Science.gov

Sample records for stem cells reveals

  1. Macrophage characteristics of stem cells revealed by transcriptome profiling

    SciTech Connect

    Charriere, Guillaume M.; Cousin, Beatrice; Arnaud, Emmanuelle; Saillan-Barreau, Corinne; Andre, Mireille; Massoudi, Ali; Dani, Christian; Penicaud, Luc; Casteilla, Louis . E-mail: casteil@toulouse.inserm.fr

    2006-10-15

    We previously showed that the phenotypes of adipocyte progenitors and macrophages were close. Using functional analyses and microarray technology, we first tested whether this intriguing relationship was specific to adipocyte progenitors or could be shared with other progenitors. Measurements of phagocytic activity and gene profiling analysis of different progenitor cells revealed that the latter hypothesis should be retained. These results encouraged us to pursue and to confirm our analysis with a gold-standard stem cell population, embryonic stem cells or ESC. The transcriptomic profiles of ESC and macrophages were clustered together, unlike differentiated ESC. In addition, undifferentiated ESC displayed higher phagocytic activity than other progenitors, and they could phagocytoze apoptotic bodies. These data suggest that progenitors and stem cells share some characteristics of macrophages. This opens new perspectives on understanding stem cell phenotype and functionalities such as a putative role of stem cells in tissue remodeling by discarding dead cells but also their immunomodulation or fusion properties.

  2. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  3. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  4. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    PubMed

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation. PMID:26000486

  5. Hematopoietic Signaling Mechanism Revealed from a Stem/Progenitor Cell Cistrome.

    PubMed

    Hewitt, Kyle J; Kim, Duk Hyoung; Devadas, Prithvia; Prathibha, Rajalekshmi; Zuo, Chandler; Sanalkumar, Rajendran; Johnson, Kirby D; Kang, Yoon-A; Kim, Jin-Soo; Dewey, Colin N; Keles, Sunduz; Bresnick, Emery H

    2015-07-01

    Thousands of cis-elements in genomes are predicted to have vital functions. Although conservation, activity in surrogate assays, polymorphisms, and disease mutations provide functional clues, deletion from endogenous loci constitutes the gold-standard test. A GATA-2-binding, Gata2 intronic cis-element (+9.5) required for hematopoietic stem cell genesis in mice is mutated in a human immunodeficiency syndrome. Because +9.5 is the only cis-element known to mediate stem cell genesis, we devised a strategy to identify functionally comparable enhancers ("+9.5-like") genome-wide. Gene editing revealed +9.5-like activity to mediate GATA-2 occupancy, chromatin opening, and transcriptional activation. A +9.5-like element resided in Samd14, which encodes a protein of unknown function. Samd14 increased hematopoietic progenitor levels/activity and promoted signaling by a pathway vital for hematopoietic stem/progenitor cell regulation (stem cell factor/c-Kit), and c-Kit rescued Samd14 loss-of-function phenotypes. Thus, the hematopoietic stem/progenitor cell cistrome revealed a mediator of a signaling pathway that has broad importance for stem/progenitor cell biology. PMID:26073540

  6. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment

    PubMed Central

    van Wolfswinkel, Josien C.; Wagner, Daniel E.; Reddien, Peter W.

    2014-01-01

    Planarians are flatworms capable of regenerating any missing body region. This capacity is mediated by neoblasts, a proliferative cell population that contains pluripotent stem cells. Although population-based studies have revealed many neoblast characteristics, whether functionally distinct classes exist within this population is unclear. Here, we used high-dimensional single-cell transcriptional profiling from over a thousand individual neoblasts to directly compare gene expression fingerprints during homeostasis and regeneration. We identified two prominent neoblast classes that we named ζ (zeta) and σ (sigma). Zeta-neoblasts encompass specified cells that give rise to an abundant postmitotic lineage including epidermal cells, and are not required for regeneration. By contrast, sigma-neoblasts proliferate in response to injury, possess broad lineage capacity, and can give rise to zeta-neoblasts. These findings present a new view of planarian neoblasts, in which the population is comprised of two major and functionally distinct cellular compartments. PMID:25017721

  7. Revealed: The spy who regulates neuroblastoma stem cells.

    PubMed

    Vora, Parvez; Venugopal, Chitra; Singh, Sheila K

    2014-11-30

    Neuroblastoma (NB), an embryonal tumour of the sympathetic nervous system, is thought to originate from undifferentiated neural crest cells and is known to exhibit extremely heterogeneous biological and clinical behaviors. Occurring in very young children, the median age at diagnosis is 17 months and it accounts for 10% of all pediatric cancer mortalities. The standard treatment regimen for patients with high-risk NB includes induction and surgery followed by isotretinoin or Accutane (13-cis retinoic acid) treatment, which is shown to induce terminal differentiation of NB cells. However, molecular regulators that maintain an undifferentiated phenotype in NB cells are still poorly understood. PMID:25483101

  8. Genetically Induced Cell Death in Bulge Stem Cells Reveals Their Redundancy for Hair and Epidermal Regeneration

    PubMed Central

    Driskell, Iwona; Oeztuerk-Winder, Feride; Humphreys, Peter; Frye, Michaela

    2015-01-01

    Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Setd8 eliminated the contribution of bulge cells to hair follicle regeneration through inhibition of cell division and induction of cell death, but the growth and morphology of hair follicles were unaffected. Furthermore, ablation of Setd8 in the hair follicle bulge blocked the contribution of K19-postive stem cells to wounded epidermis, but the wound healing process was unaltered. Our data indicate that quiescent bulge stem cells are dispensable for hair follicle regeneration and epidermal injury in the short term and support the hypothesis that quiescent and cycling stem cell populations are equipotent. Stem Cells 2015;33:988–998 PMID:25447755

  9. Types of Stem Cells

    MedlinePlus

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... stem cells blog from the International Society for Stem Cell Research. Learn About Stem Cells From Lab to You ...

  10. Pluripotent embryonic stem cells and multipotent adult germline stem cells reveal similar transcriptomes including pluripotency-related genes.

    PubMed

    Meyer, S; Nolte, J; Opitz, L; Salinas-Riester, G; Engel, W

    2010-11-01

    DNA microarray analysis was performed with mouse multipotent adult germline stem cells (maGSCs) and embryonic stem cells (ESCs) from different genetic backgrounds cultured under standard ESC-culture conditions and under differentiation-promoting conditions by the withdrawal of the leukemia inhibitory factor (LIF) and treatment with retinoic acid (RA). The analyzed undifferentiated cell lines are very similar based on their global gene expression pattern and show 97-99% identity dependent on the analyzed background. Only 621 genes are differentially expressed in cells derived from mouse 129SV-background and 72 genes show differences in expression in cells generated from transgenic Stra8-EGFP/Rosa26-LacZ-background. Both maGSCs and ESCs express the same genes involved in the regulation of pluripotency and even show no differences in the expression level of these genes. When comparing maGSCs with previously published signature genes of other pluripotent cell lines, we found that maGSCs shared a very similar gene expression pattern with embryonic germ cells (EGCs). Also after differentiation of maGSCs and ESCs the transcriptomes of the cell lines are nearly identical which suggests that both cell types differentiate spontaneously in a very similar way. This is the first study, at transcriptome level, to compare ESCs and a pluripotent cell line derived from an adult organism (maGSCs). PMID:20624824

  11. A novel molecule integrating therapeutic and diagnostic activities reveals multiple aspects of stem cell-based therapy.

    PubMed

    Hingtgen, Shawn D; Kasmieh, Randa; van de Water, Jeroen; Weissleder, Ralph; Shah, Khalid

    2010-04-01

    Stem cells are promising therapeutic delivery vehicles; however pre-clinical and clinical applications of stem cell-based therapy would benefit significantly from the ability to simultaneously determine therapeutic efficacy and pharmacokinetics of therapies delivered by engineered stem cells. In this study, we engineered and screened numerous fusion variants that contained therapeutic (TRAIL) and diagnostic (luciferase) domains designed to allow simultaneous investigation of multiple events in stem cell-based therapy in vivo. When various stem cell lines were engineered with the optimized molecule, SRL(O)L(2)TR, diagnostic imaging showed marked differences in the levels and duration of secretion between stem cell lines, while the therapeutic activity of the molecule showed the different secretion levels translated to significant variability in tumor cell killing. In vivo, simultaneous diagnostic and therapeutic monitoring revealed that stem cell-based delivery significantly improved pharmacokinetics and anti-tumor effectiveness of the therapy compared to intravenous or intratumoral delivery. As treatment for highly malignant brain tumor xenografts, tracking SRL(O)L(2)TR showed stable stem cell-mediated delivery significantly regressed peripheral and intracranial tumors. Together, the integrated diagnostic and therapeutic properties of SRL(O)L(2)TR answer critical questions necessary for successful utilization of stem cells as novel therapeutic vehicles. PMID:20127797

  12. Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells.

    PubMed

    Oikawa, Tsunekazu; Wauthier, Eliane; Dinh, Timothy A; Selitsky, Sara R; Reyna-Neyra, Andrea; Carpino, Guido; Levine, Ronald; Cardinale, Vincenzo; Klimstra, David; Gaudio, Eugenio; Alvaro, Domenico; Carrasco, Nancy; Sethupathy, Praveen; Reid, Lola M

    2015-01-01

    The aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs), cancers occurring increasingly in children to young adults, is poorly understood. We present a transplantable tumour line, maintained in immune-compromised mice, and validate it as a bona fide model of hFL-HCCs by multiple methods. RNA-seq analysis confirms the presence of a fusion transcript (DNAJB1-PRKACA) characteristic of hFL-HCC tumours. The hFL-HCC tumour line is highly enriched for cancer stem cells as indicated by limited dilution tumourigenicity assays, spheroid formation and flow cytometry. Immunohistochemistry on the hFL-HCC model, with parallel studies on 27 primary hFL-HCC tumours, provides robust evidence for expression of endodermal stem cell traits. Transcriptomic analyses of the tumour line and of multiple, normal hepatic lineage stages reveal a gene signature for hFL-HCCs closely resembling that of biliary tree stem cells--newly discovered precursors for liver and pancreas. This model offers unprecedented opportunities to investigate mechanisms underlying hFL-HCCs pathogenesis and potential therapies. PMID:26437858

  13. Morphology-based mammalian stem cell tests reveal potential developmental toxicity of donepezil.

    PubMed

    Lau, Caroline G Y; Marikawa, Yusuke

    2014-11-01

    Various compounds, including therapeutic drugs, can adversely impact the survival and development of embryos in the uterus. Identification of such development-interfering agents is a challenging task, although multi-angle approaches--including the use of in vitro toxicology studies involving embryonic stem cells--should alleviate some of the current difficulties. In the present study, we utilized the in vitro elongation of embryoid bodies (EBs) derived from mouse embryonal carcinoma stem cell line P19C5 as a model of early embryological events, specifically that of gastrulation and axial patterning. From our study, we identified donepezil, a medication indicated for the management of Alzheimer's disease, as a potential developmental toxicant. The extent of P19C5 EB axial elongation was diminished by donepezil in a dose-dependent manner. Although donepezil is a known inhibitor of acetylcholinesterase, interference of elongation was not mediated through this enzyme. Quantitative reverse-transcriptase PCR revealed that donepezil altered the expression pattern of a specific set of developmental regulator genes involved in patterning along the anterior-posterior body axis. When tested in mouse whole embryo culture, donepezil caused morphological abnormalities including impaired somitogenesis. Donepezil also diminished elongation morphogenesis of EBs generated from human embryonic stem cells. These results suggest that donepezil interferes with axial elongation morphogenesis of early embryos by altering the expression pattern of regulators of axial development. PMID:25269881

  14. Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation

    PubMed Central

    Kandyba, Eve; Leung, Yvonne; Chen, Yi-Bu; Widelitz, Randall; Chuong, Cheng-Ming; Kobielak, Krzysztof

    2013-01-01

    Hair follicles facilitate the study of stem cell behavior because stem cells in progressive activation stages, ordered within the follicle architecture, are capable of cyclic regeneration. To study the gene network governing the homeostasis of hair bulge stem cells, we developed a Keratin 15-driven genetic model to directly perturb molecular signaling in the stem cells. We visualize the behavior of these modified stem cells, evaluating their hair-regenerating ability and profile their molecular expression. Bone morphogenetic protein (BMP)-inactivated stem cells exhibit molecular profiles resembling those of hair germs, yet still possess multipotentiality in vivo. These cells also exhibit up-regulation of Wnt7a, Wnt7b, and Wnt16 ligands and Frizzled (Fzd) 10 receptor. We demonstrate direct transcriptional modulation of the Wnt7a promoter. These results highlight a previously unknown intra-stem cell antagonistic competition, between BMP and Wnt signaling, to balance stem cell activity. Reduced BMP signaling and increased Wnt signaling tilts each stem cell toward a hair germ fate and, vice versa, based on a continuous scale dependent on the ratio of BMP/Wnt activity. This work reveals one more hierarchical layer regulating stem cell homeostasis beneath the stem cell–dermal papilla-based epithelial–mesenchymal interaction layer and the hair follicle–intradermal adipocyte-based tissue interaction layer. Although hierarchical layers are all based on BMP/Wnt signaling, the multilayered control ensures that all information is taken into consideration and allows hair stem cells to sum up the total activators/inhibitors involved in making the decision of activation. PMID:23292934

  15. Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification

    PubMed Central

    Zdravkovic, Tamara; Nazor, Kristopher L.; Larocque, Nicholas; Gormley, Matthew; Donne, Matthew; Hunkapillar, Nathan; Giritharan, Gnanaratnam; Bernstein, Harold S.; Wei, Grace; Hebrok, Matthias; Zeng, Xianmin; Genbacev, Olga; Mattis, Aras; McMaster, Michael T.; Krtolica, Ana; Valbuena, Diana; Simón, Carlos; Laurent, Louise C.; Loring, Jeanne F.; Fisher, Susan J.

    2015-01-01

    Mechanisms of initial cell fate decisions differ among species. To gain insights into lineage allocation in humans, we derived ten human embryonic stem cell lines (designated UCSFB1-10) from single blastomeres of four 8-cell embryos and one 12-cell embryo from a single couple. Compared with numerous conventional lines from blastocysts, they had unique gene expression and DNA methylation patterns that were, in part, indicative of trophoblast competence. At a transcriptional level, UCSFB lines from different embryos were often more closely related than those from the same embryo. As predicted by the transcriptomic data, immunolocalization of EOMES, T brachyury, GDF15 and active β-catenin revealed differential expression among blastomeres of 8- to 10-cell human embryos. The UCSFB lines formed derivatives of the three germ layers and CDX2-positive progeny, from which we derived the first human trophoblast stem cell line. Our data suggest heterogeneity among early-stage blastomeres and that the UCSFB lines have unique properties, indicative of a more immature state than conventional lines. PMID:26483210

  16. Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells

    PubMed Central

    Oikawa, Tsunekazu; Wauthier, Eliane; Dinh, Timothy A.; Selitsky, Sara R.; Reyna-Neyra, Andrea; Carpino, Guido; Levine, Ronald; Cardinale, Vincenzo; Klimstra, David; Gaudio, Eugenio; Alvaro, Domenico; Carrasco, Nancy; Sethupathy, Praveen; Reid, Lola M.

    2015-01-01

    The aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs), cancers occurring increasingly in children to young adults, is poorly understood. We present a transplantable tumour line, maintained in immune-compromised mice, and validate it as a bona fide model of hFL-HCCs by multiple methods. RNA-seq analysis confirms the presence of a fusion transcript (DNAJB1-PRKACA) characteristic of hFL-HCC tumours. The hFL-HCC tumour line is highly enriched for cancer stem cells as indicated by limited dilution tumourigenicity assays, spheroid formation and flow cytometry. Immunohistochemistry on the hFL-HCC model, with parallel studies on 27 primary hFL-HCC tumours, provides robust evidence for expression of endodermal stem cell traits. Transcriptomic analyses of the tumour line and of multiple, normal hepatic lineage stages reveal a gene signature for hFL-HCCs closely resembling that of biliary tree stem cells—newly discovered precursors for liver and pancreas. This model offers unprecedented opportunities to investigate mechanisms underlying hFL-HCCs pathogenesis and potential therapies. PMID:26437858

  17. RNA-Seq Reveals the Angiogenesis Diversity between the Fetal and Adults Bone Mesenchyme Stem Cell

    PubMed Central

    Zhao, Xin; Han, Yingmin; Liang, Yu; Nie, Chao; Wang, Jian

    2016-01-01

    In this research, we used RNA sequencing (RNA-seq) to analyze 23 single cell samples and 2 bulk cells sample from human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. The results from the research demonstrated that there were big differences between two cell lines. Adult bone mesenchyme stem cell lines showed a strong trend on the blood vessel differentiation and cell motion, 48/49 vascular related differential expressed genes showed higher expression in adult bone mesenchyme stem cell lines (Abmsc) than fetal bone mesenchyme stem cell lines (Fbmsc). 96/106 cell motion related genes showed the same tendency. Further analysis showed that genes like ANGPT1, VEGFA, FGF2, PDGFB and PDGFRA showed higher expression in Abmsc. This work showed cell heterogeneity between human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. Also the work may give an indication that Abmsc had a better potency than Fbmsc in the future vascular related application. PMID:26901069

  18. RNA-Seq Reveals the Angiogenesis Diversity between the Fetal and Adults Bone Mesenchyme Stem Cell.

    PubMed

    Zhao, Xin; Han, Yingmin; Liang, Yu; Nie, Chao; Wang, Jian

    2016-01-01

    In this research, we used RNA sequencing (RNA-seq) to analyze 23 single cell samples and 2 bulk cells sample from human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. The results from the research demonstrated that there were big differences between two cell lines. Adult bone mesenchyme stem cell lines showed a strong trend on the blood vessel differentiation and cell motion, 48/49 vascular related differential expressed genes showed higher expression in adult bone mesenchyme stem cell lines (Abmsc) than fetal bone mesenchyme stem cell lines (Fbmsc). 96/106 cell motion related genes showed the same tendency. Further analysis showed that genes like ANGPT1, VEGFA, FGF2, PDGFB and PDGFRA showed higher expression in Abmsc. This work showed cell heterogeneity between human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. Also the work may give an indication that Abmsc had a better potency than Fbmsc in the future vascular related application. PMID:26901069

  19. Single-Cell Transcript Profiles Reveal Multilineage Priming in Early Progenitors Derived from Lgr5(+) Intestinal Stem Cells.

    PubMed

    Kim, Tae-Hee; Saadatpour, Assieh; Guo, Guoji; Saxena, Madhurima; Cavazza, Alessia; Desai, Niyati; Jadhav, Unmesh; Jiang, Lan; Rivera, Miguel N; Orkin, Stuart H; Yuan, Guo-Cheng; Shivdasani, Ramesh A

    2016-08-23

    Lgr5(+) intestinal stem cells (ISCs) drive epithelial self-renewal, and their immediate progeny-intestinal bipotential progenitors-produce absorptive and secretory lineages via lateral inhibition. To define features of early transit from the ISC compartment, we used a microfluidics approach to measure selected stem- and lineage-specific transcripts in single Lgr5(+) cells. We identified two distinct cell populations, one that expresses known ISC markers and a second, abundant population that simultaneously expresses markers of stem and mature absorptive and secretory cells. Single-molecule mRNA in situ hybridization and immunofluorescence verified expression of lineage-restricted genes in a subset of Lgr5(+) cells in vivo. Transcriptional network analysis revealed that one group of Lgr5(+) cells arises from the other and displays characteristics expected of bipotential progenitors, including activation of Notch ligand and cell-cycle-inhibitor genes. These findings define the earliest steps in ISC differentiation and reveal multilineage gene priming as a fundamental property of the process. PMID:27524622

  20. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells.

    PubMed

    Grover, Amit; Sanjuan-Pla, Alejandra; Thongjuea, Supat; Carrelha, Joana; Giustacchini, Alice; Gambardella, Adriana; Macaulay, Iain; Mancini, Elena; Luis, Tiago C; Mead, Adam; Jacobsen, Sten Eirik W; Nerlov, Claus

    2016-01-01

    Aged haematopoietic stem cells (HSCs) generate more myeloid cells and fewer lymphoid cells compared with young HSCs, contributing to decreased adaptive immunity in aged individuals. However, it is not known how intrinsic changes to HSCs and shifts in the balance between biased HSC subsets each contribute to the altered lineage output. Here, by analysing HSC transcriptomes and HSC function at the single-cell level, we identify increased molecular platelet priming and functional platelet bias as the predominant age-dependent change to HSCs, including a significant increase in a previously unrecognized class of HSCs that exclusively produce platelets. Depletion of HSC platelet programming through loss of the FOG-1 transcription factor is accompanied by increased lymphoid output. Therefore, increased platelet bias may contribute to the age-associated decrease in lymphopoiesis. PMID:27009448

  1. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells

    PubMed Central

    Grover, Amit; Sanjuan-Pla, Alejandra; Thongjuea, Supat; Carrelha, Joana; Giustacchini, Alice; Gambardella, Adriana; Macaulay, Iain; Mancini, Elena; Luis, Tiago C.; Mead, Adam; Jacobsen, Sten Eirik W.; Nerlov, Claus

    2016-01-01

    Aged haematopoietic stem cells (HSCs) generate more myeloid cells and fewer lymphoid cells compared with young HSCs, contributing to decreased adaptive immunity in aged individuals. However, it is not known how intrinsic changes to HSCs and shifts in the balance between biased HSC subsets each contribute to the altered lineage output. Here, by analysing HSC transcriptomes and HSC function at the single-cell level, we identify increased molecular platelet priming and functional platelet bias as the predominant age-dependent change to HSCs, including a significant increase in a previously unrecognized class of HSCs that exclusively produce platelets. Depletion of HSC platelet programming through loss of the FOG-1 transcription factor is accompanied by increased lymphoid output. Therefore, increased platelet bias may contribute to the age-associated decrease in lymphopoiesis. PMID:27009448

  2. Stem Cell Basics

    MedlinePlus

    ... stem cells? What are the potential uses of human stem cells and the obstacles that must be overcome before ... two kinds of stem cells from animals and humans: embryonic stem cells and non-embryonic "somatic" or "adult" stem cells . ...

