman, Stephen A.; Crane, Jeffrey D.

    2018-04-01

    We present multi-epoch high-dispersion optical spectra obtained with the Michigan/Magellan Fibre System of 126 and 125 Sun-like stars in the young clusters NGC 2516 (141 Myr) and NGC 2422 (73 Myr). We determine stellar properties including radial velocity (RV), Teff, [Fe/H], [α/Fe] and the line-of-sight rotation rate, vrsin (i), from these spectra. Our median RV precision of 80 m s-1 on individual epochs that span a temporal baseline of 1.1 yr enables us to investigate membership and stellar binarity, and to search for sub-stellar companions. We determine membership probabilities and RV variability probabilities for our sample along with candidate companion orbital periods for a select subset of stars. In NGC 2516, we identified 81 RV members, 27 spectroscopic binaries (17 previously identified as photometric binaries) and 16 other stars that show significant RV variability after accounting for average stellar jitter at the 74 m s-1 level. In NGC 2422, we identify 57 members, 11 spectroscopic binaries and three other stars that show significant RV variability after accounting for an average jitter of 138 m s-1. We use Monte Carlo simulations to verify our stellar jitter measurements, determine the proportion of exoplanets and stellar companions to which we are sensitive, and estimate companion-mass limits for our targets. We also report mean cluster metallicity, velocity and velocity dispersion based on our member targets. We identify 58 non-member stars as RV variables, 24 of which have RV amplitudes that imply stellar or brown-dwarf mass companions. Finally, we note the discovery of a separate RV clustering of stars in our NGC 2422 sample.

  7. The GALAH Survey: Stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere and metallicity

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; De Silva, Gayandhi; Sharma, Sanjib; Hayden, Michael; Freeman, Ken; Bland-Hawthorn, Joss; Žerjal, Maruša; Asplund, Martin; Buder, Sven; D'Orazi, Valentina; Duong, Ly; Kos, Janez; Lin, Jane; Lind, Karin; Martell, Sarah; Schlesinger, Katharine; Simpson, Jeffrey D.; Zucker, Daniel B.; Zwitter, Tomaz; Anguiano, Borja; Carollo, Daniela; Casagrande, Luca; Cotar, Klemen; Cottrell, Peter L.; Ireland, Michael; Kafle, Prajwal R.; Horner, Jonathan; Lewis, Geraint F.; Nataf, David M.; Ting, Yuan-Sen; Watson, Fred; Wittenmyer, Rob; Wyse, Rosemary

    2018-04-01

    Using GALAH survey data of nearby stars, we look at how structure in the planar (u, v) velocity distribution depends on metallicity and on viewing direction within the Galaxy. In nearby stars with distance d ≲ 1 kpc, the Hercules stream is most strongly seen in higher metallicity stars [Fe/H]>0.2. The Hercules stream peak v value depends on viewed galactic longitude, which we interpret as due to the gap between the stellar stream and more circular orbits being associated with a specific angular momentum value of about 1640 km s-1 kpc. The association of the gap with a particular angular momentum value supports a bar resonant model for the Hercules stream. Moving groups previously identified in Hipparcos observations are easiest to see in stars nearer than 250 pc, and their visibility and peak velocities in the velocity distributions depends on both viewing direction (galactic longitude and hemisphere) and metallicity. We infer that there is fine structure in local velocity distributions that varies over distances of a few hundred pc in the Galaxy.

  8. STELLAR VELOCITY DISPERSION MEASUREMENTS IN HIGH-LUMINOSITY QUASAR HOSTS AND IMPLICATIONS FOR THE AGN BLACK HOLE MASS SCALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grier, C. J.; Martini, P.; Peterson, B. M.

    We present new stellar velocity dispersion measurements for four luminous quasars with the Near-Infrared Integral Field Spectrometer instrument and the ALTAIR laser guide star adaptive optics system on the Gemini North 8 m telescope. Stellar velocity dispersion measurements and measurements of the supermassive black hole (BH) masses in luminous quasars are necessary to investigate the coevolution of BHs and galaxies, trace the details of accretion, and probe the nature of feedback. We find that higher-luminosity quasars with higher-mass BHs are not offset with respect to the M{sub BH}-{sigma}{sub *} relation exhibited by lower-luminosity active galactic nuclei (AGNs) with lower-mass BHs,more » nor do we see correlations with galaxy morphology. As part of this analysis, we have recalculated the virial products for the entire sample of reverberation-mapped AGNs and used these data to redetermine the mean virial factor (f) that places the reverberation data on the quiescent M{sub BH}-{sigma}{sub *} relation. With our updated measurements and new additions to the AGN sample, we obtain (f) = 4.31 {+-} 1.05, which is slightly lower than, but consistent with, most previous determinations.« less

  9. Short-period terrestrial planets and radial velocity stellar jitter.

    NASA Astrophysics Data System (ADS)

    Dumusque, Xavier

    2015-01-01

    Stellar jitter is the main limitation to ultra-precise radial velocity (RV) measurements. It currently precludes our ability to detect a planet like the Earth. Short-period terrestrial planets present first the advantage of inducing a stronger RV signal. In addition, the signal produced by these planets have a period completely different than stellar activity. This allows us, when the observational strategy is adequate, to decorrelate the planetary signal from the jitter induced by the star using filtering techniques. I will show the examples of Kepler-78b and Corot-7b, where the amplitude of the planetary signal can be detected, despite the stellar activity jitter that is 5 and 3 times larger, respectively. The cases of Alpha Cen Bb will also be reviewed, with a new reduction of the published data that increases the significance of the planetary signal.This project is funded by ETAEARTH, a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of extrasolar planets can only be fully exploited when analyzed together.

  10. A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186.

    PubMed

    van Dokkum, Pieter G; Kriek, Mariska; Franx, Marijn

    2009-08-06

    Recent studies have found that the oldest and most luminous galaxies in the early Universe are surprisingly compact, having stellar masses similar to present-day elliptical galaxies but much smaller sizes. This finding has attracted considerable attention, as it suggests that massive galaxies have grown in size by a factor of about five over the past ten billion years (10 Gyr). A key test of these results is a determination of the stellar kinematics of one of the compact galaxies: if the sizes of these objects are as extreme as has been claimed, their stars are expected to have much higher velocities than those in present-day galaxies of the same mass. Here we report a measurement of the stellar velocity dispersion of a massive compact galaxy at redshift z = 2.186, corresponding to a look-back time of 10.7 Gyr. The velocity dispersion is very high at km s(-1), consistent with the mass and compactness of the galaxy inferred from photometric data. This would indicate significant recent structural and dynamical evolution of massive galaxies over the past 10 Gyr. The uncertainty in the dispersion was determined from simulations that include the effects of noise and template mismatch. However, we cannot exclude the possibility that some subtle systematic effect may have influenced the analysis, given the low signal-to-noise ratio of our spectrum.

  11. The local stellar velocity distribution of the Galaxy. Galactic structure and potential

    NASA Astrophysics Data System (ADS)

    Bienaymé, O.

    1999-01-01

    The velocity distribution of neighbouring stars is deduced from the Hipparcos proper motions. We have used a classical Schwarzschild decomposition and also developed a dynamical model for quasi-exponential stellar discs. This model is a 3-D derivation of Shu's model in the framework of Stäckel potentials with three integrals of motion. We determine the solar motion relative to the local standard of rest (LSR) (U_sun=9.7+/-0.3kms , V_sun=5.2+/-1.0kms and W_sun=6.7+/-0.2kms ), the density and kinematic radial gradients, as well as the local slope of the velocity curve. We find out that the scale density length of the Galaxy is 1.8+/-0.2kpc . We measure a large kinematic scale length for blue (young) stars, R_{sigma_r }=17+/-4kpc , while for red stars (predominantly old) we find R_{sigma_r }=9.7+/-0.8kpc (or R_{sigma_r (2}=4.8+/-0.4kpc ) ). From the stellar disc dynamical model, we determine explicitly the link between the tangential-vertical velocity (v_theta , v_z) coupling and the local shape of the potential. Using a restricted sample of 3-D velocity data, we measure z_o, the focus of the spheroidal coordinate system defining the best fitted Stäckel potential. The parameter z_o is related to the tilt of the velocity ellipsoid and more fundamentally to the mass gradient in the galactic disc. This parameter is found to be 5.7+/-1.4kpc . This implies that the galactic potential is not extremely flat and that the dark matter component is not confined in the galactic plane. Based on data from the Hipparcos astrometry satellite.

  12. Long-lived, long-period radial velocity variations in Aldebaran: A planetary companion and stellar activity

    NASA Astrophysics Data System (ADS)

    Hatzes, A. P.; Cochran, W. D.; Endl, M.; Guenther, E. W.; MacQueen, P.; Hartmann, M.; Zechmeister, M.; Han, I.; Lee, B.-C.; Walker, G. A. H.; Yang, S.; Larson, A. M.; Kim, K.-M.; Mkrtichian, , D. E.; Döllinger, M.; Simon, , A. E.; Girardi, L.

    2015-08-01

    Aims: We investigate the nature of the long-period radial velocity variations in α Tau first reported over 20 yr ago. Methods: We analyzed precise stellar radial velocity measurements for α Tau spanning over 30 yr. An examination of the Hα and Ca II λ8662 spectral lines, and Hipparcos photometry was also done to help discern the nature of the long-period radial velocity variations. Results: Our radial velocity data show that the long-period, low amplitude radial velocity variations are long-lived and coherent. Furthermore, Hα equivalent width measurements and Hipparcos photometry show no significant variations with this period. Another investigation of this star established that there was no variability in the spectral line shapes with the radial velocity period. An orbital solution results in a period of P = 628.96 ± 0.90 d, eccentricity, e = 0.10 ± 0.05, and a radial velocity amplitude, K = 142.1 ± 7.2 m s-1. Evolutionary tracks yield a stellar mass of 1.13 ± 0.11 M⊙, which corresponds to a minimum companion mass of 6.47 ± 0.53 MJup with an orbital semi-major axis of a = 1.46 ± 0.27 AU. After removing the orbital motion of the companion, an additional period of ≈520 d is found in the radial velocity data, but only in some time spans. A similar period is found in the variations in the equivalent width of Hα and Ca II. Variations at one-third of this period are also found in the spectral line bisector measurements. The ~520 d period is interpreted as the rotation modulation by stellar surface structure. Its presence, however, may not be long-lived, and it only appears in epochs of the radial velocity data separated by ~10 yr. This might be due to an activity cycle. Conclusions: The data presented here provide further evidence of a planetary companion to α Tau, as well as activity-related radial velocity variations. Based in part on observations obtained at the 2-m-Alfred Jensch Telescope at the Thüringer Landessternwarte Tautenburg and the

  13. The GALAH survey: stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere, and metallicity

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; De Silva, Gayandhi; Sharma, Sanjib; Hayden, Michael; Freeman, Ken; Bland-Hawthorn, Joss; Žerjal, Maruša; Asplund, Martin; Buder, Sven; D'Orazi, Valentina; Duong, Ly; Kos, Janez; Lin, Jane; Lind, Karin; Martell, Sarah; Schlesinger, Katharine; Simpson, Jeffrey D.; Zucker, Daniel B.; Zwitter, Tomaz; Anguiano, Borja; Carollo, Daniela; Casagrande, Luca; Cotar, Klemen; Cottrell, Peter L.; Ireland, Michael; Kafle, Prajwal R.; Horner, Jonathan; Lewis, Geraint F.; Nataf, David M.; Ting, Yuan-Sen; Watson, Fred; Wittenmyer, Rob; Wyse, Rosemary

    2018-07-01

    Using GALAH (GALactic Archaeology with HERMES) survey data of nearby stars, we look at how structure in the planar (u, v) velocity distribution depends on metallicity and on viewing direction within the Galaxy. In nearby stars with distance d ≲ 1 kpc, the Hercules stream is most strongly seen in higher metallicity stars [Fe/H] > 0.2. The Hercules stream peak v value depends on viewed galactic longitude, which we interpret as due to the gap between the stellar stream and more circular orbits being associated with a specific angular momentum value of about 1640 km s-1 kpc. The association of the gap with a particular angular momentum value supports a bar resonant model for the Hercules stream. Moving groups previously identified in Hipparcos(HIgh Precision Parallax COllecting Satellite) observations are easiest to see in stars nearer than 250 pc, and their visibility and peak velocities in the velocity distributions depends on both viewing direction (galactic longitude and hemisphere) and metallicity. We infer that there is fine structure in local velocity distributions that varies over distances of a few hundred pc in the Galaxy.

  14. Stellar Models of Rotating, PMS Stars with Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Mendes, L. T. S.; Landin, N. R.; Vaz, L. P. R.

    2014-10-01

    We report our ongoing studies of the magnetic field effects on the structure and evolution of low-mass stars, using a method first proposed by Lydon & Sofia (1995, ApJS 101, 357) which treats the magnetic field as a perturbation on the stellar structure equations. The ATON 2.3 stellar evolution code (Ventura et al. 1998, A&A 334, 953) now includes, via this method, the effects of an imposed, parametric magnetic field whose surface strength scales throughout the stellar interior according to one of the three following laws: (a) the ratio between the magnetic and gas energy densities, β_{mg}, is kept at its surface value across the stellar interior, (b) β_{mg} has a shallower decrease in deeper layers, or (c) β_{mg} decays as [m(r)/M_{*}]^{2/3}. We then computed rotating stellar models, starting at the pre-main sequence phase, of 0.4, 0.6, 0.8 and 1.0 M_{odot} with solar chemical composition, mixing-length convection treatment with &alpha=λ/H_{P}=1.5 and surface magnetic field strength of 50 G. Summarizing our main findings: (1) we confirm that the magnetic field inhibits convection and so reduces the convective envelope; (2) the magnetic perturbation effect dominates over that of rotation for 0.8 and 1.0 M_{odot} masses, but their relative impact shows a reversal during the Hayashi tracks at lower masses (0.4 and 0.6 M_{odot}); in any case, the magnetic perturbation makes the tracks cooler; and (3) the magnetic field contributes to higher surface lithium abundances.

  15. Dense Velocity Field of Turkey

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Aktug, B.; Dogru, A.; Tasci, L.

    2017-12-01

    While the GNSS-based crustal deformation studies in Turkey date back to early 1990s, a homogenous velocity field utilizing all the available data is still missing. Regional studies employing different site distributions, observation plans, processing software and methodology not only create reference frame variations but also heterogeneous stochastic models. While the reference frame effect between different velocity fields could easily be removed by estimating a set of rotations, the homogenization of the stochastic models of the individual velocity fields requires a more detailed analysis. Using a rigorous Variance Component Estimation (VCE) methodology, we estimated the variance factors for each of the contributing velocity fields and combined them into a single homogenous velocity field covering whole Turkey. Results show that variance factors between velocity fields including the survey mode and continuous observations can vary a few orders of magnitude. In this study, we present the most complete velocity field in Turkey rigorously combined from 20 individual velocity fields including the 146 station CORS network and totally 1072 stations. In addition, three GPS campaigns were performed along the North Anatolian Fault and Aegean Region to fill the gap between existing velocity fields. The homogenously combined new velocity field is nearly complete in terms of geographic coverage, and will serve as the basis for further analyses such as the estimation of the deformation rates and the determination of the slip rates across main fault zones.

  16. Magnetic field and radial velocities of the star Chi Draconis A

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-Cheol; Gadelshin, D.; Han, Inwoo; Kang, Dong-Il; Kim, Kang-Min; Valyavin, G.; Galazutdinov, G.; Jeong, Gwanghui; Beskrovnaya, N.; Burlakova, T.; Grauzhanina, A.; Ikhsanov, N. R.; Kholtygin, A. F.; Valeev, A.; Bychkov, V.; Park, Myeong-Gu

    2018-01-01

    We present high-resolution spectropolarimetric observations of the spectroscopic binary χ Dra. Spectral lines in the spectrum of the main component χ Dra A show variable Zeeman displacement, which confirms earlier suggestions about the presence of a weak magnetic field on the surface of this star. Within about 2 yr of time base of our observations, the longitudinal component BL of the magnetic field exhibits variation from -11.5 ± 2.5 to +11.1 ± 2.1 G with a period of about 23 d. Considering the rotational velocity of χ Dra A in the literature and that newly measured in this work, this variability may be explained by the stellar rotation under the assumption that the magnetic field is globally stable. Our new measurements of the radial velocities (RV) in high-resolution I-spectra of χ Dra A refined the orbital parameters and reveal persistent deviations of RVs from the orbital curve. We suspect that these deviations may be due to the influence of local magnetically generated spots, pulsations, or a Jupiter-size planet orbiting the system.

  17. The DiskMass Survey. VI. Gas and stellar kinematics in spiral galaxies from PPak integral-field spectroscopy

    NASA Astrophysics Data System (ADS)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Schechtman-Rook, Andrew; Andersen, David R.; Swaters, Rob A.

    2013-09-01

    We present ionized-gas ([Oiii]λ5007 Å) and stellar kinematics (velocities and velocity dispersions) for 30 nearly face-on spiral galaxies out to as many as three K-band disk scale lengths (hR). These data have been derived from PPak integral-field-unit spectroscopy from 4980-5370 Å observed at a mean resolution of λ/Δλ = 7700 (σinst = 17 km s-1). These data are a fundamental product of our survey and will be used in companion papers to, e.g., derive the detailed (baryonic+dark) mass budget of each galaxy in our sample. Our presentation provides a comprehensive description of the observing strategy and data reduction, including a robust measurement and removal of shift, scale, and rotation effects in the data due to instrumental flexure. Using an in-plane coordinate system determined by fitting circular-speed curves to our velocity fields, we derive azimuthally averaged rotation curves and line-of-sight velocity dispersion (σLOS) and luminosity profiles for both the stars and [Oiii]-emitting gas. Along with a clear presentation of the data, we demonstrate: (1) The [Oiii] and stellar rotation curves exhibit a clear signature of asymmetric drift with a rotation difference that is 11% of the maximum rotation speed of the galaxy disk, comparable to measurements in the solar neighborhood in the Milky Way. (2) The e-folding length of the stellar velocity dispersion (hσ) is 2hR on average, as expected for a disk with a constant scale height and mass-to-light ratio, with a scatter that is notably smaller for massive, high-surface-brightness disks in the most luminous galaxies. (3) At radii larger than 1.5hR, σLOS tends to decline slower than the best-fitting exponential function, which may be due to an increase in the disk mass-to-light ratio, disk flaring, or disk heating by the dark-matter halo. (4) A strong correlation exists between the central vertical stellar velocity dispersion of the disks (σz,0) and their circular rotational speed at 2.2hR (V2.2h

  18. A Stellar Mass Threshold for Quenching of Field Galaxies

    NASA Astrophysics Data System (ADS)

    Geha, M.; Blanton, M. R.; Yan, R.; Tinker, J. L.

    2012-09-01

    We demonstrate that dwarf galaxies (107 < M stellar < 109 M ⊙, -12 > Mr > -18) with no active star formation are extremely rare (<0.06%) in the field. Our sample is based on the NASA-Sloan Atlas which is a reanalysis of the Sloan Digital Sky Survey Data Release 8. We examine the relative number of quenched versus star-forming dwarf galaxies, defining quenched galaxies as having no Hα emission (EWHα < 2 Å) and a strong 4000 Å break. The fraction of quenched dwarf galaxies decreases rapidly with increasing distance from a massive host, leveling off for distances beyond 1.5 Mpc. We define galaxies beyond 1.5 Mpc of a massive host galaxy to be in the field. We demonstrate that there is a stellar mass threshold of M stellar < 1.0 × 109 M ⊙ below which quenched galaxies do not exist in the field. Below this threshold, we find that none of the 2951 field dwarf galaxies are quenched; all field dwarf galaxies show evidence for recent star formation. Correcting for volume effects, this corresponds to a 1σ upper limit on the quenched fraction of 0.06%. In more dense environments, quenched galaxies account for 23% of the dwarf population over the same stellar mass range. The majority of quenched dwarf galaxies (often classified as dwarf elliptical galaxies) are within 2 virial radii of a massive galaxy, and only a few percent of quenched dwarf galaxies exist beyond 4 virial radii. Thus, for galaxies with stellar mass less than 1.0 × 109 M ⊙, ending star formation requires the presence of a more massive neighbor, providing a stringent constraint on models of star formation feedback.

  19. Stellar Parameters and Radial Velocities of Hot Stars in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Hanes, Richard J.; McSwain, M. Virginia; Povich, Matthew S.

    2018-05-01

    The Carina Nebula is an active star-forming region in the southern sky that is of particular interest due to the presence of a large number of massive stars in a wide array of evolutionary stages. Here, we present the results of the spectroscopic analysis of 82 B-type stars and 33 O-type stars that were observed in 2013 and 2014. For 82 B-type stars without line blending, we fit model spectra from the Tlusty BSTAR2006 grid to the observed profiles of Hγ and He λλ4026, 4388, and 4471 to measure the effective temperatures, surface gravities, and projected rotational velocities. We also measure the masses, ages, radii, bolometric luminosities, and distances of these stars. From the radial velocities measured in our sample, we find 31 single lined spectroscopic binary candidates. We find a high dispersion of radial velocities among our sample stars, and we argue that the Carina Nebula stellar population has not yet relaxed and become virialized.

  20. Quasi-Axially Symmetric Stellarators with 3 Field Periods

    NASA Astrophysics Data System (ADS)

    Garabedian, Paul; Ku, Long-Poe

    1998-11-01

    Compact hybrid configurations with 2 field periods have been studied recently as candidates for a proof of principle experiment at PPPL, cf. A. Reiman et al., Physics design of a high beta quasi-axially symmetric stellarator, J. Plas. Fus. Res. SERIES 1, 429(1998). This enterprise has led us to the discovery of a family of quasi-axially symmetric stellarators with 3 field periods that seem to have significant advantages, although their aspect ratios are a little larger. They have reversed shear and perform better in a local analysis of ballooning modes. Nonlinear equilibrium and stability calculations predict that the average beta limit may be as high as 6% if the bootstrap current turns out to be as big as that expected in comparable tokamaks. The concept relies on a combination of helical fields and bootstrap current to achieve adequate rotational transform at low aspect ratio. A detailed manuscript describing some of this work will be published soon, cf. P.R. Garabedian, Quasi-axially symmetric stellarators, Proc. Natl. Acad. Sci. USA 95 (1998).

  1. A STELLAR MASS THRESHOLD FOR QUENCHING OF FIELD GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geha, M.; Blanton, M. R.; Yan, R.

    2012-09-20

    We demonstrate that dwarf galaxies (10{sup 7} < M{sub stellar} < 10{sup 9} M{sub Sun }, -12 > M{sub r} > -18) with no active star formation are extremely rare (<0.06%) in the field. Our sample is based on the NASA-Sloan Atlas which is a reanalysis of the Sloan Digital Sky Survey Data Release 8. We examine the relative number of quenched versus star-forming dwarf galaxies, defining quenched galaxies as having no H{alpha} emission (EW{sub H{alpha}} < 2 A) and a strong 4000 A break. The fraction of quenched dwarf galaxies decreases rapidly with increasing distance from a massive host,more » leveling off for distances beyond 1.5 Mpc. We define galaxies beyond 1.5 Mpc of a massive host galaxy to be in the field. We demonstrate that there is a stellar mass threshold of M{sub stellar} < 1.0 Multiplication-Sign 10{sup 9} M{sub Sun} below which quenched galaxies do not exist in the field. Below this threshold, we find that none of the 2951 field dwarf galaxies are quenched; all field dwarf galaxies show evidence for recent star formation. Correcting for volume effects, this corresponds to a 1{sigma} upper limit on the quenched fraction of 0.06%. In more dense environments, quenched galaxies account for 23% of the dwarf population over the same stellar mass range. The majority of quenched dwarf galaxies (often classified as dwarf elliptical galaxies) are within 2 virial radii of a massive galaxy, and only a few percent of quenched dwarf galaxies exist beyond 4 virial radii. Thus, for galaxies with stellar mass less than 1.0 Multiplication-Sign 10{sup 9} M{sub Sun }, ending star formation requires the presence of a more massive neighbor, providing a stringent constraint on models of star formation feedback.« less

  2. Gemini NIFS survey of feeding and feedback processes in nearby active galaxies - I. Stellar kinematics

    NASA Astrophysics Data System (ADS)

    Riffel, Rogemar A.; Storchi-Bergmann, Thaisa; Riffel, Rogerio; Dahmer-Hahn, Luis G.; Diniz, Marlon R.; Schönell, Astor J.; Dametto, Natacha Z.

    2017-09-01

    We use the Gemini Near-Infrared Integral Field Spectrograph (NIFS) to map the stellar kinematics of the inner few hundred parsecs of a sample of 16 nearby Seyfert galaxies, at a spatial resolution of tens of parsecs and spectral resolution of 40 km s- 1. We find that the line-of-sight (LOS) velocity fields for most galaxies are well reproduced by rotating disc models. The kinematic position angle (PA) derived for the LOS velocity field is consistent with the large-scale photometric PA. The residual velocities are correlated with the hard X-ray luminosity, suggesting that more luminous active galactic nuclei have a larger impact in the surrounding stellar dynamics. The central velocity dispersion values are usually higher than the rotation velocity amplitude, what we attribute to the strong contribution of bulge kinematics in these inner regions. For 50 per cent of the galaxies, we find an inverse correlation between the velocities and the h3 Gauss-Hermitte moment, implying red wings in the blueshifted side and blue wings in the redshifted side of the velocity field, attributed to the movement of the bulge stars lagging the rotation. Two of the 16 galaxies (NGC 5899 and Mrk 1066) show an S-shape zero velocity line, attributed to the gravitational potential of a nuclear bar. Velocity dispersion (σ) maps show rings of low-σ values (˜50-80 km s- 1) for four objects and 'patches' of low σ for six galaxies at 150-250 pc from the nucleus, attributed to young/ intermediate age stellar populations.

  3. Testing fundamental physics with distant star clusters: theoretical models for pressure-supported stellar systems

    NASA Astrophysics Data System (ADS)

    Haghi, Hosein; Baumgardt, Holger; Kroupa, Pavel; Grebel, Eva K.; Hilker, Michael; Jordi, Katrin

    2009-05-01

    We investigate the mean velocity dispersion and the velocity dispersion profile of stellar systems in modified Newtonian dynamics (MOND), using the N-body code N-MODY, which is a particle-mesh-based code with a numerical MOND potential solver developed by Ciotti, Londrillo & Nipoti. We have calculated mean velocity dispersions for stellar systems following Plummer density distributions with masses in the range of 104 to 109Msolar and which are either isolated or immersed in an external field. Our integrations reproduce previous analytic estimates for stellar velocities in systems in the deep MOND regime (ai, ae << a0), where the motion of stars is either dominated by internal accelerations (ai >> ae) or constant external accelerations (ae >> ai). In addition, we derive for the first time analytic formulae for the line-of-sight velocity dispersion in the intermediate regime (ai ~ ae ~ a0). This allows for a much-improved comparison of MOND with observed velocity dispersions of stellar systems. We finally derive the velocity dispersion of the globular cluster Pal14 as one of the outer Milky Way halo globular clusters that have recently been proposed as a differentiator between Newtonian and MONDian dynamics.

  4. The Gaia-ESO Survey: Empirical determination of the precision of stellar radial velocities and projected rotation velocities

    NASA Astrophysics Data System (ADS)

    Jackson, R. J.; Jeffries, R. D.; Lewis, J.; Koposov, S. E.; Sacco, G. G.; Randich, S.; Gilmore, G.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J. E.; Feltzing, S.; Ferguson, A. M. N.; Micela, G.; Neguerela, I.; Prusti, T.; Rix, H.-W.; Vallenari, A.; Alfaro, E. J.; Allende Prieto, C.; Babusiaux, C.; Bensby, T.; Blomme, R.; Bragaglia, A.; Flaccomio, E.; Francois, P.; Hambly, N.; Irwin, M.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Van Eck, S.; Walton, N.; Bayo, A.; Bergemann, M.; Carraro, G.; Costado, M. T.; Damiani, F.; Edvardsson, B.; Franciosini, E.; Frasca, A.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lind, K.; Magrini, L.; Marconi, G.; Martayan, C.; Masseron, T.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2015-08-01

    Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims: A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (vsini) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods: We present an analysis to empirically quantify the size and distribution of uncertainties in RV and vsini using spectra from repeated exposures of the same stars. Results: We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and vsini, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student's t-distributions than by normal distributions. Conclusions: Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the vsini precision for stars in young clusters, as a function of S/N, vsini and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26 km s-1, dependent on instrumental configuration. Based on observations collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia- ESO Large Public Survey (188.B-3002).Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A75

  5. Dark Matter Profiles in Dwarf Galaxies: A Statistical Sample Using High-Resolution Hα Velocity Fields from PCWI

    NASA Astrophysics Data System (ADS)

    Relatores, Nicole C.; Newman, Andrew B.; Simon, Joshua D.; Ellis, Richard; Truong, Phuongmai N.; Blitz, Leo

    2018-01-01

    We present high quality Hα velocity fields for a sample of nearby dwarf galaxies (log M/M⊙ = 8.4-9.8) obtained as part of the Dark Matter in Dwarf Galaxies survey. The purpose of the survey is to investigate the cusp-core discrepancy by quantifying the variation of the inner slope of the dark matter distributions of 26 dwarf galaxies, which were selected as likely to have regular kinematics. The data were obtained with the Palomar Cosmic Web Imager, located on the Hale 5m telescope. We extract rotation curves from the velocity fields and use optical and infrared photometry to model the stellar mass distribution. We model the total mass distribution as the sum of a generalized Navarro-Frenk-White dark matter halo along with the stellar and gaseous components. We present the distribution of inner dark matter density profile slopes derived from this analysis. For a subset of galaxies, we compare our results to an independent analysis based on CO observations. In future work, we will compare the scatter in inner density slopes, as well as their correlations with galaxy properties, to theoretical predictions for dark matter core creation via supernovae feedback.

  6. The PAndAS Field of Streams: Stellar Structures in the Milky Way Halo toward Andromeda and Triangulum

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas F.; Ibata, Rodrigo A.; Rich, R. Michael; Collins, Michelle L. M.; Fardal, Mark A.; Irwin, Michael J.; Lewis, Geraint F.; McConnachie, Alan W.; Babul, Arif; Bate, Nicholas F.; Chapman, Scott C.; Conn, Anthony R.; Crnojević, Denija; Ferguson, Annette M. N.; Mackey, A. Dougal; Navarro, Julio F.; Peñarrubia, Jorge; Tanvir, Nial T.; Valls-Gabaud, David

    2014-05-01

    We reveal the highly structured nature of the Milky Way (MW) stellar halo within the footprint of the Pan-Andromeda Archaeological Survey (PAndAS) photometric survey from blue main sequence (MS) and MS turn-off stars. We map no fewer than five stellar structures within a heliocentric range of ~5-30 kpc. Some of these are known (the Monoceros Ring, the Pisces/Triangulum globular cluster stream), but we also uncover three well-defined stellar structures that could be, at least partly, responsible for the so-called Triangulum/Andromeda and Triangulum/Andromeda 2 features. In particular, we trace a new faint stellar stream located at a heliocentric distance of ~17 kpc. With a surface brightness of Σ V ~ 32-32.5 mag arcsec-2, it follows an orbit that is almost parallel to the Galactic plane north of M31 and has so far eluded surveys of the MW halo as these tend to steer away from regions dominated by the Galactic disk. Investigating our follow-up spectroscopic observations of PAndAS, we serendipitously uncover a radial velocity signature from stars that have colors and magnitudes compatible with the stream. From the velocity of eight likely member stars, we show that this stellar structure is dynamically cold, with an unresolved velocity dispersion that is lower than 7.1 km s-1 at the 90% confidence level. Along with the width of the stream (300-650 pc), its dynamics point to a dwarf-galaxy-accretion origin. The numerous stellar structures we can map in the MW stellar halo between 5 and 30 kpc and their varying morphology is a testament to the complex nature of the stellar halo at these intermediate distances.

  7. The PAndAS field of streams: Stellar structures in the milky way halo toward Andromeda and Triangulum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Nicolas F.; Ibata, Rodrigo A.; Rich, R. Michael

    We reveal the highly structured nature of the Milky Way (MW) stellar halo within the footprint of the Pan-Andromeda Archaeological Survey (PAndAS) photometric survey from blue main sequence (MS) and MS turn-off stars. We map no fewer than five stellar structures within a heliocentric range of ∼5-30 kpc. Some of these are known (the Monoceros Ring, the Pisces/Triangulum globular cluster stream), but we also uncover three well-defined stellar structures that could be, at least partly, responsible for the so-called Triangulum/Andromeda and Triangulum/Andromeda 2 features. In particular, we trace a new faint stellar stream located at a heliocentric distance of ∼17more » kpc. With a surface brightness of Σ {sub V} ∼ 32-32.5 mag arcsec{sup –2}, it follows an orbit that is almost parallel to the Galactic plane north of M31 and has so far eluded surveys of the MW halo as these tend to steer away from regions dominated by the Galactic disk. Investigating our follow-up spectroscopic observations of PAndAS, we serendipitously uncover a radial velocity signature from stars that have colors and magnitudes compatible with the stream. From the velocity of eight likely member stars, we show that this stellar structure is dynamically cold, with an unresolved velocity dispersion that is lower than 7.1 km s{sup –1} at the 90% confidence level. Along with the width of the stream (300-650 pc), its dynamics point to a dwarf-galaxy-accretion origin. The numerous stellar structures we can map in the MW stellar halo between 5 and 30 kpc and their varying morphology is a testament to the complex nature of the stellar halo at these intermediate distances.« less

  8. Polarized radiation diagnostics of stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    Mathys, Gautier

    The main techniques used to diagnose magnetic fields in stars from polarimetric observations are presented. First, a summary of the physics of spectral line formation in the presence of a magnetic field is given. Departures from the simple case of linear Zeeman effect are briefly considered: partial Paschen-Back effect, contribution of hyperfine structure, and combined Stark and Zeeman effects. Important approximate solutions of the equation of transfer of polarized light in spectral lines are introduced. The procedure for disk-integration of emergent Stokes profiles, which is central to stellar magnetic field studies, is described, with special attention to the treatment of stellar rotation. This formalism is used to discuss the determination of the mean longitudinal magnetic field (through the photographic technique and through Balmer line photopolarimetry). This is done within the specific framework of Ap stars, which, with their unique large-scale organized magnetic fields, are an ideal laboratory for studies of stellar magnetism. Special attention is paid to those Ap stars whose magnetically split line components are resolved in high-dispersion Stokes I spectra, and to the determination of their mean magnetic field modulus. Various techniques of exploitation of the information contained in polarized spectral line profiles are reviewed: the moment technique (in particular, the determination of the crossover and of the mean quadratic field), Zeeman-Doppler imaging, and least-squares deconvolution. The prospects that these methods open for linear polarization studies are sketched. The way in which linear polarization diagnostics complement their Stokes I and V counterparts is emphasized by consideration of the results of broad band linear polarization measurements. Illustrations of the use of various diagnostics to derive properties of the magnetic fields of Ap stars are given. This is used to show the interest of deriving more physically realistic models of the

  9. Stellar wind erosion of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Schnepf, N. R.; Lovelace, R. V. E.; Romanova, M. M.; Airapetian, V. S.

    2015-04-01

    An analytic model is developed for the erosion of protoplanetary gas discs by high-velocity magnetized stellar winds. The winds are centrifugally driven from the surface of rapidly rotating, strongly magnetized young stars. The presence of the magnetic field in the wind leads to Reynolds numbers sufficiently large to cause a strongly turbulent wind/disc boundary layer which entrains and carries away the disc gas. The model uses the conservation of mass and momentum in the turbulent boundary layer. The time-scale for significant erosion depends on the disc accretion speed, disc accretion rate, the wind mass-loss rate, and the wind velocity. The time-scale is estimated to be ˜2 × 106 yr. The analytic model assumes a steady stellar wind with mass- loss rate dot {M}}_w ˜ 10^{-10} M_{⊙} yr-1 and velocity vw ˜ 103 km s-1. A significant contribution to the disc erosion can come from frequent powerful coronal mass ejections (CMEs) where the average mass-loss rate in CMEs, dot{M}_CME, and velocities, vCME, have values comparable to those for the steady wind.

  10. The EDGE-CALIFA survey: validating stellar dynamical mass models with CO kinematics

    NASA Astrophysics Data System (ADS)

    Leung, Gigi Y. C.; Leaman, Ryan; van de Ven, Glenn; Lyubenova, Mariya; Zhu, Ling; Bolatto, Alberto D.; Falcón-Barroso, Jesus; Blitz, Leo; Dannerbauer, Helmut; Fisher, David B.; Levy, Rebecca C.; Sanchez, Sebastian F.; Utomo, Dyas; Vogel, Stuart; Wong, Tony; Ziegler, Bodo

    2018-06-01

    Deriving circular velocities of galaxies from stellar kinematics can provide an estimate of their total dynamical mass, provided a contribution from the velocity dispersion of the stars is taken into account. Molecular gas (e.g. CO), on the other hand, is a dynamically cold tracer and hence acts as an independent circular velocity estimate without needing such a correction. In this paper, we test the underlying assumptions of three commonly used dynamical models, deriving circular velocities from stellar kinematics of 54 galaxies (S0-Sd) that have observations of both stellar kinematics from the Calar Alto Legacy Integral Field Area (CALIFA) survey, and CO kinematics from the Extragalactic Database for Galaxy Evolution (EDGE) survey. We test the asymmetric drift correction (ADC) method, as well as Jeans, and Schwarzschild models. The three methods each reproduce the CO circular velocity at 1Re to within 10 per cent. All three methods show larger scatter (up to 20 per cent) in the inner regions (R < 0.4Re) that may be due to an increasingly spherical mass distribution (which is not captured by the thin disc assumption in ADC), or non-constant stellar M/L ratios (for both the JAM and Schwarzschild models). This homogeneous analysis of stellar and gaseous kinematics validates that all three models can recover Mdyn at 1Re to better than 20 per cent, but users should be mindful of scatter in the inner regions where some assumptions may break down.

  11. On Animating 2D Velocity Fields

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex; Yan, Jerry (Technical Monitor)

    2001-01-01

    A velocity field, even one that represents a steady state flow, implies a dynamical system. Animated velocity fields is an important tool in understanding such complex phenomena. This paper looks at a number of techniques that animate velocity fields and propose two new alternatives. These are texture advection and streamline cycling. The common theme among these techniques is the use of advection on some texture to generate a realistic animation of the velocity field. Texture synthesis and selection for these methods are presented. Strengths and weaknesses of the techniques are also discussed in conjunctions with several examples.

  12. On Animating 2D Velocity Fields

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex

    2000-01-01

    A velocity field. even one that represents a steady state flow implies a dynamical system. Animated velocity fields is an important tool in understanding such complex phenomena. This paper looks at a number of techniques that animate velocity fields and propose two new alternatives, These are texture advection and streamline cycling. The common theme among these techniques is the use of advection on some texture to generate a realistic animation of the velocity field. Texture synthesis and selection for these methods are presented. Strengths and weaknesses of the techniques are also discussed in conjunction with several examples.

  13. Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Bonito, R.; Argiroffi, C.; Reale, F.; Peres, G.; Miceli, M.; Matsakos, T.; Stehlé, C.; Ibgui, L.; de Sa, L.; Chièze, J. P.; Lanz, T.

    2013-11-01

    Context. According to the magnetospheric accretion model, hot spots form on the surface of classical T Tauri stars (CTTSs) in regions where accreting disk material impacts the stellar surface at supersonic velocity, generating a shock. Aims: We investigate the dynamics and stability of postshock plasma that streams along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. Methods: We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model considers the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction (including the effects of heat flux saturation). We explore different configurations and strengths of the magnetic field. Results: The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. In the case of weak magnetic fields (plasma β ≳ 1 in the postshock region), a large component of B may develop perpendicular to the stream at the base of the accretion column, which limits the sinking of the shocked plasma into the chromosphere and perturbs the overstable shock oscillations induced by radiative cooling. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields (β < 1 in the postshock region close to the chromosphere), the field configuration determines the position of the shock and its stand-off height. If the field is strongly tapered close to the chromosphere, an oblique shock may form well above the stellar surface at the height where the plasma β ≈ 1. In general, we find that a nonuniform magnetic field makes the distribution of emission measure vs. temperature of the postshock plasma at T > 106 K lower than when there is uniform magnetic field

  14. Stellar feedback strongly alters the amplification and morphology of galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Su, Kung-Yi; Hayward, Christopher C.; Hopkins, Philip F.; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan

    2018-01-01

    Using high-resolution magnetohydrodynamic simulations of idealized, non-cosmological galaxies, we investigate how cooling, star formation and stellar feedback affect galactic magnetic fields. We find that the amplification histories, saturation values and morphologies of the magnetic fields vary considerably depending on the baryonic physics employed, primarily because of differences in the gas density distribution. In particular, adiabatic runs and runs with a subgrid (effective equation of state) stellar feedback model yield lower saturation values and morphologies that exhibit greater large-scale order compared with runs that adopt explicit stellar feedback and runs with cooling and star formation but no feedback. The discrepancies mostly lie in gas denser than the galactic average, which requires cooling and explicit fragmentation to capture. Independent of the baryonic physics included, the magnetic field strength scales with gas density as B ∝ n2/3, suggesting isotropic flux freezing or equipartition between the magnetic and gravitational energies during the field amplification. We conclude that accurate treatments of cooling, star formation and stellar feedback are crucial for obtaining the correct magnetic field strength and morphology in dense gas, which, in turn, is essential for properly modelling other physical processes that depend on the magnetic field, such as cosmic ray feedback.

  15. Disruption of circumstellar discs by large-scale stellar magnetic fields

    NASA Astrophysics Data System (ADS)

    ud-Doula, Asif; Owocki, Stanley P.; Kee, Nathaniel Dylan

    2018-05-01

    Spectropolarimetric surveys reveal that 8-10% of OBA stars harbor large-scale magnetic fields, but thus far no such fields have been detected in any classical Be stars. Motivated by this, we present here MHD simulations for how a pre-existing Keplerian disc - like that inferred to form from decretion of material from rapidly rotating Be stars - can be disrupted by a rotation-aligned stellar dipole field. For characteristic stellar and disc parameters of a near-critically rotating B2e star, we find that a polar surface field strength of just 10 G can significantly disrupt the disc, while a field of 100 G, near the observational upper limit inferred for most Be stars, completely destroys the disc over just a few days. Our parameter study shows that the efficacy of this magnetic disruption of a disc scales with the characteristic plasma beta (defined as the ratio between thermal and magnetic pressure) in the disc, but is surprisingly insensitive to other variations, e.g. in stellar rotation speed, or the mass loss rate of the star's radiatively driven wind. The disc disruption seen here for even a modest field strength suggests that the presumed formation of such Be discs by decretion of material from the star would likely be strongly inhibited by such fields; this provides an attractive explanation for why no large-scale fields are detected from such Be stars.

  16. The StEllar Counterparts of COmpact high velocity clouds (SECCO) survey. II. Sensitivity of the survey and the atlas of synthetic dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Beccari, G.; Bellazzini, M.; Battaglia, G.; Ibata, R.; Martin, N.; Testa, V.; Cignoni, M.; Correnti, M.

    2016-06-01

    The searching for StEllar Counterparts of COmpact high velocity clouds (SECCO) survey is devoted to the search for stellar counterparts within ultra compact high velocity clouds that are candidate low-mass, low-luminosity galaxies. We present the results of a set of simulations aimed at the quantitative estimate of the sensitivity of the survey as a function of the total luminosity, size, and distance of the stellar systems we are looking for. For all of our synthetic galaxies we assumed an exponential surface brightness profile and an old and metal-poor population. The synthetic galaxies are simulated both on the images and on the photometric catalogues, taking all the observational effects into account. In the fields where the available observational material is of top quality (≃36% of the SECCO fields), we detect synthetic galaxies as ≥5σ over-densities of resolved stars down to μV,h ≃ 30.0 mag/arcsec2, for D ≤ 1.5 Mpc, and down to μV,h ≃ 29.5 mag/arcsec2, for D ≤ 2.5 Mpc. In the field with the worst observational material of the whole survey, we detect synthetic galaxies with μV,h ≤ 28.8 mag/arcsec2 out to D ≤ 1.0 Mpc, and those with μV,h ≤ 27.5 mag/arcsec2 out to D ≤ 2.5 Mpc. Dwarf galaxies with MV = -10.0, with sizes in the range spanned by known dwarfs, are detected by visual inspection of the images up to D = 5 Mpc independent of the image quality. In the best quality images, dwarfs are partially resolved into stars up to D = 3.0 Mpc and completely unresolved at D = 5 Mpc. As an independent test of the sensitivity of our images to low surface brightness galaxies, we report on the detection of several dwarf spheroidal galaxies probably located in the Virgo cluster with MV ≲ -8.0 and μV,h ≲ 26.8 mag/arcsec2. The nature of the previously discovered SECCO 1 stellar system, also likely located in the Virgo cluster, is rediscussed in comparison with these dwarfs. While specific for the SECCO survey, our study may also provide general

  17. Integral-field kinematics and stellar populations of early-type galaxies out to three half-light radii

    NASA Astrophysics Data System (ADS)

    Boardman, Nicholas Fraser; Weijmans, Anne-Marie; van den Bosch, Remco; Kuntschner, Harald; Emsellem, Eric; Cappellari, Michele; de Zeeuw, Tim; Falcón-Barroso, Jesus; Krajnović, Davor; McDermid, Richard; Naab, Thorsten; van de Ven, Glenn; Yildirim, Akin

    2017-11-01

    We observed 12 nearby H I-detected early-type galaxies (ETGs) of stellar mass ˜1010 M⊙ ≤ M* ≤ ˜1011 M⊙ with the Mitchell Integral-Field Spectrograph, reaching approximately three half-light radii in most cases. We extracted line-of-sight velocity distributions for the stellar and gaseous components. We find little evidence of transitions in the stellar kinematics of the galaxies in our sample beyond the central effective radius, with centrally fast-rotating galaxies remaining fast-rotating and centrally slow-rotating galaxies likewise remaining slow-rotating. This is consistent with these galaxies having not experienced late dry major mergers; however, several of our objects have ionized gas that is misaligned with respect to their stars, suggesting some kind of past interaction. We extract Lick index measurements of the commonly used H β, Fe5015, Mg b, Fe5270 and Fe5335 absorption features, and we find most galaxies to have flat H β gradients and negative Mg b gradients. We measure gradients of age, metallicity and abundance ratio for our galaxies using spectral fitting, and for the majority of our galaxies find negative age and metallicity gradients. We also find the stellar mass-to-light ratios to decrease with radius for most of the galaxies in our sample. Our results are consistent with a view in which intermediate-mass ETGs experience mostly quiet evolutionary histories, but in which many have experienced some kind of gaseous interaction in recent times.

  18. McDonald Observatory Planetary Search - A high precision stellar radial velocity survey for other planetary systems

    NASA Technical Reports Server (NTRS)

    Cochran, William D.; Hatzes, Artie P.

    1993-01-01

    The McDonald Observatory Planetary Search program surveyed a sample of 33 nearby F, G, and K stars since September 1987 to search for substellar companion objects. Measurements of stellar radial velocity variations to a precision of better than 10 m/s were performed as routine observations to detect Jovian planets in orbit around solar type stars. Results confirm the detection of a companion object to HD114762.

  19. Looking for Galaxies in All the Right Places: A Search for Stellar Populations in ALFALFA’s Ultra-compact High Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2018-01-01

    Nearby gas-rich dwarf galaxies are excellent laboratories for investigating the baryonic feedback processes that govern star formation and galaxy evolution in galaxies at the extreme end of the mass function. Detecting and studying such objects may help resolve the well-known tension between cosmological model predictions for low-mass dark matter halos and observations. The ALFALFA neutral hydrogen (Hi) survey has detected a sample of isolated ultra-compact high-velocity Hi clouds (UCHVCs) with kinematic properties that make them likely members of the Local Volume, but that have no optical counterparts in existing optical surveys. This UCHVC sample possesses Hi properties (at 1 Mpc, Hi masses of ~105-106 M⊙, Hi diameters of ~2-3 kpc, and dynamical masses of ~107-108 M⊙) similar to other known ultra-faint dwarf galaxies like Leo T. Following the discovery of Leo P, an extremely metal-poor, gas-rich star-forming dwarf galaxy associated with an ALFALFA UCHVC, we have initiated a campaign to obtain deep optical imaging of 56 UCHVCs using the wide field-of-view, high-resolution ODI camera on the WIYN 3.5-m telescope. Here we present a brief overview of our campaign to search for resolved stellar populations associated with the UCHVCs in our optical images, and initial results from our survey.After creating a stellar catalog from the pipeline-reduced and stacked ODI g- and i-band images, we apply a color-magnitude filter tuned for old, metal-poor stellar populations to select red giant branch stars at distances between 250 kpc and 2 Mpc. The spatial distribution of the stars selected by the filter is then smoothed, and overdensities in the fields are identified. Of the 22 targets analyzed to date, seven have associated stellar populations detected at a high confidence (92% to 99.9% significance). The detected objects have a range of distances (from 350 kpc to 1.6 Mpc) and have optical properties similar to those of ultra-faint dwarf galaxies. These objects have

  20. On the stability and collisions in triple stellar systems

    NASA Astrophysics Data System (ADS)

    He, Matthias Y.; Petrovich, Cristobal

    2018-02-01

    A significant fraction of main-sequence (MS) stars are part of a triple system. We study the long-term stability and dynamical outcomes of triple stellar systems using a large number of long-term direct N-body integrations with relativistic precession. We find that the previously proposed stability criteria by Eggleton & Kiseleva and Mardling & Aarseth predict the stability against ejections reasonably well for a wide range of parameters. Assuming that the triple stellar systems follow orbital and mass distributions from FGK binary stars in the field, we find that ˜ 1 per cent and ˜ 0.5 per cent of the triple systems lead to a direct head-on collision (impact velocity ˜ escape velocity) between MS stars and between a MS star and a stellar-mass compact object, respectively. We conclude that triple interactions are the dominant channel for direct collisions involving a MS star in the field with a rate of one event every ˜100 years in the Milky Way. We estimate that the fraction of triple systems that form short-period binaries is up to ˜ 23 per cent with only up to ˜ 13 per cent being the result of three-body interactions with tidal dissipation, which is consistent with previous work using a secular code.

  1. Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles

    NASA Astrophysics Data System (ADS)

    Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda

    2018-01-01

    Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.

  2. Data reduction, radial velocities and stellar parameters from spectra in the very low signal-to-noise domain

    NASA Astrophysics Data System (ADS)

    Malavolta, Luca

    2013-10-01

    Large astronomical facilities usually provide data reduction pipeline designed to deliver ready-to-use scientific data, and too often as- tronomers are relying on this to avoid the most difficult part of an astronomer job Standard data reduction pipelines however are usu- ally designed and tested to have good performance on data with av- erage Signal to Noise Ratio (SNR) data, and the issues that are related with the reduction of data in the very low SNR domain are not taken int account properly. As a result, informations in data with low SNR are not optimally exploited. During the last decade our group has collected thousands of spec- tra using the GIRAFFE spectrograph at Very Large Telescope (Chile) of the European Southern Observatory (ESO) to determine the ge- ometrical distance and dynamical state of several Galactic Globular Clusters but ultimately the analysis has been hampered by system- atics in data reduction, calibration and radial velocity measurements. Moreover these data has never been exploited to get other informa- tions like temperature and metallicity of stars, because considered too noisy for these kind of analyses. In this thesis we focus our attention on data reduction and analysis of spectra with very low SNR. The dataset we analyze in this thesis comprises 7250 spectra for 2771 stars of the Globular Cluster M 4 (NGC 6121) in the wavelength region 5145-5360Å obtained with GIRAFFE. Stars from the upper Red Giant Branch down to the Main Sequence have been observed in very different conditions, including nights close to full moon, and reaching SNR - 10 for many spectra in the dataset. We will first review the basic steps of data reduction and spec- tral extraction, adapting techniques well tested in other field (like photometry) but still under-developed in spectroscopy. We improve the wavelength dispersion solution and the correction of radial veloc- ity shift between day-time calibrations and science observations by following a completely

  3. Improved methods for the measurement and analysis of stellar magnetic fields

    NASA Technical Reports Server (NTRS)

    Saar, Steven H.

    1988-01-01

    The paper presents several improved methods for the measurement of magnetic fields on cool stars which take into account simple radiative transfer effects and the exact Zeeman patterns. Using these methods, high-resolution, low-noise data can be fitted with theoretical line profiles to determine the mean magnetic field strength in stellar active regions and a model-dependent fraction of the stellar surface (filling factor) covered by these regions. Random errors in the derived field strength and filling factor are parameterized in terms of signal-to-noise ratio, wavelength, spectral resolution, stellar rotation rate, and the magnetic parameters themselves. Weak line blends, if left uncorrected, can have significant systematic effects on the derived magnetic parameters, and thus several methods are developed to compensate partially for them. The magnetic parameters determined by previous methods likely have systematic errors because of such line blends and because of line saturation effects. Other sources of systematic error are explored in detail. These sources of error currently make it difficult to determine the magnetic parameters of individual stars to better than about + or - 20 percent.

  4. Deriving stellar inclination of slow rotators using stellar activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumusque, X., E-mail: xdumusque@cfa.harvard.edu

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle.more » For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.« less

  5. SOAP: A Tool for the Fast Computation of Photometry and Radial Velocity Induced by Stellar Spots

    NASA Astrophysics Data System (ADS)

    Boisse, I.; Bonfils, X.; Santos, N. C.; Figueira, P.

    2013-04-01

    Dark spots and bright plages are present on the surface of dwarf stars from spectral types F to M, even in their low-active phase (like the Sun). Their appearance and disappearance on the stellar photosphere, combined with the stellar rotation, may lead to errors and uncertainties in the characterization of planets both in radial velocity (RV) and photometry. Spot Oscillation and Planet (SOAP) is a tool offered to the community that enables to simulate spots and plages on rotating stars and computes their impact on RV and photometric measurements. This tool will help to understand the challenges related to the knowledge of stellar activity for the next decade: detect telluric planets in the habitable zone of their stars (from G to M dwarfs), understand the activity in the low-mass end of M dwarf (on which future projects, like SPIRou or CARMENES, will focus), limitation to the characterization of the exoplanetary atmosphere (from the ground or with Spitzer, JWST), search for planets around young stars. These can be simulated with SOAP in order to search for indices and corrections to the effect of activity.

  6. The 6dFGS Peculiar Velocity Field

    NASA Astrophysics Data System (ADS)

    Springob, Chris M.; Magoulas, C.; Colless, M.; Mould, J.; Erdogdu, P.; Jones, D. H.; Lucey, J.; Campbell, L.; Merson, A.; Jarrett, T.

    2012-01-01

    The 6dF Galaxy Survey (6dFGS) is an all southern sky galaxy survey, including 125,000 redshifts and a Fundamental Plane (FP) subsample of 10,000 peculiar velocities, making it the largest peculiar velocity sample to date. We have fit the FP using a maximum likelihood fit to a tri-variate Gaussian. We subsequently compute a Bayesian probability distribution for every possible peculiar velocity for each of the 10,000 galaxies, derived from the tri-variate Gaussian probability density distribution, accounting for our selection effects and measurement errors. We construct a predicted peculiar velocity field from the 2MASS redshift survey, and compare our observed 6dFGS velocity field to the predicted field. We discuss the resulting agreement between the observed and predicted fields, and the implications for measurements of the bias parameter and bulk flow.

  7. AD Leonis: Radial Velocity Signal of Stellar Rotation or Spin–Orbit Resonance?

    NASA Astrophysics Data System (ADS)

    Tuomi, Mikko; Jones, Hugh R. A.; Barnes, John R.; Anglada-Escudé, Guillem; Butler, R. Paul; Kiraga, Marcin; Vogt, Steven S.

    2018-05-01

    AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days, as well as photometric signals: (1) a short-period signal, which is similar to the radial velocity signal, albeit with considerable variability; and (2) a long-term activity cycle of 4070 ± 120 days. We examine the short-term photometric signal in the available All-Sky Automated Survey and Microvariability and Oscillations of STars (MOST) photometry and find that the signal is not consistently present and varies considerably as a function of time. This signal undergoes a phase change of roughly 0.8 rad when considering the first and second halves of the MOST data set, which are separated in median time by 3.38 days. In contrast, the Doppler signal is stable in the combined High-Accuracy Radial velocity Planet Searcher and High Resolution Echelle Spectrometer radial velocities for over 4700 days and does not appear to vary in time in amplitude, phase, period, or as a function of extracted wavelength. We consider a variety of starspot scenarios and find it challenging to simultaneously explain the rapidly varying photometric signal and the stable radial velocity signal as being caused by starspots corotating on the stellar surface. This suggests that the origin of the Doppler periodicity might be the gravitational tug of a planet orbiting the star in spin–orbit resonance. For such a scenario and no spin–orbit misalignment, the measured v\\sin i indicates an inclination angle of 15.°5 ± 2.°5 and a planetary companion mass of 0.237 ± 0.047 M Jup.

  8. Stellar Radial Velocities with IGRINS at McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Mace, Gregory; Jaffe, Daniel; Park, Chan; Lee, Jae-Joon

    2016-06-01

    Exoplanet searches with dedicated instrumentation have made 1 m/s radial velocity (RV) precision routine.Yet, RVs for large samples of stars generally remain at the 1km/s level.TheImmersion Grating Infrared Spectrometer (IGRINS) is a revolutionary instrument that exploits broad spectral coverage at high-resolution in the near-infrared.IGRINS on the 2.7 meter Harlan J. Smith Telescope at McDonald Observatory is nearly as sensitive as CRIRES at the 8 meter Very Large Telescope. However, IGRINS at R=45,000 has more than 30 times the spectral grasp of CRIRES.The use of a silicon immersion grating facilitates a compact cryostat while providing simultaneous wavelength coverage from 1.45 - 2.45 microns. Wehave developed a pipeline to cross-correlate the more than 20,000 resolution elements in two IGRINS exposures and provide relative RVs with uncertainties of 50m/s (<1% of a resolution element). Absolute RVs are limited by thezero point uncertainty, which is 150m/s.IGRINS RVs will be provided for thousands of objects per year as a default procedure of the data reduction pipeline, creating a legacy product for multi-epoch studies of low-mass, stellar and substellar multiplicity.

  9. Near-infrared integral field spectroscopy of massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Murakawa, K.; Lumsden, S. L.; Oudmaijer, R. D.; Davies, B.; Wheelwright, H. E.; Hoare, M. G.; Ilee, J. D.

    2013-11-01

    We present medium-resolution (R ≈ 5300) K-band integral field spectroscopy of six massive young stellar objects (MYSOs). The targets are selected from the Red MSX Source (RMS) survey, and we used the ALTAIR adaptive optics assisted Near-Infrared Integral Field Spectrometer (NIFS) mounted on the Gemini North telescope. The data show various spectral line features including Brγ, CO, H2 and He I. The Brγ line is detected in emission in all objects with vFWHM ˜ 100-200 km s-1. V645 Cyg shows a high-velocity P-Cygni profile between -800 and -300 km s-1. We performed three-dimensional spectroastrometry to diagnose the circumstellar environment in the vicinity of the central stars using the Brγ line. We measured the centroids of the velocity components with sub-mas precision. The centroids allow us to discriminate the blueshifted and redshifted components in a roughly east-west direction in both IRAS 18151-1208 and S106 in Brγ. This lies almost perpendicular to observed larger scale outflows. We conclude, given the widths of the lines and the orientation of the spectroastrometric signature, that our results trace a disc wind in both IRAS 18151-1208 and S106. The CO ν = 2-0 absorption lines at low J transitions are detected in IRAS 18151-1208 and AFGL 2136. We analysed the velocity structure of the neutral gas discs, which we find to have nearly Keplerian motions. In IRAS 18151-1208, the absorption centroids of the blueshifted and redshifted components are separated in a direction of north-east to south-west, nearly perpendicular to that of the larger scale H2 jet. The position-velocity relations of these objects can be reproduced with central masses of 30 M⊙ for IRAS 18151-1208 and 20 M⊙ for AFGL 2136. We also detect CO ν = 2-0 bandhead emission in IRAS 18151-1208, S106 and V645 Cyg. The results can be fitted reasonably with a Keplerian rotation model, with masses of 15, 20 and 20 M⊙, respectively. These results for a sample of MYSOs can be explained with

  10. Rotating field mass and velocity analyzer

    NASA Technical Reports Server (NTRS)

    Smith, Steven Joel (Inventor); Chutjian, Ara (Inventor)

    1998-01-01

    A rotating field mass and velocity analyzer having a cell with four walls, time dependent RF potentials that are applied to each wall, and a detector. The time dependent RF potentials create an RF field in the cell which effectively rotates within the cell. An ion beam is accelerated into the cell and the rotating RF field disperses the incident ion beam according to the mass-to-charge (m/e) ratio and velocity distribution present in the ion beam. The ions of the beam either collide with the ion detector or deflect away from the ion detector, depending on the m/e, RF amplitude, and RF frequency. The detector counts the incident ions to determine the m/e and velocity distribution in the ion beam.

  11. STELLAR DYNAMO MODELS WITH PROMINENT SURFACE TOROIDAL FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonanno, Alfio

    2016-12-20

    Recent spectro-polarimetric observations of solar-type stars have shown the presence of photospheric magnetic fields with a predominant toroidal component. If the external field is assumed to be current-free it is impossible to explain these observations within the framework of standard mean-field dynamo theory. In this work, it will be shown that if the coronal field of these stars is assumed to be harmonic, the underlying stellar dynamo mechanism can support photospheric magnetic fields with a prominent toroidal component even in the presence of axisymmetric magnetic topologies. In particular, it is argued that the observed increase in the toroidal energy inmore » low-mass fast-rotating stars can be naturally explained with an underlying α Ω mechanism.« less

  12. Three-dimensional photogrammetric measurement of magnetic field lines in the WEGA stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drewelow, Peter; Braeuer, Torsten; Otte, Matthias

    2009-12-15

    The magnetic confinement of plasmas in fusion experiments can significantly degrade due to perturbations of the magnetic field. A precise analysis of the magnetic field in a stellarator-type experiment utilizes electrons as test particles following the magnetic field line. The usual fluorescent detector for this electron beam limits the provided information to two-dimensional cut views at certain toroidal positions. However, the technique described in this article allows measuring the three-dimensional structure of the magnetic field by means of close-range photogrammetry. After testing and optimizing the main diagnostic components, measurements of the magnetic field lines were accomplished with a spatial resolutionmore » of 5 mm. The results agree with numeric calculations, qualifying this technique as an additional tool to investigate magnetic field configurations in a stellarator. For a possible future application, ways are indicated on how to reduce experimental error sources.« less

  13. A very dark stellar system lost in Virgo: kinematics and metallicity of SECCO 1 with MUSE

    NASA Astrophysics Data System (ADS)

    Beccari, G.; Bellazzini, M.; Magrini, L.; Coccato, L.; Cresci, G.; Fraternali, F.; de Zeeuw, P. T.; Husemann, B.; Ibata, R.; Battaglia, G.; Martin, N.; Testa, V.; Perina, S.; Correnti, M.

    2017-02-01

    We present the results of VLT-MUSE (Very Large Telescope-Multi Unit Spectroscopic Explorer) integral field spectroscopy of SECCO 1, a faint, star-forming stellar system recently discovered as the stellar counterpart of an ultracompact high-velocity cloud (HVC 274.68+74.0), very likely residing within a substructure of the Virgo cluster of galaxies. We have obtained the radial velocity of a total of 38 individual compact sources identified as H II regions in the main and secondary bodies of the system, and derived the metallicity for 18 of them. We provide the first direct demonstration that the two stellar bodies of SECCO 1 are physically associated and that their velocities match the H I velocities. The metallicity is quite uniform over the whole system, with a dispersion lower than the uncertainty on individual metallicity estimates. The mean abundance, <12 + log(O/H)> = 8.44, is much higher than the typical values for local dwarf galaxies of similar stellar mass. This strongly suggests that the SECCO 1 stars were born from a pre-enriched gas cloud, possibly stripped from a larger galaxy. Using archival Hubble Space Telescope (HST) images, we derive a total stellar mass of ≃1.6 × 105 M⊙ for SECCO 1, confirming that it has a very high H I-to-stellar mass ratio for a dwarf galaxy, M_{H I}/M* ˜ 100. The star formation rate, derived from the Hα flux, is a factor of more than 10 higher than in typical dwarf galaxies of similar luminosity.

  14. Habitability in Different Milky Way Stellar Environments: A Stellar Interaction Dynamical Approach

    PubMed Central

    Pichardo, Bárbara; Lake, George; Segura, Antígona

    2013-01-01

    Abstract Every Galactic environment is characterized by a stellar density and a velocity dispersion. With this information from literature, we simulated flyby encounters for several Galactic regions, numerically calculating stellar trajectories as well as orbits for particles in disks; our aim was to understand the effect of typical stellar flybys on planetary (debris) disks in the Milky Way Galaxy. For the solar neighborhood, we examined nearby stars with known distance, proper motions, and radial velocities. We found occurrence of a disturbing impact to the solar planetary disk within the next 8 Myr to be highly unlikely; perturbations to the Oort cloud seem unlikely as well. Current knowledge of the full phase space of stars in the solar neighborhood, however, is rather poor; thus we cannot rule out the existence of a star that is more likely to approach than those for which we have complete kinematic information. We studied the effect of stellar encounters on planetary orbits within the habitable zones of stars in more crowded stellar environments, such as stellar clusters. We found that in open clusters habitable zones are not readily disrupted; this is true if they evaporate in less than 108 yr. For older clusters the results may not be the same. We specifically studied the case of Messier 67, one of the oldest open clusters known, and show the effect of this environment on debris disks. We also considered the conditions in globular clusters, the Galactic nucleus, and the Galactic bulge-bar. We calculated the probability of whether Oort clouds exist in these Galactic environments. Key Words: Stellar interactions—Galactic habitable zone—Oort cloud. Astrobiology 13, 491–509. PMID:23659647

  15. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  16. Neutron stars velocities and magnetic fields

    NASA Astrophysics Data System (ADS)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  17. Habitability in different Milky Way stellar environments: a stellar interaction dynamical approach.

    PubMed

    Jiménez-Torres, Juan J; Pichardo, Bárbara; Lake, George; Segura, Antígona

    2013-05-01

    Every Galactic environment is characterized by a stellar density and a velocity dispersion. With this information from literature, we simulated flyby encounters for several Galactic regions, numerically calculating stellar trajectories as well as orbits for particles in disks; our aim was to understand the effect of typical stellar flybys on planetary (debris) disks in the Milky Way Galaxy. For the solar neighborhood, we examined nearby stars with known distance, proper motions, and radial velocities. We found occurrence of a disturbing impact to the solar planetary disk within the next 8 Myr to be highly unlikely; perturbations to the Oort cloud seem unlikely as well. Current knowledge of the full phase space of stars in the solar neighborhood, however, is rather poor; thus we cannot rule out the existence of a star that is more likely to approach than those for which we have complete kinematic information. We studied the effect of stellar encounters on planetary orbits within the habitable zones of stars in more crowded stellar environments, such as stellar clusters. We found that in open clusters habitable zones are not readily disrupted; this is true if they evaporate in less than 10(8) yr. For older clusters the results may not be the same. We specifically studied the case of Messier 67, one of the oldest open clusters known, and show the effect of this environment on debris disks. We also considered the conditions in globular clusters, the Galactic nucleus, and the Galactic bulge-bar. We calculated the probability of whether Oort clouds exist in these Galactic environments.

  18. Constraining the optical depth of galaxies and velocity bias with cross-correlation between the kinetic Sunyaev-Zeldovich effect and the peculiar velocity field

    NASA Astrophysics Data System (ADS)

    Ma, Yin-Zhe; Gong, Guo-Dong; Sui, Ning; He, Ping

    2018-03-01

    We calculate the cross-correlation function < (Δ T/T)({v}\\cdot \\hat{n}/σ _v) > between the kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed peculiar velocity field using linear perturbation theory, with the aim of constraining the optical depth τ and peculiar velocity bias of central galaxies with Planck data. We vary the optical depth τ and the velocity bias function bv(k) = 1 + b(k/k0)n, and fit the model to the data, with and without varying the calibration parameter y0 that controls the vertical shift of the correlation function. By constructing a likelihood function and constraining the τ, b and n parameters, we find that the quadratic power-law model of velocity bias, bv(k) = 1 + b(k/k0)2, provides the best fit to the data. The best-fit values are τ = (1.18 ± 0.24) × 10-4, b=-0.84^{+0.16}_{-0.20} and y0=(12.39^{+3.65}_{-3.66})× 10^{-9} (68 per cent confidence level). The probability of b > 0 is only 3.12 × 10-8 for the parameter b, which clearly suggests a detection of scale-dependent velocity bias. The fitting results indicate that the large-scale (k ≤ 0.1 h Mpc-1) velocity bias is unity, while on small scales the bias tends to become negative. The value of τ is consistent with the stellar mass-halo mass and optical depth relationship proposed in the literature, and the negative velocity bias on small scales is consistent with the peak background split theory. Our method provides a direct tool for studying the gaseous and kinematic properties of galaxies.

  19. AN EXPLORATION OF THE STATISTICAL SIGNATURES OF STELLAR FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyden, Ryan D.; Offner, Stella S. R.; Koch, Eric W.

    2016-12-20

    All molecular clouds are observed to be turbulent, but the origin, means of sustenance, and evolution of the turbulence remain debated. One possibility is that stellar feedback injects enough energy into the cloud to drive observed motions on parsec scales. Recent numerical studies of molecular clouds have found that feedback from stars, such as protostellar outflows and winds, injects energy and impacts turbulence. We expand upon these studies by analyzing magnetohydrodynamic simulations of molecular clouds, including stellar winds, with a range of stellar mass-loss rates and magnetic field strengths. We generate synthetic {sup 12}CO(1–0) maps assuming that the simulations aremore » at the distance of the nearby Perseus molecular cloud. By comparing the outputs from different initial conditions and evolutionary times, we identify differences in the synthetic observations and characterize these using common astrostatistics. We quantify the different statistical responses using a variety of metrics proposed in the literature. We find that multiple astrostatistics, including the principal component analysis, the spectral correlation function, and the velocity coordinate spectrum (VCS), are sensitive to changes in stellar mass-loss rates and/or time evolution. A few statistics, including the Cramer statistic and VCS, are sensitive to the magnetic field strength. These findings demonstrate that stellar feedback influences molecular cloud turbulence and can be identified and quantified observationally using such statistics.« less

  20. Extending SIESTA capabilities: removing field-periodic and stellarator symmetric limitations

    NASA Astrophysics Data System (ADS)

    Cook, C. R.; Hirshman, S. P.; Sanchez, R.; Anderson, D. T.

