Science.gov

Sample records for stellarator fusion neutronics

  1. Fusion neutron generation computations in a stellarator-mirror hybrid with neutral beam injection

    SciTech Connect

    Moiseenko, V. E.; Agren, O.

    2012-06-19

    In the paper [Moiseenko V.E., Noack K., Agren O. 'Stellarator-mirror based fusion driven fission reactor' J Fusion Energy 29 (2010) 65.], a version of a fusion driven system (FDS), i.e. a sub-critical fast fission assembly with a fusion plasma neutron source, is proposed. The plasma part of the reactor is based on a stellarator with a small mirror part. Hot ions with high perpendicular energy are assumed to be trapped in the magnetic mirror part. The stellarator part which connects to the mirror part and provides confinement for the bulk (deuterium) plasma. In the magnetic well of the mirror part, fusion reactions occur from collisions between a of hot ion component (tritium) with cold background plasma ions. RF heating is one option to heat the tritium. A more conventional method to sustain the hot ions is neutral beam injection (NBI), which is here studied numerically for the above-mentioned hybrid scheme. For these studies, a new kinetic code, KNBIM, has been developed. The code takes into account Coulomb collisions between the hot ions and the background plasma. The geometry of the confining magnetic field is arbitrary for the code. It is accounted for via a numerical bounce averaging procedure. Along with the kinetic calculations the neutron generation intensity and its spatial distribution are computed.

  2. Generic Stellarator-like Magnetic Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Spong, Donald

    2015-11-01

    The Generic Magnetic Fusion Reactor paper, published in 1985, has been updated, reflecting the improved science and technology base in the magnetic fusion program. Key changes beyond inflation are driven by important benchmark numbers for technologies and costs from ITER construction, and the use of a more conservative neutron wall flux and fluence in modern fusion reactor designs. In this paper the generic approach is applied to a catalyzed D-D stellarator-like reactor. It is shown that an interesting power plant might be possible if the following parameters could be achieved for a reference reactor: R/ < a > ~ 4 , confinement factor, fren = 0.9-1.15, < β > ~ 8 . 0 -11.5 %, Zeff ~ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ~ 0.07, Bm ~ 14-16 T, and R ~ 18-24 m. J. Sheffield was supported under ORNL subcontract 4000088999 with the University of Tennessee.

  3. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  4. Modular Stellarator Fusion Reactor concept

    SciTech Connect

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR.

  5. Monoenergetic Neutrons for Stellar Applications

    NASA Astrophysics Data System (ADS)

    Mosconi, M.; Heil, M.; Käppeler, F.; Plag, R.; Mengoni, A.; Nolte, R.

    2009-09-01

    With modern techniques, neutron-capture cross sections can be determined with uncertainties of a few percent. However, Maxwellian averaged cross sections calculated from such data require a correction (because low-lying excited states are thermally populated in the hot stellar photon bath) which has to be determined by theoretical calculations. These calculations can be improved with information from indirect measurements, in particular by the inelastic scattering cross section. For low-lying levels, the inelastically scattered neutrons are difficult to separate from the dominant elastic channel. This problem is best solved by means of pulsed, monoenergetic neutron beams. For this reason, a pulsed beam of 30 keV neutrons with an energy spread of 7 to 9 keV FWHM and a width from 10 to 15 ns has been produced at Forschungszentrum Karlsruhe using the 7Li(p, n)7Be reaction directly at the reaction threshold. With this neutron beam the inelastic scattering cross section of the first excited level at 9.75 keV in 187Os was determined with a relative uncertainty of 6%. The use of monoenergetic neutron beams has been further pursued at the Physikalisch-Technische Bundesanstalt in Braunschweig, including the 3H(p, n)3He reaction for producing neutrons with an energy of 64 keV.

  6. Research on stellarator-mirror fission-fusion hybrid

    NASA Astrophysics Data System (ADS)

    Moiseenko, V. E.; Kotenko, V. G.; Chernitskiy, S. V.; Nemov, V. V.; Ågren, O.; Noack, K.; Kalyuzhnyi, V. N.; Hagnestål, A.; Källne, J.; Voitsenya, V. S.; Garkusha, I. E.

    2014-09-01

    The development of a stellarator-mirror fission-fusion hybrid concept is reviewed. The hybrid comprises of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is the transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, neutrons are generated in deuterium-tritium (D-T) plasma, confined magnetically in a stellarator-type system with an embedded magnetic mirror. Based on kinetic calculations, the energy balance for such a system is analyzed. Neutron calculations have been performed with the MCNPX code, and the principal design of the reactor part is developed. Neutron outflux at different outer parts of the reactor is calculated. Numerical simulations have been performed on the structure of a magnetic field in a model of the stellarator-mirror device, and that is achieved by switching off one or two coils of toroidal field in the Uragan-2M torsatron. The calculations predict the existence of closed magnetic surfaces under certain conditions. The confinement of fast particles in such a magnetic trap is analyzed.

  7. Research on fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Gryaznevich, M. P.

    2012-06-01

    The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. "Fusion for Neutrons" (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

  8. Stellarator approach to fusion plasma confinement

    SciTech Connect

    Harris, J.H.

    1985-01-01

    The stellarator is a toroidal fusion plasma confinement device with nested magnetic flux surfaces. The required twist of the field lines is produced by external helical coils rather than by plasma current, as in a tokamak. Stellarator devices are attractive fusion reactor candidates precisely because they offer the prospect of steady-state operation without plasma current. In the last few years the excellent results achieved with currentless stellarator plasmas of modest minor radius (10 to 20 cm) at Kyoto University (Japan) and the Max Planck Institute (West Germany) have made the stellarator second only to the tokamak in its progress toward fusion breakeven, with temperatures T/sub e/, T/sub i/ approx. 1 KeV, Lawson products n tau approx. 2 to 5 x 10/sup 12/ cm/sup -3/.s, and volume-averaged beta values approx. = 2%. The Advanced Toroidal Facility (ATF), now under construction at Oak Ridge Natioal Laboratory (ORNL) and scheduled to operate in 1986, represents a significant advance in stellarator research, with a plasma major radius of 2.1 m, an average minor radius of 0.3 m, and a magnetic field of 2 T for 5 s or 1 T at steady state. ATF replaces the Impurity Study Experiment (ISX-B) tokamak at ORNL and will use the ISX-B heating and diagnostic system.

  9. Fusion neutronics experiments and analysis

    SciTech Connect

    Not Available

    1992-01-01

    UCLA has led the neutronics R D effort in the US for the past several years through the well-established USDOE/JAERI Collaborative Program on Fusion Neutronics. Significant contributions have been made in providing solid bases for advancing the neutronics testing capabilities in fusion reactors. This resulted from the hands-on experience gained from conducting several fusion integral experiments to quantify the prediction uncertainties of key blanket design parameters such as tritium production rate, activation, and nuclear heating, and when possible, to narrow the gap between calculational results and measurements through improving nuclear data base and codes capabilities. The current focus is to conduct the experiments in an annular configuration where the test assembly totally surrounds a simulated line source. The simulated line source is the first-of-a-kind in the scope of fusion integral experiments and presents a significant contribution to the world of fusion neutronics. The experiments proceeded through Phase IIIA to Phase IIIC in these line source simulation experiments started in 1989.

  10. Interpreting inertial fusion neutron spectra

    NASA Astrophysics Data System (ADS)

    Munro, David H.

    2016-03-01

    A burning laser fusion plasma produces a neutron spectrum first described by Brysk (1973 Plasma Phys. Control. Fusion 15 611). This and more recent work deals with the spectrum produced by a single fluid element. The distribution of temperatures and velocities in multiple fluid elements combine in any real spectrum; we derive formulas for how the neutron spectrum averages these contributions. The single element momentum spectrum is accurately Gaussian, but the multi-element spectrum exhibits higher moments. In particular, the skew and kurtosis are likely to be large enough to measure. Even the single fluid element spectrum may exhibit measurable directional anisotropy, so that instruments with different lines of sight should see different yields, mean velocities, mean temperatures, and higher moments. Finally, we briefly discuss how scattering in the imploded core modifies the neutron spectrum by changing the relative weighting of fuel regions with different temperatures and velocities.

  11. Modular stellarator reactor: a fusion power plant

    SciTech Connect

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  12. Effect of superbanana diffusion on fusion reactivity in stellarators

    SciTech Connect

    Hinton, Fred L.

    2012-08-15

    Fusion reactivity is usually obtained using a Maxwellian distribution. However, energy-dependent radial diffusion can modify the energy distribution. Superbanana diffusion is energy-dependent and occurs in nonaxisymmetric magnetic confinement devices, such as stellarators, because of ripple-trapped particles which can take large steps between collisions. In this paper, the D-T fusion reactivity is calculated using a non-Maxwellian energy distribution obtained by solving the Fokker-Planck equation numerically, including radial superbanana diffusion as well as energy scattering. The ions in the tail of the distribution, with energies larger than thermal, which are most needed for fusion, are depleted by superbanana diffusion. In this paper, it is shown that the D-T fusion reactivity is reduced by tail ion depletion due to superbanana diffusion, by roughly a factor of 0.5 for the parameters used in the calculation.

  13. Fast ion motion in the plasma part of a stellarator-mirror fission–fusion hybrid

    NASA Astrophysics Data System (ADS)

    Moiseenko, V. E.; Nemov, V. V.; Ågren, O.; Kasilov, S. V.; Garkusha, I. E.

    2016-06-01

    Recent developments of a stellarator-mirror (SM) fission–fusion hybrid concept are reviewed. The hybrid consists of a fusion neutron source and a powerful sub-critical fast fission reactor core. The aim is transmutation of spent nuclear fuel and safe fission energy production. In its fusion part, a stellarator-type system with an embedded magnetic mirror is used. The stellarator confines deuterium plasma with moderate temperature, 1–2 keV. In the magnetic mirror, a hot component of sloshing tritium ions is trapped. There, the fusion neutrons are generated. A candidate for a combined SM system is a DRACON magnetic trap. A basic idea behind an SM device is to maintain local neutron production in a mirror part, but at the same time eliminate the end losses by using a toroidal device. A possible drawback is that the stellarator part can introduce collision-free radial drift losses, which is the main topic for this study. For high energy ions of tritium with an energy of 70 keV, comparative computations of collisionless losses in the rectilinear part of a specific design of the DRACON type trap are carried out. Two versions of the trap are considered with different lengths of the rectilinear sections. Also the total number of current-carrying rings in the magnetic system is varied. The results predict that high energy ions from neutral beam injection can be satisfactorily confined in the mirror part during 0.1–1 s. The Uragan-2M experimental device is used to check key points of the SM concept. The magnetic configuration of a stellarator with an embedded magnetic mirror is arranged in this device by switching off one toroidal coil. The motion of particles magnetically trapped in the embedded mirror is analyzed numerically with use of motional invariants. It is found that without radial electric field particles quickly drift out of the SM, even if the particles initially are located on a nested magnetic surface. We will show that a weak radial electric field

  14. Neutronic analysis of a fusion hybrid reactor

    SciTech Connect

    Kammash, T.

    2012-07-01

    In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

  15. Fusion neutronics-streaming, shielding, heating, activation

    NASA Astrophysics Data System (ADS)

    Freiesleben, H.; Richter, D.; Seidel, K.; Unholzer, S.

    2001-07-01

    The International Thermonuclear Experimental Reactor (ITER) represents an important step towards a fusion power plant. Controlled fusion will be realized in a d-t-plasma magnetically confined by a Tokamak configuration. The first wall of the plasma chamber, blanket and vacuum vessel of ITER form a compact assembly for converting the kinetic energy of fusion neutrons into heat while simultaneously shielding the superconducting coils efficiently against neutron and accompanying photon radiation. This shielding system can be investigated with neutrons generated by low-energy accelerators. We report on experiments concerning shielding and streaming properties of a mock-up where energy spectra of both neutrons and protons were measured. They are compared with predictions of Monte Carlo calculations (code MCNP-4A) using various data libraries. The agreement justified the use of measured spectra as basis to calculate design parameters such as neutron and photon heating, radiation damage, gas production, and activation. Some of these parameters were also directly measured. The results validate the ITER design.

  16. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, Daniel L.; Micklich, Bradley J.

    1986-01-01

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  17. Neutron diffraction studies of viral fusion peptides

    NASA Astrophysics Data System (ADS)

    Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.

    2000-03-01

    Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.

  18. Resonance neutron capture by Ne-(20, 22) in stellar environments

    NASA Astrophysics Data System (ADS)

    Winters, R. R.; Macklin, R. L.

    1988-06-01

    The neutron capture cross sections were measured over the neutron energy range 2.5-200 keV of Ne-(20, 22) at the Oak Ridge Electron Linear Accelerator using enriched samples at high pressures. The cross sections, averaged using a Maxwell-Boltzmann distribution weighting function for a range of temperatures thought to be appropriate for the sites of s-process stellar nucleosynthesis, are small. For example, the Maxwellian-averaged Ne-22(n, gamma) cross section for kT = 30 keV derived from the present work is smaller than 0.27 mbarn. This result increases the calculated net neutron production from Ne-22 by reducing the importance of Ne-22(n, gamma) as a neutron poison in s-process calculations. The number of neutrons per Fe-56 seed available for s-process stellar nucleosynthesis appears sufficient to account for the observed abundances of the s-elements for A in the range of 60-90.

  19. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    SciTech Connect

    Cheon, MunSeong Kim, Junghee

    2015-08-15

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  20. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics.

    PubMed

    Cheon, MunSeong; Kim, Junghee

    2015-08-01

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas. PMID:26329194

  1. Stellar (n, gamma) cross sections of neutron-rich nuclei

    SciTech Connect

    Marganiec, J.; Domingo Pardo, C.; Kaeppeler, F.

    2010-03-01

    The present measurements were performed by means of the activation technique. Neutrons were produced at the Karlsruhe Van de Graaff accelerator via the {sup 7}Li(p,n){sup 7}Be reaction. For proton energies just above threshold, one obtains a neutron spectrum similar to a Maxwellian distribution for kT = 25 keV. This quasi-stellar neutron spectrum allowed us to measure the Maxwellian averaged cross sections directly. The experimental results of {sup 174,176}Yb, {sup 184,186}W, {sup 190,192}Os, {sup 196,198}Pt, and {sup 202}Hg were extrapolated from kT = 25 keV to lower and higher temperatures.

  2. Fuel cycle for a fusion neutron source

    NASA Astrophysics Data System (ADS)

    Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.

    2015-12-01

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  3. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, D.L.; Micklich, B.J.

    1983-06-01

    This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.

  4. Fuel cycle for a fusion neutron source

    SciTech Connect

    Ananyev, S. S. Spitsyn, A. V. Kuteev, B. V.

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  5. Neutron Dosimetry Tokamak Fusion Test Reactor Lithium Blanket Module

    SciTech Connect

    Tsang, F.Y.; Harker, Y.D.; Anderl, R.A.; Nigg, D.W.; Jassby, D.L.

    1986-11-01

    The Tokamak Fusion Test Reactor (TFTR) Lithium Blanket Module (LBM) program is a first-of-kind neutronics experiment involving a toroidal fusion neutron source. Qualification experiments have been conducted to develop primary measurement techniques and verify dosimetry materials that will be used to characterize the neutron environment inside and on the surfaces of the LBM. The deuterium-tritium simulation experiments utilizing a 14-MeV neutron generator and a fusion blanket mockup facility at the Idaho National Engineering Laboratory are described. Results and discussions are presented that identify the quality and limitations of the measured integral reaction data, including the minimum fluence requirement for the TFTR experiment.

  6. Fusion probability for neutron-rich radioactive Sn induced reactions

    SciTech Connect

    Liang, J Felix; Gross, Carl J; Kohley, Zachary W; Shapira, Dan; Varner Jr, Robert L; Allmond, James M; Caraley, Anne L; Lagergren, Karin B; Mueller, Paul Edward

    2012-01-01

    Evaporation residue cross sections for $^{124,126,127,128}$Sn+$^{64}$Ni and $^{132}$Sn+$^{58}$Ni have been measured to study the effects of neutron excess in neutron-rich radioactive nuclei on fusion. For the reactions with $^{64}$Ni, the fusion probability does not decrease with increasing neutron excess in Sn, contrary to the result of the stable beam Sn+Zr measurement. A comparison of the reduced evaporation residue cross sections for $^{126}$Sn+$^{64}$Ni and $^{132}$Sn+$^{58}$Ni, which make the same compound nucleus, shows that the fusion probability is indistinguishable for reactions involving the same atomic elements but different isotope combinations.

  7. Neutron scattering effects on fusion ion temperature measurements.

    SciTech Connect

    Ziegler, Lee; Starner, Jason R.; Cooper, Gary Wayne; Ruiz, Carlos L.; Franklin, James Kenneth; Casey, Daniel T.

    2006-06-01

    To support the nuclear fusion program at Sandia National Laboratories (SNL), a consistent and verifiable method to determine fusion ion temperatures needs to be developed. Since the fusion temperature directly affects the width in the spread of neutron energies produced, a measurement of the neutron energy width can yield the fusion temperature. Traditionally, the spread in neutron energies is measured by using time-of-flight to convert a spread in neutron energies at the source to a spread in time at detector. One potential obstacle to using this technique at the Z facility at SNL is the need to shield the neutron detectors from the intense bremsstrahlung produced. The shielding consists of eight inches of lead and the concern is that neutrons will scatter in the lead, artificially broaden the neutron pulse width and lead to an erroneous measurement. To address this issue, experiments were performed at the University of Rochester's Laboratory for Laser Energetics, which demonstrated that a reliable ion temperature measurement can be achieved behind eight inches of lead shielding. To further expand upon this finding, Monte Carlo N-Particle eXtended (MCNPX) was used to simulate the experimental geometric conditions and perform the neutron transport. MCNPX was able to confidently estimate results observed at the University of Rochester.

  8. Neutron-source characterization for fusion-materials studies

    SciTech Connect

    Greenwood, L.R.

    1981-06-01

    Neutron-flux and energy-spectrum measurements are conducted for all major fusion-materials irradiation facilities, including fission reactors and accelerators. Dosimetry-characterization experiments and integral cross section measurements have been performed. Multiple activation and helium-production measurements are performed routinely to provide materials experimenters with neutron-exposure parameters including fluence, spectrum, displacements, gas production, and transmutation with typical accuracies of 10 to 15%. Such data are crucial to the fusion-materials program in order to correlate materials-property changes between irradiations and facilities and to confidently predict the performance of materials in fusion reactors.

  9. Data fusion in neutron and X-ray computed tomography

    SciTech Connect

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Böni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  10. Calculating fusion neutron energy spectra from arbitrary reactant distributions

    NASA Astrophysics Data System (ADS)

    Eriksson, J.; Conroy, S.; Andersson Sundén, E.; Hellesen, C.

    2016-02-01

    The Directional Relativistic Spectrum Simulator (DRESS) code can perform Monte-Carlo calculations of reaction product spectra from arbitrary reactant distributions, using fully relativistic kinematics. The code is set up to calculate energy spectra from neutrons and alpha particles produced in the D(d, n)3He and T(d, n)4He fusion reactions, but any two-body reaction can be simulated by including the corresponding cross section. The code has been thoroughly tested. The kinematics calculations have been benchmarked against the kinematics module of the ROOT Data Analysis Framework. Calculated neutron energy spectra have been validated against tabulated fusion reactivities and against an exact analytical expression for the thermonuclear fusion neutron spectrum, with good agreement. The DRESS code will be used as the core of a detailed synthetic diagnostic framework for neutron measurements at the JET and MAST tokamaks.

  11. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  12. Optimization of compact stellarator configuration as fusion devicesa)

    NASA Astrophysics Data System (ADS)

    Najmabadi, Farrokh; Rene Raffray, A.; Ku, Long-Poe; Lyon, James F.; Aries Team

    2006-05-01

    Optimization of the stellarator configuration requires tradeoffs among a large number of physics parameters and engineering constraints. An integrated study of compact stellarator power plants, ARIES-CS, aims at examining these tradeoffs and defining key R&D areas. Configurations with a plasma aspect ratio of A ⩽6 and excellent quasiaxisymmetry (QA) in both two and three field period versions were developed while reducing α-particle losses to <10%. Stability to linear ideal MHD modes was attained, but at the expense of reduced QA (and increased α-particle losses) and increased complexity of the plasma shape. Recent experimental results indicate, however, that linear MHD stability limits may not be applicable to stellarators. By utilizing a highly efficient shield-only region in strategic areas, the minimum standoff was reduced by ˜30%. This allows a comparable reduction in the machine size. The device configuration, assembly, and maintenance procedures appear to impose severe constraints: three distinct approaches were developed, each applicable to a certain blanket concept and/or stellarator configuration. Modular coils are designed to examine the geometric complexity and to understand the constraints imposed by the maximum allowable field, desirable coil-plasma separation, coil-coil spacing, and other coil parameters. A cost-optimization system code has also been developed and will be utilized to assess the tradeoff among physics and engineering constraints in a self-consistent manner in the final phase of the ARIES-CS study.

  13. Optimization of Compact Stellarator Configuration as Fusion Devices

    NASA Astrophysics Data System (ADS)

    Najmabadi, Farrokh

    2005-10-01

    Optimization of the stellarator configuration requires trade-offs among a large number of physics parameters and engineering constraints. An integrated study of compact stellarator power plants, ARIES-CS, aims at examining these trade-offs and defining key R&D areas. We developed configurations with A<=6 and excellent QA (both 2 and 3 field periods) while reducing α losses to ˜10% (still higher than desirable). Stability to the linear ideal MHD modes was attained but at the expense of reduced QA (and increased α losses) and increased complexity of the plasma shape. Recent experimental results indicate, however, linear MHD stability limits may not be applicable to stellarators. It appears that the plasma/coil stand-off distance is not as an important as envisioned previously. By utilizing a highly efficient shield-only region in strategic areas, we reduced the minimum stand-off by ˜20%-30%. This allows a comparable reduction in the machine size. The device configuration, assembly, and maintenance procedures appear to impose severe constraints. A cost-optimization system code has been developed and is utilized to guide the optimization process.

  14. Linear induction accelerators for fusion and neutron production

    SciTech Connect

    Barletta, W.A. |

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs.

  15. Concept of DT fuel cycle for a fusion neutron source

    SciTech Connect

    Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.; Cherkez, D.I.; Shirnin, P.N.; Kazakovsky, N.T.

    2015-03-15

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  16. Diagnostic of fusion neutrons on JET tokamak using diamond detector

    SciTech Connect

    Nemtsev, G.; Amosov, V.; Marchenko, N.; Meshchaninov, S.; Rodionov, R.; Popovichev, S.; Collaboration: JET EFDA Conbributors

    2014-08-21

    In 2011-2012, an experimental campaign with a significant yield of fusion neutrons was carried out on the JET tokamak. During this campaign the facility was equipped with two diamond detectors based on natural and artificial CVD diamond. These detectors were designed and manufactured in State Research Center of Russian Federation TRINITI. The detectors measure the flux of fast neutrons with energies above 0.2 MeV. They have been installed in the torus hall and the distance from the center of plasma was about 3 m. For some of the JET pulses in this experiment, the neutron flux density corresponded to the operational conditions in collimator channels of ITER Vertical Neutron Camera. The main objective of diamond monitors was the measurement of total fast neutron flux at the detector location and the estimation of the JET total neutron yield. The detectors operate as threshold counters. Additionally a spectrometric measurement channel has been configured that allowed us to distinguish various energy components of the neutron spectrum. In this paper we describe the neutron signal measuring and calibration procedure of the diamond detector. Fluxes of DD and DT neutrons at the detector location were measured. It is shown that the signals of total neutron yield measured by the diamond detector correlate with signals measured by the main JET neutron diagnostic based on fission chambers with high accuracy. This experiment can be considered as a successful test of diamond detectors in ITER-like conditions.

  17. Measurements of fusion neutrons from Magnetized Liner Inertial Fusion Experiments on the Z accelerator

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E. C.; Awe, T. J.; Torres, J. A.; Jones, B.; Bur, J. A.; Cooper, G. W.; Styron, J. D.; Glebov, V. Yu.

    2015-11-01

    Strong evidence of thermonuclear neutron production has been observed during Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z accelerator. So far, these experiments have utilized deuterium fuel and produced primary DD fusion neutron yields up to 2e12 with electron and ion stagnation temperatures in the 2-3 keV range. We present MagLIF neutron measurements and compare to other data and implosion simulations. In addition to primary DD and secondary DT yields and ion temperatures, other complex physics regarding the degree of fuel magnetization and liner density are elucidated by the neutron measurements. Neutron diagnostic development for deuterium and future deuterium-tritium fuel experiments are also discussed. Sandia is sponsored by the U.S. DOE's NNSA under contract DE-AC04-94AL85000.

  18. Neutron measurements for biomedical and fusion technology applications

    NASA Astrophysics Data System (ADS)

    Barschall, H. H.

    1985-01-01

    Measurements of reaction cross sections of neutrons of energy above 5 MeV yield important information about reaction mechanisms. The main impetus for such measurements has, however, recently come from applications. Measurements on light elements are needed for neutron dosimetry, primarily for radiotherapy. Measurements on heavier nuclides provide information for fusion technology, both for the assessment of radiation damage and for the management of radioactive wastes.

  19. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  20. Production of Medical isotope Technecium-99 from DT Fusion neutrons

    NASA Astrophysics Data System (ADS)

    Boguski, John; Gentile, Charles; Ascione, George

    2011-10-01

    High energy neutrons produced in DT fusion reactors have a secondary application for use in the synthesis of valuable man-made isotopes utilized in industry today. One such isotope is metastable Technecium-99 (Tc99m), a low energy gamma emitter used in ~ 85% of all medical imaging diagnostics. Tc99m is created through beta decay of Molybdenum-99 (Mo99), which itself has only a 66 hour half-life and must be created from a neutron capture by the widely available and stable isotope Molydenum-98. Current worldwide production of Tc99m occurs in just five locations and relies on obtaining the fission byproduct Mo99 from highly enriched Uranium reactors. A Tc99m generator using DT fusion neutrons, however, could potentially be operated at individual hospitals and medical facilities without the use of any fissile material. The neutron interaction of the DT neutrons with Molybdenum in a potential device geometry was modeled using Monte Carlo neutron transport code MCNP. Trial experiments were also performed to test the viability of using DT neutrons to create ample quantities of Tc99m. Modeling and test results will follow.

  1. Secondary fusion coupled deuteron/triton transport simulation and thermal-to-fusion neutron convertor measurement

    SciTech Connect

    Wang, G. B.; Wang, K.; Liu, H. G.; Li, R. D.