  3. Learn About Stem Cells

    MedlinePlus

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... ISSCR Get Involved Media © 2015 International Society for Stem Cell Research Terms of Use Disclaimer Privacy Policy

  4. sdf1 Expression Reveals a Source of Perivascular-Derived Mesenchymal Stem Cells in Zebrafish

    PubMed Central

    Lund, Troy C.; Patrinostro, Xiaobai; Kramer, Ashley C.; Stadem, Paul; Higgins, LeeAnn; Markowski, Todd W.; Wroblewski, Matt S.; Lidke, Diane S.; Tolar, Jakub; Blazar, Bruce R.

    2014-01-01

    There is accumulating evidence that mesenchymal stem cells (MSC) have their origin as perivascular cells (PVC) in vivo, but precisely identifying them has been a challenge, as they have no single definitive marker and are rare. We have developed a fluorescent transgenic vertebrate model in which PVC can be visualized in vivo based upon sdf1 expression in the zebrafish. Prospective isolation and culture of sdf1DsRed PVC demonstrated properties consistent with MSC including prototypical cell surface marker expression; mesodermal differentiation into adipogenic, osteogenic and chondrogenic lineages; and the ability to support hematopoietic cells. Global proteomic studies performed by 2-dimensional liquid chromatography and tandem mass spectrometry revealed a high degree of similarity to human MSC and discovery of novel markers (CD99, CD151 and MYOF) that were previously unknown to be expressed by hMSC. Dynamic in vivo imaging during fin regeneration showed that PVC may arise from undifferentiated mesenchyme providing evidence of a PVC – MSC relationship. This is the first model, established in zebrafish, in which MSC can be visualized in vivo and will allow us to better understand their function in a native environment. PMID:24905975

  5. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians

    PubMed Central

    Forsthoefel, David J.; James, Noelle P.; Escobar, David J.; Stary, Joel M.; Vieira, Ana P.; Waters, Forrest A.; Newmark, Phillip A.

    2012-01-01

    SUMMARY Planarians grow and regenerate organs by coordinating proliferation and differentiation of pluripotent stem cells with remodeling of post-mitotic tissues. Understanding how these processes are orchestrated requires characterizing cell type-specific gene expression programs and their regulation during regeneration and homeostasis. To this end, we analyzed the expression profile of planarian intestinal phagocytes, cells responsible for digestion and nutrient storage/distribution. Utilizing RNA interference, we identified cytoskeletal regulators required for intestinal branching morphogenesis, and a modulator of bioactive sphingolipid metabolism, ceramide synthase, required for the production of functional phagocytes. Additionally, we found that a gut-enriched homeobox transcription factor, nkx-2.2, is required for somatic stem cell proliferation, suggesting a niche-like role for phagocytes. Identification of evolutionarily conserved regulators of intestinal branching, differentiation, and stem cell dynamics demonstrates the utility of the planarian digestive system as a model for elucidating the mechanisms controlling post-embryonic organogenesis. PMID:23079596

  6. Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt

    SciTech Connect

    Horita, Nobukatsu; Tsuchiya, Kiichiro; Hayashi, Ryohei; Fukushima, Keita; Hibiya, Shuji; Fukuda, Masayoshi; Kano, Yoshihito; Mizutani, Tomohiro; Nemoto, Yasuhiro; Yui, Shiro; Okamoto, Ryuichi; Nakamura, Tetsuya; Watanabe, Mamoru

    2014-11-28

    Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualised in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus.

  7. Cellular Heterogeneity During Embryonic Stem Cell Differentiation to Epiblast Stem Cells is Revealed by the ShcD/RaLP Adaptor Protein

    PubMed Central

    Turco, Margherita Y; Furia, Laura; Dietze, Anja; Fernandez Diaz, Luis; Ronzoni, Simona; Sciullo, Anna; Simeone, Antonio; Constam, Daniel; Faretta, Mario; Lanfrancone, Luisa

    2012-01-01

    The Shc family of adaptor proteins are crucial mediators of a plethora of receptors such as the tyrosine kinase receptors, cytokine receptors, and integrins that drive signaling pathways governing proliferation, differentiation, and migration. Here, we report the role of the newly identified family member, ShcD/RaLP, whose expression in vitro and in vivo suggests a function in embryonic stem cell (ESC) to epiblast stem cells (EpiSCs) transition. The transition from the naïve (ESC) to the primed (EpiSC) pluripotent state is the initial important step for ESCs to commit to differentiation and the mechanisms underlying this process are still largely unknown. Using a novel approach to simultaneously assess pluripotency, apoptosis, and proliferation by multiparameter flow cytometry, we show that ESC to EpiSC transition is a process involving a tight coordination between the modulation of the Oct4 expression, cell cycle progression, and cell death. We also describe, by high-content immunofluorescence analysis and time-lapse microscopy, the emergence of cells expressing caudal-related homeobox 2 (Cdx2) transcription factor during ESC to EpiSC transition. The use of the ShcD knockout ESCs allowed the unmasking of this process as they presented deregulated Oct4 modulation and an enrichment in Oct4-negative Cdx2-positive cells with increased MAPK/extracellular-regulated kinases 1/2 activation, within the differentiating population. Collectively, our data reveal ShcD as an important modulator in the switch of key pathway(s) involved in determining EpiSC identity. Stem Cells2012;30:2423–2436 PMID:22948967

  8. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny.

    PubMed

    Sato, Sachiko; Rancourt, Ann; Sato, Yukiko; Satoh, Masahiko S

    2016-01-01

    Mammalian cell culture has been used in many biological studies on the assumption that a cell line comprises putatively homogeneous clonal cells, thereby sharing similar phenotypic features. This fundamental assumption has not yet been fully tested; therefore, we developed a method for the chronological analysis of individual HeLa cells. The analysis was performed by live cell imaging, tracking of every single cell recorded on imaging videos, and determining the fates of individual cells. We found that cell fate varied significantly, indicating that, in contrast to the assumption, the HeLa cell line is composed of highly heterogeneous cells. Furthermore, our results reveal that only a limited number of cells are immortal and renew themselves, giving rise to the remaining cells. These cells have reduced reproductive ability, creating a functionally heterogeneous cell population. Hence, the HeLa cell line is maintained by the limited number of immortal cells, which could be putative cancer stem cells. PMID:27003384

  9. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny

    PubMed Central

    Sato, Sachiko; Rancourt, Ann; Sato, Yukiko; Satoh, Masahiko S.

    2016-01-01

    Mammalian cell culture has been used in many biological studies on the assumption that a cell line comprises putatively homogeneous clonal cells, thereby sharing similar phenotypic features. This fundamental assumption has not yet been fully tested; therefore, we developed a method for the chronological analysis of individual HeLa cells. The analysis was performed by live cell imaging, tracking of every single cell recorded on imaging videos, and determining the fates of individual cells. We found that cell fate varied significantly, indicating that, in contrast to the assumption, the HeLa cell line is composed of highly heterogeneous cells. Furthermore, our results reveal that only a limited number of cells are immortal and renew themselves, giving rise to the remaining cells. These cells have reduced reproductive ability, creating a functionally heterogeneous cell population. Hence, the HeLa cell line is maintained by the limited number of immortal cells, which could be putative cancer stem cells. PMID:27003384

  10. Global Phosphoproteome Profiling Reveals Unanticipated Networks Responsive to Cisplatin Treatment of Embryonic Stem Cells ▿ †

    PubMed Central

    Pines, Alex; Kelstrup, Christian D.; Vrouwe, Mischa G.; Puigvert, Jordi C.; Typas, Dimitris; Misovic, Branislav; de Groot, Anton; von Stechow, Louise; van de Water, Bob; Danen, Erik H. J.; Vrieling, Harry; Mullenders, Leon H. F.; Olsen, Jesper V.

    2011-01-01

    Cellular responses to DNA-damaging agents involve the activation of various DNA damage signaling and transduction pathways. Using quantitative and high-resolution tandem mass spectrometry, we determined global changes in protein level and phosphorylation site profiles following treatment of SILAC (stable isotope labeling by amino acids in cell culture)-labeled murine embryonic stem cells with the anticancer drug cisplatin. Network and pathway analyses indicated that processes related to the DNA damage response and cytoskeleton organization were significantly affected. Although the ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related) consensus sequence (S/T-Q motif) was significantly overrepresented among hyperphosphorylated peptides, about half of the >2-fold-upregulated phosphorylation sites based on the consensus sequence were not direct substrates of ATM and ATR. Eleven protein kinases mainly belonging to the mitogen-activated protein kinase (MAPK) family were identified as being regulated in their kinase domain activation loop. The biological importance of three of these kinases (cyclin-dependent kinase 7 [CDK7], Plk1, and KPCD1) in the protection against cisplatin-induced cytotoxicity was demonstrated by small interfering RNA (siRNA)-mediated knockdown. Our results indicate that the cellular response to cisplatin involves a variety of kinases and phosphatases not only acting in the nucleus but also regulating cytoplasmic targets, resulting in extensive cytoskeletal rearrangements. Integration of transcriptomic and proteomic data revealed a poor correlation between changes in the relative levels of transcripts and their corresponding proteins, but a large overlap in affected pathways at the levels of mRNA, protein, and phosphoprotein. This study provides an integrated view of pathways activated by genotoxic stress and deciphers kinases that play a pivotal role in regulating cellular processes other than the DNA damage response. PMID:22006019

  11. Microarray Analyses Reveal Marked Differences in Growth Factor and Receptor Expression Between 8-Cell Human Embryos and Pluripotent Stem Cells

    PubMed Central

    Vlismas, Antonis; Bletsa, Ritsa; Mavrogianni, Despina; Mamali, Georgina; Pergamali, Maria; Dinopoulou, Vasiliki; Partsinevelos, George; Drakakis, Peter; Loutradis, Dimitris

    2016-01-01

    Previous microarray analyses of RNAs from 8-cell (8C) human embryos revealed a lack of cell cycle checkpoints and overexpression of core circadian oscillators and cell cycle drivers relative to pluripotent human stem cells [human embryonic stem cells/induced pluripotent stem (hES/iPS)] and fibroblasts, suggesting growth factor independence during early cleavage stages. To explore this possibility, we queried our combined microarray database for expression of 487 growth factors and receptors. Fifty-one gene elements were overdetected on the 8C arrays relative to hES/iPS cells, including 14 detected at least 80-fold higher, which annotated to multiple pathways: six cytokine family (CSF1R, IL2RG, IL3RA, IL4, IL17B, IL23R), four transforming growth factor beta (TGFB) family (BMP6, BMP15, GDF9, ENG), one fibroblast growth factor (FGF) family [FGF14(FH4)], one epidermal growth factor member (GAB1), plus CD36, and CLEC10A. 8C-specific gene elements were enriched (73%) for reported circadian-controlled genes in mouse tissues. High-level detection of CSF1R, ENG, IL23R, and IL3RA specifically on the 8C arrays suggests the embryo plays an active role in blocking immune rejection and is poised for trophectoderm development; robust detection of NRG1, GAB1, -2, GRB7, and FGF14(FHF4) indicates novel roles in early development in addition to their known roles in later development. Forty-four gene elements were underdetected on the 8C arrays, including 11 at least 80-fold under the pluripotent cells: two cytokines (IFITM1, TNFRSF8), five TGFBs (BMP7, LEFTY1, LEFTY2, TDGF1, TDGF3), two FGFs (FGF2, FGF receptor 1), plus ING5, and WNT6. The microarray detection patterns suggest that hES/iPS cells exhibit suppressed circadian competence, underexpression of early differentiation markers, and more robust expression of generic pluripotency genes, in keeping with an artificial state of continual uncommitted cell division. In contrast, gene expression patterns of the 8C embryo suggest that

  12. Microarray Analyses Reveal Marked Differences in Growth Factor and Receptor Expression Between 8-Cell Human Embryos and Pluripotent Stem Cells.

    PubMed

    Vlismas, Antonis; Bletsa, Ritsa; Mavrogianni, Despina; Mamali, Georgina; Pergamali, Maria; Dinopoulou, Vasiliki; Partsinevelos, George; Drakakis, Peter; Loutradis, Dimitris; Kiessling, Ann A

    2016-01-15

    Previous microarray analyses of RNAs from 8-cell (8C) human embryos revealed a lack of cell cycle checkpoints and overexpression of core circadian oscillators and cell cycle drivers relative to pluripotent human stem cells [human embryonic stem cells/induced pluripotent stem (hES/iPS)] and fibroblasts, suggesting growth factor independence during early cleavage stages. To explore this possibility, we queried our combined microarray database for expression of 487 growth factors and receptors. Fifty-one gene elements were overdetected on the 8C arrays relative to hES/iPS cells, including 14 detected at least 80-fold higher, which annotated to multiple pathways: six cytokine family (CSF1R, IL2RG, IL3RA, IL4, IL17B, IL23R), four transforming growth factor beta (TGFB) family (BMP6, BMP15, GDF9, ENG), one fibroblast growth factor (FGF) family [FGF14(FH4)], one epidermal growth factor member (GAB1), plus CD36, and CLEC10A. 8C-specific gene elements were enriched (73%) for reported circadian-controlled genes in mouse tissues. High-level detection of CSF1R, ENG, IL23R, and IL3RA specifically on the 8C arrays suggests the embryo plays an active role in blocking immune rejection and is poised for trophectoderm development; robust detection of NRG1, GAB1, -2, GRB7, and FGF14(FHF4) indicates novel roles in early development in addition to their known roles in later development. Forty-four gene elements were underdetected on the 8C arrays, including 11 at least 80-fold under the pluripotent cells: two cytokines (IFITM1, TNFRSF8), five TGFBs (BMP7, LEFTY1, LEFTY2, TDGF1, TDGF3), two FGFs (FGF2, FGF receptor 1), plus ING5, and WNT6. The microarray detection patterns suggest that hES/iPS cells exhibit suppressed circadian competence, underexpression of early differentiation markers, and more robust expression of generic pluripotency genes, in keeping with an artificial state of continual uncommitted cell division. In contrast, gene expression patterns of the 8C embryo suggest that

  13. Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers.

    PubMed

    Billing, Anja M; Ben Hamidane, Hisham; Dib, Shaima S; Cotton, Richard J; Bhagwat, Aditya M; Kumar, Pankaj; Hayat, Shahina; Yousri, Noha A; Goswami, Neha; Suhre, Karsten; Rafii, Arash; Graumann, Johannes

    2016-01-01

    Mesenchymal stem cells (MSC) are multipotent cells with great potential in therapy, reflected by more than 500 MSC-based clinical trials registered with the NIH. MSC are derived from multiple tissues but require invasive harvesting and imply donor-to-donor variability. Embryonic stem cell-derived MSC (ESC-MSC) may provide an alternative, but how similar they are to ex vivo MSC is unknown. Here we performed an in depth characterization of human ESC-MSC, comparing them to human bone marrow-derived MSC (BM-MSC) as well as human embryonic stem cells (hESC) by transcriptomics (RNA-seq) and quantitative proteomics (nanoLC-MS/MS using SILAC). Data integration highlighted and validated a central role of vesicle-mediated transport and exosomes in MSC biology and also demonstrated, through enrichment analysis, their versatility and broad application potential. Particular emphasis was placed on comparing profiles between ESC-MSC and BM-MSC and assessing their equivalency. Data presented here shows that differences between ESC-MSC and BM-MSC are similar in magnitude to those reported for MSC of different origin and the former may thus represent an alternative source for therapeutic applications. Finally, we report an unprecedented coverage of MSC CD markers, as well as membrane associated proteins which may benefit immunofluorescence-based applications and contribute to a refined molecular description of MSC. PMID:26857143

  14. Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers

    PubMed Central

    Billing, Anja M.; Ben Hamidane, Hisham; Dib, Shaima S.; Cotton, Richard J.; Bhagwat, Aditya M.; Kumar, Pankaj; Hayat, Shahina; Yousri, Noha A.; Goswami, Neha; Suhre, Karsten; Rafii, Arash; Graumann, Johannes

    2016-01-01

    Mesenchymal stem cells (MSC) are multipotent cells with great potential in therapy, reflected by more than 500 MSC-based clinical trials registered with the NIH. MSC are derived from multiple tissues but require invasive harvesting and imply donor-to-donor variability. Embryonic stem cell-derived MSC (ESC-MSC) may provide an alternative, but how similar they are to ex vivo MSC is unknown. Here we performed an in depth characterization of human ESC-MSC, comparing them to human bone marrow-derived MSC (BM-MSC) as well as human embryonic stem cells (hESC) by transcriptomics (RNA-seq) and quantitative proteomics (nanoLC-MS/MS using SILAC). Data integration highlighted and validated a central role of vesicle-mediated transport and exosomes in MSC biology and also demonstrated, through enrichment analysis, their versatility and broad application potential. Particular emphasis was placed on comparing profiles between ESC-MSC and BM-MSC and assessing their equivalency. Data presented here shows that differences between ESC-MSC and BM-MSC are similar in magnitude to those reported for MSC of different origin and the former may thus represent an alternative source for therapeutic applications. Finally, we report an unprecedented coverage of MSC CD markers, as well as membrane associated proteins which may benefit immunofluorescence-based applications and contribute to a refined molecular description of MSC. PMID:26857143

  15. Comparative Analysis Between Flaviviruses Reveals Specific Neural Stem Cell Tropism for Zika Virus in the Mouse Developing Neocortex.

    PubMed

    Brault, Jean-Baptiste; Khou, Cécile; Basset, Justine; Coquand, Laure; Fraisier, Vincent; Frenkiel, Marie-Pascale; Goud, Bruno; Manuguerra, Jean-Claude; Pardigon, Nathalie; Baffet, Alexandre D

    2016-08-01

    The recent Zika outbreak in South America and French Polynesia was associated with an epidemic of microcephaly, a disease characterized by a reduced size of the cerebral cortex. Other members of the Flavivirus genus, including West Nile virus (WNV), can cause encephalitis but were not demonstrated to cause microcephaly. It remains unclear whether Zika virus (ZIKV) and other flaviviruses may infect different cell populations in the developing neocortex and lead to distinct developmental defects. Here, we describe an assay to infect mouse E15 embryonic brain slices with ZIKV, WNV and dengue virus serotype 4 (DENV-4). We show that this tissue is able to support viral replication of ZIKV and WNV, but not DENV-4. Cell fate analysis reveals a remarkable tropism of ZIKV infection for neural stem cells. Closely related WNV displays a very different tropism of infection, with a bias towards neurons. We further show that ZIKV infection, but not WNV infection, impairs cell cycle progression of neural stem cells. Both viruses inhibited apoptosis at early stages of infection. This work establishes a powerful comparative approach to identify ZIKV-specific alterations in the developing neocortex and reveals specific preferential infection of neural stem cells by ZIKV. PMID:27453325

  16. Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair

    PubMed Central

    Pipalia, Tapan G.; Koth, Jana; Roy, Shukolpa D.; Hammond, Christina L.; Kawakami, Koichi

    2016-01-01

    ABSTRACT Heterogeneity of stem cells or their niches is likely to influence tissue regeneration. Here we reveal stem/precursor cell diversity during wound repair in larval zebrafish somitic body muscle using time-lapse 3D confocal microscopy on reporter lines. Skeletal muscle with incision wounds rapidly regenerates both slow and fast muscle fibre types. A swift immune response is followed by an increase in cells at the wound site, many of which express the muscle stem cell marker Pax7. Pax7+ cells proliferate and then undergo terminal differentiation involving Myogenin accumulation and subsequent loss of Pax7 followed by elongation and fusion to repair fast muscle fibres. Analysis of pax7a and pax7b transgenic reporter fish reveals that cells expressing each of the duplicated pax7 genes are distinctly localised in uninjured larvae. Cells marked by pax7a only or by both pax7a and pax7b enter the wound rapidly and contribute to muscle wound repair, but each behaves differently. Low numbers of pax7a-only cells form nascent fibres. Time-lapse microscopy revealed that the more numerous pax7b-marked cells frequently fuse to pre-existing fibres, contributing more strongly than pax7a-only cells to repair of damaged fibres. pax7b-marked cells are more often present in rows of aligned cells that are observed to fuse into a single fibre, but more rarely contribute to nascent regenerated fibres. Ablation of a substantial portion of nitroreductase-expressing pax7b cells with metronidazole prior to wounding triggered rapid pax7a-only cell accumulation, but this neither inhibited nor augmented pax7a-only cell-derived myogenesis and thus altered the cellular repair dynamics during wound healing. Moreover, pax7a-only cells did not regenerate pax7b cells, suggesting a lineage distinction. We propose a modified founder cell and fusion-competent cell model in which pax7a-only cells initiate fibre formation and pax7b cells contribute to fibre growth. This newly discovered cellular

  17. Stem cell glycolipids.

    PubMed

    Yanagisawa, Makoto

    2011-09-01

    Glycolipids are compounds containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety. Because of their expression patterns and the intracellular localization patterns, glycolipids, including stage-specific embryonic antigens (SSEA-3, SSEA-4, and possibly SSEA-1) and gangliosides (e.g., GD3, GD2, and A2B5 antigens), have been used as marker molecules of stem cells. In this review, I will introduce glycolipids expressed in pluripotent stem cells (embryonic stem cells, induced pluripotent stem cells, very small embryonic-like stem cells, amniotic stem cells, and multilineage-differentiating stress enduring cells), multipotent stem cells (neural stem cells, mesenchymal stem cells, fetal liver multipotent progenitor cells, and hematopoietic stem cells), and cancer stem cells (brain cancer stem cells and breast cancer stem cells), and discuss their availability as biomarkers for identifying and isolating stem cells. PMID:21161592

  18. Chemotherapy targeting cancer stem cells

    PubMed Central

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future. PMID:26045975

  19. Cellular and molecular characterization of human cardiac stem cells reveals key features essential for their function and safety.