    2011-10-01

    SIESTA is a three-dimensional magnetohydrodynamics equilibrium code capable of resolving magnetic islands in toroidal plasma confinement devices. Currently SIESTA assumes that plasma perturbations, and thus also magnetic islands, are field-periodic. This limitation is being removed from the code by allowing the displacement toroidal mode number to not be restricted to multiples of the number of field periods. Extending SIESTA in this manner will allow larger, lower-order resonant islands to form in devices such as CTH. An example of a non-field-periodic perturbation in CTH will be demonstrated. Currently the code also operates in a stellarator-symmetric fashion in which an ``up-down'' symmetry is present at some toroidal angle. Nearly all of the current tokamaks (and ITER in the future) operate with a divertor and as such do not possess stellarator symmetry. Removal of this symmetry restriction requires including both sine and cosine terms in the Fourier expansion for the geometry of the device and the fields contained within. The current status of this extension of the code will be discussed, along with the method of implementation. U.S. DOE Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  1. Cosmic-Ray Propagation in Turbulent Spiral Magnetic Fields Associated with Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Fatuzzo, Marco; Adams, Fred C.

    2018-04-01

    External cosmic rays impinging upon circumstellar disks associated with young stellar objects provide an important source of ionization, and, as such, play an important role in disk evolution and planet formation. However, these incoming cosmic rays are affected by a variety of physical processes internal to stellar/disk systems, including modulation by turbulent magnetic fields. Globally, these fields naturally provide both a funneling effect, where cosmic rays from larger volumes are focused into the disk region, and a magnetic mirroring effect, where cosmic rays are repelled due to the increasing field strength. This paper considers cosmic-ray propagation in the presence of a turbulent spiral magnetic field, analogous to that produced by the solar wind. The interaction of this wind with the interstellar medium defines a transition radius, analogous to the heliopause, which provides the outer boundary to this problem. We construct a new coordinate system where one coordinate follows the spiral magnetic field lines and consider magnetic perturbations to the field in the perpendicular directions. The presence of magnetic turbulence replaces the mirroring points with a distribution of values and moves the mean location outward. Our results thus help quantify the degree to which cosmic-ray fluxes are reduced in circumstellar disks by the presence of magnetic field structures that are shaped by stellar winds. The new coordinate system constructed herein should also be useful in other astronomical applications.

  2. The MASSIVE Survey - V. Spatially resolved stellar angular momentum, velocity dispersion, and higher moments of the 41 most massive local early-type galaxies

    NASA Astrophysics Data System (ADS)

    Veale, Melanie; Ma, Chung-Pei; Thomas, Jens; Greene, Jenny E.; McConnell, Nicholas J.; Walsh, Jonelle; Ito, Jennifer; Blakeslee, John P.; Janish, Ryan

    2017-01-01

    We present spatially resolved two-dimensional stellar kinematics for the 41 most massive early-type galaxies (ETGs; MK ≲ -25.7 mag, stellar mass M* ≳ 1011.8 M⊙) of the volume-limited (D < 108 Mpc) MASSIVE survey. For each galaxy, we obtain high-quality spectra in the wavelength range of 3650-5850 Å from the 246-fibre Mitchell integral-field spectrograph at McDonald Observatory, covering a 107 arcsec × 107 arcsec field of view (often reaching 2 to 3 effective radii). We measure the 2D spatial distribution of each galaxy's angular momentum (λ and fast or slow rotator status), velocity dispersion (σ), and higher order non-Gaussian velocity features (Gauss-Hermite moments h3 to h6). Our sample contains a high fraction (˜80 per cent) of slow and non-rotators with λ ≲ 0.2. When combined with the lower mass ETGs in the ATLAS3D survey, we find the fraction of slow rotators to increase dramatically with galaxy mass, reaching ˜50 per cent at MK ˜ -25.5 mag and ˜90 per cent at MK ≲ -26 mag. All of our fast rotators show a clear anticorrelation between h3 and V/σ, and the slope of the anticorrelation is steeper in more round galaxies. The radial profiles of σ show a clear luminosity and environmental dependence: the 12 most luminous galaxies in our sample (MK ≲ -26 mag) are all brightest cluster/group galaxies (except NGC 4874) and all have rising or nearly flat σ profiles, whereas five of the seven `isolated' galaxies are all fainter than MK = -25.8 mag and have falling σ. All of our galaxies have positive average h4; the most luminous galaxies have average h4 ˜ 0.05, while less luminous galaxies have a range of values between 0 and 0.05. Most of our galaxies show positive radial gradients in h4, and those galaxies also tend to have rising σ profiles. We discuss the implications for the relationship among dynamical mass, σ, h4, and velocity anisotropy for these massive galaxies.

  3. Simulating Convection in Stellar Envelopes

    NASA Astrophysics Data System (ADS)

    Tanner, Joel

    2014-01-01

    Understanding convection in stellar envelopes, and providing a mathematical description of it, would represent a substantial advance in stellar astrophysics. As one of the largest sources of uncertainty in stellar models, existing treatments of convection fail to account for many of the dynamical effects of convection, such as turbulent pressure and asymmetry in the velocity field. To better understand stellar convection, we must be able to study and examine it in detail, and one of the best tools for doing so is numerical simulation. Near the stellar surface, both convective and radiative process play a critical role in determining the structure and gas dynamics. By following these processes from first principles, convection can be simulated self-consistently and accurately, even in regions of inefficient energy transport where existing descriptions of convection fail. Our simulation code includes two radiative transfer solvers that are based on different assumptions and approximations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere. Using the code to construct a grid of three-dimensional radiation hydrodynamic simulations, we investigate the link between convection and various chemical compositions. The stellar parameters correspond to main-sequence stars at several surface gravities, and span a range in effective temperatures (4500 < Teff < 6400). Different chemical compositions include four metallicities (Z = 0.040, 0.020, 0.010, 0.001), three helium abundances (Y = 0.1, 0.2, 0.3) and several levels of alpha-element enhancement. Our grid of simulations shows that various convective properties, such as velocity and the degree of superadiabaticity, are

  4. Rotational velocities of A-type stars. IV. Evolution of rotational velocities

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Royer, F.

    2012-01-01

    Context. In previous works of this series, we have shown that late B- and early A-type stars have genuine bimodal distributions of rotational velocities and that late A-type stars lack slow rotators. The distributions of the surface angular velocity ratio Ω/Ωcrit (Ωcrit is the critical angular velocity) have peculiar shapes according to spectral type groups, which can be caused by evolutionary properties. Aims: We aim to review the properties of these rotational velocity distributions in some detail as a function of stellar mass and age. Methods: We have gathered vsini for a sample of 2014 B6- to F2-type stars. We have determined the masses and ages for these objects with stellar evolution models. The (Teff,log L/L⊙)-parameters were determined from the uvby-β photometry and the HIPPARCOS parallaxes. Results: The velocity distributions show two regimes that depend on the stellar mass. Stars less massive than 2.5 M⊙ have a unimodal equatorial velocity distribution and show a monotonical acceleration with age on the main sequence (MS). Stars more massive have a bimodal equatorial velocity distribution. Contrarily to theoretical predictions, the equatorial velocities of stars from about 1.7 M⊙ to 3.2 M⊙ undergo a strong acceleration in the first third of the MS evolutionary phase, while in the last third of the MS they evolve roughly as if there were no angular momentum redistribution in the external stellar layers. The studied stars might start in the ZAMS not necessarily as rigid rotators, but with a total angular momentum lower than the critical one of rigid rotators. The stars seem to evolve as differential rotators all the way of their MS life span and the variation of the observed rotational velocities proceeds with characteristic time scales δt ≈ 0.2 tMS, where tMS is the time spent by a star in the MS. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http

  5. Stellar winds driven by Alfven waves

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.; Olbert, S.

    1973-01-01

    Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.

  6. Revisiting the stellar velocity ellipsoid-Hubble-type relation: observations versus simulations

    NASA Astrophysics Data System (ADS)

    Pinna, F.; Falcón-Barroso, J.; Martig, M.; Martínez-Valpuesta, I.; Méndez-Abreu, J.; van de Ven, G.; Leaman, R.; Lyubenova, M.

    2018-04-01

    The stellar velocity ellipsoid (SVE) in galaxies can provide important information on the processes that participate in the dynamical heating of their disc components (e.g. giant molecular clouds, mergers, spiral density waves, and bars). Earlier findings suggested a strong relation between the shape of the disc SVE and Hubble type, with later-type galaxies displaying more anisotropic ellipsoids and early types being more isotropic. In this paper, we revisit the strength of this relation using an exhaustive compilation of observational results from the literature on this issue. We find no clear correlation between the shape of the disc SVE and morphological type, and show that galaxies with the same Hubble type display a wide range of vertical-to-radial velocity dispersion ratios. The points are distributed around a mean value and scatter of σz/σR = 0.7 ± 0.2. With the aid of numerical simulations, we argue that different mechanisms might influence the shape of the SVE in the same manner and that the same process (e.g. mergers) does not have the same impact in all the galaxies. The complexity of the observational picture is confirmed by these simulations, which suggest that the vertical-to-radial axis ratio of the SVE is not a good indicator of the main source of disc heating. Our analysis of those simulations also indicates that the observed shape of the disc SVE may be affected by several processes simultaneously and that the signatures of some of them (e.g. mergers) fade over time.

  7. Stellar photometry with the Wide Field/Planetary Camera of the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Holtzman, Jon A.

    1990-07-01

    Simulations of Wide Field/Planetary Camera (WF/PC) images are analyzed in order to discover the most effective techniques for stellar photometry and to evaluate the accuracy and limitations of these techniques. The capabilities and operation of the WF/PC and the simulations employed in the study are described. The basic techniques of stellar photometry and methods to improve these techniques for the WF/PC are discussed. The correct parameters for star detection, aperture photometry, and point-spread function (PSF) fitting with the DAOPHOT software of Stetson (1987) are determined. Consideration is given to undersampling of the stellar images by the detector; variations in the PSF; and the crowding of the stellar images. It is noted that, with some changes DAOPHOT, is able to generate photometry almost to the level of photon statistics.

  8. Resonant electrodynamic heating of stellar coronal loops: An LRC circuit analogue

    NASA Technical Reports Server (NTRS)

    Ionson, J. A.

    1980-01-01

    The electrodynamic coupling of stellar coronal loops to underlying beta velocity fields. A rigorous analysis revealed that the physics can be represented by a simple yet equivalent LRC circuit analogue. This analogue points to the existence of global structure oscillations which resonantly excite internal field line oscillations at a spatial resonance within the coronal loop. Although the width of this spatial resonance, as well as the induced currents and coronal velocity field, explicitly depend upon viscosity and resistivity, the resonant form of the generalized electrodynamic heating function is virtually independent of irreversibilities. This is a classic feature of high quality resonators that are externally driven by a broad band source of spectral power. Applications to solar coronal loops result in remarkable agreement with observations.

  9. The Direct Effect of Toroidal Magnetic Fields on Stellar Oscillations: An Analytical Expression for the General Matrix Element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiefer, René; Schad, Ariane; Roth, Markus

    2017-09-10

    Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies.more » If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.« less

  10. The Direct Effect of Toroidal Magnetic Fields on Stellar Oscillations: An Analytical Expression for the General Matrix Element

    NASA Astrophysics Data System (ADS)

    Kiefer, René; Schad, Ariane; Roth, Markus

    2017-09-01

    Where is the solar dynamo located and what is its modus operandi? These are still open questions in solar physics. Helio- and asteroseismology can help answer them by enabling us to study solar and stellar internal structures through global oscillations. The properties of solar and stellar acoustic modes are changing with the level of magnetic activity. However, until now, the inference on subsurface magnetic fields with seismic measures has been very limited. The aim of this paper is to develop a formalism to calculate the effect of large-scale toroidal magnetic fields on solar and stellar global oscillation eigenfunctions and eigenfrequencies. If the Lorentz force is added to the equilibrium equation of motion, stellar eigenmodes can couple. In quasi-degenerate perturbation theory, this coupling, also known as the direct effect, can be quantified by the general matrix element. We present the analytical expression of the matrix element for a superposition of subsurface zonal toroidal magnetic field configurations. The matrix element is important for forward calculations of perturbed solar and stellar eigenfunctions and frequency perturbations. The results presented here will help to ascertain solar and stellar large-scale subsurface magnetic fields, and their geometric configuration, strength, and change over the course of activity cycles.

  11. Near-Field Cosmology with Resolved Stellar Populations Around Local Volume LMC Stellar-Mass Galaxies

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sand, David J.; Willman, Beth; Brodie, Jean P.; Crnojevic, Denija; Forbes, Duncan; Hargis, Jonathan R.; Peter, Annika; Pucha, Ragadeepika; Romanowsky, Aaron J.; Spekkens, Kristine; Strader, Jay

    2018-06-01

    We discuss our ongoing observational program to comprehensively map the entire virial volumes of roughly LMC stellar mass galaxies at distances of ~2-4 Mpc. The MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey will deliver the first census of the dwarf satellite populations and stellar halo properties within LMC-like environments in the Local Volume. Our results will inform our understanding of the recent DES discoveries of dwarf satellites tentatively affiliated with the LMC/SMC system. This program has already yielded the discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep Subaru+HyperSuprimeCam imaging reaching ~2 magnitudes below its TRGB, and at least two additional candidate satellites. We will summarize the survey results and status to date, highlighting some challenges encountered and lessons learned as we process the data for this program through a prototype LSST pipeline. Our program will examine whether LMC stellar mass dwarfs have extended stellar halos, allowing us to assess the relative contributions of in-situ stars vs. merger debris to their stellar populations and halo density profiles. We outline the constraints on galaxy formation models that will be provided by our observations of low-mass galaxy halos and their satellites.

  12. Stellar and Gas Kinematics in the Tully-Fisher Deviant Virgo Cluster Galaxy NGC 4424

    NASA Astrophysics Data System (ADS)

    Cortes, J. R.; Kenney, J. D. P.

    2000-05-01

    NGC 4424 is a peculiar, gas-deficient, Virgo Cluster Sa galaxy which is probably the result of a merger. This galaxy seems to deviate from the Tully-Fisher relationship, as shown by Kenney et al (1996) and Rubin et al (1999). We present stellar and gas kinematics of NGC 4424 measured with Integral Field Spectroscopy using the Densepak fiber array on the WIYN telescope. Using a cross-correlation technique, we derive velocities and velocity dispersions of the stars thoughout the central region of the galaxy. We find that the mean line-of-sight velocities for both gas and stars are approximately a factor of 2 smaller than would be expected for the rotational motions of a galaxy of its luminosity and apparent inclination. Preliminary estimates of the stellar velocity dispersion are also lower than would be expected for the Faber-Jackson relationship. We discuss possible explanations for this behaviour, including the possibility that this disturbed galaxy is rotating in a plane different than the plane of the apparent disk, and is a tumbling object.

  13. Predicting the Velocity Dispersions of the Dwarf Satellite Galaxies of Andromeda

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.

    2016-05-01

    Dwarf Spheroidal galaxies in the Local Group are the faintest and most diffuse stellar systems known. They exhibit large mass discrepancies, making them popular laboratories for studying the missing mass problem. The PANDAS survey of M31 revealed dozens of new examples of such dwarfs. As these systems were discovered, it was possible to use the observed photometric properties to predict their stellar velocity dispersions with the modified gravity theory MOND. These predictions, made in advance of the observations, have since been largely confirmed. A unique feature of MOND is that a structurally identical dwarf will behave differently when it is or is not subject to the external field of a massive host like Andromeda. The role of this "external field effect" is critical in correctly predicting the velocity dispersions of dwarfs that deviate from empirical scaling relations. With continued improvement in the observational data, these systems could provide a test of the strong equivalence principle.

  14. THE HERCULES SATELLITE: A STELLAR STREAM IN THE MILKY WAY HALO?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Nicolas F.; Jin, Shoko, E-mail: martin@mpia.d, E-mail: shoko@ari.uni-heidelberg.d

    2010-10-01

    We investigate the possibility that the recently discovered Hercules Milky Way (MW) satellite is in fact a stellar stream in formation, thereby explaining its very elongated shape with an axis ratio of 3:1. Under the assumption that Hercules is a stellar stream and that its stars are flowing along the orbit of its progenitor, we find an orbit that would have recently brought the system close enough to the MW to induce its disruption and transformation from a bound dwarf galaxy into a stellar stream. The application of simple analytical techniques to the tentative radial velocity gradient observed in themore » satellite provides tight constraints on the tangential velocity of the system (v{sub t} = -16{sup +6}{sub -22} km s{sup -1} in the Galactic standard of rest). Combined with its large receding velocity, the determined tangential velocity yields an orbit with a small pericentric distance (R{sub peri} = 6{sup +9}{sub -2} kpc). Tidal disruption is therefore a valid scenario for explaining the extreme shape of Hercules. The increase in the mean flattening of dwarf galaxies as one considers fainter systems could therefore be the impact of a few of these satellites not being bound stellar systems dominated by dark matter but, in fact, stellar streams in formation, shedding their stars in the MW's stellar halo.« less

  15. Hypercompact Stellar Systems Around Recoiling Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Merritt, David; Schnittman, Jeremy D.; Komossa, S.

    2009-07-01

    A supermassive black hole ejected from the center of a galaxy by gravitational-wave recoil carries a retinue of bound stars—a "hypercompact stellar system" (HCSS). The numbers and properties of HCSSs contain information about the merger histories of galaxies, the late evolution of binary black holes, and the distribution of gravitational-wave kicks. We relate the structural properties (size, mass, density profile) of HCSSs to the properties of their host galaxies and to the size of the kick in two regimes: collisional (M BH lsim 107 M sun), i.e., short nuclear relaxation times, and collisionless (M BH gsim 107 M sun), i.e., long nuclear relaxation times. HCSSs are expected to be similar in size and luminosity to globular clusters, but in extreme cases (large galaxies, kicks just above escape velocity) their stellar mass can approach that of ultracompact dwarf galaxies. However, they differ from all other classes of compact stellar system in having very high internal velocities. We show that the kick velocity is encoded in the velocity dispersion of the bound stars. Given a large enough sample of HCSSs, the distribution of gravitational-wave kicks can therefore be empirically determined. We combine a hierarchical merger algorithm with stellar population models to compute the rate of production of HCSSs over time and the probability of observing HCSSs in the local universe as a function of their apparent magnitude, color, size, and velocity dispersion, under two different assumptions about the star formation history prior to the kick. We predict that ~102 HCSSs should be detectable within 2 Mpc of the center of the Virgo cluster, and that many of these should be bright enough that their kick velocities (i.e., velocity dispersions) could be measured with reasonable exposure times. We discuss other strategies for detecting HCSSs and speculate on some exotic manifestations.

  16. Estimating cosmic velocity fields from density fields and tidal tensors

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan

    2012-10-01

    In this work we investigate the non-linear and non-local relation between cosmological density and peculiar velocity fields. Our goal is to provide an algorithm for the reconstruction of the non-linear velocity field from the fully non-linear density. We find that including the gravitational tidal field tensor using second-order Lagrangian perturbation theory based upon an estimate of the linear component of the non-linear density field significantly improves the estimate of the cosmic flow in comparison to linear theory not only in the low density, but also and more dramatically in the high-density regions. In particular we test two estimates of the linear component: the lognormal model and the iterative Lagrangian linearization. The present approach relies on a rigorous higher order Lagrangian perturbation theory analysis which incorporates a non-local relation. It does not require additional fitting from simulations being in this sense parameter free, it is independent of statistical-geometrical optimization and it is straightforward and efficient to compute. The method is demonstrated to yield an unbiased estimator of the velocity field on scales ≳5 h-1 Mpc with closely Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar velocity field is extremely well recovered showing a good agreement with the true one from N-body simulations. The typical errors of about 10 km s-1 (1σ confidence intervals) are reduced by more than 80 per cent with respect to linear theory in the scale range between 5 and 10 h-1 Mpc in high-density regions (δ > 2). We also find that iterative Lagrangian linearization is significantly superior in the low-density regime with respect to the lognormal model.

  17. The Radial Velocity Variability of the K-giant γ Draconis: Stellar Variability Masquerading as a Planet

    NASA Astrophysics Data System (ADS)

    Hatzes, A. P.; Endl, M.; Cochran, W. D.; MacQueen, P. J.; Han, I.; Lee, B.-C.; Kim, K.-M.; Mkrtichian, D.; Döllinger, M.; Hartmann, M.; Karjalainen, M.; Dreizler, S.

    2018-03-01

    We present precise stellar radial velocity (RV) measurements of γ Dra taken from 2003 to 2017. The data from 2003 to 2011 show coherent, long-lived variations with a period of 702 days. These variations are consistent with the presence of a planetary companion having m sin i = 10.7 M Jup whose orbital properties are typical for giant planets found around evolved stars. An analysis of the Hipparcos photometry, Ca II S-index measurements, and measurements of the spectral line shapes during this time show no variations with the RV of the planet, which seems to “confirm” the presence of the planet. However, RV measurements taken from 2011–2017 seem to refute this. From 2011–2013, the RV variations virtually disappear, only to return in 2014 but with a noticeable phase shift. The total RV variations are consistent either with amplitude variations on timescales of ≈10.6 year, or the beating effect between two periods of 666 and 801 days. It seems unlikely that both these signals stem from a two-planet system. A simple dynamical analysis indicates that there is only a 1%–2% chance that the two-planet system is stable. Rather, we suggest that this multi-periodic behavior may represent a new form of stellar variability, possibly related to oscillatory convective modes. If such intrinsic stellar variability is common around K giant stars and is attributed to planetary companions, then the planet occurrence rate among these stars may be significantly lower than thought.

  18. Structure and dynamics of Andromeda's stellar disk

    NASA Astrophysics Data System (ADS)

    Dorman, Claire Elise

    2015-10-01

    Lambda cold dark matter (LambdaCDM) cosmology predicts that the disks of Milky Way-mass galaxies should have undergone at least one merger with a large (mass ratio 1:10) satellite in the last several Gyr. However, the stellar disk in the solar neighborhood of the Milky Way is too thin and dynamically cold to have experienced such an impact. The dynamics of the nearby Andromeda galaxy can serve as a second data point, and help us understand whether the Milky Way may simply have had an unusually quiescent merger history, or whether LambdaCDM theory needs to be revisited. Over the last few years, we have carried out a detailed study of the resolved stellar populations in the disk of the Andromeda galaxy using data from two surveys: six-filter Hubble Space Telescope photometry from the recently-completed Panchromatic Hubble Andromeda Treasury (PHAT) survey, and radial velocities derived from Keck/DEIMOS optical spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar 0Halo (SPLASH) program. These detailed, multidimensional data sets allow us to decouple the structural subcomponents and characterize them individually. We find that an old, dynamically hot (velocity dispersion 150 km/s) RGB population extends out to 20 kpc (the edge of the visible disk) but has a disk-like surface brightness profile and luminosity function. This population may have originated in the disk but been kicked out subsequently in impacts with satellite galaxies. We also study the kinematics of the disk as a function of the age of stellar tracers, and find a direct correlation between age and velocity dispersion, indicating that Andromeda has undergone a continuous heating or disk settling process throughout its lifetime. Overall, both the velocity dispersion of Andromeda's disk and the slope of the velocity dispersion vs. stellar age curve are several times those of the Milky Way's, suggesting a more active merger history more in line with Lambda

  19. Field-effect transistor having a superlattice channel and high carrier velocities at high applied fields

    DOEpatents

    Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.

    1984-04-19

    In a field-effect transistor comprising a semiconductor having therein a source, a drain, a channel and a gate in operational relationship, there is provided an improvement wherein said semiconductor is a superlattice comprising alternating quantum well and barrier layers, the quantum well layers comprising a first direct gap semiconductor material which in bulk form has a certain bandgap and a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, the barrier layers comprising a second semiconductor material having a bandgap wider than that of said first semiconductor material, wherein the layer thicknesses of said quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice having a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, and wherein the thicknesses of said quantum well layers are selected to provide a superlattice curve of electron velocity versus applied electric field whereby, at applied electric fields higher than that at which the maximum electron velocity occurs in said first material when in bulk form, the electron velocities are higher in said superlattice than they are in said first semiconductor material in bulk form.

  20. Spectro-Interferometry Studies of Velocity-Related Phenomena at the Surface of Stars: Pulsation and Rotation

    NASA Astrophysics Data System (ADS)

    Mérand, Antoine; Patru, Fabien; Aufdenberg, Jason

    We illustrate here two applications of spectro-interferometry to the study of velocity fields at the surface of stars: pulsation and rotation. Stellar pulsation has been resolved spectroscopically for a long time, and interferometry has resolved stellar diameters variations due to pulsation. Combining the two provides unique insights to the study of Cepheids, in particular regarding the structure of the photosphere or investigating the infamous projection factor which biases distances measured by the Baade-Wesselink method. On the other hand, resolving the surface velocity field of rotating stars offers a unique opportunity to potentially study differential rotation in other cases than for the Sun. We also present the model we have implemented recently, as well as two applications to VLTI/AMBER Data: the pulsation of Cepheids and the rotation of intermediate mass main sequence stars.

  1. Photometric detection of high proper motions in dense stellar fields using difference image analysis

    NASA Astrophysics Data System (ADS)

    Eyer, L.; Woźniak, P. R.

    2001-10-01

    The difference image analysis (DIA) of the images obtained by the Optical Gravitational Lensing Experiment (OGLE-II) revealed a peculiar artefact in the sample of stars proposed as variable by Woźniak in one of the Galactic bulge fields: the occurrence of pairs of candidate variables showing anti-correlated light curves monotonic over a period of 3yr. This effect can be understood, quantified and related to the stellar proper motions. DIA photometry supplemented with a simple model offers an effective and easy way to detect high proper motion stars in very dense stellar fields, where conventional astrometric searches are extremely inefficient.

  2. Normalized velocity profiles of field-measured turbidity currents

    USGS Publications Warehouse

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  3. The velocity field of growing ear cartilage.

    PubMed Central

    Cox, R W; Peacock, M A

    1978-01-01

    The velocity vector field of the growing rabbit ear cartilage has been investigated between 12 and 299 days. Empirical curves have been computed for path lines and for velocities between 12 and 87 days. The tissue movement has been found to behave as an irrotational flow of material. Stream lines and velocity equipotential lines have been calculated and provide akinematic description of the changes during growth. The importance of a knowledge of the velocity vector in physical descriptions of growth and morphological differentiation at the tissue and cellular levels is emphasized. PMID:689993

  4. The AIMSS Project - III. The stellar populations of compact stellar systems

    NASA Astrophysics Data System (ADS)

    Janz, Joachim; Norris, Mark A.; Forbes, Duncan A.; Huxor, Avon; Romanowsky, Aaron J.; Frank, Matthias J.; Escudero, Carlos G.; Faifer, Favio R.; Forte, Juan Carlos; Kannappan, Sheila J.; Maraston, Claudia; Brodie, Jean P.; Strader, Jay; Thompson, Bradley R.

    2016-02-01

    In recent years, a growing zoo of compact stellar systems (CSSs) have been found whose physical properties (mass, size, velocity dispersion) place them between classical globular clusters (GCs) and true galaxies, leading to debates about their nature. Here we present results using a so far underutilized discriminant, their stellar population properties. Based on new spectroscopy from 8-10m telescopes, we derive ages, metallicities, and [α/Fe] of 29 CSSs. These range from GCs with sizes of merely a few parsec to compact ellipticals (cEs) larger than M32. Together with a literature compilation, this provides a panoramic view of the stellar population characteristics of early-type systems. We find that the CSSs are predominantly more metal rich than typical galaxies at the same stellar mass. At high mass, the cEs depart from the mass-metallicity relation of massive early-type galaxies, which forms a continuous sequence with dwarf galaxies. At lower mass, the metallicity distribution of ultracompact dwarfs (UCDs) changes at a few times 107 M⊙, which roughly coincides with the mass where luminosity function arguments previously suggested the GC population ends. The highest metallicities in CSSs are paralleled only by those of dwarf galaxy nuclei and the central parts of massive early types. These findings can be interpreted as CSSs previously being more massive and undergoing tidal interactions to obtain their current mass and compact size. Such an interpretation is supported by CSSs with direct evidence for tidal stripping, and by an examination of the CSS internal escape velocities.

  5. The statistical properties of sea ice velocity fields

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Wettlaufer, J. S.

    2016-12-01

    Thorndike and Colony (1982) showed that more than 70% of the variance of the ice motion can be explained by the geostrophic winds. This conclusion was reached by analyzing only 2 years of data. Due to the importance of ice motion in Arctic climate we ask how persistent is such a prediction. In so doing, we study and develop a stochastic model for the Arctic sea ice velocity fields based on the observed sea ice velocity fields from satellites and buoys for the period 1978 - 2012. Having previously found that the Arctic Sea Equivalent Ice Extent (EIE) has a white noise structure on annual to bi-annual time scales (Agarwal et. al. 2012), we assess the connection to ice motion. We divide the Arctic into dynamic and thermodynamic components, with focus on the dynamic part i.e. the velocity fields of sea ice driven by the geostrophic winds over the Arctic. We show (1) the stationarity of the spatial correlation structure of the velocity fields, and (2) the robustness of white noise structure present in the velocity fields on annual to bi-annual time scales, which combine to explain the white noise characteristics of the EIE on these time scales. S. Agarwal, W. Moon and J.S. Wettlaufer, Trends, noise and reentrant long-term persistence in Arctic sea ice, Proc. R. Soc. A, 468, 2416 (2012). A.S. Thorndike and R. Colony, Sea ice motion in response to geostrophic winds, J. Geophys. Res. 87, 5845 (1982).

  6. Stellar Properties of Embedded Protostars: Progress and Prospects

    NASA Technical Reports Server (NTRS)

    Greene, Thomas

    2006-01-01

    Until now, high extinctions have prevented direct observation of the central objects of self-embedded, accreting protostars. However, sensitive high dispersion spectrographs on large aperture telescopes have allowed us to begin studying the stellar astrophysical properties of dozens of embedded low mass protostars in the nearest regions of star formation. These high dispersion spectra allow, for the first time, direct measurements of their stellar effective temperatures, surface gravities, rotation velocities, radial velocities (and spectroscopic binarity), mass accretion properties, and mass outflow indicators. Comparisons of the stellar properties with evolutionary models also allow us to estimate masses and constrain ages. We find that these objects have masses similar to those of older, more evolved T Tauri stars, but protostars have higher mean rotation velocities and angular momenta. Most protostars indicate high mass accretion or outflow, but some in Taurus-Auriga appear to be relatively quiescent. These new results are testing, expanding, and refining the standard star formation paradigm, and we explore how to expand this work further.

  7. Beta Dips in the Gaia Era: Simulation Predictions of the Galactic Velocity Anisotropy Parameter (β) for Stellar Halos

    NASA Astrophysics Data System (ADS)

    Loebman, Sarah R.; Valluri, Monica; Hattori, Kohei; Debattista, Victor P.; Bell, Eric F.; Stinson, Greg; Christensen, Charlotte R.; Brooks, Alyson; Quinn, Thomas R.; Governato, Fabio

    2018-02-01

    The velocity anisotropy parameter, β, is a measure of the kinematic state of orbits in the stellar halo, which holds promise for constraining the merger history of the Milky Way (MW). We determine global trends for β as a function of radius from three suites of simulations, including accretion-only and cosmological hydrodynamic simulations. We find that the two types of simulations are consistent and predict strong radial anisotropy (< β > ∼ 0.7) for Galactocentric radii greater than 10 kpc. Previous observations of β for the MW’s stellar halo claim a detection of an isotropic or tangential “dip” at r ∼ 20 kpc. Using the N-body+SPH simulations, we investigate the temporal persistence, population origin, and severity of “dips” in β. We find that dips in the in situ stellar halo are long-lived, while dips in the accreted stellar halo are short-lived and tied to the recent accretion of satellite material. We also find that a major merger as early as z ∼ 1 can result in a present-day low (isotropic to tangential) value of β over a broad range of radii and angles. While all of these mechanisms are plausible drivers for the β dip observed in the MW, each mechanism in the simulations has a unique metallicity signature associated with it, implying that future spectroscopic surveys could distinguish between them. Since an accurate knowledge of β(r) is required for measuring the mass of the MW halo, we note that significant transient dips in β could cause an overestimate of the halo’s mass when using spherical Jeans equation modeling.

  8. Simulated stellar kinematics studies of high-redshift galaxies with the HARMONI Integral Field Spectrograph

    NASA Astrophysics Data System (ADS)

    Kendrew, S.; Zieleniewski, S.; Houghton, R. C. W.; Thatte, N.; Devriendt, J.; Tecza, M.; Clarke, F.; O'Brien, K.; Häußler, B.

    2016-05-01

    We present a study into the capabilities of integrated and spatially resolved integral field spectroscopy of galaxies at z = 2-4 with the future HARMONI spectrograph for the European Extremely Large Telescope (E-ELT) using the simulation pipeline, HSIM. We focus particularly on the instrument's capabilities in stellar absorption line integral field spectroscopy, which will allow us to study the stellar kinematics and stellar population characteristics. Such measurements for star-forming and passive galaxies around the peak star formation era will provide a critical insight into the star formation, quenching and mass assembly history of high-z, and thus present-day galaxies. First, we perform a signal-to-noise study for passive galaxies at a range of stellar masses for z = 2-4, assuming different light profiles; for this population, we estimate that integrated stellar absorption line spectroscopy with HARMONI will be limited to galaxies with M* ≳ 1010.7 M⊙. Secondly, we use HSIM to perform a mock observation of a typical star-forming 1010 M⊙ galaxy at z = 3 generated from the high-resolution cosmological simulation NUTFB. We demonstrate that the input stellar kinematics of the simulated galaxy can be accurately recovered from the integrated spectrum in a 15-h observation, using common analysis tools. Whilst spatially resolved spectroscopy is likely to remain out of reach for this particular galaxy, we estimate HARMONI's performance limits in this regime from our findings. This study demonstrates how instrument simulators such as HSIM can be used to quantify instrument performance and study observational biases on kinematics retrieval; and shows the potential of making observational predictions from cosmological simulation output data.

  9. Requirements for Radial Migration: How does the migrating fraction depend on stellar velocity dispersion?

    NASA Astrophysics Data System (ADS)

    Tolfree, Kathryne; Wyse, R. F.

    2014-01-01

    Radial migration is a way to rearrange the orbital angular momentum of stars in an spiral disk without inducing kinematic heating. When radial migration is very efficient, a large fraction of disk stars experience significant changes in their orbital angular momenta in a short period of time. Such scenarios have strong implications for the chemical and kinematic evolution of disk galaxies. We have undertaken an investigation of the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure by deriving the fraction of stars that can migrate radially given certain conditions. In order for a star in a spiral disk to migrate radially, it must first be “captured" in a family of resonant orbits near the radius of corotation with a spiral pattern. Thus far, the only analytic criterion for capture has been for stars in circular orbits. We present the capture criterion for stars on non-circular orbits in a disk galaxy. We then use our analytically derived capture criteria to model the radial distribution of the captured fraction in an exponential disk with a flat rotation curve as well as the dependence of the total captured fraction in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential at corotation (|Φs|CR). We find that the captured fraction goes as Exp[-σR2/|Φs|CR].

  10. Requirements for Radial Migration: How Does the Migrating Fraction Depend on Stellar Velocity Dispersion?

    NASA Astrophysics Data System (ADS)

    Tolfree, K. J. D.; Wyse, R. F. G.

    2014-03-01

    Radial migration is a mechanism that can rearrange the orbital angular momentum of stars in a spiral disk without inducing kinematic heating. When radial migration is very efficient, a large fraction of disk stars experience significant changes in their orbital angular momenta over a short period of time. Such scenarios have strong implications for the chemical and kinematic evolution of disk galaxies. We have undertaken an investigation of the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure by deriving the fraction of stars that can migrate radially. In order for a star in a spiral disk to migrate radially, it must first be “captured” in a family of resonant orbits near the radius of corotation with a transient spiral pattern. To date, the only analytic criterion for capture has been for stars in circular orbits. We present the capture criterion for disk stars on non-circular orbits. We then use our analytically derived capture criterion to model the radial distribution of the captured fraction in an exponential disk with a flat rotation curve. Further, we derive the dependence of the total captured fraction in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential evaluated at corotation (|Φs|CR). We find that within an annulus centered around corotation where σR is constant, the captured fraction goes as e-σR2/|Φs|CR.

  11. Long-term radial-velocity variations of the Sun as a star: The HARPS view

    NASA Astrophysics Data System (ADS)

    Lanza, A. F.; Molaro, P.; Monaco, L.; Haywood, R. D.

    2016-03-01

    Context. Stellar radial velocities play a fundamental role in the discovery of extrasolar planets and the measurement of their physical parameters as well as in the study of stellar physical properties. Aims: We investigate the impact of the solar activity on the radial velocity of the Sun using the HARPS spectrograph to obtain measurements that can be directly compared with those acquired in the extrasolar planet search programmes. Methods: We used the Moon, the Galilean satellites, and several asteroids as reflectors to measure the radial velocity of the Sun as a star and correlated this velocity with disc-integrated chromospheric and magnetic indexes of solar activity that are similar to stellar activity indexes. We discuss in detail the systematic effects that affect our measurements and the methods to account for them. Results: We find that the radial velocity of the Sun as a star is positively correlated with the level of its chromospheric activity at ~95 percent significance level. The amplitude of the long-term variation measured in the 2006-2014 period is 4.98 ± 1.44 m/s, which is in good agreement with model predictions. The standard deviation of the residuals obtained by subtracting a linear best fit is 2.82 m/s and is due to the rotation of the reflecting bodies and the intrinsic variability of the Sun on timescales shorter than the activity cycle. A correlation with a lower significance is detected between the radial velocity and the mean absolute value of the line-of-sight photospheric magnetic field flux density. Conclusions: Our results confirm similar correlations found in other late-type main-sequence stars and provide support to the predictions of radial velocity variations induced by stellar activity based on current models.

  12. Star-forming galaxies in intermediate-redshift clusters: stellar versus dynamical masses of luminous compact blue galaxies

    NASA Astrophysics Data System (ADS)

    Randriamampandry, S. M.; Crawford, S. M.; Bershady, M. A.; Wirth, G. D.; Cress, C. M.

    2017-10-01

    We investigate the stellar masses of the class of star-forming objects known as luminous compact blue galaxies (LCBGs) by studying a sample of galaxies in the distant cluster MS 0451.6-0305 at z ≈ 0.54 with ground-based multicolour imaging and spectroscopy. For a sample of 16 spectroscopically confirmed cluster LCBGs (colour B - V < 0.5, surface brightness μB < 21 mag arcsec-2 and magnitude MB < -18.5), we measure stellar masses by fitting spectral energy distribution (SED) models to multiband photometry, and compare with dynamical masses [determined from velocity dispersion in the range 10 < σv(km s- 1) < 80] we previously obtained from their emission-line spectra. We compare two different stellar population models that measure stellar mass in star-bursting galaxies, indicating correlations between the stellar age, extinction and stellar mass derived from the two different SED models. The stellar masses of cluster LCBGs are distributed similarly to those of field LCBGs, but the cluster LCBGs show lower dynamical-to-stellar mass ratios (Mdyn/M⋆ = 2.6) than their field LCBG counterparts (Mdyn/M⋆ = 4.8), echoing trends noted previously in low-redshift dwarf elliptical galaxies. Within this limited sample, the specific star formation rate declines steeply with increasing mass, suggesting that these cluster LCBGs have undergone vigorous star formation.

  13. Early dynamical evolution of substructured stellar clusters

    NASA Astrophysics Data System (ADS)

    Dorval, Julien; Boily, Christian

    2015-08-01

    It is now widely accepted that stellar clusters form with a high level of substructure (Kuhn et al. 2014, Bate 2009), inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system (Kirk et al. 2007, Maschberger et al. 2010). The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth (Goodwin et al. 2004) and velocity inheritance. Such models are visually realistics and are very useful, they are however somewhat artificial in their velocity distribution. I introduce a new way to create clumpy initial conditions through a "Hubble expansion" which naturally produces self consistent clumps, velocity-wise. A velocity distribution analysis shows the new method produces realistic models, consistent with the dynamical state of the newly created cores in hydrodynamic simulation of cluster formation (Klessen & Burkert 2000). I use these initial conditions to investigate the dynamical evolution of young subvirial clusters, up to 80000 stars. I find an overall soft evolution, with hierarchical merging leading to a high level of mass segregation. I investigate the influence of the mass function on the fate of the cluster, specifically on the amount of mass loss induced by the early violent relaxation. Using a new binary detection algorithm, I also find a strong processing of the native binary population.

  14. The velocity field of the barred spiral galaxy NGC 1300 revisited.

    NASA Astrophysics Data System (ADS)

    Lindblad, P. A. B.; Kristen, H.; Joersaeter, S.; Hoegbom, J.

    1997-01-01

    The re-reduction, described in Joersaeter & van Moorsel (1995AJ....110.2037J), of NGC 1300 VLA HI observations, originally obtained by M. England, motivates a new analysis of the velocity field and rotation curve. Fitting tilted ring models to the HI velocity data, we find the new values for the orientation parameters of NGC 1300 to be PA_lon_=267+/-2deg and i=35+/-5deg. Subsequently, the HI rotation curve is extracted, and a residual velocity map constructed. The HI velocity residuals in the bar region are found to be consistent with elliptical motion aligned with the bar major axis. Further out the residual velocities correlate with the position of the HI spiral arms. We use 16 optical long slit emission line spectra, covering mainly the nuclear, bar, and inner arm region, to resolve the inner part of the velocity field. Three new spectra are presented in this investigation, and the remaining 13 are found in the literature. The optical velocities reveal a sharply rising rotation curve in the inner R<10", not seen in the HI data due to beam-smearing. The optical velocity field is weighted together with the HI velocities to produce a combined velocity field. This velocity field is interpreted using hydrodynamical models in a subsequent paper by Lindblad & Kristen (1996A&A...313..733L).

  15. Gradient of the stellar magnetic field in measurements of hydrogen line cores

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Dimitry O.; Romanyuk, Iosif I.

    2009-04-01

    We report the observed systematic differences in longitudinal magnetic field values, obtained from measurements of metal lines and the core of the Hβ line for a number of Ap stars, having strong global magnetic fields. In overwhelming majority of cases the magnetic field values, obtained from measurements of hydrogen lines cores, is smaller then the ones obtained from metal lines. We discuss some possible explanations of this effect, the most probable of which is the existence of the gradient of the magnetic field in stellar atmospheres.

  16. New science from the phase space of old stellar systems

    NASA Astrophysics Data System (ADS)

    Varri, Anna Lisa; Breen, Philip G.; Heggie, Douglas C.; Tiongco, Maria; Vesperini, Enrico

    2017-06-01

    Our traditional interpretative picture of the internal dynamics of globular clusters has been recently revolutionized by a series of discoveries about their chemical, structural, and kinematic properties. The empirical evidence that their velocity space is much more complex than usually expected encourages us to use them as refreshingly novel phase space laboratories for some long-forgotten aspects of collisional gravitational dynamics. Such a realization, coupled with the discovery that the stars in clusters were not all born at once in a single population, makes them new, challenging chemodynamical puzzles.Thanks to the proper motions of thousands of stars that will be available from the Gaia mission, we are about to enter a new ''golden age'' for the study of the dynamics of this class of stellar systems, as the full phase space of several Galactic globular clusters will be soon unlocked for the first time. In this context, I will present the highlights of a more realistic dynamical paradigm for these intriguing stellar systems, with emphasis on the role of angular momentum, velocity anisotropy and external tidal field. Such a fundamental understanding of the emerging phase space complexity of globulars will allow us to address many open questions about their rich dynamical evolution, their elusive stellar populations and putative black holes, and their role within the history of our Galaxy.

  17. An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements.

    PubMed

    Dabiri, John O; Bose, Sanjeeb; Gemmell, Brad J; Colin, Sean P; Costello, John H

    2014-02-01

    We describe and characterize a method for estimating the pressure field corresponding to velocity field measurements such as those obtained by using particle image velocimetry. The pressure gradient is estimated from a time series of velocity fields for unsteady calculations or from a single velocity field for quasi-steady calculations. The corresponding pressure field is determined based on median polling of several integration paths through the pressure gradient field in order to reduce the effect of measurement errors that accumulate along individual integration paths. Integration paths are restricted to the nodes of the measured velocity field, thereby eliminating the need for measurement interpolation during this step and significantly reducing the computational cost of the algorithm relative to previous approaches. The method is validated by using numerically simulated flow past a stationary, two-dimensional bluff body and a computational model of a three-dimensional, self-propelled anguilliform swimmer to study the effects of spatial and temporal resolution, domain size, signal-to-noise ratio and out-of-plane effects. Particle image velocimetry measurements of a freely swimming jellyfish medusa and a freely swimming lamprey are analyzed using the method to demonstrate the efficacy of the approach when applied to empirical data.

  18. ECRH and its effects on neoclassical transport in a stellarator

    NASA Astrophysics Data System (ADS)

    Seol, Jaechun

    The banana center orbit deviates significantly from the magnetic surface due to the symmetry-breaking term in the magnetic field configuration. Energetic electrons can escape the plasma without collision, since the drift speed is proportional to the perpendicular energy of electron and the collision frequency is reduced as the electron energy goes up. A direct loss flux can be generated from energetic electron population in a stellarator. Thus energetic electron populations can substantially modify the neoclassical transport properties in stellarators. A model accounting for this change in transport is developed assuming the presence of electron cyclotron resonance heating (ECRH). The quasilinear diffusion coefficient for second harmonic X-mode ECRH is developed for a bumpy stellarator. Care is taken in accounting for the pitch-angle dependence of the quasilinear diffusion coefficient since application to experiments with narrow resonance zones is of interest. Weakly relativistic effects are considered through the mass effect on the cyclotron frequency. For trapped particles in a three dimensional configuration, collisionless loss zones exist in velocity space. Radio-frequency (rf) waves accelerate trapped electrons into the direct loss zone in bumpy stellarators and produce a direct loss flux. An analytic expression for this loss flux is derived; it is proportional to the rf field strength and the value of the zeroth order distribution function at the minimum speed for collisionless loss. The direct loss flux of electrons is another source of a non-ambipolar particle flux in bumpy stellarators. This additional non-ambipolar flux modifies the ambipolarity equation which generally has multiple roots for the radial electric field. An electron root (large positive Er) is easily obtained if the electrons are in the 1/nu regime and the ions are in the nu regime.

  19. A Unified Geodetic Vertical Velocity Field (UGVVF), Version 1.0

    NASA Astrophysics Data System (ADS)

    Schmalzle, G.; Wdowinski, S.

    2014-12-01

    Tectonic motion, volcanic inflation or deflation, as well as oil, gas and water pumping can induce vertical motion. In southern California these signals are inter-mingled. In tectonics, properly identifying regions that are contaminated by other signals can be important when estimating fault slip rates. Until recently vertical deformation rates determined by high precision Global Positioning Systems (GPS) had large uncertainties compared to horizontal components and were rarely used to constrain tectonic models of fault motion. However, many continuously occupied GPS stations have been operating for ten or more years, often delivering uncertainties of ~1 mm/yr or less, providing better constraints for tectonic modeling. Various processing centers produced GPS time series and estimated vertical velocity fields, each with their own set of processing techniques and assumptions. We compare vertical velocity solutions estimated by seven data processing groups as well as two combined solutions (Figure 1). These groups include: Central Washington University (CWU) and New Mexico Institute of Technology (NMT), and their combined solution provided by the Plate Boundary Observatory (PBO) through the UNAVCO website. Also compared are the Jet Propulsion Laboratory (JPL) and Scripps Orbit and Permanent Array Center (SOPAC) and their combined solution provided as part of the NASA MEaSUREs project. Smaller velocity fields included are from Amos et al., 2014, processed at the Nevada Geodetic Laboratory, Shen et al., 2011, processed by UCLA and called the Crustal Motion Map 4.0 (CMM4) dataset, and a new velocity field provided by the University of Miami (UM). Our analysis includes estimating and correcting for systematic vertical velocity and uncertainty differences between groups. Our final product is a unified velocity field that contains the median values of the adjusted velocity fields and their uncertainties. This product will be periodically updated when new velocity fields

  20. Velocity field calculation for non-orthogonal numerical grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G. P.

    2015-03-01

    Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation,more » and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a

  1. The stellar initial mass function of early-type galaxies from low to high stellar velocity dispersion: homogeneous analysis of ATLAS3D and Sloan Lens ACS galaxies

    NASA Astrophysics Data System (ADS)

    Posacki, Silvia; Cappellari, Michele; Treu, Tommaso; Pellegrini, Silvia; Ciotti, Luca

    2015-01-01

    We present an investigation about the shape of the initial mass function (IMF) of early-type galaxies (ETGs), based on a joint lensing and dynamical analysis, and on stellar population synthesis models, for a sample of 55 lens ETGs identified by the Sloan Lens Advanced Camera for Surveys (SLACS). We construct axisymmetric dynamical models based on the Jeans equations which allow for orbital anisotropy and include a dark matter halo. The models reproduce in detail the observed Hubble Space Telescope photometry and are constrained by the total projected mass within the Einstein radius and the stellar velocity dispersion (σ) within the Sloan Digital Sky Survey fibres. Comparing the dynamically-derived stellar mass-to-light ratios (M*/L)dyn, obtained for an assumed halo slope ρh ∝ r-1, to the stellar population ones (M*/L)Salp, derived from full-spectrum fitting and assuming a Salpeter IMF, we infer the mass normalization of the IMF. Our results confirm the previous analysis by the SLACS team that the mass normalization of the IMF of high-σ galaxies is consistent on average with a Salpeter slope. Our study allows for a fully consistent study of the trend between IMF and σ for both the SLACS and atlas3D samples, which explore quite different σ ranges. The two samples are highly complementary, the first being essentially σ selected, and the latter volume-limited and nearly mass selected. We find that the two samples merge smoothly into a single trend of the form log α = (0.38 ± 0.04) × log (σe/200 km s-1) + ( - 0.06 ± 0.01), where α = (M*/L)dyn/(M*/L)Salp and σe is the luminosity averaged σ within one effective radius Re. This is consistent with a systematic variation of the IMF normalization from Kroupa to Salpeter in the interval σe ≈ 90-270 km s-1.

  2. Stellar Angular Momentum Distributions and Preferential Radial Migration

    NASA Astrophysics Data System (ADS)

    Wyse, Rosemary; Daniel, Kathryne J.

    2018-04-01

    I will present some results from our recent investigations into the efficiency of radial migration in stellar disks of differing angular momentum distributions, within a given adopted 2D spiral disk potential. We apply to our models an analytic criterion that determines whether or not individual stars are in orbits that could lead to radial migration around the corotation resonance. We couch our results in terms of the local stellar velocity dispersion and find that the fraction of stars that could migrate radially decreases as the velocity dispersion increases. I will discuss implications and comparisons with the results of other approaches.

  3. When the Jeans Do Not Fit: How Stellar Feedback Drives Stellar Kinematics and Complicates Dynamical Modeling in Low-mass Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Badry, Kareem; Quataert, Eliot; Wetzel, Andrew R.

    In low-mass galaxies, stellar feedback can drive gas outflows that generate non-equilibrium fluctuations in the gravitational potential. Using cosmological zoom-in baryonic simulations from the Feedback in Realistic Environments project, we investigate how these fluctuations affect stellar kinematics and the reliability of Jeans dynamical modeling in low-mass galaxies. We find that stellar velocity dispersion and anisotropy profiles fluctuate significantly over the course of galaxies’ starburst cycles. We therefore predict an observable correlation between star formation rate and stellar kinematics: dwarf galaxies with higher recent star formation rates should have systemically higher stellar velocity dispersions. This prediction provides an observational test ofmore » the role of stellar feedback in regulating both stellar and dark-matter densities in dwarf galaxies. We find that Jeans modeling, which treats galaxies as virialized systems in dynamical equilibrium, overestimates a galaxy’s dynamical mass during periods of post-starburst gas outflow and underestimates it during periods of net inflow. Short-timescale potential fluctuations lead to typical errors of ∼20% in dynamical mass estimates, even if full three-dimensional stellar kinematics—including the orbital anisotropy—are known exactly. When orbital anisotropy is not known a priori, typical mass errors arising from non-equilibrium fluctuations in the potential are larger than those arising from the mass-anisotropy degeneracy. However, Jeans modeling alone cannot reliably constrain the orbital anisotropy, and problematically, it often favors anisotropy models that do not reflect the true profile. If galaxies completely lose their gas and cease forming stars, fluctuations in the potential subside, and Jeans modeling becomes much more reliable.« less

  4. Excess velocity of magnetic domain walls close to the depinning field

    NASA Astrophysics Data System (ADS)

    Caballero, Nirvana B.; Fernández Aguirre, Iván; Albornoz, Lucas J.; Kolton, Alejandro B.; Rojas-Sánchez, Juan Carlos; Collin, Sophie; George, Jean Marie; Diaz Pardo, Rebeca; Jeudy, Vincent; Bustingorry, Sebastian; Curiale, Javier

    2017-12-01

    Magnetic field driven domain wall velocities in [Co/Ni] based multilayers thin films have been measured using polar magneto-optic Kerr effect microscopy. The low field results are shown to be consistent with the universal creep regime of domain wall motion, characterized by a stretched exponential growth of the velocity with the inverse of the applied field. Approaching the depinning field from below results in an unexpected excess velocity with respect to the creep law. We analyze these results using scaling theory to show that this speeding up of domain wall motion can be interpreted as due to the increase of the size of the deterministic relaxation close to the depinning transition. We propose a phenomenological model to accurately fit the observed excess velocity and to obtain characteristic values for the depinning field Hd, the depinning temperature Td, and the characteristic velocity scale v0 for each sample.

  5. CAPELLA: Software for stellar photometry in dense fields with an irregular background

    NASA Astrophysics Data System (ADS)

    Debray, B.; Llebaria, A.; Dubout-Crillon, R.; Petit, M.

    1994-01-01

    We describe CAPELLA, a photometric reduction package developed top automatically process images of very crowded stellar fields with an irregular background. Detection is performed by the use of a derivative filter (the laplacian of a gaussian), the measuring of position and flux of the stars uses a profile fitting technique. The Point Spread Function (PSF) is empirical. The traditional multiparmetric non-linear fit is replaced by a set of individual linear fits. The determination of the background, the detection, the definition of the PSF and the basics of the methods are successively addressed in details. The iterative procedure as well as some aspects of the sampling problem are also discussed. Precision tests, performances in uncrowded and crowded fields are given CAPELLA has been used to process crowded stellar fields obtained with different detectors such as electronographic cameras, CCD's photographic films coupled to image intensifiers. It has been applied successfully in the extreme cases of close associations of the galaxy M33, of the composite Wolf-Rayet Brey 73 in the Large Magellanic Cloud (LMC) and of the central parts of globular clusters as 47 TUC and M15.

  6. The metal-poor stellar halo in RAVE-TGAS and its implications for the velocity distribution of dark matter

    NASA Astrophysics Data System (ADS)

    Herzog-Arbeitman, Jonah; Lisanti, Mariangela; Necib, Lina

    2018-04-01

    The local velocity distribution of dark matter plays an integral role in interpreting the results from direct detection experiments. We previously showed that metal-poor halo stars serve as excellent tracers of the virialized dark matter velocity distribution using a high-resolution hydrodynamic simulation of a Milky Way-like halo. In this paper, we take advantage of the first Gaia data release, coupled with spectroscopic measurements from the RAdial Velocity Experiment (RAVE), to study the kinematics of stars belonging to the metal-poor halo within an average distance of ~5 kpc of the Sun. We study stars with iron abundances [Fe/H] < ‑1.5 and ‑1.8 that are located more than 1.5 kpc from the Galactic plane. Using a Gaussian mixture model analysis, we identify the stars that belong to the halo population, as well as some kinematic outliers. We find that both metallicity samples have similar velocity distributions for the halo component, within uncertainties. Assuming that the stellar halo velocities adequately trace the virialized dark matter, we study the implications for direct detection experiments. The Standard Halo Model, which is typically assumed for dark matter, is discrepant with the empirical distribution by ~6σ, predicts fewer high-speed particles, and is anisotropic. As a result, the Standard Halo Model overpredicts the nuclear scattering rate for dark matter masses below ~10 GeV. The kinematic outliers that we identify may potentially be correlated with dark matter substructure, though further study is needed to establish this correspondence.

  7. Recovering the full velocity and density fields from large-scale redshift-distance samples

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund; Dekel, Avishai

    1989-01-01

    A new method for extracting the large-scale three-dimensional velocity and mass density fields from measurements of the radial peculiar velocities is presented. Galaxies are assumed to trace the velocity field rather than the mass. The key assumption made is that the Lagrangian velocity field has negligible vorticity, as might be expected from perturbations that grew by gravitational instability. By applying the method to cosmological N-body simulations, it is demonstrated that it accurately reconstructs the velocity field. This technique promises a direct determination of the mass density field and the initial conditions for the formation of large-scale structure from galaxy peculiar velocity surveys.

  8. Global properties of M31's stellar halo from the splash survey. II. Metallicity profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Karoline M.; Kalirai, Jason S.; Guhathakurta, Puragra

    2014-12-01

    We present the metallicity distribution of red giant branch (RGB) stars in M31's stellar halo, derived from photometric metallicity estimates for over 1500 spectroscopically confirmed RGB halo stars. The stellar sample comes from 38 halo fields observed with the Keck/DEIMOS spectrograph, ranging from 9 to 175 kpc in projected distance from M31's center, and includes 52 confirmed M31 halo stars beyond 100 kpc. While a wide range of metallicities is seen throughout the halo, the metal-rich peak of the metallicity distribution function becomes significantly less prominent with increasing radius. The metallicity profile of M31's stellar halo shows a continuous gradientmore » from 9 to ∼100 kpc, with a magnitude of ∼ – 0.01 dex kpc{sup –1}. The stellar velocity distributions in each field are used to identify stars that are likely associated with tidal debris features. The removal of tidal debris features does not significantly alter the metallicity gradient in M31's halo: a gradient is maintained in fields spanning 10-90 kpc. We analyze the halo metallicity profile, as well as the relative metallicities of stars associated with tidal debris features and the underlying halo population, in the context of current simulations of stellar halo formation. We argue that the large-scale gradient in M31's halo implies M31 accreted at least one relatively massive progenitor in the past, while the field to field variation seen in the metallicity profile indicates that multiple smaller progenitors are likely to have contributed substantially to M31's outer halo.« less

  9. The Stellar IMF from Isothermal MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Haugbølle, Troels; Padoan, Paolo; Nordlund, Åke

    2018-02-01

    We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 M ⊙ and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfvén velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.

  10. The Most Ancient Spiral Galaxy: A 2.6-Gyr-old Disk with a Tranquil Velocity Field

    NASA Astrophysics Data System (ADS)

    Yuan, Tiantian; Richard, Johan; Gupta, Anshu; Federrath, Christoph; Sharma, Soniya; Groves, Brent A.; Kewley, Lisa J.; Cen, Renyue; Birnboim, Yuval; Fisher, David B.

    2017-11-01

    We report an integral-field spectroscopic (IFS) observation of a gravitationally lensed spiral galaxy A1689B11 at redshift z = 2.54. It is the most ancient spiral galaxy discovered to date and the second kinematically confirmed spiral at z≳ 2. Thanks to gravitational lensing, this is also by far the deepest IFS observation with the highest spatial resolution (˜400 pc) on a spiral galaxy at a cosmic time when the Hubble sequence is about to emerge. After correcting for a lensing magnification of 7.2 ± 0.8, this primitive spiral disk has an intrinsic star formation rate of 22 ± 2 M ⊙ yr-1, a stellar mass of {10}9.8+/- 0.3 M ⊙, and a half-light radius of {r}1/2=2.6+/- 0.7 {kpc}, typical of a main-sequence star-forming galaxy at z˜ 2. However, the Hα kinematics show a surprisingly tranquil velocity field with an ordered rotation ({V}{{c}}=200+/- 12 km s-1) and uniformly small velocity dispersions ({V}σ ,{mean}=23 +/- 4 km s-1 and {V}σ ,{outer - {disk}}=15+/- 2 km s-1). The low gas velocity dispersion is similar to local spiral galaxies and is consistent with the classic density wave theory where spiral arms form in dynamically cold and thin disks. We speculate that A1689B11 belongs to a population of rare spiral galaxies at z≳ 2 that mark the formation epoch of thin disks. Future observations with the James Webb Space Telescope will greatly increase the sample of these rare galaxies and unveil the earliest onset of spiral arms.

  11. A grid of MHD models for stellar mass loss and spin-down rates of solar analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, O.; Drake, J. J.

    2014-03-01

    Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate of stars with thermally driven winds. Despite the successmore » of our scaling law in matching the results of the model, we find a deviation between the 'solar dipole' case and a real case based on solar observations that overestimates the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure B {sup 2}. We also find that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time, Ω{sub *}∝t {sup –1/2}, if the large-scale poloidal magnetic field scales with rotation rate as B{sub p}∝Ω{sub ⋆}{sup 2}.« less

  12. Closed and open magnetic fields in stellar winds

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Steinolfson, R. S.

    1983-01-01

    A numerical study of the interaction between a thermal wind and a global dipole field in the sun and in a giant star is reported. In order for closed field lines to persist near the equator (where a helmet-streamer-like configuration appears), the coronal temperature must be less than a critical value Tc, which scales as M/R. This condition is found to be equivalent to the following: for a static helmet streamer to persist, the sonic point above the helmet must not approach closer to the star than 2.2-2.6 stellar radii. Implications for rapid mass loss and X-ray emission from cool giants are pointed out. The results strengthen the case for identifying empirical dividing lines in the H-R diagram with a magnetic topology transition locus (MTTL). Support for the MTTL concept is also provided by considerations of the breakdown of magnetostatic equilibrium.

  13. BinMag: Widget for comparing stellar observed with theoretical spectra

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.

    2018-05-01

    BinMag examines theoretical stellar spectra computed with Synth/SynthMag/Synmast/Synth3/SME spectrum synthesis codes and compare them to observations. An IDL widget program, BinMag applies radial velocity shift and broadening to the theoretical spectra to account for the effects of stellar rotation, radial-tangential macroturbulence, instrumental smearing. The code can also simulate spectra of spectroscopic binary stars by appropriate coaddition of two synthetic spectra. Additionally, BinMag can be used to measure equivalent width, fit line profile shapes with analytical functions, and to automatically determine radial velocity and broadening parameters. BinMag interfaces with the Synth3 (ascl:1212.010) and SME (ascl:1202.013) codes, allowing the user to determine chemical abundances and stellar atmospheric parameters from the observed spectra.

  14. Program Package for the Analysis of High Resolution High Signal-To-Noise Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Piskunov, N.; Ryabchikova, T.; Pakhomov, Yu.; Sitnova, T.; Alekseeva, S.; Mashonkina, L.; Nordlander, T.

    2017-06-01

    The program package SME (Spectroscopy Made Easy), designed to perform an analysis of stellar spectra using spectral fitting techniques, was updated due to adding new functions (isotopic and hyperfine splittins) in VALD and including grids of NLTE calculations for energy levels of few chemical elements. SME allows to derive automatically stellar atmospheric parameters: effective temperature, surface gravity, chemical abundances, radial and rotational velocities, turbulent velocities, taking into account all the effects defining spectral line formation. SME package uses the best grids of stellar atmospheres that allows us to perform spectral analysis with the similar accuracy in wide range of stellar parameters and metallicities - from dwarfs to giants of BAFGK spectral classes.

  15. On the origin of bursts in blue compact dwarf galaxies: clues from kinematics and stellar populations

    NASA Astrophysics Data System (ADS)

    Koleva, M.; De Rijcke, S.; Zeilinger, W. W.; Verbeke, R.; Schroyen, J.; Vermeylen, L.

    2014-06-01

    Blue compact dwarf galaxies (BCDs) form stars at, for their sizes, extraordinarily high rates. In this paper, we study what triggers this starburst and what is the fate of the galaxy once its gas fuel is exhausted. We select four BCDs with smooth outer regions, indicating them as possible progenitors of dwarf elliptical galaxies. We have obtained photometric and spectroscopic data with the FORS and ISAAC instruments on the VLT. We analyse their infrared spectra using a full spectrum fitting technique, which yields the kinematics of their stars and ionized gas together with their stellar population characteristics. We find that the stellar velocity to velocity dispersion ratio ((v/σ)⋆) of our BCDs is of the order of 1.5, similar to that of dwarf elliptical galaxies. Thus, those objects do not require significant (if any) loss of angular momentum to fade into early-type dwarfs. This finding is in discordance with previous studies, which however compared the stellar kinematics of dwarf elliptical galaxies with the gaseous kinematics of star-forming dwarfs. The stellar velocity fields of our objects are very disturbed and the star formation regions are often kinematically decoupled from the rest of the galaxy. These regions can be more or less metal rich with respect to the galactic body and sometimes they are long lived. These characteristics prevent us from pinpointing a unique trigger of the star formation, even within the same galaxy. Gas impacts, mergers, and in-spiraling gas clumps are all possible star formation igniters for our targets.

  16. Stellar Multiplicity Meets Stellar Evolution and Metallicity: The APOGEE View

    NASA Astrophysics Data System (ADS)

    Badenes, Carles; Mazzola, Christine; Thompson, Todd A.; Covey, Kevin; Freeman, Peter E.; Walker, Matthew G.; Moe, Maxwell; Troup, Nicholas; Nidever, David; Allende Prieto, Carlos; Andrews, Brett; Barbá, Rodolfo H.; Beers, Timothy C.; Bovy, Jo; Carlberg, Joleen K.; De Lee, Nathan; Johnson, Jennifer; Lewis, Hannah; Majewski, Steven R.; Pinsonneault, Marc; Sobeck, Jennifer; Stassun, Keivan G.; Stringfellow, Guy S.; Zasowski, Gail

    2018-02-01

    We use the multi-epoch radial velocities acquired by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to perform a large-scale statistical study of stellar multiplicity for field stars in the Milky Way, spanning the evolutionary phases between the main sequence (MS) and the red clump. We show that the distribution of maximum radial velocity shifts (ΔRVmax) for APOGEE targets is a strong function of log g, with MS stars showing ΔRVmax as high as ∼300 {km} {{{s}}}-1, and steadily dropping down to ∼30 {km} {{{s}}}-1 for log g ∼ 0, as stars climb up the red giant branch (RGB). Red clump stars show a distribution of ΔRVmax values comparable to that of stars at the tip of the RGB, implying they have similar multiplicity characteristics. The observed attrition of high ΔRVmax systems in the RGB is consistent with a lognormal period distribution in the MS and a multiplicity fraction of 0.35, which is truncated at an increasing period as stars become physically larger and undergo mass transfer after Roche Lobe overflow during H-shell burning. The ΔRVmax distributions also show that the multiplicity characteristics of field stars are metallicity-dependent, with metal-poor ([Fe/H] ≲ ‑0.5) stars having a multiplicity fraction a factor of 2–3 higher than metal-rich ([Fe/H] ≳ 0.0) stars. This has profound implications for the formation rates of interacting binaries observed by astronomical transient surveys and gravitational wave detectors, as well as the habitability of circumbinary planets.

  17. New theory of stellar convection without the mixing-length parameter: new stellar atmosphere model

    NASA Astrophysics Data System (ADS)

    Pasetto, Stefano; Chiosi, Cesare; Cropper, Mark; Grebel, Eva K.

    2018-01-01

    Stellar convection is usually described by the mixing-length theory, which makes use of the mixing-length scale factor to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is proportional to the local pressure scale height of the star, and the proportionality factor (i.e. mixing-length parameter) is determined by comparing the stellar models to some calibrator, i.e. the Sun. No strong arguments exist to suggest that the mixing-length parameter is the same in all stars and all evolutionary phases and because of this, all stellar models in the literature are hampered by this basic uncertainty. In a recent paper [1] we presented a new theory that does not require the mixing length parameter. Our self-consistent analytical formulation of stellar convection determines all the properties of stellar convection as a function of the physical behavior of the convective elements themselves and the surrounding medium. The new theory of stellar convection is formulated starting from a conventional solution of the Navier-Stokes/Euler equations expressed in a non-inertial reference frame co-moving with the convective elements. The motion of stellar convective cells inside convective-unstable layers is fully determined by a new system of equations for convection in a non-local and time-dependent formalism. The predictions of the new theory are compared with those from the standard mixing-length paradigm with positive results for atmosphere models of the Sun and all the stars in the Hertzsprung-Russell diagram.

  18. Three-Dimensional Velocity Field De-Noising using Modal Projection

    NASA Astrophysics Data System (ADS)

    Frank, Sarah; Ameli, Siavash; Szeri, Andrew; Shadden, Shawn

    2017-11-01

    PCMRI and Doppler ultrasound are common modalities for imaging velocity fields inside the body (e.g. blood, air, etc) and PCMRI is increasingly being used for other fluid mechanics applications where optical imaging is difficult. This type of imaging is typically applied to internal flows, which are strongly influenced by domain geometry. While these technologies are evolving, it remains that measured data is noisy and boundary layers are poorly resolved. We have developed a boundary modal analysis method to de-noise 3D velocity fields such that the resulting field is divergence-free and satisfies no-slip/no-penetration boundary conditions. First, two sets of divergence-free modes are computed based on domain geometry. The first set accounts for flow through ``truncation boundaries'', and the second set of modes has no-slip/no-penetration conditions imposed on all boundaries. The modes are calculated by minimizing the velocity gradient throughout the domain while enforcing a divergence-free condition. The measured velocity field is then projected onto these modes using a least squares algorithm. This method is demonstrated on CFD simulations with artificial noise. Different degrees of noise and different numbers of modes are tested to reveal the capabilities of the approach. American Heart Association Award 17PRE33660202.