    2013-07-01

    A Monte Carlo tool RSMC (Reaction Sequence Monte Carlo) was developed to simulate deuteron/triton transportation and reaction coupled problem. The 'Forced particle production' variance reduction technique was used to improve the simulation speed, which made the secondary product play a major role. The mono-energy 14 MeV fusion neutron source was employed as a validation. Then the thermal-to-fusion neutron convertor was studied with our tool. Moreover, an in-core conversion efficiency measurement experiment was performed with {sup 6}LiD and {sup 6}LiH converters. Threshold activation foils was used to indicate the fast and fusion neutron flux. Besides, two other pivotal parameters were calculated theoretically. Finally, the conversion efficiency of {sup 6}LiD is obtained as 1.97x10{sup -4}, which matches well with the theoretical result. (authors)

  2. The first IEC fusion industrial neutron generator and developments

    SciTech Connect

    Sved, John

    1999-06-10

    Inertial Electrostatic Confinement fusion grade plasma containment has been sporadically researched since the early 1960's. In the 1990's the work of G. H. Miley and his team at the University of Illinios, Fusion Studies Laboratory, Champaign-Urbana has stimulated a collaboration with industry. The development and test program for the first industrial IEC neutron generator has progressed to the point where an endurance test is under way to demonstrate at least 10,000 hours of operational life of the sealed chamber device without servicing. The market entry goals of steady 10{sup 7} D-D n/s CW output with an air-cooled system have been achieved. DASA has invested in the development of the industrial product and the continuing basic research at the UI-FSL. The complete DASA FusionStar IEC-PS1 point source neutron generator set is described with emphasis on the interfaces to user NAA systems. The next product developments are pulsed neutron operations and higher fusion reaction rates of up to 10{sup 10} by means of affordable add-ons to the basic IEC-PS system. The production engineering experience gained will next be applied to a more challenging line source variant of the IEC. Beyond neutron and proton sources, several other IEC applications are being developed.

  3. Fission and activation of uranium by fusion-plasma neutrons

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Mcfarland, D. R.

    1978-01-01

    Fusion-fission hybrid reactors are discussed in terms of two main purposes: to breed fissile materials (Pu 233 and Th 233 from U 238 or Th 232) for use in low-reactivity breeders, and to produce tritium from lithium to refuel fusion plasma cores. Neutron flux generation is critical for both processes. Various methods for generating the flux are described, with attention to new geometries for multiple plasma focus arrays, e.g., hypocycloidal pinch and staged plasma focus devices. These methods are evaluated with reference to their applicability to D-D fusion reactors, which will ensure a virtually unlimited energy supply. Accurate observations of the neutron flux from such schemes are obtained by using different target materials in the plasma focus.

  4. Neutron irradiation facilities for fission and fusion reactor materials studies

    SciTech Connect

    Rowcliffe, A.F.

    1985-01-01

    The successful development of energy-conversion machines based upon nuclear fission or fusion reactors is critically dependent upon the behavior of the engineering materials used to construct the full containment and primary heat extraction systems. The development of radiation damage-resistant materials requires irradiation testing facilities which reproduce, as closely as possible, the thermal and neutronic environment expected in a power-producing reactor. The Oak Ridge National Laboratory (ORNL) reference core design for the Center for Neutron Research (CNR) reactor provides for instrumented facilities in regions of both hard and mixed neutron spectra, with substantially higher fluxes than are currently available. The benefits of these new facilities to the development of radiation damage resistant materials are discussed in terms of the major US fission and fusion reactor programs.

  5. Neutronics issues and inertial fusion energy: a summary of findings

    SciTech Connect

    Latkowski, J. F., LLNL

    1998-05-29

    We have analyzed and compared five major inertial fusion energy (IFE) and two representative magnetic fusion energy (MFE) power plant designs for their environment, safety, and health (ES&H) characteristics. Our work has focussed upon the neutronics of each of the designs and the resulting radiological hazard indices. The calculation of a consistent set of hazard indices allows comparisons to be made between the designs. Such comparisons enable identification of trends in fusion ES&H characteristics and may be used to increase the likelihood of fusion achieving its full potential with respect to ES&H characteristics. The present work summarizes our findings and conclusions. This work emphasizes the need for more research in low-activation materials and for the experimental measurement of radionuclide release fractions under accident conditions.

  6. Neutron imaging development for inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Caillaud, Tony; Landoas, Olivier; Thfoin, Isabelle; Philippe, Franck; Casner, Alexis; Bourgade, Jean-Luc; Glebov, Vladimir; Marshall, Frederic J.; Sangster, Craig; Park, Hye Sook; Robey, Harry; Amendt, Peter

    2009-11-01

    Various failure mechanisms may limit fuel compression and ignition during Inertial Confinement Fusion (ICF) experiments with MegaJoule class lasers (e.g., the Laser M'egaJoule: LMJ and the National Ignition Facility: NIF). A Neutron Imaging System (NIS) may be used to determine the asymmetries in the hot core and the surrounding cold fuel shell. To reveal such asymmetries, a NIS must record both a primary (14 MeV) and a down-scattered (5-10 MeV) neutron image with high SNR and an image plane spatial resolution as low as 5 μm. We report on the continuing development of an NIS diagnostic at the OMEGA laser facility, using coded apertures. A new large neutron camera (150 mm entrance diameter: scaled for LMJ/NIF design) has been activated at OMEGA. This camera will allow 5 μm resolution for LMJ neutron source. We have tested a set of three detectors that can be used for various NIS diagnostic experiments on OMEGA from low yield (10^9-10^10 neutrons) low resolution (32 μm) measurements at 4 m from the neutron source to high yield (10^12-10^14 neutrons) high resolution (15 μm) measurements at 13 m. The low yield configuration allowed us to record, the first neutron image on an indirect drive shot with pure deuterium filled capsules.

  7. Damage calculation in fusion ceramics: comparing neutrons and light ions

    NASA Astrophysics Data System (ADS)

    Vladimirov, P. V.; Lizunov, D.; Ryazanov, Yu. A. I.; Möslang, A.

    1998-03-01

    A method developed earlier for displacement damage calculations in compound materials is applied to fusion ceramics irradiated by various neutron sources and light ion accelerators. For protons up to 40 MeV and alpha-particles up to 100 MeV, as well as for several neutron environments (EEF, ITER, HFIR, FFTF), sublattice-specific primary recoil spectra and displacement damage rates have been calculated for α-Al 2O 3, AlN, BeO, MgO, MgAl 2O 4 and SiC. Although the primary recoil spectra can vary significantly for different neutron sources and light ions, the ratios of sublattice-specific damage rates are the same within 5% for BeO, MgO and SiC in all considered environments. For ceramics containing Al, the damage ratio differs up to about 40% between neutron and light ion irradiations.

  8. Fusion-neutron effects on magnetoresistivity of copper stabilizer materials

    SciTech Connect

    Guinan, M.W.; Van Konynenburg, R.A.

    1983-02-24

    The objective of this work is to quantify the changes which occur in the magnetoresistivity of coppers (having various purities and pretreatments, and at magnetic fields up to 12 T during the course of sequential fusion neutron irradiations at about 4/sup 0/K and anneals to room temperature. In conjunction with work in progress by Coltman and Klabunde of ORNL, the results should lead to engineering design data for the stabilizers of superconducting magnets in fusion reactors. These magnets are expected to be irradiated during reactor operation and warmed to room temperature periodically during maintenance.

  9. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    DOE PAGESBeta

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; et al

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner ~ 1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improve and expandmore » the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.« less

  10. Muon catalyzed fusion in plasma state and high intensity DT fusion neutron source

    SciTech Connect

    Takahashi, Hiroshi

    1989-01-01

    dt/mu/ molecular formation rates in a plasma state of DT mixture by d and t ions are, respectively, 63 and 77 times higher than the ones by electrons. High plasma oscillation frequency in a high electron density plasma enhances the formation rate in the high temperature dt mixture. The DT muon catalyzed fusion has the ability to produce much higher intensity 14 MeV neutron source (in order of 5 /times/ 10/sup 16/n/cm/sup 2//sec) than other means of stripping and spallation approaches. Such neutrons can be used for testing of first wall material candidates for magnetic fusion reactors, for incinerating fission products (e.g., Cs/sup 137/) and for creating high thermal flux neutron sources, on the order of 10/sup 17/n/cm/sup 2//sec. 12 refs., 2 figs.

  11. Fission-Fusion Neutron Source Progress Report July 31, 2009

    SciTech Connect

    Chapline, G; Daffin, F; Clarke, R

    2010-02-19

    In this report the authors describe progress in evaluating the feasibility of a novel concept for producing intense pulses of 14 MeV neutrons using the DT fusion reaction. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet fusion schemes or lasers in ICF schemes. This has the great advantage that there is no need for any large auxiliary power source. The scheme does require large magnetic fields, but generating these fields, e.g. with superconducting magnets, requires only a modest power source. As a source of fission fragments they propose using a dusty reactor concept introduced some time ago by one of us (RC). The version of the dusty reactor that they propose using for our neutron source would operate as a thermal neutron reactor and use highly enriched uranium in the form of micron sized pellets of UC. Our scheme for using the fission fragments to produce intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core would then be guided out of the reactor by large magnetic fields. A simple version of this idea would be to use the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  12. A neutron study of the feline leukaemia virus fusion peptide: Implications for biological fusion?

    NASA Astrophysics Data System (ADS)

    Davies, Sarah M. A.; Darkes, Malcolm J. M.; Bradshaw, Jeremy P.

    Neutron diffraction studies were performed on stacked phospholipid bilayers to determine the effects of the feline leukaemia virus (FeLV) fusion peptide on membrane structure. Bilayers were composed of dioleoylphosphatidylcholine with 50% (mol) dioleoylphosphatidylglycerol. Neutron scattering profiles with peptide present showed an increase in scattering density in the lipid-tails region, whilst scattering by the lipid headgroup region was decreased. This is interpreted as a lowering of the packing density of the lipid headgroups and an increase in the packing density of the lipid tails. Modelling studies and experimental evidence have suggested that fusion peptides catalyse fusion by increasing the negative curvature of the target membrane's outer monolayer. Our results presented here add support to this hypothesis for the fusion mechanism. The 2H 2O scattering profile was also slightly perturbed in the lipid headgroup region with 1% (mol)FeLV fusion peptide present. The FeLV peptide had no significant effect on the organisation of bilayers containing only dioleoylphosphatidylcholine.

  13. Monitoring of the neutron production at the Wendelstein 7-X stellarator.

    PubMed

    Wiegel, B; Schneider, W; Grünauer, F; Burhenn, R; Schuhmacher, H; Zimbal, A

    2014-10-01

    The stellarator Wendelstein 7-X (W7-X), presently under construction at the Max-Planck-Institute for Plasma Physics in Greifswald, will be equipped with a set of neutron monitors to measure the total annual neutron emission for official documentation and to provide information for plasma diagnostics purposes. The authors performed MCNP calculations to design and optimise the moderator geometry of the monitors to exhibit a nearly energy-independent response as well as particular angular responses for one central and two peripheral monitors. The monitors were designed with up to five neutron detector tubes with different sensitivity to thermal neutrons to cover the expected neutron emission rates of W7-X from 10(11) s(-1) to 10(16) s(-1). A prerequisite for the determination of the neutron emission produced by a D-D plasma is an in-situ calibration of the neutron monitors. Such a procedure requires a MCNP simulation of the entire geometry of the W7-X stellarator. In a first benchmark experiment during the assembly phase of W7-X, the validity of the W7-X MCNP model was tested. PMID:24162373

  14. The neutronics studies of fusion fission hybrid power reactor

    SciTech Connect

    Zheng Youqi; Wu Hongchun; Zu Tiejun; Yang Chao; Cao Liangzhi

    2012-06-19

    In this paper, a series of neutronics analysis of hybrid power reactor is proposed. The ideas of loading different fuels in a modular-type fission blanket is analyzed, fitting different level of fusion developments, i.e., the current experimental power output, the level can be obtained in the coming future and the high-power fusion reactor like ITER. The energy multiplication of fission blankets and tritium breeding ratio are evaluated as the criterion of design. The analysis is implemented based on the D-type simplified model, aiming to find a feasible 1000MWe hybrid power reactor for 5 years' lifetime. Three patterns are analyzed: 1) for the low fusion power, the reprocessed fuel is chosen. The fuel with high plutonium content is loaded to achieve large energy multiplication. 2) For the middle fusion power, the spent fuel from PWRs can be used to realize about 30 times energy multiplication. 3) For the high fusion power, the natural uranium can be directly used and about 10 times energy multiplication can be achieved.

  15. Fission-Fusion Neutron Source Progress Report Sept 30, 2009

    SciTech Connect

    Chapline, G F; Daffin, F; Clark, R

    2010-02-19

    In this report the authors describe the progress made in FY09 in evaluating the feasibility of a new concept for using the DT fusion reaction to produce intense pulses of 14 MeV neutrons. In this new scheme the heating of the DT is accomplished using fission fragments rather than ion beams as in conventional magnet confinement fusion schemes or lasers in inertial confinement schemes. As a source of fission fragments they propose using a dust reactor concept introduced some time ago by one of us (RC). An attractive feature of this approach is that there is no need for a large auxiliary power source to heat the DT plasma to the point where self-sustaining fusion become possible. Their scheme does require pulsed magnetic fields, but generating these fields requires only a modest power source. The dust reactor that they propose using for their neutron source would use micron-sized UC pellets suspended in a vacuum as the reactor fuel. Surrounding the fuel with a moderator such as heavy water (D{sub 2}O) would allow the reactor to operate as a thermal reactor and require only modest amounts of HEU. The scheme for using fission fragments to generate intense pulses of 14 MeV neutrons is based on the fission fragment rocket idea. In the fission fragment rocket scheme it was contemplated that the fission fragments produced in a low density reactor core could be guided out of the reactor by large magnetic fields used to form a 'rocket exhaust'. Their adaptation of this idea for the purposes of making a neutron source involves using the fission fragments escaping from one side of a tandem magnet mirror to heat DT gas confined in the adjacent magnetic trap.

  16. Stellar neutron capture cross sections of the Nd isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Reffo, G.

    1998-01-01

    The neutron capture cross sections of {sup 142}Nd, {sup 143}Nd, {sup 144}Nd, {sup 145}Nd, {sup 146}Nd, and {sup 148}Nd have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.75 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam. Capture events were registered with the Karlsruhe 4{pi} Barium Fluoride Detector. The cross sections were determined relative to the gold standard. The experiment was difficult due to the small cross sections of the even isotopes at or near the magic neutron number N=82, and also since the isotopic enrichment of some samples was comparably low. The necessary corrections for capture of scattered neutrons and for isotopic impurities could be determined reliably thanks to the high efficiency and the spectroscopic quality of the BaF{sub 2} detector, resulting in a consistent set of (n,{gamma}) cross sections for the six stable neodymium isotopes involved in the s process with typical uncertainties of 1.5{endash}2{percent}. From these data, Maxwellian averaged cross sections were calculated between kT=10 and 100 keV. The astrophysical implications of these results were investigated in an s-process analysis, which deals with the role of the s-only isotope {sup 142}Nd for the N{sub s}{l_angle}{sigma}{r_angle} systematics near the magic neutron number N=82, the decomposition of the Nd abundances into the respective r-, s-, and p-process components, and the interpretation of isotopic anomalies in meteoritic material. {copyright} {ital 1998} {ital The American Physical Society}

  17. Stellar neutron capture cross sections of the tin isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Theis, C.; Kaeppeler, F.; Guber, K.; Kazakov, L.; Kornilov, N.; Reffo, G.

    1996-09-01

    The neutron capture cross sections of {sup 114}Sn, {sup 115}Sn, {sup 116}Sn, {sup 117}Sn, {sup 118}Sn, and {sup 120}Sn were measured in the energy range from 3 to 225 keV at the Karlsruhe 3.75 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li({ital p},{ital n}){sup 7}Be reaction using a pulsed proton beam. Capture events were registered with the Karlsruhe 4{pi} barium fluoride detector. The experiment was complicated by the small ({ital n},{gamma}) cross sections of the proton magic tin isotopes and by the comparably low enrichment of the rare isotopes {sup 114}Sn and {sup 115}Sn. Despite significant corrections for capture of scattered neutrons and for isotopic impurities, the high efficiency and the spectroscopic quality of the BaF{sub 2} detector allowed the determination of the cross-section ratios with overall uncertainties of 1{endash}2{percent}, five times smaller compared to existing data. Based on these results, Maxwellian averaged ({ital n},{gamma}) cross sections were calculated for thermal energies between {ital kT}=10 and 100 keV. These data are used for a discussion of the solar tin abundance and for an improved determination of the isotopic {ital s}- and {ital r}-process components. {copyright} {ital 1996 The American Physical Society.}

  18. Stellar neutron capture cross sections of the Lu isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.

    2006-01-15

    The neutron capture cross sections of {sup 175}Lu and {sup 176}Lu have been measured in the energy range 3-225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam, and capture events were registered with the Karlsruhe 4{pi} barium fluoride detector. The cross sections were determined relative to the gold standard using isotopically enriched as well as natural lutetium oxide samples. Overall uncertainties of {approx}1% could be achieved in the final cross section ratios to the gold standard, about a factor of 5 smaller than in previous works. Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 and 100 keV. These values are systematically larger by {approx}7% than those reported in recent evaluations. These results are of crucial importance for the assessment of the s-process branchings at A 175/176.

  19. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.

    PubMed

    Sztejnberg Gonçalves-Carralves, M L; Miller, M E

    2015-12-01

    Neutron generators based on inertial electrostatic confinement fusion were considered for the design of a neutron irradiation facility for explanted organ Boron Neutron Capture Therapy (BNCT) that could be installed in a health care center as well as in research areas. The chosen facility configuration is "irradiation chamber", a ~20×20×40 cm(3) cavity near or in the center of the facility geometry where samples to be irradiated can be placed. Neutron flux calculations were performed to study different manners for improving scattering processes and, consequently, optimize neutron flux in the irradiation position. Flux distributions were assessed through numerical simulations of several models implemented in MCNP5 particle transport code. Simulation results provided a wide spectrum of combinations of net fluxes and energy spectrum distributions. Among them one can find a group that can provide thermal neutron fluxes per unit of production rate in a range from 4.1·10(-4) cm(-2) to 1.6·10(-3) cm(-2) with epithermal-to-thermal ratios between 0.3% and 13% and fast-to-thermal ratios between 0.01% to 8%. Neutron generators could be built to provide more than 10(10) n s(-1) and, consequently, with an arrangement of several generators appropriate enough neutron fluxes could be obtained that would be useful for several BNCT-related irradiations and, eventually, for clinical practice. PMID:26122974

  20. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect

    Kramer, Kevin James

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  1. Stellar encounters involving neutron stars in globular cluster cores

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1992-01-01

    Encounters between a 1.4 solar mass neutron star and a 0.8 solar mass red giant (RG) and between a 1.4 solar mass neutron star (NS) and an 0.8 solar mass main-sequence (MS) star have been successfully simulated. In the case of encounters involving an RG, bound systems are produced when the separation at periastron passage R(MIN) is less than about 2.5 R(RG). At least 70 percent of these bound systems are composed of the RG core and NS forming a binary engulfed in a common envelope of what remains of the former RG envelope. Once the envelope is ejected, a tight white dwarf-NS binary remains. For MS stars, encounters with NSs will produce bound systems when R(MIN) is less than about 3.5 R(MS). Some 50 percent of these systems will be single objects with the NS engulfed in a thick disk of gas almost as massive as the original MS star. The ultimate fate of such systems is unclear.

  2. Measurements of fusion neutron yields by neutron activation technique: Uncertainty due to the uncertainty on activation cross-sections

    NASA Astrophysics Data System (ADS)

    Stankunas, Gediminas; Batistoni, Paola; Sjöstrand, Henrik; Conroy, Sean

    2015-07-01

    The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.

  3. Studies of near-barrier fusion induced by neutron-rich nuclei at HRIBF

    SciTech Connect

    Liang, J Felix

    2011-01-01

    Fusion induced by neutron-rich radioactive beams is a topic of current interest. The findings will be useful for using radioactive beams to produce superheavy elements. Results from recent measurements performed with neutron-rich radioactive Sn and Te beams are presented. Coupled-channels calculations were carried out to study the observed sub-barrier fusion enhancement. The fusion probability in Sn on Ni were probed by comparing the evaporation residue cross sections at high excitation energies.

  4. The search for the site of the r-process. [rapid neutron capture in stellar nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Cowan, John J.; Cameron, A. G. W.; Truran, J. W.; Sneden, Christopher

    1986-01-01

    A number of sites have been suggested for the r-process, including neutronized cores of exploding supernovae, jets of neutronized matter ejected from the collapse of rotating magnetized stellar cores, the helium and carbon zones of stars undergoing supernova explosions, and helium core flashes in low-mass stars. Despite much work and many advances in nuclear physics, the site or sites of the r-process is still unknown. Observations of metal-poor stars in the halo of the Galaxy indicate r-process production early in the history of the Galaxy and provide important constraints on galactic nucleosynthesis. Further observations of metal-poor stars, along with advances in understanding the nuclear properties of neutron-rich nuclei and improved astrophysical models of stars in the late stages of evolution, should help to identify the site of the r-process.

  5. Swelling of nuclei embedded in neutron-gas and consequences for fusion

    NASA Astrophysics Data System (ADS)

    Umar, A. S.; Oberacker, V. E.; Horowitz, C. J.; Reinhard, P.-G.; Maruhn, J. A.

    2015-08-01

    Fusion of very neutron rich nuclei may be important to determine the composition and heating of the crust of accreting neutron stars. We present an exploratory study of the effect of the neutron-gas environment on the structure of nuclei and the consequences for pycnonuclear fusion cross sections in the neutron drip region. We studied the formation and properties of oxygen and calcium isotopes embedded in varying neutron-gas densities. We observe that the formed isotope is the drip-line nucleus for the given effective interaction. Increasing the neutron-gas density leads to the swelling of the nuclear density. We have used these densities to study the effect of this swelling on the fusion cross sections using the São Paulo potential. At high neutron-gas densities the cross section is substantially increased but at lower densities the modification is minimal.

  6. Calibration of the neutron detectors for the cluster fusion experiment on the Texas Petawatt Laser

    SciTech Connect

    Bang, W.; Quevedo, H. J.; Dyer, G.; Rougk, J.; Kim, I.; McCormick, M.; Bernstein, A. C.; Ditmire, T.

    2012-06-15

    Three types of neutron detectors (plastic scintillation detectors, indium activation detectors, and CR-39 track detectors) were calibrated for the measurement of 2.45 MeV DD fusion neutron yields from the deuterium cluster fusion experiment on the Texas Petawatt Laser. A Cf-252 neutron source and 2.45 MeV fusion neutrons generated from laser-cluster interaction were used as neutron sources. The scintillation detectors were calibrated such that they can detect up to 10{sup 8} DD fusion neutrons per shot in current mode under high electromagnetic pulse environments. Indium activation detectors successfully measured neutron yields as low as 10{sup 4} per shot and up to 10{sup 11} neutrons. The use of a Cf-252 neutron source allowed cross calibration of CR-39 and indium activation detectors at high neutron yields ({approx}10{sup 11}). The CR-39 detectors provided consistent measurements of the total neutron yield of Cf-252 when a modified detection efficiency of 4.6 Multiplication-Sign 10{sup -4} was used. The combined use of all three detectors allowed for a detection range of 10{sup 4} to 10{sup 11} neutrons per shot.

  7. Hans A. Bethe Prize Talk: Neutron stars and stellar collapse: the physics of strongly interacting Fermi systems

    NASA Astrophysics Data System (ADS)

    Pethick, C. J.

    2011-04-01

    The talk will touch on a number of themes in the application of many-body theory to neutron stars and stellar collapse. One of these will be the composition and equation of state of nuclear matter. Specific topics will include nuclei in neutron stars, superfluidity and superconductivity of nuclear matter, and inhomogeneous phases of nuclear matter. A second major theme will be neutrino processes in dense matter: neutrino emission is the most powerful cooling mechanism for young neutron stars, and rates of neutrino processes are a key ingredient in simulations of stellar collapse.

  8. Stellar neutron capture cross sections of Nd, Pm, and Sm isotopes

    SciTech Connect

    Toukan, K.A. ); Debus, K.; Kaeppeler, F. ); Reffo, G. )

    1995-03-01

    The neutron capture cross sections of [sup 146,148,150]Nd have been determined relative to that of gold by means of the activation method. The samples were irradiated in a quasistellar neutron spectrum for [ital kT]=25 keV using the [sup 7]Li([ital p],[ital n])[sup 7]Be reaction near threshold. Variation of the experimental conditions in different activations and the use of different samples allowed for the reliable determination of corrections and the evaluation of systematic uncertainties. The resulting stellar cross sections can be given with uncertainties around 6%, which represents a considerable improvement compared to previous measurements. These data are complemented by a new set of calculated cross sections for the unstable isotopes [sup 147]Nd, [sup 147,148,149]Pm, and [sup 151]Sm, which act as branching points in the [ital s]-process path. Based on these results, the [ital s]-process flow in the Nd-Pm-Sm region is discussed with respect to the neutron density during stellar helium burning and to isotopic anomalies in meteorites. The updated [ital s]-abundances are also used for a discussion of [ital r]- and [ital p]-process residuals.

  9. Stellar neutron capture cross section of the unstable s-process branching point {sup 151}Sm

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Krticka, M.; Raman, S.; Mengoni, A.; Gallino, R.

    2006-01-15

    The neutron capture cross sections of the radioactive isotope {sup 151}Sm and of natural samarium have been measured in the energy range from 3 keV to 225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction by bombarding metallic Li targets with a pulsed proton beam and capture events were registered with the Karlsruhe 4{pi} Barium Fluoride Detector. The cross sections were determined relative to the gold standard using a 206 mg sample of samarium oxide with 90% enrichment in {sup 151}Sm. Over most of the measured energy range uncertainties of {approx}2-3% could be achieved for the {sup 151}Sm/{sup 197}Au ratio. Maxwellian averaged neutron capture cross sections of {sup 151}Sm were calculated for thermal energies between kT = 8 keV and 100 keV with due consideration of the stellar enhancement factor and were found to be systematically larger than all previous theoretical predictions used in the analysis of the s-process branching at {sup 151}Sm. In the context of the branching analysis, an experimental determination of the stellar enhancement factor due to captures in thermally excited states is proposed, and the tentative determination of the p-process residual of {sup 152}Gd and a few other cases is discussed.