    PubMed

    Vahdat, Sadaf; Mousavi, Seyed Ahmad; Omrani, Gholamreza; Gholampour, Maziar; Sotoodehnejadnematalahi, Fattah; Ghazizadeh, Zaniar; Gharechahi, Javad; Baharvand, Hossein; Salekdeh, Ghasem Hosseini; Aghdami, Nasser

    2015-06-15

    Cell therapy of heart diseases is emerging as one of the most promising known treatments in recent years. Transplantation of cardiac stem cells (CSCs) may be one of the best strategies to cure adult or pediatric heart diseases. As these patient-derived stem cells need to be isolated from small heart biopsies, it is important to select the best isolation method and CSC subpopulation with the best cardiogenic functionality. We employed three different protocols including c-KIT(+) cell sorting, clonogenic expansion, and explants culture to isolate c-KIT(+) cells, clonogenic expansion-derived cells (CEDCs), and cardiosphere-derived cells (CDCs), respectively. Evaluation of isolated CSC characteristics in vitro and after rat myocardial infarction (MI) model transplantation revealed that although c-KIT(+) and CDCs had higher MI regenerative potential, CEDCs had more commitment into cardiomyocytes and needed lower passages that were essential to reach a definite cell count. Furthermore, genome-wide expression analysis showed that subsequent passages caused changes in characteristics of cells, downregulation of cell cycle-related genes, and upregulation of differentiation and carcinogenic genes, which might lead to senescence, commitment, and possible tumorigenicity of the cells. Because of different properties of CSC subpopulations, we suggest that appropriate CSCs subpopulation should be chosen based on their experimental or clinical use. PMID:25867933

  20. Cellular and Molecular Characterization of Human Cardiac Stem Cells Reveals Key Features Essential for Their Function and Safety

    PubMed Central

    Vahdat, Sadaf; Mousavi, Seyed Ahmad; Omrani, Gholamreza; Gholampour, Maziar; Sotoodehnejadnematalahi, Fattah; Ghazizadeh, Zaniar; Gharechahi, Javad

    2015-01-01

    Cell therapy of heart diseases is emerging as one of the most promising known treatments in recent years. Transplantation of cardiac stem cells (CSCs) may be one of the best strategies to cure adult or pediatric heart diseases. As these patient-derived stem cells need to be isolated from small heart biopsies, it is important to select the best isolation method and CSC subpopulation with the best cardiogenic functionality. We employed three different protocols including c-KIT+ cell sorting, clonogenic expansion, and explants culture to isolate c-KIT+ cells, clonogenic expansion-derived cells (CEDCs), and cardiosphere-derived cells (CDCs), respectively. Evaluation of isolated CSC characteristics in vitro and after rat myocardial infarction (MI) model transplantation revealed that although c-KIT+ and CDCs had higher MI regenerative potential, CEDCs had more commitment into cardiomyocytes and needed lower passages that were essential to reach a definite cell count. Furthermore, genome-wide expression analysis showed that subsequent passages caused changes in characteristics of cells, downregulation of cell cycle-related genes, and upregulation of differentiation and carcinogenic genes, which might lead to senescence, commitment, and possible tumorigenicity of the cells. Because of different properties of CSC subpopulations, we suggest that appropriate CSCs subpopulation should be chosen based on their experimental or clinical use. PMID:25867933

  1. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche.

    PubMed

    Chen, James Y; Miyanishi, Masanori; Wang, Sean K; Yamazaki, Satoshi; Sinha, Rahul; Kao, Kevin S; Seita, Jun; Sahoo, Debashis; Nakauchi, Hiromitsu; Weissman, Irving L

    2016-02-11

    Haematopoietic stem cells (HSCs) are arguably the most extensively characterized tissue stem cells. Since the identification of HSCs by prospective isolation, complex multi-parameter flow cytometric isolation of phenotypic subsets has facilitated studies on many aspects of HSC biology, including self-renewal, differentiation, ageing, niche, and diversity. Here we demonstrate by unbiased multi-step screening, identification of a single gene, homeobox B5 (Hoxb5, also known as Hox-2.1), with expression in the bone marrow that is limited to long-term (LT)-HSCs in mice. Using a mouse single-colour tri-mCherry reporter driven by endogenous Hoxb5 regulation, we show that only the Hoxb5(+) HSCs exhibit long-term reconstitution capacity after transplantation in primary transplant recipients and, notably, in secondary recipients. Only 7-35% of various previously defined immunophenotypic HSCs are LT-HSCs. Finally, by in situ imaging of mouse bone marrow, we show that >94% of LT-HSCs (Hoxb5(+)) are directly attached to VE-cadherin(+) cells, implicating the perivascular space as a near-homogenous location of LT-HSCs. PMID:26863982

  2. Olfactory stem cells reveal MOCOS as a new player in autism spectrum disorders

    PubMed Central

    Féron, F; Gepner, B; Lacassagne, E; Stephan, D; Mesnage, B; Blanchard, M-P; Boulanger, N; Tardif, C; Devèze, A; Rousseau, S; Suzuki, K; Izpisua Belmonte, J C; Khrestchatisky, M; Nivet, E; Erard-Garcia, M

    2016-01-01

    With an onset under the age of 3 years, autism spectrum disorders (ASDs) are now understood as diseases arising from pre- and/or early postnatal brain developmental anomalies and/or early brain insults. To unveil the molecular mechanisms taking place during the misshaping of the developing brain, we chose to study cells that are representative of the very early stages of ontogenesis, namely stem cells. Here we report on MOlybdenum COfactor Sulfurase (MOCOS), an enzyme involved in purine metabolism, as a newly identified player in ASD. We found in adult nasal olfactory stem cells of 11 adults with ASD that MOCOS is downregulated in most of them when compared with 11 age- and gender-matched control adults without any neuropsychiatric disorders. Genetic approaches using in vivo and in vitro engineered models converge to indicate that altered expression of MOCOS results in neurotransmission and synaptic defects. Furthermore, we found that MOCOS misexpression induces increased oxidative-stress sensitivity. Our results demonstrate that altered MOCOS expression is likely to have an impact on neurodevelopment and neurotransmission, and may explain comorbid conditions, including gastrointestinal disorders. We anticipate our discovery to be a fresh starting point for the study on the roles of MOCOS in brain development and its functional implications in ASD clinical symptoms. Moreover, our study suggests the possible development of new diagnostic tests based on MOCOS expression, and paves the way for drug screening targeting MOCOS and/or the purine metabolism to ultimately develop novel treatments in ASD. PMID:26239292

  3. Hoxb5 marks long-term haematopoietic stem cells revealing a homogenous perivascular niche

    PubMed Central

    Chen, James Y.; Miyanishi, Masanori; Wang, Sean K.; Yamazaki, Satoshi; Sinha, Rahul; Kao, Kevin S.; Nakauchi, Hiromitsu; Weissman, Irving L.

    2016-01-01

    The hematopoietic stem cell (HSC) is arguably the most extensively characterized tissue stem cell. Since its identification by prospective isolation1, complex multi-parameter flow cytometric isolation of phenotypic subsets has facilitated studies on many aspects of HSC biology including, self-renewal2–4, differentiation, aging, niche5, and diversity6–8. Here we demonstrate by unbiased multi-step screening, identification of a single gene, Hoxb5 (homeobox B5 also known as Hox-2.1), whose expression in the bone marrow (BM) is limited to the long-term HSC (LT-HSC) in mice. Utilizing a single-color tri-mCherry reporter mouse driven by endogenous Hoxb5 regulation, only the Hoxb5-positive HSCs exhibit long-term reconstitution capacity after transplantation in primary transplant recipients, and critically, in secondary recipients. Only 7–35% of various previously defined immunophenotypic HSCs are LT-HSCs. Finally, by in situ imaging of mouse BM, we show that >94% of LT-HSC (Hoxb5+) are directly attached to VE-cadherin-positive cells, implicating a perivascular space as a near homogenous localization of the LT-HSC. PMID:26863982

  4. Surgically resected human tumors reveal the biological significance of the gastric cancer stem cell markers CD44 and CD26

    PubMed Central

    NISHIKAWA, SHIMPEI; KONNO, MASAMITSU; HAMABE, ATSUSHI; HASEGAWA, SHINICHIRO; KANO, YOSHIHIRO; FUKUSUMI, TAKAHITO; SATOH, TAROH; TAKIGUCHI, SHUJI; MORI, MASAKI; DOKI, YUICHIRO; ISHII, HIDESHI

    2015-01-01

    Cancer tissue is maintained by relatively small populations of cancer stem cells (CSCs), which are involved in chemotherapy resistance, recurrence and metastasis. As tumor tissues are comprised of various cells, studies of human clinical samples are important for the characterization of CSCs. In the present study, an expression profiling study was performed in which an anti-cell surface marker antibody-based array platform, a flow cytometry-based cell separation technique and a tumorigenicity analysis in immunodeficient animals were utilized. These approaches revealed that the markers cluster of differentiation (CD)44 and CD26 facilitated the fractionation of surgically resected human gastric cancer (GC) cells into the following subset populations with distinct tumorigenic potentials: Highly tumorigenic CD26+CD44+ cells (6/6 mice formed tumors), moderately tumorigenic CD26+CD44− cells (5/6 mice formed tumors), and weakly or non-tumorigenic CD26−CD44− cells (2/6 mice formed tumors). Furthermore, exposure to 5-fluorouracil significantly increased the proportion of CD26+ cells in vitro. The present study demonstrated that the combined expression of CD26 and CD44 presents a potential marker of human GC stem cells. PMID:26137071

  5. Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome

    PubMed Central

    Bellin, Milena; Casini, Simona; Davis, Richard P; D'Aniello, Cristina; Haas, Jessica; Ward-van Oostwaard, Dorien; Tertoolen, Leon G J; Jung, Christian B; Elliott, David A; Welling, Andrea; Laugwitz, Karl-Ludwig; Moretti, Alessandra; Mummery, Christine L

    2013-01-01

    Patient-specific induced pluripotent stem cells (iPSCs) will assist research on genetic cardiac maladies if the disease phenotype is recapitulated in vitro. However, genetic background variations may confound disease traits, especially for disorders with incomplete penetrance, such as long-QT syndromes (LQTS). To study the LQT2-associated c.A2987T (N996I) KCNH2 mutation under genetically defined conditions, we derived iPSCs from a patient carrying this mutation and corrected it. Furthermore, we introduced the same point mutation in human embryonic stem cells (hESCs), generating two genetically distinct isogenic pairs of LQTS and control lines. Correction of the mutation normalized the current (IKr) conducted by the HERG channel and the action potential (AP) duration in iPSC-derived cardiomyocytes (CMs). Introduction of the same mutation reduced IKr and prolonged the AP duration in hESC-derived CMs. Further characterization of N996I-HERG pathogenesis revealed a trafficking defect. Our results demonstrated that the c.A2987T KCNH2 mutation is the primary cause of the LQTS phenotype. Precise genetic modification of pluripotent stem cells provided a physiologically and functionally relevant human cellular context to reveal the pathogenic mechanism underlying this specific disease phenotype. PMID:24213244

  6. The human embryonic stem cell proteome revealed by multidimensional fractionation followed by tandem mass spectrometry

    PubMed Central

    Zhao, Peng; Schulz, Thomas C.; Sherrer, Eric S.; Weatherly, D. Brent; Robins, Allan J.; Wells, Lance

    2015-01-01

    Human embryonic stem cells (hESCs) have received considerable attention due to their therapeutic potential and usefulness in understanding early development and cell fate commitment. In order to appreciate the unique properties of these pluripotent, self-renewing cells, we have performed an in-depth multidimensional fractionation followed by LC-MS/MS analysis of the hESCs harvested from defined media to elucidate expressed, phosphorylated, O-linked β-N-acetylglucosamine (O-GlcNAc) modified, and secreted proteins. From the triplicate analysis, we were able to assign more than 3000 proteins with less than 1% false-discovery rate. This analysis also allowed us to identify nearly 500 phosphorylation sites and 68 sites of O-GlcNAc modification with the same high confidence. Investigation of the phosphorylation sites allowed us to deduce the set of kinases that are likely active in these cells. We also identified more than 100 secreted proteins of hESCs that likely play a role in extracellular matrix formation and remodeling, as well as autocrine signaling for self-renewal and maintenance of the undifferentiated state. Finally, by performing in-depth analysis in triplicate, spectral counts were obtained for these proteins and posttranslationally modified peptides, which will allow us to perform relative quantitative analysis between these cells and any derived cell type in the future. PMID:25367160

  7. The human embryonic stem cell proteome revealed by multidimensional fractionation followed by tandem mass spectrometry.

    PubMed

    Zhao, Peng; Schulz, Thomas C; Sherrer, Eric S; Weatherly, D Brent; Robins, Allan J; Wells, Lance

    2015-01-01

    Human embryonic stem cells (hESCs) have received considerable attention due to their therapeutic potential and usefulness in understanding early development and cell fate commitment. In order to appreciate the unique properties of these pluripotent, self-renewing cells, we have performed an in-depth multidimensional fractionation followed by LC-MS/MS analysis of the hESCs harvested from defined media to elucidate expressed, phosphorylated, O-linked β-N-acetylglucosamine (O-GlcNAc) modified, and secreted proteins. From the triplicate analysis, we were able to assign more than 3000 proteins with less than 1% false-discovery rate. This analysis also allowed us to identify nearly 500 phosphorylation sites and 68 sites of O-GlcNAc modification with the same high confidence. Investigation of the phosphorylation sites allowed us to deduce the set of kinases that are likely active in these cells. We also identified more than 100 secreted proteins of hESCs that likely play a role in extracellular matrix formation and remodeling, as well as autocrine signaling for self-renewal and maintenance of the undifferentiated state. Finally, by performing in-depth analysis in triplicate, spectral counts were obtained for these proteins and posttranslationally modified peptides, which will allow us to perform relative quantitative analysis between these cells and any derived cell type in the future. PMID:25367160

  8. Monosynaptic Tracing using Modified Rabies Virus Reveals Early and Extensive Circuit Integration of Human Embryonic Stem Cell-Derived Neurons.

    PubMed

    Grealish, Shane; Heuer, Andreas; Cardoso, Tiago; Kirkeby, Agnete; Jönsson, Marie; Johansson, Jenny; Björklund, Anders; Jakobsson, Johan; Parmar, Malin

    2015-06-01

    Human embryonic stem cell (hESC)-derived dopamine neurons are currently moving toward clinical use for Parkinson's disease (PD). However, the timing and extent at which stem cell-derived neurons functionally integrate into existing host neural circuitry after transplantation remain largely unknown. In this study, we use modified rabies virus to trace afferent and efferent connectivity of transplanted hESC-derived neurons in a rat model of PD and report that grafted human neurons integrate into the host neural circuitry in an unexpectedly rapid and extensive manner. The pattern of connectivity resembled that of local endogenous neurons, while ectopic connections were not detected. Revealing circuit integration of human dopamine neurons substantiates their potential use in clinical trials. Additionally, our data present rabies-based tracing as a valuable and widely applicable tool for analyzing graft connectivity that can easily be adapted to analyze connectivity of a variety of different neuronal sources and subtypes in different disease models. PMID:26004633

  9. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes.

    PubMed Central

    Overturf, K.; al-Dhalimy, M.; Ou, C. N.; Finegold, M.; Grompe, M.

    1997-01-01

    Previous work has shown that adult mouse hepatocytes can divide at least 18 times in vivo. To test whether this represents the upper limit of their regenerative capacity, we performed serial transplantation of hepatocytes in the fumarylacetoacetate hydrolase deficiency murine model of liver repopulation. Hepatocytes from adult donors were serially transplanted in limiting numbers six times and resulted in complete repopulation during each cycle. This corresponds to a minimal number of 69 cell doublings or a 7.3 x 10(20)-fold expansion. No evidence for abnormal liver function or altered hepatic architecture was found in repopulated animals. We conclude that a fraction of adult mouse hepatocytes have growth potential similar to that of hematopoietic stem cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9358753

  10. Autophagy in stem cells

    PubMed Central

    Guan, Jun-Lin; Simon, Anna Katharina; Prescott, Mark; Menendez, Javier A.; Liu, Fei; Wang, Fen; Wang, Chenran; Wolvetang, Ernst; Vazquez-Martin, Alejandro; Zhang, Jue

    2013-01-01

    Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future. PMID:23486312

  11. Transcriptional profiling of interleukin-2-primed human adipose derived mesenchymal stem cells revealed dramatic changes in stem cells response imposed by replicative senescence

    PubMed Central

    Wang, Lu; Sadvakas, Aiman; Sha, Ying; Pérez, Laura M.; Nussupbekova, Aliya; Amirbekov, Aday; Akanov, Akan A.; Gálvez, Beatriz G.; Jordan, I. King; Lunyak, Victoria V.

    2015-01-01

    Inflammation is a double-edged sword with both detrimental and beneficial consequences. Understanding of the mechanisms of crosstalk between the inflammatory milieu and human adult mesenchymal stem cells is an important basis for clinical efforts. Here, we investigate changes in the transcriptional response of human adipose-derived stem cells to physiologically relevant levels of IL-2 (IL-2 priming) upon replicative senescence. Our data suggest that replicative senescence might dramatically impede human mesenchymal stem cell (MSC) function via global transcriptional deregulation in response to IL-2. We uncovered a novel senescence-associated transcriptional signature in human adipose-derived MSCs hADSCs after exposure to pro-inflammatory environment: significant enhancement of the expression of the genes encoding potent growth factors and cytokines with anti-inflammatory and migration-promoting properties, as well as genes encoding angiogenic and anti-apoptotic promoting factors, all of which could participate in the establishment of a unique microenvironment. We observed transcriptional up-regulation of critical components of the nitric oxide synthase pathway (iNOS) in hADSCs upon replicative senescence suggesting, that senescent stem cells can acquire metastasis-promoting properties via stem cell-mediated immunosuppression. Our study highlights the importance of age as a factor when designing cell-based or pharmacological therapies for older patients and predicts measurable biomarkers characteristic of an environment that is conducive to cancer cells invasiveness and metastasis. PMID:26255627

  12. Induced pluripotent stem cells reveal functional differences between drugs currently investigated in patients with hutchinson-gilford progeria syndrome.

    PubMed

    Blondel, Sophie; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Le Corf, Amelie; Navarro, Claire; Cordette, Véronique; Martinat, Cécile; Laabi, Yacine; Djabali, Karima; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Peschanski, Marc; Nissan, Xavier

    2014-04-01

    Hutchinson-Gilford progeria syndrome is a rare congenital disease characterized by premature aging in children. Identification of the mutation and related molecular mechanisms has rapidly led to independent clinical trials testing different marketed drugs with a preclinically documented impact on those mechanisms. However, the extensive functional effects of those drugs remain essentially unexplored. We have undertaken a systematic comparative study of the three main treatments currently administered or proposed to progeria-affected children, namely, a farnesyltransferase inhibitor, the combination of an aminobisphosphonate and a statin (zoledronate and pravastatin), and the macrolide antibiotic rapamycin. This work was based on the assumption that mesodermal stem cells, which are derived from Hutchinson-Gilford progeria syndrome-induced pluripotent stem cells expressing major defects associated with the disease, may be instrumental to revealing such effects. Whereas all three treatments significantly improved misshapen cell nuclei typically associated with progeria, differences were observed in terms of functional improvement in prelamin A farnesylation, progerin expression, defective cell proliferation, premature osteogenic differentiation, and ATP production. Finally, we have evaluated the effect of the different drug combinations on this cellular model. This study revealed no additional benefit compared with single-drug treatments, whereas a cytostatic effect equivalent to that of a farnesyltransferase inhibitor alone was systematically observed. Altogether, these results reveal the complexity of the modes of action of different drugs, even when they have been selected on the basis of a similar mechanistic hypothesis, and underscore the use of induced pluripotent stem cell derivatives as a critical and powerful tool for standardized, comparative pharmacological studies. PMID:24598781

  13. Induced Pluripotent Stem Cells Reveal Functional Differences Between Drugs Currently Investigated in Patients With Hutchinson-Gilford Progeria Syndrome

    PubMed Central

    Blondel, Sophie; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Le Corf, Amelie; Navarro, Claire; Cordette, Véronique; Martinat, Cécile; Laabi, Yacine; Djabali, Karima; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Peschanski, Marc

    2014-01-01

    Hutchinson-Gilford progeria syndrome is a rare congenital disease characterized by premature aging in children. Identification of the mutation and related molecular mechanisms has rapidly led to independent clinical trials testing different marketed drugs with a preclinically documented impact on those mechanisms. However, the extensive functional effects of those drugs remain essentially unexplored. We have undertaken a systematic comparative study of the three main treatments currently administered or proposed to progeria-affected children, namely, a farnesyltransferase inhibitor, the combination of an aminobisphosphonate and a statin (zoledronate and pravastatin), and the macrolide antibiotic rapamycin. This work was based on the assumption that mesodermal stem cells, which are derived from Hutchinson-Gilford progeria syndrome-induced pluripotent stem cells expressing major defects associated with the disease, may be instrumental to revealing such effects. Whereas all three treatments significantly improved misshapen cell nuclei typically associated with progeria, differences were observed in terms of functional improvement in prelamin A farnesylation, progerin expression, defective cell proliferation, premature osteogenic differentiation, and ATP production. Finally, we have evaluated the effect of the different drug combinations on this cellular model. This study revealed no additional benefit compared with single-drug treatments, whereas a cytostatic effect equivalent to that of a farnesyltransferase inhibitor alone was systematically observed. Altogether, these results reveal the complexity of the modes of action of different drugs, even when they have been selected on the basis of a similar mechanistic hypothesis, and underscore the use of induced pluripotent stem cell derivatives as a critical and powerful tool for standardized, comparative pharmacological studies. PMID:24598781

  14. Transcriptome Profiling Reveals Degree of Variability in Induced Pluripotent Stem Cell Lines: Impact for Human Disease Modeling.