  19. Linear velocity fields in non-Gaussian models for large-scale structure

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  20. Understanding stellar activity and flares to search for Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Del Sordo, Fabio

    2015-08-01

    The radial velocity method is a powerful way to search for exoplanetary systems and it led to many discoveries of exoplanets in the last 20 years. Nowadays, understanding stellar activity, flares and noise is a key factor for achieving a substantial improvement in such technique.Radial-velocity data are time-series containing the effect of both planets and stellar disturbances: the detection of Earth-like planets requires to improve the signal-to-noise ratio, i.e. it is central to understand the noise present in the data. Noise is caused by physical processes which operate on different time-scales, oftentimes acting in a non-periodic fashion. We present here an approach to such problem: to look for multifractal structures in the time-series coming from radial velocity measurements, identifying the underlying long-range correlations and fractal scaling properties, connecting them to the underlying physical processes (stellar oscillations, stellar wind, granulation, rotation, magnetic activity). This method has been previously applied to satellite data related to Arctic sea albedo, relevant for identify trends and noise in the Arctic sea ice (Agarwal, Moon, Wettlaufer, 2012). Here we suggest to use such analysis for exoplanetary data related to possible Earth-like planets.

  1. sunstardb: A Database for the Study of Stellar Magnetism and the Solar-stellar Connection

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky

    2018-05-01

    The “solar-stellar connection” began as a relatively small field of research focused on understanding the processes that generate magnetic fields in stars and sometimes lead to a cyclic pattern of long-term variability in activity, as demonstrated by our Sun. This area of study has recently become more broadly pertinent to questions of exoplanet habitability and exo-space weather, as well as stellar evolution. In contrast to other areas of stellar research, individual stars in the solar-stellar connection often have a distinct identity and character in the literature, due primarily to the rarity of the decades-long time-series that are necessary for studying stellar activity cycles. Furthermore, the underlying stellar dynamo is not well understood theoretically, and is thought to be sensitive to several stellar properties, e.g., luminosity, differential rotation, and the depth of the convection zone, which in turn are often parameterized by other more readily available properties. Relevant observations are scattered throughout the literature and existing stellar databases, and consolidating information for new studies is a tedious and laborious exercise. To accelerate research in this area I developed sunstardb, a relational database of stellar properties and magnetic activity proxy time-series keyed by individual named stars. The organization of the data eliminates the need for the problematic catalog cross-matching operations inherent when building an analysis data set from heterogeneous sources. In this article I describe the principles behind sunstardb, the data structures and programming interfaces, as well as use cases from solar-stellar connection research.

  2. Signature of non-isotropic distribution of stellar rotation inclination angles in the Praesepe cluster

    NASA Astrophysics Data System (ADS)

    Kovacs, Geza

    2018-04-01

    The distribution of the stellar rotation axes of 113 main sequence stars in the open cluster Praesepe are examined by using current photometric rotation periods, spectroscopic rotation velocities, and estimated stellar radii. Three different samples of stellar rotation data on spotted stars from the Galactic field and two independent samples of planetary hosts are used as control samples to support the consistency of the analysis. Considering the high completeness of the Praesepe sample and the behavior of the control samples, we find that the main sequence F - K stars in this cluster are susceptible to rotational axis alignment. Using a cone model, the most likely inclination angle is 76° ± 14° with a half opening angle of 47° ± 24°. Non-isotropic distribution of the inclination angles is preferred over the isotropic distribution, except if the rotation velocities used in this work are systematically overestimated. We found no indication of this being the case on the basis of the currently available data. Data are only available at the CDS, together with the other two compiled datasets used in this paper, via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/L2

  3. The evolution of kicked stellar-mass black holes in star cluster environments

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Leigh, Nathan W. C.; Singh, Abhishek; Ford, K. E. Saavik; McKernan, Barry; Bellovary, Jillian

    2018-03-01

    We consider how dynamical friction acts on black holes that receive a velocity kick while located at the centre of a gravitational potential, analogous to a star cluster, due to either a natal kick or the anisotropic emission of gravitational waves during a black hole-black hole merger. Our investigation specifically focuses on how well various Chandrasekhar-based dynamical friction models can predict the orbital decay of kicked black holes with mbh ≲ 100 M⊙ due to an inhomogeneous background stellar field. In general, the orbital evolution of a kicked black hole follows that of a damped oscillator where two-body encounters and dynamical friction serve as sources of damping. However, we find models for approximating the effects of dynamical friction do not accurately predict the amount of energy lost by the black hole if the initial kick velocity vk is greater than the stellar velocity dispersion σ. For all kick velocities, we also find that two-body encounters with nearby stars can cause the energy evolution of a kicked BH to stray significantly from standard dynamical friction theory as encounters can sometimes lead to an energy gain. For larger kick velocities, we find the orbital decay of a black hole departs from classical theory completely as the black hole's orbital amplitude decays linearly with time as opposed to exponentially. Therefore, we have developed a linear decay formalism, which scales linearly with black hole mass and v_k/σ in order to account for the variations in the local gravitational potential.

  4. Galactic disk dynamical tracers: Open clusters and the local Milky Way rotation curve and velocity field

    NASA Astrophysics Data System (ADS)

    Frinchaboy, Peter Michael, III

    Establishing the rotation curve of the Milky Way is one of the fundamental contributions needed to understand the Galaxy and its mass distribution. We have undertaken a systematic spectroscopic survey of open star clusters which can serve as tracers of Galactic disk dynamics. We report on our initial sample of 67 clusters for which the Hydra multi-fiber spectrographs on the WIYN and Blanco telescopes have delivered ~1-2 km s -1 radial velocities (RVs) of many dozens of stars in the fields of each cluster, which are used to derive cluster membership and bulk cluster kinematics when combined with Tycho-2 proper motions. The clusters selected for study have a broad spatial distribution in order to be sensitive to the disk velocity field in all Galactic quadrants and across a Galactocentric radius range as much as 3.0 kpc from the solar circle. Through analysis of the cluster sample, we find (1) the rotation velocity of the Local Standard of Rest (LSR) is [Special characters omitted.] km s -1 , (2 ) the local rotation curve is declining with radius having a slope of -9.1 km s -1 kpc -1 , (3) we find (using R 0 = 8.5 kpc) the following Galactic parameters: A = 17.0 km s -1 kpc -1 and B = -8.9 km s -1 kpc -1 , which using a flat rotation curve and our determined values for the rotation velocity of the LSR yields a Galaxy mass within 1.5 R 0 of M = 1.4 ± 0.2 × 10 11 [Spe cial characters omitted.] and a M/L of 9 [Special characters omitted.] . We also explore the distribution of the local velocity field and find evidence for non- circular motion due to the spiral arms. Additionally, a number of outer disk ( R gc > 12 kpc) open clusters, including Be29 and Sa1, are studied that have potentially critical leverage on radial, age and metallicity gradients in the outer Galactic disk. We find that the measured kinematics of Sa1 and Be29 are consistent with being associated with the Galactic anticenter stellar structure (GASS; or Monoceros stream), which points to a possible

  5. Magnetic Cloud Field Intensities and Solar Wind Velocities

    NASA Technical Reports Server (NTRS)

    Gonzalez, Walter D.; Clau de Gonzalez, Alicia D.; Tsurutani, Bruce T.; Arballo, John K.

    1997-01-01

    For the sets of magnetic clouds studied in this work we have shown that there is a general relationship between their magnetic fields strength and velocities. With a clear tendency that the faster the speed of the cloud the higher the magnetic field.

  6. Electric field measurements during the Condor critical velocity experiment

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Pfaff, R. F.; Haerendel, G.

    1986-01-01

    The instrumentation of the Condor critical velocity Ba experiment (Wescott et al., 1986) for the measurements of the energetic particles and the electric field associated with a Ba explosion is described. The Ba explosion created a complex electric field pulse detected in situ by a single-axis double electric-field probe on a separate spacecraft. The measurements provide evidence of several important links in the critical-velocity chain, and are consistent with two hypotheses. The first hypothesis involves the creation of large polarization electric field due to charge separation; the second hypothesis implies a polarization of the beam by currents flowing across it. The chain of physical processes inferred from the observations is in agreement with most theories for the Alfven process.

  7. Creating analytically divergence-free velocity fields from grid-based data

    NASA Astrophysics Data System (ADS)

    Ravu, Bharath; Rudman, Murray; Metcalfe, Guy; Lester, Daniel R.; Khakhar, Devang V.

    2016-10-01

    We present a method, based on B-splines, to calculate a C2 continuous analytic vector potential from discrete 3D velocity data on a regular grid. A continuous analytically divergence-free velocity field can then be obtained from the curl of the potential. This field can be used to robustly and accurately integrate particle trajectories in incompressible flow fields. Based on the method of Finn and Chacon (2005) [10] this new method ensures that the analytic velocity field matches the grid values almost everywhere, with errors that are two to four orders of magnitude lower than those of existing methods. We demonstrate its application to three different problems (each in a different coordinate system) and provide details of the specifics required in each case. We show how the additional accuracy of the method results in qualitatively and quantitatively superior trajectories that results in more accurate identification of Lagrangian coherent structures.

  8. Measuring average angular velocity with a smartphone magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Pili, Unofre; Violanda, Renante

    2018-02-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper, we present a further alternative that is smartphone-based, making use of the real-time magnetic field (simply called B-field in what follows) data gathering capability of the B-field sensor of the smartphone device as the timer for measuring average rotational period and average angular velocity. The in-built B-field sensor in smartphones has already found a number of uses in undergraduate experimental physics. For instance, in elementary electrodynamics, it has been used to explore the well-known Bio-Savart law and in a measurement of the permeability of air.

  9. Mass-conservative reconstruction of Galerkin velocity fields for transport simulations

    NASA Astrophysics Data System (ADS)

    Scudeler, C.; Putti, M.; Paniconi, C.

    2016-08-01

    Accurate calculation of mass-conservative velocity fields from numerical solutions of Richards' equation is central to reliable surface-subsurface flow and transport modeling, for example in long-term tracer simulations to determine catchment residence time distributions. In this study we assess the performance of a local Larson-Niklasson (LN) post-processing procedure for reconstructing mass-conservative velocities from a linear (P1) Galerkin finite element solution of Richards' equation. This approach, originally proposed for a-posteriori error estimation, modifies the standard finite element velocities by imposing local conservation on element patches. The resulting reconstructed flow field is characterized by continuous fluxes on element edges that can be efficiently used to drive a second order finite volume advective transport model. Through a series of tests of increasing complexity that compare results from the LN scheme to those using velocity fields derived directly from the P1 Galerkin solution, we show that a locally mass-conservative velocity field is necessary to obtain accurate transport results. We also show that the accuracy of the LN reconstruction procedure is comparable to that of the inherently conservative mixed finite element approach, taken as a reference solution, but that the LN scheme has much lower computational costs. The numerical tests examine steady and unsteady, saturated and variably saturated, and homogeneous and heterogeneous cases along with initial and boundary conditions that include dry soil infiltration, alternating solute and water injection, and seepage face outflow. Typical problems that arise with velocities derived from P1 Galerkin solutions include outgoing solute flux from no-flow boundaries, solute entrapment in zones of low hydraulic conductivity, and occurrences of anomalous sources and sinks. In addition to inducing significant mass balance errors, such manifestations often lead to oscillations in concentration

  10. LLAMA: nuclear stellar properties of Swift-BAT AGN and matched inactive galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Yi; Davies, R. I.; Hicks, E. K. S.; Burtscher, L.; Contursi, A.; Genzel, R.; Koss, M.; Lutz, D.; Maciejewski, W.; Müller-Sánchez, F.; Orban de Xivry, G.; Ricci, C.; Riffel, R.; Riffel, R. A.; Rosario, D.; Schartmann, M.; Schnorr-Müller, A.; Shimizu, T.; Sternberg, A.; Sturm, E.; Storchi-Bergmann, T.; Tacconi, L.; Veilleux, S.

    2018-02-01

    In a complete sample of local 14-195 keV selected active galactic nuclei (AGNs) and inactive galaxies, matched by their host galaxy properties, we study the spatially resolved stellar kinematics and luminosity distributions at near-infrared wavelengths on scales of 10-150 pc, using SINFONI on the VLT. In this paper, we present the first half of the sample, which comprises 13 galaxies, eight AGNs and five inactive galaxies. The stellar velocity fields show a disc-like rotating pattern, for which the kinematic position angle is in agreement with the photometric position angle obtained from large scale images. For this set of galaxies, the stellar surface brightness of the inactive galaxy sample is generally comparable to the matched sample of AGN, but extends to lower surface brightness. After removal of the bulge contribution, we find a nuclear stellar light excess with an extended nuclear disc structure, which exhibits a size-luminosity relation. While we expect the excess luminosity to be associated with a dynamically cooler young stellar population, we do not typically see a matching drop in dispersion. This may be because these galaxies have pseudo-bulges in which the intrinsic dispersion increases towards the centre. And although the young stars may have an impact in the observed kinematics, their fraction is too small to dominate over the bulge and compensate the increase in dispersion at small radii, so no dispersion drop is seen. Finally, we find no evidence for a difference in the stellar kinematics and nuclear stellar luminosity excess between these active and inactive galaxies.

  11. Uncovering the Detailed Structure and Dynamics of Andromeda's Complex Stellar Disk

    NASA Astrophysics Data System (ADS)

    Dorman, Claire; Guhathakurta, Puragra; Seth, Anil; Dalcanton, Julianne; Widrow, Larry; Splash Team, Phat Team

    2015-01-01

    Lambda cold dark matter (LCDM) cosmology predicts that the disks of Milky Way-mass galaxies should have undergone at least one merger with a large (mass ratio 1:10) satellite in the last several Gyr. However, the stellar disk in the solar neighborhood of the Milky Way is too thin and dynamically cold to have experienced such an impact. The dynamics of the nearby Andromeda galaxy can serve as a second data point, and help us understand whether the Milky Way may simply have had an unusually quiescent merger history, or whether LCDM theory needs to be revisited. Over the last few years, we have carried out a detailed study of the resolved stellar populations in the disk of the Andromeda galaxy using data from two surveys: six-filter Hubble Space Telescope photometry from the recently-completed Panchromatic Hubble Andromeda Treasury (PHAT) survey, and radial velocities derived from Keck/DEIMOS optical spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) program. These detailed, multidimensional data sets allow us to decouple the structural subcomponents and characterize them individually. We find that an old, dynamically hot (velocity dispersion ~150 km/s) RGB population extends out to 20 kpc (the edge of the visible disk) but has a disk-like surface brightness profile and luminosity function. This population may have originated in the disk but been kicked out subsequently in impacts with satellite galaxies. We also study the kinematics of the disk as a function of the age of stellar tracers, and find a direct correlation between age and velocity dispersion, indicating that Andromeda has undergone a continuous heating or disk settling process throughout its lifetime. Overall, both the velocity dispersion of Andromeda's disk and the slope of the velocity dispersion vs. stellar age curve are several times those of the Milky Way's, suggesting a more active merger history more in line with LCDM cosmological

  12. Resolving stellar populations with crowded field 3D spectroscopy

    NASA Astrophysics Data System (ADS)

    Kamann, S.; Wisotzki, L.; Roth, M. M.

    2013-01-01

    We describe a new method of extracting the spectra of stars from observations of crowded stellar fields with integral field spectroscopy (IFS). Our approach extends the well-established concept of crowded field photometry in images into the domain of 3-dimensional spectroscopic datacubes. The main features of our algorithm follow. (1) We assume that a high-fidelity input source catalogue already exists, e.g. from HST data, and that it is not needed to perform sophisticated source detection in the IFS data. (2) Source positions and properties of the point spread function (PSF) vary smoothly between spectral layers of the datacube, and these variations can be described by simple fitting functions. (3) The shape of the PSF can be adequately described by an analytical function. Even without isolated PSF calibrator stars we can therefore estimate the PSF by a model fit to the full ensemble of stars visible within the field of view. (4) By using sparse matrices to describe the sources, the problem of extracting the spectra of many stars simultaneously becomes computationally tractable. We present extensive performance and validation tests of our algorithm using realistic simulated datacubes that closely reproduce actual IFS observations of the central regions of Galactic globular clusters. We investigate the quality of the extracted spectra under the effects of crowding with respect to the resulting signal-to-noise ratios (S/N) and any possible changes in the continuum level, as well as with respect to absorption line spectral parameters, radial velocities, and equivalent widths. The main effect of blending between two nearby stars is a decrease in the S/N in their spectra. The effect increases with the crowding in the field in a way that the maximum number of stars with useful spectra is always ~0.2 per spatial resolution element. This balance breaks down when exceeding a total source density of one significantly detected star per resolution element. We also explore the

  13. Sound field separation with sound pressure and particle velocity measurements.

    PubMed

    Fernandez-Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-12-01

    In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance between the equivalent sources and measurement surfaces and for the difference in magnitude between pressure and velocity. Experimental and numerical studies have been conducted to examine the methods. The double layer velocity method seems to be more robust to noise and flanking sound than the combined pressure-velocity method, although it requires an additional measurement surface. On the whole, the separation methods can be useful when the disturbance of the incoming field is significant. Otherwise the direct reconstruction is more accurate and straightforward.

  14. Spiral Structure Dynamics in Pure Stellar Disk Models

    NASA Astrophysics Data System (ADS)

    Valencia-Enríquez, D.; Puerari, I.

    2014-03-01

    In order to understand the physical mechanism underlying non-steady stellar spiral arms in disk galaxies we performed a series of N-body simulations with 1.2 and 8 million particles. The initial conditions were chosen to follow Kuijken-Dubinski models. In this work we present the results of a sub-sample of our simulations in which we experiment with different disk central radial velocity dispersion (σR,0) and the disk scale height (zd). We analyzed the growth of spiral structures using 1D and 2D Fourier Transform (FT1D and FT2D respectively). The FT1D was used to obtain the angular velocities of non-axisymmetric structures which grow in the stellar disks. In all of our simulations the measured angular velocity of spiral patterns are well confined by the resonances given by the curves Ω±κ/m. The FT2D gives the amplitude of a particular spiral structure represented by two Fourier frequencies: m, number of arms; and p, related to the pitch angle as atan(-m/p). We present, for the first time, plots of the Fourier amplitude |A(p,m)| as a function of time which clearly demonstrates the swing amplification mechanism in the simulated stellar disks. In our simulations, the spiral waves appear as leading spiral structures evolving towards open trailing patterns and fade out as tightly wound spirals.

  15. Newly velocity field of Sulawesi Island from GPS observation

    NASA Astrophysics Data System (ADS)

    Sarsito, D. A.; Susilo, Simons, W. J. F.; Abidin, H. Z.; Sapiie, B.; Triyoso, W.; Andreas, H.

    2017-07-01

    Sulawesi microplate Island is located at famous triple junction area of the Eurasian, India-Australian, and Philippine Sea plates. Under the influence of the northward moving Australian plate and the westward motion of the Philippine plate, the island at Eastern part of Indonesia is collide and with the Eurasian plate and Sunda Block. Those recent microplate tectonic motions can be quantitatively determine by GNSS-GPS measurement. We use combine GNSS-GPS observation types (campaign type and continuous type) from 1997 to 2015 to derive newly velocity field of the area. Several strategies are applied and tested to get the optimum result, and finally we choose regional strategy to reduce error propagation contribution from global multi baseline processing using GAMIT/GLOBK 10.5. Velocity field are analyzed in global reference frame ITRF 2008 and local reference frame by fixing with respect alternatively to Eurasian plate - Sunda block, India-Australian plate and Philippine Sea plates. Newly results show dense distribution of velocity field. This information is useful for tectonic deformation studying in geospatial era.

  16. Radial velocity studies of cool stars.

    PubMed

    Jones, Hugh R A; Barnes, John; Tuomi, Mikko; Jenkins, James S; Anglada-Escude, Guillem

    2014-04-28

    Our current view of exoplanets is one derived primarily from solar-like stars with a strong focus on understanding our Solar System. Our knowledge about the properties of exoplanets around the dominant stellar population by number, the so-called low-mass stars or M dwarfs, is much more cursory. Based on radial velocity discoveries, we find that the semi-major axis distribution of M dwarf planets appears to be broadly similar to those around more massive stars and thus formation and migration processes might be similar to heavier stars. However, we find that the mass of M dwarf planets is relatively much lower than the expected mass dependency based on stellar mass and thus infer that planet formation efficiency around low-mass stars is relatively impaired. We consider techniques to overcome the practical issue of obtaining good quality radial velocity data for M dwarfs despite their faintness and sustained activity and emphasize (i) the wavelength sensitivity of radial velocity signals, (ii) the combination of radial velocity data from different experiments for robust detection of small amplitude signals, and (iii) the selection of targets and radial velocity interpretation of late-type M dwarfs should consider Hα behaviour.

  17. Response of Velocity Anisotropy of Shale Under Isotropic and Anisotropic Stress Fields

    NASA Astrophysics Data System (ADS)

    Li, Xiaying; Lei, Xinglin; Li, Qi

    2018-03-01

    We investigated the responses of P-wave velocity and associated anisotropy in terms of Thomsen's parameters to isotropic and anisotropic stress fields on Longmaxi shales cored along different directions. An array of piezoelectric ceramic transducers allows us to measure P-wave velocities along numerous different propagation directions. Anisotropic parameters, including the P-wave velocity α along a symmetry axis, Thomsen's parameters ɛ and δ, and the orientation of the symmetry axis, could then be extracted by fitting Thomsen's weak anisotropy model to the experimental data. The results indicate that Longmaxi shale displays weakly intrinsic velocity anisotropy with Thomsen's parameters ɛ and δ being approximately 0.05 and 0.15, respectively. The isotropic stress field has only a slight effect on velocity and associated anisotropy in terms of Thomsen's parameters. In contrast, both the magnitude and orientation of the anisotropic stress field with respect to the shale fabric are important in controlling the evolution of velocity and associated anisotropy in a changing stress field. For shale with bedding-parallel loading, velocity anisotropy is enhanced because velocities with smaller angles relative to the maximum stress increase significantly during the entire loading process, whereas those with larger angles increase slightly before the yield stress and afterwards decrease with the increasing differential stress. For shale with bedding-normal loading, anisotropy reversal is observed, and the anisotropy is progressively modified by the applied differential stress. Before reaching the yield stress, velocities with smaller angles relative to the maximum stress increase more significantly and even exceed the level of those with larger angles. After reaching the yield stress, velocities with larger angles decrease more significantly. Microstructural features such as the closure and generation of microcracks can explain the modification of the velocity anisotropy

  18. The AMBRE Project: Stellar parameterisation of the ESO:UVES archived spectra

    NASA Astrophysics Data System (ADS)

    Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.

    2016-06-01

    Context. The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA) that has been established to determine the stellar atmospheric parameters for the archived spectra of four ESO spectrographs. Aims: The analysis of the UVES archived spectra for their stellar parameters was completed in the third phase of the AMBRE Project. From the complete ESO:UVES archive dataset that was received covering the period 2000 to 2010, 51 921 spectra for the six standard setups were analysed. These correspond to approximately 8014 distinct targets (that comprise stellar and non-stellar objects) by radial coordinate search. Methods: The AMBRE analysis pipeline integrates spectral normalisation, cleaning and radial velocity correction procedures in order that the UVES spectra can then be analysed automatically with the stellar parameterisation algorithm MATISSE to obtain the stellar atmospheric parameters. The synthetic grid against which the MATISSE analysis is carried out is currently constrained to parameters of FGKM stars only. Results: Stellar atmospheric parameters are reported for 12 403 of the 51 921 UVES archived spectra analysed in AMBRE:UVES. This equates to ~23.9% of the sample and ~3708 stars. Effective temperature, surface gravity, metallicity, and alpha element to iron ratio abundances are provided for 10 212 spectra (~19.7%), while effective temperature at least is provided for the remaining 2191 spectra. Radial velocities are reported for 36 881 (~71.0%) of the analysed archive spectra. While parameters were determined for 32 306 (62.2%) spectra these parameters were not considered reliable (and thus not reported to ESO) for reasons such as very low S/N, too poor radial velocity determination, spectral features too broad for analysis, and technical issues from the reduction. Similarly the parameters of a further 7212 spectra (13.9%) were also not reported to ESO based on quality criteria and error

  19. Velocity field measurements on high-frequency, supersonic microactuators

    NASA Astrophysics Data System (ADS)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  20. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2017-02-01

    The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in situ and that of accreted stellar populations. Using as an observable the effective IMF αIMF, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry-merger evolution model, based on cosmological N-body simulations, together with empirically motivated prescriptions for the IMF to make predictions on how the effective IMF of massive early-type galaxies changes from z = 2 to z = 0. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, αIMF is predicted to be constant with redshift. Current dynamical constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties, including the effect of radial gradients in the IMF, prevent a conclusive statement. The correlation of αIMF with stellar mass becomes shallower with time, while the correlation between αIMF and velocity dispersion is mostly preserved by dry mergers. We also find that dry mergers can mix the dependence of the IMF on stellar mass and velocity dispersion, making it challenging to infer, from z = 0 observations of global galactic properties, what is the quantity that is originally coupled with the IMF.

  1. Influence of Stellar Multiplicity On Planet Formation. III. Adaptive Optics Imaging of Kepler Stars With Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Fischer, Debra A.; Horch, Elliott P.; Xie, Ji-Wei

    2015-06-01

    As hundreds of gas giant planets have been discovered, we study how these planets form and evolve in different stellar environments, specifically in multiple stellar systems. In such systems, stellar companions may have a profound influence on gas giant planet formation and evolution via several dynamical effects such as truncation and perturbation. We select 84 Kepler Objects of Interest (KOIs) with gas giant planet candidates. We obtain high-angular resolution images using telescopes with adaptive optics (AO) systems. Together with the AO data, we use archival radial velocity data and dynamical analysis to constrain the presence of stellar companions. We detect 59 stellar companions around 40 KOIs for which we develop methods of testing their physical association. These methods are based on color information and galactic stellar population statistics. We find evidence of suppressive planet formation within 20 AU by comparing stellar multiplicity. The stellar multiplicity rate (MR) for planet host stars is {0}-0+5% within 20 AU. In comparison, the stellar MR is 18% ± 2% for the control sample, i.e., field stars in the solar neighborhood. The stellar MR for planet host stars is 34% ± 8% for separations between 20 and 200 AU, which is higher than the control sample at 12% ± 2%. Beyond 200 AU, stellar MRs are comparable between planet host stars and the control sample. We discuss the implications of the results on gas giant planet formation and evolution.

  2. Science with Synthetic Stellar Surveys

    NASA Astrophysics Data System (ADS)

    Sanderson, Robyn Ellyn

    2018-04-01

    A new generation of observational projects is poised to revolutionize our understanding of the resolved stellar populations of Milky-Way-like galaxies at an unprecedented level of detail, ushering in an era of precision studies of galaxy formation. In the Milky Way itself, astrometric, spectroscopic and photometric surveys will measure three-dimensional positions and velocities and numerous chemical abundances for stars from the disk to the halo, as well as for many satellite dwarf galaxies. In the Local Group and beyond, HST, JWST and eventually WFIRST will deliver pristine views of resolved stars. The groundbreaking scale and dimensionality of this new view of resolved stellar populations in galaxies challenge us to develop new theoretical tools to robustly compare these surveys to simulated galaxies, in order to take full advantage of our new ability to make detailed predictions for stellar populations within a cosmological context. I will describe a framework for generating realistic synthetic star catalogs and mock surveys from state-of-the-art cosmological-hydrodynamical simulations, and present several early scientific results from, and predictions for, resolved stellar surveys of our Galaxy and its neighbors.

  3. Study on a multi-delay spectral interferometry for stellar radial velocity measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Jiang, Haijiao; Tang, Jin; Ji, Hangxin; Zhu, Yongtian; Wang, Liang

    2014-08-01

    High accuracy radial velocity measurement isn't only one of the most important methods for detecting earth-like Exoplanets, but also one of the main developing fields of astronomical observation technologies in future. Externally dispersed interferometry (EDI) generates a kind of particular interference spectrum through combining a fixed-delay interferometer with a medium-resolution spectrograph. It effectively enhances radial velocity measuring accuracy by several times. Another further study on multi-delay interferometry was gradually developed after observation success with only a fixed-delay, and its relative instrumentation makes more impressive performance in near Infrared band. Multi-delay is capable of giving wider coverage from low to high frequency in Fourier field so that gives a higher accuracy in radial velocity measurement. To study on this new technology and verify its feasibility at Guo Shoujing telescope (LAMOST), an experimental instrumentation with single fixed-delay named MESSI has been built and tested at our lab. Another experimental study on multi-delay spectral interferometry given here is being done as well. Basically, this multi-delay experimental system is designed in according to the similar instrument named TEDI at Palomar observatory and the preliminary test result of MESSI. Due to existence of LAMOST spectrograph at lab, a multi-delay interferometer design actually dominates our work. It's generally composed of three parts, respectively science optics, phase-stabilizing optics and delay-calibrating optics. To switch different fixed delays smoothly during observation, the delay-calibrating optics is possibly useful to get high repeatability during switching motion through polychromatic interferometry. Although this metrology is based on white light interferometry in theory, it's different that integrates all of interference signals independently obtained by different monochromatic light in order to avoid dispersion error caused by

  4. Detecting and quantifying stellar magnetic fields. Sparse Stokes profile approximation using orthogonal matching pursuit

    NASA Astrophysics Data System (ADS)

    Carroll, T. A.; Strassmeier, K. G.

    2014-03-01

    Context. In recent years, we have seen a rapidly growing number of stellar magnetic field detections for various types of stars. Many of these magnetic fields are estimated from spectropolarimetric observations (Stokes V) by using the so-called center-of-gravity (COG) method. Unfortunately, the accuracy of this method rapidly deteriorates with increasing noise and thus calls for a more robust procedure that combines signal detection and field estimation. Aims: We introduce an estimation method that provides not only the effective or mean longitudinal magnetic field from an observed Stokes V profile but also uses the net absolute polarization of the profile to obtain an estimate of the apparent (i.e., velocity resolved) absolute longitudinal magnetic field. Methods: By combining the COG method with an orthogonal-matching-pursuit (OMP) approach, we were able to decompose observed Stokes profiles with an overcomplete dictionary of wavelet-basis functions to reliably reconstruct the observed Stokes profiles in the presence of noise. The elementary wave functions of the sparse reconstruction process were utilized to estimate the effective longitudinal magnetic field and the apparent absolute longitudinal magnetic field. A multiresolution analysis complements the OMP algorithm to provide a robust detection and estimation method. Results: An extensive Monte-Carlo simulation confirms the reliability and accuracy of the magnetic OMP approach where a mean error of under 2% is found. Its full potential is obtained for heavily noise-corrupted Stokes profiles with signal-to-noise variance ratios down to unity. In this case a conventional COG method yields a mean error for the effective longitudinal magnetic field of up to 50%, whereas the OMP method gives a maximum error of 18%. It is, moreover, shown that even in the case of very small residual noise on a level between 10-3 and 10-5, a regime reached by current multiline reconstruction techniques, the conventional COG method

  5. Stellar Explosions: Hydrodynamics and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Jose, Jordi

    2016-01-01

    Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

  6. Stellar Explosions: Hydrodynamics and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    José, Jordi

    2015-12-01

    Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

  7. Stellar and wind parameters of massive stars from spectral analysis

    NASA Astrophysics Data System (ADS)

    Araya, I.; Curé, M.

    2017-07-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of A and B supergiant stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and, finally, the chemical composition. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters (α, k and δ) obtained from the standard line-driven wind theory. To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ˜ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  8. Stellar and wind parameters of massive stars from spectral analysis

    NASA Astrophysics Data System (ADS)

    Araya, Ignacio; Curé, Michel

    2017-11-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  9. Planetary nebulae populations as tracers of the stellar kinematics and light in the outer halos of galaxies and the intracluster regions in the nearby clusters

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda

    2015-08-01

    Planetary nebulae have been used sucessfully to trace the kinematics of stars and the spatial distribution of the parent stellar populations in regions where the continuum of the integrated light is only 1% of the night sky. The observed wavelength of the PN strong emission in the [OIII] line at 5007 A measures the line-of-sight velocity of that single star and can be used to derive the two-dimensional velocity fields in these extreme outer regions of galaxies and their angular momentum content out to 10 effective radii. The specific frequency or the PN luminosity number and the morphology of the PN luminosity function are probes of the properties of the parent stellar population, like the star formation history and metallicity. I will present the latest results from the survey of PN population in external galaxies and in the Virgo cluster, and the implications on the coexistence of galaxy halos and intracluster light, and the constraints of their stellar motions and physical parameters.

  10. The Hercules Satellite: A Stellar Stream in the Milky Way Halo?

    NASA Astrophysics Data System (ADS)

    Jin, S.; Martin, N. F.

    2011-07-01

    We investigate the possibility that Hercules, a recently discovered Milky Way satellite, is a stellar stream in the process of formation. This hypothesis is motivated by Hercules' highly elongated shape as well as the measurement of a tentative radial velocity gradient along its body (Adén et al. 2009a). The application of simple analytical techniques (Jin & Lynden-Bell 2007) on radial velocity data of its member stars provides tight constraints on the tangential velocity of the system (-16-22+6 kms-1, relative to the Galactic Standard of Rest). Combining this with its large receding velocity (145 km s-1) and distance (138 kpc) yields an orbit that would have taken Hercules to within 6-2+9 kpc of the Galactic centre approximately 0.6 Gyr ago. This very small perigalacticon can naturally explain the violent tidal destruction of the dwarf galaxy in the Milky Way's gravitational potential, inducing its transformation into a stellar stream.

  11. Stellar Wakes from Dark Matter Subhalos.

    PubMed

    Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R; Wu, Chih-Liang

    2018-05-25

    We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ∼10^{7}  M_{⊙} or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.

  12. Stellar Wakes from Dark Matter Subhalos

    NASA Astrophysics Data System (ADS)

    Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R.; Wu, Chih-Liang

    2018-05-01

    We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ˜107 M⊙ or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.

  13. Far-Field and Middle-Field Vertical Velocities Associated with Megathrust Earthquakes

    NASA Astrophysics Data System (ADS)

    Fleitout, L.; Trubienko, O.; Klein, E.; Vigny, C.; Garaud, J.; Shestakov, N.; Satirapod, C.; Simons, W. J.

    2013-12-01

    The recent megathrust earthquakes (Sumatra, Chili and Japan) have induced far-field postseismic subsidence with velocities from a few mm/yr to more than 1cm/yr at distances from 500 to 1500km from the earthquake epicentre, for several years following the earthquake. This subsidence is observed in Argentina, China, Korea, far-East Russia and in Malaysia and Thailand as reported by Satirapod et al. ( ASR, 2013). In the middle-field a very pronounced uplift is localized on the flank of the volcanic arc facing the trench. This is observed both over Honshu, in Chile and on the South-West coast of Sumatra. In Japan, the deformations prior to Tohoku earthquake are well measured by the GSI GPS network: While the East coast was slightly subsiding, the West coast was raising. A 3D finite element code (Zebulon-Zset) is used to understand the deformations through the seismic cycle in the areas surrounding the last three large subduction earthquakes. The meshes designed for each region feature a broad spherical shell portion with a viscoelastic asthenosphere. They are refined close to the subduction zones. Using these finite element models, we find that the pattern of the predicted far-field vertical postseismic displacements depends upon the thicknesses of the elastic plate and of the low viscosity asthenosphere. A low viscosity asthenosphere at shallow depth, just below the lithosphere is required to explain the subsidence at distances from 500 to 1500km. A thick (for example 600km) asthenosphere with a uniform viscosity predicts subsidence too far away from the trench. Slip on the subduction interface is unable tot induce the observed far-field subsidence. However, a combination of relaxation in a low viscosity wedge and slip or relaxation on the bottom part of the subduction interface is necessary to explain the observed postseismic uplift in the middle-field (volcanic arc area). The creep laws of the various zones used to explain the postseismic data can be injected in

  14. Astronomy In Denver: Polarization of Stellar Wind Bow Shocks

    NASA Astrophysics Data System (ADS)

    Lin, Austin A.; Shrestha, Manisha; Wolfe, Tristan; Stencel, Robert E.; Hoffman, Jennifer L.

    2018-06-01

    When a star with stellar wind moves through the interstellar medium (ISM) at a relative supersonic velocity, an arch like structure known as a stellar wind bow shock is formed. Studying the characteristics of these structures can further our understanding of evolved stellar winds and the composition of the ISM. Observations of these structures have been performed for some time, but the recent discovery of many bow shock structures have opened more ways to study them. These stellar wind bow shocks display aspherical shapes, which cause light scattering through the dense shock material to become polarized. We selected a target star for observation using a catalog compiled from previous studies and observed it in polarized light with the University of Denver’s DUSTPol instrument. Our group has also simulated the polarization of stellar wind bow shocks using a Monte Carlo radiative transfer code. We present the data from our observations and compare them with the simulations. We also discuss the contribution of interstellar polarization to the data.

  15. Adiabatic growth of a black hole in a rotating stellar system

    NASA Technical Reports Server (NTRS)

    Lee, Man Hoi; Goodman, Jeremy

    1989-01-01

    The consequences of slowly adding a massive black hole to the center of a rotating stellar system are considered. Although both the rotation velocity V and the velocity dispersion sigma increase when the black hole is added, the rotation velocity increases faster. The effect goes in the right direction but is too gradual to explain the V/sigma profiles recently observed in several galactic nuclei.

  16. Close Binaries in the Orion Nebula Cluster: On the Universality of Stellar Multiplicity and the Origin of Field Stars

    NASA Astrophysics Data System (ADS)

    Duchene, Gaspard; Lacour, Sylvestre; Moraux, Estelle; Bouvier, Jerome; Goodwin, Simon

    2018-01-01

    While stellar multiplicity is an ubiquitous outcome of star formation, there is a clear dichotomy between the multiplicity properties of young (~1 Myr-old) stellar clusters, like the ONC, which host a mostly field-like population of visual binaries, and those of equally young sparse populations, like the Taurus-Auriga region, which host twice as many stellar companions. Two distinct scenarios can account for this observation: one in which different star-forming regions form different number of stars, and one in which multiplicity properties are universal at birth but where internal cluster dynamics destroy many wide binaries. To solve this ambiguity, one must probe binaries that are sufficiently close so as not to be destroyed through interactions with other cluster members. To this end, we have conducted a survey for 10-100 au binaries in the ONC using the aperture masking technique with the VLT adaptive optics system. Among our sample of the 42 ONC members, we discovered 13 companions in this range of projected separations. This is consistent with the companion frequency observed in the Taurus population and twice as high as that observed among field stars. This survey thus strongly supports the idea that stellar multiplicity is characterized by near-universal initial properties that can later be dynamically altered. On the other hand, this exacerbates the question of the origin of field stars, since only clusters much denser than the ONC can effectively destroyed binaries closer than 100 au.

  17. FITspec: A New Algorithm for the Automated Fit of Synthetic Stellar Spectra for OB Stars

    NASA Astrophysics Data System (ADS)

    Fierro-Santillán, Celia R.; Zsargó, Janos; Klapp, Jaime; Díaz-Azuara, Santiago A.; Arrieta, Anabel; Arias, Lorena; Sigalotti, Leonardo Di G.

    2018-06-01

    In this paper we describe the FITspec code, a data mining tool for the automatic fitting of synthetic stellar spectra. The program uses a database of 27,000 CMFGEN models of stellar atmospheres arranged in a six-dimensional (6D) space, where each dimension corresponds to one model parameter. From these models a library of 2,835,000 synthetic spectra were generated covering the ultraviolet, optical, and infrared regions of the electromagnetic spectrum. Using FITspec we adjust the effective temperature and the surface gravity. From the 6D array we also get the luminosity, the metallicity, and three parameters for the stellar wind: the terminal velocity ({v}∞ ), the β exponent of the velocity law, and the clumping filling factor (F cl). Finally, the projected rotational velocity (v\\cdot \\sin i) can be obtained from the library of stellar spectra. Validation of the algorithm was performed by analyzing the spectra of a sample of eight O-type stars taken from the IACOB spectroscopic survey of Northern Galactic OB stars. The spectral lines used for the adjustment of the analyzed stars are reproduced with good accuracy. In particular, the effective temperatures calculated with the FITspec are in good agreement with those derived from spectral type and other calibrations for the same stars. The stellar luminosities and projected rotational velocities are also in good agreement with previous quantitative spectroscopic analyses in the literature. An important advantage of FITspec over traditional codes is that the time required for spectral analyses is reduced from months to a few hours.

  18. The STAGGER-grid: A grid of 3D stellar atmosphere models. V. Synthetic stellar spectra and broad-band photometry

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Casagrande, L.; Collet, R.; Magic, Z.; Bigot, L.; Thévenin, F.; Asplund, M.

    2018-03-01

    Context. The surface structures and dynamics of cool stars are characterised by the presence of convective motions and turbulent flows which shape the emergent spectrum. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical simulations from the STAGGER-grid to calculate synthetic spectra with the radiative transfer code OPTIM3D for stars with different stellar parameters to predict photometric colours and convective velocity shifts. Methods: We calculated spectra from 1000 to 200 000 Å with a constant resolving power of λ/Δλ = 20 000 and from 8470 and 8710 Å (Gaia Radial Velocity Spectrometer - RVS - spectral range) with a constant resolving power of λ/Δλ = 300 000. Results: We used synthetic spectra to compute theoretical colours in the Johnson-Cousins UBV (RI)C, SDSS, 2MASS, Gaia, SkyMapper, Strömgren systems, and HST-WFC3. Our synthetic magnitudes are compared with those obtained using 1D hydrostatic models. We showed that 1D versus 3D differences are limited to a small percent except for the narrow filters that span the optical and UV region of the spectrum. In addition, we derived the effect of the convective velocity fields on selected Fe I lines. We found the overall convective shift for 3D simulations with respect to the reference 1D hydrostatic models, revealing line shifts of between -0.235 and +0.361 km s-1. We showed a net correlation of the convective shifts with the effective temperature: lower effective temperatures denote redshifts and higher effective temperatures denote blueshifts. We conclude that the extraction of accurate radial velocities from RVS spectra need an appropriate wavelength correction from convection shifts. Conclusions: The use of realistic 3D hydrodynamical stellar atmosphere simulations has a small but significant impact on the predicted photometry compared with classical 1D hydrostatic models for late-type stars. We make all the spectra publicly available for the community through the POLLUX database

  19. The Resolved Stellar Populations Early Release Science Program

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team

    2018-06-01

    The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.

  20. The stellar population and luminosity function in M31 bulge and Inner Disk Fields

    NASA Technical Reports Server (NTRS)

    Rich, R. Michael; Mould, J. R.; Graham, James R.

    1993-01-01

    We report infrared photometry and stellar identifications for stars in five fields in the M31 bulge located from 2 to 11 arcmin from the nucleus. These fields have been chosen such that the bulge/disk star ratio predicted from Kent's (1989) small bulge model varies from 7:1 to 1:5, allowing a study of near pure disk and near pure bulge stellar populations. We reject the hypothesis of Davies et al. (1991) that luminous stars found within 500 pc of the nucleus are due to a contaminating disk population. We find that the bulge contains stars in excess of M(sub bol) = -5 mag and that the bulge luminosity function has a distinct shape different from the disk fields. We find many stars redder than (J-K) = 2 mag, and suggest that these stars may be the counterparts of the IRAS-selected Galactic bulge Miras studied by Whitelock et at. (1991). The number of bright stars (M(sub bol) is less than -5 mag) falls off more rapidly than the r band surface brightness. By building model fields out of a bulge luminosity function and artificial stars, we are able to show that the change in the luminosity function toward the center cannot be explained simply by the mismeasurement of overcrowded star images. However, these tests also raise the possibility that the asymptotic giant branch (AGB) tip may be approximately equal to 1 mag fainter than actually measured in our most crowded field, reaching only M(sub bol) = -5. We compare observed counts of AGB stars with those predicted from theoretical lifetimes using a technique of general interest for this problem, the Fuel Consumption Theorem of Renzini & Buzzoni (1986) Spectral Evolution of Galaxies (Reidel, Dordrecht). Our methodology is generally applicable to the study of other resolved extragalactic stellar populations. The number of observed stars per magnitude up to a luminosity of M(bol) = -5.5 mag is consistent with AGB evolution of the whole population of the innermost bulge field with the standard lifetime on the AGB of 1.3 Myr

  1. Deriving stellar inclination of slow rotators using stellar activity signal

    NASA Astrophysics Data System (ADS)

    Dumusque, Xavier

    2015-01-01

    Stellar inclination is an important parameter for many astrophysical studies. In the context of exoplanets, this allows us to derive the true obliquity of a system if the projected stellar spin-planetary orbit angle can measured via the Rossiter-Mclaughlin effect. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than 2-2.5 km.s-1. By using the new activity simulation SOAP 2.0 that can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit the activity variation of solar-type stars and derive their inclination. The case of the equator-on star HD189733 will be presented, as well as the case of Alpha Centauri B, which present an inclination of 45+9-19 degrees, implying that the earth-mass orbiting planet is not transiting if aligned with its host star. Other exemples will also demonstrate the power of the technique, that can infer a stellar inclination, even for slow rotators like Alpha Centauri B, that present a projected rotational velocity smaller than 1.15 km.s-1. In addition, the SOAP 2.0 simulation can be used to correct for the effect of activity when one major active region is dominating the RV signal. This could enhance the detection of small mass exoplanets orbiting slightly active stars.This project is funded by ETAEARTH (European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 313014), a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of

  2. The Dark Matter Halo Profile Of NGC 2976 Via Stellar Kinematics

    NASA Astrophysics Data System (ADS)

    Adams, Joshua J.; Gebhardt, K.; Hill, G. J.; van den Bosch, R. C. E.; Blanc, G. A.

    2011-01-01

    The observations of kinematics in low surface brightness (LSB) and dwarf late type galaxies have stubbornly resisted giving clear evidence for the cuspy Navarro-Frenk-White (NFW) dark matter (DM) halo profiles that simulations with ΛCDM inputs predict. Instead, most LSBs and late type dwarfs suggest cored DM halos or the observations are not yet constraining enough to rule out cusps. One viable theory to explain cored DM halos relies on the gravitational perturbation of a growing baryonic disk that is then rapidly removed causing the halo to expand to a cored equilibrium. Weakly self-interacting dark matter has also been invoked to explain cored DM halos. This problem may loom large over small galaxy formation and growth. However, different measurements can be taken to further test the apparent problem. Most previous data have relied on HI or Hα as kinematic tracers. A small number of works have studied the problem with longslit stellar kinematics. Ideally, the advantages of 2D spectroscopic coverage and a collisionless kinematic tracer would be combined. So far, NGC 2976 has made one of the cleanest cases for a cored DM halo via integral field spectroscopy in Hα. We here report on observations of NGC 2976 with the large field-of-view fiber-fed Visible Integral field Replicable Unit Spectrograph Prototype (VIRUS-P) at R=3200 to concurrently measure the gaseous and stellar kinematics and probe the DM halo. We find that the gas and stellar kinematics disagree both in the magnitude of their second velocity moments and their detailed profiles. We unexpectedly find emission features in one of NGC 2976's two large star-forming regions which may be indicative of carbon-rich Wolf-Rayet stars. A putative bar further complicates the use of gaseous tracers. We solve the Jeans equations with stellar kinematics to reevaluate the DM profile in this exemplar galaxy of the core-cusp problem.

  3. Scaling Stellar Mass Estimates of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Carr, Brandon Michael; McQuinn, Kristen B.; Cannon, John M.; Dalcanton, Julianne; Dolphin, Andrew E.; Skillman, Evan D.; Williams, Benjamin F.; van Zee, Liese

    2017-01-01

    Hubble Space Telescope (HST) optical imaging of resolved stellar populations has been used to constrain the star formation history (SFH) and chemical evolution of many nearby dwarf galaxies. However, even for dwarf galaxies, the angle subtended by nearby systems can be greater than the HST field of view. Thus, estimates of stellar mass from the HST footprint do not accurately represent the total mass of the system, impacting how SFH results can be used in holistic comparisons of galaxy properties. Here, we use the SFHs of dwarfs combined with stellar population synthesis models to determine mass-to-light ratios for individual galaxies, and compare these values with measured infrared luminosities from Spitzer IRAC data. In this way, we determine what fraction of mass is not included in the HST field of view. To test our methodology, we focus on dwarfs whose stellar disks are contained within the HST observations. Then, we also apply this method to galaxies with larger angular sizes to scale the stellar masses accordingly.

  4. An exact solution of solute transport by one-dimensional random velocity fields

    USGS Publications Warehouse

    Cvetkovic, V.D.; Dagan, G.; Shapiro, A.M.

    1991-01-01

    The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity. ?? 1991 Springer-Verlag.

  5. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; hide

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  6. NIR integral field spectroscopy of high mass young stellar objects

    NASA Astrophysics Data System (ADS)

    Murakawa, K.; Lumsden, S. L.; Oudmaijer, R. D.; Davies, B.; Hoare, M. G.

    2013-03-01

    We present K-band Integral Field Spectroscopy of six high mass young stellar objects (IRAS~18151-1208, AFGL~2136, S106~IRS4, V645 Cyg, IRAS~19065+0526, and G082.5682+ 00.4040) obtained using the adaptive optics assisted NIFS instrument mounted on the Gemini North telescope. The targets are chosen from the Red MSX Source survey led by University of Leeds. The data show the spectral features of Brγ, H2, and gas phase CO emissions and absorptions with a spectral resolution of R ≈ 5500, which allow a three-dimensional spectro-astrometric analysis of the line emissions. We discuss the results of the ionized jets and winds, and rotating CO torus.

  7. The Role of Stellar Feedback on the Structure of the ISM and Star Formation in Galaxies

    NASA Astrophysics Data System (ADS)

    Grisdale, Kearn Michael

    2017-08-01

    Stellar feedback refers to the injection of energy, momentum and mass into the interstellar medium (ISM) by massive stars. This feedback owes to a combination of ionising radiation, radiation pressure, stellar winds and supernovae and is likely responsible both for the inefficiency of star formation in galaxies, and the observed super-sonic turbulence of the ISM. In this thesis, I study how stellar feedback shapes the ISM thereby regulating galaxy evolution. In particular, I focus on three key questions: (i) How does stellar feedback shape the gas density distribution of the ISM? (ii) How does feedback change or influence the distribution of the kinetic energy in the ISM? and (iii) What role does feedback play in determining the star formation efficiency of giant molecular clouds (GMCs)? To answer these questions, I run high resolution (Deltax 4.6 pc) numerical simulations of three isolated galaxies, both with and without stellar feedback. I compare these simulations to observations of six galaxies from The HI Nearby Galaxy Survey (THINGS) using power spectra, and I use clump finding techniques to identify GMCs in my simulations and calculate their properties. I find that the kinetic energy power spectra in stellar feedback- regulated galaxies, regardless of the galaxy's mass and size, show scalings in excellent agreement with supersonic turbulence on scales below the thickness of the HI layer. I show that feedback influences the gas density field, and drives gas turbulence, up to large (kiloparsec) scales. This is in stark contrast to the density fields generated by large-scale gravity-only driven turbulence (i.e. without stellar feedback). Simulations with stellar feedback are able to reproduce the internal properties of GMCs such as: mass, size and velocity dispersion. Finally, I demonstrate that my simulations naturally reproduce the observed scatter (3.5-4 dex) in the star formation efficiency per free-fall time of GMCs, despite only employing a simple Schmidt

  8. Disentangling rotational velocity distribution of stars

    NASA Astrophysics Data System (ADS)

    Curé, Michel; Rial, Diego F.; Cassetti, Julia; Christen, Alejandra

    2017-11-01

    Rotational speed is an important physical parameter of stars: knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. However, rotational speed cannot be measured directly and is instead the convolution between the rotational speed and the sine of the inclination angle vsin(i). The problem itself can be described via a Fredhoml integral of the first kind. A new method (Curé et al. 2014) to deconvolve this inverse problem and obtain the cumulative distribution function for stellar rotational velocities is based on the work of Chandrasekhar & Münch (1950). Another method to obtain the probability distribution function is Tikhonov regularization method (Christen et al. 2016). The proposed methods can be also applied to the mass ratio distribution of extrasolar planets and brown dwarfs (in binary systems, Curé et al. 2015). For stars in a cluster, where all members are gravitationally bounded, the standard assumption that rotational axes are uniform distributed over the sphere is questionable. On the basis of the proposed techniques a simple approach to model this anisotropy of rotational axes has been developed with the possibility to ``disentangling'' simultaneously both the rotational speed distribution and the orientation of rotational axes.

  9. Formation of stellar clusters in magnetized, filamentary infrared dark clouds

    NASA Astrophysics Data System (ADS)

    Li, Pak Shing; Klein, Richard I.; McKee, Christopher F.

    2018-01-01

    Star formation in a filamentary infrared dark cloud (IRDC) is simulated over the dynamic range of 4.2 pc to 28 au for a period of 3.5 × 105 yr, including magnetic fields and both radiative and outflow feedback from the protostars. At the end of the simulation, the star formation efficiency is 4.3 per cent and the star formation rate per free-fall time is εff ≃ 0.04, within the range of observed values. The total stellar mass increases as ∼t2, whereas the number of protostars increases as ∼t1.5. We find that the density profile around most of the simulated protostars is ∼ρ ∝ r-1.5. At the end of the simulation, the protostellar mass function approaches the Chabrier stellar initial mass function. We infer that the time to form a star of median mass 0.2 M⊙ is about 1.4 × 105 yr from the median mass accretion rate. We find good agreement among the protostellar luminosities observed in the large sample of Dunham et al., our simulation and a theoretical estimate, and we conclude that the classical protostellar luminosity problem is resolved. The multiplicity of the stellar systems in the simulation agrees, to within a factor of 2, with observations of Class I young stellar objects; most of the simulated multiple systems are unbound. Bipolar protostellar outflows are launched using a subgrid model, and extend up to 1 pc from their host star. The mass-velocity relation of the simulated outflows is consistent with both observation and theory.

  10. Dynamical effects of stellar companions

    NASA Astrophysics Data System (ADS)

    Naoz, Smadar

    2015-08-01

    The fraction of stellar binaries in the field is extremely high (about 40% - 70% for > 1 Msun stars), and thus, given this frequency, a large fraction of all exoplanetary systems may reside in binaries. While close-in giant planets tend to be found preferentially in binary stellar systems it seems that the frequency of giant planets in close binaries (<100 AU) is significantly lower than in the overall population. Stellar companions’ gravitational perturbations may significantly alter the planetary orbits around their partner on secular timescales. They can drive planets to large eccentric orbits which can either result in plunging these planets into the star or shrinking their orbits and forming short period planets. I will review the dynamical effects stellar binaries have on a planetary systems. I will also present new results on the influence that stellar evolution has on the dynamical processes in these systems.

  11. Solar and stellar coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1985-01-01

    Progress made in describing and interpreting coronal plasma processes and the relationship between the solar corona and its stellar counterparts is reported. Topics covered include: stellar X-ray emission, HEAO 2 X-ray survey of the Pleiades, closed coronal structures, X-ray survey of main-sequence stars with shallow convection zones, implications of the 1400 MHz flare emission, and magnetic field stochasticity.

  12. Could the stellar magnetic field explain the structures in the AU Mic debris disk?

    NASA Astrophysics Data System (ADS)

    Sezestre, Élie; Augereau, Jean-Charles

    2016-05-01

    Recent SPHERE and reprocessed HST images of the edge-on AU Mic debris disk have revealed arch-like structures moving away from the star on unbound trajectories. No model in the literature can readily explain these features. Here, we explore the effect of the large-scale, stellar magnetic field on the dust dynamics. We show that our study may place constraints on the dust production location.

  13. Full stellar kinematical profiles of central parts of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Vudragović, A.; Samurović, S.; Jovanović, M.

    2016-09-01

    Context. We present the largest catalog of detailed stellar kinematics of the central parts of nearby galaxies, which includes higher moments of the line-of-sight velocity distribution (LOSVD) function represented by the Gauss-Hermite series. The kinematics is measured on a sample of galaxies selected from the Arecibo Legacy Fast ALFA (Alfalfa) survey using spectroscopy from the Sloan Digital Sky Survey (SDSS DR7). Aims: The SDSS DR7 offers measurements of the LOSVD based on the assumption of a pure Gaussian shape of the broadening function caused by the combination of rotational and random motion of the stars in galaxies. We discuss the consequences of this oversimplification since the velocity dispersion, one of the measured quantities, often serves as the proxy to important modeling parameters such as the black-hole mass and the virial mass of galaxies. Methods: The publicly available pPXF code is used to calculate the full kinematical profile for the sample galaxies including higher moments of their LOSVD. Both observed and synthetic stellar libraries were used and the related template mismatch problem is discussed. Results: For the whole sample of 2180 nearby galaxies reflecting morphological distribution characteristic for the local Universe, we successfully recovered stellar kinematics of their central parts, including higher order moments of the LOSVD function, for signal-to-noise above 50. Conclusions: We show the consequences of the oversimplification of the LOSVD function with Gaussian function on the velocity dispersion for the empirical and the synthetic stellar library. For the empirical stellar library, this approximation leads to an increase in the virial mass of 13% on average, while for the synthetic library the effect is weaker, with an increase of 9% on average. Systematic erroneous estimates of the velocity dispersion comes from the use of the synthetic stellar library instead of the empirical one and is much larger than the value imposed by

  14. A potential method for lift evaluation from velocity field data

    NASA Astrophysics Data System (ADS)

    de Guyon-Crozier, Guillaume; Mulleners, Karen

    2017-11-01

    Computing forces from velocity field measurements is one of the challenges in experimental aerodynamics. This work focuses on low Reynolds flows, where the dynamics of the leading and trailing edge vortices play a major role in lift production. Recent developments in 2D potential flow theory, using discrete vortex models, have shown good results for unsteady wing motions. A method is presented to calculate lift from experimental velocity field data using a discrete vortex potential flow model. The model continuously adds new point vortices at leading and trailing edges whose circulations are set directly from vorticity measurements. Forces are computed using the unsteady Blasius equation and compared with measured loads.

  15. THE DEPENDENCE OF STELLAR MASS AND ANGULAR MOMENTUM LOSSES ON LATITUDE AND THE INTERACTION OF ACTIVE REGION AND DIPOLAR MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    Rotation evolution of late-type stars is dominated by magnetic braking and the underlying factors that control this angular momentum loss are important for the study of stellar spin-down. In this work, we study angular momentum loss as a function of two different aspects of magnetic activity using a calibrated Alfvén wave-driven magnetohydrodynamic wind model: the strengths of magnetic spots and their distribution in latitude. By driving the model using solar and modified solar surface magnetograms, we show that the topology of the field arising from the net interaction of both small-scale and large-scale field is important for spin-down rates andmore » that angular momentum loss is not a simple function of large scale magnetic field strength. We find that changing the latitude of magnetic spots can modify mass and angular momentum loss rates by a factor of two. The general effect that causes these differences is the closing down of large-scale open field at mid- and high-latitudes by the addition of the small-scale field. These effects might give rise to modulation of mass and angular momentum loss through stellar cycles, and present a problem for ab initio attempts to predict stellar spin-down based on wind models. For all the magnetogram cases considered here, from dipoles to various spotted distributions, we find that angular momentum loss is dominated by the mass loss at mid-latitudes. The spin-down torque applied by magnetized winds therefore acts at specific latitudes and is not evenly distributed over the stellar surface, though this aspect is unlikely to be important for understanding spin-down and surface flows on stars.« less

  16. A COMBINED SPECTROSCOPIC AND PHOTOMETRIC STELLAR ACTIVITY STUDY OF EPSILON ERIDANI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giguere, Matthew J.; Fischer, Debra A.; Zhang, Cyril X. Y.

    2016-06-20

    We present simultaneous ground-based radial velocity (RV) measurements and space-based photometric measurements of the young and active K dwarf Epsilon Eridani. These measurements provide a data set for exploring methods of identifying and ultimately distinguishing stellar photospheric velocities from Keplerian motion. We compare three methods we have used in exploring this data set: Dalmatian, an MCMC spot modeling code that fits photometric and RV measurements simultaneously; the FF′ method, which uses photometric measurements to predict the stellar activity signal in simultaneous RV measurements; and H α analysis. We show that our H α measurements are strongly correlated with the Microvariabilitymore » and Oscillations of STars telescope ( MOST ) photometry, which led to a promising new method based solely on the spectroscopic observations. This new method, which we refer to as the HH′ method, uses H α measurements as input into the FF′ model. While the Dalmatian spot modeling analysis and the FF′ method with MOST space-based photometry are currently more robust, the HH′ method only makes use of one of the thousands of stellar lines in the visible spectrum. By leveraging additional spectral activity indicators, we believe the HH′ method may prove quite useful in disentangling stellar signals.« less

  17. The spatially resolved stellar population and ionized gas properties in the merger LIRG NGC 2623

    NASA Astrophysics Data System (ADS)

    Cortijo-Ferrero, C.; González Delgado, R. M.; Pérez, E.; Sánchez, S. F.; Cid Fernandes, R.; de Amorim, A. L.; Di Matteo, P.; García-Benito, R.; Lacerda, E. A. D.; López Fernández, R.; Tadhunter, C.; Villar-Martín, M.; Roth, M. M.

    2017-10-01

    We report on a detailed study of the stellar populations and ionized gas properties in the merger LIRG NGC 2623, analyzing optical integral field spectroscopy from the CALIFA survey and PMAS LArr, multiwavelength HST imaging, and OSIRIS narrow band Hα and [NII]λ6584 imaging. The spectra were processed with the starlight full spectral fitting code, and the results are compared with those for two early-stage merger LIRGs (IC 1623 W and NGC 6090), together with CALIFA Sbc/Sc galaxies. We find that NGC 2623 went through two periods of increased star formation (SF), a first and widespread episode, traced by intermediate-age stellar populations ISP (140 Myr-1.4 Gyr), and a second one, traced by young stellar populations YSP (<140 Myr), which is concentrated in the central regions (<1.4 kpc). Our results are in agreement with the epochs of the first peri-center passage ( 200 Myr ago) and coalescence (<100 Myr ago) predicted by dynamical models, and with high-resolution merger simulations in the literature, consistent with NGC 2623 representing an evolved version of the early-stage mergers. Most ionized gas is concentrated within <2.8 kpc, where LINER-like ionization and high-velocity dispersion ( 220 km s-1) are found, consistent with the previously reported outflow. As revealed by the highest-resolution OSIRIS and HST data, a collection of HII regions is also present in the plane of the galaxy, which explains the mixture of ionization mechanisms in this system. It is unlikely that the outflow in NGC 2623 will escape from the galaxy, given the low SFR intensity ( 0.5 M⊙ yr-1 kpc-2), the fact that the outflow rate is three times lower than the current SFR, and the escape velocity in the central areas is higher than the outflow velocity.

  18. VizieR Online Data Catalog: Large spectrosc. survey of Palomar 5 stellar stream (Ibata+, 2017)

    NASA Astrophysics Data System (ADS)

    Ibata, R. A.; Lewis, G. F.; Thomas, G.; Martin, N. F.; Chapman, S.

    2018-02-01

    The present contribution builds upon the survey of Paper I (Ibata+, 2016,J/ApJ/819/1). In addition to the deep CFHT photometry, in Paper I we also presented shallower KPNO photometry of this system using the M-band filter (approximately V) and the intermediate-band "DDO 51" filter (central wavelength 5145.2Å, FWHM=162.9Å) which covers the Mg b triplet. Here we present a large spectroscopic survey of the stellar stream. On 2009 June 23-27, we used the FLAMES multiobject spectrograph on the 8m VLT to observe 35 fields along the Palomar 5 stellar stream. The high-resolution setting HR21 was used, which straddles the CaII triplet feature and covers the spectral region between 8484Å and 9001Å with a resolution of R=16200. Each field consisted of 3x600s exposures. The FLAMES fields are fully contained within the CFHT survey region (see Figure 1), and yielded a total of 1327 stars. We also observed 15 fields with the AAOmega multiobject spectrograph at the 4m Australian Astronomical Telescope on the nights of 2006 June 13-18. The 1700D grating was used to measure the spectral region between ~8400Å and ~8850Å, at a resolution of 0.24Å/pixel. In each field, three exposures of 1800s were combined. Selecting good quality stars from both data sets (S/N>40 for FLAMES, S/N>30 for AAOmega), we obtain 45 stars in common. The velocity difference between the two samples is vFLAMES-vAAO=3.73+/-1.89km/s, and we used this mean offset to put the AAO velocities onto the FLAMES zero point. (1 data file).

  19. Spectrum radial velocity analyser (SERVAL). High-precision radial velocities and two alternative spectral indicators

    NASA Astrophysics Data System (ADS)

    Zechmeister, M.; Reiners, A.; Amado, P. J.; Azzaro, M.; Bauer, F. F.; Béjar, V. J. S.; Caballero, J. A.; Guenther, E. W.; Hagen, H.-J.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Launhardt, R.; Montes, D.; Morales, J. C.; Quirrenbach, A.; Reffert, S.; Ribas, I.; Seifert, W.; Tal-Or, L.; Wolthoff, V.

    2018-01-01

    Context. The CARMENES survey is a high-precision radial velocity (RV) programme that aims to detect Earth-like planets orbiting low-mass stars. Aims: We develop least-squares fitting algorithms to derive the RVs and additional spectral diagnostics implemented in the SpEctrum Radial Velocity AnaLyser (SERVAL), a publicly available python code. Methods: We measured the RVs using high signal-to-noise templates created by coadding all available spectra of each star. We define the chromatic index as the RV gradient as a function of wavelength with the RVs measured in the echelle orders. Additionally, we computed the differential line width by correlating the fit residuals with the second derivative of the template to track variations in the stellar line width. Results: Using HARPS data, our SERVAL code achieves a RV precision at the level of 1 m/s. Applying the chromatic index to CARMENES data of the active star YZ CMi, we identify apparent RV variations induced by stellar activity. The differential line width is found to be an alternative indicator to the commonly used full width half maximum. Conclusions: We find that at the red optical wavelengths (700-900 nm) obtained by the visual channel of CARMENES, the chromatic index is an excellent tool to investigate stellar active regions and to identify and perhaps even correct for activity-induced RV variations.

  20. VELOCITY FIELD OF COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE: WAVELET DECOMPOSITION AND MODE SCALINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowal, Grzegorz; Lazarian, A., E-mail: kowal@astro.wisc.ed, E-mail: lazarian@astro.wisc.ed

    We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho and Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field referencemore » frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz- Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.« less

  1. The influence of convective blueshift on radial velocities of F, G, and K stars

    NASA Astrophysics Data System (ADS)

    Bauer, F. F.; Reiners, A.; Beeck, B.; Jeffers, S. V.

    2018-02-01

    Context. Apparent radial velocity (RV) signals induced by stellar surface features such as spots and plages can result in a false planet detection or hide the presence of an orbiting planet. Our ability to detect rocky exoplanets is currently limited by our understanding of such stellar signals. Aims: We model RV variations caused by active regions on the stellar surface of typical exoplanet-hosting stars of spectral type F, G, and K. We aim to understand how the stellar magnetic field strength, convective blueshift, and spot temperatures can influence RV signals caused by active regions. Methods: We use magneto-hydrodynamic (MHD) simulations for stars with spectral types F3V, a G2V, and a K5V. We quantify the impact of the magnetic field strength inside active regions on the RV measurement using the magnetic and non-magnetic FeI lines at 6165 Å and 6173 Å. We also quantify the impact of spot temperature and convective blueshift on the measured RV values. Results: Increasing the magnetic field strength increases the efficiency to suppress convection in active regions which results in an asymmetry between red- and blueshifted parts of the RV curves. A stronger suppression of convection also leads to an observed increase in RV amplitude for stronger magnetic fields. The MHD simulations predict convective motions to be faster in hotter stars. The suppression of faster convection leads to a stronger RV amplitude increase in hotter stars when the magnetic field is increased. While suppression of convection increases the asymmetry in RV curves,c a decreasing spot temperature counteracts this effect. When using observed temperatures for dark spots in our simulations we find that convective blueshift effects are negligible.

  2. Wide-field absolute transverse blood flow velocity mapping in vessel centerline

    NASA Astrophysics Data System (ADS)

    Wu, Nanshou; Wang, Lei; Zhu, Bifeng; Guan, Caizhong; Wang, Mingyi; Han, Dingan; Tan, Haishu; Zeng, Yaguang

    2018-02-01

    We propose a wide-field absolute transverse blood flow velocity measurement method in vessel centerline based on absorption intensity fluctuation modulation effect. The difference between the light absorption capacities of red blood cells and background tissue under low-coherence illumination is utilized to realize the instantaneous and average wide-field optical angiography images. The absolute fuzzy connection algorithm is used for vessel centerline extraction from the average wide-field optical angiography. The absolute transverse velocity in the vessel centerline is then measured by a cross-correlation analysis according to instantaneous modulation depth signal. The proposed method promises to contribute to the treatment of diseases, such as those related to anemia or thrombosis.

  3. Methodology to estimate the relative pressure field from noisy experimental velocity data

    NASA Astrophysics Data System (ADS)

    Bolin, C. D.; Raguin, L. G.

    2008-11-01

    The determination of intravascular pressure fields is important to the characterization of cardiovascular pathology. We present a two-stage method that solves the inverse problem of estimating the relative pressure field from noisy velocity fields measured by phase contrast magnetic resonance imaging (PC-MRI) on an irregular domain with limited spatial resolution, and includes a filter for the experimental noise. For the pressure calculation, the Poisson pressure equation is solved by embedding the irregular flow domain into a regular domain. To lessen the propagation of the noise inherent to the velocity measurements, three filters - a median filter and two physics-based filters - are evaluated using a 2-D Couette flow. The two physics-based filters outperform the median filter for the estimation of the relative pressure field for realistic signal-to-noise ratios (SNR = 5 to 30). The most accurate pressure field results from a filter that applies in a least-squares sense three constraints simultaneously: consistency between measured and filtered velocity fields, divergence-free and additional smoothness conditions. This filter leads to a 5-fold gain in accuracy for the estimated relative pressure field compared to without noise filtering, in conditions consistent with PC-MRI of the carotid artery: SNR = 5, 20 x 20 discretized flow domain (25 X 25 computational domain).