  10. Neutron capture cross section of unstable 63Ni: implications for stellar nucleosynthesis.

    PubMed

    Lederer, C; Massimi, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Zugec, P

    2013-01-11

    The 63Ni(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from   kT=5-100  keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of 63Cu, 64Ni, and 64Zn in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova. PMID:23383895

  11. Stellar

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This eerie, dark structure, resembling an imaginary sea serpent's head, is a column of cool molecular hydrogen gas (two atoms of hydrogen in each molecule) and dust that is an incubator for new stars. The stars are embedded inside finger-like protrusions extending from the top of the nebula. Each 'fingertip' is somewhat larger than our own solar system. The pillar is slowly eroding away by the ultraviolet light from nearby hot stars, a process called 'photoevaporation.' As it does, small globules of especially dense gas buried within the cloud is uncovered. These globules have been dubbed 'EGGs' -- an acronym for 'Evaporating Gaseous Globules.' The shadows of the EGGs protect gas behind them, resulting in the finger-like structures at the top of the cloud. Forming inside at least some of the EGGs are embryonic stars -- stars that abruptly stop growing when the EGGs are uncovered and they are separated from the larger reservoir of gas from which they were drawing mass. Eventually the stars emerge, as the EGGs themselves succumb to photoevaporation. The stellar EGGS are found, appropriately enough, in the 'Eagle Nebula' (also called M16 -- the 16th object in Charles Messier's 18th century catalog of 'fuzzy' permanent objects in the sky), a nearby star-forming region 7,000 light-years away in the constellation Serpens. The picture was taken on April 1, 1995 with the Hubble Space Telescope Wide Field and Planetary Camera 2. The color image is constructed from three separate images taken in the light of emission from different types of atoms. Red shows emission from singly-ionized sulfur atoms. Green shows emission from hydrogen. Blue shows light emitted by doubly-ionized oxygen atoms.

  12. Neutron dosimetry qualification experiments for the Tokamak Fusion Test Reactor Lithium Blanket Module program

    SciTech Connect

    Tsang, F.Y.; Harker, Y.D.; Anderi, R.A.; Nigg, D.W.; Jassby, D.L.

    1986-11-01

    The Tokamak Fusion Test Reactor (TFTR) Lithium Blanket module (LBM) program is a first-of-kind neutronics experiment involving a toroidal fusion neutron source. Qualification experiments have been conducted to develop primary measurement techniques and verify dosimetry materials that will be used to characterize the neutron environment inside and on the surfaces of the LBM. The deuterium-tritium simulation experiments utilizing a 14-MeV neutron generator and a fusion blanket mockup facility at the Idaho National Engineering Laboratory are described. Results and discussions are presented that identify the quality and limitations of the measured integral reaction data, including the minimum fluence requirement for the TFTR experiment and the use of such data in neutron spectrum adjustment and in predicting integral performance parameters, e.g., tritium production.

  13. Conceptual design of a camera system for neutron imaging in low fusion power tokamaks

    NASA Astrophysics Data System (ADS)

    Xie, X.; Yuan, X.; Zhang, X.; Nocente, M.; Chen, Z.; Peng, X.; Cui, Z.; Du, T.; Hu, Z.; Li, T.; Fan, T.; Chen, J.; Li, X.; Zhang, G.; Yuan, G.; Yang, J.; Yang, Q.

    2016-02-01

    The basic principles for designing a camera system for neutron imaging in low fusion power tokamaks are illustrated for the case of the HL-2A tokamak device. HL-2A has an approximately circular cross section, with total neutron yields of about 1012 n/s under 1 MW neutral beam injection (NBI) heating. The accuracy in determining the width of the neutron emission profile and the plasma vertical position are chosen as relevant parameters for design optimization. Typical neutron emission profiles and neutron energy spectra are calculated by Monte Carlo method. A reference design is assumed, for which the direct and scattered neutron fluences are assessed and the neutron count profile of the neutron camera is obtained. Three other designs are presented for comparison. The reference design is found to have the best performance for assessing the width of peaked to broadened neutron emission profiles. It also performs well for the assessment of the vertical position.

  14. Neutronization of matter in a stellar core and convection during gravitational collapse

    NASA Astrophysics Data System (ADS)

    Aksenov, A. G.; Chechetkin, V. M.

    2016-07-01

    The roles of neutrinos and convective instability in collapsing supernovae are considered. Spherically symmetrical computations of the collapse using the Boltzmann equation for the neutrinos lead to the formation of the condition of convective instability, {( {{partial P}/{partial s}} )_{ρ {Y_l}}}{ds}/{dr} + {( {{partial P}/{partial {Y_L}}} )_{ρ s}}{d{Y_L}}/{dr} < 0, in a narrow region of matter accretion above the neutrinosphere. If instability arises in this region, the three-dimensional solution will represent a correction to the spherically symmetrical solution for the gravitational collapse. The mean neutrino energies change only negligibly in the narrow region of accretion. Nuclear statistical equilibrium is usually assumed in the hot proto-neutron stellar core, to simplify the computations of the collapse. Neutronization with the participation of free neutrons is most efficient. However, the decay of nuclei into nucleons is hindered during the collapse, because the density grows too rapidly compared to the growth in the temperature, and an appreciable fraction of the energy is carried away by neutrinos. The entropy of the matter per nucleon is modest at the stellar center. All the energy is in degenerate electrons during the collapse. If the large energy of these degenerate electrons is taken into account, neutrons are efficiently formed, even in cool matter with reduced Y e (the difference between the numbers of electrons and positrons per nucleon). This process brings about an increase in the optical depth to neutrinos, the appearance of free neutrons, and an increase in the entropy per nucleon at the center. The convectively unstable region at the center increases. The development of large-scale convection is illustrated using a multi-dimensional gas-dynamical model for the evolution of a stationary, unstable state (without taking into account neutrino transport). The time for the development of convective instability (several milliseconds) does not

  15. Near-barrier fusion of proton- and neutron-halo systems

    NASA Astrophysics Data System (ADS)

    Aguilera, E. F.

    2016-07-01

    It is shown that the behaviour of the fusion excitation functions for proton-halo and neutron-halo systems presents important differences, especially in the energy region slightly above the barrier. Measurements for 6He, 11Li and 11Be projectiles are discussed to exemplify the behaviour of neutron-halo systems, while experiments with 8B beams illustrate the situation for proton-halo nuclei. With respect to a standard benchmark, neutron- (proton-) halo systems show a fusion suppression (enhancement) above the barrier.

  16. Stellar evolution.

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y. (Editor); Muriel, A.

    1972-01-01

    Aspects of normal stellar evolution are discussed together with evolution near the main sequence, stellar evolution from main sequence to white dwarf or carbon ignition, the structure of massive main-sequence stars, and problems of stellar stability and stellar pulsation. Other subjects considered include variable stars, white dwarfs, close binaries, novae, early supernova luminosity, neutron stars, the photometry of field horizontal-branch stars, and stellar opacity. Transport mechanisms in stars are examined together with thermonuclear reactions and nucleosynthesis, the instability problem in nuclear burning shells, stellar coalescence, and intense magnetic fields in astrophysics. Individual items are announced in this issue.

  17. Experimental investigation of opacity models for stellar interiors, inertial fusion, and high energy density plasmas

    NASA Astrophysics Data System (ADS)

    Bailey, James

    2008-11-01

    Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z-pinches depends on the opacities of mid-atomic-number elements in the 150-300 eV temperature range. These models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate opacities. Testing these opacities requires a uniform plasma at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x-rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlighter source must be bright enough to overwhelm the plasma self emission. These problems were overcome using the dynamic hohlraum x-ray source at Sandia's Z facility to measure the transmission of a mixed Mg-Fe plasma heated above 150 eV. This capability will also advance opacity science for other high energy density plasmas. This tutorial describes opacity experiment challenges including accurate transmission measurements, plasma diagnostics, and quantitative model comparisons. The solar interior serves as a focal problem and Z facility experiments are used to illustrate the techniques. **In collaboration with C. Iglesias (LLNL), R. Mancini (U. Nevada), J.MacFarlane, I. Golovkin and P. Wang (Prism), C. Blancard, Ph. Cosse, G. Faussurier, F. Gilleron, and J.C. Pain (CEA), J. Abdallah Jr. (LANL), and G.A. Rochau and P.W. Lake (Sandia). ++Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  18. No enhancement of fusion probability by the neutron halo of 6He

    NASA Astrophysics Data System (ADS)

    Raabe, R.; Sida, J. L.; Charvet, J. L.; Alamanos, N.; Angulo, C.; Casandjian, J. M.; Courtin, S.; Drouart, A.; Durand, D. J. C.; Figuera, P.; Gillibert, A.; Heinrich, S.; Jouanne, C.; Lapoux, V.; Lepine-Szily, A.; Musumarra, A.; Nalpas, L.; Pierroutsakou, D.; Romoli, M.; Rusek, K.; Trotta, M.

    2004-10-01

    Quantum tunnelling through a potential barrier (such as occurs in nuclear fusion) is very sensitive to the detailed structure of the system and its intrinsic degrees of freedom. A strong increase of the fusion probability has been observed for heavy deformed nuclei. In light exotic nuclei such as 6He, 11Li and 11Be (termed `halo' nuclei), the neutron matter extends much further than the usual nuclear interaction scale. However, understanding the effect of the neutron halo on fusion has been controversial-it could induce a large enhancement of fusion, but alternatively the weak binding energy of the nuclei could inhibit the process. Other reaction channels known as direct processes (usually negligible for ordinary nuclei) are also important: for example, a fragment of the halo nucleus could transfer to the target nucleus through a diminished potential barrier. Here we study the reactions of the halo nucleus 6He with a 238U target, at energies near the fusion barrier. Most of these reactions lead to fission of the system, which we use as an experimental signature to identify the contribution of the fusion and transfer channels to the total cross-section. At energies below the fusion barrier, we find no evidence for a substantial enhancement of fusion. Rather, the (large) fission yield is due to a two-neutron transfer reaction, with other direct processes possibly also involved.

  19. Tensile property changes of metals irradiated to low doses with fission, fusion and spallation neutrons

    SciTech Connect

    Heinisch, H.L.; Hamilton, M.L.; Sommer, W.F.; Ferguson, P.D.

    1991-11-01

    Radiation effects due to low doses of spallation neutrons are compared directly to those produced by fission and fusion neutrons. Yield stress changes of pure Cu, alumina-dispersion-strengthened Cu and AISI 316 stainless steel irradiated at 36--55{degrees}C in the Los Alamos Spallation Radiation Effects Facility (LASREF) are compared with earlier results of irradiations at 90{degrees}C using 14 MeV D-T fusion neutrons at the Rotating Target Neutron Source and fission reactor neutrons in the Omega West Reactor. At doses up to 0.04 displacements per atom (dpa), the yield stress changes due to the three quite different neutron spectra correlate well on the basis of dpa in the stainless steel and the Cu alloy. However, in pure Cu, the measured yield stress changes due to spallation neutrons were anomalously small and should be verified by additional irradiations. With the exception of pure Cu, the low dose, low temperature experiments reveal no fundamental differences in radiation hardening by fission, fusion or spallation neutrons when compared on the basis of dpa.

  20. A Freon-filled bubble chamber for neutron detection in inertial confinement fusion experiments

    SciTech Connect

    Ghilea, M. C.; Meyerhofer, D. D.; Sangster, T. C.

    2011-03-15

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron-Freon interactions were observed at neutron yields of 10{sup 13} emitted from deuterium-tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  1. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    DOE PAGESBeta

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; et al

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  2. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    SciTech Connect

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  3. Fusion-neutron-yield, activation measurements at the Z accelerator: Design, analysis, and sensitivity

    NASA Astrophysics Data System (ADS)

    Hahn, K. D.; Cooper, G. W.; Ruiz, C. L.; Fehl, D. L.; Chandler, G. A.; Knapp, P. F.; Leeper, R. J.; Nelson, A. J.; Smelser, R. M.; Torres, J. A.

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r2 decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm2 and is ˜ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  4. Fast neutron spectrometry with organic scintillators applied to magnetic fusion experiments

    NASA Astrophysics Data System (ADS)

    Kaschuck, Yu. A.; Esposito, B.; Trykov, L. A.; Semenov, V. P.

    2002-01-01

    Neutron spectrometry with NE213 liquid scintillators is commonly used in thermonuclear fusion experiments to measure the 2.45 and 14.1 MeV neutron flux. We present the unfolded neutron spectrum, which was accumulated during several ohmic deuterium plasma discharges in the Frascati Tokamak Upgrade using a 2″×2″ NE213 scintillator. In this paper, we review the application of organic scintillator neutron spectrometers to tokamaks, focusing in particular on the comparison between NE213 and stilbene scintillators. Various aspects of the calibration technique and neutron spectra unfolding procedure are considered in the context of their application for fusion neutron spectrometry. Testing and calibration measurements have been carried out using D-D and D-T neutron generator facilities with both NE213 and stilbene scintillators. The main result from these measurements is that stilbene scintillator has better neutron energy resolution than NE213. Our stilbene detector could be used for the determination of the ion temperature ( Ti) from neutron spectrum broadening in tokamak thermonuclear plasmas with Ti=4 keV and higher.

  5. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity.

    PubMed

    Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects. PMID:24784607

  6. Fusion-neutron-yield, activation measurements at the Z accelerator: Design, analysis, and sensitivity

    SciTech Connect

    Hahn, K. D. Ruiz, C. L.; Fehl, D. L.; Chandler, G. A.; Knapp, P. F.; Smelser, R. M.; Torres, J. A.; Cooper, G. W.; Nelson, A. J.; Leeper, R. J.

    2014-04-15

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r{sup 2} decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm{sup 2} and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  7. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert

    2013-11-01

    Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  8. Indirect Study of the 16O+16O Fusion Reaction Toward Stellar Energies by the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Hayakawa, S.; Spitaleri, C.; Burtebayev, N.; Aimaganbetov, A.; Figuera, P.; Fisichella, M.; Guardo, G. L.; Igamov, S.; Indelicato, I.; Kiss, G.; Kliczewski, S.; La Cognata, M.; Lamia, L.; Lattuada, M.; Piasecki, E.; Rapisarda, G. G.; Romano, S.; Sakuta, S. B.; Siudak, R.; Trzcińska, A.; Tumino, A.; Urkinbayev, A.

    2016-05-01

    The 16O+16O fusion reaction is important in terms of the explosive oxygen burning process during late evolution stage of massive stars as well as understanding of the mechanism of low-energy heavy-ion fusion reactions. We aim to determine the excitation function for the most major exit channels, α+28Si and p+31P, toward stellar energies indirectly by the Trojan Horse Method via the 16O(20Ne, α28Si)α and 16O(20Ne, p31P)α three-body reactions. We report preliminary results involving reaction identification, and determination of the momentum distribution of α-16O intercluster motion in the projectile 20Ne nucleus.

  9. Analysis of the role of neutron transfer in asymmetric fusion reactions at subbarrier energies

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Danilov, A. N.; Demyanova, A. S.; Trzaska, W. H.; Xu, X. X.; Yang, F.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2015-12-01

    The excitation functions were measured for the 28Si + 208Pb complete-fusion (capture) reaction at deep subbarrier energies. The results were compared with the cross sections predicted within the quantum diffusion approach. The role of neutron transfer in the case of positive Q values in the 28Si + 124Sn, 208Pb; 30Si + 124Sn, 208Pb; 20Ne + 208Pb; 40Ca + 96Zr; and 134Te + 40Ca complete-fusion (capture) reactions is discussed.

  10. Fusion neutronics experiments and analysis. Progress report, November 1, 1991--October 31, 1992

    SciTech Connect

    Not Available

    1992-12-01

    UCLA has led the neutronics R&D effort in the US for the past several years through the well-established USDOE/JAERI Collaborative Program on Fusion Neutronics. Significant contributions have been made in providing solid bases for advancing the neutronics testing capabilities in fusion reactors. This resulted from the hands-on experience gained from conducting several fusion integral experiments to quantify the prediction uncertainties of key blanket design parameters such as tritium production rate, activation, and nuclear heating, and when possible, to narrow the gap between calculational results and measurements through improving nuclear data base and codes capabilities. The current focus is to conduct the experiments in an annular configuration where the test assembly totally surrounds a simulated line source. The simulated line source is the first-of-a-kind in the scope of fusion integral experiments and presents a significant contribution to the world of fusion neutronics. The experiments proceeded through Phase IIIA to Phase IIIC in these line source simulation experiments started in 1989.

  11. A Freon-Filled Bubble Chamber for Neutron Detection in Inertial Confinement Fusion Experiments

    SciTech Connect

    Ghilea, M.C.; Meyerhofer, D.D.; Sangster, T.C.

    2011-03-24

    Neutron imaging is one of the main methods used in inertial confinement fusion experiments to measure the core symmetry of target implosions. Previous studies have shown that bubble chambers have the potential to obtain higher resolution images of the targets for a shorter source-to-target distance than typical scintillator arrays. A bubble chamber for neutron imaging with Freon 115 as the active medium was designed and built for the OMEGA laser system. Bubbles resulting from spontaneous nucleation were recorded. Bubbles resulting from neutron–Freon interactions were observed at neutron yields of 1013 emitted from deuterium–tritium target implosions on OMEGA. The measured column bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The recorded data suggest that neutron bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility.

  12. Collimator design for neutron imaging of laser-fusion targets

    SciTech Connect

    Sommargren, G.E.; Lerche, R.A.

    1981-12-15

    Several pinhole collimator geometries for use in neutron imaging experiments have been modeled and compared. Point spread functions are shown for a cylinder, hyperbola, intersecting cones, and a five-zone approximation to the intersecting cones. Of the geometries studied, the intersecting cones appear the most promising with respect to neutron efficiency, field of view, and isoplanatism.

  13. Neutron spectroscopy on TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Nishitani, T.; Strachan, J.D.

    1988-05-01

    This paper describes the use of an /sup 3/He ionization chamber for neutron spectroscopy on TFTR during 1987. The ion temperature was measured using neutron spectroscopy for one set of ohmically heated plasmas. The deduced ion temperatures agreed to within 20% with those measured by other diagnostics. 11 refs., 11 figs., 1 tab.

  14. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  15. Neutron irradiation experiments for fusion reactor materials through JUPITER program

    NASA Astrophysics Data System (ADS)

    Abe, K.; Kohyama, A.; Namba, C.; Wiffen, F. W.; Jones, R. H.

    1998-10-01

    A Japan-USA Program of irradiation experiments for fusion research, "JUPITER", has been established as a 6 year program from 1995 to 2000. The goal is to study "the dynamic behavior of fusion reactor materials and their response to variable and complex irradiation environment". This is phase-three of the collaborative program, which follows RTNS-II Program (Phase-1: 1982-1986) and FFTF/MOTA Program (Phase-2: 1987-1994). This program is to provide a scientific basis for application of materials performance data, generated by fission reactor experiments, to anticipated fusion environments. Following the systematic study on cumulative irradiation effects, done through FFTF/MOTA Program, JUPITER is emphasizing the importance of dynamic irradiation effects on materials performance in fusion systems. The irradiation experiments in this program include low activation structural materials, functional ceramics and other innovative materials. The experimental data are analyzed by theoretical modeling and computer simulation to integrate the above effects.

  16. Magnetorotational collapse of massive stellar cores to neutron stars: Simulations in full general relativity

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Liu, Yuk Tung; Shapiro, Stuart L.; Stephens, Branson C.

    2006-11-01

    We study magnetohydrodynamic (MHD) effects arising in the collapse of magnetized, rotating, massive stellar cores to proto-neutron stars (PNSs). We perform axisymmetric numerical simulations in full general relativity with a hybrid equation of state. The formation and early evolution of a PNS are followed with a grid of 2500×2500 zones, which provides better resolution than in previous (Newtonian) studies. We confirm that significant differential rotation results even when the rotation of the progenitor is initially uniform. Consequently, the magnetic field is amplified both by magnetic winding and the magnetorotational instability (MRI). Even if the magnetic energy EEM is much smaller than the rotational kinetic energy Trot at the time of PNS formation, the ratio EEM/Trot increases to 0.1 0.2 by the magnetic winding. Following PNS formation, MHD outflows lead to losses of rest mass, energy, and angular momentum from the system. The earliest outflow is produced primarily by the increasing magnetic stress caused by magnetic winding. The MRI amplifies the poloidal field and increases the magnetic stress, causing further angular momentum transport and helping to drive the outflow. After the magnetic field saturates, a nearly stationary, collimated magnetic field forms near the rotation axis and a Blandford-Payne type outflow develops along the field lines. These outflows remove angular momentum from the PNS at a rate given by J˙˜ηEEMCB, where η is a constant of order ˜0.1 and CB is a typical ratio of poloidal to toroidal field strength. As a result, the rotation period quickly increases for a strongly magnetized PNS until the degree of differential rotation decreases. Our simulations suggest that rapidly rotating, magnetized PNSs may not give rise to rapidly rotating neutron stars.

  17. Subaru/HDS study of CH stars: elemental abundances for stellar neutron-capture process studies

    NASA Astrophysics Data System (ADS)

    Goswami, Aruna; Aoki, Wako; Karinkuzhi, Drisya

    2016-01-01

    A comprehensive abundance analysis providing rare insight into the chemical history of lead stars is still lacking. We present results from high-resolution (R ˜ 50 000) spectral analyses of three CH stars, HD 26, HD 198269 and HD 224959, and, a carbon star with a dusty envelope, HD 100764. Previous studies on these objects are limited by both resolution and wavelength regions and the results differ significantly from each other. We have undertaken to reanalyse the chemical composition of these objects based on high-resolution Subaru spectra covering the wavelength regions 4020-6775 Å. Considering local thermodynamic equilibrium and using model atmospheres, we have derived the stellar parameters, the effective temperatures Teff, surface gravities log g, and metallicities [Fe/H] for these objects. The derived parameters for HD 26, HD 100764, HD 198269 and HD 224959 are (5000, 1.6, -1.13), (4750, 2.0 -0.86), (4500, 1.5, -2.06) and (5050, 2.1, -2.44), respectively. The stars are found to exhibit large enhancements of heavy elements relative to iron in conformity to previous studies. Large enhancement of Pb with respect to iron is also confirmed. Updates on the elemental abundances for several s-process elements (Y, Zr, La, Ce, Nd, Sm and Pb) along with the first-time estimates of abundances for a number of other heavy elements (Sr, Ba, Pr, Eu, Er and W) are reported. Our analysis suggests that neutron-capture elements in HD 26 primarily originate in the s-process while the major contributions to the abundances of neutron-capture elements in the more metal-poor objects HD 224959 and HD 198269 are from the r-process, possibly from materials that are pre-enriched with products of the r-process.

  18. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    SciTech Connect

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-04-02

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the {sup 10}B(n,{alpha}){sup 7}Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.

  19. Upgrade of the IGN-14 neutron generator for research on detection of fusion-plasma products

    NASA Astrophysics Data System (ADS)

    Igielski, Andrzej; Kurowski, Arkadiusz; Janik, Władysław; Gabańska, Barbara; Woźnicka, Urszula

    2015-10-01

    The fast neutron generator (IGN-14) at the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Kraków (Poland) is a laboratory multi-purpose experimental device. Neutrons are produced in a beam-target D-D or D-T reactions. A new vacuum chamber installed directly to the end of the ion guide of IGN-14 makes it possible to measure not only neutrons but also alpha particles in the presence of a mixed radiation field of other accompanying reaction products. The new experimental setup allows test detectors dedicated to spectrometric measurements of thermonuclear fusion reaction products.

  20. Benchmarking of the FENDL-3 Neutron Cross-section Data Starter Library for Fusion Applications

    SciTech Connect

    Fischer, U.; Angelone, M.; Bohm, T.; Kondo, K.; Konno, C.; Sawan, M.; Villari, R.; Walker, B.

    2014-06-15

    This paper summarizes the benchmark analyses performed in a joint effort of ENEA (Italy), JAEA (Japan), KIT (Germany), and the University of Wisconsin (USA) on a computational ITER benchmark and a series of 14 MeV neutron benchmark experiments. The computational benchmark revealed a modest increase of the neutron flux levels in the deep penetration regions and a substantial increase of the gas production in steel components. The comparison to experimental results showed good agreement with no substantial differences between FENDL-3.0 and FENDL-2.1 for most of the responses. In general, FENDL-3 shows an improved performance for fusion neutronics applications.

  1. Fusion-neutron production in the TFTR with deuterium neutral beam injection

    SciTech Connect

    Hendel, H.W.; England, A.C.; Jassby, D.L.; Mirin, A.A.; Nieschmidt, E.B.

    1986-06-01

    We report measurements of the fusion reaction rate in the Tokamak Fusion Test Reactor (TFTR) covering a wide range of plasma conditions and injected neutral beam powers up to 6.3 MW. The fusion-neutron production rate in beam-injected plasmas decreases slightly with increasing plasma density n/sub e/, even though the energy confinement parameter n/sub e/tau/sub E/ generally increases with density. The measurements indicate and Fokker-Planck simulations show that with increasing density the source of fusion neutrons evolves from mainly beam-beam and beam-target reactions at very low n/sub e/ to a combination of beam-target and thermonuclear reactions at high n/sub e/. At a given plasma current, the reduction in neutron source strength at higher n/sub e/ is due to both a decrease in electron temperature and in beam-beam reaction rate. The Fokker-Planck simulations also show that at low n/sub e/, plasma rotation can appreciably reduce the beam-target reaction rate for experiments with co-injection only. The variation of neutron source strength with plasma and beam parameters is as expected for beam-dominated regimes. However, the Fokker-Planck simulations systematically overestimate the measured source strength by a factor of 2 to 3; the source of this discrepancy has not yet been identified.

  2. Compact Intense Neutron Generators Based on Inertial Electrostatic Confinement of D-D Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Masuda, K.; Inoue, K.; Kajiwara, T.; Nakamatsu, R.

    2015-10-01

    A neutron generator based on inertial electrostatic confinement (IEC) of fusion plasmas is being developed for a non-destructive inspection system of special nuclear materials hidden in sea containers. The new IEC device is equipped with a multistage feedthrough which was designed aiming at both capability of a high bias voltage and enhancement of ion recirculation by modification of electric fields in the IEC device. Experimental comparison was made with a conventional single-stage IEC device developed in an earlier work. As the results, both the increase in the applied voltage and the modified field symmetry by the new multistage scheme showed significant enhancement in the neutron output. As a consequence, neutron output per input discharge current was enhanced drastically by a factor of ~30 in total. Also, the first pulsing experiments of the newly developed IEC neutron generator showed pulsed neutron output with a rapid pulse fall-off of ~ 1 μsec successfully.

  3. Optimizing Neutron Production Rates from D-D Fusion in an Inertial Electrostatic Confinement Device

    SciTech Connect

    Wehmeyer, A.L.; Radel, R.F.; Kulcinski, G.L.