    PubMed

    Schuster, Jens; Halvardson, Jonatan; Pilar Lorenzo, Laureanne; Ameur, Adam; Sobol, Maria; Raykova, Doroteya; Annerén, Göran; Feuk, Lars; Dahl, Niklas

    2015-10-01

    Induced pluripotent stem cell (iPSC) technology has become an important tool for disease modeling. Insufficient data on the variability among iPSC lines derived from a single somatic parental cell line have in practice led to generation and analysis of several, usually three, iPSC sister lines from each parental cell line. We established iPSC lines from a human fibroblast line (HDF-K1) and used transcriptome sequencing to investigate the variation among three sister lines (iPSC-K1A, B, and C). For comparison, we analyzed the transcriptome of an iPSC line (iPSC-K5B) derived from a different fibroblast line (HDF-K5), a human embryonic stem cell (ESC) line (ESC-HS181), as well as the two parental fibroblast lines. All iPSC lines fulfilled stringent criteria for pluripotency. In an unbiased cluster analysis, all stem cell lines (four iPSCs and one ESC) clustered together as opposed to the parental fibroblasts. The transcriptome profiles of the three iPSC sister lines were indistinguishable from each other, and functional pathway analysis did not reveal any significant hits. In contrast, the expression profiles of the ESC line and the iPSC-K5B line were distinct from that of the sister lines iPSC-K1A, B, and C. Differentiation to embryoid bodies and subsequent analysis of germ layer markers in the five stem cell clones confirmed that the distribution of their expression profiles was retained. Taken together, our observations stress the importance of using iPSCs of different parental origin rather than several sister iPSC lines to distinguish disease-associated mechanisms from genetic background effects in disease modeling. PMID:26348590

  15. High Content Analysis of Human Pluripotent Stem Cell Derived Hepatocytes Reveals Drug Induced Steatosis and Phospholipidosis

    PubMed Central

    Pradip, Arvind; Steel, Daniella; Jacobsson, Susanna; Holmgren, Gustav; Ingelman-Sundberg, Magnus; Sartipy, Peter; Björquist, Petter; Johansson, Inger; Edsbagge, Josefina

    2016-01-01

    Hepatotoxicity is one of the most cited reasons for withdrawal of approved drugs from the market. The use of nonclinically relevant in vitro and in vivo testing systems contributes to the high attrition rates. Recent advances in differentiating human induced pluripotent stem cells (hiPSCs) into pure cultures of hepatocyte-like cells expressing functional drug metabolizing enzymes open up possibilities for novel, more relevant human cell based toxicity models. The present study aimed to investigate the use of hiPSC derived hepatocytes for conducting mechanistic toxicity testing by image based high content analysis (HCA). The hiPSC derived hepatocytes were exposed to drugs known to cause hepatotoxicity through steatosis and phospholipidosis, measuring several endpoints representing different mechanisms involved in drug induced hepatotoxicity. The hiPSC derived hepatocytes were benchmarked to the HepG2 cell line and generated robust HCA data with low imprecision between plates and batches. The different parameters measured were detected at subcytotoxic concentrations and the order of which the compounds were categorized (as severe, moderate, mild, or nontoxic) based on the degree of injury at isomolar concentration corresponded to previously published data. Taken together, the present study shows how hiPSC derived hepatocytes can be used as a platform for screening drug induced hepatotoxicity by HCA. PMID:26880940

  16. Mitotic History Reveals Distinct Stem Cell Populations and Their Contributions to Hematopoiesis

    PubMed Central

    Säwén, Petter; Lang, Stefan; Mandal, Pankaj; Rossi, Derrick J.; Soneji, Shamit; Bryder, David

    2016-01-01

    Summary Homeostasis of short-lived blood cells is dependent on rapid proliferation of immature precursors. Using a conditional histone 2B-mCherry-labeling mouse model, we characterize hematopoietic stem cell (HSC) and progenitor proliferation dynamics in steady state and following several types of induced stress. HSC proliferation following HSC transplantation into lethally irradiated mice is fundamentally different not only from native hematopoiesis but also from other stress contexts. Whereas transplantation promoted sustained, long-term proliferation of HSCs, both cytokine-induced mobilization and acute depletion of selected blood cell lineages elicited very limited recruitment of HSCs to the proliferative pool. By coupling mCherry-based analysis of proliferation history with multiplex gene expression analyses on single cells, we have found that HSCs can be stratified into four distinct subtypes. These subtypes have distinct molecular signatures and differ significantly in their reconstitution potentials, showcasing the power of tracking proliferation history when resolving functional heterogeneity of HSCs. PMID:26997272

  17. Global gene expression profiling reveals similarities and differences among mouse pluripotent stem cells of different origins and strains

    PubMed Central

    Sharova, Lioudmila V.; Sharov, Alexei A.; Piao, Yulan; Shaik, Nabeebi; Sullivan, Terry; Stewart, Colin L.; Hogan, Brigid L.M.; Ko, Minoru S.H.

    2007-01-01

    Pluripotent stem cell lines with similar phenotypes can be derived from both blastocysts (embryonic stem cells, ESC) and primordial germ cells (embryonic germ cells, EGC). Here, we present a compendium DNA microarray analysis of multiple mouse ESCs and EGCs from different genetic backgrounds (strains 129 and C57BL/6) cultured under standard conditions and in differentiation-promoting conditions by the withdrawal of Leukemia Inhibitory Factor (LIF) or treatment with retinoic acid (RA). All pluripotent cell lines showed similar gene expression patterns, which separated them clearly from other tissue stem cells with lower developmental potency. Differences between pluripotent lines derived from different sources (ESC vs. EGC) were smaller than differences between lines derived from different mouse strains (129 vs. C57BL/6). Even in the differentiation-promoting conditions, these pluripotent cells showed the same general trends of gene expression changes regardless of their origin and genetic background. These data indicate that ESCs and EGCs are indistinguishable based on global gene expression patterns alone. On the other hand, a detailed comparison between a group of ESC lines and a group of EGC lines identified 20 signature genes whose average expression levels were consistently higher in ESC lines, and 84 signature genes whose average expression levels were consistently higher in EGC lines, irrespective of mouse strains. Similar analysis identified 250 signature genes whose average expression levels were consistently higher in a group of 129 cell lines, and 337 signature genes whose average expression levels were consistently higher in a group of C57BL/6 cell lines. Although none of the genes was exclusively expressed in either ESCs versus EGCs or 129 versus C57BL/6, in combination these signature genes provide a reliable separation and identification of each cell type. Differentiation-promoting conditions also revealed some minor differences between the cell

  18. Novel myeloma-associated antigens revealed in the context of syngeneic hematopoietic stem cell transplantation

    PubMed Central

    Biernacki, Melinda A.; Tai, Yu-tzu; Zhang, Guang Lan; Alonso, Anselmo; Zhang, Wandi; Prabhala, Rao; Zhang, Li; Munshi, Nikhil; Neuberg, Donna; Soiffer, Robert J.; Ritz, Jerome; Alyea, Edwin P.; Brusic, Vladimir; Anderson, Kenneth C.

    2012-01-01

    Targets of curative donor-derived graft-versus-myeloma (GVM) responses after allogeneic hematopoietic stem cell transplantation (HSCT) remain poorly defined, partly because immunity against minor histocompatibility Ags (mHAgs) complicates the elucidation of multiple myeloma (MM)–specific targets. We hypothesized that syngeneic HSCT would facilitate the identification of GVM-associated Ags because donor immune responses in this setting should exclusively target unique tumor Ags in the absence of donor-host genetic disparities. Therefore, in the present study, we investigated the development of tumor immunity in an HLA-A0201+ MM patient who achieved durable remission after myeloablative syngeneic HSCT. Using high-density protein microarrays to screen post-HSCT plasma, we identified 6 Ags that elicited high-titer (1:5000-1:10 000) Abs that correlated with clinical tumor regression. Two Ags (DAPK2 and PIM1) had enriched expression in primary MM tissues. Both elicited Ab responses in other MM patients after chemotherapy or HSCT (11 and 6 of 32 patients for DAPK2 and PIM1, respectively). The index patient also developed specific CD8+ T-cell responses to HLA-A2–restricted peptides derived from DAPK2 and PIM1. Peptide-specific T cells recognized HLA-A2+ MM-derived cell lines and primary MM tumor cells. Coordinated T- and B-cell immunity develops against MM-associated Ags after syngeneic HSCT. DAPK1 and PIM1 are promising target Ags for MM-directed immunotherapy. PMID:22267603

  19. Laser biomodulation on stem cells

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Duan, Rui; Li, Yan; Li, Xue-Feng; Tan, Li-Ling; Liu, Songhao

    2001-08-01

    Stem cells are views from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organisms long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues. Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. The spotlight on stem cells has revealed gaps in our knowledge that must be filled if we are to take advantage of their full potential for treating devastating degenerative diseases such as Parkinsons's disease and muscular dystrophy. We need to know more about the intrinsic controls that keep stem cells as stem cells or direct them along particular differentiation pathways. Such intrinsic regulators are, in turn, sensitive to the influences of the microenvironment, or niche, where stem cells normally reside. Both intrinsic and extrinsic signals regular stem cell fate and some of these signals have now been identified. Vacek et al and Wang et al have studied the effect of low intensity laser on the haemopoietic stem cells in vitro. There experiments show there is indeed the effect of low intensity laser on the haemopoietic stem cells in vitro, and the present effect is the promotion of haemopoietic stem cells proliferation. In other words, low intensity laser irradiation can act as an extrinsic signal regulating stem cell fate. In this paper, we study how low intensity laser can be used to regulate stem cell fate from the viewpoint of collective phototransduction.

  20. A Panel of Embryonic Stem Cell Lines Reveals the Variety and Dynamic of Pluripotent States in Rabbits.

    PubMed

    Osteil, Pierre; Moulin, Anaïs; Santamaria, Claire; Joly, Thierry; Jouneau, Luc; Aubry, Maxime; Tapponnier, Yann; Archilla, Catherine; Schmaltz-Panneau, Barbara; Lecardonnel, Jérôme; Barasc, Harmonie; Mouney-Bonnet, Nathalie; Genthon, Clémence; Roulet, Alain; Donnadieu, Cécile; Acloque, Hervé; Gocza, Elen; Duranthon, Véronique; Afanassieff, Marielle; Savatier, Pierre

    2016-09-13

    Conventional rabbit embryonic stem cell (ESC) lines are derived from the inner cell mass (ICM) of pre-implantation embryos using methods and culture conditions that are established for primate ESCs. In this study, we explored the capacity of the rabbit ICM to give rise to ESC lines using conditions similar to those utilized to generate naive ESCs in mice. On single-cell dissociation and culture in fibroblast growth factor 2 (FGF2)-free, serum-supplemented medium, rabbit ICMs gave rise to ESC lines lacking the DNA-damage checkpoint in the G1 phase like mouse ESCs, and with a pluripotency gene expression profile closer to the rabbit ICM/epiblast profiles. These cell lines can be converted to FGF2-dependent ESCs after culture in conventional conditions. They can also colonize the rabbit pre-implantation embryo. These results indicate that rabbit epiblast cells can be coaxed toward different types of pluripotent stem cells and reveal the dynamics of pluripotent states in rabbit ESCs. PMID:27594588

  1. Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation

    PubMed Central

    Solaimani Kartalaei, Parham; Yamada-Inagawa, Tomoko; Vink, Chris S.; de Pater, Emma; van der Linden, Reinier; Marks-Bluth, Jonathon; van der Sloot, Anthon; van den Hout, Mirjam; Yokomizo, Tomomasa; van Schaick-Solernó, M. Lucila; Delwel, Ruud; Pimanda, John E.; van IJcken, Wilfred F.J.

    2015-01-01

    Hematopoietic stem cells (HSCs) are generated via a natural transdifferentiation process known as endothelial to hematopoietic cell transition (EHT). Because of small numbers of embryonal arterial cells undergoing EHT and the paucity of markers to enrich for hemogenic endothelial cells (ECs [HECs]), the genetic program driving HSC emergence is largely unknown. Here, we use a highly sensitive RNAseq method to examine the whole transcriptome of small numbers of enriched aortic HSCs, HECs, and ECs. Gpr56, a G-coupled protein receptor, is one of the most highly up-regulated of the 530 differentially expressed genes. Also, highly up-regulated are hematopoietic transcription factors, including the “heptad” complex of factors. We show that Gpr56 (mouse and human) is a target of the heptad complex and is required for hematopoietic cluster formation during EHT. Our results identify the processes and regulators involved in EHT and reveal the surprising requirement for Gpr56 in generating the first HSCs. PMID:25547674

  2. Plant Stem Cells.

    PubMed

    Greb, Thomas; Lohmann, Jan U

    2016-09-12

    Among the trending topics in the life sciences, stem cells have received a fair share of attention in the public debate - mostly in connection with their potential for biomedical application and therapies. While the promise of organ regeneration and the end of cancer have captured our imagination, it has gone almost unnoticed that plant stem cells represent the ultimate origin of much of the food we eat, the oxygen we breathe, as well the fuels we burn. Thus, plant stem cells may be ranked among the most important cells for human well-being. Research by many labs in the last decades has uncovered a set of independent stem cell systems that fulfill the specialized needs of plant development and growth in four dimensions. Surprisingly, the cellular and molecular design of these systems is remarkably similar, even across diverse species. In some long-lived plants, such as trees, plant stem cells remain active over hundreds or even thousands of years, revealing the exquisite precision in the underlying control of proliferation, self-renewal and differentiation. In this minireview, we introduce the basic features of the three major plant stem cell systems building on these facts, highlight their modular design at the level of cellular layout and regulatory underpinnings and briefly compare them with their animal counterparts. PMID:27623267

  3. A Trans-omics Mathematical Analysis Reveals Novel Functions of the Ornithine Metabolic Pathway in Cancer Stem Cells

    PubMed Central

    Koseki, Jun; Matsui, Hidetoshi; Konno, Masamitsu; Nishida, Naohiro; Kawamoto, Koichi; Kano, Yoshihiro; Mori, Masaki; Doki, Yuichiro; Ishii, Hideshi

    2016-01-01

    Bioinformatics and computational modelling are expected to offer innovative approaches in human medical science. In the present study, we performed computational analyses and made predictions using transcriptome and metabolome datasets obtained from fluorescence-based visualisations of chemotherapy-resistant cancer stem cells (CSCs) in the human oesophagus. This approach revealed an uncharacterized role for the ornithine metabolic pathway in the survival of chemotherapy-resistant CSCs. The present study fastens this rationale for further characterisation that may lead to the discovery of innovative drugs against robust CSCs. PMID:26864636

  4. A Trans-omics Mathematical Analysis Reveals Novel Functions of the Ornithine Metabolic Pathway in Cancer Stem Cells

    NASA Astrophysics Data System (ADS)

    Koseki, Jun; Matsui, Hidetoshi; Konno, Masamitsu; Nishida, Naohiro; Kawamoto, Koichi; Kano, Yoshihiro; Mori, Masaki; Doki, Yuichiro; Ishii, Hideshi

    2016-02-01

    Bioinformatics and computational modelling are expected to offer innovative approaches in human medical science. In the present study, we performed computational analyses and made predictions using transcriptome and metabolome datasets obtained from fluorescence-based visualisations of chemotherapy-resistant cancer stem cells (CSCs) in the human oesophagus. This approach revealed an uncharacterized role for the ornithine metabolic pathway in the survival of chemotherapy-resistant CSCs. The present study fastens this rationale for further characterisation that may lead to the discovery of innovative drugs against robust CSCs.

  5. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    SciTech Connect

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; Guo, Wei; Yan, Yanfa; Pennycook, Stephen J.

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative of a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.

  6. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    DOE PAGESBeta

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; Guo, Wei; Yan, Yanfa; Pennycook, Stephen J.

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative ofmore » a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.« less

  7. Characterization of Amniotic Stem Cells

    PubMed Central

    Koike, Chika; Zhou, Kaixuan; Takeda, Yuji; Fathy, Moustafa; Okabe, Motonori; Yoshida, Toshiko; Nakamura, Yukio; Kato, Yukio

    2014-01-01

    Abstract The amnion membrane is developed from embryo-derived cells, and amniotic cells have been shown to exhibit multidifferentiation potential. These cells represent a desirable source for stem cells for a variety of reasons. However, to date very few molecular analyses of amnion-derived cells have been reported, and efficient markers for isolating the stem cells remain unclear. This paper assesses the characterization of amnion-derived cells as stem cells by examining stemness marker expressions for amnion-derived epithelial cells and mesenchymal cells by flow cytometry, immunocytochemistry, and quantitative PCR. Flow cytometry revealed that amnion epithelial cells expressed CD133, CD 271, and TRA-1-60, whereas mecenchymal cells expressed CD44, CD73, CD90, and CD105. Immunohistochemistry showed that both cells expressed the stemness markers Oct3/4, Sox2, Klf4, and SSEA4. Stemness genes' expression in amnion epithelial cells, mesenchymal cells, fibroblast, bone marrow–derived mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) was compared by quantitative reverse-transcription polymerase chain reaction (RT-PCR). Amnion-derived epithelial cells and mesenchymal cells expressed Oct3/4, Nanog, and Klf4 more than bone marrow–derived MSCs. The sorted TRA1-60–positive cells expressed Oct3/4, Nanog, and Klf4 more than unsorted cells or TRA1-60–negative cells. TRA1-60 can be a marker for isolating amnion epithelial stem cells. PMID:25068631

  8. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells.

    PubMed

    Abyzov, Alexej; Mariani, Jessica; Palejev, Dean; Zhang, Ying; Haney, Michael Seamus; Tomasini, Livia; Ferrandino, Anthony F; Rosenberg Belmaker, Lior A; Szekely, Anna; Wilson, Michael; Kocabas, Arif; Calixto, Nathaniel E; Grigorenko, Elena L; Huttner, Anita; Chawarska, Katarzyna; Weissman, Sherman; Urban, Alexander Eckehart; Gerstein, Mark; Vaccarino, Flora M

    2012-12-20

    Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) has been suspected of causing de novo copy number variation. To explore this issue, here we perform a whole-genome and transcriptome analysis of 20 human iPSC lines derived from the primary skin fibroblasts of seven individuals using next-generation sequencing. We find that, on average, an iPSC line manifests two copy number variants (CNVs) not apparent in the fibroblasts from which the iPSC was derived. Using PCR and digital droplet PCR, we show that at least 50% of those CNVs are present as low-frequency somatic genomic variants in parental fibroblasts (that is, the fibroblasts from which each corresponding human iPSC line is derived), and are manifested in iPSC lines owing to their clonal origin. Hence, reprogramming does not necessarily lead to de novo CNVs in iPSCs, because most of the line-manifested CNVs reflect somatic mosaicism in the human skin. Moreover, our findings demonstrate that clonal expansion, and iPSC lines in particular, can be used as a discovery tool to reliably detect low-frequency CNVs in the tissue of origin. Overall, we estimate that approximately 30% of the fibroblast cells have somatic CNVs in their genomes, suggesting widespread somatic mosaicism in the human body. Our study paves the way to understanding the fundamental question of the extent to which cells of the human body normally acquire structural alterations in their DNA post-zygotically. PMID:23160490

  9. Somatic copy-number mosaicism in human skin revealed by induced pluripotent stem cells

    PubMed Central

    Abyzov, Alexej; Mariani, Jessica; Palejev, Dean; Zhang, Ying; Haney, Michael Seamus; Tomasini, Livia; Ferrandino, Anthony; Belmaker, Lior A. Rosenberg; Szekely, Anna; Wilson, Michael; Kocabas, Arif; Calixto, Nathaniel E.; Grigorenko, Elena L.; Huttner, Anita; Chawarska, Katarzyna; Weissman, Sherman; Urban, Alexander Eckehart; Gerstein, Mark; Vaccarino, Flora M.

    2012-01-01

    Reprogramming human somatic cells into induced pluripotent stem cells (iPSCs) has been suspected of causing de novo copy number variations (CNVs)1-4. To explore this issue, we performed a whole-genome and transcriptome analysis of 20 human iPSC lines derived from primary skin fibroblasts of 7 individuals using next-generation sequencing. We find that, on average, an iPSC line manifests two CNVs not apparent in the fibroblasts from which the iPSC was derived. Using qPCR, PCR, and digital droplet PCR (ddPCR), we show that at least 50% of those CNVs are present as low frequency somatic genomic variants in parental fibroblasts (i.e. the fibroblasts from which each corresponding hiPSC line is derived) and are manifested in iPSC colonies due to the colonies’ clonal origin. Hence, reprogramming does not necessarily lead to de novo CNVs in iPSC, since most of line-manifested CNVs reflect somatic mosaicism in the human skin. Moreover, our findings demonstrate that clonal expansion, and iPSC lines in particular, can be used as a discovery tool to reliably detect low frequency CNVs in the tissue of origin. Overall, we estimate that approximately 30% of the fibroblast cells have somatic CNVs in their genomes, suggesting widespread somatic mosaicism in the human body. Our study paves the way to understanding the fundamental question of the extent to which cells of the human body normally acquire structural alterations in their DNA post-zygotically. PMID:23160490

  10. Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry

    PubMed Central

    Swaney, Danielle L.; Wenger, Craig D.; Thomson, James A.; Coon, Joshua J.