  4. The imprints of bars on the vertical stellar population gradients of galactic bulges

    NASA Astrophysics Data System (ADS)

    Molaeinezhad, A.; Falcón-Barroso, J.; Martínez-Valpuesta, I.; Khosroshahi, H. G.; Vazdekis, A.; La Barbera, F.; Peletier, R. F.; Balcells, M.

    2017-05-01

    This is the second paper of a series aimed to study the stellar kinematics and population properties of bulges in highly inclined barred galaxies. In this work, we carry out a detailed analysis of the stellar age, metallicity and [Mg/Fe] of 28 highly inclined (I > 65°) disc galaxies, from S0 to S(B)c, observed with the SAURON integral-field spectrograph. The sample is divided into two clean samples of barred and unbarred galaxies, on the basis of the correlation between the stellar velocity and h3 profiles, as well as the level of cylindrical rotation within the bulge region. We find that while the mean stellar age, metallicity and [Mg/Fe] in the bulges of barred and unbarred galaxies are not statistically distinct, the [Mg/Fe] gradients along the minor axis (away from the disc) of barred galaxies are significantly different than those without bars. For barred galaxies, stars that are vertically further away from the mid-plane are in general more [Mg/Fe]-enhanced and thus the vertical gradients in [Mg/Fe] for barred galaxies are mostly positive, while for unbarred bulges the [Mg/Fe] profiles are typically negative or flat. This result, together with the old populations observed in the barred sample, indicates that bars are long-lasting structures, and therefore are not easily destroyed. The marked [Mg/Fe] differences with the bulges of unbarred galaxies indicate that different formation/evolution scenarios are required to explain their build-up, and emphasizes the role of bars in redistributing stellar material in the bulge-dominated regions.

  5. The inner-disk and stellar properties of the young stellar object WL 16

    NASA Technical Reports Server (NTRS)

    Carr, John S.; Tokunaga, Alan T.; Najita, Joan; Shu, Frank H.; Glassgold, Alfred E.

    1993-01-01

    We present kinematic evidence for a rapidly rotating circumstellar disk around the young stellar object WL 16, based on new high-velocity-resolution data of the v = 2-0 CO bandhead emission. A Keplerian disk provides an excellent fit to the observed profile and requires a projected velocity for the CO-emitting region of roughly 250 km/s at the inner radius and 140 km/s at the outer radius, giving a ratio of the inner to the outer radius of about 0.3. We show that satisfying the constraints imposed by the gas kinematics, the observed CO flux, and the total source luminosity requires the mass of WL 16 to lie between 1.4 and 2.5 solar mass. The inner disk radius for the CO emission must be less than 8 solar radii.

  6. High surface magnetic field in red giants as a new signature of planet engulfment?

    NASA Astrophysics Data System (ADS)

    Privitera, Giovanni; Meynet, Georges; Eggenberger, Patrick; Georgy, Cyril; Ekström, Sylvia; Vidotto, Aline A.; Bianda, Michele; Villaver, Eva; ud-Doula, Asif

    2016-09-01

    Context. Red giant stars may engulf planets. This may increase the rotation rate of their convective envelope, which could lead to strong dynamo-triggered magnetic fields. Aims: We explore the possibility of generating magnetic fields in red giants that have gone through the process of a planet engulfment. We compare them with similar models that evolve without any planets. We discuss the impact of magnetic braking through stellar wind on the evolution of the surface velocity of the parent star. Methods: By studying rotating stellar models with and without planets and an empirical relation between the Rossby number and the surface magnetic field, we deduced the evolution of the surface magnetic field along the red giant branch. The effects of stellar wind magnetic braking were explored using a relation deduced from magnetohydrodynamics simulations. Results: The stellar evolution model of a red giant with 1.7 M⊙ without planet engulfment and with a time-averaged rotation velocity during the main sequence equal to 100 km s-1 shows a surface magnetic field triggered by convection that is stronger than 10 G only at the base of the red giant branch, that is, for gravities log g> 3. When a planet engulfment occurs, this magnetic field can also appear at much lower gravities, that is, at much higher luminosities along the red giant branch. The engulfment of a 15 MJ planet typically produces a dynamo-triggered magnetic field stronger than 10 G for gravities between 2.5 and 1.9. We show that for reasonable magnetic braking laws for the wind, the high surface velocity reached after a planet engulfment may be maintained sufficiently long to be observable. Conclusions: High surface magnetic fields for red giants in the upper part of the red giant branch are a strong indication of a planet engulfment or of an interaction with a companion. Our theory can be tested by observing fast-rotating red giants such as HD 31994, Tyc 0347-00762-1, Tyc 5904-00513-1, and Tyc 6054

  7. Observation and analysis of abrupt changes in the interplanetary plasma velocity and magnetic field.

    NASA Technical Reports Server (NTRS)

    Martin, R. N.; Belcher, J. W.; Lazarus, A. J.

    1973-01-01

    This paper presents a limited study of the physical nature of abrupt changes in the interplanetary plasma velocity and magnetic field based on 19 day's data from the Pioneer 6 spacecraft. The period was chosen to include a high-velocity solar wind stream and low-velocity wind. Abrupt events were accepted for study if the sum of the energy density in the magnetic field and velocity changes was above a specified minimum. A statistical analysis of the events in the high-velocity solar wind stream shows that Alfvenic changes predominate. This conclusion is independent of whether steady state requirements are imposed on conditions before and after the event. Alfvenic changes do not dominate in the lower-speed wind. This study extends the plasma field evidence for outwardly propagating Alfvenic changes to time scales as small as 1 min (scale lengths on the order of 20,000 km).

  8. How stellar feedback simultaneously regulates star formation and drives outflows

    NASA Astrophysics Data System (ADS)

    Hayward, Christopher C.; Hopkins, Philip F.

    2017-02-01

    We present an analytic model for how momentum deposition from stellar feedback simultaneously regulates star formation and drives outflows in a turbulent interstellar medium (ISM). Because the ISM is turbulent, a given patch of ISM exhibits sub-patches with a range of surface densities. The high-density patches are 'pushed' by feedback, thereby driving turbulence and self-regulating local star formation. Sufficiently low-density patches, however, are accelerated to above the escape velocity before the region can self-adjust and are thus vented as outflows. When the gas fraction is ≳ 0.3, the ratio of the turbulent velocity dispersion to the circular velocity is sufficiently high that at any given time, of the order of half of the ISM has surface density less than the critical value and thus can be blown out on a dynamical time. The resulting outflows have a mass-loading factor (η ≡ dot{M}_{out}/M_{star }) that is inversely proportional to the gas fraction times the circular velocity. At low gas fractions, the star formation rate needed for local self-regulation, and corresponding turbulent Mach number, declines rapidly; the ISM is 'smoother', and it is actually more difficult to drive winds with large mass-loading factors. Crucially, our model predicts that stellar-feedback-driven outflows should be suppressed at z ≲ 1 in M⋆ ≳ 1010 M⊙ galaxies. This mechanism allows massive galaxies to exhibit violent outflows at high redshifts and then 'shut down' those outflows at late times, thereby enabling the formation of a smooth, extended thin stellar disc. We provide simple fitting functions for η that should be useful for sub-resolution and semi-analytic models.

  9. The radial velocity search for extrasolar planets

    NASA Technical Reports Server (NTRS)

    Mcmillan, Robert S.

    1991-01-01

    Radial velocity measurements are being made to search for planets orbiting stars other than the Sun. The reflex acceleration induced on stars by planets can be sensed by measuring the small, slow changes in the line-of-site velocities of stars. To detect these planetary perturbations, the data series must be made on a uniform instrumental scale for as long as it takes a planet to orbit its star. A spectrometer of extreme stability and unprecedented sensitivity to changes in stellar radial velocities was operated.

  10. Stellarator Coil Design and Plasma Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long-Poe Ku and Allen H. Boozer

    2010-11-03

    The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel- oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are givenmore » that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.« less

  11. Signals embedded in the radial velocity noise. Periodic variations in the τ Ceti velocities

    NASA Astrophysics Data System (ADS)

    Tuomi, M.; Jones, H. R. A.; Jenkins, J. S.; Tinney, C. G.; Butler, R. P.; Vogt, S. S.; Barnes, J. R.; Wittenmyer, R. A.; O'Toole, S.; Horner, J.; Bailey, J.; Carter, B. D.; Wright, D. J.; Salter, G. S.; Pinfield, D.

    2013-03-01

    Context. The abilities of radial velocity exoplanet surveys to detect the lowest-mass extra-solar planets are currently limited by a combination of instrument precision, lack of data, and "jitter". Jitter is a general term for any unknown features in the noise, and reflects a lack of detailed knowledge of stellar physics (asteroseismology, starspots, magnetic cycles, granulation, and other stellar surface phenomena), as well as the possible underestimation of instrument noise. Aims: We study an extensive set of radial velocities for the star HD 10700 (τ Ceti) to determine the properties of the jitter arising from stellar surface inhomogeneities, activity, and telescope-instrument systems, and perform a comprehensive search for planetary signals in the radial velocities. Methods: We performed Bayesian comparisons of statistical models describing the radial velocity data to quantify the number of significant signals and the magnitude and properties of the excess noise in the data. We reached our goal by adding artificial signals to the "flat" radial velocity data of HD 10700 and by seeing which one of our statistical noise models receives the greatest posterior probabilities while still being able to extract the artificial signals correctly from the data. We utilised various noise components to assess properties of the noise in the data and analyse the HARPS, AAPS, and HIRES data for HD 10700 to quantify these properties and search for previously unknown low-amplitude Keplerian signals. Results: According to our analyses, moving average components with an exponential decay with a timescale from a few hours to few days, and Gaussian white noise explains the jitter the best for all three data sets. Fitting the corresponding noise parameters results in significant improvements of the statistical models and enables the detection of very weak signals with amplitudes below 1 m s-1 level in our numerical experiments. We detect significant periodicities that have no

  12. The effect of multiplicity of stellar encounters and the diffusion coefficients in a locally homogeneous three-dimensional stellar medium: Removing the classical divergence

    NASA Astrophysics Data System (ADS)

    Rastorguev, A. S.; Utkin, N. D.; Chumak, O. V.

    2017-08-01

    Agekyan's λ-factor that allows for the effect of multiplicity of stellar encounters with large impact parameters has been used for the first time to directly calculate the diffusion coefficients in the phase space of a stellar system. Simple estimates show that the cumulative effect, i.e., the total contribution of distant encounters to the change in the velocity of a test star, given the multiplicity of stellar encounters, is finite, and the logarithmic divergence inherent in the classical description of diffusion is removed, as was shown previously byKandrup using a different, more complex approach. In this case, the expressions for the diffusion coefficients, as in the classical description, contain the logarithm of the ratio of two independent quantities: the mean interparticle distance and the impact parameter of a close encounter. However, the physical meaning of this logarithmic factor changes radically: it reflects not the divergence but the presence of two characteristic length scales inherent in the stellar medium.

  13. VizieR Online Data Catalog: Be star rotational velocities distribution (Zorec+, 2016)

    NASA Astrophysics Data System (ADS)

    Zorec, J.; Fremat, Y.; Domiciano de Souza, A.; Royer, F.; Cidale, L.; Hubert, A.-M.; Semaan, T.; Martayan, C.; Cochetti, Y. R.; Arias, M. L.; Aidelman, Y.; Stee, P.

    2016-06-01

    Table 1 contains apparent fundamental parameters of the 233 Galactic Be stars. For each Be star is given the HD number, the effective temperature, effective surface gravity and bolometric luminosity. They correspond to the parameters of a plan parallel model of stellar atmosphere that fits the energy distribution of the stellar apparent hemisphere rotationally deformed. In Table 1 are also given the color excess E(B-V) and the vsini rotation parameter determined with model atmospheres of rigidly rotating stars. For each parameter is given the 1sigma uncertainty. In the notes are given the authors that produced some reported the data or the methods used to obtain the data. Table 4 contains parent-non-rotating-counterpart fundamental parameters of 233 Be stars: effective temperature, effective surface gravity, bolometric luminosity in solar units, stellar mass in solar units, fractional main-sequence stellar age, pnrc-apparent rotational velocity, critical velocity, ratio of centrifugal-force to gravity in the equator, inclination angle of the rotational axis. (2 data files).

  14. Full field gas phase velocity measurements in microgravity

    NASA Technical Reports Server (NTRS)

    Griffin, Devon W.; Yanis, William

    1995-01-01

    Measurement of full-field velocities via Particle Imaging Velocimetry (PIV) is common in research efforts involving fluid motion. While such measurements have been successfully performed in the liquid phase in a microgravity environment, gas-phase measurements have been beset by difficulties with seeding and laser strength. A synthesis of techniques developed at NASA LeRC exhibits promise in overcoming these difficulties. Typical implementation of PIV involves forming the light from a pulsed laser into a sheet that is some fraction of a millimeter thick and 50 or more millimeters wide. When a particle enters this sheet during a pulse, light scattered from the particle is recorded by a detector, which may be a film plane or a CCD array. Assuming that the particle remains within the boundaries of the sheet for the second pulse and can be distinguished from neighboring particles, comparison of the two images produces an average velocity vector for the time between the pulses. If the concentration of particles in the sampling volume is sufficiently large but the particles remain discrete, a full field map may be generated.

  15. Stellar mass functions and implications for a variable IMF

    NASA Astrophysics Data System (ADS)

    Bernardi, M.; Sheth, R. K.; Fischer, J.-L.; Meert, A.; Chae, K.-H.; Dominguez-Sanchez, H.; Huertas-Company, M.; Shankar, F.; Vikram, V.

    2018-03-01

    Spatially resolved kinematics of nearby galaxies has shown that the ratio of dynamical to stellar population-based estimates of the mass of a galaxy (M_{*}^JAM/M_{*}) correlates with σe, the light-weighted velocity dispersion within its half-light radius, if M* is estimated using the same initial mass function (IMF) for all galaxies and the stellar mass-to-light ratio within each galaxy is constant. This correlation may indicate that, in fact, the IMF is more bottom-heavy or dwarf-rich for galaxies with large σ. We use this correlation to estimate a dynamical or IMF-corrected stellar mass, M_{*}^{α _{JAM}}, from M* and σe for a sample of 6 × 105 Sloan Digital Sky Survey (SDSS) galaxies for which spatially resolved kinematics is not available. We also compute the `virial' mass estimate k(n,R) R_e σ _R^2/G, where n is the Sérsic index, in the SDSS and ATLAS3D samples. We show that an n-dependent correction must be applied to the k(n, R) values provided by Prugniel & Simien. Our analysis also shows that the shape of the velocity dispersion profile in the ATLAS3D sample varies weakly with n: (σR/σe) = (R/Re)-γ(n). The resulting stellar mass functions, based on M_*^{α _{JAM}} and the recalibrated virial mass, are in good agreement. Using a Fundamental Plane-based observational proxy for σe produces comparable results. The use of direct measurements for estimating the IMF-dependent stellar mass is prohibitively expensive for a large sample of galaxies. By demonstrating that cheaper proxies are sufficiently accurate, our analysis should enable a more reliable census of the mass in stars, especially at high redshift, at a fraction of the cost. Our results are provided in tabular form.

  16. The velocity field of a coronal mass ejection - The event of September 1, 1980

    NASA Technical Reports Server (NTRS)

    Low, B. C.; Hundhausen, A. J.

    1987-01-01

    The velocity field of a mass ejection that was observed by the coronagraph of the SMM satellite over the northwest limb of the sun at about 0600 UT on September 1, 1980 is studied in detail. A descriptive account of the event is given, concentrating on qualitative features of the mass motion and suggesting a possible origin of the unusual two-loop structure. The velocity field is analyzed quantitatively, and the implications of the results for the mass ejection theory are considered. It is concluded that a self-similar description of the velocity field is a gross oversimplification and that although some evidence of wave propagation can be found, the bright features in the mass ejection are plasma structures moving with frozen-in magnetic fields, rather than waves propagating through plasmas and magnetic fields.

  17. THE STELLAR MASS FUNDAMENTAL PLANE AND COMPACT QUIESCENT GALAXIES AT z < 0.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. Jabran; Damjanov, Ivana; Geller, Margaret J.

    2016-04-20

    We examine the evolution of the relation between stellar mass surface density, velocity dispersion, and half-light radius—the stellar mass fundamental plane (MFP)—for quiescent galaxies at z < 0.6. We measure the local relation from galaxies in the Sloan Digital Sky Survey and the intermediate redshift relation from ∼500 quiescent galaxies with stellar masses 10 ≲ log( M {sub *}/ M {sub ⊙}) ≲ 11.5. Nearly half of the quiescent galaxies in our intermediate redshift sample are compact. After accounting for important selection and systematic effects, the velocity dispersion distribution of galaxies at intermediate redshifts is similar to that of galaxiesmore » in the local universe. Galaxies at z < 0.6 appear to be smaller (≲0.1 dex) than galaxies in the local sample. The orientation of the stellar MFP is independent of redshift for massive quiescent galaxies at z < 0.6 and the zero-point evolves by ∼0.04 dex. Compact quiescent galaxies fall on the same relation as the extended objects. We confirm that compact quiescent galaxies are the tail of the size and mass distribution of the normal quiescent galaxy population.« less

  18. POLARIZED LINE FORMATION IN MOVING ATMOSPHERES WITH PARTIAL FREQUENCY REDISTRIBUTION AND A WEAK MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in

    2015-10-10

    The dynamical state of the solar and stellar atmospheres depends on the macroscopic velocity fields prevailing within them. The presence of such velocity fields in the line formation regions strongly affects the polarized radiation field emerging from these atmospheres. Thus it becomes necessary to solve the radiative transfer equation for polarized lines in moving atmospheres. Solutions based on the “observer’s frame method” are computationally expensive to obtain, especially when partial frequency redistribution (PRD) in line scattering and large-amplitude velocity fields are taken into account. In this paper we present an efficient alternative method of solution, namely, the comoving frame technique,more » to solve the polarized PRD line formation problems in the presence of velocity fields. We consider one-dimensional planar isothermal atmospheres with vertical velocity fields. We present a study of the effect of velocity fields on the emergent linear polarization profiles formed in optically thick moving atmospheres. We show that the comoving frame method is far superior when compared to the observer’s frame method in terms of the computational speed and memory requirements.« less

  19. Packing extra mass in compact stellar structures: an interplay between Kalb-Ramond field and extra dimensions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sumanta; SenGupta, Soumitra

    2018-05-01

    We have derived the Buchdahl's limit for a relativistic star in presence of the Kalb-Ramond field in four as well as in higher dimensions. It turns out that the Buchdahl's limit gets severely affected by the inclusion of the Kalb-Ramond field. In particular, the Kalb-Ramond field in four spacetime dimensions enables one to pack extra mass in any compact stellar structure of a given radius. On the other hand, a completely opposite picture emerges if the Kalb-Ramond field exists in higher dimensions, where the mass content of a compact star is smaller compared to that in general relativity. Implications are discussed.

  20. A dissipative random velocity field for fully developed fluid turbulence

    NASA Astrophysics Data System (ADS)

    Chevillard, Laurent; Pereira, Rodrigo; Garban, Christophe

    2016-11-01

    We investigate the statistical properties, based on numerical simulations and analytical calculations, of a recently proposed stochastic model for the velocity field of an incompressible, homogeneous, isotropic and fully developed turbulent flow. A key step in the construction of this model is the introduction of some aspects of the vorticity stretching mechanism that governs the dynamics of fluid particles along their trajectory. An additional further phenomenological step aimed at including the long range correlated nature of turbulence makes this model depending on a single free parameter that can be estimated from experimental measurements. We confirm the realism of the model regarding the geometry of the velocity gradient tensor, the power-law behaviour of the moments of velocity increments, including the intermittent corrections, and the existence of energy transfers across scales. We quantify the dependence of these basic properties of turbulent flows on the free parameter and derive analytically the spectrum of exponents of the structure functions in a simplified non dissipative case. A perturbative expansion shows that energy transfers indeed take place, justifying the dissipative nature of this random field.

  1. Timing the formation and assembly of early-type galaxies via spatially resolved stellar populations analysis

    NASA Astrophysics Data System (ADS)

    Martín-Navarro, Ignacio; Vazdekis, Alexandre; Falcón-Barroso, Jesús; La Barbera, Francesco; Yıldırım, Akın; van de Ven, Glenn

    2018-04-01

    To investigate star formation and assembly processes of massive galaxies, we present here a spatially resolved stellar population analysis of a sample of 45 elliptical galaxies (Es) selected from the Calar Alto Legacy Integral Field Area survey. We find rather flat age and [Mg/Fe] radial gradients, weakly dependent on the effective velocity dispersion of the galaxy within half-light radius. However, our analysis shows that metallicity gradients become steeper with increasing galaxy velocity dispersion. In addition, we have homogeneously compared the stellar population gradients of our sample of Es to a sample of nearby relic galaxies, i.e. local remnants of the high-z population of red nuggets. This comparison indicates that, first, the cores of present-day massive galaxies were likely formed in gas-rich, rapid star formation events at high redshift (z ≳ 2). This led to radial metallicity variations steeper than observed in the local Universe, and positive [Mg/Fe] gradients. Secondly, our analysis also suggests that a later sequence of minor dry mergers, populating the outskirts of early-type galaxies (ETGs), flattened the pristine [Mg/Fe] and metallicity gradients. Finally, we find a tight age-[Mg/Fe] relation, supporting that the duration of the star formation is the main driver of the [Mg/Fe] enhancement in massive ETGs. However, the star formation time-scale alone is not able to fully explain our [Mg/Fe] measurements. Interestingly, our results match the expected effect that a variable stellar initial mass function would have on the [Mg/Fe] ratio.

  2. Bayesian planet searches in radial velocity data

    NASA Astrophysics Data System (ADS)

    Gregory, Phil

    2015-08-01

    Intrinsic stellar variability caused by magnetic activity and convection has become the main limiting factor for planet searches in both transit and radial velocity (RV) data. New spectrographs are under development like ESPRESSO and EXPRES that aim to improve RV precision by a factor of approximately 100 over the current best spectrographs, HARPS and HARPS-N. This will greatly exacerbate the challenge of distinguishing planetary signals from stellar activity induced RV signals. At the same time good progress has been made in simulating stellar activity signals. At the Porto 2014 meeting, “Towards Other Earths II,” Xavier Dumusque challenged the community to a large scale blind test using the simulated RV data to understand the limitations of present solutions to deal with stellar signals and to select the best approach. My talk will focus on some of the statistical lesson learned from this challenge with an emphasis on Bayesian methodology.

  3. Unveiling the stellar halo with TGAS

    NASA Astrophysics Data System (ADS)

    Veljanoski, Jovan; Posti, L.; Helmi, A.; Breddels, M. A.

    2018-04-01

    The detailed study of the Galactic stellar halo may hold the key to unlocking the assembly history of the Milky Way. Here, we present a machine learning model for selecting metal poor stars from the TGAS catalogue using 5 dimensional phase-space information, coupled with optical and near-IR photometry. We characterise the degree of substructure in our halo sample in the Solar neighbourhood by measuring the velocity correlation function.

  4. Uncertainty of InSAR velocity fields for measuring long-wavelength displacement

    NASA Astrophysics Data System (ADS)

    Fattahi, H.; Amelung, F.

    2014-12-01

    Long-wavelength artifacts in InSAR data are the main limitation to measure long-wavelength displacement; they are traditionally attributed mainly to the inaccuracy of the satellite orbits (orbital errors). However, most satellites are precisely tracked resulting in uncertainties of orbits of 2-10 cm. Orbits of these satellites are thus precise enough to obtain precise velocity fields with uncertainties better than 1 mm/yr/100 km for older satellites (e.g. Envisat) and better than 0.2 mm/yr/100 km for modern satellites (e.g. TerraSAR-X and Sentinel-1) [Fattahi & Amelung, 2014]. Such accurate velocity fields are achievable if long-wavelength artifacts from sources other than orbital errors are identified and corrected for. We present a modified Small Baseline approach to measure long-wavelength deformation and evaluate the uncertainty of these measurements. We use a redundant network of interferograms for detection and correction of unwrapping errors to ensure the unbiased estimation of phase history. We distinguish between different sources of long-wavelength artifacts and correct those introduced by atmospheric delay, topographic residuals, timing errors, processing approximations and hardware issues. We evaluate the uncertainty of the velocity fields using a covariance matrix with the contributions from orbital errors and residual atmospheric delay. For contributions from the orbital errors we consider the standard deviation of velocity gradients in range and azimuth directions as a function of orbital uncertainty. For contributions from the residual atmospheric delay we use several approaches including the structure functions of InSAR time-series epochs, the predicted delay from numerical weather models and estimated wet delay from optical imagery. We validate this InSAR approach for measuring long-wavelength deformation by comparing InSAR velocity fields over ~500 km long swath across the southern San Andreas fault system with independent GPS velocities and

  5. Field Testing of an In-well Point Velocity Probe for the Rapid Characterization of Groundwater Velocity

    NASA Astrophysics Data System (ADS)

    Osorno, T.; Devlin, J. F.

    2017-12-01

    Reliable estimates of groundwater velocity is essential in order to best implement in-situ monitoring and remediation technologies. The In-well Point Velocity Probe (IWPVP) is an inexpensive, reusable tool developed for rapid measurement of groundwater velocity at the centimeter-scale in monitoring wells. IWPVP measurements of groundwater speed are based on a small-scale tracer test conducted as ambient groundwater passes through the well screen and the body of the probe. Horizontal flow direction can be determined from the difference in tracer mass passing detectors placed in four funnel-and-channel pathways through the probe, arranged in a cross pattern. The design viability of the IWPVP was confirmed using a two-dimensional numerical model in Comsol Multiphysics, followed by a series of laboratory tank experiments in which IWPVP measurements were calibrated to quantify seepage velocities in both fine and medium sand. Lab results showed that the IWPVP was capable of measuring the seepage velocity in less than 20 minutes per test, when the seepage velocity was in the range of 0.5 to 4.0 m/d. Further, the IWPVP estimated the groundwater speed with a precision of ± 7%, and an accuracy of ± 14%, on average. The horizontal flow direction was determined with an accuracy of ± 15°, on average. Recently, a pilot field test of the IWPVP was conducted in the Borden aquifer, C.F.B. Borden, Ontario, Canada. A total of approximately 44 IWPVP tests were conducted within two 2-inch groundwater monitoring wells comprising a 5 ft. section of #8 commercial well screen. Again, all tests were completed in under 20 minutes. The velocities estimated from IWPVP data were compared to 21 Point Velocity Probe (PVP) tests, as well as Darcy-based estimates of groundwater velocity. Preliminary data analysis shows strong agreement between the IWPVP and PVP estimates of groundwater velocity. Further, both the IWPVP and PVP estimates of groundwater velocity appear to be reasonable when

  6. Experimental investigation of the velocity field in buoyant diffusion flames using PIV and TPIV algorithm

    Treesearch

    L. Sun; X. Zhou; S.M. Mahalingam; D.R. Weise

    2005-01-01

    We investigated a simultaneous temporally and spatially resolved 2-D velocity field above a burning circular pan of alcohol using particle image velocimetry (PIV). The results obtained from PIV were used to assess a thermal particle image velocimetry (TPIV) algorithm previously developed to approximate the velocity field using the temperature field, simultaneously...

  7. Theory of Stellar Oscillations

    NASA Astrophysics Data System (ADS)

    Cunha, Margarida S.

    In recent years, astronomers have witnessed major progresses in the field of stellar physics. This was made possible thanks to the combination of a solid theoretical understanding of the phenomena of stellar pulsations and the availability of a tremendous amount of exquisite space-based asteroseismic data. In this context, this chapter reviews the basic theory of stellar pulsations, considering small, adiabatic perturbations to a static, spherically symmetric equilibrium. It starts with a brief discussion of the solar oscillation spectrum, followed by the setting of the theoretical problem, including the presentation of the equations of hydrodynamics, their perturbation, and a discussion of the functional form of the solutions. Emphasis is put on the physical properties of the different types of modes, in particular acoustic (p-) and gravity (g-) modes and their propagation cavities. The surface (f-) mode solutions are also discussed. While not attempting to be comprehensive, it is hoped that the summary presented in this chapter addresses the most important theoretical aspects that are required for a solid start in stellar pulsations research.

  8. The Stellar Population Histories of Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Trager, Scott Charles

    1997-08-01

    This dissertation sets out to probe the stellar population histories of local field and distant cluster elliptical galaxies. Absorption-line strengths of the centers of 381 early-type galaxies and 38 globular clusters measured from the Lick Image Dissector Scanner (Lick/IDS) are presented. Error estimation and corrections for velocity-dispersion broadening are described in detail. Monte Carlo simulations show that the Lick/IDS data are not accurate enough to infer ages and abundances of individual ellipticals with confidence. The excellent data of Gonzalez (1993) are therefore used to infer the stellar population ages and abundances of the centers of local field ellipticals. Elliptical galaxy nuclei follow three relations in this sample. (1) The t-Z relation. Elliptical nuclei have an age-abundance relation at fixed velocity dispersion σ that follows the Worthey (1994) '3/2 rule.' Ellipticals therefore have fixed color and metal-line strengths at fixed σ. (2) The σ-Z relation. The abundance zeropoint of the t-Z relation increases with increasing σ. Taken together, (1) and (2) predict scaling relations like the Mg2-σ and color-magnitude relations. (3) The σ- (Mg/Fe) relation. The abundance ratio (Mg/Fe) increases with increasing σ, as the σ-Z relation for Mg has twice the slope of the σ-Z relation for Fe. Relations (1)-(3) can be expressed as a pair of planes in t-Z-σ space, one for Fe and one for Mg, with similar age dependences but different σ-dependences. Scenarios for the possible origins of these relations are presented. Absorption-line strengths of eighteen early-type galaxies in two rich clusters at z = 0.41 (CL0939 + 4713) and z = 0.76 (CL1322 + 3027) have been measured from Keck LRIS spectra. The Balmer-line strengths of ellipticals at z = 0.41 are consistent with passive evolution of local field ellipticals but seem too metal-rich. Both Balmer- and metal-line strengths of ellipticals at z = 0.76 are consistent with passive evolution of local

  9. Probing the nature of the pre-merging system Hickson Compact Group 31 through integral field unit data★

    NASA Astrophysics Data System (ADS)

    Alfaro-Cuello, M.; Torres-Flores, S.; Carrasco, E. R.; Mendes de Oliveira, C.; de Mello, D. F.; Amram, P.

    2015-10-01

    We present a study of the kinematics and the physical properties of the central region of the Hickson Compact Group 31 (HCG 31), focusing on the HCG 31A+C system, using integral field spectroscopy data taken with the Gemini South Telescope. The main players in the merging event (galaxies A and C) are two dwarf galaxies, which have had one close encounter, given the observed tidal tails, and may now be in their second approach, and are possibly about to merge. We present new velocity fields and Hα emission, stellar continuum, velocity dispersion, electron density, Hα equivalent-width and age maps. Considering the high spatial resolution of the integral field unit data, we were able to measure various components and estimate their physical parameters, spatially resolving the different structures in this region. Our main findings are the following: (1) We report for the first time the presence of a super stellar cluster next to the burst associated with the HCG 31C central blob, related to the high values of velocity dispersion observed in this region as well as to the highest value of stellar continuum emission. This may suggest that this system is cleaning its environment through strong stellar winds that may then trigger a strong star formation event in its neighbourhood. (2) Among other physical parameters, we estimate L(Hα) ˜ 14 × 1041 erg s-1 and the star formation rate, SFR ˜11 M⊙ yr-1 for the central merging region of HCG 31A+C. These values indicate a high star formation density, suggesting that the system is part of a merging object, supporting previous scenarios proposed for this system.

  10. Flexible helical-axis stellarator

    DOEpatents

    Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.

    1988-01-01

    An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.

  11. Galactic googly: the rotation-metallicity bias in the inner stellar halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Kafle, Prajwal R.; Sharma, Sanjib; Robotham, Aaron S. G.; Pradhan, Raj K.; Guglielmo, Magda; Davies, Luke J. M.; Driver, Simon P.

    2017-09-01

    The first and second moments of stellar velocities encode important information about the formation history of the Galactic halo. However, due to the lack of tangential motion and inaccurate distances of the halo stars, the velocity moments in the Galactic halo have largely remained 'known unknowns'. Fortunately, our off-centric position within the Galaxy allows us to estimate these moments in the galactocentric frame using the observed radial velocities of the stars alone. We use these velocities coupled with the hierarchical Bayesian scheme, which allows easy marginalization over the missing data (the proper motion, and uncertainty-free distance and line-of-sight velocity), to measure the velocity dispersions, orbital anisotropy (β) and streaming motion (vrot) of the halo main-sequence turn-off (MSTO) and K-giant (KG) stars in the inner stellar halo (r ≲ 15 kpc). We study the metallicity bias in kinematics of the halo stars and observe that the comparatively metal-rich ([Fe/H] > -1.4) and the metal-poor ([Fe/H] ≤ -1.4) MSTO samples show a clear systematic difference in vrot ˜ 20-40 km s - 1, depending on how restrictive the spatial cuts to cull the disc contamination are. The bias is also detected in KG samples but with less certainty. Both MSTO and KG populations suggest that the inner stellar halo of the Galaxy is radially biased I.e. σr > σθ or σϕ and β ≃ 0.5. The apparent metallicity contrariety in the rotation velocity among the halo sub-populations supports the co-existence of multiple populations in the galactic halo that may have formed through distinct formation scenarios, I.e. in situ versus accretion.

  12. Resolving the extended stellar halos of nearby galaxies: the wide-field PISCeS survey

    NASA Astrophysics Data System (ADS)

    Crnojevic, Denija; Sand, David; Spekkens, Kristine; Caldwell, Nelson; Guhathakurta, Puragra; McLeod, Brian; Seth, Anil; Simon, Joshua D.; Strader, Jay; Toloba, Elisa

    2018-01-01

    I will present results from the wide-field Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS): the resolved stellar halos of two nearby galaxies (the spiral NGC253 and the elliptical Centaurus A, D~3.7 Mpc) are investigated out to a galactocentric radius of 150 kpc with Magellan/Megacam. The survey pushes the limits of near-field cosmology beyond the Local Group, by characterizing the stellar content (ages, metallicities, gradients) of extended halos and their substructures in two environments substantially different from the Local Group, i.e. the loose Sculptor group of galaxies and the Centaurus A group dominated by an elliptical. PISCeS has to date led to the discovery of 11 confirmed satellites as faint as M_V=-8 (including Ultra Diffuse Galaxies), streams and tidal substructures with surface brigthness limits as low as ~32 mag/arcsec^2, and hundreds of globular cluster/ultra-compact dwarf candidates. The unique strength of PISCeS is the exquisite synergy between the wide-field, ground-based survey and its extensive imaging and spectroscopic follow-up (HST, Keck, VLT, Magellan, AAT), which constitute the first accurate characterization of the past and ongoing accretion processes shaping the halos of these nearby galaxies. Our observational campaign will not only provide crucial constraints to quantitatively inform theoretical models of galaxy formation and evolution, but it also represents a necessary testbed in preparation for future very large datasets stemming from the next generation of ground-based (LSST, TMT, GMT) as well as space-borne (JWST, WFIRST) telescopes.

  13. Channel flow analysis. [velocity distribution throughout blade flow field

    NASA Technical Reports Server (NTRS)

    Katsanis, T.

    1973-01-01

    The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.

  14. IN-SYNC I: Homogeneous stellar parameters from high-resolution apogee spectra for thousands of pre-main sequence stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.

    2014-10-20

    Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J – H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, wemore » identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.« less

  15. IN-SYNC I: Homogeneous Stellar Parameters from High-resolution APOGEE Spectra for Thousands of Pre-main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Cottaar, Michiel; Covey, Kevin R.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Foster, Jonathan B.; Tan, Jonathan C.; Chojnowski, S. Drew; da Rio, Nicola; Flaherty, Kevin M.; Frinchaboy, Peter M.; Skrutskie, Michael; Majewski, Steven R.; Wilson, John C.; Zasowski, Gail

    2014-10-01

    Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J - H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, we identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.

  16. A Disk Origin for the Monoceros Ring and A13 Stellar Overdensities

    NASA Astrophysics Data System (ADS)

    Sheffield, Allyson A.; Price-Whelan, Adrian M.; Tzanidakis, Anastasios; Johnston, Kathryn V.; Laporte, Chervin F. P.; Sesar, Branimir

    2018-02-01

    The Monoceros Ring (also known as the Galactic Anticenter Stellar Structure) and A13 are stellar overdensities at estimated heliocentric distances of d ∼ 11 kpc and 15 kpc observed at low Galactic latitudes toward the anticenter of our Galaxy. While these overdensities were initially thought to be remnants of a tidally disrupted satellite galaxy, an alternate scenario is that they are composed of stars from the Milky Way (MW) disk kicked out to their current location due to interactions between a satellite galaxy and the disk. To test this scenario, we study the stellar populations of the Monoceros Ring and A13 by measuring the number of RR Lyrae and M giant stars associated with these overdensities. We obtain low-resolution spectroscopy for RR Lyrae stars in the two structures and measure radial velocities to compare with previously measured velocities for M giant stars in the regions of the Monoceros Ring and A13, to assess the fraction of RR Lyrae to M giant stars (f RR:MG) in A13 and Mon/GASS. We perform velocity modeling on 153 RR Lyrae stars (116 in the Monoceros Ring and 37 in A13) and find that both structures have very low f RR:MG. The results support a scenario in which stars in A13 and Mon/GASS formed in the MW disk. We discuss a possible association between Mon/GASS, A13, and the Triangulum-Andromeda overdensity based on their similar velocity distributions and f RR:MG.

  17. The Stellar Imager (SI) Mission Concept

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Lyon, Richard G.; Mundy, Lee G.; Allen, Ronald J.; Armstrong, Thomas; Danchi, William C.; Karovska, Margarita; Marzouk, Joe; Mazzuca, Lisa M.; hide

    2002-01-01

    The Stellar Imager (SI) is envisioned as a space-based, UV-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5 km. It is designed to image stars and binaries with sufficient resolution to enable long-term studies of stellar magnetic activity patterns, for comparison with those on the sun. It will also support asteroseismology (acoustic imaging) to probe stellar internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of the magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on time scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. In this paper we describe the scientific goals of the mission, the performance requirements needed to address these goals, the "enabling technology" development efforts being pursued, and the design concepts now under study for the full mission and a possible pathfinder mission.

  18. Non-radial pulsations and large-scale structure in stellar winds

    NASA Astrophysics Data System (ADS)

    Blomme, R.

    2009-07-01

    Almost all early-type stars show Discrete Absorption Components (DACs) in their ultraviolet spectral lines. These can be attributed to Co-rotating Interaction Regions (CIRs): large-scale spiral-shaped structures that sweep through the stellar wind. We used the Zeus hydrodynamical code to model the CIRs. In the model, the CIRs are caused by ``spots" on the stellar surface. Through the radiative acceleration these spots create fast streams in the stellar wind material. Where the fast and slow streams collide, a CIR is formed. By varying the parameters of the spots, we quantitatively fit the observed DACs in HD~64760. An important result from our work is that the spots do not rotate with the same velocity as the stellar surface. The fact that the cause of the CIRs is not fixed on the surface eliminates many potential explanations. The only remaining explanation is that the CIRs are due to the interference pattern of a number of non-radial pulsations.

  19. Stellar Echo Imaging of Exoplanets

    NASA Technical Reports Server (NTRS)

    Mann, Chris; Lerch, Kieran; Lucente, Mark; Meza-Galvan, Jesus; Mitchell, Dan; Ruedin, Josh; Williams, Spencer; Zollars, Byron

    2016-01-01

    All stars exhibit intensity fluctuations over several timescales, from nanoseconds to years. These intensity fluctuations echo off bodies and structures in the star system. We posit that it is possible to take advantage of these echoes to detect, and possibly image, Earth-scale exoplanets. Unlike direct imaging techniques, temporal measurements do not require fringe tracking, maintaining an optically-perfect baseline, or utilizing ultra-contrast coronagraphs. Unlike transit or radial velocity techniques, stellar echo detection is not constrained to any specific orbital inclination. Current results suggest that existing and emerging technology can already enable stellar echo techniques at flare stars, such as Proxima Centauri, including detection, spectroscopic interrogation, and possibly even continent-level imaging of exoplanets in a variety of orbits. Detection of Earth-like planets around Sun-like stars appears to be extremely challenging, but cannot be fully quantified without additional data on micro- and millisecond-scale intensity fluctuations of the Sun. We consider survey missions in the mold of Kepler and place preliminary constraints on the feasibility of producing 3D tomographic maps of other structures in star systems, such as accretion disks. In this report we discuss the theory, limitations, models, and future opportunities for stellar echo imaging.

  20. Laser transit anemometer measurements of a JANNAF nozzle base velocity flow field

    NASA Technical Reports Server (NTRS)

    Hunter, William W., Jr.; Russ, C. E., Jr.; Clemmons, J. I., Jr.

    1990-01-01

    Velocity flow fields of a nozzle jet exhausting into a supersonic flow were surveyed. The measurements were obtained with a laser transit anemometer (LTA) system in the time domain with a correlation instrument. The LTA data is transformed into the velocity domain to remove the error that occurs when the data is analyzed in the time domain. The final data is shown in velocity vector plots for positions upstream, downstream, and in the exhaust plane of the jet nozzle.

  1. A new method to unveil embedded stellar clusters

    NASA Astrophysics Data System (ADS)

    Lombardi, Marco; Lada, Charles J.; Alves, João

    2017-11-01

    In this paper we present a novel method to identify and characterize stellar clusters deeply embedded in a dark molecular cloud. The method is based on measuring stellar surface density in wide-field infrared images using star counting techniques. It takes advantage of the differing H-band luminosity functions (HLFs) of field stars and young stellar populations and is able to statistically associate each star in an image as a member of either the background stellar population or a young stellar population projected on or near the cloud. Moreover, the technique corrects for the effects of differential extinction toward each individual star. We have tested this method against simulations as well as observations. In particular, we have applied the method to 2MASS point sources observed in the Orion A and B complexes, and the results obtained compare very well with those obtained from deep Spitzer and Chandra observations where presence of infrared excess or X-ray emission directly determines membership status for every star. Additionally, our method also identifies unobscured clusters and a low resolution version of the Orion stellar surface density map shows clearly the relatively unobscured and diffuse OB 1a and 1b sub-groups and provides useful insights on their spatial distribution.

  2. The Contribution of Stellar Winds to Cosmic Ray Production

    NASA Astrophysics Data System (ADS)

    Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu

    2018-04-01

    Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

  3. Non-resonant divertors for stellarators

    NASA Astrophysics Data System (ADS)

    Boozer, Allen; Punjabi, Alkesh

    2017-10-01

    The outermost confining magnetic surface in optimized stellarators has sharp edges, which resemble tokamak X-points. The plasma cross section has an even number of edges at the beginning but an odd number half way through the period. Magnetic field lines cannot cross sharp edges, but stellarator edges have a finite length and do not determine the rotational transform on the outermost confining surface. Just outside the last confining surface, surfaces formed by magnetic field lines have splits containing two adjacent magnetic flux tubes: one with entering and the other with an equal existing flux to the walls. The splits become wider with distance outside the outermost confining surface. These flux tubes form natural non-resonant stellarator divertors, which we are studying using maps. This work is supported by the US DOE Grants DE-FG02-95ER54333 to Columbia University and DE-FG02-01ER54624 and DE-FG02-04ER54793 to Hampton University and used resources of the NERSC, supported by the Office of Science, US DOE, under Contract No. DE-AC02-.

  4. Extended Main-sequence Turn-offs in Intermediate-age Star Clusters: Stellar Rotation Diminishes, but Does Not Eliminate, Age Spreads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudfrooij, Paul; Correnti, Matteo; Girardi, Léo, E-mail: goudfroo@stsci.edu

    Extended main-sequence turn-off (eMSTO) regions are a common feature in color–magnitude diagrams of young- and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs remains debated in the literature. The currently most popular scenarios are extended star formation activity and ranges of stellar rotation rates. Here we study details of differences in main-sequence turn-off (MSTO) morphology expected from spreads in age versus spreads in rotation rates, using Monte Carlo simulations with the Geneva syclist isochrone models that include the effects of stellar rotation. We confirm a recent finding of Niederhofer et al. that a distribution of stellar rotationmore » velocities yields an MSTO extent that is proportional to the cluster age, as observed. However, we find that stellar rotation yields MSTO crosscut widths that are generally smaller than observed ones at a given age. We compare the simulations with high-quality Hubble Space Telescope data of NGC 1987 and NGC 2249, which are the two only relatively massive star clusters with an age of ∼1 Gyr for which such data is available. We find that the distribution of stars across the eMSTOs of these clusters cannot be explained solely by a distribution of stellar rotation velocities, unless the orientations of rapidly rotating stars are heavily biased toward an equator-on configuration. Under the assumption of random viewing angles, stellar rotation can account for ∼60% and ∼40% of the observed FWHM widths of the eMSTOs of NGC 1987 and NGC 2249, respectively. In contrast, a combination of distributions of stellar rotation velocities and stellar ages fits the observed eMSTO morphologies very well.« less

  5. Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czekala, Ian; Mandel, Kaisey S.; Andrews, Sean M.

    Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches formore » companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.« less

  6. Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis

    NASA Astrophysics Data System (ADS)

    Czekala, Ian; Mandel, Kaisey S.; Andrews, Sean M.; Dittmann, Jason A.; Ghosh, Sujit K.; Montet, Benjamin T.; Newton, Elisabeth R.

    2017-05-01

    Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches for companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.

  7. Stellar Disk Truncations: HI Density and Dynamics

    NASA Astrophysics Data System (ADS)

    Trujillo, Ignacio; Bakos, Judit

    2010-06-01

    Using HI Nearby Galaxy Survey (THINGS) 21-cm observations of a sample of nearby (nearly face-on) galaxies we explore whether the stellar disk truncation phenomenon produces any signature either in the HI gas density and/or in the gas dynamics. Recent cosmological simulations suggest that the origin of the break on the surface brightness distribution is produced by the appearance of a warp at the truncation position. This warp should produce a flaring on the gas distribution increasing the velocity dispersion of the HI component beyond the break. We do not find, however, any evidence of this increase in the gas velocity dispersion profile.

  8. Stellar Dynamics and Star Formation Histories of z ∼ 1 Radio-loud Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barišić, Ivana; Van der Wel, Arjen; Chauké, Priscilla

    We investigate the stellar kinematics and stellar populations of 58 radio-loud galaxies of intermediate luminosities ( L {sub 3} {sub GHz} > 10{sup 23} W Hz{sup −1}) at 0.6 < z < 1. This sample is constructed by cross-matching galaxies from the deep VLT/VIMOS LEGA-C spectroscopic survey with the VLA 3 GHz data set. The LEGA-C continuum spectra reveal for the first time stellar velocity dispersions and age indicators of z ∼ 1 radio galaxies. We find that z ∼ 1 radio-loud active galactic nucleus (AGN) occur exclusively in predominantly old galaxies with high velocity dispersions: σ {sub *} >more » 175 km s{sup −1}, corresponding to black hole masses in excess of 10{sup 8} M {sub ⊙}. Furthermore, we confirm that at a fixed stellar mass the fraction of radio-loud AGN at z ∼ 1 is five to 10 times higher than in the local universe, suggesting that quiescent, massive galaxies at z ∼ 1 switch on as radio AGN on average once every Gyr. Our results strengthen the existing evidence for a link between high black hole masses, radio loudness, and quiescence at z ∼ 1.« less

  9. Evidence of a Supermassive Black Hole in the Galaxy NGC 1023 From The Nuclear Stellar Dynamics

    NASA Technical Reports Server (NTRS)

    Bower, G. A.; Green, R. F.; Bender, R.; Gebhardt, K.; Lauer, T. R.; Magorrian, J.; Richstone, D. O.; Danks, A.; Gull, T.; Hutchings, J.

    2000-01-01

    We analyze the nuclear stellar dynamics of the SBO galaxy NGC 1023, utilizing observational data both from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and from the ground. The stellar kinematics measured from these long-slit spectra show rapid rotation (V equals approx. 70 km/s at a distance of O.1 deg = 4.9 pc from the nucleus) and increasing velocity dispersion toward the nucleus (where sigma = 295 +/- 30 km/s). We model the observed stellar kinematics assuming an axisymmetric mass distribution with both two and three integrals of motion. Both modeling techniques point to the presence of a central dark compact mass (which presumably is a supermassive black hole) with confidence > 99%. The isotropic two-integral models yield a best-fitting black hole mass of (6.0 +/- 0.4) x 10(exp 7) solar masses and mass-to-light ratio (M/L(sub v)) of 5.38 +/- 0.08, and the goodness-of-fit (CHI(exp 2)) is insensitive to reasonable values for the galaxy's inclination. The three-integral models, which non-parametrically fit the observed line-of-sight velocity distribution as a function of position in the galaxy, suggest a black hole mass of (3.9 +/- 0.4) x 10(exp 7) solar masses and M/L(sub v) of 5.56 +/- 0.02 (internal errors), and the edge-on models are vastly superior fits over models at other inclinations. The internal dynamics in NGC 1023 as suggested by our best-fit three-integral model shows that the velocity distribution function at the nucleus is tangentially anisotropic, suggesting the presence of a nuclear stellar disk. The nuclear line of sight velocity distribution has enhanced wings at velocities >= 600 km/s from systemic, suggesting that perhaps we have detected a group of stars very close to the central dark mass.

  10. Evidence for non-axisymmetry in M 31 from wide-field kinematics of stars and gas

    NASA Astrophysics Data System (ADS)

    Opitsch, M.; Fabricius, M. H.; Saglia, R. P.; Bender, R.; Blaña, M.; Gerhard, O.

    2018-03-01

    Aim. As the nearest large spiral galaxy, M 31 provides a unique opportunity to study the structure and evolutionary history of this galaxy type in great detail. Among the many observing programs aimed at M 31 are microlensing studies, which require good three-dimensional models of the stellar mass distribution. Possible non-axisymmetric structures like a bar need to be taken into account. Due to M 31's high inclination, the bar is difficult to detect in photometry alone. Therefore, detailed kinematic measurements are needed to constrain the possible existence and position of a bar in M 31. Methods: We obtained ≈220 separate fields with the optical integral-field unit spectrograph VIRUS-W, covering the whole bulge region of M 31 and parts of the disk. We derived stellar line-of-sight velocity distributions from the stellar absorption lines, as well as velocity distributions and line fluxes of the emission lines Hβ, [O III] and [N I]. Our data supersede any previous study in terms of spatial coverage and spectral resolution. Results: We find several features that are indicative of a bar in the kinematics of the stars, we see intermediate plateaus in the velocity and the velocity dispersion, and correlation between the higher moment h3 and the velocity. The gas kinematics is highly irregular, but is consistent with non-triaxial streaming motions caused by a bar. The morphology of the gas shows a spiral pattern, with seemingly lower inclination than the stellar disk. We also look at the ionization mechanisms of the gas, which happens mostly through shocks and not through starbursts. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.This research was supported by the DFG cluster of excellence "Origin and Structure of the Universe".Full Tables B.4-B.7 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A38

  11. A stellar census in globular clusters with MUSE: The contribution of rotation to cluster dynamics studied with 200 000 stars

    NASA Astrophysics Data System (ADS)

    Kamann, S.; Husser, T.-O.; Dreizler, S.; Emsellem, E.; Weilbacher, P. M.; Martens, S.; Bacon, R.; den Brok, M.; Giesers, B.; Krajnović, D.; Roth, M. M.; Wendt, M.; Wisotzki, L.

    2018-02-01

    This is the first of a series of papers presenting the results from our survey of 25 Galactic globular clusters with the MUSE integral-field spectrograph. In combination with our dedicated algorithm for source deblending, MUSE provides unique multiplex capabilities in crowded stellar fields and allows us to acquire samples of up to 20 000 stars within the half-light radius of each cluster. The present paper focuses on the analysis of the internal dynamics of 22 out of the 25 clusters, using about 500 000 spectra of 200 000 individual stars. Thanks to the large stellar samples per cluster, we are able to perform a detailed analysis of the central rotation and dispersion fields using both radial profiles and two-dimensional maps. The velocity dispersion profiles we derive show a good general agreement with existing radial velocity studies but typically reach closer to the cluster centres. By comparison with proper motion data, we derive or update the dynamical distance estimates to 14 clusters. Compared to previous dynamical distance estimates for 47 Tuc, our value is in much better agreement with other methods. We further find significant (>3σ) rotation in the majority (13/22) of our clusters. Our analysis seems to confirm earlier findings of a link between rotation and the ellipticities of globular clusters. In addition, we find a correlation between the strengths of internal rotation and the relaxation times of the clusters, suggesting that the central rotation fields are relics of the cluster formation that are gradually dissipated via two-body relaxation.

  12. Orbital Elements and Stellar Parameters of the Active Binary UX Arietis

    NASA Astrophysics Data System (ADS)

    Hummel, C. A.; Monnier, J. D.; Roettenbacher, R. M.; Torres, G.; Henry, G. W.; Korhonen, H.; Beasley, A.; Schaefer, G. H.; Turner, N. H.; Ten Brummelaar, T.; Farrington, C. D.; Sturmann, J.; Sturmann, L.; Baron, F.; Kraus, S.

    2017-08-01

    Stellar activity observed as large surface spots, radio flares, or emission lines is often found in binary systems. UX Arietis exhibits these signs of activity, originating on the K0 subgiant primary component. Our aim is to resolve the binary, measure the orbital motion, and provide accurate stellar parameters such as masses and luminosities to aid in the interpretation of the observed phenomena. Using the CHARA six-telescope optical long-baseline array on Mount Wilson, California, we obtained amplitudes and phases of the interferometric visibility on baselines up to 330 m in length, resolving the two components of the binary. We reanalyzed archival Center for Astrophysics spectra to disentangle the binary component spectra and the spectrum of the third component, which was resolved by speckle interferometry. We also obtained new spectra with the Nordic Optical Telescope, and we present new photometric data that we use to model stellar surface spot locations. Both interferometric visibilities and spectroscopic radial velocities are modeled with a spotted primary stellar surface using the Wilson-Devinney code. We fit the orbital elements to the apparent orbit and radial velocity data to derive the distance (52.1 ± 0.8 pc) and stellar masses ({M}{{P}}=1.30+/- 0.06 {M}⊙ , {M}{{S}}=1.14+/- 0.06 {M}⊙ ). The radius of the primary can be determined to be {R}{{P}}=5.6+/- 0.1 {R}⊙ and that of the secondary to be {R}{{S}}=1.6+/- 0.2 {R}⊙ . The equivalent spot coverage of the primary component was found to be 62% with an effective temperature 20% below that of the unspotted surface.

  13. Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization.

    PubMed

    Chiba, D; Kawaguchi, M; Fukami, S; Ishiwata, N; Shimamura, K; Kobayashi, K; Ono, T

    2012-06-06

    Controlling the displacement of a magnetic domain wall is potentially useful for information processing in magnetic non-volatile memories and logic devices. A magnetic domain wall can be moved by applying an external magnetic field and/or electric current, and its velocity depends on their magnitudes. Here we show that the applying an electric field can change the velocity of a magnetic domain wall significantly. A field-effect device, consisting of a top-gate electrode, a dielectric insulator layer, and a wire-shaped ferromagnetic Co/Pt thin layer with perpendicular anisotropy, was used to observe it in a finite magnetic field. We found that the application of the electric fields in the range of ± 2-3 MV cm(-1) can change the magnetic domain wall velocity in its creep regime (10(6)-10(3) m s(-1)) by more than an order of magnitude. This significant change is due to electrical modulation of the energy barrier for the magnetic domain wall motion.

  14. Dynamical Effects of Stellar Companions

    NASA Astrophysics Data System (ADS)

    Naoz, Smadar

    2016-10-01

    The fraction of stellar binaries in the field is extremely high (about 40% - 70% forM > 1M⊙ stars), and thus, given this frequency, a high fraction of all exoplanetary systems may reside in binaries. While close-in giant planets tend to be found preferentially in binary stellar systems it seems that the frequency of giant planets in close binaries (>100-1000 AU) is significantly lower than in the overall population. Stellar companions gravitational perturbations may significantly alter the planetary orbits around their partner on secular timescales. They can drive planets to large eccentric orbits which can either result in plunging these planets into the star or shrinking their orbits and forming short period planets. These planets typically are misaligned with the parent star.

  15. Hierarchical Bayesian inference of the initial mass function in composite stellar populations

    NASA Astrophysics Data System (ADS)

    Dries, M.; Trager, S. C.; Koopmans, L. V. E.; Popping, G.; Somerville, R. S.

    2018-03-01

    The initial mass function (IMF) is a key ingredient in many studies of galaxy formation and evolution. Although the IMF is often assumed to be universal, there is continuing evidence that it is not universal. Spectroscopic studies that derive the IMF of the unresolved stellar populations of a galaxy often assume that this spectrum can be described by a single stellar population (SSP). To alleviate these limitations, in this paper we have developed a unique hierarchical Bayesian framework for modelling composite stellar populations (CSPs). Within this framework, we use a parametrized IMF prior to regulate a direct inference of the IMF. We use this new framework to determine the number of SSPs that is required to fit a set of realistic CSP mock spectra. The CSP mock spectra that we use are based on semi-analytic models and have an IMF that varies as a function of stellar velocity dispersion of the galaxy. Our results suggest that using a single SSP biases the determination of the IMF slope to a higher value than the true slope, although the trend with stellar velocity dispersion is overall recovered. If we include more SSPs in the fit, the Bayesian evidence increases significantly and the inferred IMF slopes of our mock spectra converge, within the errors, to their true values. Most of the bias is already removed by using two SSPs instead of one. We show that we can reconstruct the variable IMF of our mock spectra for signal-to-noise ratios exceeding ˜75.

  16. Image registration using stationary velocity fields parameterized by norm-minimizing Wendland kernel

    NASA Astrophysics Data System (ADS)

    Pai, Akshay; Sommer, Stefan; Sørensen, Lauge; Darkner, Sune; Sporring, Jon; Nielsen, Mads

    2015-03-01

    Interpolating kernels are crucial to solving a stationary velocity field (SVF) based image registration problem. This is because, velocity fields need to be computed in non-integer locations during integration. The regularity in the solution to the SVF registration problem is controlled by the regularization term. In a variational formulation, this term is traditionally expressed as a squared norm which is a scalar inner product of the interpolating kernels parameterizing the velocity fields. The minimization of this term using the standard spline interpolation kernels (linear or cubic) is only approximative because of the lack of a compatible norm. In this paper, we propose to replace such interpolants with a norm-minimizing interpolant - the Wendland kernel which has the same computational simplicity like B-Splines. An application on the Alzheimer's disease neuroimaging initiative showed that Wendland SVF based measures separate (Alzheimer's disease v/s normal controls) better than both B-Spline SVFs (p<0.05 in amygdala) and B-Spline freeform deformation (p<0.05 in amygdala and cortical gray matter).

  17. Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields

    PubMed Central

    Sadek, Samir H.; Pimenta, Francisco; Pinho, Fernando T.

    2017-01-01

    In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. PMID:27990654

  18. The AMBRE Project: Stellar parameterisation of the ESO:FEROS archived spectra

    NASA Astrophysics Data System (ADS)

    Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.; Ordenovic, C.

    2012-06-01

    Context. The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA) that has been established in order to carry out the determination of stellar atmospheric parameters for the archived spectra of four ESO spectrographs. Aims: The analysis of the FEROS archived spectra for their stellar parameters (effective temperatures, surface gravities, global metallicities, alpha element to iron ratios and radial velocities) has been completed in the first phase of the AMBRE Project. From the complete ESO:FEROS archive dataset that was received, a total of 21 551 scientific spectra have been identified, covering the period 2005 to 2010. These spectra correspond to 6285 stars. Methods: The determination of the stellar parameters was carried out using the stellar parameterisation algorithm, MATISSE (MATrix Inversion for Spectral SynthEsis), which has been developed at OCA to be used in the analysis of large scale spectroscopic studies in galactic archaeology. An analysis pipeline has been constructed that integrates spectral normalisation, cleaning and radial velocity correction procedures in order that the FEROS spectra could be analysed automatically with MATISSE to obtain the stellar parameters. The synthetic grid against which the MATISSE analysis is carried out is currently constrained to parameters of FGKM stars only. Results: Stellar atmospheric parameters, effective temperature, surface gravity, metallicity and alpha element abundances, were determined for 6508 (30.2%) of the FEROS archived spectra (~3087 stars). Radial velocities were determined for 11 963 (56%) of the archived spectra. 2370 (11%) spectra could not be analysed within the pipeline due to very low signal-to-noise ratios or missing spectral orders. 12 673 spectra (58.8%) were analysed in the pipeline but their parameters were discarded based on quality criteria and error analysis determined within the automated process. The majority of

  19. Dwarf Galaxy Dark Matter Density Profiles Inferred from Stellar and Gas Kinematics

    NASA Astrophysics Data System (ADS)

    Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.; van den Bosch, Remco C. E.; Barentine, John C.; Bender, Ralf; Gebhardt, Karl; Hill, Gary J.; Murphy, Jeremy D.; Swaters, R. A.; Thomas, Jens; van de Ven, Glenn

    2014-07-01

    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the seven galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these

  20. Dwarf galaxy dark matter density profiles inferred from stellar and gas kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.

    2014-07-01

    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the sevenmore » galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of

  1. The velocity field created by a shallow bump in a boundary layer

    NASA Technical Reports Server (NTRS)

    Gaster, Michael; Grosch, Chester E.; Jackson, Thomas L.

    1994-01-01

    We report the results of measurements of the disturbance velocity field generated in a boundary layer by a shallow three-dimensional bump oscillating at a very low frequency on the surface of a flat plate. Profiles of the mean velocity, the disturbance velocity at the fundamental frequency and at the first harmonic are presented. These profiles were measured both upstream and downstream of the oscillating bump. Measurements of the disturbance velocity were also made at various spanwise and downstream locations at a fixed distance from the boundary of one displacement thickness. Finally, the spanwise spectrum of the disturbances at three locations downstream of the bump are presented.

  2. Resolving the extended stellar haloes of nearby galaxies: the wide-field PISCeS survey

    NASA Astrophysics Data System (ADS)

    Crnojevic, Denija; Sand, David J.; Caldwell, Nelson; Guhathakurta, Puragra; McLeod, Brian A.; Seth, Anil; Simon, Joshua D.; Strader, Jay; Toloba, Elisa

    2015-08-01

    I will present results from the wide-field Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS): we investigate the resolved stellar haloes of two nearby galaxies (the spiral NGC253 and the elliptical Centaurus A, D~3.7 Mpc) out to a galactocentric radius of 150 kpc with Magellan/Megacam. The survey led to the discovery of ~20 faint satellites and stunning streams/substructures in two environments substantially different from the Local Group, i.e. the loose Sculptor group of galaxies and the Centaurus A group dominated by an elliptical. These discoveries clearly testify the past and ongoing accretion processes shaping the haloes of these nearby galaxies, and provide the first complete census of their satellite systems down to an unprecedented M_V<-8. This effectively enables the first direct comparison of external galaxies' resolved haloes to the PAndAS survey. The detailed characterization of the stellar content, shape and gradients in the extended haloes of NGC253, Centaurus A and in their satellites represent crucial constraints to theoretical models of galaxy formation and evolution.

  3. An optical flow-based method for velocity field of fluid flow estimation

    NASA Astrophysics Data System (ADS)

    Głomb, Grzegorz; Świrniak, Grzegorz; Mroczka, Janusz

    2017-06-01

    The aim of this paper is to present a method for estimating flow-velocity vector fields using the Lucas-Kanade algorithm. The optical flow measurements are based on the Particle Image Velocimetry (PIV) technique, which is commonly used in fluid mechanics laboratories in both research institutes and industry. Common approaches for an optical characterization of velocity fields base on computation of partial derivatives of the image intensity using finite differences. Nevertheless, the accuracy of velocity field computations is low due to the fact that an exact estimation of spatial derivatives is very difficult in presence of rapid intensity changes in the PIV images, caused by particles having small diameters. The method discussed in this paper solves this problem by interpolating the PIV images using Gaussian radial basis functions. This provides a significant improvement in the accuracy of the velocity estimation but, more importantly, allows for the evaluation of the derivatives in intermediate points between pixels. Numerical analysis proves that the method is able to estimate even a separate vector for each particle with a 5× 5 px2 window, whereas a classical correlation-based method needs at least 4 particle images. With the use of a specialized multi-step hybrid approach to data analysis the method improves the estimation of the particle displacement far above 1 px.

  4. Assimilation of drifters' trajectories in velocity fields from coastal radar and model via the Lagrangian assimilation algorithm LAVA.

    NASA Astrophysics Data System (ADS)

    Berta, Maristella; Bellomo, Lucio; Griffa, Annalisa; Gatimu Magaldi, Marcello; Marmain, Julien; Molcard, Anne; Taillandier, Vincent

    2013-04-01

    The Lagrangian assimilation algorithm LAVA (LAgrangian Variational Analysis) is customized for coastal areas in the framework of the TOSCA (Tracking Oil Spills & Coastal Awareness network) Project, to improve the response to maritime accidents in the Mediterranean Sea. LAVA assimilates drifters' trajectories in the velocity fields which may come from either coastal radars or numerical models. In the present study, LAVA is applied to the coastal area in front of Toulon (France). Surface currents are available from a WERA radar network (2km spatial resolution, every 20 minutes) and from the GLAZUR model (1/64° spatial resolution, every hour). The cluster of drifters considered is constituted by 7 buoys, transmitting every 15 minutes for a period of 5 days. Three assimilation cases are considered: i) correction of the radar velocity field, ii) correction of the model velocity field and iii) reconstruction of the velocity field from drifters only. It is found that drifters' trajectories compare well with the ones obtained by the radar and the correction to radar velocity field is therefore minimal. Contrarily, observed and numerical trajectories separate rapidly and the correction to the model velocity field is substantial. For the reconstruction from drifters only, the velocity fields obtained are similar to the radar ones, but limited to the neighbor of the drifter paths.

  5. THE FORMATION OF SECONDARY STELLAR GENERATIONS IN MASSIVE YOUNG STAR CLUSTERS FROM RAPIDLY COOLING SHOCKED STELLAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wünsch, R.; Palouš, J.; Ehlerová, S.

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structuresmore » that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.« less

  6. The SLUGGS Survey: A Catalog of Over 4000 Globular Cluster Radial Velocities in 27 Nearby Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Forbes, Duncan A.; Alabi, Adebusola; Brodie, Jean P.; Romanowsky, Aaron J.; Strader, Jay; Foster, Caroline; Usher, Christopher; Spitler, Lee; Bellstedt, Sabine; Pastorello, Nicola; Villaume, Alexa; Wasserman, Asher; Pota, Vincenzo

    2017-03-01

    Here, we present positions and radial velocities for over 4000 globular clusters (GCs) in 27 nearby early-type galaxies from the SLUGGS survey. The SLUGGS survey is designed to be representative of elliptical and lenticular galaxies in the stellar mass range 10 < log {M}* /M ⊙ < 11.7. The data have been obtained over many years, mostly using the very stable multi-object spectrograph DEIMOS on the Keck II 10 m telescope. Radial velocities are measured using the calcium triplet lines, with a velocity accuracy of ±10-15 km s-1. We use phase space diagrams (I.e., velocity-position diagrams) to identify contaminants such as foreground stars and background galaxies, and to show that the contribution of GCs from neighboring galaxies is generally insignificant. Likely ultra-compact dwarfs are tabulated separately. We find that the mean velocity of the GC system is close to that of the host galaxy systemic velocity, indicating that the GC system is in overall dynamical equilibrium within the galaxy potential. We also find that the GC system velocity dispersion scales with host galaxy stellar mass, in a similar manner to the Faber-Jackson relation for the stellar velocity dispersion. Publication of these GC radial velocity catalogs should enable further studies in many areas, such as GC system substructure, kinematics, and host galaxy mass measurements.

  7. IN-SYNC. V. Stellar Kinematics and Dynamics in the Orion A Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Da Rio, Nicola; Tan, Jonathan C.; Covey, Kevin R.; Cottaar, Michiel; Foster, Jonathan B.; Cullen, Nicholas C.; Tobin, John; Kim, Jinyoung S.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Chojnowski, S. Drew; Flaherty, Kevin M.; Majewski, Steven R.; Skrutskie, Michael F.; Zasowski, Gail; Pan, Kaike

    2017-08-01

    The kinematics and dynamics of young stellar populations enable us to test theories of star formation. With this aim, we continue our analysis of the SDSS-III/APOGEE IN-SYNC survey, a high-resolution near-infrared spectroscopic survey of young clusters. We focus on the Orion A star-forming region, for which IN-SYNC obtained spectra of ˜2700 stars. In Paper IV we used these data to study the young stellar population. Here we study the kinematic properties through radial velocities (v r ). The young stellar population remains kinematically associated with the molecular gas, following a ˜ 10 {km} {{{s}}}-1 gradient along the filament. However, near the center of the region, the v r distribution is slightly blueshifted and asymmetric; we suggest that this population, which is older, is slightly in the foreground. We find evidence for kinematic subclustering, detecting statistically significant groupings of colocated stars with coherent motions. These are mostly in the lower-density regions of the cloud, while the ONC radial velocities are smoothly distributed, consistent with it being an older, more dynamically evolved cluster. The velocity dispersion {σ }v varies along the filament. The ONC appears virialized, or just slightly supervirial, consistent with an old dynamical age. Here there is also some evidence for ongoing expansion, from a v r -extinction correlation. In the southern filament, {σ }v is ˜2-3 times larger than virial in the L1641N region, where we infer a superposition along the line of sight of stellar subpopulations, detached from the gas. In contrast, {σ }v decreases toward L1641S, where the population is again in agreement with a virial state.