    2005-05-15

    Detection of explosives has been identified as a near term commercial opportunity for using a fusion plasma. Typical explosive compositions contain low Z material (C, N, O) which are not easily detected using conventional x-rays or metal detectors. However, 2.45 MeV neutrons produced in a D-D fusion reaction can be used for detection of explosives or other clandestine materials in suitcases, packages, or shipping containers.Steady-state D-D operation is possible using an Inertial Electrostatic Confinement (IEC) fusion device. The University of Wisconsin IEC device has produced D-D neutrons at 1.8 x 10{sup 8} neutrons/second at a true cathode voltage of 166 kV and a meter current of 68 mA. These neutron production rates are approaching the levels required for the detection of explosives. In order to increase and optimize the neutron production rate in the IEC device, experiments were performed altering the cathode's size (diameter), geometry, and material composition. Preliminary results indicate that significant differences in neutron production rates are not achieved by altering the geometry or material composition of the cathode. However, the neutron production rate was found to increase approximately 20% by doubling the cathode's diameter from 10 cm to 20 cm. In addition, increasing the cathode voltage from 34 kV to 94 kV at a meter current of 30 mA increased the neutron production rate from 1.24 x 10{sup 6} n/s to 2.83 x 10{sup 7} n/s.

  4. Analysis of primary damage in silicon carbide under fusion and fission neutron spectra

    NASA Astrophysics Data System (ADS)

    Guo, Daxi; Zang, Hang; Zhang, Peng; Xi, Jianqi; Li, Tao; Ma, Li; He, Chaohui

    2014-12-01

    Irradiation parameters on primary damage states of SiC are evaluated and compared for the first wall of ITER under deuterium-deuterium (DD) and deuterium-tritium (DT) operation, the high temperature gas-cooled reactor (HTGR) and high flux isotope reactor (HFIR). With the same neutron fluence, the studied fusion spectra produce more damage and much higher gas production than the fission spectra. Due to comparable gas production and similar weighted primary recoil spectra, HFIR is considered suitable to simulate the neutron irradiation in an HTGR. In contrast to the significant differences between the weighted primary recoil spectra of the fission and the fusion spectra, the weighted secondary recoil spectra of HFIR and HTGR match those of DD and DT, indicating that displacement cascades by the fission and the fusion irradiation are similar when the damage distribution among damaged regions by secondary recoils is taken into account.

  5. Neutron-induced reactions relevant for Inertial-Cofinement Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Boswell, Melissa; Devlin, Mathew; Fotiadis, Nikolaos; Merrill, Frank; Nelson, Ronald; Tonchev, Anton

    2014-09-01

    The typical ignition experiment at the National Ignition Facility ablatively implodes a plastic capsule filled with DT fuel, generating a high flux of 14-MeV neutrons from the d(t,n) α reaction. There is some spread in the energy of these primary 14-MeV neutrons, which is mainly attributable to Doppler shifting from the relative thermal motion of the burning DT fuel. Neutrons created during this reaction have 5--10% chance of scattering before escaping the fuel assembly, losing some fraction of their energy in the scattering process. Neutrons emerging with an energy greater than the reaction energy are generated by a two-step process where neutrons first transfer momentum to a deuteron or tritium ion, these enhanced energy ions then fuse in flight to produce higher energy neutrons; some of these neutrons have energies in excess of 30 MeV. Measuring the fluencies of both the low- and high-energy neutrons is a powerful mechanism for studying the properties of the fuel assembly, and the various parameters important to inertial confinement fusion. We have developed a number of tools to measure the spectral characteristics of the NIF neutron spectrum. Most of these methods rely on exploiting the energy dependence of (n, γ), (n,2n), (n,3n) and (n,p) reactions on a variety o.

  6. Research and Development of Landmine Detection System by a Compact Fusion Neutron Source

    SciTech Connect

    Yoshikawa, Kiyoshi; Masuda, Kai; Toku, Hisayuki; Nagasaki, Kazunobu; Mizutani, Toshiyuki; Takamatsu, Teruhisa; Imoto, Masaki; Yamamoto, Yasushi; Ohnishi, Masami; Osawa, Hodaka; Hotta, Eiki; Kohno, Toshiyuki; Okino, Akitoshi; Watanabe, Masato; Yamauchi, Kunihito; Yuura, Morimasa; Shiroya, Seiji; Misawa, Tsuyoshi; Mori, Takamasa

    2005-05-15

    Current results are described on the research and development of an advanced anti-personnel landmine detection system by using a compact discharge-type fusion neutron source called IECF (Inertial-Electrostatic Confinement Fusion). Landmines are to be identified through backscattering of neutrons, and specific-energy capture {gamma}-rays by hydrogen and nitrogen atoms in the landmine explosives.For this purpose, improvements in the IECF were made by various methods to achieve a drastic enhancement of neutron yields of more than 10{sup 8} n/s in pulsed operation. This required R and D on the power source, as well as analysis of envisaged detection systems with multi-sensors. The results suggest promising and practical features for humanitarian landmine detection, particularly, in Afghanistan.

  7. Neutron Capture and the Production of 60-Fe in Stellar Environments

    SciTech Connect

    Kelley, K

    2005-08-23

    The observation of gamma rays associated with the decay of {sup 26}Al and {sup 60}Fe can provide important information regarding ongoing nucleosynthesis in our galaxy. The half-lives of these radioisotopes (7.2 x 10{sup 5} y and 1.5 x 10{sup 6} y, respectively) are long compared to the interval between synthesis events such as supernovae, so they build up in a steady state in the interstellar medium (centered on the galactic plane, where massive stars reside), yet short enough that gamma radiation from their decay may be detected. Additionally, these half-lifes are short compared to the period of galactic revolution, so that observable abundances remain in the proximity of their production sites. Predicted abundances of {sup 26}Al and {sup 60}Fe vary widely between several calculations in the last decade. In 2004, the first observation of the gamma ray flux from {sup 60}Fe decay was reported, with a {sup 60}Fe/{sup 26}Al flux ratio in good agreement with nucleosynthesis modeling from 1995. However, recent calculations that include well motivated updates to the stellar and nuclear physics, predict a flux ratio as much as six times higher than the observed value. It is desirable to understand the discrepancy between the latest calculation, which in principle should have been more accurate, and the observation. In the present study, the uncertainties related to two key nuclear aspects of this problem, namely the neutron capture reaction rates for {sup 59,60}Fe, are investigated. New reaction rates are modeled using local systematics as opposed to the global systematics used in previous studies. Comparisons to experimental data are made whenever possible. The sensitivity of the reaction rates to various input quantities is gauged, and estimates regarding the total uncertainty in the reaction rates are made. The resulting rates and uncertainties are used in parameterized single-zone nucleosynthesis calculations using hydrodynamic conditions typical of those found in

  8. 3D Neutronic Analysis in MHD Calculations at ARIES-ST Fusion Reactors Systems

    NASA Astrophysics Data System (ADS)

    Hançerliogulları, Aybaba; Cini, Mesut

    2013-10-01

    In this study, we developed new models for liquid wall (FW) state at ARIES-ST fusion reactor systems. ARIES-ST is a 1,000 MWe fusion reactor system based on a low aspect ratio ST plasma. In this article, we analyzed the characteristic properties of magnetohydrodynamics (MHD) and heat transfer conditions by using Monte-Carlo simulation methods (ARIES Team et al. in Fusion Eng Des 49-50:689-695, 2000; Tillack et al. in Fusion Eng Des 65:215-261, 2003) . In fusion applications, liquid metals are traditionally considered to be the best working fluids. The working liquid must be a lithium-containing medium in order to provide adequate tritium that the plasma is self-sustained and that the fusion is a renewable energy source. As for Flibe free surface flows, the MHD effects caused by interaction with the mean flow is negligible, while a fairly uniform flow of thick can be maintained throughout the reactor based on 3-D MHD calculations. In this study, neutronic parameters, that is to say, energy multiplication factor radiation, heat flux and fissile fuel breeding were researched for fusion reactor with various thorium and uranium molten salts. Sufficient tritium amount is needed for the reactor to work itself. In the tritium breeding ratio (TBR) >1.05 ARIES-ST fusion model TBR is >1.1 so that tritium self-sufficiency is maintained for DT fusion systems (Starke et al. in Fusion Energ Des 84:1794-1798, 2009; Najmabadi et al. in Fusion Energ Des 80:3-23, 2006).

  9. Damage parameter comparison for candidate intense neutron test facilities for fusion materials

    SciTech Connect

    Doran, D.G.; Greenwood, L.R. ); Mann, F.M. )

    1990-07-31

    It is recognized worldwide that an intense source of fusion energy neutrons is needed to evaluate candidate fusion materials. At an International Energy Agency (IEA) workshop held in San Diego in February 1989, an Evaluation Panel recommended that three neutron source concepts be developed further. The panel also recommended that further comparisons were needed of their irradiation environments. In this paper, a comparison is made of damage parameters for beryllium, carbon, silicon, vanadium, iron, copper, molybdenum, and tungsten irradiated in spectra characteristic of di-Li, spallation, and beam-plasma (d-t) neutron sources and in a reference DEMO first wall spectrum. The treatment of neutron-induced displacement reactions is confined to the region below 20 MeV and transmutation reactions to below 50 MeV by the limited availability of calculational tools. The spallation spectrum is relatively soft; less than 2% of the neutrons are above 50 MeV. The transmutation results emphasize the need to define the neutron spectra at low, as well as high, energies; only the DEMO spectrum is adequate in this respect. Recommendations are given for further work to be performed under an international working group. 12 refs., 2 figs., 3 tabs.

  10. Application of deuteron-deuteron (D-D) fusion neutrons to 40Ar/39Ar geochronology.

    PubMed

    Renne, Paul R; Knight, Kim B; Nomade, Sébastien; Leung, Ka-Ngo; Lou, Tak-Pui

    2005-01-01

    Neutron irradiation of samples for 40Ar/39Ar dating in a 235U fission reactor requires error-producing corrections for the argon isotopes created from Ca, K, and, to a lesser extent, Cl. The fission spectrum includes neutrons with energies above 2-3 MeV, which are not optimal for the 39K(n,p)39Ar reaction. These higher-energy neutrons are responsible for the largest recoil displacements, which may introduce age artifacts in the case of fine-grained samples. Both interference corrections and recoil displacements would be significantly reduced by irradiation with 2.45 MeV neutrons, which are produced by the deuteron-deuteron (D-D) fusion reaction 2H(d,n)3He. A new generation of D-D reactors should yield sufficiently high neutron fluxes (>10(12) n cm(-2)s(-1)) to be useful for 40Ar/39Ar dating. Modeling indicates that irradiation with D-D neutrons would result in scientific benefits of improved accuracy and broader applicability to fine-grained materials. In addition, radiological safety would be improved, while both maintenance and operational costs would be reduced. Thus, development of high-flux D-D fusion reactors is a worthy goal for 40Ar/39Ar geochronology. PMID:15498681

  11. High-flux source of fusion neutrons for material and component testing

    SciTech Connect

    Baldwin, D. E.; Hooper, E. B.; Ryutov, D. D.; Thomassen, K. I.

    1999-01-07

    The inner part of a fusion reactor will have to operate at very high neutron loads. In steady-state reactors the minimum fluence before the scheduled replacement of the reactor core should be at least l0-15 Mw.yr/m2. A more frequent replacement of the core is hardly compatible with economic constraints. A most recent summary of the discussions of these issues is presented in Ref. [l]. If and when times come to build a commercial fusion reactor, the availability of information on the behavior of materials and components at such fluences will become mandatory for making a final decision. This makes it necessary an early development and construction of a neutron source for fusion material and component testing. In this paper, we present information on one very attractive concept of such a source: a source based on a so called Gas Dynamic Trap. This neutron source was proposed in the mid 1980s (Ref. [2]; see also a survey [3] with discussion of the early stage of the project). Since then, gradual accumulation of the relevant experimental information on a modest-scale experimental facility GDT at Novosibirsk, together with a continuing design activity, have made initial theoretical considerations much more credible. We believe that such a source can be built within 4 or 5 years. Of course, one should remember that there is a chance for developing steady-state reactors with a liquid (and therefore continuously renewable) first wall [4], which would also serve as a tritium breeder. In this case, the need in the neutron testing will become less pressing. However, it is not clear yet that the concept of the flowing wall will be compatible with all types of steady-state reactors. It seems therefore prudent to be prepared to the need of a quick construction of a neutron source. It should also be mentioned that there exist projects of the accelerator-based neutron sources (e.g., [5]). However, they generally have two major disadvantages: a wrong neutron spectrum

  12. High-performance deuterium-lithium neutron source for fusion materials and technology testing

    SciTech Connect

    Lawrence, G.P.; Bhatia, T.S.; Blind, B.; Guy, F.W.; Krakowski, R.A.; Neuschaefer, G.H.; Schnurr, N.M.; Schriber, S.O.; Varsamis, G.L.; Wangler, T.P.

    1989-01-01

    Advances in high-current linear-accelerator technology since the design of the Fusion Materials Irradiation Test (FMIT) Facility have increased the attractiveness of a deuterium-lithium (D-Li) neutron source for fusion materials and technology testing. This paper discusses a new approach to such a source aimed at meeting the near-term requirements of a high-flux high-energy International Fusion Materials Irradiation Facility (IFMIF). The concept employs multiple accelerator modules providing deuteron beams to two liquid-lithium jet targets oriented at right angles. This beam/target geometry provides much larger test volumes than can be attained with a single beam and target and produces significant regions of low neutron-flux gradient. A preliminary beam-dynamics design has been obtained for a 250-mA reference accelerator module. Neutron-flux levels and irradiation volumes were calculated for a neutron source incorporating two such modules, and interaction of the beam with the lithium jet was studied using a thermal-hydraulic computer simulation. Cost estimates are provided for a range of beam currents and a possible facility staging sequence is suggested. 12 refs., 7 figs., 3 tabs.

  13. Calculation of neutron and gamma ray energy spectra for fusion reactor shield design: comparison with experiment

    SciTech Connect

    Santoro, R.T.; Alsmiller, R.G. Jr.; Barnes, J.M.; Chapman, G.T.

    1980-08-01

    Integral experiments that measure the transport of approx. 14 MeV D-T neutrons through laminated slabs of proposed fusion reactor shield materials have been carried out. Measured and calculated neutron and gamma ray energy spectra are compared as a function of the thickness and composition of stainless steel type 304, borated polyethylene, and Hevimet (a tungsten alloy), and as a function of detector position behind these materials. The measured data were obtained using a NE-213 liquid scintillator using pulse-shape discrimination methods to resolve neutron and gamma ray pulse height data and spectral unfolding methods to convert these data to energy spectra. The calculated data were obtained using two-dimensional discrete ordinates radiation transport methods in a complex calculational network that takes into account the energy-angle dependence of the D-T neutrons and the nonphysical anomalies of the S/sub n/ method.

  14. A U.S. high-flux neutron facility for fusion materials development

    SciTech Connect

    Rei, Donald J

    2010-01-01

    Materials for a fusion reactor first wall and blanket structure must be able to reliably function in an extreme environment that includes 10-15 MW-year/m{sup 2} neutron and heat fluences. The various materials and structural challenges are as difficult and important as achieving a burning plasma. Overcoming radiation damage degradation is the rate-controlling step in fusion materials development. Recent advances with oxide dispersion strengthened ferritic steels show promise in meeting reactor requirements, while multi-timescale atomistic simulations of defect-grain boundary interactions in model copper systems reveal surprising self-annealing phenomenon. While these results are promising, simultaneous evaluation of radiation effects displacement damage ({le} 200 dpa) and in-situ He generation ({le} 2000 appm) at prototypical reactor temperatures and chemical environments is still required. There is currently no experimental facility in the U.S. that can meet these requirements for macroscopic samples. The E.U. and U.S. fusion communities have recently concluded that a fusion-relevant, high-flux neutron source for accelerated characterization of the effects of radiation damage to materials is a top priority for the next decade. Data from this source will be needed to validate designs for the multi-$B next-generation fusion facilities such as the CTF, ETF, and DEMO, that are envisioned to follow ITER and NIF.

  15. Neutronic analysis of alternative structural materials for fusion reactor blankets

    NASA Astrophysics Data System (ADS)

    Santos, Raul dos

    1988-07-01

    The neutronic performance of the International Tokamak Reactor (INTOR) blanket was studied when several alternative structural materials were used instead of the INTOR reference structural material, type 316 stainless steel. The alternative structural materials included: ferritic-, vanadium-, titanium-, long range ordered-, manganese austenitic-, and nimonic-alloys. All were treated both with and without a first-wall coating of beryllium or graphite. The tritium breeding ratio, the nuclear heating, and the gas (hydrogen and helium) production rates in the structural materials were calculated for the possible combinations of structural material and first-wall coating. These parameters were compared with those obtained by using SS-316. The nimonic alloy was the only one with worse neutronic performance than the SS-316.

  16. Fusion hindrance for Ca+Ca systems: Influence of neutron excess

    NASA Astrophysics Data System (ADS)

    Jiang, C. L.; Stefanini, A. M.; Esbensen, H.; Rehm, K. E.; Corradi, L.; Fioretto, E.; Mason, P.; Montagnoli, G.; Scarlassara, F.; Silvestri, R.; Singh, P. P.; Szilner, S.; Tang, X. D.; Ur, C. A.

    2010-10-01

    The measurement of the excitation function for fusion evaporation reactions in the system Ca40+Ca48 (Q= 4.56 MeV) has been extended downward by two orders of magnitude with respect to previous cross section data. A first indication of an S-factor maximum in a system with a positive Q value has been observed. In addition a correlation between fusion hindrance and neutron excess N-Z has been found for the Ca + Ca, Ni + Ni, and Ca + Zr systems.

  17. Analysis of the role of neutron transfer in asymmetric fusion reactions at subbarrier energies

    SciTech Connect

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Danilov, A. N.; Demyanova, A. S.; Trzaska, W. H.; Xu, X. X.; Yang, F.; Sargsyan, V. V. Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2015-12-15

    The excitation functions were measured for the {sup 28}Si + {sup 208}Pb complete-fusion (capture) reaction at deep subbarrier energies. The results were compared with the cross sections predicted within the quantum diffusion approach. The role of neutron transfer in the case of positive Q values in the {sup 28}Si + {sup 124}Sn, {sup 208}Pb; {sup 30}Si + {sup 124}Sn, {sup 208}Pb; {sup 20}Ne + {sup 208}Pb; {sup 40}Ca + {sup 96}Zr; and {sup 134}Te + {sup 40}Ca complete-fusion (capture) reactions is discussed.

  18. Quantum coupled-channels model of nuclear fusion with a semiclassical consideration of neutron rearrangement

    NASA Astrophysics Data System (ADS)

    Karpov, A. V.; Rachkov, V. A.; Samarin, V. V.

    2015-12-01

    Background: Significant enhancement of sub-barrier fusion cross sections owing to neutron transfer with positive Q values was observed in many combinations of colliding nuclei. This degree of freedom has not yet been included into the rigorous quantum coupled-channels (QCC) approach. However, the empirical coupled-channels model with neutron rearrangement [Zagrebaev, Phys. Rev. C 67, 061601 (2003), 10.1103/PhysRevC.67.061601] has already been successfully used in several papers to reproduce and predict cross sections for sub-barrier fusion reactions of stable nuclei. Purpose: The objective of this study is to combine the QCC approach and the empirical model to account for additional channels of neutron rearrangement. Method: Coupling of relative motion to collective degrees of freedom (rotation of nuclei and/or their surface vibrations) are taken into account within the QCC approach. The probability of transfer of x neutrons with a given Q value is estimated semiclassically. Results: The proposed new model was successfully tested on a few combinations of fusing nuclei 40Ca+90,96Zr, 32S+96,90, and 60,64Ni+100Mo. The calculated fusion cross sections and barrier distribution functions agree well with experimental data. Conclusions: The model developed in this work confirms all the conclusions previously made within the empirical coupled-channels model with neutron rearrangement [see Rachkov et al., Phys. Rev. C 90, 014614 (2014), 10.1103/PhysRevC.90.014614]. Moreover, it has an advantage of a more reliable microscopic account for the coupling between relative motion and the collective degrees of freedom. The proposed model can also be used to reproduce the structure of the barrier distribution function. This is a step forward to a complete solution of the long-term problem of accounting for neutron transfer channels in the QCC model.

  19. PRODUCTION OF {sup 9}Be THROUGH THE {alpha}-FUSION REACTION OF METAL-POOR COSMIC RAYS AND STELLAR FLARES

    SciTech Connect

    Kusakabe, Motohiko; Kawasaki, Masahiro E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2013-04-10

    Spectroscopic observations of metal-poor stars have indicated possible {sup 6}Li abundances that are much larger than the primordial abundance predicted in the standard big bang nucleosynthesis model. Possible mechanisms of {sup 6}Li production in metal-poor stars include pregalactic and cosmological cosmic-ray (CR) nucleosynthesis and nucleosynthesis by flare-accelerated nuclides. We study {sup 9}Be production via two-step {alpha}-fusion reactions of CR or flare-accelerated {sup 3,4}He through {sup 6}He and {sup 6,7}Li, in pregalactic structure, intergalactic medium, and stellar surfaces. We solve transfer equations of CR or flare particles and calculate nuclear yields of {sup 6}He, {sup 6,7}Li, and {sup 9}Be taking account of probabilities of processing {sup 6}He and {sup 6,7}Li into {sup 9}Be via fusions with {alpha} particles. Yield ratios, i.e., {sup 9}Be/{sup 6}Li, are then calculated for the CR and flare nucleosynthesis models. We suggest that the future observations of {sup 9}Be in metal-poor stars may find enhanced abundances originating from metal-poor CR or flare activities.

  20. Fusion neutron yield from a laser-irradiated heavy-water spray

    SciTech Connect

    Ter-Avetisyan, S.; Schnuerer, M.; Hilscher, D.; Jahnke, U.; Busch, S.; Nickles, P.V.; Sandner, W.

    2005-01-01

    The fusion neutron yield from a laser-irradiated heavy-water (D{sub 2}O) spray target was studied. Heavy-water droplets of about 150 nm diameter in the spray were exposed to 35 fs laser pulses at an intensity of 1x10{sup 19} W/cm{sup 2}. Due to the 10-50 times bigger size of the spray droplets compared to usual cluster sizes, deuterons are accelerated to considerably higher kinetic energies of up to 1 MeV. Neutrons are generated by the deuterons escaping from the plasma and initiating a fusion reaction within the surrounding cold plume of the spray jet. For each 0.6 J of laser pulse energy, 6x10{sup 3} neutrons are produced by about 10{sup 11} accelerated deuterons. This corresponds to a D(d,n) reaction probability of about 6x10{sup -8}. Compared to cluster targets, the reaction probability in the spray target is found to be two orders of magnitude larger. This finding apparently is due to both the considerably higher deuteron energies and the larger effective target thickness in the spray target. The measured neutron yield per accelerated deuteron [i.e., the D(d,n) reaction probability], is employed to compare and extrapolate the neutron emission characteristics from different target arrangements.

  1. Neutron Induced D Breakup in Inertial Confinement Fusion at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Forrest, C. J.; Glebov, V. Yu.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.; Schroder, W. U.; Frenje, J. A.; Gatu Johnson, M.

    2015-11-01

    High-resolution neutron spectroscopy is used to study the deuteron breakup reaction D(n,n ') np in the thermonuclear environment created in inertial confinement fusion experiments at the Omega Laser Facility. Neutrons with an energy of 14.1 MeV generated in the primary D-T fusion reactions scatter elastically and inelastically off the dense (cryogenic) D-T fuel assembly surrounding the central hot spot at peak fuel compression. These neutrons also induce a breakup of the fuel deuterons. The corresponding breakup cross section is measured relative to elastic n -D and n -T scattering, i.e., simultaneously in the same environment. Apart from astrophysical and technological interest, the neutron-induced deuteron breakup reaction is of interest to the physics of nucleon -nucleon forces. For example, theoretical calculations predict a noticeable influence of nucleonic three-body forces on the magnitude of the breakup cross section. Preliminary results from measurements of the neutron contribution in the 2- to 6-MeV range show reasonable agreement with the published ENDL 2008.2 semi-empirical cross-section. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  2. Efficient Energy Conversion of the 14 MeV Neutrons in DT Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2013-02-01

    In DT fusion 80 % of the energy released goes into 14 MeV neutrons, and only the remaining 20 % into charged particles. Unlike the charged particles, the uncharged neutrons cannot be confined by a magnetic field, and for this reason cannot be used for a direct conversion into electric energy. Instead, the neutrons have to be slowed down in some medium, heating this medium to a temperature of less than 103 K, with the heat removed from this medium to drive a turbo-generator. This conversion of nuclear into electric energy has a Carnot efficiency of about 30 %. For the 80 % of the energy released into neutrons, the efficiency is therefore no more than 24 %. While this low conversion efficiency cannot be overcome in magnetic confinement concepts, it can be overcome in inertial confinement concepts, by surrounding the inertial confinement fusion target with a sufficiently thick layer of liquid hydrogen and a thin outer layer of boron, to create a hot plasma fire ball. The hydrogen layer must be chosen just thick and dense enough to be heated by the neutrons to 100,000 K. The thusly generated, fully ionized, and rapidly expanding fire ball can drive a pulsed magnetohydrodynamic generator at an almost 100 % Carnot efficiency, or possibly be used to generate hydrocarbons.

  3. Fusion neutron yield from a laser-irradiated heavy-water spray

    NASA Astrophysics Data System (ADS)

    Ter-Avetisyan, S.; Schnürer, M.; Hilscher, D.; Jahnke, U.; Busch, S.; Nickles, P. V.; Sandner, W.

    2005-01-01

    The fusion neutron yield from a laser-irradiated heavy-water (D2O) spray target was studied. Heavy-water droplets of about 150nm diameter in the spray were exposed to 35fs laser pulses at an intensity of 1×1019W/cm2. Due to the 10-50 times bigger size of the spray droplets compared to usual cluster sizes, deuterons are accelerated to considerably higher kinetic energies of up to 1MeV. Neutrons are generated by the deuterons escaping from the plasma and initiating a fusion reaction within the surrounding cold plume of the spray jet. For each 0.6J of laser pulse energy, 6×103 neutrons are produced by about 1011 accelerated deuterons. This corresponds to a D(d ,n) reaction probability of about 6×10-8. Compared to cluster targets, the reaction probability in the spray target is found to be two orders of magnitude larger. This finding apparently is due to both the considerably higher deuteron energies and the larger effective target thickness in the spray target. The measured neutron yield per accelerated deuteron [i.e., the D(d ,n) reaction probability], is employed to compare and extrapolate the neutron emission characteristics from different target arrangements.