    2009-01-01

    Protein phosphorylation is central to the understanding of cellular signaling, and cellular signaling is suggested to play a major role in the regulation of human embryonic stem (ES) cell pluripotency. Here, we describe the use of conventional tandem mass spectrometry-based sequencing technology—collision-activated dissociation (CAD)—and the more recently developed method electron transfer dissociation (ETD) to characterize the human ES cell phosphoproteome. In total, these experiments resulted in the identification of 11,995 unique phosphopeptides, corresponding to 10,844 nonredundant phosphorylation sites, at a 1% false discovery rate (FDR). Among these phosphorylation sites are 5 localized to 2 pluripotency critical transcription factors—OCT4 and SOX2. From these experiments, we conclude that ETD identifies a larger number of unique phosphopeptides than CAD (8,087 to 3,868), more frequently localizes the phosphorylation site to a specific residue (49.8% compared with 29.6%), and sequences whole classes of phosphopeptides previously unobserved. PMID:19144917

  11. Functional Heterogeneity of Embryonic Stem Cells Revealed through Translational Amplification of an Early Endodermal Transcript

    PubMed Central

    Canham, Maurice A.; Sharov, Alexei A.; Ko, Minoru S. H.; Brickman, Joshua M.

    2010-01-01

    ES cells are defined as self-renewing, pluripotent cell lines derived from early embryos. Cultures of ES cells are also characterized by the expression of certain markers thought to represent the pluripotent state. However, despite the widespread expression of key markers such as Oct4 and the appearance of a characteristic undifferentiated morphology, functional ES cells may represent only a small fraction of the cultures grown under self-renewing conditions. Thus phenotypically “undifferentiated” cells may consist of a heterogeneous population of functionally distinct cell types. Here we use a transgenic allele designed to detect low level transcription in the primitive endoderm lineage as a tool to identify an immediate early endoderm-like ES cell state. This reporter employs a tandem array of internal ribosomal entry sites to drive translation of an enhanced Yellow Fluorescent Protein (Venus) from the transcript that normally encodes for the early endodermal marker Hex. Expression of this Venus transgene reports on single cells with low Hex transcript levels and reveals the existence of distinct populations of Oct4 positive undifferentiated ES cells. One of these cells types, characterized by both the expression of the Venus transgene and the ES cells marker SSEA-1 (V+S+), appears to represent an early step in primitive endoderm specification. We show that the fraction of cells present within this state is influenced by factors that both promote and suppress primitive endoderm differentiation, but conditions that support ES cell self-renewal prevent their progression into differentiation and support an equilibrium between this state and at least one other that resembles the Nanog positive inner cell mass of the mammalian blastocysts. Interestingly, while these subpopulations are equivalently and clonally interconvertible under self-renewing conditions, when induced to differentiate both in vivo and in vitro they exhibit different behaviours. Most strikingly

  12. Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells.

    PubMed

    Yang, Jianchang; Chai, Li; Fowles, Taylor C; Alipio, Zaida; Xu, Dan; Fink, Louis M; Ward, David C; Ma, Yupo

    2008-12-16

    Embryonic stem cells have potential utility in regenerative medicine because of their pluripotent characteristics. Sall4, a zinc-finger transcription factor, is expressed very early in embryonic development with Oct4 and Nanog, two well-characterized pluripotency regulators. Sall4 plays an important role in governing the fate of stem cells through transcriptional regulation of both Oct4 and Nanog. By using chromatin immunoprecipitation coupled to microarray hybridization (ChIP-on-chip), we have mapped global gene targets of Sall4 to further investigate regulatory processes in W4 mouse ES cells. A total of 3,223 genes were identified that were bound by the Sall4 protein on duplicate assays with high confidence, and many of these have major functions in developmental and regulatory pathways. Sall4 bound approximately twice as many annotated genes within promoter regions as Nanog and approximately four times as many as Oct4. Immunoprecipitation revealed a heteromeric protein complex(es) between Sall4, Oct4, and Nanog, consistent with binding site co-occupancies. Decreasing Sall4 expression in W4 ES cells decreases the expression levels of Oct4, Sox2, c-Myc, and Klf4, four proteins capable of reprogramming somatic cells to an induced pluripotent state. Further, Sall4 bound many genes that are regulated in part by chromatin-based epigenetic events mediated by polycomb-repressive complexes and bivalent domains. This suggests that Sall4 plays a diverse role in regulating stem cell pluripotency during early embryonic development through integration of transcriptional and epigenetic controls. PMID:19060217

  13. Synchrotron FTIR microspectroscopy reveals early adipogenic differentiation of human mesenchymal stem cells at single-cell level.

    PubMed

    Liu, Zhixiao; Tang, Yuzhao; Chen, Feng; Liu, Xia; Liu, Zhaojian; Zhong, Jiajia; Hu, Jun; Lü, Junhong

    2016-09-23

    Human mesenchymal stem cells (hMSCs) have been used as an ideal in vitro model to study human adipogenesis. However, little knowledge of the early stage differentiation greatly hinders our understanding on the mechanism of the adipogenesis processes. In this study, synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy was applied to track the global structural and compositional changes of lipids, proteins and nucleic acids inside individual hMSCs along the time course. The multivariate analysis of the SR-FTIR spectra distinguished the dynamic and significant changes of the lipids and nucleic acid at early differentiation stage. Importantly, changes of lipid structure during early days (Day 1-3) of differentiation might serve as a potential biomarker in identifying the state in early differentiation at single cell level. These results proved that SR-FTIR is a powerful tool to study the stem cell fate determination and early lipogenesis events. PMID:27553281

  14. Integrative Network Analysis Combined with Quantitative Phosphoproteomics Reveals Transforming Growth Factor-beta Receptor type-2 (TGFBR2) as a Novel Regulator of Glioblastoma Stem Cell Properties.

    PubMed

    Narushima, Yuta; Kozuka-Hata, Hiroko; Koyama-Nasu, Ryo; Tsumoto, Kouhei; Inoue, Jun-ichiro; Akiyama, Tetsu; Oyama, Masaaki

    2016-03-01

    Glioblastoma is one of the most malignant brain tumors with poor prognosis and their development and progression are known to be driven by glioblastoma stem cells. Although glioblastoma stem cells lose their cancer stem cell properties during cultivation in serum-containing medium, little is known about the molecular mechanisms regulating signaling alteration in relation to reduction of stem cell-like characteristics. To elucidate the global phosphorylation-related signaling events, we performed a SILAC-based quantitative phosphoproteome analysis of serum-induced dynamics in glioblastoma stem cells established from the tumor tissues of the patient. Among a total of 2876 phosphorylation sites on 1584 proteins identified in our analysis, 732 phosphorylation sites on 419 proteins were regulated through the alteration of stem cell-like characteristics. The integrative computational analyses based on the quantified phosphoproteome data revealed the relevant changes of phosphorylation levels regarding the proteins associated with cytoskeleton reorganization such as Rho family GTPase and Intermediate filament signaling, in addition to transforming growth factor-β receptor type-2 (TGFBR2) as a prominent upstream regulator involved in the serum-induced phosphoproteome regulation. The functional association of transforming growth factor-β receptor type-2 with stem cell-like properties was experimentally validated through signaling perturbation using the corresponding inhibitors, which indicated that transforming growth factor-β receptor type-2 could play an important role as a novel cell fate determinant in glioblastoma stem cell regulation. PMID:26670566

  15. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks.

    PubMed

    Dowell, Karen G; Simons, Allen K; Bai, Hao; Kell, Braden; Wang, Zack Z; Yun, Kyuson; Hibbs, Matthew A

    2014-05-01

    Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation

  16. Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells.

    PubMed

    Nayak, Ramesh C; Trump, Lisa R; Aronow, Bruce J; Myers, Kasiani; Mehta, Parinda; Kalfa, Theodosia; Wellendorf, Ashley M; Valencia, C Alexander; Paddison, Patrick J; Horwitz, Marshall S; Grimes, H Leighton; Lutzko, Carolyn; Cancelas, Jose A

    2015-08-01

    Severe congenital neutropenia (SCN) is often associated with inherited heterozygous point mutations in ELANE, which encodes neutrophil elastase (NE). However, a lack of appropriate models to recapitulate SCN has substantially hampered the understanding of the genetic etiology and pathobiology of this disease. To this end, we generated both normal and SCN patient-derived induced pluripotent stem cells (iPSCs), and performed genome editing and differentiation protocols that recapitulate the major features of granulopoiesis. Pathogenesis of ELANE point mutations was the result of promyelocyte death and differentiation arrest, and was associated with NE mislocalization and activation of the unfolded protein response/ER stress (UPR/ER stress). Similarly, high-dose G-CSF (or downstream signaling through AKT/BCL2) rescues the dysgranulopoietic defect in SCN patient-derived iPSCs through C/EBPβ-dependent emergency granulopoiesis. In contrast, sivelestat, an NE-specific small-molecule inhibitor, corrected dysgranulopoiesis by restoring normal intracellular NE localization in primary granules; ameliorating UPR/ER stress; increasing expression of CEBPA, but not CEBPB; and promoting promyelocyte survival and differentiation. Together, these data suggest that SCN disease pathogenesis includes NE mislocalization, which in turn triggers dysfunctional survival signaling and UPR/ER stress. This paradigm has the potential to be clinically exploited to achieve therapeutic responses using lower doses of G-CSF combined with targeting to correct NE mislocalization. PMID:26193632

  17. Drug screening on Hutchinson Gilford progeria pluripotent stem cells reveals aminopyrimidines as new modulators of farnesylation.

    PubMed

    Blondel, S; Egesipe, A-L; Picardi, P; Jaskowiak, A-L; Notarnicola, M; Ragot, J; Tournois, J; Le Corf, A; Brinon, B; Poydenot, P; Georges, P; Navarro, C; Pitrez, P R; Ferreira, L; Bollot, G; Bauvais, C; Laustriat, D; Mejat, A; De Sandre-Giovannoli, A; Levy, N; Bifulco, M; Peschanski, M; Nissan, X

    2016-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by a dramatic appearance of premature aging. HGPS is due to a single-base substitution in exon 11 of the LMNA gene (c.1824C>T) leading to the production of a toxic form of the prelamin A protein called progerin. Because farnesylation process had been shown to control progerin toxicity, in this study we have developed a screening method permitting to identify new pharmacological inhibitors of farnesylation. For this, we have used the unique potential of pluripotent stem cells to have access to an unlimited and relevant biological resource and test 21,608 small molecules. This study identified several compounds, called monoaminopyrimidines, which target two key enzymes of the farnesylation process, farnesyl pyrophosphate synthase and farnesyl transferase, and rescue in vitro phenotypes associated with HGPS. Our results opens up new therapeutic possibilities for the treatment of HGPS by identifying a new family of protein farnesylation inhibitors, and which may also be applicable to cancers and diseases associated with mutations that involve farnesylated proteins. PMID:26890144

  18. Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells

    PubMed Central

    Li, Tao-Sheng; Cheng, Ke; Malliaras, Konstantinos; Smith, Rachel Ruckdeschel; Zhang, Yiqiang; Sun, Baiming; Matsushita, Noriko; Blusztajn, Agnieszka; Terrovitis, John; Kusuoka, Hideo; Marbán, Linda; Marbán, Eduardo

    2012-01-01

    Objectives To conduct a direct head-to-head comparison of different stem cell types in vitro for various assays of potency, and in vivo for functional myocardial repair in the same mouse model of myocardial infarction. Background Adult stem cells of diverse origins (e.g., bone marrow, fat, heart) and antigenic identity have been studied for repair of the damaged heart, but the relative utility of the various cell types remains unclear. Methods Human cardiosphere-derived stem cells (CDCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), adipose tissue-derived mesenchymal stem cells (AD-MSCs), and bone marrow mononuclear cells (BM-MNCs) were compared. Results CDCs revealed a distinctive phenotype with uniform expression of CD105, partial expression of c-kit and CD90, and negligible expression of hematopoietic markers. In vitro, CDCs showed the greatest myogenic differentiation potency, highest angiogenic potential, and relatively high production of various angiogenic and anti-apoptotic secreted factors. In vivo, injection of CDCs into the infarcted mouse hearts resulted in superior improvement of cardiac function, the highest cell engraftment and myogenic differentiation rates, and the least-abnormal heart morphology 3 weeks after treatment. CDC-treated hearts also exhibited the lowest number of apoptotic cells. The c-kit+ subpopulation purified from CDCs produced lower levels of paracrine factors and inferior functional benefit when compared to unsorted CDCs. To validate the comparison of cells from various human donors, selected results were confirmed in cells of different types derived from individual rats. Conclusions CDCs exhibit a balanced profile of paracrine factor production, and, among various comparator cell types/subpopulations, provide the greatest functional benefit in experimental myocardial infarction. PMID:22381431

  19. Functional characterization of ENPP1 reveals a link between cell cycle progression and stem-like phenotype in glioblastoma

    PubMed Central

    Bageritz, Josephine; Goidts, Violaine

    2014-01-01

    A high-throughput phenotypic screen in glioblastoma stem-like cells (GSCs) identified a novel molecular mechanism in which ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) plays an important role in balancing the pool of nucleotides, thus maintaining GSCs in an undifferentiated proliferative state. This finding highlights the connection between cell cycle length and the stem-like tumor state. PMID:27308351

  20. LIF is Essential for SVZ Neural Stem Cell and Progenitor Homeostasis as Revealed by a Novel Flow Cytometric Analysis

    PubMed Central

    Buono, Krista D.; Vadlamuri, Daimler; Gan, Qiong; Levison, Steven W.

    2013-01-01

    Stem cells rely on extracellular signals produced by the niche, which dictate their ability to self-renew, expand and differentiate. It is essential to have sensitive and reproducible methods of either quantifying or isolating these stem cells and progenitors to understand their intrinsic properties and how extrinsic signals regulate their development. However, stem cells are difficult to distinguish from multipotential progenitors, which may look and act like them. Here we define a 4-color flow cytometry panel using CD133, LeX, CD140a, NG2 to define an NSC as well as 4 classes of multipotential progenitors and 3 classes of bipotential progenitors, several of which have not been previously described. We performed gain and loss of function studies for LIF and show a depletion of NSCs, a subset of multipotential neural precursors and immature oligodendrocytes in LIF null mice. Gain of function studies showed that LIF increased the abundance of these precursors. Our studies also show that these NPs have differential requirements for LIF and CNTF and for EGF, FGF-2 and PDGF for their propagation in vitro. Surprisingly, the related cytokine, CNTF was less potent than LIF in increasing the NSCs and more potent than LIF in increasing the PDGF responsive multipotential precursors. Finally, we show that LIF increases the expression of the core transcription factors: Klf4, Fbx15, Nanog, Sox2 and c-Myc. Altogether our FACS analyses reveal that the neonatal SVZ is far more heterogeneous than previously suspected and our studies provide new insights into the signals and mechanisms that regulate their self-renewal and proliferation. PMID:23258129

  1. Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification

    PubMed Central

    Musah, Samira; Wrighton, Paul J.; Zaltsman, Yefim; Zhong, Xiaofen; Zorn, Stefan; Parlato, Matthew B.; Hsiao, Cheston; Palecek, Sean P.; Chang, Qiang; Murphy, William L.; Kiessling, Laura L.

    2014-01-01

    Physical stimuli can act in either a synergistic or antagonistic manner to regulate cell fate decisions, but it is less clear whether insoluble signals alone can direct human pluripotent stem (hPS) cell differentiation into specialized cell types. We previously reported that stiff materials promote nuclear localization of the Yes-associated protein (YAP) transcriptional coactivator and support long-term self-renewal of hPS cells. Here, we show that even in the presence of soluble pluripotency factors, compliant substrata inhibit the nuclear localization of YAP and promote highly efficient differentiation of hPS cells into postmitotic neurons. In the absence of neurogenic factors, the effective substrata produce neurons rapidly (2 wk) and more efficiently (>75%) than conventional differentiation methods. The neurons derived from substrate induction express mature markers and possess action potentials. The hPS differentiation observed on compliant surfaces could be recapitulated on stiff surfaces by adding small-molecule inhibitors of F-actin polymerization or by depleting YAP. These studies reveal that the matrix alone can mediate differentiation of hPS cells into a mature cell type, independent of soluble inductive factors. That mechanical cues can override soluble signals suggests that their contributions to early tissue development and lineage commitment are profound. PMID:25201954

  2. Stem cells supporting other stem cells

    PubMed Central

    Leatherman, Judith

    2013-01-01

    Adult stem cell therapies are increasingly prevalent for the treatment of damaged or diseased tissues, but most of the improvements observed to date are attributed to the ability of stem cells to produce paracrine factors that have a trophic effect on existing tissue cells, improving their functional capacity. It is now clear that this ability to produce trophic factors is a normal and necessary function for some stem cell populations. In vivo adult stem cells are thought to self-renew due to local signals from the microenvironment where they live, the niche. Several niches have now been identified which harbor multiple stem cell populations. In three of these niches – the Drosophila testis, the bulge of the mammalian hair follicle, and the mammalian bone marrow – one type of stem cell has been found to produce factors that contribute to the maintenance of a second stem cell population in the shared niche. In this review, I will examine the architecture of these three niches and discuss the molecular signals involved. Together, these examples establish a new paradigm for stem cell behavior, that stem cells can promote the maintenance of other stem cells. PMID:24348512

  3. Stem cell biobanks.

    PubMed

    Bardelli, Silvana

    2010-04-01

    Stem cells contribute to innate healing and harbor a promising role for regenerative medicine. Stem cell banking through long-term storage of different stem cell platforms represents a fundamental source to preserve original features of stem cells for patient-specific clinical applications. Stem cell research and clinical translation constitute fundamental and indivisible modules catalyzed through biobanking activity, generating a return of investment. PMID:20560026

  4. Monosynaptic Tracing using Modified Rabies Virus Reveals Early and Extensive Circuit Integration of Human Embryonic Stem Cell-Derived Neurons

    PubMed Central

    Grealish, Shane; Heuer, Andreas; Cardoso, Tiago; Kirkeby, Agnete; Jönsson, Marie; Johansson, Jenny; Björklund, Anders; Jakobsson, Johan; Parmar, Malin

    2015-01-01

    Summary Human embryonic stem cell (hESC)-derived dopamine neurons are currently moving toward clinical use for Parkinson’s disease (PD). However, the timing and extent at which stem cell-derived neurons functionally integrate into existing host neural circuitry after transplantation remain largely unknown. In this study, we use modified rabies virus to trace afferent and efferent connectivity of transplanted hESC-derived neurons in a rat model of PD and report that grafted human neurons integrate into the host neural circuitry in an unexpectedly rapid and extensive manner. The pattern of connectivity resembled that of local endogenous neurons, while ectopic connections were not detected. Revealing circuit integration of human dopamine neurons substantiates their potential use in clinical trials. Additionally, our data present rabies-based tracing as a valuable and widely applicable tool for analyzing graft connectivity that can easily be adapted to analyze connectivity of a variety of different neuronal sources and subtypes in different disease models. PMID:26004633

  5. Genomic Analysis Reveals Disruption of Striatal Neuronal Development and Therapeutic Targets in Human Huntington’s Disease Neural Stem Cells

    PubMed Central

    Ring, Karen L.; An, Mahru C.; Zhang, Ningzhe; O’Brien, Robert N.; Ramos, Eliana Marisa; Gao, Fuying; Atwood, Robert; Bailus, Barbara J.; Melov, Simon; Mooney, Sean D.; Coppola, Giovanni; Ellerby, Lisa M.

    2015-01-01

    Summary We utilized induced pluripotent stem cells (iPSCs) derived from Huntington’s disease (HD) patients as a human model of HD and determined that the disease phenotypes only manifest in the differentiated neural stem cell (NSC) stage, not in iPSCs. To understand the molecular basis for the CAG repeat expansion-dependent disease phenotypes in NSCs, we performed transcriptomic analysis of HD iPSCs and HD NSCs compared to isogenic controls. Differential gene expression and pathway analysis pointed to transforming growth factor β (TGF-β) and netrin-1 as the top dysregulated pathways. Using data-driven gene coexpression network analysis, we identified seven distinct coexpression modules and focused on two that were correlated with changes in gene expression due to the CAG expansion. Our HD NSC model revealed the dysregulation of genes involved in neuronal development and the formation of the dorsal striatum. The striatal and neuronal networks disrupted could be modulated to correct HD phenotypes and provide therapeutic targets. PMID:26651603

  6. How stem cells manage to escape senescence and ageing - while they can: A recent study reveals that autophagy is responsible for senescence-dependent loss of regenerative potential of muscle stem cells during ageing.

    PubMed

    Ricchetti, Miria

    2016-09-01

    Skeletal muscle stem cells or satellite cells are responsible for muscle regeneration in the adult. Although satellite cells are highly resistant to stress, and display greater capacity to repair molecular damage than the committed progeny, their regenerative potential declines with age. During ageing, satellite cells switch to a state of permanent cell cycle arrest or senescence which prevents their activation. A recent study reveals that the senescence of satellite cell relies on defective autophagy, the quality control mechanism that degrades damaged proteins and organelles. Molecular damage is generated by oxidative stress that also promotes epigenetic changes that activate the expression of master genes, in a double-hit mechanism that ensures senescence. Importantly, genetic, and pharmacological correction of defective autophagy reverses satellite cell senescence and restores muscle regeneration in geriatric mice, with perspectives of modulating age-related functional decline of muscle. This study provides new clues to understand stem cell and organismal ageing. PMID:27389857

  7. A Human Pluripotent Stem Cell Surface N-Glycoproteome Resource Reveals Markers, Extracellular Epitopes, and Drug Targets

    PubMed Central

    Boheler, Kenneth R.; Bhattacharya, Subarna; Kropp, Erin M.; Chuppa, Sandra; Riordon, Daniel R.; Bausch-Fluck, Damaris; Burridge, Paul W.; Wu, Joseph C.; Wersto, Robert P.; Chan, Godfrey Chi Fung; Rao, Sridhar; Wollscheid, Bernd; Gundry, Rebekah L.