  8. Classification of stellar populations in globular clusters

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Zhao, Gang; Li, Hai-Ning

    2017-04-01

    Possessing multiple stellar populations has been accepted as a common feature of globular clusters (GCs). Different stellar populations manifest themselves with different chemical features, e.g. the well-known O-Na anti-correlation. Generally, the first (primordial) population has O and Na abundances consistent with those of field stars with similar metallicity; while the second (polluted) population is identified by their Na overabundance and O deficiency. The fraction of the populations is an important constraint on the GC formation scenario. Several methods have been proposed for the classification of GC populations. Here we examine a criterion derived based on the distribution of Galactic field stars, which relies on Na abundance as a function of [Fe/H], to distinguish first and second stellar populations in GCs. By comparing the first population fractions of 17 GCs estimated by the field star criterion with those in the literature derived by methods related to individual GCs, we find that the field star criterion tends to overestimate the first population fractions. The population separation methods, which are related to an individual GC sample, are recommended because the diversity of GCs can be taken into consideration. Currently, more caution should be exercised if one wants to regard field stars as a reference for the identification of a GC population. However, further study on the connection between field stars and GCs populations is still needed.

  9. The velocity field of clusters of galaxies within 100 megaparsecs. II - Northern clusters

    NASA Technical Reports Server (NTRS)

    Mould, J. R.; Akeson, R. L.; Bothun, G. D.; Han, M.; Huchra, J. P.; Roth, J.; Schommer, R. A.

    1993-01-01

    Distances and peculiar velocities for galaxies in eight clusters and groups have been determined by means of the near-infrared Tully-Fisher relation. With the possible exception of a group halfway between us and the Hercules Cluster, we observe peculiar velocities of the same order as the measuring errors of about 400 km/s. The present sample is drawn from the northern Galactic hemisphere and delineates a quiet region in the Hubble flow. This contrasts with the large-scale flows seen in the Hydra-Centaurus and Perseus-Pisces regions. We compare the observed peculiar velocities with predictions based upon the gravity field inferred from the IRAS redshift survey. The differences between the observed and predicted peculiar motions are generally small, except near dense structures, where the observed motions exceed the predictions by significant amounts. Kinematic models of the velocity field are also compared with the data. We cannot distinguish between parameterized models with a great attractor or models with a bulk flow.

  10. Comparisons of a standard galaxy model with stellar observations in five fields

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Soneira, R. M.

    1984-01-01

    Modern data on the distribution of stellar colors and on the number of stars as a function of apparent magnitude in five directions in the Galaxy are analyzed. It is found that the standard model is consistent with all the available data. Detailed comparisons with the data for five separate fields are presented. The bright end of the spheroid luminosity function and the blue tip of the spheroid horizontal branch are analyzed. The allowed range of the disk scale heights and of fluctuations in the volume density is determined, and a lower limit is set on the disk scale length. Calculations based on the thick disk model of Gilmore and Reid (1983) are presented.

  11. The incidence of stellar mergers and mass gainers among massive stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Mink, S. E.; Sana, H.; Langer, N.

    2014-02-10

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8{sub −4}{sup +9}% of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30{sub −15}{sup +10}% of massive main-sequence stars are the productsmore » of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.« less

  12. Multifractal Analysis of Velocity Vector Fields and a Continuous In-Scale Cascade Model

    NASA Astrophysics Data System (ADS)

    Fitton, G.; Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2012-04-01

    In this study we have compared the multifractal analyses of small-scale surface-layer wind velocities from two different datasets. The first dataset consists of six-months of wind velocity and temperature measurements at the heights 22, 23 and 43m. The measurements came from 3D sonic anemometers with a 10Hz data output rate positioned on a mast in a wind farm test site subject to wake turbulence effects. The location of the test site (Corsica, France) meant the large scale structures were subject to topography effects that therefore possibly caused buoyancy effects. The second dataset (Germany) consists of 300 twenty minute samples of horizontal wind velocity magnitudes simultaneously recorded at several positions on two masts. There are eight propeller anemometers on each mast, recording velocity magnitude data at 2.5Hz. The positioning of the anemometers is such that there are effectively two grids. One grid of 3 rows by 4 columns and a second of 5 rows by 2 columns. The ranges of temporal scale over which the analyses were done were from 1 to 103 seconds for both datasets. Thus, under the universal multifractal framework we found both datasets exhibit parameters α ≈ 1.5 and C1 ≈ 0.1. The parameters α and C1, measure respectively the multifractality and mean intermittency of the scaling field. A third parameter, H, quantifies the divergence from conservation of the field (e.g. H = 0 for the turbulent energy flux density). To estimate the parameters we used the ratio of the scaling moment function of the energy flux and of the velocity increments. This method was particularly useful when estimating the parameter α over larger scales. In fact it was not possible to obtain a reasonable estimate of alpha using the usual double trace moment method. For each case the scaling behaviour of the wind was almost isotropic when the scale ranges remained close to the sphero-scale. For the Corsica dataset this could be seen by the agreement of the spectral exponents of

  13. Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun

    2014-06-01

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.

  14. SDSS-IV MaNGA: What Shapes the Distribution of Metals in Galaxies? Exploring the Roles of the Local Gas Fraction and Escape Velocity

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; Heckman, T.; Sánchez, S. F.; Zakamska, N. L.; Cleary, J.; Zhu, G.; Brinkmann, J.; Drory, N.; THE MaNGA TEAM

    2018-01-01

    We determine the local metallicity of the ionized gas for more than 9.2 × 105 star-forming regions (spaxels) located in 1023 nearby galaxies included in the Sloan Digital Sky Survey-IV MaNGA integral field spectroscopy unit survey. We use the dust extinction derived from the Balmer decrement and the stellar template fitting in each spaxel to estimate the local gas and stellar mass densities, respectively. We also use the measured rotation curves to determine the local escape velocity (V esc). We then analyze the relationships between the local metallicity and both the local gas fraction (μ) and V esc. We find that metallicity decreases with both increasing μ and decreasing V esc. By examining the residuals in these relations we show that the gas fraction plays a more primary role in the local chemical enrichment than does V esc. We show that the gas-regulator model of chemical evolution provides a reasonable explanation of the metallicity on local scales. The best-fit parameters for this model are consistent with the metal loss caused by momentum-driven galactic outflows. We also argue that both the gas fraction and the local escape velocity are connected to the local stellar surface density, which in turn is a tracer of the epoch at which the dominant local stellar population formed.

  15. Stellar populations in the bulges of isolated galaxies

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Parmiggiani, M.; Corsini, E. M.; Costantin, L.; Dalla Bontà, E.; Méndez-Abreu, J.; Pizzella, A.

    2016-12-01

    We present photometry and long-slit spectroscopy for 12 S0 and spiral galaxies selected from the Catalogue of Isolated Galaxies. The structural parameters of the sample galaxies are derived from the Sloan Digital Sky Survey I-band images by performing a two-dimensional photometric decomposition of the surface brightness distribution. This is assumed to be the sum of the contribution of a Sérsic bulge, an exponential disc, and a Ferrers bar characterized by elliptical and concentric isophotes with constant ellipticity and position angles. The rotation curves and velocity dispersion profiles of the stellar component are measured from the spectra obtained along the major axis of galaxies. The radial profiles of the Hβ, Mg and Fe line-strength indices are derived too. Correlations between the central values of the Mg2 and line-strength indices and the velocity dispersion are found. The mean age, total metallicity and total α/Fe enhancement of the stellar population in the centre and at the radius, where the bulge gives the same contribution to the total surface brightness as the remaining components, are obtained using stellar population models with variable element abundance ratios. We identify intermediate-age bulges with solar metallicity and old bulges with a large spread in metallicity. Most of the sample bulges display supersolar α/Fe enhancement, no gradient in age and negative gradients of metallicity and α/Fe enhancement. These findings support a formation scenario via dissipative collapse where environmental effects are remarkably less important than in the assembly of bulges of galaxies in groups and clusters.

  16. Two-dimensional, average velocity field across the Asal Rift, Djibouti from 1997-2008 RADARSAT data

    NASA Astrophysics Data System (ADS)

    Tomic, J.; Doubre, C.; Peltzer, G.

    2009-12-01

    Located at the western end of the Aden ridge, the Asal Rift is the first emerged section of the ridge propagating into Afar, a region of intense volcanic and tectonic activity. We construct a two-dimensional surface velocity map of the 200x400 km2 region covering the rift using the 1997-2008 archive of InSAR data acquired from ascending and descending passes of the RADARSAT satellite. The large phase signal due to turbulent troposphere conditions over the Afar region is mostly removed from the 11-year average line of sight (LOS) velocity maps, revealing a clear deformation signal across the rift. We combine the ascending and descending pass LOS velocity fields with the Arabia-Somalia pole of rotation adjusted to regional GPS velocities (Vigny et al., 2007) to compute the fields of the vertical and horizontal, GPS-parallel components of the velocity over the rift. The vertical velocity field shows a ~40 km wide zone of doming centered over the Fieale caldera associated with shoulder uplift and subsidence of the rift inner floor. Differential movement between shoulders and floor is accommodated by creep at 6 mm/yr on Fault γ and 2.7 mm/yr on Fault E. The horizontal field shows that the two shoulders open at a rate of ~15 mm/yr, while the horizontal velocity decreases away from the rift to the plate motion rate of ~11 mm/yr. Part of the opening is concentrated on faults γ (5 mm/yr) and E (4 mm/yr) and about 4 mm/yr is distributed between Fault E and Fault H in the southern part of the rift. The observed velocity field along a 60 km-long profile across the eastern part of the rift can be explained with a 2D mechanical model involving a 5-9 km-deep, vertical dyke expanding horizontally at a rate of 5 cm/yr, a 2 km-wide, 7 km-deep sill expanding vertically at 1cm/yr, and down-dip and opening of faults γ and E. Results from 3D rift models describing along-strike velocity decrease away from the Goubbet Gulf and the effects of a pressurized magma chamber will be

  17. Binary-corrected velocity dispersions from single- and multi-epoch radial velocities: massive stars in R136 as a test case

    NASA Astrophysics Data System (ADS)

    Cottaar, M.; Hénault-Brunet, V.

    2014-02-01

    Orbital motions from binary stars can broaden the observed line-of-sight velocity distribution of a stellar system and artificially inflate the measured line-of-sight velocity dispersion, which can in turn lead to erroneous conclusions about the dynamical state of the system. Recently, a maximum-likelihood procedure was proposed to recover the intrinsic velocity dispersion of a resolved star cluster from a single epoch of radial velocity data of individual stars, which was achieved by simultaneously fitting the intrinsic velocity distribution of the single stars and the centers of mass of the binaries along with the velocity shifts caused by binary orbital motions. Assuming well-characterized binary properties, this procedure can accurately reproduce intrinsic velocity dispersions below 1 km s-1 for solar-type stars. Here we investigate the systematic offsets induced when the binary properties are uncertain and we show that two epochs of radial velocity data with an appropriate baseline can help to mitigate these systematic effects. We first test the method described above using Monte Carlo simulations, taking into account the large uncertainties in the binary properties of OB stars. We then apply it to radial velocity data in the young massive cluster R136 for which the intrinsic velocity dispersion of O-type stars is known from an intensive multi-epoch approach. For typical velocity dispersions of young massive clusters (≳4 km s-1) and with a single epoch of data, we demonstrate that the method can just about distinguish between a cluster in virial equilibrium and an unbound cluster. This is due to the higher spectroscopic binary fraction and more loosely constrained distributions of orbital parameters of OB stars compared to solar-type stars. By extending the maximum-likelihood method to multi-epoch data, we show that the accuracy on the fitted velocity dispersion can be improved by only a few percent by using only two epochs of radial velocities. This

  18. VizieR Online Data Catalog: Stellar activity and kinematics of FGK stars (Murgas+, 2013)

    NASA Astrophysics Data System (ADS)

    Murgas, F.; Jenkins, J. S.; Rojo, P.; Jones, H. R. A.; Pinfield, D. J.

    2013-02-01

    We present a compilation of stellar activity catalogs combined with galactic velocity information of 2529 F, G, and K stars. The stellar activity catalogs use in this work are: Jenkins et al. 2011 (Cat. J/A+A/531/A8); Gray et al. 2003 (Cat. J/AJ/126/2048), 2006 (Cat. J/AJ/132/161); Henry et al 1996 (Cat. J/A+A/111/439); Wright et al. 2004 (Cat. J/ApJS/152/261); Duncan et al. (1991ApJS...76..383D, Cat. III/159). The galactic velocities are taken from the Jenkins et al. 2011 (Cat. J/A+A/531/A8) and the Geneva-Copenhaguen Survey (GCS) Nordstrom et al. (2004A&A...418..989N, Cat. V/117). (1 data file).

  19. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    NASA Astrophysics Data System (ADS)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  20. Simulating the environment around planet-hosting stars. II. Stellar winds and inner astrospheres

    NASA Astrophysics Data System (ADS)

    Alvarado-Gómez, J. D.; Hussain, G. A. J.; Cohen, O.; Drake, J. J.; Garraffo, C.; Grunhut, J.; Gombosi, T. I.

    2016-10-01

    We present the results of a comprehensive numerical simulation of the environment around three exoplanet-host stars (HD 1237, HD 22049, and HD 147513). Our simulations consider one of the latest models currently used for space weather studies in the Heliosphere, with turbulent Alfvén wave dissipation as the source of coronal heating and stellar wind acceleration. Large-scale magnetic field maps, recovered with two implementations of the tomographic technique of Zeeman-Doppler imaging, serve to drive steady-state solutions in each system. This paper contains the description of the stellar wind and inner astrosphere, while the coronal structure was discussed in a previous paper. The analysis includes the magneto-hydrodynamical properties of the stellar wind, the associated mass and angular momentum loss rates, as well as the topology of the astrospheric current sheet in each system. A systematic comparison among the considered cases is performed, including two reference solar simulations covering activity minimum and maximum. For HD 1237, we investigate the interactions between the structure of the developed stellar wind, and a possible magnetosphere around the Jupiter-mass planet in this system. We find that the process of particle injection into the planetary atmosphere is dominated by the density distribution rather than the velocity profile of the stellar wind. In this context, we predict a maximum exoplanetary radio emission of 12 mJy at 40 MHz in this system, assuming the crossing of a high-density streamer during periastron passage. Furthermore, in combination with the analysis performed in the first paper of this study, we obtain for the first time a fully simulated mass loss-activity relation. This relation is compared and discussed in the context of the previously proposed observational counterpart, derived from astrospheric detections. Finally, we provide a characterisation of the global 3D properties of the stellar wind of these systems, at the inner

  1. Mean-field velocity difference model considering the average effect of multi-vehicle interaction

    NASA Astrophysics Data System (ADS)

    Guo, Yan; Xue, Yu; Shi, Yin; Wei, Fang-ping; Lü, Liang-zhong; He, Hong-di

    2018-06-01

    In this paper, a mean-field velocity difference model(MFVD) is proposed to describe the average effect of multi-vehicle interactions on the whole road. By stability analysis, the stability condition of traffic system is obtained. Comparison with stability of full velocity-difference (FVD) model and the completeness of MFVD model are discussed. The mKdV equation is derived from MFVD model through nonlinear analysis to reveal the traffic jams in the form of the kink-antikink density wave. Then the numerical simulation is performed and the results illustrate that the average effect of multi-vehicle interactions plays an important role in effectively suppressing traffic jam. The increase strength of the mean-field velocity difference in MFVD model can rapidly reduce traffic jam and enhance the stability of traffic system.

  2. Stellar Streams Discovered in the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipp, N.; et al.

    We perform a search for stellar streams around the Milky Way using the first three years of multi-band optical imaging data from the Dark Energy Survey (DES). We use DES data coveringmore » $$\\sim 5000$$ sq. deg. to a depth of $g > 23.5$ with a relative photometric calibration uncertainty of $$< 1 \\%$$. This data set yields unprecedented sensitivity to the stellar density field in the southern celestial hemisphere, enabling the detection of faint stellar streams to a heliocentric distance of $$\\sim 50$$ kpc. We search for stellar streams using a matched-filter in color-magnitude space derived from a synthetic isochrone of an old, metal-poor stellar population. Our detection technique recovers four previously known thin stellar streams: Phoenix, ATLAS, Tucana III, and a possible extension of Molonglo. In addition, we report the discovery of eleven new stellar streams. In general, the new streams detected by DES are fainter, more distant, and lower surface brightness than streams detected by similar techniques in previous photometric surveys. As a by-product of our stellar stream search, we find evidence for extra-tidal stellar structure associated with four globular clusters: NGC 288, NGC 1261, NGC 1851, and NGC 1904. The ever-growing sample of stellar streams will provide insight into the formation of the Galactic stellar halo, the Milky Way gravitational potential, as well as the large- and small-scale distribution of dark matter around the Milky Way.« less

  3. Experimental study of the free surface velocity field in an asymmetrical confluence

    NASA Astrophysics Data System (ADS)

    Creelle, Stephan; Mignot, Emmanuel; Schindfessel, Laurent; De Mulder, Tom

    2017-04-01

    The hydrodynamic behavior of open channel confluences is highly complex because of the combination of different processes that interact with each other. To gain further insights in how the velocity uniformization between the upstream channels and the downstream channel is proceeding, experiments are performed in a large scale 90 degree angled concrete confluence flume with a chamfered rectangular cross-section and a width of 0.98m. The dimensions and lay-out of the flume are representative for a prototype scale confluence in e.g. drainage and irrigation systems. In this type of engineered channels with sharp corners the separation zone is very large and thus the velocity difference between the most contracted section and the separation zone is pronounced. With the help of surface particle tracking velocimetry the velocity field is recorded from upstream of the confluence to a significant distance downstream of the confluence. The resulting data allow to analyze the evolution of the incoming flows (with a developed velocity profile) that interact with the stagnation zone and each other, causing a shear layer between the two bulk flows. Close observation of the velocity field near the stagnation zone shows that there are actually two shear layers in the vicinity of the upstream corner. Furthermore, the data reveals that the shear layer observed more downstream between the two incoming flows is actually one of the two shear layers next to the stagnation zone that continues, while the other shear layer ceases to exist. The extensive measurement domain also allows to study the shear layer between the contracted section and the separation zone. The shear layers of the stagnation zone between the incoming flows and the one between the contracted flow and separation zone are localized and parameters such as the maximum gradient, velocity difference and width of the shear layer are calculated. Analysis of these data shows that the shear layer between the incoming flows

  4. Radial Velocity Survey of T Tauri Stars in Taurus-Auriga

    NASA Astrophysics Data System (ADS)

    Crockett, Christopher; Mahmud, N.; Huerta, M.; Prato, L.; Johns-Krull, C.; Hartigan, P.; Jaffe, D.

    2009-01-01

    Is the frequency of giant planet companions to young stars similar to that seen around old stars? Is the "brown dwarf desert" a product of how low-mass companion objects form, or of how they evolve? Some models indicate that both giant planets and brown dwarfs should be common at young ages within 3 AU of a primary star, but migration induced by massive disks drive brown dwarfs into the parent stars, leaving behind proportionally more giant planets. Our radial velocity survey of young stars will provide a census of the young giant planet and brown dwarf population in Taurus-Auriga. In this poster we present our progress in quantifying how spurious radial velocity signatures are caused by stellar activity and in developing models to help distinguish between companion induced and spot induced radial velocity variations. Early results stress the importance of complementary observations in both visible light and NIR. We present our technique to determine radial velocities by fitting telluric features and model stellar features to our observed spectra. Finally, we discuss ongoing observations at McDonald Observatory, KPNO, and the IRTF, and several new exoplanet host candidates.

  5. Stellar magnetic cycles

    NASA Astrophysics Data System (ADS)

    Baliunas, S. L.

    2004-05-01

    Is hope for understanding the solar magnetic cycle to be found in stars? Observations of stars with significant sub-surface convective zones -- masses smaller than about 1.5 solar masses on the lower main sequence and many types of cool, post-main-sequence stars -- indicate the presence of surface and atmospheric inhomogeneities analogous to solar magnetic features, making stellar magnetic activity a cosmically widespread phenomenon. Observations have been made primarily in visible wavelengths, and important information has also been derived from the ultraviolet and x-ray spectrum regions. Interannual to interdecadal variability of spectrum indicators of stellar magnetic features is common, and in some cases similar in appearance to the 11-year sunspot cycle. Successful models of the physical processes responsible for stellar magnetic cycles, typically cast as a magnetohydrodynamic dynamo, require advances in understanding not only convection but also the magnetic field's interaction with it. The observed facts that underpin the hope for models will be summarized. Properties of stellar magnetic cycles will be compared and contrasted with those of the sun, including inferences from paleo-environmental reservoirs that contain information on solar century- to millennial-scale magnetic variability. Partial support of this research came from NASA NAG5-7635, NRC COBASE, CRDF 322, MIT-MSG 5710001241, JPL 1236821, AF 49620-02-1-0194, Richard Lounsberry Foundation, Langley-Abbot, Rollins, Scholarly Studies and James Arthur Funds (Smithsonian Institution) and several generous individuals.

  6. Cluster Analysis of Velocity Field Derived from Dense GNSS Network of Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, A.; Hashimoto, M.

    2015-12-01

    Dense GNSS networks have been widely used to observe crustal deformation. Simpson et al. (2012) and Savage and Simpson (2013) have conducted cluster analyses of GNSS velocity field in the San Francisco Bay Area and Mojave Desert, respectively. They have successfully found velocity discontinuities. They also showed an advantage of cluster analysis for classifying GNSS velocity field. Since in western United States, strike-slip events are dominant, geometry is simple. However, the Japanese Islands are tectonically complicated due to subduction of oceanic plates. There are many types of crustal deformation such as slow slip event and large postseismic deformation. We propose a modified clustering method of GNSS velocity field in Japan to separate time variant and static crustal deformation. Our modification is performing cluster analysis every several months or years, then qualifying cluster member similarity. If a GNSS station moved differently from its neighboring GNSS stations, the station will not belong to in the cluster which includes its surrounding stations. With this method, time variant phenomena were distinguished. We applied our method to GNSS data of Japan from 1996 to 2015. According to the analyses, following conclusions were derived. The first is the clusters boundaries are consistent with known active faults. For examples, the Arima-Takatsuki-Hanaore fault system and the Shimane-Tottori segment proposed by Nishimura (2015) are recognized, though without using prior information. The second is improving detectability of time variable phenomena, such as a slow slip event in northern part of Hokkaido region detected by Ohzono et al. (2015). The last one is the classification of postseismic deformation caused by large earthquakes. The result suggested velocity discontinuities in postseismic deformation of the Tohoku-oki earthquake. This result implies that postseismic deformation is not continuously decaying proportional to distance from its epicenter.

  7. Stellar Oscillations Network Group

    NASA Astrophysics Data System (ADS)

    Grundahl, F.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Arentoft, T.; Frandsen, S.

    2007-06-01

    Stellar Oscillations Network Group (SONG) is an initiative aimed at designing and building a network of 1m-class telescopes dedicated to asteroseismology and planet hunting. SONG will have 8 identical telescope nodes each equipped with a high-resolution spectrograph and an iodine cell for obtaining precision radial velocities and a CCD camera for guiding and imaging purposes. The main asteroseismology targets for the network are the brightest (V < 6) stars. In order to improve performance and reduce maintenance costs the instrumentation will only have very few modes of operation. In this contribution we describe the motivations for establishing a network, the basic outline of SONG and the expected performance.

  8. Experimental studies on flow visualization and velocity field of compression ramp with different incoming boundary layers

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Yi, Shi-He; He, Lin; Chen, Zhi; Zhu, Yang-Zhu

    2014-11-01

    Experimental studies which focus on flow visualization and the velocity field of a supersonic laminar/turbulent flow over a compression ramp were carried out in a Mach 3.0 wind tunnel. Fine flow structures and velocity field structures were obtained via NPLS (nanoparticle-tracer planar laser scattering) and PIV (particle image velocimetry) techniques, time-averaged flow structures were researched, and spatiotemporal evolutions of transient flow structures were analyzed. The flow visualization results indicated that when the ramp angles were 25°, a typical separation occurred in the laminar flow, some typical flow structures such as shock induced by the boundary layer, separation shock, reversed flow and reattachment shock were visible clearly. While a certain extent separation occurred in turbulent flow, the separation region was much smaller. When the ramp angles were 28°, laminar flow separated further, and the separation region expanded evidently, flow structures in the separation region were complex. While a typical separation occurred in turbulent flow, reversed flow structures were significant, flow structures in the separation region were relatively simple. The experimental results of velocity field were corresponding to flow visualization, and the velocity field structures of both compression ramp flows agreed with the flow structures well. There were three layered structures in the U component velocity, and the V component velocity appeared like an oblique “v”. Some differences between these two compression ramp flows can be observed in the velocity profiles of the shear layer and the shearing intensity.

  9. Tracing Interstellar Magnetic Field Using Velocity Gradient Technique: Application to Atomic Hydrogen Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuen, Ka Ho; Lazarian, A., E-mail: kyuen2@wisc.edu, E-mail: lazarian@astro.wisc.edu

    The advancement of our understanding of MHD turbulence opens ways to develop new techniques to probe magnetic fields. In MHD turbulence, the velocity gradients are expected to be perpendicular to magnetic fields and this fact was used by González-Casanova and Lazarian to introduce a new technique to trace magnetic fields using velocity centroid gradients (VCGs). The latter can be obtained from spectroscopic observations. We apply the technique to GALFA-H i survey data and then compare the directions of magnetic fields obtained with our technique to the direction of magnetic fields obtained using PLANCK polarization. We find an excellent correspondence betweenmore » the two ways of magnetic field tracing, which is obvious via the visual comparison and through the measuring of the statistics of magnetic field fluctuations obtained with the polarization data and our technique. This suggests that the VCGs have a potential for measuring of the foreground magnetic field fluctuations, and thus provide a new way of separating foreground and CMB polarization signals.« less

  10. Evaluating a campaign GNSS velocity field derived from an online precise point positioning service

    NASA Astrophysics Data System (ADS)

    Holden, L.; Silcock, D.; Choy, S.; Cas, R.; Ailleres, L.; Fournier, N.

    2017-01-01

    Traditional processing of Global Navigation Satellite System (GNSS) data using dedicated scientific software has provided the highest levels of positional accuracy, and has been used extensively in geophysical deformation studies. To achieve these accuracies a significant level of understanding and training is required, limiting their availability to the general scientific community. Various online GNSS processing services, now freely available, address some of these difficulties and allow users to easily process their own GNSS data and potentially obtain high quality results. Previous research into these services has focused on Continually Operating Reference Station (CORS) GNSS data. Less research exists on the results achievable with these services using large campaign GNSS data sets, which are inherently noisier than CORS data. Even less research exists on the quality of velocity fields derived from campaign GNSS data processed through online precise point positioning services. Particularly, whether they are suitable for geodynamic and deformation studies where precise and reliable velocities are needed. In this research, we process a very large campaign GPS data set (spanning 10 yr) with the online Jet Propulsion Laboratory Automated Precise Positioning Service. This data set is taken from a GNSS network specifically designed and surveyed to measure deformation through the central North Island of New Zealand. This includes regional CORS stations. We then use these coordinates to derive a horizontal and vertical velocity field. This is the first time that a large campaign GPS data set has been processed solely using an online service and the solutions used to determine a horizontal and vertical velocity field. We compared this velocity field to that of another well utilized GNSS scientific software package. The results show a good agreement between the CORS positions and campaign station velocities obtained from the two approaches. We discuss the implications

  11. Stellar activity and coronal heating: an overview of recent results

    PubMed Central

    Testa, Paola; Saar, Steven H.; Drake, Jeremy J.

    2015-01-01

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars. PMID:25897087

  12. Dilution and Mixing in transient velocity fields: a first-order analysis

    NASA Astrophysics Data System (ADS)

    Di Dato, Mariaines; de Barros, Felipe, P. J.; Fiori, Aldo; Bellin, Alberto

    2017-04-01

    An appealing remediation technique is in situ oxidation, which effectiveness is hampered by difficulties in obtaining good mixing of the injected oxidant with the contaminant, particularly when the contaminant plume is contained and therefore its deformation is physically constrained. Under such conditions (i.e. containment), mixing may be augmented by inducing temporal fluctuations of the velocity field. The temporal variability of the flow field may increase the deformation of the plume such that diffusive mass flux becomes more effective. A transient periodic velocity field can be obtained by an engineered sequence of injections and extractions from wells, which may serve also as a hydraulic barrier to confine the plume. Assessing the effectiveness of periodic flows to maximize solute mixing is a difficult task given the need to use a 3D setup and the large number of possible flow configurations that should be analyzed in order to identify the optimal one. This is the typical situation in which analytical solutions, though approximated, may assist modelers in screening possible alternative flow configurations such that solute dilution is maximized. To quantify dilution (i.e. a precondition that enables reactive mixing) we utilize the concept of the dilution index [1]. In this presentation, the periodic flow takes place in an aquifer with spatially variable hydraulic conductivity field which is modeled as a Stationary Spatial Random Function. We developed a novel first-order analytical solution of the dilution index under the hypothesis that the flow can be approximated as a sequence of steady state configurations with the mean velocity changing with time in intensity and direction. This is equivalent to assume that the characteristic time of the transient behavior is small compared to the period characterizing the change in time of the mean velocity. A few closed paths have been analyzed quantifying their effectiveness in enhancing dilution and thereby mixing

  13. Selected aspects of wide-field stellar interferometry

    NASA Astrophysics Data System (ADS)

    D'Arcio, Luigi Arsenio

    1999-11-01

    In Michelson stellar interferometry, the high-resolution information about the source structure is detected by performing observations with widely separated telescopes, interconnected to form an interferometer. At optical wavelengths, this method provides a technically viable approach for achieving angular resolutions in the milliarcsecond range, comparable to those of a 100 m diameter telescope, whose realization is beyond the immediate engineering capabilities. Considerable efforts are currently devoted to the definition of dedicated interferometric instruments, which will allow to address ambitious astronomical tasks such as high-resolution imaging, astrometry at microarcsecond level, and the direct detection of exoplanets. Astrometry and related techniques employ the so-called wide field-of-view interferometric mode, where phase measurements are performed simultaneously at two (or more) sources; often, the actual observable is the instantaneous phase difference of the two object signals. The future success of wide-field interferometry critically depends on the development of techniques for the accurate control of field-dependent (anisoplanatic) phase errors. In this thesis, we address two aspects of this problem in detail. The first one is theoretical in nature. For ground-based measurements, atmospheric turbulence is the largest source of random phase fluctuations between the on- and the off-axis fringes. We developed a model of the temporal power spectrum of this disturbance, whose validity is not limited to low frequencies only, as it is the case with earlier models. This extension opens the possibility of the analysis of dynamic issues, such as the determination of the allowable coherent integration time T for the off-axis fringes. The spectrum turns out to be well approximated by a sequences of four power-law branches. In first instance, its overall form is determined by the values of the baseline length, telescope diameter, and average beam separation in

  14. Vector magnetic field evolution, energy storage, and associated photospheric velocity shear within a flare-productive active region

    NASA Technical Reports Server (NTRS)

    Krall, K. R.; Smith, J. B., Jr.; Hagyard, M. J.; West, E. A.; Cummings, N. P.

    1982-01-01

    Sheared photospheric velocity fields inferred from spot motions for April 5-7, 1980, are compared with both transverse magnetic field orientation changes and with the region's flare history. Rapid spot motions and high inferred velocity shear coincide with increased field alignment along the longitudinal neutral line and with increased flare activity, while a later decrease in velocity shear precedes a more relaxed magnetic configuration and decrease in flare activity. It is estimated that magnetic reconfiguration produced by the relative velocities of the spots could cause storage of about 10 to the 32nd erg/day, while flares occurring during this time expended no more than about 10 to the 31st erg/day.

  15. A Proper Motion Search for Stars Escaping from Globular Clusters with High Velocities

    NASA Astrophysics Data System (ADS)

    Meusinger, H.; Scholz, R.-D.; Irwin, M.

    The dynamical evolution of globular clusters, in particular during the late phases, may be strongly influenced by the energy transfer from binaries to passing stars. As a by-product of this process, stars with high velocities are expected, perhaps high enough to escape from the cluster. Accurate proper motions are the only suitable tool to identify candidates for such high-velocity cluster stars. In order to perform such a search, we use a catalogue of absolute proper motions and UBV magnitudes for about 104 stars with B < 20 in a field of 10 square degrees centered on the globular cluster M3. The data were derived from more than 80 photographic plates taken between 1965 and 1995 with the Tautenburg Schmidt telescope and measured by means of the APM facility, Cambridge. The stellar sample is complete to B = 18.5 and comprises nearly all post-main-sequence stars in the halo of M3 and its surrounding. The proper motions are of Hipparcos-like accuracy (median error 1 mas/yr) in this magnitude range. We find several dozens of candidates, distributed over the whole field, with proper motions and colours consistent with the assumption of their origin from the cluster. Further conclusions can be drawn only on the basis of radial velocity measurements for the candidates and of estimates for the field-star contamination by means of simulations of the Galactic structure and kinematics in this field.

  16. The origin of ultra diffuse galaxies: stellar feedback and quenching

    NASA Astrophysics Data System (ADS)

    Chan, T. K.; Kereš, D.; Wetzel, A.; Hopkins, P. F.; Faucher-Giguère, C.-A.; El-Badry, K.; Garrison-Kimmel, S.; Boylan-Kolchin, M.

    2018-05-01

    We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies (UDGs). We show that outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching, naturally reproduce the observed population of red UDGs, without the need for high spin halos, or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius and absolute magnitude of the observed red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated dwarf galaxies with M* ˜ 108 M⊙, low metallicity and a broad range of ages; the more massive the UDGs, the older they are. The most massive red UDG in our sample (M* ˜ 3 × 108M⊙) requires quenching at z ˜ 3 when its halo reached Mh ˜ 1011 M⊙. Our simulated UDGs form with normal stellar-to-halo ratios and match the central enclosed masses and the velocity dispersions of the observed UDGs. Enclosed masses remain largely fixed across a broad range of quenching times because the central regions of their dark matter halos complete their growth early. If our simulated dwarfs are not quenched, they evolve into bluer low-surface brightness galaxies with M/L similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around M* ˜ 108 M⊙, both in the field and in clusters.

  17. The origin of ultra diffuse galaxies: stellar feedback and quenching

    NASA Astrophysics Data System (ADS)

    Chan, T. K.; Kereš, D.; Wetzel, A.; Hopkins, P. F.; Faucher-Giguère, C.-A.; El-Badry, K.; Garrison-Kimmel, S.; Boylan-Kolchin, M.

    2018-07-01

    We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies (UDGs). We show that outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching, naturally reproduce the observed population of red UDGs, without the need for high spin haloes, or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius, and absolute magnitude of the observed red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated dwarf galaxies with M* ˜ 108 M⊙, low metallicity, and a broad range of ages; the more massive the UDGs, the older they are. The most massive red UDG in our sample (M* ˜ 3 × 108 M⊙) requires quenching at z ˜ 3 when its halo reached Mh ˜ 1011 M⊙. Our simulated UDGs form with normal stellar-to-halo ratios and match the central enclosed masses and the velocity dispersions of the observed UDGs. Enclosed masses remain largely fixed across a broad range of quenching times because the central regions of their dark matter haloes complete their growth early. If our simulated dwarfs are not quenched, they evolve into bluer low surface brightness galaxies with M/L similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around M* ˜ 108 M⊙, both in the field and in clusters.

  18. Plasma fuelling with cryogenic pellets in the stellarator TJ-II

    NASA Astrophysics Data System (ADS)

    McCarthy, K. J.; Panadero, N.; Velasco, J. L.; Combs, S. K.; Caughman, J. B. O.; Fontdecaba, J. M.; Foust, C.; García, R.; Hernández Sánchez, J.; Navarro, M.; Pastor, I.; Soleto, A.; the TJ-II Team

    2017-05-01

    Cryogenic pellet injection is a widely used technique for delivering fuel to the core of magnetically confined plasmas. Indeed, such systems are currently functioning on many tokamak, reversed field pinch and stellarator devices. A pipe-gun-type pellet injector is now operated on the TJ-II, a low-magnetic shear stellarator of the heliac type. Cryogenic hydrogen pellets, containing between 3  ×  1018 and 4  ×  1019 atoms, are injected at velocities between 800 and 1200 m s-1 from its low-field side into plasmas created and/or maintained in this device by electron cyclotron resonance and/or neutral beam injection heating. In this paper, the first systematic study of pellet ablation, particle deposition and fuelling efficiency is presented for TJ-II. From this, light-emission profiles from ablating pellets are found to be in reasonable agreement with simulated pellet ablation profiles (created using a neutral gas shielding-based code) for both heating scenarios. In addition, radial offsets between recorded light-emission profiles and particle deposition profiles provide evidence for rapid outward drifting of ablated material that leads to pellet particle loss from the plasma. Finally, fuelling efficiencies are documented for a range of target plasma densities (~4  ×  1018-  ~2  ×  1019 m-3). These range from ~20%-  ~85% and are determined to be sensitive to pellet penetration depth. Additional observations, such as enhanced core ablation, are discussed and planned future work is outlined.

  19. Stellarator Saddle Coils

    NASA Astrophysics Data System (ADS)

    Boozer, Allen H.

    1999-11-01

    Modern stellarators are designed using J. Nuehrenberg’s method of varying Fourier coefficients in the shape of the plasma boundary to maximize a target function. The matrix of second derivatives of the target function at the optimum determines a quality matrix. This matrix gives the degradation in the quality of the configuration as the normal magnetic field is varied on a control surface, which lies on or outside the plasma surface. The task is finding saddle coils that produce the desired configuration in the presence of a given toroidal field. An eigenvector of the quality matrix can be important for two reasons: (1) the normal field that must be produced by the saddles is large or (2) the eigenvalue is large (an island-causing resonant perturbation). The rank of the important part of the quality matrix is the number of important eigenvectors. The current in each saddle coil produces a normal field on the control surface, which can be described by an inductance matrix. The relevant part of the inductance matrix has large eigenvalues. The coils can produce the configuration if the rank of the important part of the quality matrix and its product with the relevant part of the inductance matrix are the same. Existing coil design codes, pioneered by P. Merkel, approximate the quality matrix by the unit matrix. Stellarator flexibility could be enhanced by using a more realistic quality matrix and by using trim coils to balance large eigenvalues.

  20. On the Origin of Solar and Stellar Flares

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2015-08-01

    Physical processes connected with falls of comets and evaporating bodies, FEBs, onto stars with cosmic velocities, around 600 km/s, are considered. The processes include aerodynamic crushing of comet nucleus and transversal expansion of crushed mass within the solar chromosphere as well as sharp deceleration of the flattening structure in a relatively very thin layer near the solar/stellar photosphere. Fast thermalization of the body's kinetic energy will be accompanied by impulse generation of a high temperature plasma in the thin layer, i.e., "explosion" and strong "blast" shock wave as well as eruption of the layer ionized material into space above the chromosphere. Impact mechanism is capable to lead to generation of solar/stellar super-flares. Some similarities of this phenomenon with flare activity by magnetic reconnection are also revealed.

  1. Potential, velocity, and density fields from sparse and noisy redshift-distance samples - Method

    NASA Technical Reports Server (NTRS)

    Dekel, Avishai; Bertschinger, Edmund; Faber, Sandra M.

    1990-01-01

    A method for recovering the three-dimensional potential, velocity, and density fields from large-scale redshift-distance samples is described. Galaxies are taken as tracers of the velocity field, not of the mass. The density field and the initial conditions are calculated using an iterative procedure that applies the no-vorticity assumption at an initial time and uses the Zel'dovich approximation to relate initial and final positions of particles on a grid. The method is tested using a cosmological N-body simulation 'observed' at the positions of real galaxies in a redshift-distance sample, taking into account their distance measurement errors. Malmquist bias and other systematic and statistical errors are extensively explored using both analytical techniques and Monte Carlo simulations.

  2. A radial velocity survey of the Carina Nebula's O-type stars

    NASA Astrophysics Data System (ADS)

    Kiminki, Megan M.; Smith, Nathan

    2018-06-01

    We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1-2 km s-1 precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region. The combined data set shows a mean heliocentric radial velocity of 0.6 km s-1. We calculate a velocity dispersion of ≤9.1 km s-1, consistent with an unbound, substructured OB association. The Tr 14 cluster shows a marginally significant 5 km s-1 radial velocity offset from its neighbour Tr 16, but there are otherwise no correlations between stellar position and velocity. The O-type stars in Cr 228 and the South Pillars region have a lower velocity dispersion than the region as a whole, supporting a model of distributed massive star formation rather than migration from the central clusters. We compare our stellar velocities to the Carina Nebula's molecular gas and find that Tr 14 shows a close kinematic association with the Northern Cloud. In contrast, Tr 16 has accelerated the Southern Cloud by 10-15 km s-1, possibly triggering further massive star formation. The expansion of the surrounding H II region is not symmetric about the O-type stars in radial velocity space, indicating that the ionized gas is constrained by denser material on the far side.

  3. Modified circular velocity law

    NASA Astrophysics Data System (ADS)

    Djeghloul, Nazim

    2018-05-01

    A modified circular velocity law is presented for a test body orbiting around a spherically symmetric mass. This law exhibits a distance scale parameter and allows to recover both usual Newtonian behaviour for lower distances and a constant velocity limit at large scale. Application to the Galaxy predicts the known behaviour and also leads to a galactic mass in accordance with the measured visible stellar mass so that additional dark matter inside the Galaxy can be avoided. It is also shown that this circular velocity law can be embedded in a geometrical description of spacetime within the standard general relativity framework upon relaxing the usual asymptotic flatness condition. This formulation allows to redefine the introduced Newtonian scale limit in term of the central mass exclusively. Moreover, a satisfactory answer to the galactic escape speed problem can be provided indicating the possibility that one can also get rid of dark matter halo outside the Galaxy.

  4. Stellar Atmospheric Modelling for the ACCESS Program

    NASA Astrophysics Data System (ADS)

    Morris, Matthew; Kaiser, Mary Elizabeth; Bohlin, Ralph; Kurucz, Robert; ACCESS Team

    2018-01-01

    A goal of the ACCESS program (Absolute Color Calibration Experiment for Standard Stars) is to enable greater discrimination between theoretical astrophysical models and observations, where the comparison is limited by systematic errors associated with the relative flux calibration of the targets. To achieve these goals, ACCESS has been designed as a sub-orbital rocket borne payload and ground calibration program, to establish absolute flux calibration of stellar targets at <1 % precision, with a resolving power of 500 across the 0.35 to 1.7 micron bandpass.In order to obtain higher resolution spectroscopy in the optical and near-infrared range than either the ACCESS payload or CALSPEC observations provide, the ACCESS team has conducted a multi-instrument observing program at Apache Point Observatory. Using these calibrated high resolution spectra in addition to the HST/CALSPEC data, we have generated stellar atmosphere models for ACCESS flight candidates, as well as a selection of A and G stars from the CALSPEC database. Stellar atmosphere models were generated using Atlas 9 and Atlas 12 Kurucz stellar atmosphere software. The effective temperature, log(g), metallicity, and redenning were varied and the chi-squared statistic was minimized to obtain a best-fit model. A comparison of these models and the results from interpolation between grids of existing models will be presented. The impact of the flexibility of the Atlas 12 input parameters (e.g. solar metallicity fraction, abundances, microturbulent velocity) is being explored.

  5. Phase-field simulations of velocity selection in rapidly solidified binary alloys

    NASA Astrophysics Data System (ADS)

    Fan, Jun; Greenwood, Michael; Haataja, Mikko; Provatas, Nikolas

    2006-09-01

    Time-dependent simulations of two-dimensional isothermal Ni-Cu dendrites are simulated using a phase-field model solved with a finite-difference adaptive mesh refinement technique. Dendrite tip velocity selection is examined and found to exhibit a transition between two markedly different regimes as undercooling is increased. At low undercooling, the dendrite tip growth rate is consistent with the kinetics of the classical Stefan problem, where the interface is assume to be in local equilibrium. At high undercooling, the growth velocity selected approaches a linear dependence on melt undercooling, consistent with the continuous growth kinetics of Aziz and with a one-dimensional steady-state phase-field asymptotic analysis of Ahmad [Phys. Rev. E 58, 3436 (1998)]. Our simulations are also consistent with other previously observed behaviors of dendritic growth as undercooling is increased. These include the transition of dendritic morphology to absolute stability and nonequilibrium solute partitioning. Our results show that phase-field models of solidification, which inherently contain a nonzero interface width, can be used to study the dynamics of complex solidification phenomena involving both equilibrium and nonequilibrium interface growth kinetics.

  6. Using Close White Dwarf + M Dwarf Stellar Pairs to Constrain the Flare Rates in Close Stellar Binaries

    NASA Astrophysics Data System (ADS)

    Morgan, Dylan P.; West, Andrew A.; Becker, Andrew C.

    2016-05-01

    We present a study of the statistical flare rates of M dwarfs (dMs) with close white dwarf (WD) companions (WD+dM; typical separations <1 au). Our previous analysis demonstrated that dMs with close WD companions are more magnetically active than their field counterparts. One likely implication of having a close binary companion is increased stellar rotation through disk-disruption, tidal effects, and/or angular momentum exchange; increased stellar rotation has long been associated with an increase in stellar activity. Previous studies show a strong correlation between dMs that are magnetically active (showing Hα in emission) and the frequency of stellar flare rates. We examine the difference between the flare rates observed in close WD+dM binary systems and field dMs. Our sample consists of a subset of 181 close WD+dM pairs from Morgan et al. observed in the Sloan Digital Sky Survey Stripe 82, where we obtain multi-epoch observations in the Sloan ugriz-bands. We find an increase in the overall flaring fraction in the close WD+dM pairs (0.09 ± 0.03%) compared to the field dMs (0.0108 ± 0.0007%) and a lower flaring fraction for active WD+dMs (0.05 ± 0.03%) compared to active dMs (0.28 ± 0.05%). We discuss how our results constrain both the single and binary dM flare rates. Our results also constrain dM multiplicity, our knowledge of the Galactic transient background, and may be important for the habitability of attending planets around dMs with close companions.

  7. SDSS-IV MaNGA: global stellar population and gradients for about 2000 early-type and spiral galaxies on the mass-size plane

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Mao, Shude; Cappellari, Michele; Ge, Junqiang; Long, R. J.; Li, Ran; Mo, H. J.; Li, Cheng; Zheng, Zheng; Bundy, Kevin; Thomas, Daniel; Brownstein, Joel R.; Roman Lopes, Alexandre; Law, David R.; Drory, Niv

    2018-05-01

    We perform full spectrum fitting stellar population analysis and Jeans Anisotropic modelling of the stellar kinematics for about 2000 early-type galaxies (ETGs) and spiral galaxies from the MaNGA DR14 sample. Galaxies with different morphologies are found to be located on a remarkably tight mass plane which is close to the prediction of the virial theorem, extending previous results for ETGs. By examining an inclined projection (`the mass-size' plane), we find that spiral and early-type galaxies occupy different regions on the plane, and their stellar population properties (i.e. age, metallicity, and stellar mass-to-light ratio) vary systematically along roughly the direction of velocity dispersion, which is a proxy for the bulge fraction. Galaxies with higher velocity dispersions have typically older ages, larger stellar mass-to-light ratios and are more metal rich, which indicates that galaxies increase their bulge fractions as their stellar populations age and become enriched chemically. The age and stellar mass-to-light ratio gradients for low-mass galaxies in our sample tend to be positive (centre < outer), while the gradients for most massive galaxies are negative. The metallicity gradients show a clear peak around velocity dispersion log10 σe ≈ 2.0, which corresponds to the critical mass ˜3 × 1010 M⊙ of the break in the mass-size relation. Spiral galaxies with large mass and size have the steepest gradients, while the most massive ETGs, especially above the critical mass Mcrit ≳ 2 × 1011 M⊙, where slow rotator ETGs start dominating, have much flatter gradients. This may be due to differences in their evolution histories, e.g. mergers.

  8. Spatially Resolved Stellar Kinematics from LEGA-C: Increased Rotational Support in z ∼ 0.8 Quiescent Galaxies

    NASA Astrophysics Data System (ADS)

    Bezanson, Rachel; van der Wel, Arjen; Pacifici, Camilla; Noeske, Kai; Barišić, Ivana; Bell, Eric F.; Brammer, Gabriel B.; Calhau, Joao; Chauke, Priscilla; van Dokkum, Pieter; Franx, Marijn; Gallazzi, Anna; van Houdt, Josha; Labbé, Ivo; Maseda, Michael V.; Muños-Mateos, Juan Carlos; Muzzin, Adam; van de Sande, Jesse; Sobral, David; Straatman, Caroline; Wu, Po-Feng

    2018-05-01

    We present stellar rotation curves and velocity dispersion profiles for 104 quiescent galaxies at z = 0.6–1 from the Large Early Galaxy Astrophysics Census (LEGA-C) spectroscopic survey. Rotation is typically probed across 10–20 kpc, or to an average of 2.7Re. Combined with central stellar velocity dispersions (σ0) this provides the first determination of the dynamical state of a sample selected by a lack of star formation activity at large lookback time. The most massive galaxies (M⋆ > 2 × 1011 M⊙) generally show no or little rotation measured at 5 kpc (| {V}5| /{σ }0< 0.2 in eight of ten cases), while ∼64% of less massive galaxies show significant rotation. This is reminiscent of local fast- and slow-rotating ellipticals and implies that low- and high-redshift quiescent galaxies have qualitatively similar dynamical structures. We compare | {V}5| /{σ }0 distributions at z ∼ 0.8 and the present day by re-binning and smoothing the kinematic maps of 91 low-redshift quiescent galaxies from the Calar Alto Legacy Integral Field Area (CALIFA) survey and find evidence for a decrease in rotational support since z ∼ 1. This result is especially strong when galaxies are compared at fixed velocity dispersion; if velocity dispersion does not evolve for individual galaxies then the rotational velocity at 5 kpc was an average of 94 ± 22% higher in z ∼ 0.8 quiescent galaxies than today. Considering that the number of quiescent galaxies grows with time and that new additions to the population descend from rotationally supported star-forming galaxies, our results imply that quiescent galaxies must lose angular momentum between z ∼ 1 and the present, presumably through dissipationless merging, and/or that the mechanism that transforms star-forming galaxies also reduces their rotational support.

  9. Dirichlet boundary conditions for arbitrary-shaped boundaries in stellarator-like magnetic fields for the Flux-Coordinate Independent method

    NASA Astrophysics Data System (ADS)

    Hill, Peter; Shanahan, Brendan; Dudson, Ben

    2017-04-01

    We present a technique for handling Dirichlet boundary conditions with the Flux Coordinate Independent (FCI) parallel derivative operator with arbitrary-shaped material geometry in general 3D magnetic fields. The FCI method constructs a finite difference scheme for ∇∥ by following field lines between poloidal planes and interpolating within planes. Doing so removes the need for field-aligned coordinate systems that suffer from singularities in the metric tensor at null points in the magnetic field (or equivalently, when q → ∞). One cost of this method is that as the field lines are not on the mesh, they may leave the domain at any point between neighbouring planes, complicating the application of boundary conditions. The Leg Value Fill (LVF) boundary condition scheme presented here involves an extrapolation/interpolation of the boundary value onto the field line end point. The usual finite difference scheme can then be used unmodified. We implement the LVF scheme in BOUT++ and use the Method of Manufactured Solutions to verify the implementation in a rectangular domain, and show that it does not modify the error scaling of the finite difference scheme. The use of LVF for arbitrary wall geometry is outlined. We also demonstrate the feasibility of using the FCI approach in no n-axisymmetric configurations for a simple diffusion model in a "straight stellarator" magnetic field. A Gaussian blob diffuses along the field lines, tracing out flux surfaces. Dirichlet boundary conditions impose a last closed flux surface (LCFS) that confines the density. Including a poloidal limiter moves the LCFS to a smaller radius. The expected scaling of the numerical perpendicular diffusion, which is a consequence of the FCI method, in stellarator-like geometry is recovered. A novel technique for increasing the parallel resolution during post-processing, in order to reduce artefacts in visualisations, is described.

  10. Eight luminous early-type galaxies in nearby pairs and sparse groups. I. Stellar populations spatially analysed

    NASA Astrophysics Data System (ADS)

    Rosa, D. A.; Milone, A. C.; Krabbe, A. C.; Rodrigues, I.

    2018-06-01

    We present a detailed spatial analysis of stellar populations based on long-slit optical spectra in a sample of eight luminous early-type galaxies selected from nearby sparse groups and pairs, three of them may have interaction with another galaxy of similar mass. We have spatially measured luminosity-weighted averages of age, [M/H], [Fe/H], and [α /Fe] in the sample galaxies to add empirical data relative to the influence of galaxy mass, environment, interaction, and AGN feedback in their formation and evolution. The stellar population of the individual galaxies were determined through the well-established stellar population synthesis code starlight using semi-empirical simple stellar population models. Radial variations of luminosity- weighted means of age, [M/H], [Fe/H], and [α /Fe] were quantified up to half of the effective radius of each galaxy. We found trends between representative values of age, [M/H], [α /Fe], and the nuclear stellar velocity dispersion. There are also relations between the metallicity/age gradients and the velocity dispersion. Contributions of 1-4 Gyr old stellar populations were quantified in IC 5328 and NGC 6758 as well as 4-8 Gyr old ones in NGC 5812. Extended gas is present in IC 5328, NGC 1052, NGC 1209, and NGC 6758, and the presence of a LINER is identified in all these galaxies. The regions up to one effective radius of all galaxies are basically dominated by α -enhanced metal-rich old stellar populations likely due to rapid star formation episodes that induced efficient chemical enrichment. On average, the age and [α /Fe] gradients are null and the [M/H] gradients are negative, although discordant cases were found. We found no correlation between the stellar population properties and the LINER presence as well as between the stellar properties and environment or gravitational interaction, suggesting that the influence of progenitor mass cannot be discarded in the formation and evolution of early-type galaxies.

  11. A direct imaging search for close stellar and sub-stellar companions to young nearby stars

    NASA Astrophysics Data System (ADS)

    Vogt, N.; Mugrauer, M.; Neuhäuser, R.; Schmidt, T. O. B.; Contreras-Quijada, A.; Schmidt, J. G.

    2015-01-01

    A total of 28 young nearby stars (ages {≤ 60} Myr) have been observed in the K_s-band with the adaptive optics imager Naos-Conica of the Very Large Telescope at the Paranal Observatory in Chile. Among the targets are ten visual binaries and one triple system at distances between 10 and 130 pc, all previously known. During a first observing epoch a total of 20 faint stellar or sub-stellar companion-candidates were detected around seven of the targets. These fields, as well as most of the stellar binaries, were re-observed with the same instrument during a second epoch, about one year later. We present the astrometric observations of all binaries. Their analysis revealed that all stellar binaries are co-moving. In two cases (HD 119022 AB and FG Aqr B/C) indications for significant orbital motions were found. However, all sub-stellar companion candidates turned out to be non-moving background objects except PZ Tel which is part of this project but whose results were published elsewhere. Detection limits were determined for all targets, and limiting masses were derived adopting three different age values; they turn out to be less than 10 Jupiter masses in most cases, well below the brown dwarf mass range. The fraction of stellar multiplicity and of the sub-stellar companion occurrence in the star forming regions in Chamaeleon are compared to the statistics of our search, and possible reasons for the observed differences are discussed. Based on observations made with ESO telescopes at Paranal Observatory under programme IDs 083.C-0150(B), 084.C-0364(A), 084.C-0364(B), 084.C-0364(C), 086.C-0600(A) and 086.C-0600(B).

  12. Extended stellar substructure surrounding the Boötes I dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Roderick, T. A.; Mackey, A. D.; Jerjen, H.; Da Costa, G. S.

    2016-10-01

    We present deep stellar photometry of the Boötes I dwarf spheroidal galaxy in g- and I-band filters, taken with the Dark Energy Camera at Cerro Tololo in Chile. Our analysis reveals a large, extended region of stellar substructure surrounding the dwarf, as well as a distinct overdensity encroaching on its tidal radius. A radial profile of the Boötes I stellar distribution shows a break radius indicating the presence of extra-tidal stars. These observations strongly suggest that Boötes I is experiencing tidal disruption, although not as extreme as that exhibited by the Hercules dwarf spheroidal. Combined with revised velocity dispersion measurements from the literature, we see evidence suggesting the need to review previous theoretical models of the Boötes I dwarf spheroidal galaxy.

  13. Using a constraint on the parallel velocity when determining electric fields with EISCAT

    NASA Technical Reports Server (NTRS)

    Caudal, G.; Blanc, M.

    1988-01-01

    A method is proposed to determine the perpendicular components of the ion velocity vector (and hence the perpendicular electric field) from EISCAT tristatic measurements, in which one introduces an additional constraint on the parallel velocity, in order to take account of our knowledge that the parallel velocity of ions is small. This procedure removes some artificial features introduced when the tristatic geometry becomes too unfavorable. It is particularly well suited for the southernmost or northernmost positions of the tristatic measurements performed by meridian scan experiments (CP3 mode).

  14. Eye Velocity Gain Fields in MSTd During Optokinetic Stimulation

    PubMed Central

    Brostek, Lukas; Büttner, Ulrich; Mustari, Michael J.; Glasauer, Stefan

    2015-01-01

    Lesion studies argue for an involvement of cortical area dorsal medial superior temporal area (MSTd) in the control of optokinetic response (OKR) eye movements to planar visual stimulation. Neural recordings during OKR suggested that MSTd neurons directly encode stimulus velocity. On the other hand, studies using radial visual flow together with voluntary smooth pursuit eye movements showed that visual motion responses were modulated by eye movement-related signals. Here, we investigated neural responses in MSTd during continuous optokinetic stimulation using an information-theoretic approach for characterizing neural tuning with high resolution. We show that the majority of MSTd neurons exhibit gain-field-like tuning functions rather than directly encoding one variable. Neural responses showed a large diversity of tuning to combinations of retinal and extraretinal input. Eye velocity-related activity was observed prior to the actual eye movements, reflecting an efference copy. The observed tuning functions resembled those emerging in a network model trained to perform summation of 2 population-coded signals. Together, our findings support the hypothesis that MSTd implements the visuomotor transformation from retinal to head-centered stimulus velocity signals for the control of OKR. PMID:24557636

  15. Multifractal structures in radial velocity measurements for exoplanets

    NASA Astrophysics Data System (ADS)

    Del Sordo, Fabio; Sahil Agarwal, Debra A. Fischer, John S. Wettlaufer

    2015-01-01

    The radial velocity method is a powerful way to search for exoplanetary systems and it led to many discoveries of exoplanets in the last 20 years.Nevertheless, in order observe Earth-like planets, such method needs to be refined, i.e. one needs to improve the signal-to-noise ratio.On one hand this can be achieved by building spectrographs with better performances, but on the other hand it is also central to understand the noise present in the data.Radial-velocity data are time-series which contains the effect of planets as well as of stellar disturbances. Therefore, they are the result of different physical processes which operate on different time-scales, acting in a not always periodic fashionI present here a possible approach to such problem, which consists in looking for multifractal structures in the time-series coming from radial velocity measurements, identifying the underlying long-range correlations and fractal scaling properties, and connecting them to the underlying physical processes, like stellar oscillation, granulation, rotation, and magnetic activity.This method has been previously applied to satellite data related to Arctic sea albedo, relevant for identify trends and noise in the Arctic sea ice (Agarwal, Moon and Wettlaufer, Proc. R. Soc., 2012).Here we use such analysis for exoplanetary data related to possible Earth-like planets.Moreover, we apply the same procedure to synthetic data from numerical simulation of stellar dynamos, which give insight on the mechanism responsible for the noise. In such way we can therefore raise the signal-to-noise ratio in the data using the synthetic data as predicted noise to be subtracted from the observations.

  16. Filament formation in wind-cloud interactions- II. Clouds with turbulent density, velocity, and magnetic fields

    NASA Astrophysics Data System (ADS)

    Banda-Barragán, W. E.; Federrath, C.; Crocker, R. M.; Bicknell, G. V.

    2018-01-01

    We present a set of numerical experiments designed to systematically investigate how turbulence and magnetic fields influence the morphology, energetics, and dynamics of filaments produced in wind-cloud interactions. We cover 3D, magnetohydrodynamic systems of supersonic winds impacting clouds with turbulent density, velocity, and magnetic fields. We find that lognormal density distributions aid shock propagation through clouds, increasing their velocity dispersion and producing filaments with expanded cross-sections and highly magnetized knots and subfilaments. In self-consistently turbulent scenarios, the ratio of filament to initial cloud magnetic energy densities is ∼1. The effect of Gaussian velocity fields is bound to the turbulence Mach number: Supersonic velocities trigger a rapid cloud expansion; subsonic velocities only have a minor impact. The role of turbulent magnetic fields depends on their tension and is similar to the effect of radiative losses: the stronger the magnetic field or the softer the gas equation of state, the greater the magnetic shielding at wind-filament interfaces and the suppression of Kelvin-Helmholtz instabilities. Overall, we show that including turbulence and magnetic fields is crucial to understanding cold gas entrainment in multiphase winds. While cloud porosity and supersonic turbulence enhance the acceleration of clouds, magnetic shielding protects them from ablation and causes Rayleigh-Taylor-driven subfilamentation. Wind-swept clouds in turbulent models reach distances ∼15-20 times their core radius and acquire bulk speeds ∼0.3-0.4 of the wind speed in one cloud-crushing time, which are three times larger than in non-turbulent models. In all simulations, the ratio of turbulent magnetic to kinetic energy densities asymptotes at ∼0.1-0.4, and convergence of all relevant dynamical properties requires at least 64 cells per cloud radius.

  17. Estimation of 3-D conduction velocity vector fields from cardiac mapping data.

    PubMed

    Barnette, A R; Bayly, P V; Zhang, S; Walcott, G P; Ideker, R E; Smith, W M

    2000-08-01

    A method to estimate three-dimensional (3-D) conduction velocity vector fields in cardiac tissue is presented. The speed and direction of propagation are found from polynomial "surfaces" fitted to space-time (x, y, z, t) coordinates of cardiac activity. The technique is applied to sinus rhythm and paced rhythm mapped with plunge needles at 396-466 sites in the canine myocardium. The method was validated on simulated 3-D plane and spherical waves. For simulated data, conduction velocities were estimated with an accuracy of 1%-2%. In experimental data, estimates of conduction speeds during paced rhythm were slower than those found during normal sinus rhythm. Vector directions were also found to differ between different types of beats. The technique was able to distinguish between premature ventricular contractions and sinus beats and between sinus and paced beats. The proposed approach to computing velocity vector fields provides an automated, physiological, and quantitative description of local electrical activity in 3-D tissue. This method may provide insight into abnormal conduction associated with fatal ventricular arrhythmias.

  18. The SEGUE Stellar Parameter Pipeline. II. Validation with Galactic Globular and Open Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.S.; Beers, T.C.; Sivarani, T.

    2007-10-01

    The authors validate the performance and accuracy of the current SEGUE (Sloan Extension for Galactic Understanding and Exploration) Stellar Parameter Pipeline (SSPP), which determines stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) by comparing derived overall metallicities and radial velocities from selected likely members of three globular clusters (M 13, M 15, and M 2) and two open clusters (NGC 2420 and M 67) to the literature values. Spectroscopic and photometric data obtained during the course of the original Sloan Digital Sky Survey (SDSS-1) and its first extension (SDSS-II/SEGUE) are used to determine stellar radial velocities and atmospheric parametermore » estimates for stars in these clusters. Based on the scatter in the metallicities derived for the members of each cluster, they quantify the typical uncertainty of the SSPP values, {sigma}([Fe/H]) = 0.13 dex for stars in the range of 4500 K {le} T{sub eff} {le} 7500 K and 2.0 {le} log g {le} 5.0, at least over the metallicity interval spanned by the clusters studied (-2.3 {le} [Fe/H] < 0). The surface gravities and effective temperatures derived by the SSPP are also compared with those estimated from the comparison of the color-magnitude diagrams with stellar evolution models; they find satisfactory agreement. At present, the SSPP underestimates [Fe/H] for near-solar-metallicity stars, represented by members of M 67 in this study, by {approx} 0.3 dex.« less

  19. THE DOMINANCE OF METAL-RICH STREAMS IN STELLAR HALOS: A COMPARISON BETWEEN SUBSTRUCTURE IN M31 AND {lambda}CDM MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Karoline M.; Font, Andreea S.; Johnston, Kathryn V.

    2009-08-10

    Extensive photometric and spectroscopic surveys of the Andromeda galaxy (M31) have discovered tidal debris features throughout M31's stellar halo. We present stellar kinematics and metallicities in fields with identified substructure from our on-going SPLASH survey of M31 red giant branch stars with the DEIMOS spectrograph on the Keck II 10 m telescope. Radial velocity criteria are used to isolate members of the kinematically cold substructures. The substructures are shown to be metal-rich relative to the rest of the dynamically hot stellar population in the fields in which they are found. We calculate the mean metallicity and average surface brightness ofmore » the various kinematical components in each field, and show that, on average, higher surface brightness features tend to be more metal-rich than lower surface brightness features. Simulations of stellar halo formation via accretion in a cosmological context are used to illustrate that the observed trend can be explained as a natural consequence of the observed dwarf galaxy mass-metallicity relation. A significant spread in metallicity at a given surface brightness is seen in the data; we show that this is due to time effects, namely, the variation in the time since accretion of the tidal streams' progenitor onto the host halo. We show that in this theoretical framework a relationship between the alpha-enhancement and surface brightness of tidal streams is expected, which arises from the varying times of accretion of the progenitor satellites onto the host halo. Thus, measurements of the alpha-enrichment, metallicity, and surface brightness of tidal debris can be used to reconstruct the luminosity and time of accretion onto the host halo of the progenitors of tidal streams.« less

  20. Ab initio velocity-field curves in monoclinic β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-07-01

    We investigate the high-field transport in monoclinic β-Ga2O3 using a combination of ab initio calculations and full band Monte Carlo (FBMC) simulation. Scattering rate calculation and the final state selection in the FBMC simulation use complete wave-vector (both electron and phonon) and crystal direction dependent electron phonon interaction (EPI) elements. We propose and implement a semi-coarse version of the Wannier-Fourier interpolation method [Giustino et al., Phys. Rev. B 76, 165108 (2007)] for short-range non-polar optical phonon (EPI) elements in order to ease the computational requirement in FBMC simulation. During the interpolation of the EPI, the inverse Fourier sum over the real-space electronic grids is done on a coarse mesh while the unitary rotations are done on a fine mesh. This paper reports the high field transport in monoclinic β-Ga2O3 with deep insight into the contribution of electron-phonon interactions and velocity-field characteristics for electric fields ranging up to 450 kV/cm in different crystal directions. A peak velocity of 2 × 107 cm/s is estimated at an electric field of 200 kV/cm.

  1. Critical points of the cosmic velocity field and the uncertainties in the value of the Hubble constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Naselsky, Pavel; Mohayaee, Roya, E-mail: liuhao@nbi.dk, E-mail: roya@iap.fr, E-mail: naselsky@nbi.dk

    2016-06-01

    The existence of critical points for the peculiar velocity field is a natural feature of the correlated vector field. These points appear at the junctions of velocity domains with different orientations of their averaged velocity vectors. Since peculiar velocities are the important cause of the scatter in the Hubble expansion rate, we propose that a more precise determination of the Hubble constant can be made by restricting analysis to a subsample of observational data containing only the zones around the critical points of the peculiar velocity field, associated with voids and saddle points. On large-scales the critical points, where themore » first derivative of the gravitational potential vanishes, can easily be identified using the density field and classified by the behavior of the Hessian of the gravitational potential. We use high-resolution N-body simulations to show that these regions are stable in time and hence are excellent tracers of the initial conditions. Furthermore, we show that the variance of the Hubble flow can be substantially minimized by restricting observations to the subsample of such regions of vanishing velocity instead of aiming at increasing the statistics by averaging indiscriminately using the full data sets, as is the common approach.« less

  2. IN-SYNC. IV. The Young Stellar Population in the Orion A Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Da Rio, Nicola; Tan, Jonathan C.; Covey, Kevin R.; Cottaar, Michiel; Foster, Jonathan B.; Cullen, Nicholas C.; Tobin, John J.; Kim, Jinyoung S.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Chojnowski, S. Drew; Flaherty, Kevin M.; Majewski, Steve; Skrutskie, Michael F.; Zasowski, Gail; Pan, Kaike

    2016-02-01

    We present the results of the Sloan Digital Sky Survey APOGEE INfrared Spectroscopy of Young Nebulous Clusters program (IN-SYNC) survey of the Orion A molecular cloud. This survey obtained high-resolution near-infrared spectroscopy of about 2700 young pre-main-sequence stars on a ˜ 6^\\circ field of view. We have measured accurate stellar parameters ({T}{{eff}}, {log}g, v{sin}I) and extinctions and placed the sources in the Hertzsprung-Russel diagram (HRD). We have also extracted radial velocities for the kinematic characterization of the population. We compare our measurements with literature results to assess the performance and accuracy of the survey. Source extinction shows evidence for dust grains that are larger than those in the diffuse interstellar medium: we estimate an average RV = 5.5 in the region. Importantly, we find a clear correlation between HRD inferred ages and spectroscopic surface-gravity-inferred ages and between extinction and disk presence; this strongly suggests a real spread of ages larger than a few Myr. Focusing on the young population around NGC 1980/ι Ori, which has previously been suggested to be a separate, foreground, older cluster, we confirm its older (˜5 Myr) age and low AV, but considering that its radial velocity distribution is indistinguishable from Orion A’s population, we suggest that NGC 1980 is part of Orion A’s star formation activity. Based on their stellar parameters and kinematic properties, we identify 383 new candidate members of Orion A, most of which are diskless sources in areas of the region poorly studied by previous works.

  3. Applications of the magneto-optical filter to stellar pulsation measurements

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.

    1984-01-01

    A proposed method of employing the Cacciani magneto-optical filter (MOF) for stellar seismology studies is described. The method relies on the fact that the separation of the filter bandpasses in the MOF can be changed by varying the level of input power to the filter cells. With the use of a simple servosystem the bandpass of a MOF can be tuned to compensate for the changes in the radial velocity of a star introduced by the orbital motion of the Earth. Such a tuned filter can then be used to record intensity fluctuations through the MOF bandpass over an extended period of time for each given star. Also, the use of a two cell version of the MOF makes it possible to alternately chop between the bandpass located in the stellar line wing and a second bandpass located in the stellar continuum. Rapid interchange between the two channels makes it possible for atmospheric-introduced noise to be removed from the time series.