  4. Laser fusion neutron source employing compression with short pulse lasers

    DOEpatents

    Sefcik, Joseph A; Wilks, Scott C

    2013-11-05

    A method and system for achieving fusion is provided. The method includes providing laser source that generates a laser beam and a target that includes a capsule embedded in the target and filled with DT gas. The laser beam is directed at the target. The laser beam helps create an electron beam within the target. The electron beam heats the capsule, the DT gas, and the area surrounding the capsule. At a certain point equilibrium is reached. At the equilibrium point, the capsule implodes and generates enough pressure on the DT gas to ignite the DT gas and fuse the DT gas nuclei.

  5. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas.

    PubMed

    Cazzaniga, C; Nocente, M; Rebai, M; Tardocchi, M; Calvani, P; Croci, G; Giacomelli, L; Girolami, M; Griesmayer, E; Grosso, G; Pillon, M; Trucchi, D M; Gorini, G

    2014-11-01

    Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the (12)C(n, α)(9)Be reaction occurring between neutrons and (12)C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas. PMID:25430280

  6. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    SciTech Connect

    Hatarik, R. Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Mcnaney, J. M.; Munro, D. H.; Knauer, J. P.

    2015-11-14

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + {sup 3}He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (T{sub ion}) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent T{sub ion}, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT T{sub ion} of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for T{sub ion} and 10% for the neutron yield.

  7. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; Mcnaney, J. M.; Munro, D. H.

    2015-11-01

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + 3He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent Tion, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT Tion of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for Tion and 10% for the neutron yield.

  8. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas

    SciTech Connect

    Cazzaniga, C. Nocente, M.; Gorini, G.; Rebai, M.; Giacomelli, L.; Tardocchi, M.; Croci, G.; Grosso, G.; Calvani, P.; Girolami, M.; Trucchi, D. M.; Griesmayer, E.; Pillon, M.

    2014-11-15

    Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the {sup 12}C(n, α){sup 9}Be reaction occurring between neutrons and {sup 12}C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas.

  9. A diamond based neutron spectrometer for diagnostics of deuterium-tritium fusion plasmas

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Nocente, M.; Rebai, M.; Tardocchi, M.; Calvani, P.; Croci, G.; Giacomelli, L.; Girolami, M.; Griesmayer, E.; Grosso, G.; Pillon, M.; Trucchi, D. M.; Gorini, G.

    2014-11-01

    Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the 12C(n, α)9Be reaction occurring between neutrons and 12C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas.

  10. Computational Challenges of Fusion Neutronics for ITER Ports

    NASA Astrophysics Data System (ADS)

    Serikov, A.; Fischer, U.; Pitcher, C. S.; Suarez, A.; Weinhorst, B.

    2014-06-01

    This paper elaborates computational challenges tackled for providing neutronics service supplied for developing the design of the Diagnostics Equatorial and Upper Port Plugs (EPP and UPP). The aim was to guide and assist the EPP and UPP design developers with optimal shielding solutions which are characterised of maintain the diagnostics purposes of the systems together with adequate radiation shielding performance. The target parameter for the shielding optimization was the minimum of Shut-Down Dose Rate (SDDR) inside the interspace between the port back-side and ITER bioshield. This aim was reached by parametric neutronic analyses of the shielding geometry and material composition, mitigating direct streaming of neutrons from the plasma by arranging the labyrinths and horizontal rails. Variation of many geometrical parameters of the labyrinths was possible only by applying the high performance parallel computations with MCNP5 using pure MPI and hybrid OpenMP/MPI parallelization techniques on several available supercomputers. MCNP5 parallel performance assessments were carried out to find an efficient way to run the code in a parallel regime. It was found a strong scaling (up to 4096 cores) performance of the MCNP5 jobs running with analogue Monte Carlo sampling and weak scaling for the tasks with biased sampling as a variance reduction technique, such as the MCNP5 intrinsic weight window generator. Deep penetrating radiation in the complex ITER tokamak geometry combined blocks of strong attenuation of the radiation together with the void gaps along which the particles are streamed freely contributes to computation challenges of radiation transport.

  11. Large area imaging of hydrogenous materials using fast neutrons from a DD fusion generator

    NASA Astrophysics Data System (ADS)

    Cremer, J. T.; Williams, D. L.; Gary, C. K.; Piestrup, M. A.; Faber, D. R.; Fuller, M. J.; Vainionpaa, J. H.; Apodaca, M.; Pantell, R. H.; Feinstein, J.

    2012-05-01

    A small-laboratory fast-neutron generator and a large area detector were used to image hydrogen-bearing materials. The overall image resolution of 2.5 mm was determined by a knife-edge measurement. Contact images of objects were obtained in 5-50 min exposures by placing them close to a plastic scintillator at distances of 1.5 to 3.2 m from the neutron source. The generator produces 109 n/s from the DD fusion reaction at a small target. The combination of the DD-fusion generator and electronic camera permits both small laboratory and field-portable imaging of hydrogen-rich materials embedded in high density materials.

  12. A high-performance D-lithium neutron source for fusion technology testing

    SciTech Connect

    Lawrence, G.P.; Wangler, T.P.; Schriber, S.O.; Kemp, E.L.; Wilson, M.T.; Bhatia, T.S.; Neuschaefer, G.H.; Guy, F.W.; Armstrong, D.D.

    1989-03-01

    Recent advances in high-current linear accelerator technology have considerably increased the attractiveness of a deuterium-lithium high-energy neutron source for fusion materials and technology testing. This paper describes a new Los Alamos conceptual design for a deuteron accelerator aimed at meeting near-term flux requirements of an International Fusion Materials Irradiation Facility. The new neutron-source driver concept is based on the idea of multiple accelerator modules, with each module consisting of two 125-mA, 175-MHz radio-frequency quadrupoles funneling 3-MeV cw deuteron beams into a 35-MeV, 250-mA, 350-MHz drift-tube linac.

  13. Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system

    NASA Astrophysics Data System (ADS)

    Kramer, Kevin James

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by

  14. Nuclear fusion and carbon flashes on neutron stars

    NASA Technical Reports Server (NTRS)

    Taam, R. E.; Picklum, R. E.

    1978-01-01

    This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.

  15. Measurement and evaluation of selected 14-MeV neutron cross sections for fusion

    SciTech Connect

    Meadows, J.W.; Smith, D.L.; Cox, S.A.

    1985-01-01

    Experimental neutron-activation cross-section data in the vicinity of 14 MeV are evaluated for several reactions of fusion-related interest using a least-squares method. New experimental measurements are performed at 14.7 MeV for all of these considered reactions and for some commonly-used standard reactions as well. Comparison is made between measured and evaluated results.

  16. Exciton model analysis of neutron spectra from fusion and quasifusion of two heavy ions

    SciTech Connect

    Fabrici, E.; Gadioli, E.; Gadioli Erba, E.

    1989-07-01

    The pre-equilibrium component to the neutron spectra from fusion andquasifusion of /sup 12/C and /sup 20/Ne with/sup 165/Ho at 20, 25, and 30 MeV/nucleon is evaluated by means ofthe exciton model using for the projectile nucleons an initial energydistribution resulting from the coupling of their translational and internalmomenta. The use of a set of parameters deduced from the analysis oflight-ion-induced reactions allows one to reproduce satisfactorily theexperimental data.

  17. Neutron flow between nuclei as the principal enhancement mechanism in heavy-ion subbarrier fusion

    SciTech Connect

    Stelson, P.H.

    1988-01-01

    The observed enhanced cross sections for heavy-ion fusion are interpreted with a model in which the near barrier cross sections are dominated by neck formation initiated by neutron flow between the colliding nuclei. The collective properties of the colliding nuclei are then interpreted as a modulation of the thresholds for neck formation and dominate the cross sections in the region far below the barrier. 12 refs., 12 figs., 2 tabs.

  18. Novel neutralized-beam intense neutron source for fusion technology development

    SciTech Connect

    Osher, J.E.; Perkins, L.J.

    1983-07-08

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D/sup 0/ and T/sup 0/ beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T/sup 0/ + T/sup +/ space-charge-neutralized beam incident on either a LiD or gas D/sub 2/ target with calculated 14-MeV neutron yields of 2 x 10/sup 15//s, 7 x 10/sup 15//s, or 1.6 x 10/sup 16//s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm/sup 2/.

  19. Measurement and analysis of activation induced in titanium with fusion peak neutrons

    NASA Astrophysics Data System (ADS)

    Klix, A.; Domula, A.; Forrest, R.; Zuber, K.

    2011-10-01

    The intense neutron flux densities in fusion reactor blankets produce activation in the blanket materials relevant to operational safety, decommissioning, etc. The aim of the present work is to check the European Activation System EASY-2007 for its capability to predict important gamma activities induced in titanium in a fusion neutron field. Many advanced low-activation materials for fusion applications contain titanium, most notably in the breeder material Li 2TiO 3. In the present work, a small sample of Ti was irradiated with the intense DT neutron generator of Technical University of Dresden. The gamma-radioactivity following irradiation was measured and nuclide activities were derived. For each of the measured gamma activities, the corresponding value was calculated with EASY, and calculation-to-experiment ratios ( C/ E) were determined. EASY predicted the induced gamma activities, isotopes of scandium, well with some overestimation for 47Sc. The results of this measurement together with available EXFOR and validated state-of-the-art activation libraries are discussed.

  20. A Subcritical, Gas-Cooled Fast Transmutation Reactor with a Fusion Neutron Source

    SciTech Connect

    Stacey, W.M.; Beavers, V.L.; Casino, W.A.; Cheatham, J.R.; Friis, Z.W.; Green, R.D.; Hamilton, W.R.; Haufler, K.W.; Hutchinson, J.D.; Lackey, W.J.; Lorio, R.A.; Maddox, J.W.; Mandrekas, J.; Manzoor, A.A.; Noelke, C.A.; Oliveira, C. de; Park, M.; Tedder, D.W.; Terry, M.R.; Hoffman, E.A.

    2005-05-15

    A design is presented for a subcritical, He-cooled fast reactor, driven by a tokamak D-T fusion neutron source, for the transmutation of spent nuclear fuel (SNF). The reactor is fueled with coated transuranic (TRU) particles and is intended for the deep-burn (>90%) transmutation of the TRUs in SNF without reprocessing of the coated fuel particles. The reactor design is based on the materials, fuel, and separations technologies under near-term development in the U.S. Department of Energy (DOE) Nuclear Energy Program and on the plasma physics and fusion technologies under near-term development in the DOE Fusion Energy Sciences Program, with the objective of intermediate-term ({approx}2040) deployment. The physical and performance characteristics and research and development requirements of such a reactor are described.

  1. Fusion of neutron-rich systems using time-dependent density-constrained DFT

    NASA Astrophysics Data System (ADS)

    Oberacker, Volker; Umar, A. S.

    2013-04-01

    In connection with experiments at Radioactive Ion Beam Facilities, we study fusion reactions with a new approach [1] which is based on a time-dependent density-constrained density functional theory (DFT). The only input is the Skyrme NN interaction, there are no adjustable parameters. We calculate heavy-ion interaction potentials V(R), mass parameters M(R), and total fusion cross sections. Some of the effects naturally included in these calculations are: neck formation, mass exchange, internal excitations, deformation effects, as well as nuclear alignment for deformed systems. Results will be presented for low-energy fusion reactions of ^12C+^16,24O and for ^16,24O+^16,24,28O which occur in the crust of neutron stars [2]. Finally, we will discuss fusion with neutron-rich halo nuclei, in particular ^11Li+^208Pb.[4pt] [1] Umar and Oberacker, PRC 74, 021601(R) (2006)[0pt] [2] Umar, Oberacker, and Horowitz, PRC 85, 055801 (2012)

  2. Deuteron Acceleration and Fusion Neutron Production in Z-pinch plasmas

    SciTech Connect

    Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Ananeev, S. S.; Bakshaev, Yu. L.; Blinov, P. I.; Chernenko, A. S.; Kazakov, E. D.; Korolev, V. D.; Ustroev, G. I.

    2009-01-21

    Fusion neutron measurements were carried out on the S-300 generator (Kurchatov Institute, Moscow). We tried deuterated fibers, various types of wire arrays imploding onto a deuterated fiber, and deuterium gas puffs as Z-pinch loads. On the current level of 2 MA, the peak neutron yield of 10{sup 10} was achieved with a deuterium gas-puff. The neutron and deuteron energy spectra were quite similar in various types of Z-pinch configurations. The broad width of radial neutron spectra implied a high radial component of deuteron velocity. On the basis of neutron measurements, we concluded that neutron production mechanism is connected with the study of plasma voltage. It means that the acceleration of fast deuterons is not a secondary process but it reflects the global dynamics of Z-pinch plasmas. For this reason it is useful to add deuterium as a 'tracer' in Z-pinch loads more often. For instance, it seems attractive to prepare wire-arrays from deuterated metal wires such as Pd.

  3. Neutronics shielding analysis for the end plug of a tandem mirror fusion reactor

    NASA Astrophysics Data System (ADS)

    Ragheb, Magdi M. H.; Maynard, Charles W.

    1981-10-01

    A neutronics analysis using the Monte Carlo method is carried out for the end-plug penetration and magnet system of a tandem mirror fusion reactor. Detailed penetration and the magnets' three-dimensional configurations are modeled. A method of position dependent angular source biasing is developed to adequately sample the DT fusion source in the central cell region and obtain flux contributions at the penetration components. To assure cryogenic stability, the barrier cylindrical solenoid is identified as needing substantial shielding of about 1 m of a steel-lead-boron-carbide-water mixture. Heating rates there would require a thermal-hydraulic design similar to that in the central cell blanket region. The transition coils, however, need a minimal 0.2 m thickness shield. The leakage neutron flux at the direct converters is estimated at 1.3×1015 n/(m2·s), two orders of magnitude lower than that reported at the neutral beam injectors for tokamaks around 1017 n/(m2·s) for a 1 MW/m2 14 MeV neutron wall loading. This result is obtained through a coupling between the nuclear and plasma physics designs in which hydrogen ions rather than deuterium atoms are used for energy injection at the end plug, to avoid creating a neutron source there. This lower and controllable radiation leakage problem is perceived as a potential major advantage of tandem mirrors compared to tokamaks and laser reactor systems.

  4. Stellar (n ,γ ) cross sections of neutron-rich nuclei: Completing the isotope chains of Yb, Os, Pt, and Hg

    NASA Astrophysics Data System (ADS)

    Marganiec, J.; Dillmann, I.; Domingo-Pardo, C.; Käppeler, F.

    2014-12-01

    The (n ,γ ) cross sections of the most neutron-rich stable isotopes of Yb, Os, Pt, and Hg have been determined in a series of activation measurements at the Karlsruhe 3.7 MV Van de Graaff accelerator, using the quasistellar neutron spectrum for k T =25 keV that can be produced with the 7Li(p ,n ) 7Be reaction. In this way, Maxwellian averaged cross sections could be directly obtained with only minor corrections. After irradiation the induced activities were counted with a HPGe detector via the strongest γ -ray lines. The stellar neutron capture cross sections of Yb,176174, Os,192190, Pt,198196, and Hg,204202, extrapolated to k T =30 keV, were found to be 157 ±6 mb, 114 ±8 mb, 278 ±11 mb, 160 ±7 mb, 171 ±19 mb, 94 ±4 mb, 62 ±2 mb, and 32 ±15 mb, respectively. In the case of 196Pt the partial cross section to the isomeric state at 399.5 keV could be determined as well. With these results the cross section data for long isotopic chains could be completed for a discussion of the predictive power of statistical model calculations towards the neutron-rich and proton-rich sides of the stability valley.

  5. Bayesian and maximum entropy methods for fusion diagnostic measurements with compact neutron spectrometers

    NASA Astrophysics Data System (ADS)

    Reginatto, Marcel; Zimbal, Andreas

    2008-02-01

    In applications of neutron spectrometry to fusion diagnostics, it is advantageous to use methods of data analysis which can extract information from the spectrum that is directly related to the parameters of interest that describe the plasma. We present here methods of data analysis which were developed with this goal in mind, and which were applied to spectrometric measurements made with an organic liquid scintillation detector (type NE213). In our approach, we combine Bayesian parameter estimation methods and unfolding methods based on the maximum entropy principle. This two-step method allows us to optimize the analysis of the data depending on the type of information that we want to extract from the measurements. To illustrate these methods, we analyze neutron measurements made at the PTB accelerator under controlled conditions, using accelerator-produced neutron beams. Although the methods have been chosen with a specific application in mind, they are general enough to be useful for many other types of measurements.

  6. A highly efficient neutron time-of-flight detector for inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Yamaguchi, K.; Yamagajo, T.; Nakano, T.; Kasai, T.; Urano, T.; Azechi, H.; Nakai, S.; Iida, T.

    1999-01-01

    We have developed the highly efficient neutron detector system MANDALA for the inertial-confinement-fusion experiment. The MANDALA system consists of 842 elements plastic scintillation detectors and data acquisition electronics. The detection level is the yield of 1.2×105 for 2.5 MeV and 1×105 for 14.1 MeV neutrons (with 100 detected hits). We have calibrated the intrinsic detection efficiencies of the detector elements using a neutron generator facility. Timing calibration and integrity test of the system were also carried out with a 60Co γ ray source. MANDALA system was applied to the implosion experiments at the GEKKO XII laser facility. The integrity test was carried out by implosion experiments.

  7. SODIUM-OXYGEN ANTICORRELATION AND NEUTRON-CAPTURE ELEMENTS IN OMEGA CENTAURI STELLAR POPULATIONS

    SciTech Connect

    Marino, A. F.; Milone, A. P.; Piotto, G.; Bellini, A.; Villanova, S.; Geisler, D.; Gratton, R.; Renzini, A.; D'Antona, F.; Anderson, J.; Bedin, L. R.; Cassisi, S.; Zoccali, M. E-mail: anna.marino@unipd.it

    2011-04-10

    Omega Centauri is no longer the only globular cluster known to contain multiple stellar populations, yet it remains the most puzzling. Due to the extreme way in which the multiple stellar population phenomenon manifests in this cluster, it has been suggested that it may be the remnant of a larger stellar system. In this work, we present a spectroscopic investigation of the stellar populations hosted in the globular cluster {omega} Centauri to shed light on its still puzzling chemical enrichment history. With this aim, we used FLAMES+GIRAFFE-VLT to observe 300 stars distributed along the multimodal red giant branch of this cluster, sampling with good statistics the stellar populations of different metallicities. We determined chemical abundances for Fe, Na, O, and n-capture elements Ba and La. We confirm that {omega} Centauri exhibits large star-to-star variations in iron with [Fe/H] ranging from {approx}-2.0 to {approx}-0.7 dex. Barium and lanthanum abundances of metal-poor stars are correlated with iron, up to [Fe/H] {approx}-1.5, while they are almost constant (or at least have only a moderate increase) in the more metal-rich populations. There is an extended Na-O anticorrelation for stars with [Fe/H] {approx}<-1.3 while more metal-rich stars are almost all Na-rich. Sodium was found to mildly increase with iron over the entire metallicity range.

  8. A fast neutron spectrometer for D-D fusion neutron measurements at the Alcator C tokamak

    NASA Astrophysics Data System (ADS)

    Fisher, W. A.; Chen, S. H.; Gwinn, D.; Parker, R. R.

    1984-01-01

    A neutron spectrometer using a high pressure 3He ionization chamber has been designed and used to measure the neutron spectrum from an ohmically heated deuterium plasma. The resolution of the spectrometer at 2.45 MeV is determine to be 46 keV full width at half-maximum (fwhm). Particular attention has been paid to optimizing the detector shielding and collimation to reject thermal and epithermal neutrons scattered from the tokamak structure. As a result, measurements indicate that the ratio of the number of counts in the 2.45 MeV peak to the total number of detected neutron events is {1}/{67}. For the 8 μs amplifier time constant used, a count rate as high as 44 counts per second has been achieved in the thermonuclear peak. The observed spectra have been compared with calculated spectra using the MCNP Monte Carlo Neutral Particle Transport code and they show good agreement. There is little evidence of neutrons produced from photoneutron reactions or electrodisintegration. It has been possible to confirm that the shape of the thermonuclear peak is consistent with the Gaussian shape predicted and that the ion temperature as determined from the line width is consistent with other Alcator C ion temperature diagnostics, and follows the trends predicted by the theory of Doppler line broadening.

  9. (International Panel on 14 MeV Intense Neutron Source Based on Accelerators for Fusion Materials Study)

    SciTech Connect

    Thoms, K.R.; Wiffen, F.W.

    1991-02-14

    Both travelers were members of a nine-person US delegation that participated in an international workshop on accelerator-based 14 MeV neutron sources for fusion materials research hosted by the University of Tokyo. Presentations made at the workshop reviewed the technology developed by the FMIT Project, advances in accelerator technology, and proposed concepts for neutron sources. One traveler then participated in the initial meeting of the IEA Working Group on High Energy, High Flux Neutron Sources in which efforts were begun to evaluate and compare proposed neutron sources; the Fourth FFTF/MOTA Experimenters' Workshop which covered planning and coordination of the US-Japan collaboration using the FFTF reactor to irradiate fusion reactor materials; and held discussions with several JAERI personnel on the US-Japan collaboration on fusion reactor materials.

  10. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments.

    PubMed

    Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H

    2012-10-01

    Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms. PMID:23126842

  11. Investigation of Some Stellar Iron Group Fusion Materials for ( n, p) Reactions

    NASA Astrophysics Data System (ADS)

    Sahan, M.; Tel, E.; Aydin, A.; Yegingil, Ilhami

    2012-02-01

    In this study, we present the results of a careful analysis of cross sections of some important iron (Fe) group target elements (20 ≤ Z≤28) for astrophysical ( n, p) reactions such as Si, Ca, Sc, Ti, V, Cr, Fe, Co and Ni used in neutron activation analysis have been investigated. The new calculations on the excitation functions of 28 Si(n, p) 28 Al, 29 Si(n, p) 29 Al, 42 Ca(n, p) 42 K, 45 Sc(n, p) 45 Ca, 46 Ti(n, p) 46 Sc, 51 V(n, p) 51 Ti, 52 Cr(n, p) 52 V, 53 Cr(n, p) 53 V, 54 Fe(n, p) 54 Mn, 57 Fe(n, p) 57 Mn, 59 Co(n, p) 59 Fe, 58 Ni(n, p) 58 Co and 60 Ni(n, p) 60 Co reactions have been carried out up to 25 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. Equilibrium effects are calculated according to the Weisskopf-Ewing model. The pre-equilibrium calculations involve the geometry dependent hybrid model, hybrid model and equilibrium model. Also in the present work, these reaction cross-sections have been calculated by using evaluated empirical formulas developed by Tel et al. at 14.7 MeV energy. The calculations are compared with existing experimental data as well as with evaluated data files (Experimental Nuclear Reaction Data (EXFOR). According to these calculations, we assume that these model calculations can be applied to some heavy elements, ejected into interstellar medium by dramatic supernova events.

  12. A fusion algorithm of digital neutron radiation image and digital x-ray image with contourlet transform

    NASA Astrophysics Data System (ADS)

    Feng, Peng; Wei, Biao; Jin, Wei; Mi, De-ling

    2008-12-01

    In this article, the Contourlet-based image fusion method of digital neutron radiation image and X-ray radiograph is proposed. As one of the multi-scale geometric analysis, Contourlet transform is full of application potentials in the field of image process due to its good capability of representing high dimensional singularity of image. Meanwhile, in order to overcome the shortcoming of pixel-based fusion, this method proposed realizes the local adaptive fusion through Neighborhood Homogeneity Measurement (NHM). Experiments show that this fusion method retains more image detail and therefore provides more accurate information than traditional image fusion methods. It is proved to be a novel idea for the complementary application of neutron radiation imaging and X-ray radiograph

  13. Neutron attenuation in the laser ducts of an inertial-confinement fusion reactor

    SciTech Connect

    Augustine, F. Jr.

    1981-11-01

    This report deals with the problem of neutron streaming through the laser beam ducts of an inertial confinement fusion power plant. The neutron flux through these ducts must be attenuated by a factor of 10/sup 12/ to meet radiological safety limits. The problem is dealt with by using mirrors to bend the path of the laser beam while cutting off a line of sight path for neutrons. The Monte Carlo Code MCNP was used to analyze the two mirror SOLASE design, which only attenuated the neutron flux by a factor of 10/sup 3/. The Westinghouse design, initially assuming four mirrors, attenuated the neutron flux by 10/sup 4/ per mirror bend, and hence only three mirror bends were needed. Further studies also revealed that the large length/diameter ratio of the ducts and the thinner mirror design were crucial to the large attenuation. It may also be possible to develop a two mirror system, at 10/sup 6/ attenuation per mirror bend, utilizing improvements such as point cross overs, a second flux trap, and acute column-to-column angles. Further studies are needed to check this possibility.

  14. Response of LaBr3(Ce) scintillators to 14 MeV fusion neutrons

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Nocente, M.; Tardocchi, M.; Rebai, M.; Pillon, M.; Camera, F.; Giaz, A.; Pellegri, L.; Gorini, G.

    2015-04-01

    The response of a 3″×3″ LaBr3(Ce) scintillator to 14 MeV neutron irradiation has been measured at the Frascati Neutron Generator and simulated by means of a dedicated MCNP model. Several reactions are found to contribute to the measured response, with a key role played by neutron inelastic scattering and (n,2n) reactions on 79Br, 81Br and 139La isotopes. An overall 43% efficiency to 14 MeV neutron detection above an experimental threshold of 0.35 MeV is calculated and confirmed by measurements. Post irradiation activation of the crystal has been also observed and is explained in terms of nuclear decays from the short lived 78Br and 80Br isotopes produced in (n,2n) reactions. The results presented in this paper are of relevance for the design of γ-ray detectors in burning plasma fusion experiments of the next generation, such as ITER, where capability to perform measurements in an intense 14 MeV neutron flux is required.

  15. Neutron capture cross section of {sup 15}N at stellar energies

    SciTech Connect

    Meissner, J.; Schatz, H.; Herndl, H.; Wiescher, M.; Beer, H.; Kaeppeler, F.