    2014-01-01

    Summary Detailed knowledge of cell-surface proteins for isolating well-defined populations of human pluripotent stem cells (hPSCs) would significantly enhance their characterization and translational potential. Through a chemoproteomic approach, we developed a cell-surface proteome inventory containing 496 N-linked glycoproteins on human embryonic (hESCs) and induced PSCs (hiPSCs). Against a backdrop of human fibroblasts and 50 other cell types, >100 surface proteins of interest for hPSCs were revealed. The >30 positive and negative markers verified here by orthogonal approaches provide experimental justification for the rational selection of pluripotency and lineage markers, epitopes for cell isolation, and reagents for the characterization of putative hiPSC lines. Comparative differences between the chemoproteomic-defined surfaceome and the transcriptome-predicted surfaceome directly led to the discovery that STF-31, a reported GLUT-1 inhibitor, is toxic to hPSCs and efficient for selective elimination of hPSCs from mixed cultures. PMID:25068131

  8. Serum-based culture conditions provoke gene expression variability in mouse embryonic stem cells as revealed by single cell analysis

    PubMed Central

    Guo, Guoji; Pinello, Luca; Han, Xiaoping; Lai, Shujing; Shen, Li; Lin, Ta-Wei; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H.

    2015-01-01

    Summary Variation in gene expression is an important feature of mouse embryonic stem cells (ESCs). However, the mechanisms responsible for global gene expression variation in ESCs are not fully understood. We performed single cell mRNA-seq analysis of mouse ESCs and uncovered significant heterogeneity in ESCs cultured in serum. We define highly variable gene clusters with distinct chromatin states; and show that bivalent genes are prone to expression variation. At the same time, we identify an ESC priming pathway that initiates the exit from the naïve ESC state. Finally, we provide evidence that a large proportion of intracellular network variability is due to the extracellular culture environment. Serum free culture reduces cellular heterogeneity and transcriptome variation in ESCs. PMID:26804902

  9. Endogenous Optical Signals Reveal Changes of Elastin and Collagen Organization During Differentiation of Mouse Embryonic Stem Cells.

    PubMed

    Thimm, Terra N; Squirrell, Jayne M; Liu, Yuming; Eliceiri, Kevin W; Ogle, Brenda M

    2015-10-01

    Components of the extracellular matrix (ECM) have recently been shown to influence stem cell specification. However, it has been challenging to assess the spatial and temporal dynamics of stem cell-ECM interactions because most methodologies utilized to date require sample destruction or fixation. We examined the efficacy of utilizing the endogenous optical signals of two important ECM proteins, elastin (Eln), through autofluorescence, and type I collagen (ColI), through second harmonic generation (SHG), during mouse embryonic stem cell differentiation. After finding favorable overlap between antibody labeling and the endogenous fluorescent signal of Eln, we used this endogenous signal to map temporal changes in Eln and ColI during murine embryoid body differentiation and found that Eln increases until day 9 and then decreases slightly by day 12, while Col1 steadily increases over the 12-day period. Furthermore, we combined endogenous fluorescence imaging and SHG with antibody labeling of cardiomyocytes to examine the spatial relationship between Eln and ColI accumulation and cardiomyocyte differentiation. Eln was ubiquitously present, with enrichment in regions with cardiomyocyte differentiation, while there was an inverse correlation between ColI and cardiomyocyte differentiation. This work provides an important first step for utilizing endogenous optical signals, which can be visualized in living cells, to understand the relationship between the ECM and cardiomyocyte development and sets the stage for future studies of stem cell-ECM interactions and dynamics relevant to stem cells as well as other cell and tissue types. PMID:25923353

  10. Dynamic Proteomic Analysis of Pancreatic Mesenchyme Reveals Novel Factors That Enhance Human Embryonic Stem Cell to Pancreatic Cell Differentiation

    PubMed Central

    Russ, Holger A.; Landsman, Limor; Moss, Christopher L.; Higdon, Roger; Greer, Renee L.; Kaihara, Kelly; Salamon, Randy; Kolker, Eugene; Hebrok, Matthias

    2016-01-01

    Current approaches in human embryonic stem cell (hESC) to pancreatic beta cell differentiation have largely been based on knowledge gained from developmental studies of the epithelial pancreas, while the potential roles of other supporting tissue compartments have not been fully explored. One such tissue is the pancreatic mesenchyme that supports epithelial organogenesis throughout embryogenesis. We hypothesized that detailed characterization of the pancreatic mesenchyme might result in the identification of novel factors not used in current differentiation protocols. Supplementing existing hESC differentiation conditions with such factors might create a more comprehensive simulation of normal development in cell culture. To validate our hypothesis, we took advantage of a novel transgenic mouse model to isolate the pancreatic mesenchyme at distinct embryonic and postnatal stages for subsequent proteomic analysis. Refined sample preparation and analysis conditions across four embryonic and prenatal time points resulted in the identification of 21,498 peptides with high-confidence mapping to 1,502 proteins. Expression analysis of pancreata confirmed the presence of three potentially important factors in cell differentiation: Galectin-1 (LGALS1), Neuroplastin (NPTN), and the Laminin α-2 subunit (LAMA2). Two of the three factors (LGALS1 and LAMA2) increased expression of pancreatic progenitor transcript levels in a published hESC to beta cell differentiation protocol. In addition, LAMA2 partially blocks cell culture induced beta cell dedifferentiation. Summarily, we provide evidence that proteomic analysis of supporting tissues such as the pancreatic mesenchyme allows for the identification of potentially important factors guiding hESC to pancreas differentiation. PMID:26681951

  11. Stem Cell Research.

    PubMed

    Trounson, Alan; Kolaja, Kyle; Petersen, Thomas; Weber, Klaus; McVean, Maralee; Funk, Kathleen A

    2015-01-01

    Stem cells have great potential in basic research and are being slowly integrated into toxicological research. This symposium provided an overview of the state of the field, stem cell models, described allogenic stem cell treatments and issues of immunogenicity associated with protein therapeutics, and tehn concentrated on stem cell uses in regenerative medicine focusing on lung and testing strategies on engineered tissues from a pathologist's perspective. PMID:25899720

  12. Information on Stem Cell Research

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS Information on Stem Cell Research Research @ NINDS Stem Cell Highlights Submit a hESC ... found here: Human Induced Pluripotent Stem Cells NINDS Stem Cell Research on Campus The Intramural Research Program of NINDS ...

  13. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis. PMID:22404469

  14. Genome Editing of Lineage Determinants in Human Pluripotent Stem Cells Reveals Mechanisms of Pancreatic Development and Diabetes.

    PubMed

    Zhu, Zengrong; Li, Qing V; Lee, Kihyun; Rosen, Bess P; González, Federico; Soh, Chew-Li; Huangfu, Danwei

    2016-06-01

    Directed differentiation of human pluripotent stem cells (hPSCs) into somatic counterparts is a valuable tool for studying disease. However, examination of developmental mechanisms in hPSCs remains challenging given complex multi-factorial actions at different stages. Here, we used TALEN and CRISPR/Cas-mediated gene editing and hPSC-directed differentiation for a systematic analysis of the roles of eight pancreatic transcription factors (PDX1, RFX6, PTF1A, GLIS3, MNX1, NGN3, HES1, and ARX). Our analysis not only verified conserved gene requirements between mice and humans but also revealed a number of previously unsuspected developmental mechanisms with implications for type 2 diabetes. These include a role of RFX6 in regulating the number of pancreatic progenitors, a haploinsufficient requirement for PDX1 in pancreatic β cell differentiation, and a potentially divergent role of NGN3 in humans and mice. Our findings support use of systematic genome editing in hPSCs as a strategy for understanding mechanisms underlying congenital disorders. PMID:27133796

  15. Toward 'SMART' stem cells.

    PubMed

    Cheng, T

    2008-01-01

    Stem cell research is at the heart of regenerative medicine, which holds great promise for the treatment of many devastating disorders. However, in addition to hurdles posed by well-publicized ethical issues, this emerging field presents many biological challenges. What is a stem cell? How are embryonic stem cells different from adult stem cells? What are the physiological bases for therapeutically acceptable stem cells? In this editorial review, I will briefly discuss these superficially simple but actually rather complex issues that surround this fascinating cell type. The goal of this special issue on stem cells in Gene Therapy is to review some fundamental and critical aspects of current stem cell research that have translational potential. PMID:18046429

  16. Stem Cell Information: Glossary

    MedlinePlus

    ... based therapies Cell culture Cell division Chromosome Clone Cloning Cord blood stem cells Culture medium Differentiation Directed ... Pluripotent Polar body Preimplantation Proliferation Regenerative medicine Reproductive cloning Signals Somatic cell Somatic cell nuclear transfer (SCNT) ...

  17. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.

    PubMed

    Cashman, Timothy J; Josowitz, Rebecca; Johnson, Bryce V; Gelb, Bruce D; Costa, Kevin D

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  18. Extracellular matrix of adipogenically differentiated mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven by hexagonal structural units.

    PubMed

    Ullah, Mujib; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds. PMID:23851162

  19. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy

    PubMed Central

    Johnson, Bryce V.; Gelb, Bruce D.; Costa, Kevin D.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  20. Optimizing stem cell culture.

    PubMed

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-11-01

    Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such as serum or feeder cell layers by recombinant cytokines or growth factors. Another example is the control of the oxygen pressure. For many years cell cultures have been done under atmospheric oxygen pressure which is much higher than the one experienced by stem cells in vivo. A consequence of cell metabolism is that cell culture conditions are constantly changing. Therefore, the development of high sensitive monitoring processes and control algorithms is required for ensuring cell culture medium homeostasis. Stem cells also sense the physical constraints of their microenvironment. Rigidity, stiffness, and geometry of the culture substrate influence stem cell fate. Hence, nanotopography is probably as important as medium formulation in the optimization of stem cell culture conditions. Recent advances include the development of synthetic bioinformative substrates designed at the micro- and nanoscale level. On going research in many different fields including stem cell biology, nanotechnology, and bioengineering suggest that our current way to culture cells in Petri dish or flasks will soon be outdated as flying across the Atlantic Ocean in the Lindbergh's plane. PMID:20803548

  1. FACS Purification and Transcriptome Analysis of Drosophila Neural Stem Cells Reveals a Role for Klumpfuss in Self-Renewal

    PubMed Central

    Berger, Christian; Harzer, Heike; Burkard, Thomas R.; Steinmann, Jonas; van der Horst, Suzanne; Laurenson, Anne-Sophie; Novatchkova, Maria; Reichert, Heinrich; Knoblich, Juergen A.

    2012-01-01

    Summary Drosophila neuroblasts (NBs) have emerged as a model for stem cell biology that is ideal for genetic analysis but is limited by the lack of cell-type-specific gene expression data. Here, we describe a method for isolating large numbers of pure NBs and differentiating neurons that retain both cell-cycle and lineage characteristics. We determine transcriptional profiles by mRNA sequencing and identify 28 predicted NB-specific transcription factors that can be arranged in a network containing hubs for Notch signaling, growth control, and chromatin regulation. Overexpression and RNA interference for these factors identify Klumpfuss as a regulator of self-renewal. We show that loss of Klumpfuss function causes premature differentiation and that overexpression results in the formation of transplantable brain tumors. Our data represent a valuable resource for investigating Drosophila developmental neurobiology, and the described method can be applied to other invertebrate stem cell lineages as well. PMID:22884370

  2. Stress and stem cells.

    PubMed

    Tower, John

    2012-01-01

    The unique properties and functions of stem cells make them particularly susceptible to stresses and also lead to their regulation by stress. Stem cell division must respond to the demand to replenish cells during normal tissue turnover as well as in response to damage. Oxidative stress, mechanical stress, growth factors, and cytokines signal stem cell division and differentiation. Many of the conserved pathways regulating stem cell self-renewal and differentiation are also stress-response pathways. The long life span and division potential of stem cells create a propensity for transformation (cancer) and specific stress responses such as apoptosis and senescence act as antitumor mechanisms. Quiescence regulated by CDK inhibitors and a hypoxic niche regulated by FOXO transcription factor function to reduce stress for several types of stem cells to facilitate long-term maintenance. Aging is a particularly relevant stress for stem cells, because repeated demands on stem cell function over the life span can have cumulative cell-autonomous effects including epigenetic dysregulation, mutations, and telomere erosion. In addition, aging of the organism impairs function of the stem cell niche and systemic signals, including chronic inflammation and oxidative stress. PMID:23799624

  3. Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells.

    PubMed

    Toledo, Chad M; Ding, Yu; Hoellerbauer, Pia; Davis, Ryan J; Basom, Ryan; Girard, Emily J; Lee, Eunjee; Corrin, Philip; Hart, Traver; Bolouri, Hamid; Davison, Jerry; Zhang, Qing; Hardcastle, Justin; Aronow, Bruce J; Plaisier, Christopher L; Baliga, Nitin S; Moffat, Jason; Lin, Qi; Li, Xiao-Nan; Nam, Do-Hyun; Lee, Jeongwu; Pollard, Steven M; Zhu, Jun; Delrow, Jeffery J; Clurman, Bruce E; Olson, James M; Paddison, Patrick J

    2015-12-22

    To identify therapeutic targets for glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 knockout (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g., oncogenic drivers). In vitro and in vivo validation of GSC-specific targets revealed several strong hits, including the wee1-like kinase, PKMYT1/Myt1. Mechanistic studies demonstrated that PKMYT1 acts redundantly with WEE1 to inhibit cyclin B-CDK1 activity via CDK1-Y15 phosphorylation and to promote timely completion of mitosis in NSCs. However, in GSCs, this redundancy is lost, most likely as a result of oncogenic signaling, causing GBM-specific lethality. PMID:26673326

  4. High-Resolution Microfluidic Single-Cell Transcriptional Profiling Reveals Clinically Relevant Subtypes among Human Stem Cell Populations Commonly Utilized in Cell-Based Therapies

    PubMed Central

    Rennert, Robert C.; Schäfer, Richard; Bliss, Tonya; Januszyk, Michael; Sorkin, Michael; Achrol, Achal S.; Rodrigues, Melanie; Maan, Zeshaan N.; Kluba, Torsten; Steinberg, Gary K.; Gurtner, Geoffrey C.

    2016-01-01

    Stem cell therapies can promote neural repair and regeneration, yet controversy regarding optimal cell source and mechanism of action has slowed clinical translation, potentially due to undefined cellular heterogeneity. Single-cell resolution is needed to identify clinically relevant subpopulations with the highest therapeutic relevance. We combine single-cell microfluidic analysis with advanced computational modeling to study for the first time two common sources for cell-based therapies, human NSCs and MSCs. This methodology has the potential to logically inform cell source decisions for any clinical application. PMID:27047447

  5. Dental stem cell patents.

    PubMed

    Morsczeck, Christian; Frerich, Bernhard; Driemel, Oliver

    2009-01-01

    A complex human tissue harbors stem cells that are responsible for its maintenance or repair. These stem cells have been isolated also from dental tissues such as the periodontal ligament, dental papilla or dental follicle and they may offer novel applications in dentistry. This following review summarizes patents about dental stem cells for dental tissue engineering and considers their value for regenerative dentistry. PMID:19149737

  6. Network theory inspired analysis of time-resolved expression data reveals key players guiding P. patens stem cell development.

    PubMed

    Busch, Hauke; Boerries, Melanie; Bao, Jie; Hanke, Sebastian T; Hiss, Manuel; Tiko, Theodhor; Rensing, Stefan A

    2013-01-01

    Transcription factors (TFs) often trigger developmental decisions, yet, their transcripts are often only moderately regulated and thus not easily detected by conventional statistics on expression data. Here we present a method that allows to determine such genes based on trajectory analysis of time-resolved transcriptome data. As a proof of principle, we have analysed apical stem cells of filamentous moss (P. patens) protonemata that develop from leaflets upon their detachment from the plant. By our novel correlation analysis of the post detachment transcriptome kinetics we predict five out of 1,058 TFs to be involved in the signaling leading to the establishment of pluripotency. Among the predicted regulators is the basic helix loop helix TF PpRSL1, which we show to be involved in the establishment of apical stem cells in P. patens. Our methodology is expected to aid analysis of key players of developmental decisions in complex plant and animal systems. PMID:23637751

  7. Network Theory Inspired Analysis of Time-Resolved Expression Data Reveals Key Players Guiding P. patens Stem Cell Development

    PubMed Central

    Busch, Hauke; Boerries, Melanie; Rensing, Stefan A.

    2013-01-01

    Transcription factors (TFs) often trigger developmental decisions, yet, their transcripts are often only moderately regulated and thus not easily detected by conventional statistics on expression data. Here we present a method that allows to determine such genes based on trajectory analysis of time-resolved transcriptome data. As a proof of principle, we have analysed apical stem cells of filamentous moss (P. patens) protonemata that develop from leaflets upon their detachment from the plant. By our novel correlation analysis of the post detachment transcriptome kinetics we predict five out of 1,058 TFs to be involved in the signaling leading to the establishment of pluripotency. Among the predicted regulators is the basic helix loop helix TF PpRSL1, which we show to be involved in the establishment of apical stem cells in P. patens. Our methodology is expected to aid analysis of key players of developmental decisions in complex plant and animal systems. PMID:23637751

  8. Signaling involved in stem cell reprogramming and differentiation

    PubMed Central

    Tanabe, Shihori

    2015-01-01

    Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have revealed that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell programming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review, the molecular interactions and signaling pathways related to stem cell differentiation are discussed. PMID:26328015

  9. Intraoperative Stem Cell Therapy

    PubMed Central

    Coelho, Mónica Beato; Cabral, Joaquim M.S.; Karp, Jeffrey M.

    2013-01-01

    Stem cells hold significant promise for regeneration of tissue defects and disease-modifying therapies. Although numerous promising stem cell approaches are advancing in clinical trials, intraoperative stem cell therapies offer more immediate hope by integrating an autologous cell source with a well-established surgical intervention in a single procedure. Herein, the major developments in intraoperative stem cell approaches, from in vivo models to clinical studies, are reviewed, and the potential regenerative mechanisms and the roles of different cell populations in the regeneration process are discussed. Although intraoperative stem cell therapies have been shown to be safe and effective for several indications, there are still critical challenges to be tackled prior to adoption into the standard surgical armamentarium. PMID:22809140

  10. Brain tumor stem cells.

    PubMed

    Palm, Thomas; Schwamborn, Jens C

    2010-06-01

    Since the end of the 'no-new-neuron' theory, emerging evidence from multiple studies has supported the existence of stem cells in neurogenic areas of the adult brain. Along with this discovery, neural stem cells became candidate cells being at the origin of brain tumors. In fact, it has been demonstrated that molecular mechanisms controlling self-renewal and differentiation are shared between brain tumor stem cells and neural stem cells and that corruption of genes implicated in these pathways can direct tumor growth. In this regard, future anticancer approaches could be inspired by uncovering such redundancies and setting up treatments leading to exhaustion of the cancer stem cell pool. However, deleterious effects on (normal) neural stem cells should be minimized. Such therapeutic models underline the importance to study the cellular mechanisms implicated in fate decisions of neural stem cells and the oncogenic derivation of adult brain cells. In this review, we discuss the putative origins of brain tumor stem cells and their possible implications on future therapies. PMID:20370314

  11. The leukemic stem cell

    PubMed Central

    Jordan, Craig T.

    2007-01-01

    Malignant stem cells have recently been described as the source of several types of human cancer. These unique cell types are typically rare and possess properties that are distinct from most other tumor cells. The properties of leukemic stem cells indicate that current chemotherapy drugs will not be effective. The use of current cytotoxic agents is not effective in leukemia because the agents target both the leukemic and normal stem cell populations. Consequently, new strategies are required that specifically and preferentially target the malignant stem cell population, while sparing normal stem cells. Several well known agents are lethal for the leukemic stem cell in preclinical testing. They include parthenolide, commonly known as feverfew, and TDZD-8. They have undergone various levels of preclinical development, but have not been used in patients as yet in the cancer setting. These drugs and combinations of existing therapies that target the leukemic stem cell population may provide a cure in this disease. This article summarizes recent findings in the leukemic stem cell field and discusses new directions for therapy. PMID:17336250

  12. Stem Cell Separation Technologies

    PubMed Central

    Zhu, Beili; Murthy, Shashi K.

    2012-01-01

    Stem cell therapy and translational stem cell research require large-scale supply of stem cells at high purity and viability, thus leading to the development of stem cell separation technologies. This review covers key technologies being applied to stem cell separation, and also highlights exciting new approaches in this field. First, we will cover conventional separation methods that are commercially available and have been widely adapted. These methods include Fluorescence-activated cell sorting (FACS), Magnet-activated cell sorting (MACS), pre-plating, conditioned expansion media, density gradient centrifugation, field flow fractionation (FFF), and dielectrophoresis (DEP). Next, we will introduce emerging novel methods that are currently under development. These methods include improved aqueous two-phase system, systematic evolution of ligands by exponential enrichment (SELEX), and various types of microfluidic platforms. Finally, we will discuss the challenges and directions towards future breakthroughs for stem cell isolation. Advancing stem cell separation techniques will be essential for clinical and research applications of stem cells. PMID:23505616

  13. MicroRNA screen of human embryonic stem cell differentiation reveals miR-105 as an enhancer of megakaryopoiesis from adult CD34+ cells.