  4. Applications of the magneto-optical filter to stellar pulsation measurements

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Tomczyk, Steven

    1986-01-01

    A proposed method of employing the Cacciani magneto-optical filter (MOF) for stellar seismology studies is described. The method relies on the fact that the separation of the filter bandpasses in the MOF can be changed by varying the level of input power to the filter cells. With the use of a simple servosystem the bandpass of a MOF can be tuned to compensate for the changes in the radial velocity of a star introduced by the orbital motion of the earth. Such a tuned filter can then be used to record intensity fluctuations through the MOF bandpass over an extended period of time for each given star. Also, the use of a two cell version of the MOF makes it possible to alternately chop between the bandpass located in the stellar line wing and a second bandpass located in the stellar continuum. Rapid interchange between the two channels makes it possible for atmospheric-introduced noise to be removed from the time series.

  5. SDSS-IV MaNGA: Variation of the Stellar Initial Mass Function in Spiral and Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Ge, Junqiang; Mao, Shude; Cappellari, Michele; Long, R. J.; Li, Ran; Emsellem, Eric; Dutton, Aaron A.; Li, Cheng; Bundy, Kevin; Thomas, Daniel; Drory, Niv; Lopes, Alexandre Roman

    2017-04-01

    We perform Jeans anisotropic modeling (JAM) on elliptical and spiral galaxies from the MaNGA DR13 sample. By comparing the stellar mass-to-light ratios estimated from stellar population synthesis and from JAM, we find a systematic variation of the initial mass function (IMF) similar to that in the earlier {{ATLAS}}3{{D}} results. Early-type galaxies (elliptical and lenticular) with lower velocity dispersions within one effective radius are consistent with a Chabrier-like IMF, while galaxies with higher velocity dispersions are consistent with a more bottom-heavy IMF such as the Salpeter IMF. Spiral galaxies have similar systematic IMF variations, but with slightly different slopes and larger scatters, due to the uncertainties caused by the higher gas fractions and extinctions for these galaxies. Furthermore, we examine the effects of stellar mass-to-light ratio gradients on our JAM modeling, and we find that the trends become stronger after considering the gradients.

  6. Formation Flying and the Stellar Imager Mission Concept

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.

    2003-01-01

    The Stellar Imager (SI) is envisioned as a space-based, W-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5 km. image stars and binaries with sufficient resolution to enable long-term studies of stellar magnetic activity patterns, for comparison with those on the sun. It will also support asteroseismology (acoustic imaging) to probe stellar internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of the magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on time scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. In this paper we briefly describe the scientific goals of the mission, the performance requirements needed to address these goals, and the "enabling technology" development efforts required, with specific attention for this meeting to the formation-flying aspects. It is designed to

  7. Velocity and pressure fields associated with near-wall turbulence structures

    NASA Technical Reports Server (NTRS)

    Johansson, Arne V.; Alfredsson, P. Henrik; Kim, John

    1990-01-01

    Computer generated databases containing velocity and pressure fields in three-dimensional space at a sequence of time-steps, were used for the investigation of near-wall turbulence structures, their space-time evolution, and their associated pressure fields. The main body of the results were obtained from simulation data for turbulent channel flow at a Reynolds number of 180 (based on half-channel height and friction velocity) with a grid of 128 x 129 x and 128 points. The flow was followed over a total time of 141 viscous time units. Spanwise centering of the detected structures was found to be essential in order to obtain a correct magnitude of the associated Reynolds stress contribution. A positive wall-pressure peak is found immediately beneath the center of the structure. The maximum amplitude of the pressure pattern was, however, found in the buffer region at the center of the shear-layer. It was also found that these flow structures often reach a maximum strength in connection with an asymmetric spanwise motion, which motivated the construction of a conditional sampling scheme that preserved this asymmetry.

  8. TWO-DIMENSIONAL MAPPING OF YOUNG STARS IN THE INNER 180 pc OF NGC 1068: CORRELATION WITH MOLECULAR GAS RING AND STELLAR KINEMATICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storchi-Bergmann, Thaisa; Riffel, Rogerio; Vale, Tiberio Borges

    We report the first two-dimensional mapping of the stellar population and non-stellar continua within the inner 180 pc (radius) of NGC 1068 at a spatial resolution of 8 pc, using integral field spectroscopy in the near-infrared. We have applied the technique of spectral synthesis to data obtained with the instrument NIFS and the adaptive optics module ALTAIR at the Gemini North Telescope. Two episodes of recent star formation are found to dominate the stellar population contribution: the first occurred 300 Myr ago, extending over most of the nuclear region; the second occurred just 30 Myr ago, in a ring-like structuremore » at Almost-Equal-To 100 pc from the nucleus, where it is coincident with an expanding ring of H{sub 2} emission. Inside the ring, where a decrease in the stellar velocity dispersion is observed, the stellar population is dominated by the 300 Myr age component. In the inner 35 pc, the oldest age component (age {>=} 2 Gyr) dominates the mass, while the flux is dominated by blackbody components with temperatures in the range 700 K {<=} T {<=} 800 K which we attribute to the dusty torus. We also find some contribution from blackbody and power-law components beyond the nucleus which we attribute to dust emission and scattered light.« less

  9. Measuring the velocity field from type Ia supernovae in an LSST-like sky survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odderskov, Io; Hannestad, Steen, E-mail: isho07@phys.au.dk, E-mail: sth@phys.au.dk

    2017-01-01

    In a few years, the Large Synoptic Survey Telescope will vastly increase the number of type Ia supernovae observed in the local universe. This will allow for a precise mapping of the velocity field and, since the source of peculiar velocities is variations in the density field, cosmological parameters related to the matter distribution can subsequently be extracted from the velocity power spectrum. One way to quantify this is through the angular power spectrum of radial peculiar velocities on spheres at different redshifts. We investigate how well this observable can be measured, despite the problems caused by areas with nomore » information. To obtain a realistic distribution of supernovae, we create mock supernova catalogs by using a semi-analytical code for galaxy formation on the merger trees extracted from N-body simulations. We measure the cosmic variance in the velocity power spectrum by repeating the procedure many times for differently located observers, and vary several aspects of the analysis, such as the observer environment, to see how this affects the measurements. Our results confirm the findings from earlier studies regarding the precision with which the angular velocity power spectrum can be determined in the near future. This level of precision has been found to imply, that the angular velocity power spectrum from type Ia supernovae is competitive in its potential to measure parameters such as σ{sub 8}. This makes the peculiar velocity power spectrum from type Ia supernovae a promising new observable, which deserves further attention.« less

  10. Three-dimensional simulation of the motion of a single particle under a simulated turbulent velocity field

    NASA Astrophysics Data System (ADS)

    Moreno-Casas, P. A.; Bombardelli, F. A.

    2015-12-01

    A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.

  11. THE EINSTEIN CROSS: CONSTRAINT ON DARK MATTER FROM STELLAR DYNAMICS AND GRAVITATIONAL LENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Ven, Glenn; Falcon-Barroso, Jesus; McDermid, Richard M.

    2010-08-20

    We present two-dimensional line-of-sight stellar kinematics of the lens galaxy in the Einstein Cross, obtained with the GEMINI 8 m telescope, using the GMOS integral-field spectrograph. The stellar kinematics extend to a radius of 4'' (with 0.''2 spaxels), covering about two-thirds of the effective (or half-light) radius R{sub e} {approx_equal} 6'' of this early-type spiral galaxy at redshift z{sub l} {approx_equal} 0.04, of which the bulge is lensing a background quasar at redshift z{sub s} {approx_equal} 1.7. The velocity map shows regular rotation up to {approx}100 km s{sup -1} around the minor axis of the bulge, consistent with axisymmetry. Themore » velocity dispersion map shows a weak gradient increasing toward a central (R < 1'') value of {sigma}{sub 0} = 170 {+-} 9 km s{sup -1}. We deproject the observed surface brightness from Hubble Space Telescope imaging to obtain a realistic luminosity density of the lens galaxy, which in turn is used to build axisymmetric dynamical models that fit the observed kinematic maps. We also construct a gravitational lens model that accurately fits the positions and relative fluxes of the four quasar images. We combine these independent constraints from stellar dynamics and gravitational lensing to study the total mass distribution in the inner parts of the lens galaxy. We find that the resulting luminous and total mass distribution are nearly identical around the Einstein radius R{sub E} = 0.''89, with a slope that is close to isothermal, but which becomes shallower toward the center if indeed mass follows light. The dynamical model fits to the observed kinematic maps result in a total mass-to-light ratio Y{sub dyn} = 3.7 {+-} 0.5 Y{sub sun,I} (in the I band). This is consistent with the Einstein mass M{sub E} = 1.54 x 10{sup 10} M {sub sun} divided by the (projected) luminosity within R{sub E} , which yields a total mass-to-light ratio of Y {sub E} = 3.4 Y{sub sun,I}, with an error of at most a few percent. We estimate

  12. The Seismo-Generated Electric Field Probed by the Ionospheric Ion Velocity

    NASA Astrophysics Data System (ADS)

    (Tiger) Liu, Jann-Yenq

    2017-04-01

    The ion density, ion temperature, and the ion velocity probed by IPEI (ionospheric Plasma and Electrodynamics Instrument) onboard ROCSAT (i.e. FORMOSAT-1), and the global ionospheric map (GIM) of the total electron content (TEC) derived from measurements of ground-based GPS receivers are employed to study seismo-ionospheric precursors (SIPs) of the 31 March 2002 M6.8 Earthquake in Taiwan. The GIM TEC and ROCSAT/IPEI ion density significantly decrease specifically over the epicenter area 1-5 days before the earthquake, which suggests that the associated SIPs have observed. The ROCSAT/IPEI ion temperature reveals no significant changes before and after the earthquake, while the latitude-time-TEC plots extracted from the GIMs along the Taiwan longitude illustrate that the equatorial ionization anomaly significantly weakens and moves equatorward, which indicates that the daily dynamo electric field has been disturbed and cancelled by possible seismo-generated electric field on 2 days before (29 March) the earthquake. Here, for the first time a vector parameter of ion velocity is employed to study SIPs. It is found that ROCSAT/IPEI ion velocity becomes significantly downward, which confirms that a westward electric field of about 0.91mV/m generated during the earthquake preparation period being essential 1-5 days before the earthquake. Liu, J. Y., and C. K. Chao (2016), An observing system simulation experiment for FORMOSAT-5/AIP detecting seismo-ionospheric precursors, Terrestrial Atmospheric and Oceanic Sciences, DOI: 10.3319/TAO.2016.07.18.01(EOF5).

  13. Results of magnetic field measurements performed with the 6-m telescope. IV. Observations in 2010

    NASA Astrophysics Data System (ADS)

    Romanyuk, I. I.; Semenko, E. A.; Kudryavtsev, D. O.; Moiseeva, A. V.; Yakunin, I. A.

    2017-10-01

    We present the results of measurements of magnetic fields, radial velocities and rotation velocities for 92 objects, mainly main-sequence chemically peculiar stars. Observations were performed at the 6-m BTA telescope using Main Stellar Spectrograph with a Zeeman analyzer. In 2010, twelve new magnetic stars were discovered: HD 17330, HD 29762, HD 49884, HD 54824, HD 89069, HD 96003, HD 113894, HD 118054, HD 135679, HD 138633, HD 138777, BD +53.1183. The presence of a field is suspected in HD 16705, HD 35379 and HD 35881. Observations of standard stars without a magnetic field confirm the absence of systematic errors which can introduce distortions into the measurements of longitudinal field. The paper gives comments on the results of investigation of each star.

  14. Kinematic Clues to OB Field Star Origins: Radial Velocities, Runaways, and Binaries

    NASA Astrophysics Data System (ADS)

    Januszewski, Helen; Castro, Norberto; Oey, Sally; Becker, Juliette; Kratter, Kaitlin M.; Mateo, Mario; Simón-Díaz, Sergio; Bjorkman, Jon E.; Bjorkman, Karen; Sigut, Aaron; Smullen, Rachel; M2FS Team

    2018-01-01

    Field OB stars are a crucial probe of star formation in extreme conditions. Properties of massive stars formed in relative isolation can distinguish between competing star formation theories, while the statistics of runaway stars allow an indirect test of the densest conditions in clusters. To address these questions, we have obtained multi-epoch, spectroscopic observations for a spatially complete sample of 48 OB field stars in the SMC Wing with the IMACS and M2FS multi-object spectrographs at the Magellan Telescopes. The observations span 3-6 epochs per star, with sampling frequency ranging from one day to about one year. From these spectra, we have calculated the radial velocities (RVs) and, in particular, the systemic velocities for binaries. Thus, we present the intrinsic RV distribution largely uncontaminated by binary motions. We estimate the runaway frequency, corresponding to the high velocity stars in our sample, and we also constrain the binary frequency. The binary frequency and fitted orbital parameters also place important constraints on star formation theories, as these properties drive the process of runaway ejection in clusters, and we discuss these properties as derived from our sample. This unique kinematic analysis of a high mass field star population thus provides a new look at the processes governing formation and interaction of stars in environments at extreme densities, from isolation to dense clusters.

  15. The Next Generation Virgo Cluster Survey. XII. Stellar Populations and Kinematics of Compact, Low-mass Early-type Galaxies from Gemini GMOS-IFU Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Emsellem, Eric; McDermid, Richard M.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Durrell, Patrick R.; MacArthur, Lauren A.; Peng, Eric W.; Cuillandre, Jean-Charles; Gwyn, Stephen

    2015-05-01

    We present Gemini Multi Object Spectrograph integral-field unit (GMOS-IFU) data of eight compact, low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyze their stellar kinematics and stellar population and present two-dimensional maps of these properties covering the central 5″ × 7″ region. We find a large variety of kinematics, from nonrotating to highly rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the λR parameter and find six fast rotators and two slow rotators, one having a thin counterrotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M > 1010 {{M}⊙ }) ETGs from the ATLAS3D sample. The compact low-mass ETGs in our sample are located in high-density regions, often close to a massive galaxy, and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.

  16. One Bird, Several Stones: Investigating Massive Galaxies via Stellar Kinematics, Environment, and Quasar Demographics

    NASA Astrophysics Data System (ADS)

    Veale, Melanie R.

    2017-05-01

    Massive galaxies are the end product of a long evolutionary history, impacted by many complex processes. A coupling between quasars and their host galaxies is thought to be an important factor in quenching star formation in these galaxies, although a single unified picture of this process has yet to emerge. The first and smaller portion of this work compares several simple models for quasar demographics, tuning the model parameters to match observations at redshifts from z = 1 to z = 6. A key feature of the models is the enforcement of self-consistent mass growth across time. A variety of models fit the observed luminosity functions, but physical arguments and comparison to additional observations can distinguish among the models. The second and larger portion of this work focuses on two-dimensional stellar kinematics for the most massive local galaxies. The MASSIVE survey is a volume-limited sample of 116 galaxies with absolute magnitude M K < -25.3 mag, corresponding to stellar mass above approximately 1011.8 M., within a distance of D < 108 Mpc in the northern hemisphere, with observations from the Mitchell Integral Field Spectrograph (IFS) for each galaxy a main component of the survey. The line-of-sight velocity distribution (LOSVD) is extracted from optical spectra over a 107″ square field of view, with a Gauss- Hermite parameteriztion up to order 6. After characterizng the statistics of the velocity V , dispersion sigma, and higher moments h3, h 4, h5, and h6 for the most massive 41 galaxies of the sample, the first two moments (rotation velocity V and dispersion sigma) are studied in more detail as a function of galaxy environment. Several measures of environment are calculated, and particular attention is paid to untangling the joint correlations among kinematic properties, galaxy mass, and galaxy environment. The properties of the MASSIVE sample suggest that merger histories and galaxy environment impact galaxy mass and angular momentum in tandem, with

  17. A simple measuring technique of surface flow velocity to analyze the behavior of velocity fields in hydraulic engineering applications.

    NASA Astrophysics Data System (ADS)

    Tellez, Jackson; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.

    2015-04-01

    An important achievement in hydraulic engineering is the proposal and development of new techniques for the measurement of field velocities in hydraulic problems. The technological advances in digital cameras with high resolution and high speed found in the market, and the advances in digital image processing techniques now provides a tremendous potential to measure and study the behavior of the water surface flows. This technique was applied at the Laboratory of Hydraulics at the Technical University of Catalonia - Barcelona Tech to study the 2D velocity fields in the vicinity of a grate inlet. We used a platform to test grate inlets capacity with dimensions of 5.5 m long and 4 m wide allowing a zone of useful study of 5.5m x 3m, where the width is similar of the urban road lane. The platform allows you to modify the longitudinal slopes from 0% to 10% and transversal slope from 0% to 4%. Flow rates can arrive to 200 l/s. In addition a high resolution camera with 1280 x 1024 pixels resolution with maximum speed of 488 frames per second was used. A novel technique using particle image velocimetry to measure surface flow velocities has been developed and validated with the experimental data from the grate inlets capacity. In this case, the proposed methodology can become a useful tools to understand the velocity fields of the flow approaching the inlet where the traditional measuring equipment have serious problems and limitations. References DigiFlow User Guide. (2012), (June). Russo, B., Gómez, M., & Tellez, J. (2013). Methodology to Estimate the Hydraulic Efficiency of Nontested Continuous Transverse Grates. Journal of Irrigation and Drainage Engineering, 139(10), 864-871. doi:10.1061/(ASCE)IR.1943-4774.0000625 Teresa Vila (1), Jackson Tellez (1), Jesus Maria Sanchez (2), Laura Sotillos (1), Margarita Diez (3, 1), and J., & (1), M. R. (2014). Diffusion in fractal wakes and convective thermoelectric flows. Geophysical Research Abstracts - EGU General Assembly 2014

  18. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  19. Initial mass functions from ultraviolet stellar photometry: A comparison of Lucke and Hodge OB associations near 30 Doradus with the nearby field

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Isensee, Joan E.; Cornett, Robert H.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1994-01-01

    UV stellar photometry is presented for 1563 stars within a 40 minutes circular field in the Large Magellanic Cloud (LMC), excluding the 10 min x 10 min field centered on R136 investigated earlier by Hill et al. (1993). Magnitudes are computed from images obtained by the Ultraviolet Imaging Telescope (UIT) in bands centered at 1615 A and 2558 A. Stellar masses and extinctions are estimated for the stars in associations using the evolutionary models of Schaerer et al. (1993), assuming the age is 4 Myr and that the local LMC extinction follows the Fitzpatrick (1985) 30 Dor extinction curve. The estimated slope of the initial mass function (IMF) for massive stars (greater than 15 solar mass) within the Lucke and Hodge (LH) associations is Gamma = -1.08 +/- 0.2. Initial masses and extinctions for stars not within LH associations are estimated assuming that the stellar age is either 4 Myr or half the stellar lifetime, whichever is larger. The estimated slope of the IMF for massive stars not within LH associations is Gamma = -1.74 +/- 0.3 (assuming continuous star formation), compared with Gamma = -1.35, and Gamma = -1.7 +/- 0.5, obtained for the Galaxy by Salpeter (1955) and Scalo (1986), respectively, and Gamma = -1.6 obtained for massive stars in the Galaxy by Garmany, Conti, & Chiosi (1982). The shallower slope of the association IMF suggests that not only is the star formation rate higher in associations, but that the local conditions favor the formation of higher mass stars there. We make no corrections for binaries or incompleteness.

  20. The Lyman-Continuum Fluxes and Stellar Parameters of O and Early B-Type Stars

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Garmany, Catherine D.; Shull, J. Michael

    1996-01-01

    Using the results of the most recent stellar atmosphere models applied to a sample of hot stars, we construct calibrations of effective temperature (T(sub eff)), and gravity (log(sub g)) with a spectral type and luminosity class for Galactic 0-type and early B-type stars. From the model results we also derive an empirical relation between the bolometric correction and T(sub eff) and log g. Using a sample of stars with known distances located in OB associations in the Galaxy and the Large Magellanic Cloud, we derive a new calibration of M(sub v) with spectral class. With these new calibrations and the stellar atmosphere models of Kurucz, we calculate the physical parameters and ionizing photon luminosities in the H(0) and He(0) continua for O and early B-type stars. We find substantial differences between our values of the Lyman- continuum luminosity and those reported in the literature. We also discuss the systematic discrepancy between O-type stellar masses derived from spectroscopic models and those derived from evolutionary tracks. Most likely, the cause of this 'mass discrepancy' lies primarily in the atmospheric models, which are plane parallel and hydrostatic and therefore do not account for an extended atmosphere and the velocity fields in a stellar wind. Finally, we present a new computation of the Lyman-continuum luminosity from 429 known O stars located within 2.5 kpc of the Sun. We find the total ionizing luminosity from this population ((Q(sub 0)(sup T(sub ot))) = 7.0 x 10(exp 51) photons/s) to be 47% larger than that determined using the Lyman continuum values tabulated by Panagia.

  1. Research on stellarator-mirror fission-fusion hybrid

    NASA Astrophysics Data System (ADS)

    Moiseenko, V. E.; Kotenko, V. G.; Chernitskiy, S. V.; Nemov, V. V.; Ågren, O.; Noack, K.; Kalyuzhnyi, V. N.; Hagnestål, A.; Källne, J.; Voitsenya, V. S.; Garkusha, I. E.

    2014-09-01

    The development of a stellarator-mirror fission-fusion hybrid concept is reviewed. The hybrid comprises of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is the transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, neutrons are generated in deuterium-tritium (D-T) plasma, confined magnetically in a stellarator-type system with an embedded magnetic mirror. Based on kinetic calculations, the energy balance for such a system is analyzed. Neutron calculations have been performed with the MCNPX code, and the principal design of the reactor part is developed. Neutron outflux at different outer parts of the reactor is calculated. Numerical simulations have been performed on the structure of a magnetic field in a model of the stellarator-mirror device, and that is achieved by switching off one or two coils of toroidal field in the Uragan-2M torsatron. The calculations predict the existence of closed magnetic surfaces under certain conditions. The confinement of fast particles in such a magnetic trap is analyzed.

  2. The relationship between the instantaneous velocity field and the rate of moment release in the lithosphere

    USGS Publications Warehouse

    Pollitz, F.F.

    2003-01-01

    Instantaneous velocity gradients within the continental lithosphere are often related to the tectonic driving forces. This relationship is direct if the forces are secular, as for the case of loading of a locked section of a subduction interface by the downgoing plate. If the forces are static, as for the case of lateral variations in gravitational potential energy, then velocity gradients can be produced only if the lithosphere has, on average, zero strength. The static force model may be related to the long-term velocity field but not the instantaneous velocity field (typically measured geodetically over a period of several years) because over short time intervals the upper lithosphere behaves elastically. In order to describe both the short- and long-term behaviour of an (elastic) lithosphere-(viscoelastic) asthenosphere system in a self-consistent manner, I construct a deformation model termed the expected interseismic velocity (EIV) model. Assuming that the lithosphere is populated with faults that rupture continually, each with a definite mean recurrence time, and that the Earth is well approximated as a linear elastic-viscoelastic coupled system, I derive a simple relationship between the instantaneous velocity field and the average rate of moment release in the lithosphere. Examples with synthetic fault networks demonstrate that velocity gradients in actively deforming regions may to a large extent be the product of compounded viscoelastic relaxation from past earthquakes on hundreds of faults distributed over large ( ≥106 km2) areas.

  3. Influence of large-scale zonal flows on the evolution of stellar and planetary magnetic fields

    NASA Astrophysics Data System (ADS)

    Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel; ENS Collaboration

    2011-10-01

    Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection in planetary interiors may lead to secondary instabilities. We showed that a simple, modified version of the MagnetoRotational Instability, i.e., the MS-MRI can develop in planteray interiors. The weak shear yields an instability by its constructive interaction with the much larger rotation rate of planets. We present results from 3D simulations and show that 3D MS-MRI modes can generate wave pattern at the surface of the spherical numerical domain. Zonal flows and magnetic field are present in various objects as accretion discs, stars and planets. Observations show a huge variety of stellar and planetary magnetic fields. Of particular interest is the understanding of cyclic field variations, as known from the sun. They are often explained by an important Ω-effect, i.e., by the stretching of field lines because of strong differential rotation. We computed the dynamo coefficients for an oscillatory dynamo model with the help of the test-field method. We argue that this model is of α2 Ω -type and here the Ω-effect alone is not responsible for its cyclic time variation. More general conditions which lead to dynamo waves in global direct numerical simulations are presented. Zonal flows driven by convection

  4. Multiplicity in Early Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.

    Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.

  5. Ultimate Spectrum of Solar/Stellar Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Struminsky, Alexei

    2015-08-01

    We reconstruct an ultimate spectrum of solar/stellar cosmic rays (SCR) in a given point in the heliosphere (stellar sphere) basing on maximal value of magnetic field strenght in active region and its characteristic linear dimension. An accelerator of given dimensions and magnetic field strengh may accelarate to a finite energy for a given time (a maximal energy of SCR). We will use spectrum of SCR proposed by Syrovatsky (1961) for relativistic and non-relativistic energies normaliszing it to galactic cosmic ray (GCR) intensity at maximal SCR energy. Maximal values of SCR flux propagating in the heliosphere are determined by equilibrium between pressure of interplanetary magnrtic field and dynamic pressure of SCR (Frier&Webber, 1963). The obtained spectra would be applied to explain the extreme solar particle event occurred in about 775 AD basing on the tree-ring chronology (Miyake et al., 2012).

  6. On the extended stellar structure around NGC 288

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2018-01-01

    We report on observational evidence of an extra-tidal clumpy structure around NGC 288 from homogeneous coverage of a large area with the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) PS1 data base. The extra-tidal star population has been disentangled from that of the Milky Way (MW) field by using a cleaning technique that successfully reproduces the stellar density, luminosity function and colour distributions of MW field stars. We have produced the cluster stellar density radial profile and a stellar density map from independent approaches, and we found the results to be in excellent agreement - the feature extends up to 3.5 times further than the cluster tidal radius. Previous works based on shallower photometric data sets have speculated on the existence of several long tidal tails, similar to that found in Pal 5. The present outcome shows that NGC 288 could hardly have such tails, but it favours the notion that the use of interactions with the MW tidal field has been a relatively inefficient process for stripping stars off the cluster. These results point to the need for a renewed overall study of the external regions of Galactic globular clusters (GGCs) in order to reliably characterize them. It will then be possible to investigate whether there is any connection between detected tidal tails, extra-tidal stellar populations and extended diffuse halo-like structures, and the dynamical histories of GGCs in the Galaxy.

  7. Periastron shifts of stellar orbits near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Rubilar, G. F.; Eckart, A.

    2001-07-01

    The presence of a 2.9+/-0.4 million solar mass object in the central stellar cluster of the Milky Way has recently been demonstrated via measurements of the stellar proper motions and radial velocities. This mass is located at the position of the compact radio source Sagittarius A* (Sgr A*) at a distance of Ro=8.0 kpc and is most likely present in the form of a massive black hole (BH). Some of the stars have a projected distance to Sgr A* of <=0.005 pc and have proper motion velocities of up to 1400 km s-1. Recent measurements indicate that their orbits show significant curvatures indicating that the stars indeed orbit the central compact object. Detailed measurements of the stellar orbits close to Sgr A* will allow us to precisely determine the distribution of this mass. With an increased point source sensitivity due to the combination of large telescope apertures, adaptive optics, and - in the very near future - NIR interferometry it is likely that stars with orbital time scales of the order of one year will be detected. Theses sources, however, will most likely not be on simple Keplerian orbits. The effects of measurable prograde relativistic and retrograde Newtonian periastron shifts will result in rosetta shaped orbits. A substantial Newtonian periastron rotation can already be expected if only a few percent of the central mass are extended. We discuss the conditions under which an extended mass can (over-) compensate the relativistic periastron shift. We also demonstrate that measuring a single periastron shift is not sufficient to determine the distribution of an extended mass component. A periastron shift will allow us to determine the inclination of the stellar orbits and to derive inclination corrected shift values. These have to be acquired for three stars on orbits with different energy or angular momentum in order to unambiguously solve for the compactness, extent and shape of any extended mass contribution.

  8. Sodium Velocity Maps on Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  9. The evolution of magnetic hot massive stars: Implementation of the quantitative influence of surface magnetic fields in modern models of stellar evolution

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Zsolt; Wade, Gregg A.; Petit, Veronique

    2017-11-01

    Large-scale dipolar surface magnetic fields have been detected in a fraction of OB stars, however only few stellar evolution models of massive stars have considered the impact of these fossil fields. We are performing 1D hydrodynamical model calculations taking into account evolutionary consequences of the magnetospheric-wind interactions in a simplified parametric way. Two effects are considered: i) the global mass-loss rates are reduced due to mass-loss quenching, and ii) the surface angular momentum loss is enhanced due to magnetic braking. As a result of the magnetic mass-loss quenching, the mass of magnetic massive stars remains close to their initial masses. Thus magnetic massive stars - even at Galactic metallicity - have the potential to be progenitors of "heavy" stellar mass black holes. Similarly, at Galactic metallicity, the formation of pair instability supernovae is plausible with a magnetic progenitor.

  10. On the link between energy equipartition and radial variation in the stellar mass function of star clusters

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Vesperini, Enrico

    2017-01-01

    We make use of N-body simulations to determine the relationship between two observable parameters that are used to quantify mass segregation and energy equipartition in star clusters. Mass segregation can be quantified by measuring how the slope of a cluster's stellar mass function α changes with clustercentric distance r, and then calculating δ _α = d α (r)/d ln(r/r_m), where rm is the cluster's half-mass radius. The degree of energy equipartition in a cluster is quantified by η, which is a measure of how stellar velocity dispersion σ depends on stellar mass m via σ(m) ∝ m-η. Through a suite of N-body star cluster simulations with a range of initial sizes, binary fractions, orbits, black hole retention fractions, and initial mass functions, we present the co-evolution of δα and η. We find that measurements of the global η are strongly affected by the radial dependence of σ and mean stellar mass and the relationship between η and δα depends mainly on the cluster's initial conditions and the tidal field. Within rm, where these effects are minimized, we find that η and δα initially share a linear relationship. However, once the degree of mass segregation increases such that the radial dependence of σ and mean stellar mass become a factor within rm, or the cluster undergoes core collapse, the relationship breaks down. We propose a method for determining η within rm from an observational measurement of δα. In cases where η and δα can be measured independently, this new method offers a way of measuring the cluster's dynamical state.

  11. The velocity and vorticity fields of the turbulent near wake of a circular cylinder

    NASA Technical Reports Server (NTRS)

    Wallace, James; Ong, Lawrence; Moin, Parviz

    1995-01-01

    The purpose of this research is to provide a detailed experimental database of velocity and vorticity statistics in the very near wake (x/d less than 10) of a circular cylinder at Reynolds number of 3900. This study has determined that estimations of the streamwise velocity component in flow fields with large nonzero cross-stream components are not accurate. Similarly, X-wire measurements of the u and v velocity components in flows containing large w are also subject to the errors due to binormal cooling. Using the look-up table (LUT) technique, and by calibrating the X-wire probe used here to include the range of expected angles of attack (+/- 40 deg), accurate X-wire measurements of instantaneous u and v velocity components in the very near wake region of a circular cylinder has been accomplished. The approximate two-dimensionality of the present flow field was verified with four-wire probe measurements, and to some extent the spanwise correlation measurements with the multisensor rake. Hence, binormal cooling errors in the present X-wire measurements are small.

  12. Crustal velocity field near the big bend of California's San Andreas fault

    USGS Publications Warehouse

    Snay, R.A.; Cline, M.W.; Philipp, C.R.; Jackson, D.D.; Feng, Y.; Shen, Z.-K.; Lisowski, M.

    1996-01-01

    We use geodetic data spanning the 1920-1992 interval to estimate the horizontal velocity field near the big bend segment of California's San Andreas fault (SAF). More specifically, we estimate a horizontal velocity vector for each node of a two-dimensional grid that has a 15-min-by-15-min mesh and that extends between latitudes 34.0??N and 36.0??N and longitudes 117.5??W and 120.5??W. For this estimation process, we apply bilinear interpolation to transfer crustal deformation information from geodetic sites to the grid nodes. The data include over a half century of triangulation measurements, over two decades of repeated electronic distance measurements, a decade of repeated very long baseline interferometry measurements, and several years of Global Positioning System measurements. Magnitudes for our estimated velocity vectors have formal standard errors ranging from 0.7 to 6.8 mm/yr. Our derived velocity field shows that (1) relative motion associated with the SAF exceeds 30 mm/yr and is distributed on the Earth's surface across a band (> 100 km wide) that is roughly centered on this fault; (2) when velocities are expressed relative to a fixed North America plate, the motion within our primary study region has a mean orientation of N44??W ?? 2?? and the surface trace of the SAF is congruent in shape to nearby contours of constant speed yet this trace is oriented between 5?? and 10?? counterclockwise relative to these contours; and (3) large strain rates (shear rates > 150 nrad/yr and/or areal dilatation rates < -150 nstr/yr) exist near the Garlock fault, near the White Wolf fault, and in the Ventura basin.

  13. Relativistic stellar stability - Preferred-frame effects

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1974-01-01

    In a previous paper, the PPN (parametrized post-Newtonian) formalism was used to analyze relativistic influences on stellar stability in nearly all metric theories of gravity. That analysis omitted all preferred-frame terms. In this paper, possible preferred-frame effects on stellar stability are examined and no new instabilities are found. Although terms linear in the preferred-frame velocity w (time-odd terms, analogous to viscosity and energy generation) change the shapes of the normal modes, their symmetry properties prevent them from changing the characteristic frequencies. Thus, no new vibrational or secular instabilities can occur. Terms quadratic in w do not change either the shapes of the normal modes or the characteristic frequencies for radial pulsations (except for the effects due to the renormalization of the gravitation constant which does not affect stability). Thus, they have no influence on radial stability. Terms quadratic in w do change both the normal modes and the characteristic frequencies of nonradial pulsations; but in the limit of a neutral mode these changes vanish.

  14. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-06-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  15. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-04-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  16. Advancing the understanding of plasma transport in mid-size stellarators

    NASA Astrophysics Data System (ADS)

    Hidalgo, Carlos; Talmadge, Joseph; Ramisch, Mirko; TJ-II, the; HXS; TJ-K Teams

    2017-01-01

    The tokamak and the stellarator are the two main candidate concepts for magnetically confining fusion plasmas. The flexibility of the mid-size stellarator devices together with their unique diagnostic capabilities make them ideally suited to study the relation between magnetic topology, electric fields and transport. This paper addresses advances in the understanding of plasma transport in mid-size stellarators with an emphasis on the physics of flows, transport control, impurity and particle transport and fast particles. The results described here emphasize an improved physics understanding of phenomena in stellarators that complements the empirical approach. Experiments in mid-size stellarators support the development of advanced plasma scenarios in Wendelstein 7-X (W7-X) and, in concert with better physics understanding in tokamaks, may ultimately lead to an advance in the prediction of burning plasma behaviour.

  17. HMI Measured Doppler Velocity Contamination from the SDO Orbit Velocity

    NASA Astrophysics Data System (ADS)

    Scherrer, Phil; HMI Team

    2016-10-01

    The Problem: The SDO satellite is in an inclined Geo-sync orbit which allows uninterrupted views of the Sun nearly 98% of the time. This orbit has a velocity of about 3,500 m/s with the solar line-of-sight component varying with time of day and time of year. Due to remaining calibration errors in wavelength filters the orbit velocity leaks into the line-of-sight solar velocity and magnetic field measurements. Since the same model of the filter is used in the Milne-Eddington inversions used to generate the vector magnetic field data, the orbit velocity also contaminates the vector magnetic products. These errors contribute 12h and 24h variations in most HMI data products and are known as the 24-hour problem. Early in the mission we made a patch to the calibration that corrected the disk mean velocity. The resulting LOS velocity has been used for helioseismology with no apparent problems. The velocity signal has about a 1% scale error that varies with time of day and with velocity, i.e. it is non-linear for large velocities. This causes leaks into the LOS field (which is simply the difference between velocity measured in LCP and RCP rescaled for the Zeeman splitting). This poster reviews the measurement process, shows examples of the problem, and describes recent work at resolving the issues. Since the errors are in the filter characterization it makes most sense to work first on the LOS data products since they, unlike the vector products, are directly and simply related to the filter profile without assumptions on the solar atmosphere, filling factors, etc. Therefore this poster is strictly limited to understanding how to better understand the filter profiles as they vary across the field and with time of day and time in years resulting in velocity errors of up to a percent and LOS field estimates with errors up to a few percent (of the standard LOS magnetograph method based on measuring the differences in wavelength of the line centroids in LCP and RCP light). We

  18. Gravitational Field as a Pressure Force from Logarithmic Lagrangians and Non-Standard Hamiltonians: The Case of Stellar Halo of Milky Way

    NASA Astrophysics Data System (ADS)

    El-Nabulsi, Rami Ahmad

    2018-03-01

    Recently, the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations. Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties. One interesting form related to the inverse variational problem is the logarithmic Lagrangian, which has a number of motivating features related to the Liénard-type and Emden nonlinear differential equations. Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians. In this communication, we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians. One interesting consequence concerns the emergence of an extra pressure term, which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field. The case of the stellar halo of the Milky Way is considered.

  19. EXor OUTBURSTS FROM DISK AMPLIFICATION OF STELLAR MAGNETIC CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armitage, Philip J., E-mail: pja@jilau1.colorado.edu

    EXor outbursts—moderate-amplitude disk accretion events observed in Class I and Class II protostellar sources—have timescales and amplitudes that are consistent with the viscous accumulation and release of gas in the inner disk near the dead zone boundary. We suggest that outbursts are indirectly triggered by stellar dynamo cycles, via poloidal magnetic flux that diffuses radially outward through the disk. Interior to the dead zone the strength of the net field modulates the efficiency of angular momentum transport by the magnetorotational instability. In the dead zone changes in the polarity of the net field may lead to stronger outbursts because ofmore » the dominant role of the Hall effect in this region of the disk. At the level of simple estimates we show that changes to kG-strength stellar fields could stimulate disk outbursts on 0.1 au scales, though this optimistic conclusion depends upon the uncertain efficiency of net flux transport through the inner disk. The model predicts a close association between observational tracers of stellar magnetic activity and EXor events.« less

  20. The Stellar Imager (SI)"Vision Mission"

    NASA Technical Reports Server (NTRS)

    Carpenter, Ken; Danchi, W.; Leitner, J.; Liu, A.; Lyon, R.; Mazzuca, L.; Moe, R.; Chenette, D.; Karovska, M.; Allen, R.

    2004-01-01

    The Stellar Imager (SI) is a "Vision" mission in the Sun-Earth Connection (SEC) Roadmap, conceived for the purpose of understanding the effects of stellar magnetic fields, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best possible forecasting of solar/stellar magnetic activity and its impact on life in the Universe. The science goals of SI require an ultra-high angular resolution, at ultraviolet wavelengths, on the order of 100 micro-arcsec and thus baselines on the order of 0.5 km. These requirements call for a large, multi-spacecraft (less than 20) imaging interferometer, utilizing precision formation flying in a stable environment, such as in a Lissajous orbit around the Sun-Earth L2 point. SI's resolution will make it an invaluable resource for many other areas of astrophysics, including studies of AGN s, supernovae, cataclysmic variables, young stellar objects, QSO's, and stellar black holes. ongoing mission concept and technology development studies for SI. These studies are designed to refine the mission requirements for the science goals, define a Design Reference Mission, perform trade studies of selected major technical and architectural issues, improve the existing technology roadmap, and explore the details of deployment and operations, as well as the possible roles of astronauts and/or robots in construction and servicing of the facility.

  1. IN-SYNC. III. The Dynamical State of IC 348 - A Super-virial Velocity Dispersion and a Puzzling Sign of Convergence

    NASA Astrophysics Data System (ADS)

    Cottaar, Michiel; Covey, Kevin R.; Foster, Jonathan B.; Meyer, Michael R.; Tan, Jonathan C.; Nidever, David L.; Chojnowski, S. Drew; da Rio, Nicola; Flaherty, Kevin M.; Frinchaboy, Peter M.; Majewski, Steve; Skrutskie, Michael F.; Wilson, John C.; Zasowski, Gail

    2015-07-01

    Most field stars will have encountered the highest stellar density and hence the largest number of interactions in their birth environment. Yet the stellar dynamics during this crucial phase are poorly understood. Here we analyze the radial velocities measured for 152 out of 380 observed stars in the 2-6 Myr old star cluster IC 348 as part of the SDSS-III APOGEE. The radial velocity distribution of these stars is fitted with one or two Gaussians, convolved with the measurement uncertainties including binary orbital motions. Including a second Gaussian improves the fit; the high-velocity outliers that are best fit by this second component may either (1) be contaminants from the nearby Perseus OB2 association, (2) be a halo of ejected or dispersing stars from IC 348, or (3) reflect that IC 348 has not relaxed to a Gaussian velocity distribution. We measure a velocity dispersion for IC 348 of 0.72 ± 0.07 km s-1 (or 0.64 ± 0.08 km s-1 if two Gaussians are fitted), which implies a supervirial state, unless the gas contributes more to the gravitational potential than expected. No evidence is found for a dependence of this velocity dispersion on distance from the cluster center or stellar mass. We also find that stars with lower extinction (in the front of the cloud) tend to be redshifted compared with stars with somewhat higher extinction (toward the back of the cloud). This data suggest that the stars in IC 348 are converging along the line of sight. We show that this correlation between radial velocity and extinction is unlikely to be spuriously caused by the small cluster rotation of 0.024 ± 0.013 km s-1 arcmin-1 or by correlations between the radial velocities of neighboring stars. This signature, if confirmed, will be the first detection of line of sight convergence in a star cluster. Possible scenarios for reconciling this convergence with IC 348's observed supervirial state include: (a) the cluster is fluctuating around a new virial equilibrium after a recent

  2. A high-precision radial-velocity survey for other planetary systems

    NASA Technical Reports Server (NTRS)

    Cochran, William D.; Hatzes, Artie P.

    1994-01-01

    The precise measurement of variations in stellar radial velocities provides one of several promising methods of surveying a large sample of nearby solar type stars to detect planetary systems in orbit around them. The McDonald Observatory Planetary Search (MOPS) was started in 1987 September with the goal of detecting other nearby planetary systems. A stabilized I2 gas absorption cell placed in front of the entrance slit to the McDonald Observatory 2.7 m telescope coude spectrograph serves as the velocity metric. With this I2 cell we can achieve radial velocity measurement precision better than 10 m/s in an individual measurement. At this level we can detect a Jupiter-like planet around a solar-type star, and have some hope of detecting Saturn-like planets in a long-term survey. The detectability of planets is ultimately limited by stellar pulsation modes and photospheric motions. Monthly MOPS observing runs allow us to obtain at least 5 independent observations per year of the 33 solar-type (F5-K7) stars on our observing list. We present representative results from the first five years of the survey.

  3. Field dependence of the electron drift velocity along the hexagonal axis of 4H-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Potapov, A. S.; Samsonova, T. P.

    The forward current–voltage characteristics of mesa-epitaxial 4H-SiC Schottky diodes are measured in high electric fields (up to 4 × 10{sup 5} V/cm) in the n-type base region. A semi-empirical formula for the field dependence of the electron drift velocity in 4H-SiC along the hexagonal axis of the crystal is derived. It is shown that the saturated drift velocity is (1.55 ± 0.05) × 10{sup 7} cm/s in electric fields higher than 2 × 10{sup 5} V/cm.

  4. Momentum and energy deposition in late-type stellar atmospheres and winds

    NASA Technical Reports Server (NTRS)

    Hartmann, L.; Macgregor, K. B.

    1980-01-01

    The present study calculates the response of the outer atmospheres of cool low-gravity stars to the passage of the mechanical energy fluxes of solar magnitude in the form of acoustic waves and Alfven waves. It is shown that Alfven waves are efficient in generating outflow, and can account for the order of magnitude of observed mass loss in late-type luminous stars. However, unless these magnetic waves undergo some dissipation within several stellar radii of the surface, the predicted terminal velocities of the resulting stellar winds are far too high. Alfven wave dissipation should give rise to extended warm chromospheres in low-gravity late-type stars, a prediction which can be observationally tested.

  5. Stellar Parameter Determination With J-Plus Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Whitten, Devin D.

    2017-10-01

    The J-PLUS narrow-band filter system provides a unique opportunity for the determination of stellar parameters and chemical abundances from photometry alone. Mapping stellar magnitudes to estimates of surface temperature, [Fe/H], and [C/Fe] is an excellent application of machine learning and in particular, artificial neural networks (ANN). The logistics and performance of this ANN methodology is explored with the J-PLUS Early Data Release, as well as the potential impact of stellar parameters from J-PLUS on the field of Galactic chemical evolution.

  6. The Stellar Imager (SI) "Vision Mission"

    NASA Technical Reports Server (NTRS)

    Carpenter, K.; Danchi, W.; Leitner, J.; Liu, A.; Lyon, R.; Mazzuca, L.; Moe, R.; Chenette, D.; Schrijver, C.; Kilston, S.

    2004-01-01

    The Stellar Imager (SI) is a Vision Mission in the Sun-Earth Connection (SEC) NASA Roadmap, conceived for the purpose of understanding the effects of stellar magnetic fields, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best possible forecasting of solar/stellar activity and its impact on life in the Universe. The science goals of SI require an ultra-high angular resolution, at ultraviolet wavelengths, on the order of 100 micro-arcsec and baselines on the order of 0.5 km. These requirements call for a large, multi-spacecraft (greater than 20) imaging interferometer, utilizing precision formation flying in a stable environment, such as in a Lissajous orbit around the Sun-Earth L2 point. In this paper, we present an update on the ongoing SI mission concept and technology development studies.

  7. The Stellar Imager (SI) "Vision Mission"

    NASA Technical Reports Server (NTRS)

    Carpenter, K.; Danchi, W.; Leitner, J.; Liu, A.; Lyon, R.; Mazzuca, L.; Moe, R.; Chenette, D.; Schrijver, C.; Kilston, S.

    2004-01-01

    The Stellar Imager (SI) is a Vision Mission in the Sun-Earth Connection (SEC) NASA Roadmap, conceived for the purpose of understanding the effects of stellar magnetic fields, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best possible forecasting of solar/stellar activity and its impact on life in the Universe. The science goals of SI require an ultra-high angular resolution, a t ultraviolet wavelengths, on the order of 100 micro-arcsec and baselines on the order of 0.5 km. These requirements call for a large, multi-spacecraft (>20) imaging interferometer, utilizing precision formation flying in a stable environment, such as in a Lissajous orbit around the Sun-Earth L2 point. In this paper, we present an update on the ongoing SI mission concept and technology development studies.

  8. Equilibrium 𝛽-limits in classical stellarators

    NASA Astrophysics Data System (ADS)

    Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.

    2017-12-01

    A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.

  9. Equilibrium β-limits in classical stellarators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loizu, Joaquim; Hudson, S. R.; Nuhrenberg, C.

    Here, a numerical investigation is carried out to understand the equilibrium β-limit in a classical stellarator. The stepped-pressure equilibrium code is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high β. Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium β-limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium β-limit, is shown to develop regions of magnetic islands and chaosmore » at sufficiently high β, thereby providing a ‘non-ideal β-limit’. Perhaps surprisingly, however, the value of β at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg and derive a new prediction for the non-ideal equilibrium β-limit above which chaos emerges.« less

  10. Equilibrium β-limits in classical stellarators

    DOE PAGES

    Loizu, Joaquim; Hudson, S. R.; Nuhrenberg, C.; ...

    2017-11-17

    Here, a numerical investigation is carried out to understand the equilibrium β-limit in a classical stellarator. The stepped-pressure equilibrium code is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high β. Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium β-limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium β-limit, is shown to develop regions of magnetic islands and chaosmore » at sufficiently high β, thereby providing a ‘non-ideal β-limit’. Perhaps surprisingly, however, the value of β at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg and derive a new prediction for the non-ideal equilibrium β-limit above which chaos emerges.« less

  11. Assessment of velocity fields through open-channel flows with an empiric law.

    PubMed

    Bardiaux, J B; Vazquez, J; Mosé, R

    2008-01-01

    Most sewer managers are currently confronted with the evaluation of the water discharges, that flow through their networks or go to the discharge system, i.e. rivers in the majority of cases. In this context, the Urban Hydraulic Systems laboratory of the ENGEES is working on the relation between velocity fields and metrology assessment through a partnership with the Fluid and Solid Mechanics Institute of Strasbourg (IMFS). The responsibility is clearly to transform a velocity profile measurement, given by a Doppler sensor developed by the IMFS team, into a water discharge evaluation. The velocity distribution in a cross section of the flow in a channel has attracted the interests of many researchers over the years, due to its practical applications. In the case of free surface flows in narrow open channels the maximum velocity is below the free surface. This phenomenon, usually called "dip-phenomenon", amongst other things, raises the problem of the area explored in the section of measurements. The work presented here tries to create a simple relation making possible to associate the flow with the velocity distribution. This step allows to insert the sensor position into the flow calculation.

  12. Outflow structure and velocity field of Orion source. I. ALMA imaging of SiO isotopologue maser and thermal emission

    NASA Astrophysics Data System (ADS)

    Niederhofer, F.; Humphreys, E. M. L.; Goddi, C.

    2012-12-01

    Using Science Verification data from the Atacama Large Millimeter/Submillimeter Array (ALMA), we have identified and imaged five rotational transitions (J = 5-4 and J = 6-5) of the three silicon monoxide isotopologues 28SiO v = 0, 1, 2 and 29SiO v = 0 and 28Si18O v = 0 in the frequency range from 214 to 246 GHz towards the Orion BN/KL region. The emission of the ground-state 28SiO, 29SiO and 28Si18O shows an extended bipolar shape in the northeast-southwest direction at the position of Radio Source I, indicating that these isotopologues trace an outflow ( 18 km s-1, PA 50°, 5000 AU in diameter) that is driven by this embedded high-mass young stellar object (YSO). Whereas on small scales (10-1000 AU) the outflow from Source I has a well-ordered spatial and velocity structure, as probed by Very Long Baseline Interferometry (VLBI) imaging of SiO masers, the large scales (500-5000 AU) probed by thermal SiO with ALMA reveal a complex structure and velocity field, most likely related to the effects of the environment of the BN/KL region on the outflow emanating from Source I. The emission of the vibrationally-excited species peaks at the position of Source I. This emission is compact and not resolved at an angular resolution of 1farcs5 ( 600 AU at a distance of 420 pc). 2D Gaussian fitting to individual velocity channels locates emission peaks within radii of 100 AU, i.e. they trace the innermost part of the outflow. A narrow spectral profile and spatial distribution of the v = 1 J = 5-4 line similar to the masing v = 1 J = 1-0 transition, provide evidence for the most highly rotationally excited (frequency > 200 GHz) SiO maser emission associated with Source I known to date. The maser emission will enable studies of the Source I disk-outflow interface with future ALMA longest baselines.

  13. Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics

    NASA Astrophysics Data System (ADS)

    Taranu, D. S.; Obreschkow, D.; Dubinski, J. J.; Fogarty, L. M. R.; van de Sande, J.; Catinella, B.; Cortese, L.; Moffett, A.; Robotham, A. S. G.; Allen, J. T.; Bland-Hawthorn, J.; Bryant, J. J.; Colless, M.; Croom, S. M.; D'Eugenio, F.; Davies, R. L.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Mould, J. R.; Owers, M. S.; Power, C.; Richards, S. N.; Tonini, C.

    2017-11-01

    We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge-disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

  14. A Study of The Binary and Anomalous Stellar Populations in Two Intermediate-Aged Open Clusters

    NASA Astrophysics Data System (ADS)

    Mathieu, Robert D.; Milliman, Katelyn; Geller, Aaron M.; Gosnell, Natalie

    2010-08-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. It is now clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, sophisticated N-body models show that stellar dynamical processes play a central role in the formation of such anomalous stars. These stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose to expand our highly successful radial-velocity survey to include two new rich open clusters NGC 7789 (1.8 Gyr, -0.1 dex) and NGC 2506 (2.1 Gyr, -0.4 dex) as part of the WIYN Open Cluster Study (WOCS). Though these two clusters are both of intermediate age and of similar richness, they have quite different blue straggler populations. NGC 2506 has only 10 known blue stragglers, while NGC 7789 has at least 27, among the largest known populations of blue stragglers in an open cluster. Defining the hard-binary populations in these two clusters is critical for understanding the factors that determine blue straggler production rates. Our proposed observations will establish the hard- binary fraction and frequency distributions of orbital parameters (periods, eccentricities, mass-ratios, etc.) for orbital periods approaching the hard-soft boundary, and will provide a comprehensive survey of the blue stragglers and other anomalous stars, including secure cluster memberships and binary properties. These data will then form direct constraints for detailed N-body open cluster simulations from which we will study the impact of the hard-binary population on the production rates and mechanisms of blue stragglers.

  15. Thermonuclear inverse magnetic pumping power cycle for stellarator reactor

    DOEpatents

    Ho, Darwin D.; Kulsrud, Russell M.

    1991-01-01

    The plasma column in a stellarator is compressed and expanded alternatively in minor radius. First a plasma in thermal balance is compressed adiabatically. The volume of the compressed plasma is maintained until the plasma reaches a new thermal equilibrium. The plasma is then expanded to its original volume. As a result of the way a stellarator works, the plasma pressure during compression is less than the corresponding pressure during expansion. Therefore, negative work is done on the plasma over a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils. Direct electrical energy is obtained from this voltage. Alternatively, after the compression step, the plasma can be expanded at constant pressure. The cycle can be made self-sustaining by operating a system of two stellarator reactors in tandem. Part of the energy derived from the expansion phase of a first stellarator reactor is used to compress the plasma in a second stellarator reactor.

  16. GPS Velocity and Strain Rate Fields in Southwest Anatolia from Repeated GPS Measurements

    PubMed Central

    Erdoğan, Saffet; Şahin, Muhammed; Tiryakioğlu, İbrahim; Gülal, Engin; Telli, Ali Kazım

    2009-01-01

    Southwestern Turkey is a tectonically active area. To determine kinematics and strain distribution in this region, a GPS network of sixteen stations was established. We have used GPS velocity field data for southwest Anatolia from continuous measurements covering the period 2003 to 2006 to estimate current crustal deformation of this tectonically active region. GPS data were processed using GAMIT/GLOBK software and velocity and strain rate fields were estimated in the study area. The measurements showed velocities of 15–30 mm/yr toward the southwest and strain values up to 0.28–8.23×10−8. Results showed that extension has been determined in the Burdur-Isparta region. In this study, all of strain data reveal an extensional neotectonic regime through the northeast edge of the Isparta Angle despite the previously reported compressional neotectonic regime. Meanwhile, results showed some small differences relatively with the 2006 model of Reilinger et al. As a result, active tectonic movements, in agreement with earthquake fault plane solutions showed important activity. PMID:22573998

  17. Tuning the Fermi velocity in Dirac materials with an electric field.

    PubMed

    Díaz-Fernández, A; Chico, Leonor; González, J W; Domínguez-Adame, F

    2017-08-14

    Dirac materials are characterized by energy-momentum relations that resemble those of relativistic massless particles. Commonly denominated Dirac cones, these dispersion relations are considered to be their essential feature. These materials comprise quite diverse examples, such as graphene and topological insulators. Band-engineering techniques should aim to a full control of the parameter that characterizes the Dirac cones: the Fermi velocity. We propose a general mechanism that enables the fine-tuning of the Fermi velocity in Dirac materials in a readily accessible way for experiments. By embedding the sample in a uniform electric field, the Fermi velocity is substantially modified. We first prove this result analytically, for the surface states of a topological insulator/semiconductor interface, and postulate its universality in other Dirac materials. Then we check its correctness in carbon-based Dirac materials, namely graphene nanoribbons and nanotubes, thus showing the validity of our hypothesis in different Dirac systems by means of continuum, tight-binding and ab-initio calculations.

  18. The PyCASSO database: spatially resolved stellar population properties for CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    de Amorim, A. L.; García-Benito, R.; Cid Fernandes, R.; Cortijo-Ferrero, C.; González Delgado, R. M.; Lacerda, E. A. D.; López Fernández, R.; Pérez, E.; Vale Asari, N.

    2017-11-01

    The Calar Alto Legacy Integral Field Area (CALIFA) survey, a pioneer in integral field spectroscopy legacy projects, has fostered many studies exploring the information encoded on the spatially resolved data on gaseous and stellar features in the optical range of galaxies. We describe a value-added catalogue of stellar population properties for CALIFA galaxies analysed with the spectral synthesis code starlight and processed with the pycasso platform. Our public database (http://pycasso.ufsc.br/, mirror at http://pycasso.iaa.es/) comprises 445 galaxies from the CALIFA Data Release 3 with COMBO data. The catalogue provides maps for the stellar mass surface density, mean stellar ages and metallicities, stellar dust attenuation, star formation rates, and kinematics. Example applications both for individual galaxies and for statistical studies are presented to illustrate the power of this data set. We revisit and update a few of our own results on mass density radial profiles and on the local mass-metallicity relation. We also show how to employ the catalogue for new investigations, and show a pseudo Schmidt-Kennicutt relation entirely made with information extracted from the stellar continuum. Combinations to other databases are also illustrated. Among other results, we find a very good agreement between star formation rate surface densities derived from the stellar continuum and the H α emission. This public catalogue joins the scientific community's effort towards transparency and reproducibility, and will be useful for researchers focusing on (or complementing their studies with) stellar properties of CALIFA galaxies.

  19. Second Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 1

    NASA Technical Reports Server (NTRS)

    Giampapa, M. S. (Editor); Golub, L. (Editor)

    1981-01-01

    Solar and stellar atmospheric phenomena and their fundamental physical properties such as gravity, effective temperature and rotation rate, which provides the range in parameter space required to test various theoretical models were investigated. The similarity between solar activity and stellar activity is documented. Some of the topics discussed are: atmospheric structure, magnetic fields, solar and stellar activity, and evolution.

  20. WIYN Open Cluster Study. XXXII. Stellar Radial Velocities in the Old Open Cluster NGC 188

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Harris, Hugh C.; McClure, Robert D.

    2008-06-01

    We present the results of our ongoing radial-velocity (RV) survey of the old (7 Gyr) open cluster NGC 188. Our WIYN 3.5 m data set spans a time baseline of 11 years, a magnitude range of 12 <= V <= 16.5 (1.18-0.94 M sun), and a 1° diameter region on the sky. With the addition of a Domain Astrophysical Observatory data set we extend our bright limit to V = 10.8 and, for some stars, extend our time baseline to 35 years. Our magnitude limits include solar-mass main-sequence stars, subgiants, giants, and blue stragglers (BSs), and our spatial coverage extends radially to 17 pc (~13 core radii). For the WIYN data we present a detailed description of our data reduction process and a thorough analysis of our measurement precision of 0.4 km s-1 for narrow-lined stars. We have measured radial velocities for 1046 stars in the direction of NGC 188, and have calculated RV membership probabilities for stars with >=3 measurements, finding 473 to be likely cluster members. We detect 124 velocity-variable cluster members, all of which are likely to be dynamically hard-binary stars. Using our single member stars, we find an average cluster radial velocity of -42.36 ± 0.04 km s-1. We use our precise RV and proper-motion membership data to greatly reduce field-star contamination in our cleaned color-magnitude diagram, from which we identify six stars of note that lie far from a standard single-star isochrone. We present a detailed study of the spatial distribution of cluster-member populations, and find the binaries to be centrally concentrated, providing evidence for the presence of mass segregation in NGC 188. We observe the BSs to populate a bimodal spatial distribution that is not centrally concentrated, suggesting that we may be observing two populations of BSs in NGC 188, including a centrally concentrated distribution as well as a halo population. Finally, we find NGC 188 to have a global RV dispersion of 0.64 ± 0.04 km s-1, which may be inflated by up to 0.23 km s-1 from

  1. M*/L gradients driven by IMF variation: large impact on dynamical stellar mass estimates

    NASA Astrophysics Data System (ADS)

    Bernardi, M.; Sheth, R. K.; Dominguez-Sanchez, H.; Fischer, J.-L.; Chae, K.-H.; Huertas-Company, M.; Shankar, F.

    2018-06-01

    Within a galaxy the stellar mass-to-light ratio ϒ* is not constant. Recent studies of spatially resolved kinematics of nearby early-type galaxies suggest that allowing for a variable initial mass function (IMF) returns significantly larger ϒ* gradients than if the IMF is held fixed. We show that ignoring such IMF-driven ϒ* gradients can have dramatic effect on dynamical (M_*^dyn), though stellar population (M_*^SP) based estimates of early-type galaxy stellar masses are also affected. This is because M_*^dyn is usually calibrated using the velocity dispersion measured in the central regions (e.g. Re/8) where stars are expected to dominate the mass (i.e. the dark matter fraction is small). On the other hand, M_*^SP is often computed from larger apertures (e.g. using a mean ϒ* estimated from colours). If ϒ* is greater in the central regions, then ignoring the gradient can overestimate M_*^dyn by as much as a factor of two for the most massive galaxies. Large ϒ*-gradients have four main consequences: First, M_*^dyn cannot be estimated independently of stellar population synthesis models. Secondly, if there is a lower limit to ϒ* and gradients are unknown, then requiring M_*^dyn=M_*^SP constrains them. Thirdly, if gradients are stronger in more massive galaxies, then accounting for this reduces the slope of the correlation between M_*^dyn/M_*^SP of a galaxy with its velocity dispersion. In particular, IMF-driven gradients bring M_*^dyn and M_*^SP into agreement, not by shifting M_*^SP upwards by invoking constant bottom-heavy IMFs, as advocated by a number of recent studies, but by revising M_*^dyn estimates in the literature downwards. Fourthly, accounting for ϒ* gradients changes the high-mass slope of the stellar mass function φ (M_*^dyn), and reduces the associated stellar mass density. These conclusions potentially impact estimates of the need for feedback and adiabatic contraction, so our results highlight the importance of measuring ϒ* gradients in

  2. Numerical simulations of stellar jets and comparison between synthetic and observed maps: clues to the launch mechanism

    NASA Astrophysics Data System (ADS)

    Rubini, F.; Maurri, L.; Inghirami, G.; Bacciotti, F.; Del Zanna, L.

    2014-07-01

    High angular resolution spectra obtained with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) provide rich morphological and kinematical information about the stellar jet phenomenon, which allows us to test theoretical models efficiently. In this work, numerical simulations of stellar jets in the propagation region are executed with the PLUTO code, by adopting inflow conditions that arise from former numerical simulations of magnetized outflows, accelerated by the disk-wind mechanism in the launching region. By matching the two regions, information about the magneto-centrifugal accelerating mechanism underlying a given astrophysical object can be extrapolated by comparing synthetic and observed position-velocity diagrams. We show that quite different jets, like those from the young T Tauri stars DG-Tau and RW-Aur, may originate from the same disk-wind model for different configurations of the magnetic field at the disk surface. This result supports the idea that all the observed jets may be generated by the same mechanism. Appendix A is available in electronic form at http://www.aanda.org

  3. Calculations of neoclassical impurity transport in stellarators

    NASA Astrophysics Data System (ADS)

    Mollén, Albert; Smith, Håkan M.; Langenberg, Andreas; Turkin, Yuriy; Beidler, Craig D.; Helander, Per; Landreman, Matt; Newton, Sarah L.; García-Regaña, José M.; Nunami, Masanori

    2017-10-01

    The new stellarator Wendelstein 7-X has finished the first operational campaign and is restarting operation in the summer 2017. To demonstrate that the stellarator concept is a viable candidate for a fusion reactor and to allow for long pulse lengths of 30 min, i.e. ``quasi-stationary'' operation, it will be important to avoid central impurity accumulation typically governed by the radial neoclassical transport. The SFINCS code has been developed to calculate neoclassical quantities such as the radial collisional transport and the ambipolar radial electric field in 3D magnetic configurations. SFINCS is a cutting-edge numerical tool which combines several important features: the ability to model an arbitrary number of kinetic plasma species, the full linearized Fokker-Planck collision operator for all species, and the ability to calculate and account for the variation of the electrostatic potential on flux surfaces. In the present work we use SFINCS to study neoclassical impurity transport in stellarators. We explore how flux-surface potential variations affect the radial particle transport, and how the radial electric field is modified by non-trace impurities and flux-surface potential variations.

  4. The Properties of the local Interstellar Medium and the Interaction of the Stellar Winds of epsilon Indi and lambda Andromedae with the Interstellar Environment

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Alexander, William R.; Linsky, Jeffrey L.

    1996-01-01

    We present new observations of the Ly alpha lines of Epsilon Indi (K5 5) and A Andromedae (G8 4-3 + ?) These data were obtained by the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. Analysis of the interstellar H 1 and D 1 absorption lines reveals that the velocities and temperatures inferred from the H 1 lines are inconsistent with the parameters inferred from the D 1 lines, unless the H 1 absorption is assumed to be produced by two absorption components. One absorption component is produced by interstellar material. For both lines of sight observed, the velocity of this component is consistent with the velocity predicted by the local flow vector. For the Epsilon Indi data, the large velocity separation between the stellar emission and the interstellar absorption allows us to measure the H 1 column density independent of the shape of the intrinsic stellar Ly alpha profile. This approach permits us to quote an accurate column density and to assess its uncertainty with far more confidence than in previous analyses, for which the errors were dominated by uncertainties in the assumed stellar profiles.

  5. A new GPS velocity field in the south-western Balkans: insights for continental dynamics

    NASA Astrophysics Data System (ADS)

    D'Agostino, N.; Avallone, A.; Duni, L.; Ganas, A.; Georgiev, I.; Jouanne, F.; Koci, R.; Kuka, N.; Metois, M.

    2017-12-01

    The Balkans peninsula is an area of active distributed deformation located at the southern boundary of the Eurasian plate. Relatively low strain rates and logistical reasons have so far limited the characterization and definition of the active tectonics and crustal kinematics. The increasing number of GNSS stations belonging to national networks deployed for scientific and cadastral purposes, now provides the opportunity to improve the knowledge of the crustal kinematics in this area and to define a cross-national velocity field that illuminates the active tectonic deformation. In this work we homogeneously processed the data from the south western Balkans and neighbouring regions using available rinex files from scientific and cadastral networks (ALBPOS, EUREF, HemusNET, ITALPOS, KOPOS, MAKPOS, METRICA, NETGEO, RING, TGREF). In order to analyze and interpret station velocities relative to the Eurasia plate and to reduce the common mode signal, we updated the Eurasian terrestrial reference frame described in Métois et al. 2015. Starting from this dataset we present a new GPS velocity field covering the south western part of the Balkan Peninsula. Using this new velocity field, we derive the strain rate tensor to analyze the regional style of the deformation. Our results (1) improve the picture of the general southward flow of the crust characterizing the south western Balkans behind the contractional belt at the boundary with Adriatic and (2) provide new key elements for the understanding of continental dynamics in this part of the Eurasian plate boundary.

  6. Field assessment of noncontact stream gauging using portable surface velocity radars (SVR)

    NASA Astrophysics Data System (ADS)

    Welber, Matilde; Le Coz, Jérôme; Laronne, Jonathan B.; Zolezzi, Guido; Zamler, Daniel; Dramais, Guillaume; Hauet, Alexandre; Salvaro, Martino

    2016-02-01

    The applicability of a portable, commercially available surface velocity radar (SVR) for noncontact stream gauging was evaluated through a series of field-scale experiments carried out in a variety of sites and deployment conditions. Comparisons with various concurrent techniques showed acceptable agreement with velocity profiles, with larger uncertainties close to the banks. In addition to discharge error sources shared with intrusive velocity-area techniques, SVR discharge estimates are affected by flood-induced changes in the bed profile and by the selection of a depth-averaged to surface velocity ratio, or velocity coefficient (α). Cross-sectional averaged velocity coefficients showed smaller fluctuations and closer agreement with theoretical values than those computed on individual verticals, especially in channels with high relative roughness. Our findings confirm that α = 0.85 is a valid default value, with a preferred site-specific calibration to avoid underestimation of discharge in very smooth channels (relative roughness ˜ 0.001) and overestimation in very rough channels (relative roughness > 0.05). Theoretically derived and site-calibrated values of α also give accurate SVR-based discharge estimates (within 10%) for low and intermediate roughness flows (relative roughness 0.001 to 0.05). Moreover, discharge uncertainty does not exceed 10% even for a limited number of SVR positions along the cross section (particularly advantageous to gauge unsteady flood flows and very large floods), thereby extending the range of validity of rating curves.

  7. Advances in stellarator gyrokinetics

    NASA Astrophysics Data System (ADS)

    Helander, P.; Bird, T.; Jenko, F.; Kleiber, R.; Plunk, G. G.; Proll, J. H. E.; Riemann, J.; Xanthopoulos, P.

    2015-05-01

    Recent progress in the gyrokinetic theory of stellarator microinstabilities and turbulence simulations is summarized. The simulations have been carried out using two different gyrokinetic codes, the global particle-in-cell code EUTERPE and the continuum code GENE, which operates in the geometry of a flux tube or a flux surface but is local in the radial direction. Ion-temperature-gradient (ITG) and trapped-electron modes are studied and compared with their counterparts in axisymmetric tokamak geometry. Several interesting differences emerge. Because of the more complicated structure of the magnetic field, the fluctuations are much less evenly distributed over each flux surface in stellarators than in tokamaks. Instead of covering the entire outboard side of the torus, ITG turbulence is localized to narrow bands along the magnetic field in regions of unfavourable curvature, and the resulting transport depends on the normalized gyroradius ρ* even in radially local simulations. Trapped-electron modes can be significantly more stable than in typical tokamaks, because of the spatial separation of regions with trapped particles from those with bad magnetic curvature. Preliminary non-linear simulations in flux-tube geometry suggest differences in the turbulence levels in Wendelstein 7-X and a typical tokamak.

  8. Constructing Integrable Full-pressure Full-current Free-boundary Stellarator Magnetohydrodynamic Equilibria

    NASA Astrophysics Data System (ADS)

    Hudson, S. R.; Monticello, D. A.; Reiman, A. H.; Strickler, D. J.; Hirshman, S. P.