    1996-02-01

    The neutron capture rate on {sup 15}N may be of considerable importance for {ital s}-process nucleosynthesis in red giants as well as for the nucleosynthesis in inhomogeneous big bang scenarios. We measured the reaction cross section of {sup 15}N({ital n},{gamma}){sup 16}N at the Forschungszentrum Karlsruhe with a fast cyclic neutron activation technique at laboratory neutron energies of 25, 152, and 370 keV. Direct capture and shell model calculations were performed to interpret the results. The presented reaction rate is 30{endash}50{percent} smaller than the previously used theoretical rates. {copyright} {ital 1996 The American Physical Society.}

  16. Response of LaBr{sub 3}(Ce) scintillators to 2.5 MeV fusion neutrons

    SciTech Connect

    Cazzaniga, C.; Nocente, M.; Gorini, G.; Tardocchi, M.; Croci, G.; Giacomelli, L.; Angelone, M.; Pillon, M.; Villari, S.; Weller, A.; Petrizzi, L.; Collaboration: ASDEX Upgrade Team; JET-EFDA Contributors

    2013-12-15

    Measurements of the response of LaBr{sub 3}(Ce) to 2.5 MeV neutrons have been carried out at the Frascati Neutron Generator and at tokamak facilities with deuterium plasmas. The observed spectrum has been interpreted by means of a Monte Carlo model. It is found that the main contributor to the measured response is neutron inelastic scattering on {sup 79}Br, {sup 81}Br, and {sup 139}La. An extrapolation of the count rate response to 14 MeV neutrons from deuterium-tritium plasmas is also presented. The results are of relevance for the design of γ-ray diagnostics of fusion burning plasmas.

  17. Prospects for High Resolution Neutron Spectroscopy on high power fusion devices in view of the recent diagnostic developments at JET

    SciTech Connect

    Ericsson, Goeran; Sunden, E. Andersson; Conroy, S.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Sjsoetrand, H.; Weiszflog, M.; Kaellne, J.; Gorini, G.; Ognissanto, F.; Tardocchi, M.; Angelone, M.; Popovichev, S.

    2008-03-12

    An evaluation of three different candidate techniques for a 14-MeV High Resolution Neutron Spectrometer for a high power fusion device is presented. The performance is estimated for a modelled neutron emission for ITER plasma scenario 4. As performance indicators we use the estimated time-resolution achieved in measurements of three plasma parameters, namely, the ion temperature, the intensity of neutron emission due to neutral beam--thermal plasma interactions and the intensity of the so-called alpha knock-on neutron tail. It is found that only the MPR technique can deliver results on all three parameters with reasonable time resolution.

  18. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas

    SciTech Connect

    Cazzaniga, C. Gorini, G.; Nocente, M.; Sundén, E. Andersson; Binda, F.; Ericsson, G.; Croci, G.; Grosso, G.; Cippo, E. Perelli; Tardocchi, M.; Giacomelli, L.; Rebai, M.; Griesmayer, E.; Kaveney, G.; Syme, B.; Collaboration: JET-EFDA Contributors

    2014-04-15

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  19. Response of LaBr3(Ce) scintillators to 2.5 MeV fusion neutrons

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Nocente, M.; Tardocchi, M.; Croci, G.; Giacomelli, L.; Angelone, M.; Pillon, M.; Villari, S.; Weller, A.; Petrizzi, L.; Gorini, G.; ASDEX Upgrade Team; JET-EFDA Contributors

    2013-12-01

    Measurements of the response of LaBr3(Ce) to 2.5 MeV neutrons have been carried out at the Frascati Neutron Generator and at tokamak facilities with deuterium plasmas. The observed spectrum has been interpreted by means of a Monte Carlo model. It is found that the main contributor to the measured response is neutron inelastic scattering on 79Br, 81Br, and 139La. An extrapolation of the count rate response to 14 MeV neutrons from deuterium-tritium plasmas is also presented. The results are of relevance for the design of γ-ray diagnostics of fusion burning plasmas.

  20. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Sundén, E. Andersson; Binda, F.; Croci, G.; Ericsson, G.; Giacomelli, L.; Gorini, G.; Griesmayer, E.; Grosso, G.; Kaveney, G.; Nocente, M.; Cippo, E. Perelli; Rebai, M.; Syme, B.; Tardocchi, M.

    2014-04-01

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  1. Quantum description of coupling to neutron-rearrangement channels in fusion reactions near the Coulomb barrier

    SciTech Connect

    Samarin, V. V.

    2015-10-15

    The fusion cross sections for the {sup 17,18}O+{sup 27}Al, {sup 18}O+{sup 58}Ni, and {sup 6}He+{sup 197}Au reactions were calculated by the coupled-channel method. The radial dependence of matrices that describe coupling to valence-neutron-rearrangement channels was determined with the aid of two-center wave functions. The coupling-strength parameters were evaluated on the basis of numerically solving the time-dependent Schrödinger equation. Satisfactory agreement with experimental data was obtained.

  2. Measuring the neutron energy spectrum of laser-fusion targets with CR-39

    SciTech Connect

    Lane, S.M.

    1983-09-01

    We are developing a detector capable of measuring the neutron energy spectrum from a laser fusion target containing DT fuel. From such a spectrum the compressed areal density of the DT can be inferred by observing the fraction of 14.1 MeV neutrons down-shifted in energy by elastic scattering. The detector consists of a 0.1 cm thick Ta x-ray and debris shield backed by a 50 to 200 ..mu..m polyethylene radiator followed by layers of CR-39. The energy of each neutron producing a knock-on proton in the radiatior, that in turn creates a damage track in the CR-39, can be derived from the resultant track diameter, location, and orientation. We have analyzed the proton sensitivity and sample readability of 5 types of CR-39 in the energy range 3 to 11 MeV and have found a type fabricated by American Acrylics from a monomer made by a French company, Allymer, to be the most acceptable. Calibration curves were obtained for this plastic at energies of 3 to 15 MeV and dip angles ranging from 75 to 90/sup 0/. These curves were subsequently used to unfold a 14.7 MeV spectrum generated at the Livermore Rotating Target Neutron Source.

  3. Modular System for Neutronics Calculations of Fission Reactors, Fusion Blankets, and Other Systems.

    Energy Science and Technology Software Center (ESTSC)

    1999-07-23

    AUS is a neutronics code system which may be used for calculations of a wide range of fission reactors, fusion blankets and other neutron applications. The present version, AUS98, has a nuclear cross section library based on ENDF/B-VI and includes modules which provide for reactor lattice calculations, one-dimensional transport calculations, multi-dimensional diffusion calculations, cell and whole reactor burnup calculations, and flexible editing of results. Calculations of multi-region resonance shielding, coupled neutron and photon transport, energymore » deposition, fission product inventory and neutron diffusion are combined within the one code system. The major changes from the previous release, AUS87, are the inclusion of a cross-section library based on ENDF/B-VI, the addition of the POW3D multi-dimensional diffusion module, the addition of the MICBURN module for controlling whole reactor burnup calculations, and changes to the system as a consequence of moving from IBM mainframe computers to UNIX workstations.« less

  4. Superresolution of a compact neutron spectrometer at energies relevant for fusion diagnostics

    SciTech Connect

    Reginatto, M.; Zimbal, A.

    2011-03-14

    The ability to achieve resolution that is better than the instrument resolution (i.e., superresolution) is well known in optics, where it has been extensively studied. Unfortunately, there are only a handful of theoretical studies concerning superresolution of particle spectrometers, even though experimentalists are familiar with the enhancement of resolution that is achievable when appropriate methods of data analysis are used, such as maximum entropy and Bayesian methods. Knowledge of the superresolution factor is in many cases important. For example, in applications of neutron spectrometry to fusion diagnostics, the temperature of a burning plasma is an important physical parameter which may be inferred from the width of the peak of the neutron energy spectrum, and the ability to determine this width depends on the superresolution factor. Kosarev has derived an absolute limit for resolution enhancement using arguments based on a well known theorem of Shannon. Most calculations of superresolution factors in the literature, however, are based on the assumption of Gaussian, translationally invariant response functions and therefore not directly applicable to neutron spectrometers which typically have response functions not satisfying these requirements. In this work, we develop a procedure that allows us to overcome these difficulties and we derive estimates of superresolution for liquid scintillator spectrometers of a type commonly used for neutron measurements. Theoretical superresolution factors are compared to experimental results.

  5. ORELA measurements to meet fusion energy neutron cross section needs. [2 to 80 MeV

    SciTech Connect

    Larson, D C

    1980-01-01

    Major neutron cross section measurements made at the Oak Ridge Electron Linear Accelerator (ORELA) that are useful to the fusion energy program are reviewed. Cross sections for production of gamma rays with energies 0.3 < E/sub ..gamma../ < 10.5 MeV were measured as a function of neutron energy over the range 0.1 < E/sub n/ < 20.0 MeV for Li, C, N, O, F, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Nb, Mo, Ag, Sn, Ta, W, Au, Pb, and Th. Neutron emission cross sections have been measured for /sup 7/Li, Al, Ti, Cu, and Nb for 1 < E/sub n/ < 20 MeV. Some results of recent neutron total cross section measurements from 2 to 80 MeV for eleven materials (C, O, Al, Si, Ca, Cr, Fe, Ni, Cu, Au, and Pb) of interest to the FMIT project are presented. Finally, future directions of the ORELA program are outlined. 4 figures, 3 tables.

  6. Influence of the neutron numbers of projectile and target on the evaporation residue cross sections in hot fusion reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Su, Jun; Zhang, Feng-Shou

    2016-06-01

    Within the framework of a dinuclear system model, the influence of projectile and target neutron number on capture cross section, fusion probability, and survival probability for the reactions S,3634+238U and 48Ca+Pu 239 ,240 ,242 ,244 are investigated. The calculated excitation functions are in good agreement with the experimental data. To synthesize more unknown neutron-deficient isotopes of already-known superheavy elements, the possibility of using lighter calcium isotopes to induce hot fusion reactions is investigated and the maximal evaporation residual cross sections for Ca 44 ,46 ,48 -induced hot fusion reactions to produce unknown neutron-deficient superheavy nuclei with Z =112 -116 are predicted.

  7. Research on anisotropy of fusion-produced protons and neutrons emission from high-current plasma-focus discharges.

    PubMed

    Malinowski, K; Skladnik-Sadowska, E; Sadowski, M J; Szydlowski, A; Czaus, K; Kwiatkowski, R; Zaloga, D; Paduch, M; Zielinska, E

    2015-01-01

    The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in "sandwiches" of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The "sandwiches" were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed. PMID:25638081

  8. Research on anisotropy of fusion-produced protons and neutrons emission from high-current plasma-focus discharges

    SciTech Connect

    Malinowski, K. Sadowski, M. J.; Szydlowski, A.; Skladnik-Sadowska, E.; Czaus, K.; Kwiatkowski, R.; Zaloga, D.; Paduch, M.; Zielinska, E.

    2015-01-15

    The paper concerns fast protons and neutrons from D-D fusion reactions in a Plasma-Focus-1000U facility. Measurements were performed with nuclear-track detectors arranged in “sandwiches” of an Al-foil and two PM-355 detectors separated by a polyethylene-plate. The Al-foil eliminated all primary deuterons, but was penetrable for fast fusion protons. The foil and first PM-355 detector were penetrable for fast neutrons, which were converted into recoil-protons in the polyethylene and recorded in the second PM-355 detector. The “sandwiches” were irradiated by discharges of comparable neutron-yields. Analyses of etched tracks and computer simulations of the fusion-products behavior in the detectors were performed.

  9. Stellar neutron capture cross sections of 41K and 45Sc

    NASA Astrophysics Data System (ADS)

    Heil, M.; Plag, R.; Uberseder, E.; Bisterzo, S.; Käppeler, F.; Mengoni, A.; Pignatari, M.

    2016-05-01

    The neutron capture cross sections of light nuclei (A <56 ) are important for s -process scenarios since they act as neutron poisons. We report on measurements of the neutron capture cross sections of 41K and 45Sc, which were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator via the activation method in a quasistellar neutron spectrum corresponding to a thermal energy of k T =25 keV. Systematic effects were controlled by repeated irradiations, resulting in overall uncertainties of less than 3%. The measured spectrum-averaged data have been used to normalize the energy-dependent (n ,γ ) cross sections from the main data libraries JEFF-3.2, JENDL-4.0, and ENDF/B-VII.1, and a set of Maxwellian averaged cross sections was calculated for improving the s -process nucleosynthesis yields in AGB stars and in massive stars. At k T =30 keV, the new Maxwellian averaged cross sections of 41K and 45Sc are 19.2 ±0.6 mb and 61.3 ±1.8 mb, respectively. Both values are 20% lower than previously recommended. The effect of neutron poisons is discussed for nuclei with A <56 in general and for the investigated isotopes in particular.

  10. Novel, spherically-convergent ion systems for neutron source and fusion energy production

    NASA Astrophysics Data System (ADS)

    Barnes, D. C.; Nebel, R. A.; Ribe, F. L.; Schauer, M. M.; Schranck, L. S.; Umstadter, K. R.

    1999-06-01

    Combining spherical convergence with electrostatic or electro-magnetostatic confinement of a nonneutral plasma offers the possibility of high fusion gain in a centimeter-sized system. The physics principles, scaling laws, and experimental embodiments of this approach are presented. Steps to development of this approach from its present proof-of-principle experiments to a useful fusion power reactor are outlined. This development path is much less expensive and simpler, compared to that for conventional magnetic confinement and leads to different and useful products at each stage. Reactor projections show both high mass power density and low to moderate wall loading. This approach is being tested experimentally in PFX-I (Penning Fusion eXperiment-Ions), which is based on the following recent advances: 1) Demonstration, in PFX (our former experiment), that it is possible to combine nonneutral electron plasma confinement with nonthermal, spherical focussing; 2) Theoretical development of the POPS (Periodically Oscillating Plasma Sphere) concept, which allows spherical compression of thermal-equilibrium ions; 3) The concept of a massively-modular approach to fusion power, and associated elimination of the critical problem of extremely high first wall loading. PFX-I is described. PFX-I is being designed as a small (<1.5 cm) spherical system into which moderate-energy electrons (up to 100 kV) are injected. These electrons are magnetically insulated from passing to the sphere and their space charge field is then used to spherically focus ions. Results of initial operation with electrons only are presented. Deuterium operation can produce significant neutron output with unprecedented efficiency (fusion gain Q).

  11. Analysis of Induced Gamma Activation by D-T Neutrons in Selected Fusion Reactor Relevant Materials with EAF-2010

    NASA Astrophysics Data System (ADS)

    Klix, Axel; Fischer, Ulrich; Gehre, Daniel

    2016-02-01

    Samples of lanthanum, erbium and titanium which are constituents of structural materials, insulating coatings and tritium breeder for blankets of fusion reactor designs have been irradiated in a fusion peak neutron field. The induced gamma activities were measured and the results were used to check calculations with the European activation system EASY-2010. Good agreement for the prediction of major contributors to the contact dose rate of the materials was found, but for minor contributors the calculation deviated up to 50%.

  12. Possibilities of production of neutron-deficient isotopes of U, Np, Pu, Am, Cm, and Cf in complete fusion reactions

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Scheid, W.

    2008-10-15

    Within the dinuclear system model we analyze the production of yet unknown neutron-deficient isotopes of U, Np, Pu, Am, Cm, and Cf in various complete fusion reactions. Different deexcitation channels of the excited compound nucleus are treated. The results are obtained without special adjustment to the selected evaporation channel. The fusion probability is an important ingredient of the excitation function. The results are in good agreement with the available experimental data. The alpha decay half-life times in the neutron-deficient actinides are discussed.

  13. Evaluation of two-stage system for neutron measurement aiming at increase in count rate at Japan Atomic Energy Agency-Fusion Neutronics Source

    SciTech Connect

    Shinohara, K. Ochiai, K.; Sukegawa, A.; Ishii, K.; Kitajima, S.; Baba, M.; Sasao, M.

    2014-11-15

    In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons. The results suggested that the concept of a multi-stage detection system will work in practice.

  14. Stellar Neutron Capture Cross Sections of the Lu and Hf Isotopes

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Krticka, M.

    2005-05-24

    The neutron capture cross sections of 175,176Lu and 176,177,178,179,180Hf have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator relative to the gold standard. Neutrons were produced by the 7Li(p,n)7Be reaction and capture events were detected by the Karlsruhe 4{pi}BaF2 detector. The cross section ratios could be determined with uncertainties between 0.9 and 1.8% about a factor of five more accurate than previous data. A strong population of isomeric states was found in neutron capture of the Hf isotopes, which are only partially explained by CASINO/GEANT simulations based on the known level schemes.Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 keV and 100 keV. Severe differences up to40% were found to the data of a recent evaluation based on existing experimental results. The new data allow for a much more reliable analysis of the important branching in the s-process synthesis path at 176Lu which can be interpreted as an s-process thermometer.

  15. Neutron Damage in the Plasma Chamber First Wall of the GCFTR-2 Fusion-Fission Hybrid Reactor

    NASA Astrophysics Data System (ADS)

    Pinto, L. N.; Gonnelli, E.; Rossi, P. C. R.; Carluccio, T.; dos Santos, A.

    2015-07-01

    The successful development of energy-conversion machines based on either nuclear fission or fusion is completely dependent on the behaviour of the engineering materials used to construct the fuel containment and primary heat extraction systems. Such materials must be designed in order to maintain their structural integrity and dimensional stability in an environment involving high temperatures and heat fluxes, corrosive media, high stresses and intense neutron fluxes. However, despite the various others damage issues, such as the effects of plasma radiation and particle flux, the neutron flux is sufficiently energetic to displace atoms from their crystalline lattice sites. It is clear that the understanding of the neutron damage is essential for the development and safe operation of nuclear systems. Considering this context, the work presents a study of neutron damage in the Gas Cooled Fast Transmutation Reactor (GCFTR-2) driven by a Tokamak D-T fusion neutron source of 14.03 MeV. The theoretical analysis was performed by MCNP-5 and the ENDF/B-VII.1 neutron data library. A brief discussion about the determination of the radiation damage is presented, along with an analysis of the total neutron energy deposition in seven points through the material of the plasma source wall (PSW), in which was considered the HT-9 steel. The neutron flux was subdivided into three energy groups and their behaviour through the material was also examined.

  16. BNCT dose distribution in liver with epithermal D-D and D-T fusion-based neutron beams.

    PubMed

    Koivunoro, H; Bleuel, D L; Nastasi, U; Lou, T P; Reijonen, J; Leung, K-N

    2004-11-01

    Recently, a new application of boron neutron capture therapy (BNCT) treatment has been introduced. Results have indicated that liver tumors can be treated by BNCT after removal of the liver from the body. At Lawrence Berkeley National Laboratory, compact neutron generators based on (2)H(d,n)(3)He (D-D) or (3)H(t,n)(4)He (D-T) fusion reactions are being developed. Preliminary simulations of the applicability of 2.45 MeV D-D fusion and 14.1 MeV D-T fusion neutrons for in vivo liver tumor BNCT, without removing the liver from the body, have been carried out. MCNP simulations were performed in order to find a moderator configuration for creating a neutron beam of optimal neutron energy and to create a source model for dose calculations with the simulation environment for radiotherapy applications (SERA) treatment planning program. SERA dose calculations were performed in a patient model based on CT scans of the body. The BNCT dose distribution in liver and surrounding healthy organs was calculated with rectangular beam aperture sizes of 20 cm x 20 cm and 25 cm x 25 cm. Collimator thicknesses of 10 and 15 cm were used. The beam strength to obtain a practical treatment time was studied. In this paper, the beam shaping assemblies for D-D and D-T neutron generators and dose calculation results are presented. PMID:15308157

  17. Bayesian and maximum entropy methods for fusion diagnostic measurements with compact neutron spectrometers.

    PubMed

    Reginatto, Marcel; Zimbal, Andreas

    2008-02-01

    In applications of neutron spectrometry to fusion diagnostics, it is advantageous to use methods of data analysis which can extract information from the spectrum that is directly related to the parameters of interest that describe the plasma. We present here methods of data analysis which were developed with this goal in mind, and which were applied to spectrometric measurements made with an organic liquid scintillation detector (type NE213). In our approach, we combine Bayesian parameter estimation methods and unfolding methods based on the maximum entropy principle. This two-step method allows us to optimize the analysis of the data depending on the type of information that we want to extract from the measurements. To illustrate these methods, we analyze neutron measurements made at the PTB accelerator under controlled conditions, using accelerator-produced neutron beams. Although the methods have been chosen with a specific application in mind, they are general enough to be useful for many other types of measurements. PMID:18315297

  18. Development of the large neutron imaging system for inertial confinement fusion experiments.

    PubMed

    Caillaud, T; Landoas, O; Briat, M; Kime, S; Rossé, B; Thfoin, I; Bourgade, J L; Disdier, L; Glebov, V Yu; Marshall, F J; Sangster, T C

    2012-03-01

    Inertial confinement fusion (ICF) requires a high resolution (~10 μm) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MégaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a (60)Co γ-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 μm were obtained and are compared to x-ray images of comparable resolution. PMID:22462917

  19. Development of the large neutron imaging system for inertial confinement fusion experiments

    NASA Astrophysics Data System (ADS)

    Caillaud, T.; Landoas, O.; Briat, M.; Kime, S.; Rossé, B.; Thfoin, I.; Bourgade, J. L.; Disdier, L.; Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C.

    2012-03-01

    Inertial confinement fusion (ICF) requires a high resolution (˜10 μm) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MégaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999), 10.1017/S0263034699173087]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a 60Co γ-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997), 10.1016/S0030-4018(96)00325-2] Neutron core images of 14 MeV with a resolution of 15 μm were obtained and are compared to x-ray images of comparable resolution.

  20. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect

    Molvik, A W; Simonen, T C

    2009-07-17

    This report summarizes discussions and conclusions of the workshop to 'Assess The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification'. The workshop was held at LBNL, Berkeley, CA on March 12, 2009. Most workshop attendees have worked on magnetic mirror systems, several have worked on similar neutron source designs, and others are knowledgeable of materials, fusion component, and neutral beams The workshop focused on the gas dynamic trap DT Neutron Source (DTNS) concept being developed at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia. The DTNS may be described as a line source of neutrons, in contrast to a spallation or a D-Lithium source with neutrons beaming from a point, or a tokamak volume source. The DTNS is a neutral beam driven linear plasma system with magnetic mirrors to confine the energetic deuterium and tritium beam injected ions, which produce the 14 MeV neutrons. The hot ions are imbedded in warm-background plasma, which traps the neutral atoms and provides both MHD and micro stability to the plasma. The 14 MeV neutron flux ranges typically at the level of 1 to 4 MW/m2.

  1. Production of tritium, neutrons, and heat based on the transmission resonance model (TRM) for cold fusion

    NASA Astrophysics Data System (ADS)

    Bush, Robert T.

    1991-05-01

    The TRM has recently been successful in fitting calorimetric data having interesting nonlinear structure. The model appears to provide a natural description for electrolytic cold fusion in terms of ``fractals''. Extended to the time dimension, the model can apparently account for the phenomenon of heat ``bursts''. The TRM combines a transmission condition involving quantized energies and an engergy shift of a Maxwell-Boltzmann energy distribution of deuterons at the cathodic surface that appears related to the concentration overpotential (hydrogen overvoltage). The model suggest three possible regimes vis-a-vis tritium production in terms of this energy shift, and indicates why measurable tritium production in the electrolytic case will tend to be the exception rather than the rule in absence of a recipe: Below a shift of approximately 2.8 meV there is production of both tritium and measureable excess heat, with the possibility of accounting for the Bockris curve indicating about a 1% correlation between excess heat and tritium. However, over the large range from about 2.8 meV to 340 meV energy shift there is a regime of observable excess heat production but little, and probably no measurable, tritium production. The third regime is more hypothetical: It begins at an energy shift of about 1 keV and extends to the boundaries of ``hot'' fusion at about 10 keV. A new type of nucelar reaction, trint (for transmission resonance-induced neutron transfer), is suggested by the model leading to triton and neutron production. A charge distribution ``polarization conjecture'' is the basis for theoretical derivation for the low-energy limit for an energy-dependent branching ratio for D-on-D. When the values of the parameters are inserted, this expression yields an estimate for the ratio of neutron-to-triton production of about 1.64×10-9. The possibility of some three-body reactions is also suggested. A comparison of the TRM's transmission energy levels for palladium deuteride

  2. Catalyzed D-D stellarator reactor

    DOE PAGESBeta

    Sheffield, John; Spong, Donald A.

    2016-05-12

    The advantages of using the catalyzed deuterium-deuterium (D-D) approach for a fusion reactor—lower and less energetic neutron flux and no need for a tritium breeding blanket—have been evaluated in previous papers, giving examples of both tokamak and stellarator reactors. This paper presents an update for the stellarator example, taking account of more recent empirical transport scaling results and design studies of lower-aspect-ratio stellarators. We use a modified version of the Generic Magnetic Fusion Reactor model to cost a stellarator-type reactor. Recently, this model has been updated to reflect the improved science and technology base and costs in the magnetic fusionmore » program. Furthermore, it is shown that an interesting catalyzed D-D, stellarator power plant might be possible if the following parameters could be achieved: R/ ≈ 4, required improvement factor to ISS04 scaling, FR = 0.9 to 1.15, <β> ≈ 8.0% to 11.5%, Zeff ≈ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ≈ 0.07, Bm ≈ 14 to 16 T, and R ≈ 18 to 24 m.« less

  3. Development of a gated scintillation fiber neutron detector for areal density measurements of inertial confinement fusion capsules

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Lerche, R. A.; Phillips, T. W.; Schmid, G. J.; Moran, M. J.; Koch, J. A.; Azechi, H.; Sangster, T. C.

    2003-03-01

    A detector for fuel areal density measurements in inertial confinement fusion capsules has been designed. Observation of neutrons scattered in an imploded deuterium capsule (0.27-0.6 MeV) is a promising method for areal density measurements in the National Ignition Facility DD surrogate capsules. In order to detect scattered neutrons, we need to (1) suppress interference due to the strong direct neutron burst and (2) suppress the background produced by neutrons scattering on nontarget material (mainly from the target chamber). In our detector system, we suppress direct neutrons by gating the detector. We suppress the nontarget background neutrons by placing the detector outside the target chamber and limiting the view of the detector with collimators. In addition, we are developing a lithium-glass scintillation-fiber detector (LG-SCIFI) to detect the scattered neutrons. The LG-SCIFI will work as a multichannel scintillator array. The scintillation signal will be amplified by a microchannel plate image intensifier, which is gated to accept signals only in a specific time-of-flight window for the scattered neutrons. The gated scintillation image will be recorded by a charge-coupled device. Since the detector is segmented, neutron detection events will be clearly identified as bright spots in the gated image.

  4. Assessment of radiation shield integrity of DD/DT fusion neutron generator facilities by Monte Carlo and experimental methods

    NASA Astrophysics Data System (ADS)

    Srinivasan, P.; Priya, S.; Patel, Tarun; Gopalakrishnan, R. K.; Sharma, D. N.