    PubMed

    Kamat, Viraj; Paluru, Prasuna; Myint, Melissa; French, Deborah L; Gadue, Paul; Diamond, Scott L

    2014-05-01

    MicroRNAs (miRNAs) can control stem cell differentiation by targeting mRNAs. Using 96-well plate electroporation, we screened 466 human miRNA mimics by four-color flow cytometry to explore differentiation of common myeloid progenitors (CMP) derived from human embryonic stem cells (hESCs). The transfected cells were then cultured in a cytokine cocktail that supported multiple hematopoietic lineages. At 4-5 days post-transfection, flow cytometry of erythroid (CD235(+)CD41(-)), megakaryocyte (CD41(+)CD42(+)), and myeloid (CD18(+)CD235(-)) lineages revealed miR-105 as a novel enhancer of megakaryocyte production during in vitro primitive hematopoiesis. In hESC-derived CMPs, miR-105 caused a sixfold enhancement in megakaryocyte production. miR-513a, miR-571, and miR-195 were found to be less potent megakaryocyte enhancers. We confirmed the relevance of miR-105 in adult megakaryopoiesis by demonstrating increased megakaryocyte yield and megakaryocyte colony forming potential in human adult CD34(+) cells derived from peripheral blood. In addition, adult CD34(+) cells express endogenous miR-105 during megakaryocyte differentiation. siRNA knockdown of the hematopoietic transcription factor c-Myb caused a similar enhancement of megakaryocyte production as miR-105. Finally, a luciferase/c-Myb-3'UTR construct and Western blot analysis demonstrated that the hematopoietic transcription factor c-Myb mRNA was a target of miR-105. We report a novel hESC-based miR screening platform and demonstrate that miR-105 is an enhancer of megakaryopoiesis in both primitive and definitive hematopoiesis. PMID:24446170

  14. Stem cells in dermatology*

    PubMed Central

    Ogliari, Karolyn Sassi; Marinowic, Daniel; Brum, Dario Eduardo; Loth, Fabrizio

    2014-01-01

    Preclinical and clinical research have shown that stem cell therapy could be a promising therapeutic option for many diseases in which current medical treatments do not achieve satisfying results or cure. This article describes stem cells sources and their therapeutic applications in dermatology today. PMID:24770506

  15. Stem Cell Transplants (For Teens)

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants Print ... Does it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  16. Hematopoietic stem cell transplantation

    PubMed Central

    Hatzimichael, Eleftheria; Tuthill, Mark

    2010-01-01

    More than 25,000 hematopoietic stem cell transplantations (HSCTs) are performed each year for the treatment of lymphoma, leukemia, immune-deficiency illnesses, congenital metabolic defects, hemoglobinopathies, and myelodysplastic and myeloproliferative syndromes. Before transplantation, patients receive intensive myeloablative chemoradiotherapy followed by stem cell “rescue.” Autologous HSCT is performed using the patient’s own hematopoietic stem cells, which are harvested before transplantation and reinfused after myeloablation. Allogeneic HSCT uses human leukocyte antigen (HLA)-matched stem cells derived from a donor. Survival after allogeneic transplantation depends on donor–recipient matching, the graft-versus-host response, and the development of a graft versus leukemia effect. This article reviews the biology of stem cells, clinical efficacy of HSCT, transplantation procedures, and potential complications. PMID:24198516

  17. Analysis of Jak2 signaling reveals resistance of mouse embryonic hematopoietic stem cells to myeloproliferative disease mutation

    PubMed Central

    Mascarenhas, Maria I.; Bacon, Wendi A.; Kapeni, Chrysa; Fitch, Simon R.; Kimber, Gillian; Cheng, S. W. Priscilla; Li, Juan; Green, Anthony R.

    2016-01-01

    The regulation of hematopoietic stem cell (HSC) emergence during development provides important information about the basic mechanisms of blood stem cell generation, expansion, and migration. We set out to investigate the role that cytokine signaling pathways play in these early processes and show here that the 2 cytokines interleukin 3 and thrombopoietin have the ability to expand hematopoietic stem and progenitor numbers by regulating their survival and proliferation. For this, they differentially use the Janus kinase (Jak2) and phosphatidylinositol 3-kinase (Pi3k) signaling pathways, with Jak2 mainly relaying the proproliferation signaling, whereas Pi3k mediates the survival signal. Furthermore, using Jak2-deficient embryos, we demonstrate that Jak2 is crucially required for the function of the first HSCs, whereas progenitors are less dependent on Jak2. The JAK2V617F mutation, which renders JAK2 constitutively active and has been linked to myeloproliferative neoplasms, was recently shown to compromise adult HSC function, negatively affecting their repopulation and self-renewal ability, partly through the accumulation of JAK2V617F-induced DNA damage. We report here that nascent HSCs are resistant to the JAK2V617F mutation and show no decrease in repopulation or self-renewal and no increase in DNA damage, even in the presence of 2 mutant copies. More importantly, this unique property of embryonic HSCs is stably maintained through ≥1 round of successive transplantations. In summary, our dissection of cytokine signaling in embryonic HSCs has uncovered unique properties of these cells that are of clinical importance. PMID:26864339

  18. Mesenchymal stem cells.

    PubMed

    Ding, Dah-Ching; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2011-01-01

    Stem cells have two features: the ability to differentiate along different lineages and the ability of self-renewal. Two major types of stem cells have been described, namely, embryonic stem cells and adult stem cells. Embryonic stem cells (ESC) are obtained from the inner cell mass of the blastocyst and are associated with tumorigenesis, and the use of human ESCs involves ethical and legal considerations. The use of adult mesenchymal stem cells is less problematic with regard to these issues. Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as umbilical cord, endometrial polyps, menses blood, bone marrow, adipose tissue, etc. This is because the ease of harvest and quantity obtained make these sources most practical for experimental and possible clinical applications. Recently, MSCs have been found in new sources, such as menstrual blood and endometrium. There are likely more sources of MSCs waiting to be discovered, and MSCs may be a good candidate for future experimental or clinical applications. One of the major challenges is to elucidate the mechanisms of differentiation, mobilization, and homing of MSCs, which are highly complex. The multipotent properties of MSCs make them an attractive choice for possible development of clinical applications. Future studies should explore the role of MSCs in differentiation, transplantation, and immune response in various diseases. PMID:21396235

  19. Progressive alopecia reveals decreasing stem cell activation probability during aging of mice with epidermal deletion of DNA methyltransferase 1.

    PubMed

    Li, Ji; Jiang, Ting-Xin; Hughes, Michael W; Wu, Ping; Yu, Juehua; Widelitz, Randall B; Fan, Guoping; Chuong, Cheng-Ming

    2012-12-01

    To examine the roles of epigenetic modulation on hair follicle regeneration, we generated mice with a K14-Cre-mediated loss of DNA methyltransferase 1 (DNMT1). The mutant shows an uneven epidermal thickness and alterations in hair follicle size. When formed, hair follicle architecture and differentiation appear normal. Hair subtypes exist but hair fibers are shorter and thinner. Hair numbers appear normal at birth but gradually decrease to <50% of control in 1-year-old mice. Sections of old mutant skin show follicles in prolonged telogen with hyperplastic sebaceous glands. Anagen follicles in mutants exhibit decreased proliferation and increased apoptosis in matrix transient-amplifying cells. Although K15-positive stem cells in the mutant bulge are comparable in number to the control, their ability to proliferate and become activated to form a hair germ is reduced. As mice age, residual DNMT activity declines further, and the probability of successful anagen reentry decreases, leading to progressive alopecia. Paradoxically, there is increased proliferation in the epidermis, which also shows aberrant differentiation. These results highlight the importance of DNA methylation in maintaining stem cell homeostasis during the development and regeneration of ectodermal organs. PMID:22763785

  20. A Synthetic Polymer Scaffold Reveals the Self-Maintenance Strategies of Rat Glioma Stem Cells by Organization of the Advantageous Niche.

    PubMed

    Tabu, Kouichi; Muramatsu, Nozomi; Mangani, Christian; Wu, Mei; Zhang, Rong; Kimura, Taichi; Terashima, Kazuo; Bizen, Norihisa; Kimura, Ryosuke; Wang, Wenqian; Murota, Yoshitaka; Kokubu, Yasuhiro; Nobuhisa, Ikuo; Kagawa, Tetsushi; Kitabayashi, Issay; Bradley, Mark; Taga, Tetsuya

    2016-05-01

    Cancer stem cells (CSCs) are believed to be maintained within a microenvironmental niche. Here we used polymer microarrays for the rapid and efficient identification of glioma CSC (GSC) niche mimicries and identified a urethane-based synthetic polymer, upon which two groups of niche components, namely extracellular matrices (ECMs) and iron are revealed. In cultures, side population (SP) cells, defined as GSCs in the rat C6 glioma cell line, are more efficiently sustained in the presence of their differentiated progenies expressing higher levels of ECMs and transferrin, while in xenografts, ECMs are supplied by the vascular endothelial cells (VECs), including SP cell-derived ones with distinctively greater ability to retain xenobiotics than host VECs. Iron is stored in tumor infiltrating host macrophages (Mφs), whose protumoral activity is potently enhanced by SP cell-secreted soluble factor(s). Finally, coexpression of ECM-, iron-, and Mφ-related genes is found to be predictive of glioma patients' outcome. Our polymer-based approach reveals the intrinsic capacities of GSCs, to adapt the environment to organize a self-advantageous microenvironment niche, for their maintenance and expansion, which redefines the current concept of anti-CSC niche therapy and has the potential to accelerate cancer therapy development. Stem Cells 2016;34:1151-1162. PMID:26822103

  1. Single-cell RNA-seq reveals activation of unique gene groups as a consequence of stem cell-parenchymal cell fusion.

    PubMed

    Freeman, Brian T; Jung, Jangwook P; Ogle, Brenda M

    2016-01-01

    Fusion of donor mesenchymal stem cells with parenchymal cells of the recipient can occur in the brain, liver, intestine and heart following transplantation. The therapeutic benefit or detriment of resultant hybrids is unknown. Here we sought a global view of phenotypic diversification of mesenchymal stem cell-cardiomyocyte hybrids and associated time course. Using single-cell RNA-seq, we found hybrids consistently increase ribosome components and decrease genes associated with the cell cycle suggesting an increase in protein production and decrease in proliferation to accommodate the fused state. But in the case of most other gene groups, hybrids were individually distinct. In fact, though hybrids can express a transcriptome similar to individual fusion partners, approximately one-third acquired distinct expression profiles in a single day. Some hybrids underwent reprogramming, expressing pluripotency and cardiac precursor genes latent in parental cells and associated with developmental and morphogenic gene groups. Other hybrids expressed genes associated with ontologic cancer sets and two hybrids of separate experimental replicates clustered with breast cancer cells, expressing critical oncogenes and lacking tumor suppressor genes. Rapid transcriptional diversification of this type garners consideration in the context of cellular transplantation to damaged tissues, those with viral infection or other microenvironmental conditions that might promote fusion. PMID:26997336

  2. Single-cell RNA-seq reveals activation of unique gene groups as a consequence of stem cell-parenchymal cell fusion

    PubMed Central

    Freeman, Brian T.; Jung, Jangwook P.; Ogle, Brenda M.

    2016-01-01

    Fusion of donor mesenchymal stem cells with parenchymal cells of the recipient can occur in the brain, liver, intestine and heart following transplantation. The therapeutic benefit or detriment of resultant hybrids is unknown. Here we sought a global view of phenotypic diversification of mesenchymal stem cell-cardiomyocyte hybrids and associated time course. Using single-cell RNA-seq, we found hybrids consistently increase ribosome components and decrease genes associated with the cell cycle suggesting an increase in protein production and decrease in proliferation to accommodate the fused state. But in the case of most other gene groups, hybrids were individually distinct. In fact, though hybrids can express a transcriptome similar to individual fusion partners, approximately one-third acquired distinct expression profiles in a single day. Some hybrids underwent reprogramming, expressing pluripotency and cardiac precursor genes latent in parental cells and associated with developmental and morphogenic gene groups. Other hybrids expressed genes associated with ontologic cancer sets and two hybrids of separate experimental replicates clustered with breast cancer cells, expressing critical oncogenes and lacking tumor suppressor genes. Rapid transcriptional diversification of this type garners consideration in the context of cellular transplantation to damaged tissues, those with viral infection or other microenvironmental conditions that might promote fusion. PMID:26997336

  3. Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming

    PubMed Central

    Quinlan, Aaron R.; Boland, Michael J.; Leibowitz, Mitchell L.; Shumilina, Svetlana; Pehrson, Sidney M.; Baldwin, Kristin K.; Hall, Ira M.

    2014-01-01

    SUMMARY The biomedical utility of induced pluripotent stem cells (iPSCs) will be diminished if most iPSC lines harbor deleterious genetic mutations. Recent microarray studies have shown that human iPSCs carry elevated levels of DNA copy number variation compared to embryonic stem cells, suggesting that these and other classes of genomic structural variation (SV) including inversions, smaller duplications and deletions, complex rearrangements and retroelement transpositions may frequently arise as a consequence of reprogramming. Here we employ whole genome paired-end DNA sequencing and sensitive mapping algorithms to identify all classes of SV in several fully pluripotent mouse iPSC lines. Despite the improved scope and resolution of this study, we find few spontaneous mutations per line (1–2) and no evidence for endogenous retroelement transposition. These results show that genome stability can persist throughout reprogramming, and argue that it is possible to generate iPSCs lacking gene disrupting mutations using current reprogramming methods. PMID:21982236

  4. Epithelial stem cells.

    PubMed

    Draheim, Kyle M; Lyle, Stephen

    2011-01-01

    It is likely that adult epithelial stem cells will be useful in the treatment of diseases, such as ectodermal dysplasias, monilethrix, Netherton syndrome, Menkes disease, hereditary epidermolysis bullosa, and alopecias. Additionally, other skin problems such as burn wounds, chronic wounds, and ulcers will benefit from stem cell-related therapies. However, there are many questions that need to be answered before this goal can be realized. The most important of these questions is what regulates the adhesion of stem cells to the niche versus migration to the site of injury. We have started to identify the mechanisms involved in this decision-making process. PMID:21618097

  5. Histone modification profiling reveals differential signatures associated with human embryonic stem cell self-renewal and differentiation.

    PubMed

    Bhanu, Natarajan V; Sidoli, Simone; Garcia, Benjamin A

    2016-02-01

    In this study, we trace developmental stages using epigenome changes in human embryonic stem cells (hESCs) treated with drugs modulating either self-renewal or differentiation. Based on microscopy, qPCR and flow cytometry, we classified the treatment outcome as inducing pluripotency (hESC, flurbiprofen and gatifloxacin), mesendoderm (sinomenine), differentiation (cyamarin, digoxin, digitoxin, selegeline and theanine) and lineage-commitment (RA). When we analyzed histone PTMs that imprinted these gene and protein expressions, the above classification was reassorted. Hyperacetylation at H3K4, 9, 14, 18, 56 and 122 as well as H4K5, 8, 12 and 16 emerged as the pluripotency signature of hESCs. Methylations especially of H3 at K9, K20, K27 and K36 characterized differentiation initiation as seen in no-drug control and fluribiprofen. Sinomenine-treated cells clustered close to "differentiation initiators", consistent with flow cytometry where it induced mesendoderm, along with cyamarin and possibly selegnine. Neurectoderm, induced by RA and theanine manifested methylations on H3 shifts to H3.3. By both flow cytometry and histone PTM clustering, it appears that cells treated with gatifloxacin, flurbiprofen, digitoxin and digoxin were not yet lineage-committed or mixed cell types. Taken together, our moderate-throughput histone PTM profiling approach highlighted subtle epigenetic signatures that permitted us to predict divergent lineage progression even in differentiating cells with similar phenotype and gene expression. PMID:26631989

  6. Histone modification profiling reveals differential signatures associated with human embryonic stem cell self-renewal and differentiation

    PubMed Central

    Bhanu, Natarajan V.; Sidoli, Simone; Garcia, Benjamin A.

    2016-01-01

    In this study, we trace developmental stages using epigenome changes in human embryonic stem cells (hESCs) treated with drugs modulating either self-renewal or differentiation. Based on microscopy, qPCR and flow cytometry, we classified the treatment outcome as inducing pluripotency (hESC, flurbiprofen and gatifloxacin), mesendoderm (sinomenine), differentiation (cyamarin, digoxin, digitoxin, selegeline and theanine) and lineage-commitment (RA). When we analyzed histone PTMs that imprinted these gene and protein expressions, the above classification was reassorted. Hyperacetylation at H3K4, 9, 14, 18, 56 and 122 as well as H4K5, 8, 12 and 16 emerged as the pluripotency signature of hESCs. Methylations especially of H3 at K9, K20, K27 and K36 characterized differentiation initiation as seen in no-drug control and fluribiprofen. Sinomenine-treated cells clustered close to “differentiation initiators”, consistent with flow cytometry where it induced mesendoderm, along with cyamarin and possibly selegnine. Neurectoderm, induced by RA and theanine manifested methylations on H3 shifts to H3.3. By both flow cytometry and histone PTM clustering, it appears that cells treated with gatifloxacin, flurbiprofen, digitoxin and digoxin were not yet lineage-committed or mixed cell types. Taken together, our moderate-throughput histone PTM profiling approach highlighted subtle epigenetic signatures that permitted us to predict divergent lineage progression even in differentiating cells with similar phenotype and gene expression. PMID:26631989

  7. Systems level approach reveals the correlation of endoderm differentiation of mouse embryonic stem cells with specific microstructural cues of fibrin gels

    PubMed Central

    Task, Keith; D'Amore, Antonio; Singh, Satish; Candiello, Joe; Jaramillo, Maria; Wagner, William R.; Kumta, Prashant; Banerjee, Ipsita

    2014-01-01

    Stem cells receive numerous cues from their associated substrate that help to govern their behaviour. However, identification of influential substrate characteristics poses difficulties because of their complex nature. In this study, we developed an integrated experimental and systems level modelling approach to investigate and identify specific substrate features influencing differentiation of mouse embryonic stem cells (mESCs) on a model fibrous substrate, fibrin. We synthesized a range of fibrin gels by varying fibrinogen and thrombin concentrations, which led to a range of substrate stiffness and microstructure. mESCs were cultured on each of these gels, and characterization of the differentiated cells revealed a strong influence of substrate modulation on gene expression patterning. To identify specific substrate features influencing differentiation, the substrate microstructure was quantified by image analysis and correlated with stem cell gene expression patterns using a statistical model. Significant correlations were observed between differentiation and microstructure features, specifically fibre alignment. Furthermore, this relationship occurred in a lineage-specific manner towards endoderm. This systems level approach allows for identification of specific substrate features from a complex material which are influential to cellular behaviour. Such analysis may be effective in guiding the design of scaffolds with specific properties for tissue engineering applications. PMID:24718448

  8. SMOOTH MUSCLE STEM CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular smooth muscle cells (SMCs) originate from multiple types of progenitor cells. In the embryo, the most well-studied SMC progenitor is the cardiac neural crest stem cell. Smooth muscle differentiation in the neural crest lineage is controlled by a combination of cell intrinsic factors, includ...

  9. Burning Fat Fuels Leukemic Stem Cell Heterogeneity.

    PubMed

    Thomas, Daniel; Majeti, Ravindra

    2016-07-01

    Obese leukemia patients exhibit reduced survival after chemotherapy, suggesting an important role of adipose tissue in disease progression. In this issue of Cell Stem Cell, Ye et al. (2016) reveal metabolic heterogeneity in leukemic stem cell (LSC) subpopulations and show that chemotherapy-resistant CD36+ LSCs co-opt gonadal adipose tissue to support their metabolism and survival. PMID:27392217

  10. Stem cell tracking with optically active nanoparticles

    PubMed Central

    Gao, Yu; Cui, Yan; Chan, Jerry KY; Xu, Chenjie

    2013-01-01

    Stem-cell-based therapies hold promise and potential to address many unmet clinical needs. Cell tracking with modern imaging modalities offers insight into the underlying biological process of the stem-cell-based therapies, with the goal to reveal cell survival, migration, homing, engraftment, differentiation, and functions. Adaptability, sensitivity, resolution, and non-invasiveness have contributed to the longstanding use of optical imaging for stem cell tracking and analysis. To identify transplanted stem cells from the host tissue, optically active probes are usually used to label stem cells before the administration. In comparison to the traditional fluorescent probes like fluorescent proteins and dyes, nanoparticle-based probes are advantageous in terms of the photo-stabilities and minimal changes to the cell phenotype. The main focus here is to overview the recent development of optically active nanoparticles for stem cells tracking. The related optical imaging modalities include fluorescence imaging, photoacoustic imaging, Raman and surface enhanced Raman spectroscopy imaging. PMID:23638335

  11. Aneuploidy in stem cells

    PubMed Central

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to reality. However, as somatic cells might have accumulated various chromosomal abnormalities, including aneuploidies throughout their lives, the resulting IPSCs might no longer carry the perfect blueprint for the tissue to be generated, or worse, become at risk of adopting a malignant fate. In this review, we discuss the contribution of aneuploidy to healthy tissues and how aneuploidy can lead to disease. Furthermore, we review the differences between how somatic cells and stem cells respond to aneuploidy. PMID:27354891

  12. Functional screen reveals essential roles of miR-27a/24 in differentiation of embryonic stem cells

    PubMed Central

    Ma, Yanni; Yao, Nan; Liu, Guang; Dong, Lei; Liu, Yufang; Zhang, Meili; Wang, Fang; Wang, Bin; Wei, Xueju; Dong, He; Wang, Lanlan; Ji, Shaowei; Zhang, Junwu; Wang, Yangming; Huang, Yue; Yu, Jia

    2015-01-01

    MicroRNAs play important roles in controlling the embryonic stem cell (ESC) state. Although much is known about microRNAs maintaining ESC state, microRNAs that are responsible for promoting ESC differentiation are less reported. Here, by screening 40 microRNAs pre-selected by their expression patterns and predicted targets in Dgcr8-null ESCs, we identify 14 novel differentiation-associated microRNAs. Among them, miR-27a and miR-24, restrained by c-Myc in ESC, exert their roles of silencing self-renewal through directly targeting several important pluripotency-associated factors, such as Oct4, Foxo1 and Smads. CRISPR/Cas9-mediated knockout of all miR-27/24 in ESCs leads to serious deficiency in ESC differentiation in vitro and in vivo. Moreover, depleting of them in mouse embryonic fibroblasts can evidently promote somatic cell reprogramming. Altogether, our findings uncover the essential role of miR-27 and miR-24 in ESC differentiation and also demonstrate novel microRNAs responsible for ESC differentiation. PMID:25519956

  13. Dental pulp stem cells

    PubMed Central

    Ashri, Nahid Y.; Ajlan, Sumaiah A.; Aldahmash, Abdullah M.