    2003-06-01

    For the (non-axisymmetric) stellarator class of plasma confinement devices to be feasible candidates for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested flux surfaces; however, the inherent lack of a continuous symmetry implies that magnetic islands are guaranteed to exist. Magnetic islands break the smooth topology of nested flux surfaces and chaotic field lines result when magnetic islands overlap. An analogous case occurs with 11/2-dimension Hamiltonian systems where resonant perturbations cause singularities in the transformation to action-angle coordinates and destroy integrability. The suppression of magnetic islands is a critical issue for stellarator design, particularly for small aspect ratio devices. Techniques for `healing' vacuum fields and fixed-boundary plasma equilibria have been developed, but what is ultimately required is a procedure for designing stellarators such that the self-consistent plasma equilibrium currents and the coil currents combine to produce an integrable magnetic field, and such a procedure is presented here for the first time. Magnetic islands in free-boundary full-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the Princeton Iterative Equilibrium Solver [A.H.Reiman & H.S.Greenside, Comp. Phys. Comm., 43:157, 1986.] which iterates the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible. The method is applied to a candidate plasma and coil design for the National Compact Stellarator eXperiment [G.H.Neilson et.al., Phys. Plas., 7:1911, 2000.].

  9. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.

    1992-01-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.

  10. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS: THE INTERNAL KINEMATICS OF THE MULTIPLE STELLAR POPULATIONS IN NGC 2808

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellini, A.; Anderson, J.; Marel, R. P. van der

    2015-09-01

    Numerous observational studies have revealed the ubiquitous presence of multiple stellar populations in globular clusters and cast many difficult challenges for the study of the formation and dynamical history of these stellar systems. In this Letter we present the results of a study of the kinematic properties of multiple populations in NGC 2808 based on high-precision Hubble Space Telescope proper-motion measurements. In a recent study, Milone et al. identified five distinct populations (A–E) in NGC 2808. Populations D and E coincide with the helium-enhanced populations in the middle and the blue main sequences (mMS and bMS) previously discovered by Piottomore » et al.; populations A–C correspond to the redder main sequence that, in Piotto et al., was associated with the primordial stellar population. Our analysis shows that, in the outermost regions probed (between about 1.5 and 2 times the cluster half-light radius), the velocity distribution of populations D and E is radially anisotropic (the deviation from an isotropic distribution is significant at the ∼3.5σ level). Stars of populations D and E have a smaller tangential velocity dispersion than those of populations A–C, while no significant differences are found in the radial velocity dispersion. We present the results of a numerical simulation showing that the observed differences between the kinematics of these stellar populations are consistent with the expected kinematic fingerprint of the diffusion toward the cluster outer regions of stellar populations initially more centrally concentrated.« less

  11. Heat Transfer to Anode of Arc as Function of Transverse Magnetic Field and Lateral Gas Flow Velocity

    NASA Astrophysics Data System (ADS)

    Zama, Yoshiyuki; Shiino, Toru; Ishii, Yoko; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Gas tungsten arc welding has useful joining technology because of high-energy and high-current characteristics. It can be flexible from the transverse magnetic field and lateral gas flow velocity. In this case, the weld defect occurs. In this research, the heat transfer to the anode of the arc as a function of the transverse magnetic field and lateral gas flow velocity is elucidated. That magnetic flux density and lateral gas velocity were varied from 0 to 3 mT and 0 to 50?m?s -1, respectively. The axial plasma gas argon flow rates were 3?slm. A transverse magnetic field is applied to the arc using Helmholtz coil. The anode is used by a water-cooled copper plate, and the heat transfer is measured by temperature of cooled water. As a result, the arc is deflected by the Lorentz force and lateral gas convection. Thus, the heat transfer to the anode of the arc decreases with increasing the transverse magnetic field and lateral gas flow velocity. In addition, the heat transfer to the anode changes with different attachments modes. The lateral gas flow causes a convective heat loss from the arc to the chamber walls.

  12. A Kinematic Link Between Boxy Bulges, Stellar Bars, and Nuclear Activity in NGC 3079 and NGC 4388

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Bland-Hawthrorn, J.; Cecil, Gerald

    1999-01-01

    We present direct kinematic evidence for bar streaming in two active galaxies with boxy stellar bulges. The Hawaii Imaging Fabry-Perot Interferometer was used on the Canada-France-Hawaii 3.6-m telescope and the University of Hawaii 2.2-m telescope to derive the two-dimensional velocity field of the line-emitting gas in the disks of the Sc galaxy NGC 3079 and the Sb galaxy NGC 4388. In contrast to previous work based on long-slit data, the detection of the bar potential from the Fabry-Perot data does not rely on the existence of inner Lindblad resonances or strong bar-induced shocks. Simple kinematic models which approximate the intrinsic gas orbits as nonintersecting, inclined elliptical annuli that conserve angular momentum characterize the observed velocity fields. In NGC 3079, bar streaming motions with moderately eccentric orbits (e = b/a approx. 0.7) aligned along PA = 130 deg. intrinsic to the disk (PA = 97 deg. on the sky) are detected out to R(sub b) = 3.6 kpc. The orbits become increasingly circular beyond that radius (e = 1 at R(sub d) approx. = 6 kpc). The best model for NGC 4388 includes highly eccentric orbits (e approx. 0.3) for R(sub) less than or equal to 1.5 kpc which are aligned along PA = 135 deg. intrinsic to the disk (PA = 100 deg. on the sky). The observed "spiral arms" are produced by having the orbits become increasingly circular from the ends of the bar to the edge of the disk (R(sub d) approx. = 5 kpc), and the intrinsic bar PA shifting from 135 deg. to 90 deg.. Box-shaped bulges in both NGC 3079 and NGC 4388 are confirmed using new near-infrared images to reduce dust obscuration. Morphological analysis of starlight in these galaxies is combined with the gas kinematics derived from the Fabry-Perot spectra to test evolutionary models of stellar bars that involve transitory boxy bulges, and to quantify the importance of such bars in fueling active nuclei. Our data support the evolutionary bar models, but fail to prove convincingly that the

  13. Emergence of a stellar cusp by a dark matter cusp in a low-mass compact ultrafaint dwarf galaxy

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki

    2017-06-01

    Recent observations have been discovering new ultrafaint dwarf galaxies as small as ˜20 pc in half-light radius and ˜3 km s-1 in line-of-sight velocity dispersion. In these galaxies, dynamical friction on a star against dark matter can be significant and alter their stellar density distribution. The effect can strongly depend on a central density profile of dark matter, I.e. cusp or core. In this study, I perform computations using a classical and a modern analytic formula and N-body simulations to study how dynamical friction changes a stellar density profile and how different it is between a cuspy and a cored dark matter halo. This study shows that, if a dark matter halo has a cusp, dynamical friction can cause shrivelling instability that results in emergence of a stellar cusp in the central region ≲2 pc. On the other hand, if it has a constant-density core, dynamical friction is significantly weaker and does not generate a stellar cusp even if the galaxy has the same line-of-sight velocity dispersion. In such a compact and low-mass galaxy, since the shrivelling instability by dynamical friction is inevitable if it has a dark matter cusp, absence of a stellar cusp implies that the galaxy has a dark matter core. I expect that this could be used to diagnose a dark matter density profile in these compact ultrafaint dwarf galaxies.

  14. ICRF heating in a straight, helically symmetric stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, E.F.; Weitzner, H.; Batchelor, D.B.

    1987-07-01

    Experimental observations of direct ion cyclotron resonant frequency (ICRF) heating at fundamental ion cyclotron resonance on the L-2 stellarator have stimulated interest in the theoretical basis for such heating. In this paper, global solutions for the ICRF wave fields in a helically symmetric, straight stellarator are calculated in the cold plasma limit. The component of the wave electric field parallel to B-vector is assumed zero. Helical symmetry allows Fourier decomposition in the longitudinal (z) direction. The two remaining partial differential equations in tau and phi identical to THETA - hz (h is the helical pitch) are solved by finite differencing.more » Energy absorption and antenna impedance are calculated from an ad hoc collision model. Results for parameters typical of the L-2 and Advanced Toroidal Facility (ATF) stellarators show that direct resonant absorption of the fundamental ion cyclotron resonance occurs mainly near the plasma edge. The magnitude of the absorption is about half that for minority heating at the two-ion hybrid resonance.« less

  15. Evidence for the distribution of angular velocity inside the sun and stars

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A round table discussion of problems of solar and stellar spindown and theory is presented. Observational evidence of the angular momentum of the solar wind is included, emphasizing the distribution of angular velocity inside the sun and stars.

  16. Subresolution Activity in Solar and Stellar Coronae from Magnetic Field Line Tangling

    NASA Astrophysics Data System (ADS)

    Rappazzo, A. F.; Dahlburg, R. B.; Einaudi, G.; Velli, M.

    2018-05-01

    The heating of coronal loops is investigated to understand the observational consequences in terms of the thermodynamics and radiative losses from the Sun as well as the magnetized coronae of stars with an outer convective envelope. The dynamics of the Parker coronal heating model are studied for different ratios of the photospheric forcing velocity timescale tp to the Alfvén crossing time along a loop tA. It is shown that for tp/tA ≳ 10-24 the heating rate and maximum temperature are largest and approximately independent of tp/tA, leading to a strong emission in X-rays and EUV. On the opposite decreasing tp/tA to smaller values leads to lower heating rates and plasma temperatures, and consequently fading high-energy radiative emission once tp/tA ≲ 1-3. The average volumetric loop heating rate is shown to scale as ℓ _p u_p B_0^2/4π L^2, where ℓp and up are respectively the convective granule length-scale and velocity, B0 is the intensity of the strong magnetic field threading the loop, and L the loop length. These findings support a recent hypothesis explaining ultracool dwarf observations of stars with similar magnetic field strength but radically different topologies displaying different radiative emission.

  17. Velocity field and physical conditions in the active lenticular galaxy NGC 3998

    NASA Technical Reports Server (NTRS)

    Blackman, C. P.; Wilson, A. S.; Ward, M. J.

    1983-01-01

    A rotating and expanding flattened distribution of gas is suggested by measurements of the emission line velocity field for the line elliptical/lenticular galaxy NGC 3998, using seven long slit spectrograms in five position angles. Expanding material kinetic energy values of 10 to the 53rd to 10 to the 54th ergs, together with the flat spectrum radio source and nucleus X-ray emission, indicate pronounced nuclear activity. Spectrophotometry of the galactic nucleus shows emission line strengths typical of shocks rather than of photoionization, and line ratios indicate a postshock temperature of 60,000 K and a preshock density of 25 particles/cu cm. Both the stars and the ionized gas of the galaxy have central velocity dispersions of 260 km/s. In view of the high rotational velocity of the stars, NGC 3998 is a lenticular rather than elliptical galaxy.

  18. MHD Stability in Compact Stellarators

    NASA Astrophysics Data System (ADS)

    Fu, Guoyong

    1999-11-01

    A key issue for current carrying compact stellarators(S.P. Hirshman et al., "Physics of compact stellarators", Phys. Plasmas 6, 1858 (1999).) is the stability of ideal MHD modes. We present recent stability results of external kink modes, ballooning mode, and vertical modes in Quasi-axisymmetric Stellarators (QAS)( A. Reiman et al, "Physics issue in the design of a high beta Quasi-Axisymmetric Stellarator" the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), Paper ICP/06.) as well as Quasi-Omnigeneous Stellarators (QOS)^2. The 3D stability code Terpsichore(W. A. Cooper et al., Phys. Plasmas 3, 275 (1996)) is used in this study. The vertical stability in a current carrying stellarator is studied for the first time. The vertical mode is found to be stabilized by externally generated poloidal flux(G.Y. Fu et al., "Stability of vertical mode in a current carrying stellarator"., to be submitted). Physically, this is because the external poloidal flux enhances the field line bending energy relative to the current drive term in the MHD energy principle, δ W. A simple stability criteria is derived in the limit of large aspect ratio and constant current density. For wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by f=(κ^2-κ)/(κ^2+1) where κ is the axisymmetric elongation and f is the fraction of the external rotational transform at the plasma edge. A systematic parameter study shows that the external kink in QAS can be stabilized at high beta ( ~ 5%) without a conducting wall by combination of edge magnetic shear and 3D shaping(G. Y. Fu et al., "MHD stability calculations of high-beta Quasi-Axisymmetric Stellarators", the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), paper THP1/07.). The optimal shaping is obtained by using an optimizer with kink stability included in its objective function. The physics mechanism for the kink modes is studied by examining relative

  19. THE DYNAMICS OF SPIRAL ARMS IN PURE STELLAR DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, M. S.; Baba, J.; Saitoh, T. R.

    2011-04-01

    It has been believed that spiral arms in pure stellar disks, especially the ones spontaneously formed, decay in several galactic rotations due to the increase of stellar velocity dispersions. Therefore, some cooling mechanism, for example dissipational effects of the interstellar medium, was assumed to be necessary to keep the spiral arms. Here, we show that stellar disks can maintain spiral features for several tens of rotations without the help of cooling, using a series of high-resolution three-dimensional N-body simulations of pure stellar disks. We found that if the number of particles is sufficiently large, e.g., 3 x 10{sup 6}, multi-armmore » spirals developed in an isolated disk can survive for more than 10 Gyr. We confirmed that there is a self-regulating mechanism that maintains the amplitude of the spiral arms. Spiral arms increase Toomre's Q of the disk, and the heating rate correlates with the squared amplitude of the spirals. Since the amplitude itself is limited by Q, this makes the dynamical heating less effective in the later phase of evolution. A simple analytical argument suggests that the heating is caused by gravitational scattering of stars by spiral arms and that the self-regulating mechanism in pure stellar disks can effectively maintain spiral arms on a cosmological timescale. In the case of a smaller number of particles, e.g., 3 x 10{sup 5}, spiral arms grow faster in the beginning of the simulation (while Q is small) and they cause a rapid increase of Q. As a result, the spiral arms become faint in several Gyr.« less

  20. Velocity overshoot decay mechanisms in compound semiconductor field-effect transistors with a submicron characteristic length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jyegal, Jang, E-mail: jjyegal@inu.ac.kr

    Velocity overshoot is a critically important nonstationary effect utilized for the enhanced performance of submicron field-effect devices fabricated with high-electron-mobility compound semiconductors. However, the physical mechanisms of velocity overshoot decay dynamics in the devices are not known in detail. Therefore, a numerical analysis is conducted typically for a submicron GaAs metal-semiconductor field-effect transistor in order to elucidate the physical mechanisms. It is found that there exist three different mechanisms, depending on device bias conditions. Specifically, at large drain biases corresponding to the saturation drain current (dc) region, the velocity overshoot suddenly begins to drop very sensitively due to the onsetmore » of a rapid decrease of the momentum relaxation time, not the mobility, arising from the effect of velocity-randomizing intervalley scattering. It then continues to drop rapidly and decays completely by severe mobility reduction due to intervalley scattering. On the other hand, at small drain biases corresponding to the linear dc region, the velocity overshoot suddenly begins to drop very sensitively due to the onset of a rapid increase of thermal energy diffusion by electrons in the channel of the gate. It then continues to drop rapidly for a certain channel distance due to the increasing thermal energy diffusion effect, and later completely decays by a sharply decreasing electric field. Moreover, at drain biases close to a dc saturation voltage, the mechanism is a mixture of the above two bias conditions. It is suggested that a large secondary-valley energy separation is essential to increase the performance of submicron devices.« less

  1. The Cluster-EAGLE project: velocity bias and the velocity dispersion-mass relation of cluster galaxies

    NASA Astrophysics Data System (ADS)

    Armitage, Thomas J.; Barnes, David J.; Kay, Scott T.; Bahé, Yannick M.; Dalla Vecchia, Claudio; Crain, Robert A.; Theuns, Tom

    2018-03-01

    We use the Cluster-EAGLE simulations to explore the velocity bias introduced when using galaxies, rather than dark matter particles, to estimate the velocity dispersion of a galaxy cluster, a property known to be tightly correlated with cluster mass. The simulations consist of 30 clusters spanning a mass range 14.0 ≤ log10(M200 c/M⊙) ≤ 15.4, with their sophisticated subgrid physics modelling and high numerical resolution (subkpc gravitational softening), making them ideal for this purpose. We find that selecting galaxies by their total mass results in a velocity dispersion that is 5-10 per cent higher than the dark matter particles. However, selecting galaxies by their stellar mass results in an almost unbiased (<5 per cent) estimator of the velocity dispersion. This result holds out to z = 1.5 and is relatively insensitive to the choice of cluster aperture, varying by less than 5 per cent between r500 c and r200 m. We show that the velocity bias is a function of the time spent by a galaxy inside the cluster environment. Selecting galaxies by their total mass results in a larger bias because a larger fraction of objects have only recently entered the cluster and these have a velocity bias above unity. Galaxies that entered more than 4 Gyr ago become progressively colder with time, as expected from dynamical friction. We conclude that velocity bias should not be a major issue when estimating cluster masses from kinematic methods.

  2. Young Nearby Suns and Stellar Jitter Dependence on Age

    NASA Astrophysics Data System (ADS)

    Cabrera, Nicole; White, Russel; Delfosse, Xavier; Noah Quinn, Samuel; Latham, David W.

    2015-01-01

    Finding the nearest young planets offers the most direct way to improve our understanding of how planets form, how they migrate, and how they evolve. However, most radial velocity (RV) surveys have avoided young stars because of their problematic characteristics, including high levels of stellar activity. Recent advancements in infrared (IR) detectors as well as wavelength calibration methods have provided new ways of pursuing high-precision RV measurements of young stars. While this work has been successfully applied to many young late-K and M dwarfs, much less RV work has been done on young Sun-like stars, with the very recent exception of adolescent stars (~600 Myr) in open clusters. In order to better understand the dynamical and structural forces that shaped our own Solar system, we must begin to explore the more massive realm of Sun-like stars.We present precision optical radial velocity data of 5 young, nearby, Sun-like stars in AB Dor and assess our ability to detect young planets with current spectroscopic methods. The data were obtained with the TRES spectrograph on the 1.5-m Tillinghast Reflector at the Fred L. Whipple Observatory and with SOPHIE on the 1.95 m Telescope at the Observatoire de Haute Provence. We obtained a RV precision of ~8 m/s with TRES and ~7 m/s precision with SOPHIE; average observed dispersions are 38 m/s and 33 m/s, respectively. We combine our results with spectroscopic data of Sun-like stars spanning a broad range of youthful ages (< 1 Gyr) from the literature to investigate the relationship between stellar jitter and stellar age. The results suggest that the jitter of Sun-like stars decreases below 100 m/s for stars older than ~30 Myr, which would enable the discovery of hot Jupiters orbiting these adolescent age stars.

  3. Shear velocity of the Rotokawa geothermal field using ambient noise

    NASA Astrophysics Data System (ADS)

    Civilini, F.; Savage, M. K.; Townend, J.

    2014-12-01

    Ambient noise correlation is an increasingly popular seismological technique that uses the ambient seismic noise recorded at two stations to construct an empirical Green's function. Applications of this technique include determining shear velocity structure and attenuation. An advantage of ambient noise is that it does not rely on external sources of seismic energy such as local or teleseismic earthquakes. This method has been used in the geothermal industry to determine the depths at which magmatic processes occur, to distinguish between production and non-production areas, and to observe seismic velocity perturbations associated with fluid extraction. We will present a velocity model for the Rotokawa geothermal field near Taupo, New Zealand, produced from ambient noise cross correlations. Production at Rotokawa is based on the "Rotokawa A" combined cycle power station established in 1997 and the "Nga Awa Purua" triple flash power plant established in 2010. Rotokawa Joint Venture, a partnership between Mighty River Power and Tauhara North No. 2 Trust currently operates 174 MW of generation at Rotokawa. An array of short period seismometers was installed in 2008 and occupies an area of roughly 5 square kilometers around the site. Although both cultural and natural noise sources are recorded at the stations, the instrument separation distance provides a unique challenge for analyzing cross correlations produced by both signal types. The inter-station spacing is on the order of a few kilometers, so waves from cultural sources generally are not coherent from one station to the other, while the wavelength produced by natural noise is greater than the station separation. Velocity models produced from these two source types will be compared to known geological models of the site. Depending on the amount of data needed to adequately construct cross-correlations, a time-dependent model of velocity will be established and compared with geothermal production processes.

  4. Calibrated Tully-fisher Relations For Improved Photometric Estimates Of Disk Rotation Velocities

    NASA Astrophysics Data System (ADS)

    Reyes, Reinabelle; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.

    2011-01-01

    We present calibrated scaling relations (also referred to as Tully-Fisher relations or TFRs) between rotation velocity and photometric quantities-- absolute magnitude, stellar mass, and synthetic magnitude (a linear combination of absolute magnitude and color)-- of disk galaxies at z 0.1. First, we selected a parent disk sample of 170,000 galaxies from SDSS DR7, with redshifts between 0.02 and 0.10 and r band absolute magnitudes between -18.0 and -22.5. Then, we constructed a child disk sample of 189 galaxies that span the parameter space-- in absolute magnitude, color, and disk size-- covered by the parent sample, and for which we have obtained kinematic data. Long-slit spectroscopy were obtained from the Dual Imaging Spectrograph (DIS) at the Apache Point Observatory 3.5 m for 99 galaxies, and from Pizagno et al. (2007) for 95 galaxies (five have repeat observations). We find the best photometric estimator of disk rotation velocity to be a synthetic magnitude with a color correction that is consistent with the Bell et al. (2003) color-based stellar mass ratio. The improved rotation velocity estimates have a wide range of scientific applications, and in particular, in combination with weak lensing measurements, they enable us to constrain the ratio of optical-to-virial velocity in disk galaxies.

  5. On Stellar Winds as a Source of Mass: Applying Bondi-Hoyle-Lyttleton Accretion

    NASA Astrophysics Data System (ADS)

    Detweiler, L. G.; Yates, K.; Siem, E.

    2017-12-01

    The interaction between planets orbiting stars and the stellar wind that stars emit is investigated and explored. The main goal of this research is to devise a method of calculating the amount of mass accumulated by an arbitrary planet from the stellar wind of its parent star via accretion processes. To achieve this goal, the Bondi-Hoyle-Lyttleton (BHL) mass accretion rate equation and model is employed. In order to use the BHL equation, various parameters of the stellar wind is required to be known, including the velocity, density, and speed of sound of the wind. In order to create a method that is applicable to arbitrary planets orbiting arbitrary stars, Eugene Parker's isothermal stellar wind model is used to calculate these stellar wind parameters. In an isothermal wind, the speed of sound is simple to compute, however the velocity and density equations are transcendental and so the solutions must be approximated using a numerical approximation method. By combining Eugene Parker's isothermal stellar wind model with the BHL accretion equation, a method for computing planetary accretion rates inside a star's stellar wind is realized. This method is then applied to a variety of scenarios. First, this method is used to calculate the amount of mass that our solar system's planets will accrete from the solar wind throughout our Sun's lifetime. Then, some theoretical situations are considered. We consider the amount of mass various brown dwarfs would accrete from the solar wind of our Sun throughout its lifetime if they were orbiting the Sun at Jupiter's distance. For very high mass brown dwarfs, a significant amount of mass is accreted. In the case of the brown dwarf 15 Sagittae B, it actually accretes enough mass to surpass the mass limit for hydrogen fusion. Since 15 Sagittae B is orbiting a star that is very similar to our Sun, this encouraged making calculations for 15 Sagittae B orbiting our Sun at its true distance from its star, 15 Sagittae. It was found that

  6. Innovations in compact stellarator coil design

    NASA Astrophysics Data System (ADS)

    Pomphrey, N.; Berry, L.; Boozer, A.; Brooks, A.; Hatcher, R. E.; Hirshman, S. P.; Ku, L.-P.; Miner, W. H.; Mynick, H. E.; Reiersen, W.; Strickler, D. J.; Valanju, P. M.

    2001-03-01

    Experimental devices for the study of the physics of high beta (β gtrsim 4%), low aspect ratio (A lesssim 4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, several innovations have been made that may be useful in future stellarator design efforts. These include: the use of singular value decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a control matrix method for identifying which few of the many detailed elements of a stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of a genetic algorithm for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the trade-off between physics objectives and engineering constraints; the development of a new coil optimization code for designing modular coils and the identification of a `natural' basis for describing current sheet distributions.

  7. Estimates of the seasonal mean vertical velocity fields of the extratropical Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    White, G. H.

    1983-01-01

    Indirect methods are employed to estimate the wintertime and summertime mean vertical velocity fields of the extratropical Northern Hemisphere and intercomparisons are made, together with comparisons with mean seasonal patterns of cloudiness and precipitation. Twice-daily NMC operational analyses produced general circulation statistics for 11 winters and 12 summers, permitting calculation of the seasonal NMC averages for 6 hr forecasts, solution of the omega equation, integration of continuity equation downward from 100 mb, and solution of the thermodynamic energy equation in the absence of diabatic heating. The methods all yielded similar vertical velocity patterns; however, the magnitude of the vertical velocities could not be calculated with great accuracy. Orography was concluded to have less of an effect in summer than in winter, when winds are stronger.

  8. Using Open Clusters to Trace the Local Milky Way Rotation Curve and Velocity Field

    NASA Astrophysics Data System (ADS)

    Frinchaboy, Peter M.; Majewski, S. R.

    2006-12-01

    Establishing the rotation curve of the Milky Way is one of the fundamental contributions needed to understand the Galaxy and its mass distribution. We have undertaken a systematic spectroscopic survey of open star clusters which can serve as tracers of Galactic disk dynamics. We report on our initial sample of 67 clusters for which the Hydra multi-fiber spectrographs on the WIYN and Blanco telescopes have delivered 1-2 km/s radial velocities (RVs) of many dozens of stars in the fields of each cluster, which are used to derive cluster membership and bulk cluster kinematics when combined with Tycho-2 proper motions. The clusters selected for study have a broad spatial distribution in order to be sensitive to the disk velocity field in all Galactic quadrants and across a Galactocentric radius range as much as 3.0 kpc from the solar circle. Through analysis of the cluster sample, we find (1) the rotation velocity of the LSR is 221 (+2,-4) km/s, (2) the local rotation curve is declining with radius having a slope of -9.0 km/s/kpc, (3) we find (using R_0 = 8.5 kpc) the following Galactic parameters: A = 17.0 km/s/kpc and B = -8.9 km/s/kpc, which yields a Galaxy mass within of 1.5 R_0 of M = 0.9 ± 0.2 x 10^11 solar masses and a M/L of 5.9 in solar units. We also explore the distribution of the local velocity field and find evidence for non-circular motion due to the sprial arms.

  9. Stellar Companions of Exoplanet Host Stars in K2

    NASA Astrophysics Data System (ADS)

    Matson, Rachel; Howell, Steve; Horch, Elliott; Everett, Mark

    2018-01-01

    Stellar multiplicity has significant implications for the detection and characterization of exoplanets. A stellar companion can mimic the signal of a transiting planet or distort the true planetary radii, leading to improper density estimates and over-predicting the occurrence rates of Earth-sized planets. Determining the fraction of exoplanet host stars that are also binaries allows us to better determine planetary characteristics as well as establish the relationship between binarity and planet formation. Using high-resolution speckle imaging to obtain diffraction limited images of K2 planet candidate host stars we detect stellar companions within one arcsec and up to six magnitudes fainter than the host star. By comparing our observed companion fraction to TRILEGAL star count simulations, and using the known detection limits of speckle imaging, we find the binary fraction of K2 planet host stars to be similar to that of Kepler host stars and solar-type field stars. Accounting for stellar companions in exoplanet studies is therefore essential for deriving true stellar and planetary properties as well as maximizing the returns for TESS and future exoplanet missions.

  10. Retired A Stars Revisited: An Updated Giant Planet Occurrence Rate as a Function of Stellar Metallicity and Mass

    NASA Astrophysics Data System (ADS)

    Ghezzi, Luan; Montet, Benjamin T.; Johnson, John Asher

    2018-06-01

    Exoplanet surveys of evolved stars have provided increasing evidence that the formation of giant planets depends not only on stellar metallicity ([Fe/H]) but also on the mass ({M}\\star ). However, measuring accurate masses for subgiants and giants is far more challenging than it is for their main-sequence counterparts, which has led to recent concerns regarding the veracity of the correlation between stellar mass and planet occurrence. In order to address these concerns, we use HIRES spectra to perform a spectroscopic analysis on a sample of 245 subgiants and derive new atmospheric and physical parameters. We also calculate the space velocities of this sample in a homogeneous manner for the first time. When reddening corrections are considered in the calculations of stellar masses and a ‑0.12 {M}ȯ offset is applied to the results, the masses of the subgiants are consistent with their space velocity distributions, contrary to claims in the literature. Similarly, our measurements of their rotational velocities provide additional confirmation that the masses of subgiants with {M}\\star ≥slant 1.6 M ⊙ (the “retired A stars”) have not been overestimated in previous analyses. Using these new results for our sample of evolved stars, together with an updated sample of FGKM dwarfs, we confirm that giant planet occurrence increases with both stellar mass and metallicity up to 2.0 M ⊙. We show that the probability of formation of a giant planet is approximately a one-to-one function of the total amount of metals in the protoplanetary disk {M}\\star {10}[{Fe/{{H}}]}. This correlation provides additional support for the core accretion mechanism of planet formation.

  11. Low-mass Stellar and Substellar Companions to sdB Stars

    NASA Astrophysics Data System (ADS)

    Geier, S.; Classen, L.; Brünner, P.; Nagel, K.; Schaffenroth, V.; Heuser, C.; Heber, U.; Drechsel, H.; Edelmann, H.; Koen, C.; O'Toole, S. J.; Morales-Rueda, L.

    2012-03-01

    It has been suggested that besides stellar companions, substellar objects in close orbits may be able to trigger mass loss in a common envelope phase and form hot subdwarfs. In an ongoing project we search for close substellar companions combining time resolved high resolution spectroscopy with photometry. We determine the fraction of as yet undetected radial velocity variable systems from a sample of 27 apparently single sdB stars to be ˜eq16%. We discovered low-mass stellar companions to the He-sdB CPD-20circ 1123 and the pulsator KPD 0629-0016. The brown dwarf reported to orbit the eclipsing binary SDSS J0820+0008 could be confirmed by an analysis of high resolution spectra taken with UVES. Reflection effects have been detected in the light curves of the known sdB binaries CPD -64circ 481 and BPS CS 22169-0001. The inclinations of these systems must be much higher than expected and the most likely companion masses are in the substellar regime. Finally, we determined the orbit of the sdB binary PHL 457, which has a very small radial velocity amplitude and may host the lowest mass substellar companion known. The implications of these new results for the open question of sdB formation are discussed.

  12. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Sand, D. J.; Seth, A. C.; Crnojević, D.; Spekkens, K.; Strader, J.; Adams, E. A. K.; Caldwell, N.; Guhathakurta, P.; Kenney, J.; Randall, S.; Simon, J. D.; Toloba, E.; Willman, B.

    2017-07-01

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The color-magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ˜7-50 Myr, and is consistent with a metallicity of [Fe/H] ˜ -0.3 as previous work has measured via H II region spectroscopy. Additionally, the color-magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ˜1.‧6 (˜8 kpc) away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ˜7-50 Myr stellar population. The main body of AGC 226067 has a M V = -11.3 ± 0.3, or M stars = 5.4 ± 1.3 × 104 M ⊙ given the stellar population. We searched 20 deg2 of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ˜0.1 M ⊙ yr-1 in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (˜350 kpc away in projection) as it falls into the Virgo Cluster.

  13. Compact stars in the braneworld: A new branch of stellar configurations with arbitrarily large mass

    NASA Astrophysics Data System (ADS)

    Lugones, Germán; Arbañil, José D. V.

    2017-03-01

    We study the properties of compact stars in the Randall-Sundrum type-II braneworld (BW) model. To this end, we solve the braneworld generalization of the stellar structure equations for a static fluid distribution with spherical symmetry considering that the spacetime outside the star is described by a Schwarzschild metric. First, the stellar structure equations are integrated employing the so-called causal limit equation of state (EOS), which is constructed using a well-established EOS at densities below a fiducial density, and the causal EOS P =ρ above it. It is a standard procedure in general relativistic stellar structure calculations to use such EOSs for obtaining a limit in the mass radius diagram, known as the causal limit, above which no stellar configurations are possible if the EOS fulfills the condition that the sound velocity is smaller than the speed of light. We find that the equilibrium solutions in the braneworld model can violate the general relativistic causal limit, and for sufficiently large mass they approach asymptotically to the Schwarzschild limit M =2 R . Then, we investigate the properties of hadronic and strange quark stars using two typical EOSs: a nonlinear relativistic mean-field model for hadronic matter and the Massachusetts Institute of Technology (MIT) bag model for quark matter. For masses below ˜1.5 M⊙- 2 M⊙ , the mass versus radius curves show the typical behavior found within the frame of general relativity. However, we also find a new branch of stellar configurations that can violate the general relativistic causal limit and that, in principle, may have an arbitrarily large mass. The stars belonging to this new branch are supported against collapse by the nonlocal effects of the bulk on the brane. We also show that these stars are always stable under small radial perturbations. These results support the idea that traces of extra dimensions might be found in astrophysics, specifically through the analysis of masses and

  14. Reevaluating Old Stellar Populations

    NASA Astrophysics Data System (ADS)

    Stanway, E. R.; Eldridge, J. J.

    2018-05-01

    Determining the properties of old stellar populations (those with age >1 Gyr) has long involved the comparison of their integrated light, either in the form of photometry or spectroscopic indexes, with empirical or synthetic templates. Here we reevaluate the properties of old stellar populations using a new set of stellar population synthesis models, designed to incorporate the effects of binary stellar evolution pathways as a function of stellar mass and age. We find that single-aged stellar population models incorporating binary stars, as well as new stellar evolution and atmosphere models, can reproduce the colours and spectral indices observed in both globular clusters and quiescent galaxies. The best fitting model populations are often younger than those derived from older spectral synthesis models, and may also lie at slightly higher metallicities.

  15. Unbound Young Stellar Systems: Star Formation on the Loose

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.

    2018-07-01

    review, I make a concise compilation of our understanding of unbound young stellar systems across various environments in the local universe, as it is developed during the last 60 years. I present a factual assessment of the clustering behavior of star formation, as revealed from the assembling pattern of stars across loose stellar structures and its relation to the interstellar medium and the environmental conditions. I also provide a consistent account of the processes that possibly play important role in the formation of unbound stellar systems, compiled from both theoretical and observational investigations on the field.

  16. Dynamical system with plastic self-organized velocity field as an alternative conceptual model of a cognitive system.

    PubMed

    Janson, Natalia B; Marsden, Christopher J

    2017-12-05

    It is well known that architecturally the brain is a neural network, i.e. a collection of many relatively simple units coupled flexibly. However, it has been unclear how the possession of this architecture enables higher-level cognitive functions, which are unique to the brain. Here, we consider the brain from the viewpoint of dynamical systems theory and hypothesize that the unique feature of the brain, the self-organized plasticity of its architecture, could represent the means of enabling the self-organized plasticity of its velocity vector field. We propose that, conceptually, the principle of cognition could amount to the existence of appropriate rules governing self-organization of the velocity field of a dynamical system with an appropriate account of stimuli. To support this hypothesis, we propose a simple non-neuromorphic mathematical model with a plastic self-organized velocity field, which has no prototype in physical world. This system is shown to be capable of basic cognition, which is illustrated numerically and with musical data. Our conceptual model could provide an additional insight into the working principles of the brain. Moreover, hardware implementations of plastic velocity fields self-organizing according to various rules could pave the way to creating artificial intelligence of a novel type.

  17. Recent advances in stellarator optimization

    DOE PAGES

    Gates, D. A.; Boozer, A. H.; Brown, T.; ...

    2017-10-27

    Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. Here, we outline a select set of new concepts for stellarator optimization that, when taken as a group, present a significant step forward in the stellarator concept. One of the criticisms that has been leveled at existing methods of design is the complexity of the resultant field coils. Recently, a new coil optimization code—COILOPT++, which uses a spline instead of a Fourier representation of the coils,—wasmore » written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. The code has been tested by generating coil designs for optimized quasi-axisymmetric stellarator plasma configurations of different aspect ratios. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. New ideas on methods for the optimization of turbulent transport have garnered much attention since these methods have led to design concepts that are calculated to have reduced turbulent heat loss. We have explored possibilities for generating an experimental database to test whether the reduction in transport that is predicted is consistent with experimental observations. Thus, a series of equilibria that can be made in the now latent QUASAR experiment have been identified that will test the predicted transport scalings. Fast particle confinement studies aimed at developing a generalized optimization algorithm are also discussed. A new

  18. Recent advances in stellarator optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, D. A.; Boozer, A. H.; Brown, T.

    Computational optimization has revolutionized the field of stellarator design. To date, optimizations have focused primarily on optimization of neoclassical confinement and ideal MHD stability, although limited optimization of other parameters has also been performed. Here, we outline a select set of new concepts for stellarator optimization that, when taken as a group, present a significant step forward in the stellarator concept. One of the criticisms that has been leveled at existing methods of design is the complexity of the resultant field coils. Recently, a new coil optimization code—COILOPT++, which uses a spline instead of a Fourier representation of the coils,—wasmore » written and included in the STELLOPT suite of codes. The advantage of this method is that it allows the addition of real space constraints on the locations of the coils. The code has been tested by generating coil designs for optimized quasi-axisymmetric stellarator plasma configurations of different aspect ratios. As an initial exercise, a constraint that the windings be vertical was placed on large major radius half of the non-planar coils. Further constraints were also imposed that guaranteed that sector blanket modules could be removed from between the coils, enabling a sector maintenance scheme. Results of this exercise will be presented. New ideas on methods for the optimization of turbulent transport have garnered much attention since these methods have led to design concepts that are calculated to have reduced turbulent heat loss. We have explored possibilities for generating an experimental database to test whether the reduction in transport that is predicted is consistent with experimental observations. Thus, a series of equilibria that can be made in the now latent QUASAR experiment have been identified that will test the predicted transport scalings. Fast particle confinement studies aimed at developing a generalized optimization algorithm are also discussed. A new

  19. Temporal Variability in Seismic Velocity at the Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Taira, T.; Nayak, A.; Brenguier, F.

    2015-12-01

    We characterize the temporal variability of ambient noise wavefield and search for velocity changes associated with activities of the geothermal energy development at the Salton Sea Geothermal Field. The noise cross-correlations (NCFs) are computed for ~6 years of continuous three-component seismic data (December 2007 through January 2014) collected at 8 sites from the CalEnergy Subnetwork (EN network) with MSNoise software (Lecocq et al., 2014, SRL). All seismic data are downloaded from the Southern California Earthquake Data Center. Velocity changes (dv/v) are obtained by measuring time delay between 5-day stacks of NCFs and the reference NCF (average over the entire 6 year period). The time history of dv/v is determined by averaging dv/v measurements over all station/channel pairs (252 combinations). Our preliminary dv/v measurement suggests a gradual increase in dv/v over the 6-year period in a frequency range of 0.5-8.0 Hz. The resultant increase rate of velocity is about 0.01%/year. We also explore the frequency-dependent velocity change at the 5 different frequency bands (0.5-2.0 Hz, 0.75-3.0 Hz, 1.0-4.0 Hz, 1.5-6.0 Hz, and 2.0-8.0 Hz) and find that the level of this long-term dv/v variability is increased with increase of frequency (i.e., the highest increase rate of ~0.15%/year at the 0.5-2.0 Hz band). This result suggests that the velocity changes were mostly occurred in a depth of ~500 m assuming that the coda parts of NCFs (~10-40 s depending on station distances) are predominantly composed of scattered surface waves, with the SoCal velocity model (Dreger and Helmberger, 1993, JGR). No clear seasonal variation of dv/v is observed in the frequency band of 0.5-8.0 Hz.

  20. Stellar Vampires Unmasked

    NASA Astrophysics Data System (ADS)

    2006-10-01

    result in anomalous abundances. ESO PR Photo 37/06 ESO PR Photo 37/06 Abundances in Blue Straggler Stars In the core of a globular cluster, stars are packed extremely close to each other: more than 4000 stars are found in the innermost light-year-sized cube of 47 Tucanae. Thus, stellar collisions are thought to be very frequent and the collision channel for the formation of blue stragglers should be extremely efficient. The chemical signature detected by these observations demonstrates that also the binary mass-transfer scenario is fully active even in a high-density cluster like 47 Tuc. "Our discovery is therefore a fundamental step toward the solution of the long-standing mystery of blue straggler formation in globular clusters," said Ferraro. Measurements of so many faint stars are only possible since the advent of 8-m class telescopes equipped with multiplexing capability spectrographs. In this case, the astronomers used the FLAMES/Giraffe instrument that allows the simultaneous observation of up to 130 targets at a time, making it ideally suited for surveying individual stars in closely populated fields.

  1. Modelling the Velocity Field in a Regular Grid in the Area of Poland on the Basis of the Velocities of European Permanent Stations

    NASA Astrophysics Data System (ADS)

    Bogusz, Janusz; Kłos, Anna; Grzempowski, Piotr; Kontny, Bernard

    2014-06-01

    The paper presents the results of testing the various methods of permanent stations' velocity residua interpolation in a regular grid, which constitutes a continuous model of the velocity field in the territory of Poland. Three packages of software were used in the research from the point of view of interpolation: GMT ( The Generic Mapping Tools), Surfer and ArcGIS. The following methods were tested in the softwares: the Nearest Neighbor, Triangulation (TIN), Spline Interpolation, Surface, Inverse Distance to a Power, Minimum Curvature and Kriging. The presented research used the absolute velocities' values expressed in the ITRF2005 reference frame and the intraplate velocities related to the NUVEL model of over 300 permanent reference stations of the EPN and ASG-EUPOS networks covering the area of Europe. Interpolation for the area of Poland was done using data from the whole area of Europe to make the results at the borders of the interpolation area reliable. As a result of this research, an optimum method of such data interpolation was developed. All the mentioned methods were tested for being local or global, for the possibility to compute errors of the interpolated values, for explicitness and fidelity of the interpolation functions or the smoothing mode. In the authors' opinion, the best data interpolation method is Kriging with the linear semivariogram model run in the Surfer programme because it allows for the computation of errors in the interpolated values and it is a global method (it distorts the results in the least way). Alternately, it is acceptable to use the Minimum Curvature method. Empirical analysis of the interpolation results obtained by means of the two methods showed that the results are identical. The tests were conducted using the intraplate velocities of the European sites. Statistics in the form of computing the minimum, maximum and mean values of the interpolated North and East components of the velocity residuum were prepared for all

  2. Radial-Velocity Signatures of Magnetic Features on the Sun Observed as a Star

    NASA Astrophysics Data System (ADS)

    Palumbo, M. L., III; Haywood, R. D.; Saar, S. H.; Dupree, A. K.; Milbourne, T. W.

    2017-12-01

    In recent years, the search for Earth-mass planets using radial-velocity measurements has become increasingly limited by signals arising from stellar activity. Individual magnetic features induce localized changes in intensity and velocity, which combine to change the apparent radial velocity of the star. Therefore it is critical to identify an indicator of activity-driven radial-velocity variations on the timescale of stellar rotation periods. We use 617.3 nm photospheric filtergrams, magnetograms, and dopplergrams from SDO/HMI and 170.0 nm chromospheric filtergrams from AIA to identify magnetically-driven solar features and reconstruct the integrated solar radial velocity with six samples per day over the course of 2014. Breaking the solar image up into regions of umbrae, penumbrae, quiet Sun, network, and plages, we find a distinct variation in the center-to-limb intensity-weighted velocity for each region. In agreement with past studies, we find that the suppression of convective blueshift is dominated by plages and network, rather than dark photospheric features. In the future, this work will be highly useful for identifying indicators which correlate with rotationally modulated radial-velocity variations. This will allow us to break the activity barrier that currently precludes the precise characterization of exoplanet properties at the lowest masses. This work was supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313. This work was performed in part under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute.

  3. Nanoflare Heating of Solar and Stellar Coronae

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2010-01-01

    A combination of observational and theoretical evidence suggests that much, and perhaps most, of the Sun's corona is heated by small unresolved bursts of energy called nanoflares. It seems likely that stellar coronae are heated in a similar fashion. Kanoflares are here taken to mean any impulsive heating that occurs within a magnetic flux strand. Many mechanisms have this property, including waves, but we prefer Parker's picture of tangled magnetic fields. The tangling is caused by turbulent convection at the stellar surface, and magnetic energy is released when the stresses reach a critical level. We suggest that the mechanism of energy release is the "secondary instability" of electric current sheets that are present at the boundaries between misaligned strands. I will discuss the collective evidence for solar and stellar nanoflares and hopefully present new results from the Solar Dynamics Observatory that was just launched.

  4. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    NASA Astrophysics Data System (ADS)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  5. True-triaxial experimental seismic velocities linked to an in situ 3D seismic velocity structure

    NASA Astrophysics Data System (ADS)

    Tibbo, M.; Young, R. P.

    2017-12-01

    Upscaling from laboratory seismic velocities to in situ field seismic velocities is a fundamental problem in rock physics. This study presents a unique situation where a 3D velocity structure of comparable frequency ranges is available both in situ and experimentally. The in situ data comes from the Underground Research Laboratory (URL) located in Manitoba, Canada. The velocity survey and oriented, cubic rock sample, are from the 420m level of the mine, where the geology is a homogeneous and isotropic granite. The triaxial in situ stress field at this level was determined and the Mine-by tunnel was excavated horizontally to maximize borehole break out. Ultrasonic velocity measurements for P-, S1-,and S2-waves were done in the tunnel sidewall, ceiling and far-field rock mass.The geophysical imaging cell (GIC) used in this study allows for true triaxial stress (σ1 > σ2 > σ3). Velocity surveys for P-, S1-, and S2-wave can be acquired along all three axes, and therefore the effects of σ1, σ2, σ3 on the velocity-stress relationship is obtained along all 3 axes. The cubic (80 mm) granite sample was prepared oriented to the in situ principle stress axis in the field. The stress path of the sample extraction from in situ stress was modeled in FLAC 3D (by Itasca inc ), and then reapplied in the GIC to obtain the laboratory velocities at in situ stress. Both laboratory and field velocities conclude the same maximum velocity axis, within error, to be along σ2 at 5880±60 m/s for P-wave. This deviation from the expected fast axis being σ1, is believed to be caused by an aligned microcrack fabric. The theory of acoustoelasticity, the dependence of acoustic wave velocity on stresses in the propagating isotropic medium, is applied to the borehole hoop and radial stresses produced by the Mine-by tunnel. The acoustoelastic effect involves determining the linear (second-order) and nonlinear (third-order) elastic constants, which are derived from the velocity-stress slopes

  6. The SAMI Galaxy Survey: Gravitational Potential and Surface Density Drive Stellar Populations. I. Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Barone, Tania M.; D’Eugenio, Francesco; Colless, Matthew; Scott, Nicholas; van de Sande, Jesse; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Cortese, Luca; Croom, Scott M.; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; Lorente, Nuria P. F.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.

    2018-03-01

    The well-established correlations between the mass of a galaxy and the properties of its stars are considered to be evidence for mass driving the evolution of the stellar population (SP). However, for early-type galaxies (ETGs), we find that g ‑ i color and stellar metallicity [Z/H] correlate more strongly with gravitational potential Φ than with mass M, whereas SP age correlates best with surface density Σ. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the Sydney-AAO Multi-object Integral-field Galaxy Survey, compared to correlations with mass, the color–Φ, [Z/H]–Φ, and age–Σ relations show both a smaller scatter and a lower residual trend with galaxy size. For the star formation duration proxy [α/Fe], we find comparable results for trends with Φ and Σ, with both being significantly stronger than the [α/Fe]–M relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color–Φ diagram is a more precise tool for determining the developmental stage of the SP than the conventional color–mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [α/Fe] relations with Σ: (a) the age–Σ and [α/Fe]–Σ correlations arise as results of compactness-driven quenching mechanisms; and/or (b) as fossil records of the {{{Σ }}}SFR}\\propto {{{Σ }}}gas} relation in their disk-dominated progenitors.

  7. Application of ``POLIS'' PIV system for measurement of velocity fields in a supersonic flow of the wind tunnels

    NASA Astrophysics Data System (ADS)

    Akhmetbekov, Y. K.; Bilsky, A. V.; Markovich, D. M.; Maslov, A. A.; Polivanov, P. A.; Tsyryul'Nikov, I. S.; Yaroslavtsev, M. I.

    2009-09-01

    Measurement results on the mean velocity fields and fields of velocity pulsations in the supersonic flows obtained by means of the PIV measurement set “POLIS” are presented. Experiments were carried out in the supersonic blow-down and stationary wind tunnels at the Mach numbers of 4.85 and 6. The method of flow velocity estimate in the test section of the blow-down wind tunnel was grounded by direct measurements of stagnation pressure in the setup settling chamber. The size of tracer particles introduced into the supersonic flow by a mist generator was determined; data on the structure of pulsating velocity in a track of an oblique-cut gas-dynamic whistle were obtained under the conditions of self-oscillations.

  8. Lift distribution and velocity field measurements for a three-dimensional, steady blade/vortex interaction

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Norman, Thomas R.

    1987-01-01

    A wind tunnel experiment simulating a steady three-dimensional helicopter rotor blade/vortex interaction is reported. The experimental configuration consisted of a vertical semispan vortex-generating wing, mounted upstream of a horizontal semispan rotor blade airfoil. A three-dimensional laser velocimeter was used to measure the velocity field in the region of the blade. Sectional lift coefficients were calculated by integrating the velocity field to obtain the bound vorticity. Total lift values, obtained by using an internal strain-gauge balance, verified the laser velocimeter data. Parametric variations of vortex strength, rotor blade angle of attack, and vortex position relative to the rotor blade were explored. These data are reported (with attention to experimental limitations) to provide a dataset for the validation of analytical work.

  9. SDSS-IV MaNGA: stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

    NASA Astrophysics Data System (ADS)

    Graham, Mark T.; Cappellari, Michele; Li, Hongyu; Mao, Shude; Bershady, Matthew A.; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Law, David R.; Pan, Kaike; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2018-07-01

    We measure λ _{R_e}, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ɛ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the Mapping Nearby Galaxies at Apache Point Observatory survey, the largest such sample to date. We use the (λ _{R_e}, ɛ ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λ _{R_e} measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λ _{R_e}. Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λ _{R_e}, ɛ ) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λ _{R_e} and ɛ < 0.4, previously suggested as the definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90° in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above M ≥ 2 × 1011 M⊙ where a significant number of high-mass fast rotators also exist.

  10. SDSS-IV MaNGA: Stellar angular momentum of about 2300 galaxies: unveiling the bimodality of massive galaxy properties

    NASA Astrophysics Data System (ADS)

    Graham, Mark T.; Cappellari, Michele; Li, Hongyu; Mao, Shude; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Law, David R.; Pan, Kaike; Thomas, Daniel; Wake, David A.; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2018-03-01

    We measure λ _{R_e}, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ɛ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the MaNGA survey, the largest such sample to date. We use the (λ _{R_e}, ɛ ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λ _{R_e} measurements reveals tight relationships between angular momentum and galaxy structure. In order to account for atmospheric seeing, we use realistic models of galaxy kinematics to derive a general approximate analytic correction for λ _{R_e}. Thanks to the size of the sample and the large number of massive galaxies, we unambiguously detect a clear bimodality in the (λ _{R_e}, ɛ ) diagram which may result from fundamental differences in galaxy assembly history. There is a sharp secondary density peak inside the region of the diagram with low λ _{R_e} and ɛ < 0.4, previously suggested as the definition for slow rotators. Most of these galaxies are visually classified as non-regular rotators and have high velocity dispersion. The intrinsic bimodality must be stronger, as it tends to be smoothed by noise and inclination. The large sample of slow rotators allows us for the first time to unveil a secondary peak at ±90○ in their distribution of the misalignments between the photometric and kinematic position angles. We confirm that genuine slow rotators start appearing above M ≥ 2 × 1011M⊙ where a significant number of high-mass fast rotators also exist.

  11. Chemical evolution and stellar populations in the Sagittarius dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Sbordone, L.; Bonifacio, P.; Giuffrida, G.; Marconi, G.; Monaco, L.; Zaggia, S.

    2007-05-01

    The closest neighbour of the Milky Way (MW), the Sagittarius dwarf Spheroidal Galaxy (Sgr dSph) is being tidally destroyed by the interaction with our Galaxy, losing its stellar content along a huge stream clearly detectable within the Halo. This makes the Sgr dSph an ideal laboratory to study at the same time the chemical evolution of dwarf galaxies and their role in building bigger structures such as the MW. Since some years we are studying the stellar populations of the Sgr main body and stream, with particular attention to their detailed chemical composition. We collected detailed abundances (up to 22 elements, O to Eu) for 27 stars in the Sgr dSph main body, 5 in the associated globular cluster Terzan 7, and 12 more in the trailing Sgr tidal arm (UVES@VLT and SARG@TNG data). We are also conducting a large FLAMES@VLT chemical and dynamical analysis aimed at obtaining metallicities, alpha-elements content and radial velocities from automated analysis of the spectra. Finally, we just completed the first large scale photometric and spectroscopic survey of the stellar populations across all the dSph main body extension with VIMOS@VLT, aimed at exploring the variations in stellar populations and at deriving radial velocity memberships for future high resolution spectroscopic analysis. The picture emerging from all these studies portraits a large and extremely complex object, with signs of a long and still unclear evolution. Metallicity varies across three orders of magnitude ([Fe/H] from -3 to 0), CMDs change surprisingly from the core to the outskirts of the galaxy, and the chemical composition of the most metal rich objects show a very characteristic signature, with underabundant alpha elements, deficient Na, underabundant Fe-peak Mn, Co, Ni, Cu and Zn, and strongly enhanced n-capture elements La and Nd. This highly peculiar "signature" can also be effectively used to recognized stripped populations lost by Sgr in favour of the MW system, as clearly showed by the

  12. Stellar Populations. A User Guide from Low to High Redshift

    NASA Astrophysics Data System (ADS)

    Greggio, Laura; Renzini, Alvio

    2011-09-01

    This textbook is meant to illustrate the specific role played by stellar population diagnostics in our attempt to understand galaxy formation and evolution. The book starts with a rather unconventional summary of the results of stellar evolution theory (Chapter 1), as they provide the basis for the construction of synthetic stellar populations. Current limitations of stellar models are highlighted, which arise from the necessity to parametrize all those physical processes that involve bulk mass motions, such as convection, mixing, mass loss, etc. Chapter 2 deals with the foundations of the theory of synthetic stellar populations, and illustrates their energetics and metabolic functions, providing basic tools that will be used in subsequent chapters. Chapters 3 and 4 deal with resolved stellar populations, first addressing some general problems encountered in photometric studies of stellar fields. Then some highlights are presented illustrating our current capacity of measuring stellar ages in Galactic globular clusters, in the Galactic bulge and in nearby galaxies. Chapter 5 is dedicated to the exemplification of synthetic spectra of simple as well as composite stellar populations, drawing attention to those spectral features that may depend on less secure results of stellar evolution models. Chapter 6 illustrates how synthetic stellar populations are used to derive basic galaxy properties, such as star formation rates, stellar masses, ages and metallicities, and does so for galaxies at low as well as at high redshifts. Chapter 7 is dedicated to supernovae, distinguishing them in core collapse and thermonuclear cases, describing the evolution of their rates for various star formation histories, and estimating the supernova productivity of stellar populations and their chemical yields. In Chapter 8 the stellar initial mass function (IMF) is discussed, first showing how even apparently small IMF variations may have large effects on the demo! graphy of stellar

  13. Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy.

    PubMed

    Geach, J E; Hickox, R C; Diamond-Stanic, A M; Krips, M; Rudnick, G H; Tremonti, C A; Sell, P H; Coil, A L; Moustakas, J

    2014-12-04

    Recent observations have revealed that starburst galaxies can drive molecular gas outflows through stellar radiation pressure. Molecular gas is the phase of the interstellar medium from which stars form, so these outflows curtail stellar mass growth in galaxies. Previously known outflows, however, involve small fractions of the total molecular gas content and have typical scales of less than a kiloparsec. In at least some cases, input from active galactic nuclei is dynamically important, so pure stellar feedback (the momentum return into the interstellar medium) has been considered incapable of rapidly terminating star formation on galactic scales. Molecular gas has been detected outside the galactic plane of the archetypal starburst galaxy M82 (refs 4 and 5), but so far there has been no evidence that starbursts can propel substantial quantities of cold molecular gas to the same galactocentric radius (about 10 kiloparsecs) as the warmer gas that has been traced by metal ion absorbers in the circumgalactic medium. Here we report observations of molecular gas in a compact (effective radius 100 parsecs) massive starburst galaxy at redshift 0.7, which is known to drive a fast outflow of ionized gas. We find that 35 per cent of the total molecular gas extends approximately 10 kiloparsecs, and one-third of this extended gas has a velocity of up to 1,000 kilometres per second. The kinetic energy associated with this high-velocity component is consistent with the momentum flux available from stellar radiation pressure. This demonstrates that nuclear bursts of star formation are capable of ejecting large amounts of cold gas from the central regions of galaxies, thereby strongly affecting their evolution by truncating star formation and redistributing matter.

  14. Velocity Field Measurements of Human Coughing Using Time Resolved Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Khan, T.; Marr, D. R.; Higuchi, H.; Glauser, M. N.

    2003-11-01

    Quantitative fluid mechanics analysis of human coughing has been carried out using new Time Resolved Particle Image Velocimetry (TRPIV). The study involves measurement of velocity vector time-histories and velocity profiles. It is focused on the average normal human coughing. Some work in the past on cough mechanics has involved measurement of flow rates, tidal volumes and sub-glottis pressure. However, data of unsteady velocity vector field of the exiting highly time-dependent jets is not available. In this study, human cough waveform data are first acquired in vivo using conventional respiratory instrumentation for various volunteers of different gender/age groups. The representative waveform is then reproduced with a coughing/breathing simulator (with or without a manikin) for TRPIV measurements and analysis. The results of this study would be useful not only for designing of indoor air quality and heating, ventilation and air conditioning systems, but also for devising means of protection against infectious diseases.

  15. Does Stellar Feedback Create HI Holes? An HST/VLA Study of Holmberg II

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Skillman, E. D.; Cannon, J. M.; Dolphin, A. E.; Kennicutt, R. C., Jr.; Lee, J.; Walter, F.

    2010-01-01

    We use deep HST/ACS F555W and F814W photometry of resolved stars in the M81 Group dwarf irregular galaxy Holmberg II to study the hypothesis that the holes identified in the neutral ISM (HI) are created by stellar feedback. From the deep photometry, we construct color-magnitude diagrams (CMDs) and measure the star formation histories (SFHs) for stars contained in HI holes from two independent holes catalogs, as well as select control fields, i.e., similar sized regions that span a range of HI column densities. The recent SFHs confirm multiple episodes of star formation within most holes. Converting the recent SFHs into stellar feedback energies, we find that enough energy has been generated to have created all holes. However, the required energy is not always produced over a time scale that is less than the estimated kinematic age of the hole. A similar analysis of stars in the control fields finds that the stellar populations of the control fields and HI holes are statistically indistinguishable. However, because we are only sensitive to holes ˜ 100 pc in diameter, we cannot tell if there are smaller holes inside the control fields. The combination of the CMDs, recent SFHs, and locations of young stars shows that the stellar populations inside HI holes are not coherent, single-aged, stellar clusters, as previously suggested, but rather multi-age populations distributed across each hole. From a comparison of the modeled and observed integrated magnitudes, and the locations and energetics of stars inside of HI holes, we propose a potential new model: a viable mechanism for creating the observed HI holes in Holmberg II is stellar feedback from multiple generations of SF spread out over tens or hundreds of Myr, and thus, the concept of an age for an HI hole is intrinsically ambiguous.

  16. Co-formation of the disc and the stellar halo

    NASA Astrophysics Data System (ADS)

    Belokurov, V.; Erkal, D.; Evans, N. W.; Koposov, S. E.; Deason, A. J.

    2018-07-01

    Using a large sample of main sequence stars with 7D measurements supplied by Gaia and SDSS, we study the kinematic properties of the local (within ˜10 kpc from the Sun) stellar halo. We demonstrate that the halo's velocity ellipsoid evolves strongly with metallicity. At the low-[Fe/H] end, the orbital anisotropy (the amount of motion in the radial direction compared with the tangential one) is mildly radial, with 0.2 <β< 0.4. For stars with [Fe/H] > -1.7, however, we measure extreme values of β˜ 0.9. Across the metallicity range considered, namely-3 < [Fe/H] < -1, the stellar halo's spin is minimal, at the level of 20< \\bar{v}_{θ }(kms^{-1}) < 30. Using a suite of cosmological zoom-in simulations of halo formation, we deduce that the observed acute anisotropy is inconsistent with the continuous accretion of dwarf satellites. Instead, we argue, the stellar debris in the inner halo was deposited in a major accretion event by a satellite with Mvir > 1010M⊙ around the epoch of the Galactic disc formation, between 8 and 11 Gyr ago. The radical halo anisotropy is the result of the dramatic radialization of the massive progenitor's orbit, amplified by the action of the growing disc.

  17. Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry.

    PubMed

    Westerdale, John; Belohlavek, Marek; McMahon, Eileen M; Jiamsripong, Panupong; Heys, Jeffrey J; Milano, Michele

    2011-02-01

    We performed an in vitro study to assess the precision and accuracy of particle imaging velocimetry (PIV) data acquired using a clinically available portable ultrasound system via comparison with stereo optical PIV. The performance of ultrasound PIV was compared with optical PIV on a benchmark problem involving vortical flow with a substantial out-of-plane velocity component. Optical PIV is capable of stereo image acquisition, thus measuring out-of-plane velocity components. This allowed us to quantify the accuracy of ultrasound PIV, which is limited to in-plane acquisition. The system performance was assessed by considering the instantaneous velocity fields without extracting velocity profiles by spatial averaging. Within the 2-dimensional correlation window, using 7 time-averaged frames, the vector fields were found to have correlations of 0.867 in the direction along the ultrasound beam and 0.738 in the perpendicular direction. Out-of-plane motion of greater than 20% of the in-plane vector magnitude was found to increase the SD by 11% for the vectors parallel to the ultrasound beam direction and 8.6% for the vectors perpendicular to the beam. The results show a close correlation and agreement of individual velocity vectors generated by ultrasound PIV compared with optical PIV. Most of the measurement distortions were caused by out-of-plane velocity components.

  18. Velocity structure in long period variable star atmospheres

    NASA Technical Reports Server (NTRS)

    Pilachowski, C.; Wallerstein, G.; Willson, L. A.

    1980-01-01

    A regression analysis of the dependence of absorption line velocities on wavelength, line strength, excitation potential, and ionization potential is presented. The method determines the region of formation of the absorption lines for a given data and wavelength region. It is concluded that the scatter which is frequently found in velocity measurements of absorption lines in long period variables is probably the result of a shock of moderate amplitude located in or near the reversing layer and that the frequently observed correlation of velocity with excitation and ionization are a result of the velocity gradients produced by this shock in the atmosphere. A simple interpretation of the signs of the coefficients of the regression analysis is presented in terms of preshock, post shock, or across the shock, together with criteria for evaluating the validity of the fit. The amplitude of the reversing layer shock is estimated from an analysis of a series of plates for four long period variable stars along with the most probable stellar velocity for these stars.

  19. Velocity shear Kelvin-Helmholtz instability with inhomogeneous DC electric field in the magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Kandpal, Praveen; Kaur, Rajbir; Pandey, R. S.

    2018-01-01

    In this paper parallel flow velocity shear Kelvin-Helmholtz instability has been studied in two different extended regions of the inner magnetosphere of Saturn. The method of the characteristic solution and kinetic approach has been used in the mathematical calculation of dispersion relation and growth rate of K-H waves. Effect of magnetic field (B), inhomogeneity (P/a), velocity shear scale length (Ai), temperature anisotropy (T⊥ /T||), electric field (E), ratio of electron to ion temperature (Te /Ti), density gradient (εnρi) and angle of propagation (θ) on the dimensionless growth rate of K-H waves in the inner magnetosphere of Saturn has been observed with respect to k⊥ρi . Calculations of this theoretical analysis have been done taking the data from the Cassini in the inner magnetosphere of Saturn in the two extended regions of Rs ∼4.60-4.01 and Rs ∼4.82-5.0. In our study velocity shear, temperature anisotropy and magnitude of the electric field are observed to be the major sources of free energy for the K-H instability in both the regions considered. The inhomogeneity of electric field, electron-ion temperature ratio, and density gradient have been observed playing stabilizing effect on K-H instability. This study also indicates the effect of the vicinity of icy moon Enceladus on the growth of K-H instability.

  20. RX J0848.6+4453: The evolution of galaxy sizes and stellar populations in A z = 1.27 cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jørgensen, Inger; Chiboucas, Kristin; Schiavon, Ricardo P.

    2014-12-01

    RX J0848.6+4453 (Lynx W) at redshift 1.27 is part of the Lynx Supercluster of galaxies. We present an analysis of the stellar populations and star formation history for a sample of 24 members of the cluster. Our study is based on deep optical spectroscopy obtained with Gemini North combined with imaging data from Hubble Space Telescope. Focusing on the 13 bulge-dominated galaxies for which we can determine central velocity dispersions, we find that these show a smaller evolution with redshift of sizes and velocity dispersions than reported for field galaxies and galaxies in poorer clusters. Our data show that themore » galaxies in RX J0848.6+4453 populate the fundamental plane (FP) similar to that found for lower-redshift clusters. The zero-point offset for the FP is smaller than expected if the cluster's galaxies are to evolve passively through the location of the FP we established in our previous work for z = 0.8-0.9 cluster galaxies and then to the present-day FP. The FP zero point for RX J0848.6+4453 corresponds to an epoch of last star formation at z{sub form}=1.95{sub −0.15}{sup +0.22}. Further, we find that the spectra of the galaxies in RX J0848.6+4453 are dominated by young stellar populations at all galaxy masses and in many cases show emission indicating low-level ongoing star formation. The average age of the young stellar populations as estimated from the strength of the high-order Balmer line Hζ is consistent with a major star formation episode 1-2 Gyr prior, which in turn agrees with z {sub form} = 1.95. These galaxies dominated by young stellar populations are distributed throughout the cluster. We speculate that low-level star formation has not yet been fully quenched in the center of this cluster, possibly because the cluster is significantly poorer than other clusters previously studied at similar redshifts, which appear to have very little ongoing star formation in their centers. The mixture in RX J0848.6+4453 of passive galaxies with young

  1. Effect of vortical structures on velocity and turbulent fields in the near region of an impinging turbulent jet

    NASA Astrophysics Data System (ADS)

    Yadav, Harekrishna; Agrawal, Amit

    2018-03-01

    This experimental study pertains to the formation of a secondary peak in heat transfer distribution for an axisymmetric turbulent impinging submerged jet. The analysis of instantaneous fields is undertaken at various Reynolds numbers based upon the bulk velocity and nozzle diameter (Re = 1300-10 000) and surface spacings (L/D = 0.25-6). Our analysis shows that flow separation and reattachment correspond to decrease/increase in local pressure and are caused by primary vortices; these are further linked to the location of maxima in streamwise and cross-stream velocities. It is further observed that the locations of maxima and minima in velocities are linked to fluctuations in rms velocities and thickening/thinning of the boundary layer. The vortices transported along the surface either coalesce among themselves or combine with other eddies to form a primary vortex. The primary vortex while getting convected downstream makes multiple interactions with the inner shear layer and causes waviness in instantaneous flow fields. In their later stage, the primary vortex moves away from the wall and accelerates, while the flow decelerates in the inner shear layer. The accelerated fluid in the outer shear layer pulls the downstream fluid from the inner shear layer and leads to the formation of a secondary vortex. After a certain distance downstream, the secondary vortex rolling between the primary vortex and the wall eventually breaks down, while the flow reattaches to the wall. The behavior of time average and instantaneous velocity fields suggests that unsteadiness in the heat transfer is linked to the location of maximum streamwise velocity, location of flow attachment, location of rms velocity, and thickness of the boundary layer. The instantaneous velocity fields show that for a given surface spacing, the chances for the appearance of the secondary vortex reduce with an increase in Reynolds number because of the reduction in space available for the secondary vortex to

  2. Present-day velocity field and block kinematics of Tibetan Plateau from GPS measurements

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Qiao, Xuejun; Yang, Shaomin; Wang, Dijin

    2017-02-01

    In this study, we present a new synthesis of GPS velocities for tectonic deformation within the Tibetan Plateau and its surrounding areas, a combined data set of ˜1854 GPS-derived horizontal velocity vectors. Assuming that crustal deformation is localized along major faults, a block modelling approach is employed to interpret the GPS velocity field. We construct a 30-element block model to describe present-day deformation in western China, with half of them located within the Tibetan Plateau, and the remainder located in its surrounding areas. We model the GPS velocities simultaneously for the effects of block rotations and elastic strain induced by the bounding faults. Our model yields a good fit to the GPS data with a mean residual of 1.08 mm a-1 compared to the mean uncertainty of 1.36 mm a-1 for each velocity component, indicating a good agreement between the predicted and observed velocities. The major strike-slip faults such as the Altyn Tagh, Xianshuihe, Kunlun and Haiyuan faults have relatively uniform slip rates in a range of 5-12 mm a-1 along most of their segments, and the estimated fault slip rates agree well with previous geologic and geodetic results. Blocks having significant residuals are located at the southern and southeastern Tibetan Plateau, suggesting complex tectonic settings and further refinement of accurate definition of block geometry in these regions.

  3. The Diversity of Chemical Composition and the Effects on Stellar Evolution and Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Truitt, Amanda R.