    2015-01-01

    DD/DT fusion neutron generators are used as sources of 2.5 MeV/14.1 MeV neutrons in experimental laboratories for various applications. Detailed knowledge of the radiation dose rates around the neutron generators are essential for ensuring radiological protection of the personnel involved with the operation. This work describes the experimental and Monte Carlo studies carried out in the Purnima Neutron Generator facility of the Bhabha Atomic Research Center (BARC), Mumbai. Verification and validation of the shielding adequacy was carried out by measuring the neutron and gamma dose-rates at various locations inside and outside the neutron generator hall during different operational conditions both for 2.5-MeV and 14.1-MeV neutrons and comparing with theoretical simulations. The calculated and experimental dose rates were found to agree with a maximum deviation of 20% at certain locations. This study has served in benchmarking the Monte Carlo simulation methods adopted for shield design of such facilities. This has also helped in augmenting the existing shield thickness to reduce the neutron and associated gamma dose rates for radiological protection of personnel during operation of the generators at higher source neutron yields up to 1 × 1010 n/s.

  5. Neutron activation analysis of nuclides from stellar and man-induced nuclear reactions

    NASA Astrophysics Data System (ADS)

    Oliver, L. L.

    Neutron activation and gamma counting were used to determine the relative abundances of six stable tellurium isotopes in the acid-etched residues of the Allende meteorite. The results were correlated with the isotopic compositions of xenon and the elemental abundances of helium and neon in similarly prepared residues. Nucleosynthesis appears to be the only viable explanation or the anomalous isotopic and elemental compositions observed in these residues. Results suggest that the solar system condensed from an isotopically and chemically zoned nebula that was produced by the explosion of a supernova, concentric with the present Sun. A combination of neutron activation and mass spectrometry was used to determine the concentrations of fissiogenic iodine 129 and stable iodine 127 in rain, milk and the thyroids of man, cow and deer from Missouri. Rain and deer thyroids show the highest average values of the iodine 129/iodine 127 ratio. Milk and the thyroids of cattle and humans show successively lower values of the iodine 129/iodine 127 ratio due to dietary additives of mineral iodine and to biological averaging.

  6. Fast neutron capture on the Hf isotopes: Cross sections, isomer production, and stellar aspects

    SciTech Connect

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Becvar, F.; Krticka, M.; Gallino, R.; Pignatari, M.

    2006-04-15

    The (n,{gamma}) cross sections of {sup 176}Hf, {sup 177}Hf, {sup 178}Hf, {sup 179}Hf, and {sup 180}Hf have been measured in the energy range from 3 to 225 keV relative to the gold standard. Neutrons were produced via the {sup 7}Li(p,n){sup 7}Be reaction and capture events were registered with the Karlsruhe 4{pi} barium fluoride detector. The overall uncertainties are between 0.9 and 2.6%, about 5 times smaller than in previous experiments. Partial cross sections to ground and isomeric states could be experimentally identified for neutron capture on {sup 176,177,178,179}Hf, indicating a strong population of yet-unknown isomeric states in {sup 177}Hf and {sup 180}Hf. This feature was confirmed by extensive GEANT simulations based on calculated capture cascades. The deduced Maxwellian-averaged (n,{gamma}) cross sections for thermal energies between kT=8 and 100 keV contribute to the analysis of the s-process branchings at A=176 and A=179/180 and have significant consequences for the separation of the solar s- and r-process components.

  7. Results of the Development of Humanitarian Landmine Detection System by a Compact Fusion Neutron Source and Dual Sensors

    SciTech Connect

    Yoshikawa, Kiyoshi; Masuda, Kai; Takamatsu, Teruhisa; Yamamoto, Yasushi; Toku, Hisayuki; Fujimoto, Takashi; Hotta, Eiki; Yamauchi, Kunihito; Ohnishi, Masami; Osawa, Hodaka; Shiroya, Seiji; Misawa, Tsuyoshi; Takahashi, Yoshiyuki; Kubo, Yoshikazu; Doi, Toshiro

    2009-03-10

    A 5-year task is described on the research and development of the advanced humanitarian landmine detection system by using a compact discharge-type fusion neutron source called IECF (Inertial-Electrostatic Confinement Fusion) device and 3 dual sensors made of BGO and NaI(Tl). With 10{sup 7} D-D neutrons/s stably produced in steady-state mode, H-2.2 MeV, N-5.3, 10.8 MeV {gamma} rays from (n,{gamma}) reaction with hydrogen and nitrogen atoms in the explosives are measured for two kinds of explosives (TNT, RDX), under the conditions of three different buried depths, and soil moistures each. Final probabilities of detection for arid soil are found to be 100% in the present tests. The neutron backscattering method is also found to be efficient.

  8. Diagnosing suprathermal ion populations in Z-pinch plasmas using fusion neutron spectra

    SciTech Connect

    Knapp, P. F.; Sinars, D. B.; Hahn, K. D.

    2013-06-15

    The existence of suprathermal ion populations gives rise to significant broadening of and modifications to the fusion neutron spectrum. We show that when this population takes the form of a power-law at high energies, specific changes occur to the spectrum which are diagnosable. In particular, the usual Gaussian spectral shape produced by a thermal plasma is replaced by a Lorentz-like spectrum with broad wings extending far from the spectral peak. Additionally, it is found that the full width at half maximum of the spectrum depends on both the ion temperature and the power-law exponent. This causes the use of the spectral width for determination of the ion temperature to be unreliable. We show that these changes are distinguishable from other broadening mechanisms, such as temporal and motional broadening, and that detailed fitting of the spectral shape is a promising method for extracting information about the state of the ions.

  9. Measurement of the dmud quartet-to-doublet molecular formation rate ratio (lambdaq : lambdad) and the mu d hyperfine rate (lambdaqd) using the fusion neutrons from mu- stops in D2 gas

    NASA Astrophysics Data System (ADS)

    Raha, Nandita

    The MuSun experiment will determine the microd capture rate (micro - + d → n + n + nue) from the doublet hyperfine state Lambdad, of the muonic deuterium atom in the 1S ground state to a precision of 1.5%. Modern effective field theories (EFT) predict that an accurate measurement of Lambdad would determine the two-nucleon weak axial current. This will help in understanding all weak nuclear interactions such as the stellar thermonuclear proton-proton fusion reactions, the neutrino reaction nu + d (which explores the solar neutrino oscillation problem). It will also help us understand weak nuclear interactions involving more than two nucleons---double beta decay---as they do involve a two-nucleon weak axial current term. The experiment took place in the piE3 beam-line of Paul Scherrer Institute (PSI) using a muon beam generated from 2.2 mA proton beam---which is the highest intensity beam in the world. The muons first passed through entrance scintillator and multiwire proportional chamber for determining thier entrance timing and position respectively. Then they were stopped in a cryogenic time projection chamber (cryo-TPC) filled with D2 gas. This was surrounded by plastic scintillators and multiwire proportional chambers for detecting the decay electrons and an array of eight liquid scintillators for detecting neutrons. Muons in deuterium get captured to form microd atoms in the quartet and doublet spin states. These atoms undergo nuclear capture from these hyperfine states respectively. There is a hyperfine transition rate from quartet-to-doublet state---lambdaqd along with dmicrod molecular formation which further undergoes a fusion reaction with the muon acting as a catalyst (MCF). The goal of this dissertation is to measure the dmicro d quartet-to-doublet rate ratio (lambdaq : lambdad) and microd hyperfine rate (lambda qd) using the fusion neutrons from micro. stops in D2 gas. The dmicrod molecules undergo MCF reactions from the doublet and the quartet state

  10. Near and sub-barrier fusion of neutron-rich oxygen and carbon nuclei using low-intensity beams

    NASA Astrophysics Data System (ADS)

    Steinbach, Tracy K.

    Fusion between neutron-rich light nuclei in the crust of an accreting neutron star has been proposed as a heat source that triggers an X-ray superburst. To explore the probability with which such fusion events occur and examine their decay characteristics, an experimental program using beams of neutron-rich light nuclei has been established. Evaporation residues resulting from the fusion of oxygen and 12C nuclei, are directly measured and distinguished from unreacted beam particles on the basis of their energy and time-of-flight. Using an experimental setup developed for measurements utilizing low-intensity (< 105 ions/s) radioactive beams, the fusion excitation functions for 16O + 12C and 18O + 12C have been measured. The fusion excitation function for 18O + 12C has been measured in the sub-barrier domain down to the 820 mub level, a factor of 30 lower than previous direct measurements. This measured fusion excitation function is compared to the predictions of a density constrained time-dependent Hartree-Fock model. This comparison reveals a shape difference in the fusion excitation functions, indicating a larger tunneling probability for the experimental data as compared to the theoretical calculations. In addition to the measured cross-section, the measured angular distribution of the evaporation residues provides insight into the relative importance of the different de-excitation channels. These evaporation residue angular distributions are compared to the predictions of a statistical model code, evapOR, revealing an under-prediction of the de-excitation channels associated with alpha particle emission.

  11. The influence of the 2-neutron elastic transfer on the fusion of 42Ca + 40Ca

    NASA Astrophysics Data System (ADS)

    Stefanini, A. M.; Montagnoli, G.; Corradi, L.; Fioretto, E.; Goasduff, A.; Grebosz, J.; Haas, F.; Mazzocco, M.; Scarlassara, F.; Strano, E.

    2016-05-01

    Strong coupling to a single channel with zero Q-value is predicted to produce a characteristic fusion barrier distribution with two peaks, one on each side of the original uncoupled Coulomb barrier. In practical cases, only coupling to an elastic transfer channel may produce such a distribution which, however, has never been observed sofar, probably because low-lying surface vibrations usually have a dominant role, and this may obscure the two-peak structure. The case of the two-neutron (2n) elastic transfer in 42Ca + 40Ca is particularly attractive, because of the relatively rigid nature of the two nuclei. We have measured the fusion excitation function of this system using the 42Ca beam of the XTU Tandem of LNL on a thin 40Ca target enriched to 99.96% in mass 40. Cross sections have been measured down to ≤1 mb. The extracted barrier distribution shows clearly two main peaks. We have performed preliminary CC calculations where the 2+ coupling strengths have been taken from the literature and the schematic 2n pair transfer form factor has been used, with a deformation length σt= 0.39 fm. The excitation function is well reproduced by the calculation including the 2n transfer channel. However, including the octupole excitations destroys the agreement.

  12. Merger Rates of Double Neutron Stars and Stellar Origin Black Holes: The Impact of Initial Conditions on Binary Evolution Predictions

    NASA Astrophysics Data System (ADS)

    de Mink, S. E.; Belczynski, K.

    2015-11-01

    The initial mass function (IMF), binary fraction, and distributions of binary parameters (mass ratios, separations, and eccentricities) are indispensable inputs for simulations of stellar populations. It is often claimed that these are poorly constrained, significantly affecting evolutionary predictions. Recently, dedicated observing campaigns have provided new constraints on the initial conditions for massive stars. Findings include a larger close binary fraction and a stronger preference for very tight systems. We investigate the impact on the predicted merger rates of neutron stars and black holes. Despite the changes with previous assumptions, we only find an increase of less than a factor of 2 (insignificant compared with evolutionary uncertainties of typically a factor of 10–100). We further show that the uncertainties in the new initial binary properties do not significantly affect (within a factor of 2) our predictions of double compact object merger rates. An exception is the uncertainty in IMF (variations by a factor of 6 up and down). No significant changes in the distributions of final component masses, mass ratios, chirp masses, and delay times are found. We conclude that the predictions are, for practical purposes, robust against uncertainties in the initial conditions concerning binary parameters, with the exception of the IMF. This eliminates an important layer of the many uncertain assumptions affecting the predictions of merger detection rates with the gravitational wave detectors aLIGO/aVirgo.

  13. Near-barrier fusion of Sn+Ni and Te+Ni Systems: Examining the influence of neutron transfer couplings

    SciTech Connect

    Liang, J Felix; Kohley, Zachary W; Shapira, Dan; Varner Jr, Robert L; Gross, Carl J; Allmond, J M; Lagergren, Karin B; Mueller, Paul Edward

    2011-01-01

    The fusion excitation functions for radioactive 132Sn+58Ni and stable 130Te+58;64Ni were measured at energies near the Coulomb barrier. The role of transfer couplings in heavy-ion fusion was examined through a comparison of Sn+Ni and Te+Ni systems, which have large variations in the number of positive Q-value nucleon transfer channels. In contrast with previous comparisons, where increased sub-barrier fusion cross sections were observed in the systems with positive Q-value neutron transfer channels, the reduced excitation functions were equivalent for the different Sn+Ni and Te+Ni systems. The present results suggest a significant change in the influence of transfer couplings on the fusion process for the Sn+Ni and Te+Ni systems.

  14. Photo-neutron Cross Section Calculations of Several Structural Fusion Materials

    NASA Astrophysics Data System (ADS)

    Kaplan, A.; Özdoğan, H.; Aydın, A.; Tel, E.

    2013-06-01

    In this study, the theoretical photo-neutron cross-sections produced by (γ,n) reactions for several structural fusion materials such as 51V, 55Mn, 58Ni, 90,91,92,94Zr, and 181Ta have been investigated in the incident energy range of 7-40 MeV. Reaction cross-sections as a function of photon energy have been calculated theoretically using the PCROSS and TALYS 1.2 computer codes. TALYS 1.2 default and pre-equilibrium models have been used to calculate the pre-equilibrium photo-neutron cross-sections. For the reaction equilibrium component, PCROSS Weisskopf-Ewing model calculations have been preferred. The calculated results have been compared with each other and against the experimental data in the existing databases EXFOR and TENDL-2011. PCROSS Weisskopf-Ewing model calculations show a similar structure with experimental data but they are higher than the experimental values for all reactions except for 90Zr(γ,n)89Zr reaction. Generally, TALYS 1.2 default and pre-equilibrium model cross-section calculations are the best agreement with the experimental data for all reactions except for 58Ni(γ,n)57Ni reaction along the incident photon energy in this study. The TALYS 1.2 curves fit the TENDL-2011 data the best. If photo-neutron cross-section data is needed for an isotope where there is no experimental data available for comparison, TALYS 1.2 pre-equilibrium option has been recommended.

  15. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    NASA Astrophysics Data System (ADS)

    Velarde, G.; Perlado, J. M.; Alonso, E.; Alonso, M.; Domínguez, E.; Rubiano, J. G.; Gil, J. M.; Gómez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martínez-Val, J. M.; Mínguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.

    2001-05-01

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT x fuel with a small tritium initial content ( x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures (≫100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower Te and to enhance radiation losses, reducing the plasma temperature, Ti. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination barriers in Si

  16. High-spin states in neutron-rich Z ≈ 30 nuclei studied following fusion-evaporation

    NASA Astrophysics Data System (ADS)

    Devlin, M.; Lafosse, D. R.; Lerma, F.; Sarantites, D. G.; Rudolph, D.; Thirolf, P. G.; Clark, R. M.; Lee, I. Y.; Macchiavelli, A. O.

    1997-10-01

    High-spin states in neutron rich nuclei near the closed shell at Z = 28 and N = 40 were studied with the fusion-evaporation reaction 157 MeV ^48Ca + ^26Mg. This region of the Segrè chart is of particular interest, since it is near the beginning of the astrophysical r-process, and little detailed knowledge of the relevant orbitals is available. The experiment was conducted using the Gammasphere Ge detector array in conjunction with the Microball charged-particle detector array, in order to exploit the sensitivity of this combination for multiple-charged particle evaporation channels. High spin states in heavy isotopes of Ge, Ga, Zn, Cu and Ni will be discussed. The sensitivity and usefulness of heavy-ion fusion reactions in the study of neutron-rich nuclei will also be addressed.

  17. How the projectile neutron number influences the evaporation cross section in complete fusion reactions with heavy ions

    SciTech Connect

    Wang Chengbin; Zhang Jinjuan; Ren, Z. Z.; Shen, C. W.

    2010-11-15

    The influence of the projectile neutron number on the evaporation residue cross sections for the reactions {sup 208}Pb({sup 52,54}Cr,n,2n){sup 258-261}Sg and {sup 208}Pb({sup 48,50}Ti,n,2n){sup 254-257}Rf has been studied within the framework of a fusion-fission statistical model. The results obtained with the kewpie2 code are compared with recent experimental data. The excitation functions represent the experimental results well both in the maximum value and the lactation of the peak. The calculations show that the projectile neutron number greatly influences both the capture cross section and the fusion probability.

  18. The Status of Research Regarding Magnetic Mirrors as a Fusion Neutron Source or Power Plant

    SciTech Connect

    Simonen, T

    2008-12-23

    experiments have confirmed the physics of effluent plasma stabilization predicted by theory. The plasma had a mean ion energy of 10 keV and a density of 5e19m-3. If successful, the axisymmetric tandem mirror extension of the GDT idea could lead to a Q {approx} 10 power plant of modest size and would yield important applications at lower Q. In addition to the GDT method, there are four other ways to augment stability that have been demonstrated; including: plasma rotation (MCX), diverter coils (Tara), pondermotive (Phaedrus & Tara), and end wall funnel shape (Nizhni Novgorod). There are also 5 stabilization techniques predicted, but not yet demonstrated: expander kinetic pressure (KSTM-Post), Pulsed ECH Dynamic Stabilization (Post), wall stabilization (Berk), non-paraxial end mirrors (Ryutov), and cusp ends (Kesner). While these options should be examined further together with conceptual engineering designs. Physics issues that need further analysis include: electron confinement, MHD and trapped particle modes, analysis of micro stability, radial transport, evaluation and optimization of Q, and the plasma density needed to bridge to the expansion-region. While promising all should be examined through increased theory effort, university-scale experiments, and through increased international collaboration with the substantial facilities in Russia and Japan The conventional wisdom of magnetic mirrors was that they would never work as a fusion concept for a number of reasons. This conventional wisdom is most probably all wrong or not applicable, especially for applications such as low Q (DT Neutron Source) aimed at materials testing or for a Q {approx} 3-5 fusion neutron source applied to destroying actinides in fission waste and breeding of fissile fuel.

  19. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  20. A target station for plasma exposure of neutron irradiated fusion material samples to reactor relevant conditions

    NASA Astrophysics Data System (ADS)

    Rapp, Juergen; Giuliano, Dominic; Ellis, Ronald; Howard, Richard; Lore, Jeremy; Lumsdaine, Arnold; Lessard, Timothy; McGinnis, William; Meitner, Steven; Owen, Larry; Varma, Venugopal

    2015-11-01

    The Material Plasma Exposure eXperiment (MPEX) is a device planned to address scientific and technological gaps for the development of viable plasma facing components for fusion reactor conditions (FNSF, DEMO). It will have to address the relevant plasma conditions in a reactor divertor (electron density, electron temperature, ion fluxes) and it needs to be able to expose a-priori neutron irradiated samples. A pre design of a target station able to handle activated materials will be presented. This includes detailed MCNP as well as SCALE and MAVRIC calculations for all potential plasma-facing materials to estimate dose rates. Details on the remote handling schemes for the material samples will be presented. 2 point modeling of the linear plasma transport has been used to scope out the parameter range of the anticipated power fluxes to the target. This has been used to design the cooling capability of the target. The operational conditions of surface temperatures, plasma conditions, and oblique angle of incidence of magnetic field to target surface will be discussed. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  1. Measurements and analyses of decay radioactivity induced in simulated deuterium-tritium neutron environments for fusion reactor structural materials

    SciTech Connect

    Ikeda, Y.; Konno, C.; Kosako, K.; Oyama, Y.; Maekawa, F.; Maekawa, H.; Kumar, A.; Youssef, M.Z.; Abdou, M.A.

    1995-08-01

    To meet urgent requirements for data validation, an experimental analysis has been carried out for isotopic radioactivity induced by deuterium-tritium neutron irradiation in structural materials. The primary objective is to examine the adequacy of the activation cross sections implemented in the current activation calculation codes considered for use in fusion reactor nuclear design. Four activation cross-section libraries, namely, JENDL, LIB90, REAC{sup *}63, and REAC{sup *}175 were investigated in this current analysis. The isotopic induced radioactivity calculations using these four libraries are compared with experimental values obtained in the Japan Atomic Energy Research Institute/U.S. Department of Energy collaborative program on fusion blanket neutronics. The nine materials studied are aluminum, silicon, titanium, vanadium, chromium, MnCu alloy, iron, nickel, niobium, and Type 316 stainless steel. The adequacy of the cross sections is investigated through the calculation to experiment analysis. As a result, most of the discrepancies in the calculations from experiments can be explained by inadequate activation cross sections. In addition, uncertainties due to neutron energy groups and neutron transport calculation are considered. The JENDL library gives the best agreement with experiments, followed by REAC{sup *}175, LIB90, and REAC{sup *}63, in this order. 45 refs., 32 figs., 5 tabs.

  2. Measurement of the D-D fusion neutron energy spectrum and variation of the peak width with plasma ion temperature

    NASA Astrophysics Data System (ADS)

    Fisher, W. A.; Chen, S. H.; Gwinn, D.; Parker, R. R.

    1983-11-01

    We report a set of neutron spectrum measurements made at the Alcator-C tokamak under Ohmic-heating conditions. It has been found that the width of the D-D fusion neutron peak increases with the plasma ion temperature consistent with the theoretical prediction. In particular, the neutron spectra resulting from the sum of many plasma discharges with ion temperatures of 780 and 1050 eV have been obtained. The width for the 780-eV case is 64+ 9-11 keV and that of the 1050-eV case, 81+10-14 keV (full width at half maximum), corresponding to ion temperatures of 740 and 1190 eV, respectively.

  3. Examination of the different roles of neutron transfer in the sub-barrier fusion reactions 32S+Zr,9694 and 40Ca +Zr,9694

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.; Zhang, H. Q.

    2015-01-01

    The sub-barrier capture (fusion) reactions 32S+90,94,96Zr, 36S+Zr,9690 , 40Ca +90,94,96Zr, and 48Ca +Zr,9690 with positive and negative Q values for neutron transfer are studied with the quantum diffusion approach and the universal fusion function representation. For these systems, the s -wave capture probabilities are extracted from the experimental excitation functions and are also analyzed. Different effects of the positive Qx n-value neutron transfer in the fusion enhancement are revealed in the relatively close reactions 32S+Zr,9694 and 40Ca +Zr,9694 .

  4. Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine

    SciTech Connect

    Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

    2008-10-24

    Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

  5. Choice of coils for a fusion reactor

    PubMed Central

    Alexander, Romeo; Garabedian, Paul R.

    2007-01-01

    In a fusion reactor a hot plasma of deuterium and tritium is confined by a strong magnetic field to produce helium ions and release energetic neutrons. The 3D geometry of a stellarator provides configurations for such a device that reduce net toroidal current that might lead to disruptions. We construct smooth coils generating an external magnetic field designed to prevent the plasma from deteriorating. PMID:17640879

  6. Choice of coils for a fusion reactor.

    PubMed

    Alexander, Romeo; Garabedian, Paul R

    2007-07-24

    In a fusion reactor a hot plasma of deuterium and tritium is confined by a strong magnetic field to produce helium ions and release energetic neutrons. The 3D geometry of a stellarator provides configurations for such a device that reduce net toroidal current that might lead to disruptions. We construct smooth coils generating an external magnetic field designed to prevent the plasma from deteriorating. PMID:17640879

  7. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega.

    PubMed

    Danly, C R; Day, T H; Fittinghoff, D N; Herrmann, H; Izumi, N; Kim, Y H; Martinez, J I; Merrill, F E; Schmidt, D W; Simpson, R A; Volegov, P L; Wilde, C H

    2015-04-01

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future. PMID:25933858

  8. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    DOE PAGESBeta

    Danly, C. R.; Day, T. H.; Fittinghoff, D. N.; Herrmann, H.; Izumi, N.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; et al

    2015-04-16

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstratedmore » on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. Thus, the technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.« less

  9. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    SciTech Connect

    Danly, C. R.; Day, T. H.; Herrmann, H.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H.; Fittinghoff, D. N.; Izumi, N.

    2015-04-15

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  10. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    SciTech Connect

    Danly, C. R.; Day, T. H.; Fittinghoff, D. N.; Herrmann, H.; Izumi, N.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H.

    2015-04-16

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. Thus, the technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  11. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    NASA Astrophysics Data System (ADS)

    Danly, C. R.; Day, T. H.; Fittinghoff, D. N.; Herrmann, H.; Izumi, N.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H.

    2015-04-01

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  12. Stellarator hybrids

    SciTech Connect

    Furth, H.P.; Ludescher, C.

    1984-08-01

    The present paper briefly reviews the subject of tokamak-stellarator and pinch-stellarator hybrids, and points to two interesting new possibilities: compact-torus-stellarators and mirror-stellarators.

  13. Fast Pb-glass neutron-to-light converter for ICF (inertial confinement fusion) target burn history measurements

    SciTech Connect

    Lerche, R.A.; Cable, M.D.; Phillion, D.W.

    1990-09-01

    We are developing a streak camera based instrument to diagnose the fusion reaction rate (burn history) within laser-driven ICF targets filled with D-T fuel. Recently, we attempted measurements using the 16.7-MeV gamma ray emitted in the T(d,{gamma}){sup 5}He fusion reaction. Pb glass which has a large cross section for pair production acts as a gamma-ray-to-light converter. Gamma rays interact within the glass to form electron-positron pairs that produce large amounts (1000 photons/gamma ray) of prompt (<10 ps) Cerenkov light as they slow down. In our experimental instrument, an f/10 Cassegrain telescope optically couples light produced within the converter to a streak camera having 20-ps resolution. Experiments using high-yield (10{sup 13} D-T neutrons), direct-drive targets at Nova produced good signals with widths of 200 ps. Time-of-flight measurements show the signals to be induced by neutrons rather than gamma rays. The Pb glass appears to act as a fast neutron-to-light converter. We continue to study the interactions process and the possibility of using the 16.7-MeV gamma rays for burn time measurements.

  14. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect

    Ivanov, A; Kulcinski, J; Molvik, A; Ryutov, D; Santarius, J; Simonen, T; Wirth, B D; Ying, A

    2009-11-23

    The successful operation (with {beta} {le} 60%, classical ions and electrons with Te = 250 eV) of the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia, extrapolates to a 2 MW/m{sup 2} Dynamic Trap Neutron Source (DTNS), which burns only {approx}100 g of tritium per full power year. The DTNS has no serious physics, engineering, or technology obstacles; the extension of neutral beam lines to steady state can use demonstrated engineering; and it supports near-term tokamaks and volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER and satisfies the missions specified by the materials community to test fusion materials (listed as one of the top grand challenges for engineering in the 21st century by the U.S. National Academy of Engineering) and subcomponents (including tritium-breeding blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for licensing subsequent FSNFs.