    2017-08-01

    I present a catalog of 1,794 stellar evolution models for solar-type and low-mass stars, which is intended to help characterize real host-stars of interest during the ongoing search for potentially habitable exoplanets. The main grid is composed of 904 tracks, for 0.5-1.2 M solar masses at scaled metallicity values of 0.1-1.5 Z solar masses and specific elemental abundance ratio values of 0.44-2.28 O/Fe solar masses, 0.58-1.72 C/Fe solar masses, 0.54-1.84 Mg/Fe solar masses, and 0.5-2.0 Ne/Fe solar masses. The catalog includes a small grid of late stage evolutionary tracks (25 models), as well as a grid of M-dwarf stars for 0.1-0.45 M solar masses (856 models). The time-dependent habitable zone evolution is calculated for each track, and is strongly dependent on stellar mass, effective temperature, and luminosity parameterizations. I have also developed a subroutine for the stellar evolution code TYCHO that implements a minimalist coupled model for estimating changes in the stellar X-ray luminosity, mass loss, rotational velocity, and magnetic activity over time; to test the utility of the updated code, I created a small grid (9 models) for solar-mass stars, with variations in rotational velocity and scaled metallicity. Including this kind of information in the catalog will ultimately allow for a more robust consideration of the long-term conditions that orbiting planets may experience. In order to gauge the true habitability potential of a given planetary system, it is extremely important to characterize the host-star's mass, specific chemical composition, and thus the timescale over which the star will evolve. It is also necessary to assess the likelihood that a planet found in the "instantaneous" habitable zone has actually had sufficient time to become "detectably" habitable. This catalog provides accurate stellar evolution predictions for a large collection of theoretical host-stars; the models are of particular utility in that they represent the real

  4. The assembly of stellar haloes in massive Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Buitrago, F.

    2017-03-01

    Massive (Mstellar >= 5×1010 M⊙) Early-Type Galaxies (ETGs) must build an outer stellar envelope over cosmic time in order to account for their remarkable size evolution. This is similar to what occurs to nearby Late-Type Galaxies (LTGs), which create their stellar haloes out of the debris of lower mass systems. We analysed the outer parts of massive ETGs at z < 1 by exploiting the Hubble Ultra Deep Field imaging. These galaxies store 10-30% of their stellar mass at distances 10 < R/kpc < 50, in contrast to the low percentages (< 5%) found for LTGs. We find evidence for a progressive outskirt development with redshift driven solely via merging.

  5. Theoretical models for stellar X-ray polarization in compact objects

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1991-01-01

    Degenerate stellar objects are expected to be strong sources of polarized X-ray emission. This is particularly true for strongly magnetized neutron stars, e.g. accretion or rotation powered pulsars, and gamma ray bursters. In these, linear polarization degrees well in excess of 30 percent are expected. Weaker magnetic field stellar sources, such as old neutron stars in low mass binary systems, white dwarfs and black holes are expected to have polarization degrees in the range 1-3 percent. A great interest attaches to the detection of polarization in these objects, since this would provide invaluable information concerning the geometry, radiation mechanism and magnetic field strength, necessary for testing and proving models of the structure and evolution of stars in their late stages. In this paper we review the theoretical models of the production of polarized radiation in compact stellar X-ray sources, and discuss the possibility of detecting these properties using currently planned detectors to be flown in space.

  6. StarHorse: a Bayesian tool for determining stellar masses, ages, distances, and extinctions for field stars

    NASA Astrophysics Data System (ADS)

    Queiroz, A. B. A.; Anders, F.; Santiago, B. X.; Chiappini, C.; Steinmetz, M.; Dal Ponte, M.; Stassun, K. G.; da Costa, L. N.; Maia, M. A. G.; Crestani, J.; Beers, T. C.; Fernández-Trincado, J. G.; García-Hernández, D. A.; Roman-Lopes, A.; Zamora, O.

    2018-05-01

    Understanding the formation and evolution of our Galaxy requires accurate distances, ages, and chemistry for large populations of field stars. Here, we present several updates to our spectrophotometric distance code, which can now also be used to estimate ages, masses, and extinctions for individual stars. Given a set of measured spectrophotometric parameters, we calculate the posterior probability distribution over a given grid of stellar evolutionary models, using flexible Galactic stellar-population priors. The code (called StarHorse) can accommodate different observational data sets, prior options, partially missing data, and the inclusion of parallax information into the estimated probabilities. We validate the code using a variety of simulated stars as well as real stars with parameters determined from asteroseismology, eclipsing binaries, and isochrone fits to star clusters. Our main goal in this validation process is to test the applicability of the code to field stars with known Gaia-like parallaxes. The typical internal precisions (obtained from realistic simulations of an APOGEE+Gaia-like sample) are {˜eq } 8 {per cent} in distance, {˜eq } 20 {per cent} in age, {˜eq } 6 {per cent} in mass, and ≃ 0.04 mag in AV. The median external precision (derived from comparisons with earlier work for real stars) varies with the sample used, but lies in the range of {˜eq } [0,2] {per cent} for distances, {˜eq } [12,31] {per cent} for ages, {˜eq } [4,12] {per cent} for masses, and ≃ 0.07 mag for AV. We provide StarHorse distances and extinctions for the APOGEE DR14, RAVE DR5, GES DR3, and GALAH DR1 catalogues.

  7. Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar

    NASA Technical Reports Server (NTRS)

    Greene, Thomas P.; Lada, Charles J.; DeVincenzi, Donald L. (Technical Monitor)

    2002-01-01

    We present high-resolution (R is approximately equal to 18,000), high signal-to-noise 2 micron spectra of two luminous, X-ray flaring Class I protostars in the rho Ophiuchi cloud acquired with the NIRSPEC (near infrared spectrograph) of the Keck II telescope. We present the first spectrum of a highly veiled, strongly accreting protostar which shows photospheric absorption features and demonstrates the stellar nature of its central core. We find the spectrum of the luminous (L (sub bol) = 10 solar luminosity) protostellar source, YLW 15, to be stellar-like with numerous atomic and molecular absorption features, indicative of a K5 IV/V spectral type and a continuum veiling r(sub k) = 3.0. Its derived stellar luminosity (3 stellar luminosity) and stellar radius (3.1 solar radius) are consistent with those of a 0.5 solar mass pre-main-sequence star. However, 70% of its bolometric luminosity is due to mass accretion, whose rate we estimate to be 1.7 x 10(exp -6) solar masses yr(exp -1). We determine that excess infrared emission produced by the circumstellar accretion disk, the inner infalling envelope, and accretion shocks at the surface of the stellar core of YLW 15 all contribute significantly to its near-IR (infrared) continuum veiling. Its rotational velocity v sin i = 50 km s(exp -1) is comparable to those of flat-spectrum protostars but considerably higher than those of classical T Tauri stars in the rho Oph cloud. The protostar may be magnetically coupled to its circumstellar disk at a radius of 2 - 3 R(sub *). It is also plausible that this protostar can shed over half its angular momentum and evolve into a more slowly rotating classical T Tauri star by remaining coupled to its circumstellar disk (at increasing radius) as its accretion rate drops by an order of magnitude during the rapid transition between the Class I and Class II phases of evolution. The spectrum of WL 6 does not show any photospheric absorption features, and we estimate that its continuum

  8. ULXs from Accreting Neutron Stars: the Light Cylinder, the Stellar Surface, and Everything in Between

    NASA Astrophysics Data System (ADS)

    Parfrey, K.; Tchekhovskoy, A.

    2017-10-01

    I will present results from the first relativistic MHD simulations of accretion onto magnetized neutron stars, performed in general relativity in the Kerr spacetime. The accretion flow is geometrically thick with a relativistic-gas equation of state, appropriate for super-Eddington systems. Four regimes are recovered, in order of increasing stellar magnetic field strength (equivalently, decreasing mass accretion rate): (a) crushing of the stellar magnetosphere and direct accretion; (b) magnetically channeled accretion onto the stellar poles; (c) the propeller state, where material enters through the light cylinder but is prevented from accreting by the centrifugal barrier; (d) almost perfect exclusion of the accretion flow from the light cylinder by the pulsar's electromagnetic wind. A Poynting-flux-dominated relativistic jet, powered by stellar rotation, is produced when the intruding plasma succeeds in opening the pulsar's previously closed magnetic field lines. I will demonstrate the effect of changing the relative orientation of the stellar dipole and the large-scale magnetic field in the accreting plasma, and discuss our results in the context of the neutron-star-powered ULXs, as well as the transitional millisecond X-ray/radio pulsars and jet-launching neutron-star X-ray binaries.

  9. The Low-Mass Stellar Initial Mass Function: Ultra-Faint Dwarf Galaxies Revisited

    NASA Astrophysics Data System (ADS)

    Platais, Imants

    2017-08-01

    The stellar Initial Mass Function plays a critical role in the evolution of the baryonic content of the Universe. The form of the low-mass IMF - stars of mass less than the solar mass - determines the fraction of baryons locked up for a Hubble time, and thus indicates how gas and metals are cycled through galaxies. Inferences from resolved stellar populations, where the low-mass luminosity function and associated IMF can be derived from direct star counts, generally favor an invariant and universal IMF. However, a recent study of ultra-faint dwarf galaxies Hercules and Leo IV indicates a bottom-lite IMF, over a narrow range of stellar mass (only 0.55-0.75 M_sun), correlated with the internal velocity dispersion and/or metallicity. We propose to obtain ultra-deep imaging for a significantly closer ultra-faint dwarf, Bootes I, which will allow us to construct the luminosity function down to M_v=+10 (equivalent to 0.35 solar mass). We will also re-analyze the HST archival observations for the Hercules and Leo IV dwarfs using the same updated techniques as for Bootes I. The combined datasets should provide a reliable answer to the question of how variable is the low-mass stellar IMF.

  10. Stellar spectral classification of previously unclassified stars GSC 4461-698 and GSC 4466-870

    NASA Astrophysics Data System (ADS)

    Grau, Darren Moser

    Stellar spectral classification is one of the first efforts undertaken to begin defining the physical characteristics of stars. However, many stars lack even this basic information, which is the foundation for later research to constrain stellar effective temperatures, masses, radial velocities, the number of stars in the system, and age. This research obtained visible-λ stellar spectra via the testing and commissioning of a Santa Barbara Instruments Group (SBIG) Self-Guiding Spectrograph (SGS) at the UND Observatory. Utilizing a 16-inch-aperture telescope on Internet Observatory #3, the SGS obtained spectra of GSC 4461-698 and GSC 4466-870 in the low-resolution mode using an 18-µm wide slit with dispersion of 4.3 Å/pixel, resolution of 8 Å, and a spectral range from 3800-7500 Å. Observational protocols include automatic bias/dark frame subtraction for each stellar spectrum obtained. This was followed by spectral averaging to obtain a combined spectrum for each star observed. Image calibration and spectral averaging was performed using the software programs, Maxim DL, Image J, Microsoft Excel, and Winmk. A wavelength calibration process was used to obtain spectra of an Hg/Ne source that allowed the conversion of spectrograph channels into wavelengths. Stellar emission and absorption lines, such as those for hydrogen (H) and helium (He), were identified, extracted, and rectified. Each average spectrum was compared to the MK stellar spectral standards to determine an initial spectral classification for each star. The hope is that successful completion of this project will allow long-term stellar spectral observations to begin at the UND Observatory.

  11. Field and laboratory determination of water-surface elevation and velocity using noncontact measurements

    USGS Publications Warehouse

    Nelson, Jonathan M.; Kinzel, Paul J.; Schmeeckle, Mark Walter; McDonald, Richard R.; Minear, Justin T.

    2016-01-01

    Noncontact methods for measuring water-surface elevation and velocity in laboratory flumes and rivers are presented with examples. Water-surface elevations are measured using an array of acoustic transducers in the laboratory and using laser scanning in field situations. Water-surface velocities are based on using particle image velocimetry or other machine vision techniques on infrared video of the water surface. Using spatial and temporal averaging, results from these methods provide information that can be used to develop estimates of discharge for flows over known bathymetry. Making such estimates requires relating water-surface velocities to vertically averaged velocities; the methods here use standard relations. To examine where these relations break down, laboratory data for flows over simple bumps of three amplitudes are evaluated. As anticipated, discharges determined from surface information can have large errors where nonhydrostatic effects are large. In addition to investigating and characterizing this potential error in estimating discharge, a simple method for correction of the issue is presented. With a simple correction based on bed gradient along the flow direction, remotely sensed estimates of discharge appear to be viable.

  12. Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Mahadevan, Suvrath; Endl, Michael; Roy, Arpita

    2014-07-01

    The M dwarf star Gliese 581 is believed to host four planets, including one (GJ 581d) near the habitable zone that could possibly support liquid water on its surface if it is a rocky planet. The detection of another habitable-zone planet—GJ 581g—is disputed, as its significance depends on the eccentricity assumed for d. Analyzing stellar activity using the Hα line, we measure a stellar rotation period of 130 ± 2 days and a correlation for Hα modulation with radial velocity. Correcting for activity greatly diminishes the signal of GJ 581d (to 1.5 standard deviations) while significantly boosting the signals of the other known super-Earth planets. GJ 581d does not exist, but is an artifact of stellar activity which, when incompletely corrected, causes the false detection of planet g.

  13. FRIENDS OF HOT JUPITERS. II. NO CORRESPONDENCE BETWEEN HOT-JUPITER SPIN-ORBIT MISALIGNMENT AND THE INCIDENCE OF DIRECTLY IMAGED STELLAR COMPANIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngo, Henry; Knutson, Heather A.; Hinkley, Sasha

    Multi-star systems are common, yet little is known about a stellar companion's influence on the formation and evolution of planetary systems. For instance, stellar companions may have facilitated the inward migration of hot Jupiters toward to their present day positions. Many observed short-period gas giant planets also have orbits that are misaligned with respect to their star's spin axis, which has also been attributed to the presence of a massive outer companion on a non-coplanar orbit. We present the results of a multi-band direct imaging survey using Keck NIRC2 to measure the fraction of short-period gas giant planets found inmore » multi-star systems. Over three years, we completed a survey of 50 targets ('Friends of Hot Jupiters') with 27 targets showing some signature of multi-body interaction (misaligned or eccentric orbits) and 23 targets in a control sample (well-aligned and circular orbits). We report the masses, projected separations, and confirmed common proper motion for the 19 stellar companions found around 17 stars. Correcting for survey incompleteness, we report companion fractions of 48% ± 9%, 47% ± 12%, and 51% ± 13% in our total, misaligned/eccentric, and control samples, respectively. This total stellar companion fraction is 2.8σ larger than the fraction of field stars with companions approximately 50-2000 AU. We observe no correlation between misaligned/eccentric hot Jupiter systems and the incidence of stellar companions. Combining this result with our previous radial velocity survey, we determine that 72% ± 16% of hot Jupiters are part of multi-planet and/or multi-star systems.« less

  14. Velocity-Field Measurements of an Axisymmetric Separated Flow Subjected to Amplitude-Modulated Excitation

    NASA Technical Reports Server (NTRS)

    Trosin, Barry James

    2007-01-01

    Active flow control was applied at the point of separation of an axisymmetric, backward-facing-step flow. The control was implemented by employing a Helmholtz resonator that was externally driven by an amplitude-modulated, acoustic disturbance from a speaker located upstream of the wind tunnel. The velocity field of the separating/reattaching flow region downstream of the step was characterized using hotwire velocity measurements with and without flow control. Conventional statistics of the data reveal that the separating/reattaching flow is affected by the imposed forcing. Triple decomposition along with conditional averaging was used to distinguish periodic disturbances from random turbulence in the fluctuating velocity component. A significant outcome of the present study is that it demonstrates that amplitude-modulated forcing of the separated flow alters the flow in the same manner as the more conventional method of periodic excitation.

  15. NuGrid Stellar Data Set. I.Stellar Yields from H to Bi for Stars with Metallicities Z = 0.02 and Z = 0.01

    NASA Astrophysics Data System (ADS)

    Pignatari, M.; Herwig, F.; Hirschi, R.; Bennett, M.; Rockefeller, G.; Fryer, C.; Timmes, F. X.; Ritter, C.; Heger, A.; Jones, S.; Battino, U.; Dotter, A.; Trappitsch, R.; Diehl, S.; Frischknecht, U.; Hungerford, A.; Magkotsios, G.; Travaglio, C.; Young, P.

    2016-08-01

    We provide a set of stellar evolution and nucleosynthesis calculations that applies established physics assumptions simultaneously to low- and intermediate-mass and massive star models. Our goal is to provide an internally consistent and comprehensive nuclear production and yield database for applications in areas such as presolar grain studies. Our non-rotating models assume convective boundary mixing (CBM) where it has been adopted before. We include 8 (12) initial masses for Z = 0.01 (0.02). Models are followed either until the end of the asymptotic giant branch phase or the end of Si burning, complemented by simple analytic core-collapse supernova (SN) models with two options for fallback and shock velocities. The explosions show which pre-SN yields will most strongly be effected by the explosive nucleosynthesis. We discuss how these two explosion parameters impact the light elements and the s and p process. For low- and intermediate-mass models, our stellar yields from H to Bi include the effect of CBM at the He-intershell boundaries and the stellar evolution feedback of the mixing process that produces the {}13{{C}} pocket. All post-processing nucleosynthesis calculations use the same nuclear reaction rate network and nuclear physics input. We provide a discussion of the nuclear production across the entire mass range organized by element group. The entirety of our stellar nucleosynthesis profile and time evolution output are available electronically, and tools to explore the data on the NuGrid VOspace hosted by the Canadian Astronomical Data Centre are introduced.

  16. The impact of groundwater velocity fields on streamlines in an aquifer system with a discontinuous aquitard (Inner Mongolia, China)

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Zhao, Yingwang; Xu, Hua

    2018-04-01

    Many numerical methods that simulate groundwater flow, particularly the continuous Galerkin finite element method, do not produce velocity information directly. Many algorithms have been proposed to improve the accuracy of velocity fields computed from hydraulic potentials. The differences in the streamlines generated from velocity fields obtained using different algorithms are presented in this report. The superconvergence method employed by FEFLOW, a popular commercial code, and some dual-mesh methods proposed in recent years are selected for comparison. The applications to depict hydrogeologic conditions using streamlines are used, and errors in streamlines are shown to lead to notable errors in boundary conditions, the locations of material interfaces, fluxes and conductivities. Furthermore, the effects of the procedures used in these two types of methods, including velocity integration and local conservation, are analyzed. The method of interpolating velocities across edges using fluxes is shown to be able to eliminate errors associated with refraction points that are not located along material interfaces and streamline ends at no-flow boundaries. Local conservation is shown to be a crucial property of velocity fields and can result in more accurate streamline densities. A case study involving both three-dimensional and two-dimensional cross-sectional models of a coal mine in Inner Mongolia, China, are used to support the conclusions presented.

  17. Habitable zones exposed: astrosphere collapse frequency as a function of stellar mass.

    PubMed

    Smith, David S; Scalo, John M

    2009-09-01

    Stellar astrospheres--the plasma cocoons carved out of the interstellar medium by stellar winds--are one of several buffers that partially screen planetary atmospheres and surfaces from high-energy radiation. Screening by astrospheres is continually influenced by the passage of stars through the fluctuating density field of the interstellar medium (ISM). The most extreme events occur inside dense interstellar clouds, where the increased pressure may compress an astrosphere to a size smaller than the liquid-water habitable-zone distance. Habitable planets then enjoy no astrospheric buffering from exposure to the full flux of galactic cosmic rays and interstellar dust and gas, a situation we call "descreening" or "astrospheric collapse." Under such conditions the ionization fraction in the atmosphere and contribution to radiation damage of putative coding organisms at the surface would increase significantly, and a series of papers have suggested a variety of global responses to descreening. These possibilities motivate a more careful calculation of the frequency of descreening events. Using a ram-pressure balance model, we compute the size of the astrosphere in the apex direction as a function of parent-star mass and velocity and ambient interstellar density, emphasizing the importance of gravitational focusing of the interstellar flow. The interstellar densities required to descreen planets in the habitable zone of solar- and subsolar-mass stars are found to be about 600(M/M[middle dot in circle])(-2) cm(-3) for the Sun's velocity relative to the local ISM. Such clouds are rare and small, indicating that descreening encounters are rare. We use statistics from two independent catalogues of dense interstellar clouds to derive a dependence of descreening frequency on the parent-star mass that decreases strongly with decreasing stellar mass, due to the weaker gravitational focusing and smaller habitable-zone distances for lower-mass stars. We estimate an uncertain

  18. A velocity probe-based method for continuous detonation and shock measurement in near-field underwater explosion.

    PubMed

    Li, Kebin; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong

    2017-12-01

    A new velocity probe which permits recording the time history of detonation and shock waves has been developed by improving the commercial on principle and structure. A method based on the probe is then designed to measure the detonation velocity and near-field shock parameters in a single underwater explosion, by which the oblique shock wave front of cylindrical charges and the peak pressure attenuation curve of spherical explosive are obtained. A further derivation of detonation pressure, adiabatic exponent, and other shock parameters is conducted. The present method offers a novel and reliable parameter determination for near-field underwater explosion.

  19. A velocity probe-based method for continuous detonation and shock measurement in near-field underwater explosion

    NASA Astrophysics Data System (ADS)

    Li, Kebin; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong

    2017-12-01

    A new velocity probe which permits recording the time history of detonation and shock waves has been developed by improving the commercial on principle and structure. A method based on the probe is then designed to measure the detonation velocity and near-field shock parameters in a single underwater explosion, by which the oblique shock wave front of cylindrical charges and the peak pressure attenuation curve of spherical explosive are obtained. A further derivation of detonation pressure, adiabatic exponent, and other shock parameters is conducted. The present method offers a novel and reliable parameter determination for near-field underwater explosion.

  20. Anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field: two-loop approximation.

    PubMed

    Adzhemyan, L Ts; Antonov, N V; Honkonen, J; Kim, T L

    2005-01-01

    The field theoretic renormalization group and operator-product expansion are applied to the model of a passive scalar quantity advected by a non-Gaussian velocity field with finite correlation time. The velocity is governed by the Navier-Stokes equation, subject to an external random stirring force with the correlation function proportional to delta(t- t')k(4-d-2epsilon). It is shown that the scalar field is intermittent already for small epsilon, its structure functions display anomalous scaling behavior, and the corresponding exponents can be systematically calculated as series in epsilon. The practical calculation is accomplished to order epsilon2 (two-loop approximation), including anisotropic sectors. As for the well-known Kraichnan rapid-change model, the anomalous scaling results from the existence in the model of composite fields (operators) with negative scaling dimensions, identified with the anomalous exponents. Thus the mechanism of the origin of anomalous scaling appears similar for the Gaussian model with zero correlation time and the non-Gaussian model with finite correlation time. It should be emphasized that, in contrast to Gaussian velocity ensembles with finite correlation time, the model and the perturbation theory discussed here are manifestly Galilean covariant. The relevance of these results for real passive advection and comparison with the Gaussian models and experiments are briefly discussed.

  1. The effect of ISM absorption on stellar activity measurements and its relevance for exoplanet studies

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Marcelja, S. E.; Staab, D.; Cubillos, P. E.; France, K.; Haswell, C. A.; Ingrassia, S.; Jenkins, J. S.; Koskinen, T.; Lanza, A. F.; Redfield, S.; Youngblood, A.; Pelzmann, G.

    2017-05-01

    Past ultraviolet and optical observations of stars hosting close-in Jupiter-mass planets have shown that some of these stars present an anomalously low chromospheric activity, significantly below the basal level. For the hot Jupiter planet host WASP-13, observations have shown that the apparent lack of activity is possibly caused by absorption from the intervening interstellar medium (ISM). Inspired by this result, we study the effect of ISM absorption on activity measurements (S and log R 'HK indices) for main-sequence late-type stars. To this end, we employ synthetic stellar photospheric spectra combined with varying amounts of chromospheric emission and ISM absorption. We present the effect of ISM absorption on activity measurements by varying several instrumental (spectral resolution), stellar (projected rotational velocity, effective temperature, and chromospheric emission flux), and ISM parameters (relative velocity between stellar and ISM Ca II lines, broadening b-parameter, and Ca II column density). We find that for relative velocities between the stellar and ISM lines smaller than 30-40 km s-1 and for ISM Ca II column densities log NCaII ⪆ 12, the ISM absorption has a significant influence on activity measurements. Direct measurements and three dimensional maps of the Galactic ISM absorption indicate that an ISM Ca II column density of log NCaII = 12 is typically reached by a distance of about 100 pc along most sight lines. In particular, for a Sun-like star lying at a distance greater than 100 pc, we expect a depression (bias) in the log R'HK value larger than 0.05-0.1 dex, about the same size as the typical measurement and calibration uncertainties on this parameter. This work shows that the bias introduced by ISM absorption must always be considered when measuring activity for stars lying beyond 100 pc. We also consider the effect of multiple ISM absorption components. We discuss the relevance of this result for exoplanet studies and revise the

  2. STELLAR ATMOSPHERES, ATMOSPHERIC EXTENSION, AND FUNDAMENTAL PARAMETERS: WEIGHING STARS USING THE STELLAR MASS INDEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilson, Hilding R.; Lester, John B.; Baron, Fabien

    2016-10-20

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angularmore » diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.« less

  3. The Milky Way's Circular Velocity Curve and Its Constraint on the Galactic Mass with RR Lyrae Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ablimit, Iminhaji; Zhao, Gang, E-mail: iminhaji@nao.cas.cn, E-mail: gzhao@nao.cas.cn

    We present a sample of 1148 ab-type RR Lyrae (RRLab) variables identified from Catalina Surveys Data Release 1, combined with SDSS DR8 and LAMOST DR4 spectral data. We first use a large sample of 860 Galactic halo RRLab stars and derive the circular velocity distributions for the stellar halo. With the precise distances and carefully determined radial velocities (the center-of-mass radial velocities) and by considering the pulsation of the RRLab stars in our sample, we can obtain a reliable and comparable stellar halo circular velocity curve. We follow two different prescriptions for the velocity anisotropy parameter β in the Jeansmore » equation to study the circular velocity curve and mass profile. Additionally, we test two different solar peculiar motions in our calculation. The best result we obtained with the adopted solar peculiar motion 1 of ( U , V , W ) = (11.1, 12, 7.2) km s{sup −1} is that the enclosed mass of the Milky Way within 50 kpc is (3.75 ± 1.33) × 10{sup 11} M {sub ⊙} based on β = 0 and the circular velocity 180 ± 31.92 (km s{sup −1}) at 50 kpc. This result is consistent with dynamical model results, and it is also comparable to the results of previous similar works.« less

  4. Measuring the mass distribution in stellar systems

    NASA Astrophysics Data System (ADS)

    Tremaine, Scott

    2018-06-01

    One of the fundamental tasks of dynamical astronomy is to infer the distribution of mass in a stellar system from a snapshot of the positions and velocities of its stars. The usual approach to this task (e.g. Schwarzschild's method) involves fitting parametrized forms of the gravitational potential and the phase-space distribution to the data. We review the practical and conceptual difficulties in this approach and describe a novel statistical method for determining the mass distribution that does not require determining the phase-space distribution of the stars. We show that this new estimator out-performs other distribution-free estimators for the harmonic and Kepler potentials.

  5. Insights on the Spectral Signatures of Stellar Activity and Planets from PCA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Allen B.; Fischer, Debra A.; Cisewski, Jessi

    Photospheric velocities and stellar activity features such as spots and faculae produce measurable radial velocity signals that currently obscure the detection of sub-meter-per-second planetary signals. However, photospheric velocities are imprinted differently in a high-resolution spectrum than are Keplerian Doppler shifts. Photospheric activity produces subtle differences in the shapes of absorption lines due to differences in how temperature or pressure affects the atomic transitions. In contrast, Keplerian Doppler shifts affect every spectral line in the same way. With a high enough signal-to-noise (S/N) and resolution, statistical techniques can exploit differences in spectra to disentangle the photospheric velocities and detect lower-amplitude exoplanetmore » signals. We use simulated disk-integrated time-series spectra and principal component analysis (PCA) to show that photospheric signals introduce spectral line variability that is distinct from that of Doppler shifts. We quantify the impact of instrumental resolution and S/N for this work.« less

  6. A method to estimate stellar ages from kinematical data

    NASA Astrophysics Data System (ADS)

    Almeida-Fernandes, F.; Rocha-Pinto, H. J.

    2018-05-01

    We present a method to build a probability density function (PDF) for the age of a star based on its peculiar velocities U, V, and W and its orbital eccentricity. The sample used in this work comes from the Geneva-Copenhagen Survey (GCS) that contains the spatial velocities, orbital eccentricities, and isochronal ages for about 14 000 stars. Using the GCS stars, we fitted the parameters that describe the relations between the distributions of kinematical properties and age. This parametrization allows us to obtain an age probability from the kinematical data. From this age PDF, we estimate an individual average age for the star using the most likely age and the expected age. We have obtained the stellar age PDF for the age of 9102 stars from the GCS and have shown that the distribution of individual ages derived from our method is in good agreement with the distribution of isochronal ages. We also observe a decline in the mean metallicity with our ages for stars younger than 7 Gyr, similar to the one observed for isochronal ages. This method can be useful for the estimation of rough stellar ages for those stars that fall in areas of the Hertzsprung-Russell diagram where isochrones are tightly crowded. As an example of this method, we estimate the age of Trappist-1, which is a M8V star, obtaining the age of t(UVW) = 12.50(+0.29 - 6.23) Gyr.

  7. Numerical simulation of velocity and temperature fields in natural circulation loop

    NASA Astrophysics Data System (ADS)

    Sukomel, L. A.; Kaban'kov, O. N.

    2017-11-01

    Low flow natural circulation regimes are realized in many practical applications and the existence of the reliable engineering and design calculation methods of flows driven exclusively by buoyancy forces is an actual problem. In particular it is important for the analysis of start up regimes of passive safety systems of nuclear power plants. In spite of a long year investigations of natural circulation loops no suitable predicting recommendations for heat transfer and friction for the above regimes have been proposed for engineering practice and correlations for forced flow are commonly used which considerably overpredicts the real flow velocities. The 2D numerical simulation of velocity and temperature fields in circular tubes for laminar flow natural circulation with reference to the laboratory experimental loop has been carried out. The results were compared with the 1D modified model and experimental data obtained on the above loop. The 1D modified model was still based on forced flow correlations, but in these correlations the physical properties variability and the existence of thermal and hydrodynamic entrance regions are taken into account. The comparison of 2D simulation, 1D model calculations and the experimental data showed that even subject to influence of liquid properties variability and entrance regions on heat transfer and friction the use of 1D model with forced flow correlations do not improve the accuracy of calculations. In general, according to 2D numerical simulation the wall shear stresses are mainly affected by the change of wall velocity gradient due to practically continuous velocity profiles deformation along the whole heated zone. The form of velocity profiles and the extent of their deformation in its turn depend upon the wall heat flux density and the hydraulic diameter.

  8. Removing Activity-Related Radial Velocity Noise to Improve Extrasolar Planet Searches

    NASA Technical Reports Server (NTRS)

    Saar, Steven; Lindstrom, David M. (Technical Monitor)

    2004-01-01

    We have made significant progress towards the proposal goals of understanding the causes and effects of magnetic activity-induced radial velocity (v_r) jitter and developing methods for correcting it. In the process, we have also made some significant discoveries in the fields of planet-induced stellar activity, planet detection methods, M dwarf convection, starspot properties, and magnetic dynamo cycles. We have obtained super high resolution (R approximately 200,000), high S / N (greater than 300) echelle study of joint line bisector and radial velocity variations using the McDonald 2-D coude. A long observing run in October 2002 in particular was quite successful (8 clear nights). We now have close to three years of data, which begins to sample a good fraction of the magnetic cycle timescales for some of our targets (e.g., kappa Ceti; P_cyc = 5.6 yrs). This will be very helpful in unraveling the complex relationships between plage and radial velocity (v-r) changes which we have uncovered. Preliminary analysis (Saar et al. 2003) of the data in hand, reveals correlations between median line bisector displacement and v_r. The correlation appears to be specific the the particular star being considered, probably since it is a function of both spectral type and rotation rate. Further analysis and interpretation will be in the context of evolving plage models and is in progress.

  9. Trapezium Systems and Stellar Jets in 30 Doradus

    NASA Astrophysics Data System (ADS)

    Walborn, Nolan

    1999-07-01

    30 Doradus is the nearest and best resolved extragalactic starburst, hence a paradigm for the phenomenon. Recent NICMOS observations of the new stellar generation being triggered by the outflows from R136 establish 30 Dor as a prime region for investigation of massive-star formation as well. Since 1" already subtends 50, 000 AU at 50 kpc, HST makes unique contributions to the study of 30 Dor. A recent groundbased spectral-classification study has provided new insights into the stellar content of 30 Dor, but many of the targets are resolved into multiple systems in the available WFPC2 images. We propose to obtain spatially resolved STIS blue spectroscopy of some of the newly found multiple systems, which is essential to determine accurate stellar tempertures and masses. Several systems each in the new and previous stellar generations are included. The HST spatial resolution also reduces the contamination of t he stellar spectra by the nebula r emission lines, which is a critical advantage. We also propose dithered PC nebular-line images of the young Trapezium systems Knots 1-3, which interact strongly with the surrounding interstellar medium, forming several parsec-scale jets. Finally, we shall do two WFPC2 pointings with continuum filters, to complete the coverage of the field, which currently limits the search for multiple systems and the illuminating comparisons with IR and other data.

  10. Resolving polarized stellar features thanks to polarimetric interferometry

    NASA Astrophysics Data System (ADS)

    Rousselet-Perraut, Karine; Chesneau, Olivier; Vakili, Farrokh; Mourard, Denis; Janel, Sebastien; Lavaud, Laurent; Crocherie, Axel

    2003-02-01

    Polarimetry is a powerful means for detecting and constraining various physical phenomena, such as scattering processes or magnetic fields, occuring in a large panel of stellar objects: extended atmospheres of hot stars, CP stars, Young Stellar Objects, Active Galaxy Nuclei, ... However, the lack of angular resolution is generally a strong handicap to drastically constrain the physical parameters and the geometry of the polarizing phenomena because of the cancelling of the polarized signal. In fact, even if stellar features are strongly polarized, the (spectro-)polarimetric signal integrated over the stellar surface rarely exceeds few percents. Coupling polarimetric and interferometric devices allows to resolve these local polarized structures and thus to constrain complex patchy stellar surfaces and/or environments such as disk topology in T Tauri stars, hot stars radiative winds or oscillations in Be star envelopes. In this article, we explain how interfero-polarimetric observables, basically the contrast and the position of the interference fringe patterns versus polarization (and even versus wavelength) are powerful to address the above scientific drivers and we emphasize on the key point of instrumental and data calibrations: since interferometric measurements are differential ones between 2 or more beams, this strongly relaxes the calibration requirements for the fringe phase observable. Prospects induced by the operation of the optical aperture synthesis arrays are also discussed.

  11. Optimizing Methods of Obtaining Stellar Parameters for the H3 Survey

    NASA Astrophysics Data System (ADS)

    Ivory, KeShawn; Conroy, Charlie; Cargile, Phillip

    2018-01-01

    The Stellar Halo at High Resolution with Hectochelle Survey (H3) is in the process of observing and collecting stellar parameters for stars in the Milky Way's halo. With a goal of measuring radial velocities for fainter stars, it is crucial that we have optimal methods of obtaining this and other parameters from the data from these stars.The method currently developed is The Payne, named after Cecilia Payne-Gaposchkin, a code that uses neural networks and Markov Chain Monte Carlo methods to utilize both spectra and photometry to obtain values for stellar parameters. This project was to investigate the benefit of fitting both spectra and spectral energy distributions (SED). Mock spectra using the parameters of the Sun were created and noise was inserted at various signal to noise values. The Payne then fit each mock spectrum with and without a mock SED also generated from solar parameters. The result was that at high signal to noise, the spectrum dominated and the effect of fitting the SED was minimal. But at low signal to noise, the addition of the SED greatly decreased the standard deviation of the data and resulted in more accurate values for temperature and metallicity.

  12. Copernicus ultraviolet spectra of OB supergiants with strong stellar winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, J.B.

    1976-03-01

    Spectral scans at approximately 0.2 A resolution have been obtained in the far-ultraviolet of eight stars which have high mass-loss rates from stellar winds. The P Cygni characteristics of the line profiles appear to vary inversely as the mass flow rate, and in P Cygni itself the C III lambda 1175 line shows no velocity shift, or emission. It is suggested that higher mass flow rates occur through a denser, slower moving envelope in which collisional interactions are important. (auth)

  13. Interpretation of the electric fields measured in an ionospheric critical ionization velocity experiment

    NASA Technical Reports Server (NTRS)

    Brenning, N.; Faelthammar, C.-G.; Marklund, G.; Haerendel, G.; Kelley, M. C.; Pfaff, R.

    1991-01-01

    The quasi-dc electric fields measured in the CRIT I ionospheric release experiment are studied. In the experiment, two identical barium shaped charges were fired toward a main payload, and three-dimensional measurements of the electric field inside the streams were made. The relevance of proposed mechanisms for electron heating in the critical ionization velocity (CIV) mechanism is addressed. It is concluded that both the 'homogeneous' and the 'ionizing front' models probably are valid, but in different parts of the streams. It is also possible that electrons are directly accelerated by a magnetic field-aligned component of the electric field. The coupling between the ambient ionosphere and the ionized barium stream is more complicated that is usually assumed in CIV theories, with strong magnetic-field-aligned electric fields and probably current limitation as important processes.

  14. Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations.

    PubMed

    Strugarek, A; Beaudoin, P; Charbonneau, P; Brun, A S; do Nascimento, J-D

    2017-07-14

    The magnetic fields of solar-type stars are observed to cycle over decadal periods-11 years in the case of the Sun. The fields originate in the turbulent convective layers of stars and have a complex dependency upon stellar rotation rate. We have performed a set of turbulent global simulations that exhibit magnetic cycles varying systematically with stellar rotation and luminosity. We find that the magnetic cycle period is inversely proportional to the Rossby number, which quantifies the influence of rotation on turbulent convection. The trend relies on a fundamentally nonlinear dynamo process and is compatible with the Sun's cycle and those of other solar-type stars. Copyright © 2017, American Association for the Advancement of Science.

  15. Stellar streams as gravitational experiments. II. Asymmetric tails of globular cluster streams

    NASA Astrophysics Data System (ADS)

    Thomas, G. F.; Famaey, B.; Ibata, R.; Renaud, F.; Martin, N. F.; Kroupa, P.

    2018-01-01

    Kinematically cold tidal streams of globular clusters (GC) are excellent tracers of the Galactic gravitational potential at moderate Galactocentric distances, and can also be used as probes of the law of gravity on Galactic scales. Here, we compare for the first time the generation of such streams in Newtonian and Milgromian gravity (MOND). We first computed analytical results to investigate the expected shape of the GC gravitational potential in both frameworks, and we then ran N-body simulations with the Phantom of Ramses code. We find that the GCs tend to become lopsided in MOND. This is a consequence of the external field effect which breaks the strong equivalence principle. When the GC is filling its tidal radius the lopsidedness generates a strongly asymmetric tidal stream. In Newtonian dynamics, such markedly asymmetric streams can in general only be the consequence of interactions with dark matter subhalos, giant molecular clouds, or interaction with the Galactic bar. In these Newtonian cases, the asymmetry is the consequence of a very large gap in the stream, whilst in MOND it is a true asymmetry. This should thus allow us in the future to distinguish these different scenarios by making deep observations of the environment of the asymmetric stellar stream of Palomar 5. Moreover, our simulations indicate that the high internal velocity dispersion of Palomar 5 for its small stellar mass would be natural in MOND. The movie is available in electronic form at http://www.aanda.org

  16. Ultraviolet stellar astronomy

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Wray, J. D.; Kondo, Y.; Ocallaghan, F. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. During all three Skylab missions, prism-on observations were obtained in 188 starfields and prism-off observations in 31 starfields. In general, the fields are concentrated in the Milky Way where the frequency of hot stars is highest. These fields cover an area approximately 3660 degrees and include roughly 24 percent of a band 30 deg wide centered on the plane of the Milky Way. A census of stars in the prism-on fields shows that nearly 6,000 stars have measurable flux data at a wavelength of 2600A, that 1,600 have measurable data at 2000A, and that 400 show useful data at 1500A. Obvious absorption or emission features shortward of 2000A are visible in approximately 120 stars. This represents a bonanza of data useful for statistical studies of stellar classification and of interstellar reddening as well as for studies of various types of peculiar stars.

  17. Kinematic and stellar population properties of the counter-rotating components in the S0 galaxy NGC 1366

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Pizzella, A.; Coccato, L.; Corsini, E. M.; Dalla Bontà, E.; Buson, L. M.; Ivanov, V. D.; Pagotto, I.; Pompei, E.; Rocco, M.

    2017-04-01

    Context. Many disk galaxies host two extended stellar components that rotate in opposite directions. The analysis of the stellar populations of the counter-rotating components provides constraints on the environmental and internal processes that drive their formation. Aims: The S0 NGC 1366 in the Fornax cluster is known to host a stellar component that is kinematically decoupled from the main body of the galaxy. Here we successfully separated the two counter-rotating stellar components to independently measure the kinematics and properties of their stellar populations. Methods: We performed a spectroscopic decomposition of the spectrum obtained along the galaxy major axis and separated the relative contribution of the two counter-rotating stellar components and of the ionized-gas component. We measured the line-strength indices of the two counter-rotating stellar components and modeled each of them with single stellar population models that account for the α/Fe overabundance. Results: We found that the counter-rotating stellar component is younger, has nearly the same metallicity, and is less α/Fe enhanced than the corotating component. Unlike most of the counter-rotating galaxies, the ionized gas detected in NGC 1366 is neither associated with the counter-rotating stellar component nor with the main galaxy body. On the contrary, it has a disordered distribution and a disturbed kinematics with multiple velocity components observed along the minor axis of the galaxy. Conclusions: The different properties of the counter-rotating stellar components and the kinematic peculiarities of the ionized gas suggest that NGC 1366 is at an intermediate stage of the acquisition process, building the counter-rotating components with some gas clouds still falling onto the galaxy. Based on observations made with ESO Telescopes at the La Silla-Paranal Observatory under programmes 075.B-0794 and 077.B-0767.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batiste, Merida; Bentz, Misty C.; Manne-Nicholas, Emily R.

    We present new bulge stellar velocity dispersion measurements for 10 active galaxies with secure M {sub BH} determinations from reverberation mapping. These new velocity dispersion measurements are based on spatially resolved kinematics from integral-field (IFU) spectroscopy. In all but one case, the field of view of the IFU extends beyond the effective radius of the galaxy, and in the case of Mrk 79 it extends to almost one half the effective radius. This combination of spatial resolution and field of view allows for secure determinations of stellar velocity dispersion within the effective radius for all 10 target galaxies. Spatially resolvedmore » maps of the first ( V ) and second ( σ {sub ⋆}) moments of the line of sight velocity distribution indicate the presence of kinematic substructure in most cases. In future projects we plan to explore methods of correcting for the effects of kinematic substructure in the derived bulge stellar velocity dispersion measurements.« less

  19. Deceleration of High-velocity Interstellar Photon Sails into Bound Orbits at α Centauri

    NASA Astrophysics Data System (ADS)

    Heller, René; Hippke, Michael

    2017-02-01

    At a distance of about 4.22 ly, it would take about 100,000 years for humans to visit our closest stellar neighbor Proxima Centauri using modern chemical thrusters. New technologies are now being developed that involve high-power lasers firing at 1 gram solar sails in near-Earth orbits, accelerating them to 20% the speed of light (c) within minutes. Although such an interstellar probe could reach Proxima 20 years after launch, without propellant to slow it down it would traverse the system within hours. Here we demonstrate how the stellar photon pressures of the stellar triple α Cen A, B, and C (Proxima) can be used together with gravity assists to decelerate incoming solar sails from Earth. The maximum injection speed at α Cen A to park a sail with a mass-to-surface ratio (σ) similar to graphene (7.6 × 10-4 gram m-2) in orbit around Proxima is about 13,800 km s-1 (4.6% c), implying travel times from Earth to α Cen A and B of about 95 years and another 46 years (with a residual velocity of 1280 km s-1) to Proxima. The size of such a low-σ sail required to carry a payload of 10 grams is about 105 m2 = (316 m)2. Such a sail could use solar photons instead of an expensive laser system to gain interstellar velocities at departure. Photogravitational assists allow visits of three stellar systems and an Earth-sized potentially habitable planet in one shot, promising extremely high scientific yields.

  20. On magnetic field strength effect on velocity and turbulence characterization using Phase-Contrast Magnetic Resonance Imaging (PC-MRI)

    NASA Astrophysics Data System (ADS)

    van de Moortele, Pierre-Francois; Amili, Omid; Coletti, Filippo; Toloui, Mostafa

    2017-11-01

    Cardiovascular flows are predominantly laminar. Nevertheless, transient and even turbulent flows have been observed in the vicinity of the heart (e.g. valves, ascending aorta, valvular/vascular stenosis). Effective in-vivo hemodynamic-based diagnostics in these sites require both high-resolution velocity measurements (especially in the near-vessel wall regions) and accurate evaluation of blood flow turbulence level (e.g. in terms of TKE). In addition to phase contrast (PC), appropriately designed PC-MRI sequences provide intravoxel incoherent motion encoding, a unique tool for simultaneous, non-invasive evaluation of velocity 3D vector fields and Reynolds stresses in cardiovascular flows in vivo. However, limited spatial and temporal resolution of PC-MRI result in inaccuracies in the estimation of hemodynamics (e.g. WSS) and of flow turbulence characteristics. This study aims to assess whether SNR gains at higher magnetic field could overcome these limits, providing more accurate velocity and turbulence characterization at higher spatial resolution. Experiments are conducted on MR Scanners at 3 and 7 Tesla with a U-bent pipe flow shaped phantom. 3D velocity fields, Reynolds stresses and TKE are analyzed and compared to a reference PIV experiments.

  1. On stellar encounters and their effect on cometary orbits in the Oort cloud

    NASA Astrophysics Data System (ADS)

    Serafin, R. A.; Grothues, H.-G.

    2002-03-01

    We systematically investigate the encounters between the Sun and neighbouring stars and their effects on cometary orbits in the Oort cloud, including the intrinsic one with the star Gl 710 (HIP 89 825), with some implications to stellar and cometary dynamics. Our approach is principally based on the combination of a Keplerian-rectilinear model of stellar passages and the Hipparcos Catalogue (ESA 1997). Beyond the parameters of encounter, we pay particular attention to the observational errors in parallaxes and stellar velocities, and their propagation in time. Moreover, as a special case of this problem, we consider the collision probability of a star passing very closely to the Sun, taking also into account the mutual gravitational attraction between the stars. In the part dealing with the influence of stellar encounters on the orbital elements of Oort cloud comets, we derive new simple formulae calculating the changes in the cometary orbital elements, expressed as functions of the Jeans impulse formula. These expressions are then applied to calculate numerical values of the element changes caused by close encounters of neighbouring stars with some model comets in the Oort cloud. Moreover, the general condition for an ejection of comets from the cloud effected by a single encounter is derived and discussed.

  2. Spectral Types and Wind Velocities for Massive Stars in R136

    NASA Astrophysics Data System (ADS)

    Bostroem, K. A.; Maíz Apellániz, J.; Caballero-Nieves, S. M.; Walborn, N. R.; Crowther, P. A.

    2014-01-01

    We analyze spatially resolved, long-slit ultraviolet (UV) and optical stellar spectra of the compact starburst cluster R136 at the core of 30 Doradus. R136 is young and massive, making it an ideal place to study the upper end of the initial mass function. These spectra, taken with the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, cover over 100 stars in the inner 4 arcseconds (1 parsec) of R136, a region which cannot be resolved with ground-based spectroscopy. In this poster we present both the UV and optical of over 20 of the brightest stars in R136, extracted with MULTISPEC, a tool written specifically for multiple objects in crowded fields. For each star we present an optical spectral type and a terminal wind velocity derived from the UV data

  3. The resolved stellar populations around 12 Type IIP supernovae

    NASA Astrophysics Data System (ADS)

    Maund, Justyn R.

    2017-08-01

    Core-collapse supernovae (SNe) are found in regions associated with recent massive star formation. The stellar population observed around the location of a SN can be used as a probe of the origins of the progenitor star. We apply a Bayesian mixture model to fit isochrones to the massive star population around 12 Type IIP SNe, for which constraints on the progenitors are also available from fortuitous pre-explosion images. Using the high-resolution Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3, we study the massive star population found within 100 pc of each of our target SNe. For most of the SNe in our sample, we find that there are multiple age components in the surrounding stellar populations. In the cases of SNe 2003gd and 2005cs, we find that the progenitor does not come from the youngest stellar population component and, in fact, these relatively low mass progenitors (˜8 M⊙) are found in close proximity to stars as massive as 15 and 50-60 M⊙, respectively. Overall, the field extinction (Galactic and host) derived for these populations is ˜0.3 mag higher than the extinction that was generally applied in previously reported progenitor analyses. We also find evidence, in particular for SN 2004dj, for significant levels of differential extinction. Our analysis for SN 2008bk suggests a significantly lower extinction for the population than the progenitor, but the lifetime of the population and mass determined from pre-explosion images agree. Overall, assuming that the appropriate age component can be suitably identified from the multiple stellar population components present, we find that our Bayesian approach to studying resolved stellar populations can match progenitor masses determined from direct imaging to within ±3 M⊙.

  4. Towards accurate radial velocities from early type spectra in the framework of an ESO key programme

    NASA Astrophysics Data System (ADS)

    Verschueren, Werner; David, M.; Hensberge, Herman

    In order to elucidate the internal kinematics in very young stellar groups, a dedicated machinery was set up, which made it possible to proceed from actual observations to reductions and correlation analysis to the ultimate derivation of early-type stellar radial velocities (RVs) with the requisite precision. The following ingredients are found to be essential to obtain RVs of early-type stars at the 1-km/s level of precision: high-resolution, high-S/N spectra covering a large wavelength range; maximal reduction of observational errors and the use of optimal reduction procedures; the intelligent use of a versatile cross-correlation package; and comparison of velocities derived from different regions of the spectrum in order to detect systematic mismatches between object and template spectrum in some of the lines.

  5. The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.

    2016-01-01

    The mass distribution of the Galactic disk is constructed from the terminal velocity curve and the mass discrepancy-acceleration relation. Mass models numerically quantifying the detailed surface density profiles are tabulated. For R0 = 8 kpc, the models have stellar mass 5 < M* < 6 × 1010 {M}⊙ , scale length 2.0 ≤ Rd ≤ 2.9 kpc, LSR circular velocity 222 ≤ Θ0 ≤ 233 {km} {{{s}}}-1, and solar circle stellar surface density 34 ≤ Σd(R0) ≤ 61 {M}⊙ {{pc}}-2. The present interarm location of the solar neighborhood may have a somewhat lower stellar surface density than average for the solar circle. The Milky Way appears to be a normal spiral galaxy that obeys scaling relations like the Tully-Fisher relation, the size-mass relation, and the disk maximality-surface brightness relation. The stellar disk is maximal, and the spiral arms are massive. The bumps and wiggles in the terminal velocity curve correspond to known spiral features (e.g., the Centaurus arm is a ˜50% overdensity). The rotation curve switches between positive and negative over scales of hundreds of parsecs. The rms amplitude {< {| {dV}/{dR}| }2> }1/2≈ 14 {km} {{{s}}}-1 {{kpc}}-1, implying that commonly neglected terms in the Jeans equations may be nonnegligible. The spherically averaged local dark matter density is ρ0,DM ≈ 0.009 {M}⊙ {{pc}}-3 (0.34 {GeV} {{cm}}-3). Adiabatic compression of the dark matter halo may help reconcile the Milky Way with the c-V200 relation expected in ΛCDM while also helping to mitigate the too-big-to-fail problem, but it remains difficult to reconcile the inner bulge/bar-dominated region with a cuspy halo. We note that NGC 3521 is a near twin to the Milky Way, having a similar luminosity, scale length, and rotation curve.

  6. The dynamics of head-on collisions of spherical stellar systems

    NASA Astrophysics Data System (ADS)

    Narasimhan, K. S. V. S.; Alladin, Saleh Mohammed

    1986-12-01

    Energy changes in a head-on collision between two unequal Plummer model stellar systems (galaxies) are studied analytically under the impulsive approximation. The variation of the disruptive effects within and the mass escape from systems widely differing in mass and scalelength ratios are determined, and some physical implications regarding the dynamical stability of the systems undergoing head-on collisions are indicated. It is found that if two systems differ considerably in size, both systems generally survive the collision if (1) the mass of the bigger is greater than about six times the mass of the smaller and (2) the density of the smaller is more than about twenty-five times the entity of the bigger system, when the velocity at minimum separation is equal to the parabolic velocity of escape.

  7. NoSOCS in SDSS - VI. The environmental dependence of AGN in clusters and field in the local Universe

    NASA Astrophysics Data System (ADS)

    Lopes, P. A. A.; Ribeiro, A. L. B.; Rembold, S. B.

    2017-11-01

    We investigated the variation in the fraction of optical active galactic nuclei (AGNs) hosts with stellar mass, as well as their local and global environments. Our sample is composed of cluster members and field galaxies at z ≤ 0.1 and we consider only strong AGN. We find a strong variation in the AGN fraction (FAGN) with stellar mass. The field population comprises a higher AGN fraction compared to the global cluster population, especially for objects with log M* > 10.6. Hence, we restricted our analysis to more massive objects. We detected a smooth variation in the FAGN with local stellar mass density for cluster objects, reaching a plateau in the field environment. As a function of cluster-centric distance we verify that FAGN is roughly constant for R > R200, but show a steep decline inwards. We have also verified the dependence of the AGN population on cluster velocity dispersion, finding a constant behaviour for low mass systems (σP ≲ 650-700 km s-1). However, there is a strong decline in FAGN for higher mass clusters (>700 km s-1). When comparing the FAGN in clusters with or without substructure, we only find different results for objects at large radii (R > R200), in the sense that clusters with substructure present some excess in the AGN fraction. Finally, we have found that the phase-space distribution of AGN cluster members is significantly different than other populations. Due to the environmental dependence of FAGN and their phase-space distribution, we interpret AGN to be the result of galaxy interactions, favoured in environments where the relative velocities are low, typical of the field, low mass groups or cluster outskirts.

  8. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sand, D. J.; Crnojević, D.; Seth, A. C.

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope . The color–magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ∼7–50 Myr, and is consistent with a metallicity of [Fe/H] ∼ −0.3 as previous work has measured via H ii region spectroscopy. Additionally, the color–magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ∼1.′6 (∼8 kpc)more » away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ∼7–50 Myr stellar population. The main body of AGC 226067 has a M {sub V} = −11.3 ± 0.3, or M {sub stars} = 5.4 ± 1.3 × 10{sup 4} M {sub ⊙} given the stellar population. We searched 20 deg{sup 2} of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ∼0.1 M {sub ⊙} yr{sup −1} in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (∼350 kpc away in projection) as it falls into the Virgo Cluster.« less

  9. DETECTION OF A STELLAR STREAM BEHIND OPEN CLUSTER NGC 188: ANOTHER PART OF THE MONOCEROS STREAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casetti-Dinescu, Dana I.; Girard, Terrence M.; Van Altena, William F.

    2010-05-15

    We present results from a WIYN/Orthogonal Parallel Transfer Imaging Camera photometric and astrometric survey of the field of the open cluster NGC 188 ((l, b) = (122.{sup 0}8, 22.{sup 0}5)). We combine these results with the proper-motion and photometry catalog of Platais et al. and demonstrate the existence of a stellar overdensity in the background of NGC 188. The theoretical isochrone fits to the color-magnitude diagram of the overdensity are consistent with an age between 6 and 10 Gyr and an intermediately metal poor population ([Fe/H] = -0.5 to -1.0). The distance to the overdensity is estimated to be betweenmore » 10.0 and 12.6 kpc. The proper motions indicate that the stellar population of the overdensity is kinematically cold. The distance estimate and the absolute proper motion of the overdensity agree reasonably well with the predictions of the Penarrubia et al. model of the formation of the Monoceros stream. Orbits for this material constructed with plausible radial-velocity values, indicate that dynamically, this material is unlikely to belong to the thick disk. Taken together, this evidence suggests that the newly found overdensity is part of the Monoceros stream.« less

  10. METALLICITY DISTRIBUTION FUNCTIONS, RADIAL VELOCITIES, AND ALPHA ELEMENT ABUNDANCES IN THREE OFF-AXIS BULGE FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki

    2013-03-10

    We present radial velocities and chemical abundance ratios of [Fe/H], [O/Fe], [Si/Fe], and [Ca/Fe] for 264 red giant branch stars in three Galactic bulge off-axis fields located near (l, b) = (-5.5, -7), (-4, -9), and (+8.5, +9). The results are based on equivalent width and spectrum synthesis analyses of moderate resolution (R Almost-Equal-To 18,000), high signal-to-noise ratio (S/N {approx} 75-300 pixel{sup -1}) spectra obtained with the Hydra spectrographs on the Blanco 4 m and WIYN 3.5 m telescopes. The targets were selected from the blue side of the giant branch to avoid cool stars that would be strongly affectedmore » by CN and TiO; however, a comparison of the color-metallicity distribution in literature samples suggests that our selection of bluer targets should not present a significant bias against metal-rich stars. We find a full range in metallicity that spans [Fe/H] Almost-Equal-To -1.5 to +0.5, and that, in accordance with the previously observed minor-axis vertical metallicity gradient, the median [Fe/H] also declines with increasing Galactic latitude in off-axis fields. The off-axis vertical [Fe/H] gradient in the southern bulge is estimated to be {approx}0.4 dex kpc{sup -1}; however, comparison with the minor-axis data suggests that a strong radial gradient does not exist. The (+8.5, +9) field exhibits a higher than expected metallicity, with a median [Fe/H] = -0.23, that might be related to a stronger presence of the X-shaped bulge structure along that line-of-sight. This could also be the cause of an anomalous increase in the median radial velocity for intermediate metallicity stars in the (+8.5, +9) field. However, the overall radial velocity and dispersion for each field are in good agreement with recent surveys and bulge models. All fields exhibit an identical, strong decrease in velocity dispersion with increasing metallicity that is consistent with observations in similar minor-axis outer bulge fields. Additionally, the [O/Fe], [Si

  11. Fixing Stellarator Magnetic Surfaces

    NASA Astrophysics Data System (ADS)

    Hanson, James D.

    1999-11-01

    Magnetic surfaces are a perennial issue for stellarators. The design heuristic of finding a magnetic field with zero perpendicular component on a specified outer surface often yields inner magnetic surfaces with very small resonant islands. However, magnetic fields in the laboratory are not design fields. Island-causing errors can arise from coil placement errors, stray external fields, and design inadequacies such as ignoring coil leads and incomplete characterization of current distributions within the coil pack. The problem addressed is how to eliminate such error-caused islands. I take a perturbation approach, where the zero order field is assumed to have good magnetic surfaces, and comes from a VMEC equilibrium. The perturbation field consists of error and correction pieces. The error correction method is to determine the correction field so that the sum of the error and correction fields gives zero island size at specified rational surfaces. It is particularly important to correctly calculate the island size for a given perturbation field. The method works well with many correction knobs, and a Singular Value Decomposition (SVD) technique is used to determine minimal corrections necessary to eliminate islands.

  12. Antarctic Glaciological Data at NSIDC: field data, temperature, and ice velocity

    NASA Astrophysics Data System (ADS)

    Bauer, R.; Bohlander, J.; Scambos, T.; Berthier, E.; Raup, B.; Scharfen, G.

    2003-12-01

    An extensive collection of many Antarctic glaciological parameters is available for the polar science community upon request. The National Science Foundation's Office of Polar Programs funds the Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) to archive and distribute Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program. AGDC facilitates data exchange among Principal Investigators, preserves recently collected data useful to future research, gathers data sets from past research, and compiles continent-wide information useful for modeling and field work planning. Data sets are available via our web site, http://nsidc.org/agdc/. From here, users can access extensive documentation, citation information, locator maps, derived images and references, and the numerical data. More than 50 Antarctic scientists have contributed data to the archive. Among the compiled products distributed by AGDC are VELMAP and THERMAP. THERMAP is a compilation of over 600 shallow firn temperature measurements ('10-meter temperatures') collected since 1950. These data provide a record of mean annual temperature, and potentially hold a record of climate change on the continent. The data are represented with maps showing the traverse route, and include data sources, measurement technique, and additional measurements made at each site, i.e., snow density and accumulation. VELMAP is an archive of surface ice velocity measurements for the Antarctic Ice Sheet. The primary objective of VELMAP is to assemble a historic record of outlet glaciers and ice shelf ice motion over the Antarctic. The collection includes both PI-contributed measurements and data generated at NSIDC using Landsat and SPOT satellite imagery. Tabular data contain position, speed, bearing, and data quality information, and related references. Two new VELMAP data sets are highlighted: the Mertz Glacier and the Institute Ice Stream. Mertz Glacier ice

  13. Rotation curves of galaxies and the stellar mass-to-light ratio

    NASA Astrophysics Data System (ADS)

    Haghi, Hosein; Khodadadi, Aziz; Ghari, Amir; Zonoozi, Akram Hasani; Kroupa, Pavel

    2018-03-01

    Mass models of a sample of 171 low- and high-surface brightness galaxies are presented in the context of the cold dark matter (CDM) theory using the NFW dark matter halo density distribution to extract a new concentration-viral mass relation (c - Mvir). The rotation curves (RCs) are calculated from the total baryonic matter based on the 3.6 μm-band surface photometry, the observed distribution of neutral hydrogen, and the dark halo, in which the three adjustable parameters are the stellar mass-to-light ratio, halo concentration and virial mass. Although accounting for a NFW dark halo profile can explain rotation curve observations, the implied c - Mvir relation from RC analysis strongly disagrees with that resulting from different cosmological simulations. Also, the M/L -color correlation of the studied galaxies is inconsistent with that expected from stellar population synthesis models with different stellar initial mass functions. Moreover, we show that the best-fitting stellar M/L - ratios of 51 galaxies (30% of our sample) have unphysically negative values in the framework of the ΛCDM theory. This can be interpreted as a serious crisis for this theory. This suggests either that the commonly used NFW halo profile, which is a natural result of ΛCDM cosmological structure formation, is not an appropriate profile for the dark halos of galaxies, or, new dark matter physics or alternative gravity models are needed to explain the rotational velocities of disk galaxies.

  14. Rotation curves of galaxies and the stellar mass-to-light ratio

    NASA Astrophysics Data System (ADS)

    Haghi, Hosein; Khodadadi, Aziz; Ghari, Amir; Zonoozi, Akram Hasani; Kroupa, Pavel

    2018-07-01

    Mass models of a sample of 171 low- and high-surface brightness galaxies are presented in the context of the cold dark matter (CDM) theory using the NFW dark matter halo density distribution to extract a new concentration-viral mass relation (c-Mvir). The rotation curves (RCs) are calculated from the total baryonic matter based on the 3.6 μm-band surface photometry, the observed distribution of neutral hydrogen, and the dark halo, in which the three adjustable parameters are the stellar mass-to-light ratio, halo concentration, and virial mass. Although accounting for a NFW dark halo profile can explain RC observations, the implied c-Mvir relation from RC analysis strongly disagrees with that resulting from different cosmological simulations. Also, the M/L-colour correlation of the studied galaxies is inconsistent with that expected from stellar population synthesis models with different stellar initial mass functions. Moreover, we show that the best-fitting stellar M/L ratios of 51 galaxies (30 per cent of our sample) have unphysically negative values in the framework of the ΛCDM theory. This can be interpreted as a serious crisis for this theory. This suggests either that the commonly used NFW halo profile, which is a natural result of ΛCDM cosmological structure formation, is not an appropriate profile for the dark haloes of galaxies, or, new dark matter physics or alternative gravity models are needed to explain the rotational velocities of disc galaxies.

  15. Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields.

    PubMed

    Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kojima, Sho; Miyaguchi, Shota; Kotan, Shinichi; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2016-09-01

    To clarify characteristics of each human somatosensory evoked field (SEF) component following passive movement (PM), PM1, PM2, and PM3, using high spatiotemporal resolution 306-channel magnetoencephalography and varying PM range and angular velocity. We recorded SEFs following PM under three conditions [normal range-normal velocity (NN), small range-normal velocity (SN), and small range-slow velocity (SS)] with changing movement range and angular velocity in 12 participants and calculated the amplitude, equivalent current dipole (ECD) location, and the ECD strength for each component. All components were observed in six participants, whereas only PM1 and PM3 in the other six. Clear response deflections at the ipsilateral hemisphere to PM side were observed in seven participants. PM1 amplitude was larger under NN and SN conditions, and mean ECD location for PM1 was at primary motor area. PM3 amplitude was larger under SN condition and mean ECD location for PM3 under SS condition was at primary somatosensory area. PM1 amplitude was dependent on the angular velocity of PM, suggesting that PM1 reflects afferent input from muscle spindle, whereas PM3 amplitude was dependent on the duration. The ECD for PM3 was located in the primary somatosensory cortex, suggesting that PM3 reflects cutaneous input. We confirmed the hypothesis for locally distinct generators and characteristics of each SEF component.

  16. A family of models for spherical stellar systems

    NASA Technical Reports Server (NTRS)

    Tremaine, Scott; Richstone, Douglas O.; Byun, Yong-Ik; Dressler, Alan; Faber, S. M.; Grillmair, Carl; Kormendy, John; Lauer, Tod R.

    1994-01-01

    We describe a one-parameter family of models of stable sperical stellar systems in which the phase-space distribution function depends only on energy. The models have similar density profiles in their outer parts (rho propotional to r(exp -4)) and central power-law density cusps, rho proportional to r(exp 3-eta), 0 less than eta less than or = 3. The family contains the Jaffe (1983) and Hernquist (1990) models as special cases. We evaluate the surface brightness profile, the line-of-sight velocity dispersion profile, and the distribution function, and discuss analogs of King's core-fitting formula for determining mass-to-light ratio. We also generalize the models to a two-parameter family, in which the galaxy contains a central black hole; the second parameter is the mass of the black hole. Our models can be used to estimate the detectability of central black holes and the velocity-dispersion profiles of galaxies that contain central cusps, with or without a central black hole.

  17. Shear-wave velocities beneath the Harrat Rahat volcanic field, Saudi Arabia, using ambient seismic noise analysis

    NASA Astrophysics Data System (ADS)

    Civilini, F.; Mooney, W.; Savage, M. K.; Townend, J.; Zahran, H. M.

    2017-12-01

    We present seismic shear-velocities for Harrat Rahat, a Cenozoic bimodal alkaline volcanic field in west-central Saudi Arabia, using seismic tomography from natural ambient noise. This project is part of an overall effort by the Saudi Geological Survey and the United States Geological Survey to describe the subsurface structure and assess hazards within the Saudi Arabian shield. Volcanism at Harrat Rahat began approximately 10 Ma, with at least three pulses around 10, 5, and 2 Ma, and at least several pulses in the Quaternary from 1.9 Ma to the present. This area is instrumented by 14 broadband Nanometrics Trillium T120 instruments across an array aperture of approximately 130 kilometers. We used a year of recorded natural ambient noise to determine group and phase velocity surface wave dispersion maps with a 0.1 decimal degree resolution for radial-radial, transverse-transverse, and vertical-vertical components of the empirical Green's function. A grid-search method was used to carry out 1D shear-velocity inversions at each latitude-longitude point and the results were interpolated to produce pseudo-3D shear velocity models. The dispersion maps resolved a zone of slow surface wave velocity south-east of the city of Medina spatially correlated with the 1256 CE eruption. A crustal layer interface at approximately 20 km depth was determined by the inversions for all components, matching the results of prior seismic-refraction studies. Cross-sections of the 3D shear velocity models were compared to gravity measurements obtained in the south-east edge of the field. We found that measurements of low gravity qualitatively correlate with low values of shear-velocity below 20 km along the cross-section profile. We apply these methods to obtain preliminary tomography results on the entire Arabian Shield.

  18. Improved Design of Stellarator Coils for Current Carrying Plasmas

    NASA Astrophysics Data System (ADS)

    Drevlak, M.; Strumberger, E.; Hirshman, S.; Boozer, A.; Brooks, A.; Valanju, P.

    1998-11-01

    The method of automatic optimization (P. Merkel, Nucl. Fus. 27), (1987) 867; P. Merkel, M. Drevlak, Proc 25th EPS Conf. on Cont. Fus. and Plas. Phys., Prague, in print. for the design of stellarator coils consists essentially of determining filaments such that the average relative field error int dS [ (B_coil + B_j) \\cdot n]^2/B^2_coil is minimized on the prescribed plasma boundary. Bj is the magnetic field produced by the plasma currents of the given finite β fixed boundary equilibrium. For equilibria of the W7-X type, Bj can be neglected, because of the reduced parallel plasma currents. This is not true for quasi-axisymmetric stellarator (QAS) configurations (A. Reiman, et al., to be published.) with large equilibrium and net plasma (bootstrap) currents. Although the coils for QAS exhibit low values of the field error, free boundary calculations indicate that the shape of the plasma is usually not accurately reproduced , particularly when saddle coils are used. We investigate if the surface reconstruction can be improved by introducing a modified measure of the field error based on a measure of the resonant components of the normal field.

  19. Measurements of Dendritic Growth Velocities in Undercooled Melts of Pure Nickel Under Static Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Gao, Jianrong; Zhang, Zongning; Zhang, Yingjie

    2012-01-01

    Dendritic growth velocities in undercooled melts of pure Ni have been intensively studied over the past fifty years. However, the literature data are at marked variance with the prediction of the widely accepted model for rapid dendritic growth both at small and at large undercoolings. In the present work, bulk melts of pure Ni samples of high purity were undercooled by glass fluxing treatment under a static magnetic field. The recalescence processes of the samples at different undercoolings were recorded using a high-speed camera, and were modeled using a software to determine the dendritic growth velocities. The present data confirmed the effect of melt flow on dendritic growth velocities at undercoolings below 100 K. A comparison of the present data with previous measurements on a lower purity material suggested an effect of impurities on dendritic growth velocities at undercoolings larger than 200 K as well.

  20. Not-so-simple stellar populations in nearby, resolved massive star clusters

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan

    2018-02-01

    Around the turn of the last century, star clusters of all kinds were considered ‘simple’ stellar populations. Over the past decade, this situation has changed dramatically. At the same time, star clusters are among the brightest stellar population components and, as such, they are visible out to much greater distances than individual stars, even the brightest, so that understanding the intricacies of star cluster composition and their evolution is imperative for understanding stellar populations and the evolution of galaxies as a whole. In this review of where the field has moved to in recent years, we place particular emphasis on the properties and importance of binary systems, the effects of rapid stellar rotation, and the presence of multiple populations in Magellanic Cloud star clusters across the full age range. Our most recent results imply a reverse paradigm shift, back to the old simple stellar population picture for at least some intermediate-age (˜1-3 Gyr old) star clusters, opening up exciting avenues for future research efforts.