  15. Neutron physics of the Re/Os clock. III. Resonance analyses and stellar (n,gamma) cross sections of {sup 186,187,188}Os

    SciTech Connect

    Fujii, K.; Abbondanno, U.; Belloni, F.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Kaeppeler, F.; Audouin, L.; Dillmann, I.; Heil, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.; Mengoni, A.; Domingo-Pardo, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.

    2010-07-15

    Neutron resonance analyses have been performed for the capture cross sections of {sup 186}Os, {sup 187}Os, and {sup 188}Os measured at the n{sub T}OF facility at cern. Resonance parameters have been extracted up to 5, 3, and 8 keV, respectively, using the sammy code for a full R-matrix fit of the capture yields. From these results average resonance parameters were derived by a statistical analysis to provide a comprehensive experimental basis for modeling of the stellar neutron capture rates of these isotopes in terms of the Hauser-Feshbach statistical model. Consistent calculations for the capture and inelastic reaction channels are crucial for the evaluation of stellar enhancement factors to correct the Maxwellian averaged cross sections obtained from experimental data for the effect of thermally populated excited states. These factors have been calculated for the full temperature range of current scenarios of s-process nucleosynthesis using the combined information of the experimental data in the region of resolved resonances and in the continuum. The consequences of this analysis for the s-process component of the {sup 187}Os abundance and the related impact on the evaluation of the time duration of galactic nucleosynthesis via the Re/Os cosmochronometer are discussed.

  16. Dense Plasma Focus Fusion Neutron Sources Progress at NSTec, September 2011

    SciTech Connect

    Hagen, E. C.

    2011-07-02

    A number of dense plasma focus (DPF) sources are introduced, including their operating characteristics and current activities. Neutron resonance spectroscopy is discussed and the feasibility of using DPF for neutron sources is considered.

  17. Neutron irradiation of V-Cr-Ti alloys in the BOR-60 fast reactor: Description of the fusion-1 experiment

    SciTech Connect

    Rowcliffe, A.F.; Tsai, H.C.; Smith, D.L.

    1997-08-01

    The FUSION-1 irradiation capsule was inserted in Row 5 of the BOR-60 fast reactor in June 1995. The capsule contains a collaborative RF/U.S. experiment to investigate the irradiation performance of V-Cr-Ti alloys in the temperature range 310 to 350{degrees}C. This report describes the capsule layout, specimen fabrication history, and the detailed test matrix for the U.S. specimens. A description of the operating history and neutronics will be presented in the next semiannual report.

  18. Effects of low-temperature fusion neutron irradiation on critical properties of a monofilament niobium-tin superconductor

    SciTech Connect

    Guinan, M.W.; Van Konynenburg, R.A.; Mitchell, J.B.

    1984-03-22

    The objective of this work was to irradiate a Nb/sub 3/Sn superconductor with 14.8 MeV neutrons at 4 K and measure critical current in transverse fields of up to 12 T, irradiating up to a fluence sufficient to decrease the critical current to below its initial value. Critical temperatures were also to be measured. The samples were to be kept near 4 K between the irradiation and the measurement of critical properties. This work is directed toward establishing an engineering design fluence limit for Nb/sub 3/Sn when used in fusion reactor superconducting magnets.

  19. A self-consistent method to analyze the effects of the positive Q-value neutron transfers on fusion

    NASA Astrophysics Data System (ADS)

    Jia, H. M.; Lin, C. J.; Yang, L.; Xu, X. X.; Ma, N. R.; Sun, L. J.; Yang, F.; Wu, Z. D.; Zhang, H. Q.; Liu, Z. H.; Wang, D. X.

    2016-04-01

    Considering the present limitation of the need for external parameters to describe the nucleus-nucleus potential and the couplings in the coupled-channels calculations, this work introduces an improved method without adjustable parameter to overcome the limitation and then sort out the positive Q-value neutron transfers (PQNT) effects based on the CCFULL calculations. The corresponding analysis for Ca +Ca, S ,Ca +Sn, and S ,Ca +Zr provides a reliable proof and a quantitative evaluation for the residual enhancement (RE) related to PQNT. In addition, the RE for 32S ,40Ca +94Zr shows an unexpected larger enhancement than 32S ,40Ca +96Zr despite the similar multi-neutron transfer Q-values. This method should rather strictly test the fusion models and be helpful for excavating the underlying physics.

  20. Second generation fusion neutron time-of-flight spectrometer at optimized rate for fully digital data acquisition

    SciTech Connect

    Zhang, X. E-mail: jnke1@icloud.com Fan, T.; Yuan, X.; Xie, X.; Chen, Z.; Källne, J.; Gorini, G.; Nocente, M.

    2014-04-15

    The progress on high-rate event recording of data is taken as starting point to revisit the design of fusion neutron spectrometers based on the TOF (time-of-flight) technique. The study performed was aimed at how such instruments for optimized rate (TOFOR) can be further developed to enhance the plasma diagnostic capabilities based on measurement of the 2.5 MeV dd neutron emission from D plasmas, especially the weak spectral components that depend on discrimination of extraneous events. This paper describes a design (TOFOR II) adapted for use with digital wave form recording of all detector pulses providing information on both amplitude (pulse height) and timing. The results of simulations are presented and the performance enhancement is assessed in comparison to the present.

  1. Moderator design studies for a new neutron reference source based on the D-T fusion reaction

    NASA Astrophysics Data System (ADS)

    Mozhayev, Andrey V.; Piper, Roman K.; Rathbone, Bruce A.; McDonald, Joseph C.

    2016-06-01

    The radioactive isotope Californium-252 (252Cf) is relied upon internationally as a neutron calibration source for ionizing radiation dosimetry because of its high specific activity. The source may be placed within a heavy-water (D2O) moderating sphere to produce a softened spectrum representative of neutron fields common to commercial nuclear power plant environments, among others. Due to termination of the U.S. Department of Energy loan/lease program in 2012, the expense of obtaining 252Cf sources has undergone a significant increase, rendering high output sources largely unattainable. On the other hand, the use of neutron generators in research and industry applications has increased dramatically in recent years. Neutron generators based on deuteriumtritium (D-T) fusion reaction provide high neutron fluence rates and, therefore, could possibly be used as a replacement for 252Cf. To be viable, the 14 MeV D-T output spectrum must be significantly moderated to approximate common workplace environments. This paper presents the results of an effort to select appropriate moderating materials and design a configuration to reshape the primary neutron field toward a spectrum approaching that from a nuclear power plant workplace. A series of Monte-Carlo (MCNP) simulations of single layer high- and low-Z materials are used to identify initial candidate moderators. Candidates are refined through a similar series of simulations involving combinations of 2-5 different materials. The simulated energy distribution using these candidate moderators are rated in comparison to a target spectrum. Other properties, such as fluence preservation and/or enhancement, prompt gamma production and other characteristics are also considered.

  2. Calculation of the absolute detection efficiency of a moderated /sup 235/U neutron detector on the Tokamak Fusion Test Reactor

    SciTech Connect

    Ku, L.P.; Hendel, H.W.; Liew, S.L.

    1989-02-01

    Neutron transport simulations have been carried out to calculate the absolute detection efficiency of a moderated /sup 235/U neutron detector which is used on the TFTR as a part of the primary fission detector diagnostic system for measuring fusion power yields. Transport simulations provide a means by which the effects of variations in various shielding and geometrical parameters can be explored. These effects are difficult to study in calibration experiments. The calculational model, benchmarked against measurements, can be used to complement future detector calibrations, when the high level of radioactivity resulting from machine operation may severely restrict access to the tokamak. We present a coupled forward-adjoint algorithm, employing both the deterministic and Monte Carlo sampling methods, to model the neutron transport in the complex tokamak and detector geometries. Sensitivities of the detector response to the major and minor radii, and angular anisotropy of the neutron emission are discussed. A semi-empirical model based on matching the calculational results with a small set of experiments produces good agreement (+-15%) for a wide range of source energies and geometries. 20 refs., 6 figs., 4 tabs.

  3. The relativistic equations of stellar structure and evolution. Stars with degenerate neutron cores. 1: Structure of equilibrium models

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Zytkow, A. N.

    1976-01-01

    The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. Also, a general relativistic version of the mixing-length formalism for convection is presented. Finally, it is argued that in previous work on spherical systems general relativity theorists have identified the wrong quantity as "total mass-energy inside radius r."

  4. Double-helix stellarator

    SciTech Connect

    Moroz, P.E.

    1997-09-01

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A {approx} 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-{beta} MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantages for fusion applications.

  5. Stellarator-Spheromak

    SciTech Connect

    Moroz, P.E.

    1997-03-01

    A novel concept for magnetic plasma confinement, Stellarator-Spheromak (SSP), is proposed. Numerical analysis with the classical-stellarator-type outboard stellarator windings demonstrates a number of potential advantages of SSP for controlled nuclear fusion. Among the main ones are: simple and compact magnet coil configuration, absence of material structures (e.g. magnet coils or conducting walls) in the center of the torus, high rotational transform, and a possibility of MHD equilibria with very high {beta} (pressure/magnetic pressure) of the confined plasma.

  6. Experimental investigation of radioactivity induced in the fusion power plant structural material in Eurofer and in other steels by D?T neutrons

    NASA Astrophysics Data System (ADS)

    Seidel, K.; Forrest, R. A.; Freiesleben, H.; Kovalchuk, V. D.; Markovskij, D. V.; Maximov, D. V.; Unholzer, S.

    2002-12-01

    The low-activation steel Eurofer was irradiated with D-T fusion neutrons. The radioactivity following irradiation was determined several times during decay by γ-spectroscopy. The results were analysed with the European Activation System (EASY-99). Ratios of calculated-to-experimental values for individual activities and for their sums are discussed in connection with the expected low-activation behaviour of the material in fusion power plant conditions.

  7. Pulsed Operation of a Compact Fusion Neutron Source Using a High-Voltage Pulse Generator Developed for Landmine Detection

    SciTech Connect

    Yamauchi, Kunihito; Watanabe, Masato; Okino, Akitoshi; Kohno, Toshiyuki; Hotta, Eiki; Yuura, Morimasa

    2005-05-15

    Preliminary experimental results of pulsed neutron source based on a discharge-type beam fusion called Inertial Electrostatic Confinement Fusion (IECF) for landmine detection are presented. In Japan, a research and development project for constructing an advanced anti-personnel landmine detection system by using IECF, which is effective not only for metal landmines but also for plastic ones, is now in progress. This project consists of some R and D topics, and one of them is R and D of a high-voltage pulse generator system specialized for landmine detection, which can be used in the severe environment such as that in the field in Afghanistan. Thus a prototype of the system for landmine detection was designed and fabricated in consideration of compactness, lightness, cooling performance, dustproof and robustness. By using this prototype pulse generator system, a conventional IECF device was operated as a preliminary experiment. As a result, it was confirmed that the suggested pulse generator system is suitable for landmine detection system, and the results follow the empirical law obtained by the previous experiments. The maximum neutron production rate of 2.0x10{sup 8} n/s was obtained at a pulsed discharge of -51 kV, 7.3 A.

  8. Effects of magnetization on fusion product trapping and secondary neutron spectra

    SciTech Connect

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; and others

    2015-05-15

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  9. Effects of magnetization on fusion product trapping and secondary neutron spectra

    SciTech Connect

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly D.; Sinars, Daniel Brian; Peterson, Kyle J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas James; Harding, Eric; Jennings, Christopher A.; Desjarlais, M. P.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Geissel, Matthias; Harvey-Thompson, Adam James; Porter, John L.; Rochau, Gregory A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Herrmann, Mark

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  10. Effects of magnetization on fusion product trapping and secondary neutron spectra

    DOE PAGESBeta

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly D.; Sinars, Daniel Brian; Peterson, Kyle J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas James; et al

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used tomore » infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.« less

  11. Effects of magnetization on fusion product trapping and secondary neutron spectraa)

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Herrmann, M. C.

    2015-05-01

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG . cm, a ˜ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  12. A new aperture for neutron and x-ray imaging of inertial confinement fusion experiments.

    PubMed

    Danly, C R; Grim, G P; Guler, N; Intrator, M H; Merrill, F E; Volegov, P; Wilde, C H

    2012-10-01

    Recent neutron imaging of experiments at the National Ignition Facility has provided useful information about the hotspot shape and cold-fuel distribution and has also given insight into avenues for improvement. Neutron image reconstruction depends on accurate pointing information because the point-spread function of the neutron aperture is not shift invariant. Current pointing techniques are limited in their accuracy and rely upon detailed information about the as-built structure of the array, which is difficult to determine. We present a technique for extracting high-precision pointing information from both neutron and x-ray images, and a new aperture design with features to facilitate this technique, and allow future co-registration of neutron and x-ray images. PMID:23127029

  13. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target.

    PubMed

    Zhao, J R; Zhang, X P; Yuan, D W; Chen, L M; Li, Y T; Fu, C B; Rhee, Y J; Li, F; Zhu, B J; Li, Yan F; Liao, G Q; Zhang, K; Han, B; Liu, C; Huang, K; Ma, Y; Li, Yi F; Xiong, J; Huang, X G; Fu, S Z; Zhu, J Q; Zhao, G; Zhang, J

    2015-06-01

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 10(6)) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields. PMID:26133837

  14. Neutron yield enhancement in laser-induced deuterium-deuterium fusion using a novel shaped target

    SciTech Connect

    Zhao, J. R.; Chen, L. M. Li, Y. T.; Li, F.; Zhu, B. J.; Li, Yan. F.; Liao, G. Q.; Huang, K.; Ma, Y.; Li, Yi. F.; Zhang, X. P.; Fu, C. B.; Yuan, D. W.; Zhang, K.; Han, B.; Zhao, G.; Rhee, Y. J.; Liu, C.; Xiong, J.; Huang, X. G.; and others

    2015-06-15

    Neutron yields have direct correlation with the energy of incident deuterons in experiments of laser deuterated target interaction [Roth et al., Phys. Rev. Lett. 110, 044802 (2013) and Higginson et al., Phys. Plasmas 18, 100703 (2011)], while deuterated plasma density is also an important parameter. Experiments at the Shenguang II laser facility have produced neutrons with energy of 2.45 MeV using d (d, n) He reaction. Deuterated foil target and K-shaped target were employed to study the influence of plasma density on neutron yields. Neutron yield generated by K-shaped target (nearly 10{sup 6}) was two times higher than by foil target because the K-shaped target results in higher density plasma. Interferometry and multi hydro-dynamics simulation confirmed the importance of plasma density for enhancement of neutron yields.

  15. Fast response neutron emission monitor for fusion reactor using stilbene scintillator and Flash-ADC.

    PubMed

    Itoga, T; Ishikawa, M; Baba, M; Okuji, T; Oishi, T; Nakhostin, M; Nishitani, T

    2007-01-01

    The stilbene neutron detector which has been used for neutron emission profile monitoring in JT-60U has been improved, to respond to the requirement to observe the high-frequency phenomena in megahertz region such as toroidicity-induced Alfvén Eigen mode in burning plasma as well as the spatial profile and the energy spectrum. This high-frequency phenomenon is of great interest and one of the key issues in plasma physics in recent years. To achieve a fast response in the stilbene detector, a Flash-ADC is applied and the wave form of the anode signal stored directly, and neutron/gamma discrimination was carried out via software with a new scheme for data acquisition mode to extend the count rate limit to MHz region from 1.3 x 10(5) neutron/s in the past, and confirmed the adequacy of the method. PMID:17517674

  16. Frontiers of stellar evolution

    NASA Technical Reports Server (NTRS)

    Lambert, David L. (Editor)

    1991-01-01

    The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.

  17. Role of neutron transfer in asymmetric fusion reactions at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Zhang, H. Q.; Lin, C. J.; Jia, H. M.; Khlebnikov, S. V.; Kuzmin, E. A.; Trzaska, W. H.; Xu, X. X.; Yan, F.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.

    2014-10-01

    The measured complete fusion (capture) excitation function is presented for the 28Si + 208Pb reaction at deep sub-barrier energies. This excitation function is compared with the one predicted with the quantum diffusion approach.

  18. Fuel ion ratio determination in NBI heated deuterium tritium fusion plasmas at JET using neutron emission spectrometry

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Eriksson, J.; Binda, F.; Conroy, S.; Ericsson, G.; Hjalmarsson, A.; Skiba, M.; Weiszflog, M.; Contributors, JET-EFDA

    2015-02-01

    The fuel ion ratio (nt/nd) is of central importance for the performance and control of a future burning fusion plasma, and reliable measurements of this quantity are essential for ITER. This paper demonstrates a method to derive the core fuel ion ratio by comparing the thermonuclear and beam-thermal neutron emission intensities, using a neutron spectrometer. The method is applied to NBI heated deuterium tritium (DT) plasmas at JET, using data from the magnetic proton recoil spectrometer. The trend in the results is consistent with Penning trap measurements of the fuel ion ratio at the edge of the plasma, but there is a discrepancy in the absolute values, possibly owing to the fact that the two measurements are weighted towards different parts of the plasma. It is suggested to further validate this method by comparing it to the traditionally proposed method to estimate nt/nd from the ratio of the thermal DD and DT neutron emission components. The spectrometer requirements for measuring nt/nd at ITER are also briefly discussed.

  19. A 14-MeV Intense Neutron Source Based on Muon-Catalyzed Fusion - I: An Advanced Design

    SciTech Connect

    Anisimov, Viatcheslav V.; Arkhangel'sky, Vladimir A.; Ganchuk, Nikolay S.; Yukhimchuk, Arkady A.; Cavalleri, Emanuela; Karmanov, Fedor I.; Konobeyev, Alexander Yu.; Slobodtchouk, Victor I.; Latysheva, Lioudmila N.; Pshenichnov, Igor A.; Ponomarev, Leonid I.; Vecchi, Marcello

    2001-03-15

    The results of the design study of an advanced scheme for the 14-MeV intense neutron source based on muon-catalyzed fusion ({mu}CF) are presented. A pion production target (liquid lithium) and a synthesizer [liquid deuterium-tritium (D-T) mixture] are considered. Negative pions are produced inside a 17/7 T magnetic field by an intense (2-GeV,12-mA) deuteron beam interacting with the 150-cm-long, 0.75-cm-radius lithium target. Muons from the pion decay are collected in the backward direction and stopped in the D-T mixture of the synthesizer. The synthesizer has the shape of a 10-cm-radius sphere surrounded by two 0.03-cm-thick titanium shells. At 100 {mu}CF events/muon, it can produce up to 10{sup 17}n/s of 14-MeV neutrons. A quasi-isotropic neutron flux up to 10{sup 14} n/cm{sup 2}.s{sup -1} can be achieved in the test volume of {approx}2.5 l with an irradiated surface of {approx}350 cm{sup 2}. The thermophysical and thermomechanical analyses show that the technological limits are not exceeded.

  20. Neutron Time-of-Flight Measurements of Charged-Particle Energy Loss in Inertial Confinement Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Sayre, Daniel; Cerjan, Charlie; Berzak Hopkins, Laura; Caggiano, Joseph; Divol, Laurent; Eckart, Mark; Graziani, Frank; Grim, Gary; Hartouni, Ed; Hatarik, Robert; Le Pape, Sebastien; MacKinnon, Andrew; Schneider, Dieter; Sepke, Scott

    2015-11-01

    Neutron time-of-flight measurements of inflight T (d , n) α reactions created during an implosion of a deuterium gas target have been performed at the National Ignition Facility, with order of magnitude improvements in statistics and resolution over past experiments. In the implosion, energetic tritons emitted by thermonuclear fusion within the deuterium plasma produced over 1011 inflight T (d , n) α reactions. The yield and particle spectrum of inflight reactions are sensitive to the triton's energy loss in the plasma, which, in this implosion, consisted of multi-keV temperatures and number densities above 1024 cm-3. Radiation-hydrodynamic simulations of the implosion were adjusted to match the yield and broadening of the D (d , n) 3 He neutron peak. These same simulations give reasonable agreement with the measured T (d , n) α yield and neutron spectrum, and this provides a strong consistency check of the simulated plasma conditions and energy loss model. This research was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Neutronic design studies of a conceptual DCLL fusion reactor for a DEMO and a commercial power plant

    NASA Astrophysics Data System (ADS)

    Palermo, I.; Veredas, G.; Gómez-Ros, J. M.; Sanz, J.; Ibarra, A.

    2016-01-01

    Neutronic analyses or, more widely, nuclear analyses have been performed for the development of a dual-coolant He/LiPb (DCLL) conceptual design reactor. A detailed three-dimensional (3D) model has been examined and optimized. The design is based on the plasma parameters and functional materials of the power plant conceptual studies (PPCS) model C. The initial radial-build for the detailed model has been determined according to the dimensions established in a previous work on an equivalent simplified homogenized reactor model. For optimization purposes, the initial specifications established over the simplified model have been refined on the detailed 3D design, modifying material and dimension of breeding blanket, shield and vacuum vessel in order to fulfil the priority requirements of a fusion reactor in terms of the fundamental neutronic responses. Tritium breeding ratio, energy multiplication factor, radiation limits in the TF coils, helium production and displacements per atom (dpa) have been calculated in order to demonstrate the functionality and viability of the reactor design in guaranteeing tritium self-sufficiency, power efficiency, plasma confinement, and re-weldability and structural integrity of the components. The paper describes the neutronic design improvements of the DCLL reactor, obtaining results for both DEMO and power plant operational scenarios.

  2. Three-dimensional stellarator codes

    PubMed Central

    Garabedian, P. R.

    2002-01-01

    Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367

  3. Preequilibrium neutron emission in fusion of WVHo+ SC at 25 MeV per nucleon

    SciTech Connect

    Holub, E.; Hilscher, D.; Ingold, G.; Jahnke, U.; Orf, H.; Rossner, H.; Zank, W.P.; Schroeder, W.U.; Gemmeke, H.; Keller, K.

    1986-01-01

    Neutrons were measured in coincidence with evaporation residues from the reaction WVHo+(300 MeV) SC. The evaporation residue velocity distribution is indicative of an average transfer of 80% of the full linear momentum in this reaction. The energy spectra of the coincident neutrons exhibit evaporative and preequilibrium components associated with integral multiplicities of M/sub EV/ = (9.5 +- 0.5) and M/sub PE/ = (1.7 +- 0.3), respectively. The experimental neutron energy and angular distributions are analyzed in terms of multiple-source parametrizations, assuming two or three emitters. The results are compared to those obtained from other inclusive and exclusive associated-particle data. It is observed that the emission patterns of the preequilibrium neutrons are in accord with the predictions of a Fermi-jet model, for neutron angles forward of 35, while this model fails to reproduce the data at angles in the vicinity of 90 and beyond. Various different nucleon momentum distributions have been employed in the model comparison. The insufficiency of the Fermi-jet model to reproduce the data is attributed to the neglect of two-body collisions in this one-body theory. In contrast, the shape of the angle-integrated preequilibrium-neutron energy spectrum is well reproduced with the Harp-Miller-Berne preequilibrium model, if an initial exciton number of n0 = 15 is adopted. This value, as well as the preequilibrium neutron multiplicity, is at variance with systematics established previously.

  4. Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

    SciTech Connect

    Powers, J; Abbott, R; Fratoni, M; Kramer, K; Latkowski, J; Seifried, J; Taylor, J

    2010-03-08

    The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine design with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.

  5. Investigation of X-ray spectral response of D-T fusion produced neutron irradiated PIPS detectors for plasma X-ray diagnostics

    NASA Astrophysics Data System (ADS)

    Vigneshwara Raja, P.; Narasimha Murty, N. V. L.; Rao, C. V. S.; Abhangi, Mitul

    2015-10-01

    This paper describes the fusion-produced neutron irradiation induced changes in the X-ray spectral response of commercially available Passivated Implanted Planar Silicon (PIPS) detectors using the accelerator based D-T generator. After 14.1 MeV neutron irradiation up to a fluence of 3.6× 1010 n/cm2, the energy resolution (i.e. FWHM) of the detectors at room temperature is found to degrade by about 3.8 times that of the pre-irradiated value. From the X-ray spectral characteristics, it has been observed that the room temperature spectral response of PIPS detectors is too poor even at low neutron fluences. Irradiation is also carried out with Am-Be neutron source for studying the effect of scattered neutrons from the reactor walls on the detector performance. Comparative studies of the damage caused by 14.1 MeV neutrons and Am-Be source produced neutrons at the same neutron fluence are carried out by analyzing the irradiated detector characteristics. The degradation in the energy resolution of the detectors is attributed to the radiation induced changes in the detector leakage current. No considerable changes in the full depletion voltage and the effective doping concentration up to the neutron fluence of 3.6× 1010 n/cm2, are observed from the measured C-V characteristics. Partial recovery of the neutron irradiated detector characteristics is discussed.

  6. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ˜±10% accuracy, and mean neutron energy to ˜±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ˜±25-40 km/s.

  7. In-situ calibration of TFTR (Tokamak Fusion Test Reactor) neutron detectors

    SciTech Connect

    Hendel, H.W.; Palladino, R.W.; Barnes, C.W.; Diesso, M.; Felt, J.S.; Jassby, D.L.; Johnson, L.C.; Ku, L.P.; Liu, Q.P.; Motley, R.W.; Murphy, H.B.; Murphy, J.; Nieschmidt, E.B.; Roberts, J.A.; Saito, T.; Strachan, J.D.; Waszazak, R.J.; Young, K.

    1990-03-01

    We report results of the TFTR fission detector calibration performed in December 1988. A NBS-traceable, remotely controlled {sup 252}Cf neutron source was moved toroidally through the TFTR vacuum vessel. Detection efficiencies for two {sup 235}U detectors were measured for 930 locations of the neutron point source in toroidal scans at 16 different major radii and vertical heights. These scans effectively simulated the volume-distributed plasma neutron source, and the volume-integrated detection efficiency was found to be insensitive to plasma position. The Campbell mode is useful due to its large overlap with the count rate mode and large dynamic range. The resulting absolute plasma neutron source calibration has an uncertainty of {plus minus} 13%. 21 refs., 23 figs., 4 tabs.

  8. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF.

    PubMed

    Zylstra, A B; Gatu Johnson, M; Frenje, J A; Séguin, F H; Rinderknecht, H G; Rosenberg, M J; Sio, H W; Li, C K; Petrasso, R D; McCluskey, M; Mastrosimone, D; Glebov, V Yu; Forrest, C; Stoeckl, C; Sangster, T C

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s. PMID:24985814

  9. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  10. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE PAGESBeta

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; et al

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energymore » uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.« less