    2015-01-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors. PMID:26620980

  14. Cytostatic Effect of Repeated Exposure to Simvastatin: A Mechanism for Chronic Myotoxicity Revealed by the Use of Mesodermal Progenitors Derived from Human Pluripotent Stem Cells.

    PubMed

    Peric, Delphine; Barragan, Isabel; Giraud-Triboult, Karine; Egesipe, Anne-Laure; Meyniel-Schicklin, Laurène; Cousin, Christelle; Lotteau, Vincent; Petit, Vincent; Touhami, Jawida; Battini, Jean-Luc; Sitbon, Marc; Pinset, Christian; Ingelman-Sundberg, Magnus; Laustriat, Delphine; Peschanski, Marc

    2015-10-01

    Statin treatment of hypercholesterolemia can lead to chronic myotoxicity which is, in most cases, alleviated by drug withdrawal. Cellular and molecular mechanisms of this adverse effect have been elusive, in particular because of the lack of in vitro models suitable for long-term exposures. We have taken advantage of the properties of human pluripotent stem cell-derived mesodermal precursors, that can be maintained unaltered in vitro for a long period of time, to develop a model of repeated exposures to simvastatin during more than 2 weeks. This approach unveiled major differences, both in functional and molecular terms, in response to single versus repeated-dose exposures to simvastatin. The main functional effect of the in vitro simvastatin-induced long-term toxicity was a loss of proliferative capacity in the absence of concomitant cell death, revealing that cytostatic effect could be a major contributor to statin-induced myotoxicity. Comparative analysis of molecular modifications induced by simvastatin short-term versus prolonged exposures demonstrated powerful adaptive cell responses, as illustrated by the dramatic decrease in the number of differentially expressed genes, distinct biological pathway enrichments, and distinct patterns of nutrient transporters expressed at the cell surface. This study underlines the potential of derivatives of human pluripotent stem cells for developing new approaches in toxicology, in particular for chronic toxicity testing. PMID:26184566

  15. Reversing breast cancer stem cell into breast somatic stem cell.

    PubMed

    Wijaya, L; Agustina, D; Lizandi, A O; Kartawinata, M M; Sandra, F

    2011-02-01

    Stem cells have an important role in cell biology, allowing tissues to be renewed by freshly created cells throughout their lifetime. The specific micro-environment of stem cells is called stem cell niche; this environment influences the development of stem cells from quiescence through stages of differentiation. Recent advance researches have improved the understanding of the cellular and molecular components of the micro-environment--or niche--that regulates stem cells. We point out an important trend to the study of niche activity in breast cancers. Breast cancer has long been known to conserve a heterogeneous population of cells. While the majority of cells that make up tumors are destined to differentiate and eventually stop dividing, only minority populations of cells, termed cancer stem cell, possess extensive self renewal capability. These cancer stem cells possess characteristics of both stem cells and cancer cells. Breast cancer stem cells reversal to breast somatic stem cells offer a new therapy, that not only can stop the spread of breast cancer cells, but also can differentiate breast cancer stem cells into normal breast somatic stem cells. These can replace damaged breast tissue. Nevertheless, the complexity of realizing this therapy approach needs further research. PMID:21044008

  16. Stem Cell Research

    SciTech Connect

    Verfaillie, Catherine

    2009-01-23

    We have identified a population of primitive cells in normal human post-natal bone marrow that can, at the single cell level, differentiate in many ways and also proliferate extensively. These cells can differentiate in vitro into most mesodermal cell types (for example, bone cells, and others), as well as cells into cells of the nervous system. The finding that stem cells exist in post-natal tissues with previously unknown proliferation and differentiation potential opens up the possibility of using them to treat a host of degenerative, traumatic or congenital diseases.

  17. Stem Cell Research

    SciTech Connect

    Verfaillie, Catherine

    2002-01-23

    We have identified a population of primitive cells in normal human post-natal bone marrow that can, at the single cell level, differentiate in many ways and also proliferate extensively. These cells can differentiate in vitro into most mesodermal cell types (for example, bone cells, and others), as well as cells into cells of the nervous system. The finding that stem cells exist in post-natal tissues with previously unknown proliferation and differentiation potential opens up the possibility of using them to treat a host of degenerative, traumatic or congenital diseases.

  18. Catalyzing stem cell research.

    PubMed

    Willemse, Lisa; Lyall, Drew; Rudnicki, Michael

    2008-09-01

    In 2001, the Stem Cell Network was the first of its kind, a bold initiative to forge and nurture pan-Canadian collaborations involving researchers, engineers, clinicians and private and public sector partners. Canada's broad and deep pool of stem cell talent proved to be a fertile ground for such an initiative, giving rise to a strong, thriving network that, 7 years later, can list innovative cell expansion and screening technologies, early-phase clinical trials for stroke, pulmonary hypertension, muscular dystrophy and cornea replacement, and leading discourse on ethical, legal and social issues among its accomplishments. As it moves into its second and final phase of funding, the Stem Cell Network continues to push boundaries and has set its sights on overcoming the obstacles that impede the transfer of research findings to clinical applications, commercial products and public policy. PMID:18729799

  19. Functional Glycomic Analysis of Human Milk Glycans Reveals the Presence of Virus Receptors and Embryonic Stem Cell Biomarkers*

    PubMed Central

    Yu, Ying; Mishra, Shreya; Song, Xuezheng; Lasanajak, Yi; Bradley, Konrad C.; Tappert, Mary M.; Air, Gillian M.; Steinhauer, David A.; Halder, Sujata; Cotmore, Susan; Tattersall, Peter; Agbandje-McKenna, Mavis; Cummings, Richard D.; Smith, David F.

    2012-01-01

    Human milk contains a large diversity of free glycans beyond lactose, but their functions are not well understood. To explore their functional recognition, here we describe a shotgun glycan microarray prepared from isolated human milk glycans (HMGs), and our studies on their recognition by viruses, antibodies, and glycan-binding proteins (GBPs), including lectins. The total neutral and sialylated HMGs were derivatized with a bifunctional fluorescent tag, separated by multidimensional HPLC, and archived in a tagged glycan library, which was then used to print a shotgun glycan microarray (SGM). This SGM was first interrogated with well defined GBPs and antibodies. These data demonstrated both the utility of the array and provided preliminary structural information (metadata) about this complex glycome. Anti-TRA-1 antibodies that recognize human pluripotent stem cells specifically recognized several HMGs that were then further structurally defined as novel epitopes for these antibodies. Human influenza viruses and Parvovirus Minute Viruses of Mice also specifically recognized several HMGs. For glycan sequencing, we used a novel approach termed metadata-assisted glycan sequencing (MAGS), in which we combine information from analyses of glycans by mass spectrometry with glycan interactions with defined GBPs and antibodies before and after exoglycosidase treatments on the microarray. Together, these results provide novel insights into diverse recognition functions of HMGs and show the utility of the SGM approach and MAGS as resources for defining novel glycan recognition by GBPs, antibodies, and pathogens. PMID:23115247

  20. Transcriptomic Analysis of Purified Embryonic Neural Stem Cells from Zebrafish Embryos Reveals Signaling Pathways Involved in Glycine-Dependent Neurogenesis

    PubMed Central

    Samarut, Eric; Bekri, Abdelhamid; Drapeau, Pierre

    2016-01-01

    How is the initial set of neurons correctly established during the development of the vertebrate central nervous system? In the embryo, glycine and GABA are depolarizing due the immature chloride gradient, which is only reversed to become hyperpolarizing later in post-natal development. We previously showed that glycine regulates neurogenesis via paracrine signaling that promotes calcium transients in neural stem cells (NSCs) and their differentiation into interneurons within the spinal cord of the zebrafish embryo. However, the subjacent molecular mechanisms are not yet understood. Our previous work suggests that early neuronal progenitors were not differentiating correctly in the developing spinal cord. As a result, we aimed at identifying the downstream molecular mechanisms involved specifically in NSCs during glycine-dependent embryonic neurogenesis. Using a gfap:GFP transgenic line, we successfully purified NSCs by fluorescence-activated cell sorting from whole zebrafish embryos and in embryos in which the glycine receptor was knocked down. The strength of this approach is that it focused on the NSC population while tackling the biological issue in an in vivo context in whole zebrafish embryos. After sequencing the transcriptome by RNA-sequencing, we analyzed the genes whose expression was changed upon disruption of glycine signaling and we confirmed the differential expression by independent RTqPCR assay. While over a thousand genes showed altered expression levels, through pathway analysis we identified 14 top candidate genes belonging to five different canonical signaling pathways (signaling by calcium, TGF-beta, sonic hedgehog, Wnt, and p53-related apoptosis) that are likely to mediate the promotion of neurogenesis by glycine. PMID:27065799

  1. Preconditioning Stem Cells for In Vivo Delivery

    PubMed Central

    Sart, Sébastien; Ma, Teng

    2014-01-01

    Abstract Stem cells have emerged as promising tools for the treatment of incurable neural and heart diseases and tissue damage. However, the survival of transplanted stem cells is reported to be low, reducing their therapeutic effects. The major causes of poor survival of stem cells in vivo are linked to anoikis, potential immune rejection, and oxidative damage mediating apoptosis. This review investigates novel methods and potential molecular mechanisms for stem cell preconditioning in vitro to increase their retention after transplantation in damaged tissues. Microenvironmental preconditioning (e.g., hypoxia, heat shock, and exposure to oxidative stress), aggregate formation, and hydrogel encapsulation have been revealed as promising strategies to reduce cell apoptosis in vivo while maintaining biological functions of the cells. Moreover, this review seeks to identify methods of optimizing cell dose preparation to enhance stem cell survival and therapeutic function after transplantation. PMID:25126478

  2. Mesenchymal stem cells from osteoporotic patients reveal reduced migration and invasion upon stimulation with BMP-2 or BMP-7.

    PubMed

    Haasters, Florian; Docheva, Denitsa; Gassner, Christoph; Popov, Cvetan; Böcker, Wolfgang; Mutschler, Wolf; Schieker, Matthias; Prall, Wolf Christian

    2014-09-12

    Fractures to the osteoporotic bone feature a delay in callus formation and reduced enchondral ossification. Human mesenchymal stem cells (hMSC), the cellular source of fracture healing, are recruited to the fracture site by cytokines, such as BMP-2 and BMP-7. Aim of the study was to scrutinize hMSC for osteoporosis associated alterations in BMP mediated migration and invasion as well as in extracellular matrix (ECM) binding integrin expression. HMSC were isolated from 18 healthy or osteoporotic donors. Migration was assessed using a collagen IV coated micro-slide linear gradient chamber and time-lapse microscopy. Invasion was analyzed utilizing an ECM coated transmembrane invasion assay. Quantitative real-time RT PCR was performed for the ECM binding integrins α1, α2, α3, α4, α5, α11, αv and β1. HMSC from osteoporotic patients showed a significant increase of migration upon BMP-2 or FCS stimulation, as well as a significant increase of invasion upon BMP-2, BMP-7 or FCS stimulation. Nevertheless, the migration and invasion capacity was significantly decreased compared to healthy controls. Out of all integrins analyzed, collagen binding integrin α2 was significantly downregulated in hMSC from osteoporotic patients. In conclusion, we here demonstrate for the first time osteoporosis associated alterations in BMP mediated hMSC recruitment. These findings may underlie the reduced healing of osteoporotic fractures. Nevertheless, the maintained migration and invasion response upon BMP stimulation illustrates the therapeutic potential of these clinically approved substances in the treatment of osteoporotic fractures. Another therapeutic target may be the downregulation of the collagen binding integrin α2 in hMSC from osteoporotic patients. PMID:25152406

  3. Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells.

    PubMed

    Han, Lina; Qiu, Peng; Zeng, Zhihong; Jorgensen, Jeffrey L; Mak, Duncan H; Burks, Jared K; Schober, Wendy; McQueen, Teresa J; Cortes, Jorge; Tanner, Scott D; Roboz, Gail J; Kantarjian, Hagop M; Kornblau, Steven M; Guzman, Monica L; Andreeff, Michael; Konopleva, Marina

    2015-04-01

    Understanding the unique phenotypes and complex signaling pathways of leukemia stem cells (LSCs) will provide insights and druggable targets that can be used to eradicate acute myeloid leukemia (AML). Current work on AML LSCs is limited by the number of parameters that conventional flow cytometry (FCM) can analyze because of cell autofluorescence and fluorescent dye spectral overlap. Single-cell mass cytometry (CyTOF) substitutes rare earth elements for fluorophores to label antibodies, which allows measurements of up to 120 parameters in single cells without correction for spectral overlap. The aim of this study was the evaluation of intracellular signaling in antigen-defined stem/progenitor cell subsets in primary AML. CyTOF and conventional FCM yielded comparable results on LSC phenotypes defined by CD45, CD34, CD38, CD123, and CD99. Intracellular phosphoprotein responses to ex vivo cell signaling inhibitors and cytokine stimulation were assessed in myeloid leukemia cell lines and one primary AML sample. CyTOF and conventional FCM results were confirmed by western blotting. In the primary AML sample, we investigated the cell responses to ex vivo stimulation with stem cell factor and BEZ235-induced inhibition of PI3K and identified activation patterns in multiple PI3K downstream signaling pathways including p-4EBP1, p-AKT, and p-S6, particularly in CD34(+) subsets. We evaluated multiple signaling pathways in antigen-defined subpopulations in primary AML cells with FLT3-ITD mutations. The data demonstrated the heterogeneity of cell phenotype distribution and distinct patterns of signaling activation across AML samples and between AML and normal samples. The mTOR targets p-4EBP1 and p-S6 were exclusively found in FLT3-ITD stem/progenitor cells, but not in their normal counterparts, suggesting both as novel targets in FLT3 mutated AML. Our data suggest that CyTOF can identify functional signaling pathways in antigen-defined subpopulations in primary AML, which may

  4. Single-cell mass cytometry reveals intracellular survival/proliferative signaling in FLT3-ITD-mutated AML stem/progenitor cells

    PubMed Central

    Han, Lina; Qiu, Peng; Zeng, Zhihong; Jorgensen, Jeffrey L; Mak, Duncan H; Burks, Jared K; Schober, Wendy; McQueen, Teresa J; Cortes, Jorge; Tanner, Scott D; Roboz, Gail J; Kantarjian, Hagop M; Kantarjian, Hagop M; Kornblau, Steven M; Guzman, Monica L; Andreeff, Michael; Konopleva, Marina

    2015-01-01

    Understanding the unique phenotypes and complex signaling pathways of leukemia stem cells (LSCs) will provide insights and druggable targets that can be used to eradicate acute myeloid leukemia (AML). Current work on AML LSCs is limited by the number of parameters that conventional flow cytometry (FCM) can analyze because of cell autofluorescence and fluorescent dye spectral overlap. Single-cell mass cytometry (CyTOF) substitutes rare earth elements for fluorophores to label antibodies, which allows measurements of up to 120 parameters in single cells without correction for spectral overlap. The aim of this study was the evaluation of intracellular signaling in antigen-defined stem/progenitor cell subsets in primary AML. CyTOF and conventional FCM yielded comparable results on LSC phenotypes defined by CD45, CD34, CD38, CD123, and CD99. Intracellular phosphoprotein responses to ex vivo cell signaling inhibitors and cytokine stimulation were assessed in myeloid leukemia cell lines and one primary AML sample. CyTOF and conventional FCM results were confirmed by western blotting. In the primary AML sample, we investigated the cell responses to ex vivo stimulation with stem cell factor (SCF) and BEZ235-induced inhibition of PI3K and identified activation patterns in multiple PI3K downstream signaling pathways including p-4EBP1, p-AKT, and p-S6, particularly in CD34+ subsets. We evaluated multiple signaling pathways in antigen-defined subpopulations in primary AML cells with FLT3-ITD mutations. The data demontrated the heterogeneity of cell phenotype distribution and distinct patterns of signaling activation across AML samples and between AML and normal samples. The mTOR targets p-4EBP1 and p-S6 were exclusively found in FLT3-ITD stem/progenitor cells, but not in their normal counterparts, suggesting both as novel targets in FLT3 mutated AML. Our data suggest that CyTOF can identify functional signaling pathways in antigen-defined subpopulations in primary AML, which

  5. A Multi-Lineage Screen Reveals mTORC1 Inhibition Enhances Human Pluripotent Stem Cell Mesendoderm and Blood Progenitor Production.

    PubMed

    Nazareth, Emanuel Joseph Paul; Rahman, Nafees; Yin, Ting; Zandstra, Peter William

    2016-05-10

    Human pluripotent stem cells (hPSCs) exist in heterogeneous micro-environments with multiple subpopulations, convoluting fate-regulation analysis. We patterned hPSCs into engineered micro-environments and screened responses to 400 small-molecule kinase inhibitors, measuring yield and purity outputs of undifferentiated, neuroectoderm, mesendoderm, and extra-embryonic populations. Enrichment analysis revealed mammalian target of rapamycin (mTOR) inhibition as a strong inducer of mesendoderm. Dose responses of mTOR inhibitors such as rapamycin synergized with Bone Morphogenetic protein 4 (BMP4) and activin A to enhance the yield and purity of BRACHYURY-expressing cells. Mechanistically, small interfering RNA knockdown of RAPTOR, a component of mTOR complex 1, phenocopied the mesendoderm-enhancing effects of rapamycin. Functional analysis during mesoderm and endoderm differentiation revealed that mTOR inhibition increased the output of hemogenic endothelial cells 3-fold, with a concomitant enhancement of blood colony-forming cells. These data demonstrate the power of our multi-lineage screening approach and identify mTOR signaling as a node in hPSC differentiation to mesendoderm and its derivatives. PMID:27132889

  6. Materials as stem cell regulators

    NASA Astrophysics Data System (ADS)

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-06-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.

  7. Materials as stem cell regulators

    PubMed Central

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-01-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine. PMID:24845994

  8. A Functional Role of RB-Dependent Pathway in the Control of Quiescence in Adult Epidermal Stem Cells Revealed by Genomic Profiling

    PubMed Central

    Lorz, Corina; García-Escudero, Ramón; Segrelles, Carmen; Garín, Marina I.; Ariza, José M.; Santos, Mirentxu; Ruiz, Sergio; Lara, María F.; Martínez-Cruz, Ana B.; Costa, Clotilde; Buitrago-Pérez, Águeda; Saiz-Ladera, Cristina; Dueñas, Marta

    2010-01-01

    Continuous cell renewal in mouse epidermis is at the expense of a pool of pluripotent cells that lie in a well defined niche in the hair follicle known as the bulge. To identify mechanisms controlling hair follicle stem cell homeostasis, we developed a strategy to isolate adult bulge stem cells in mice and to define their transcriptional profile. We observed that a large number of transcripts are underexpressed in hair follicle stem cells when compared to non-stem cells. Importantly, the majority of these downregulated genes are involved in cell cycle. Using bioinformatics tools, we identified the E2F transcription factor family as a potential element involved in the regulation of these transcripts. To determine their functional role, we used engineered mice lacking Rb gene in epidermis, which showed increased expression of most E2F family members and increased E2F transcriptional activity. Experiments designed to analyze epidermal stem cell functionality (i.e.: hair regrowth and wound healing) imply a role of the Rb-E2F axis in the control of stem cell quiescence in epidermis. Electronic supplementary material The online version of this article (doi:10.1007/s12015-010-9139-0) contains supplementary material, which is available to authorized users. PMID:20376578

  9. [Mesenchymal stem cells. A review.].

    PubMed

    Sigurjónsson, O E; Guðmundsson, K O; Guðmundsson, S

    2001-01-01

    The bone marrow contains various types of stem cells. Among them are hematopoietic stem cells, which are the precursors of all blood cells, and mesenchymal stem cells. Mesenchymal stem cells have recently received a lot of attention in biological research because of their capability to self renewal, to expand and transdifferentiate into many different cell types; bone cells, adipocytes, chondrocytes, tendocytes, neural cells and stromal cells of the bone marrow. Mesenchymal stem cells can be cultured in vitro although their differentiation potential is not yet fully understood. Several experiments have been conducted in animal models where mesenchymal stem cells have been transplanted in order to enhance hematopoiesis or to facilitate the repair of mesenchymal tissue. Similar experiments are being conducted in humans. Mesenchymal stem cells are believed to be able to enhance hematopoietic stem cells transplantation by rebuilding the bone marrow microenvironment which is damaged after radiation- and/or chemotherapy. Mesenchymal stem cells are promising as vehicles for gene transfer and therapy. It may prove possible to tranduce them with a gene coding for a defective protein i.e. collagen I in osteogenesis imperfecta. The cells could then be expanded ex vivo and transplanted to the patients where they home to the bone marrow, differentiate and produce the intact protein. Future medicine will probably involve mesenchymal stem cells in various treatment settings. PMID:17018999

  10. Dental mesenchymal stem cells.

    PubMed

    Sharpe, Paul T

    2016-07-01

    Mammalian teeth harbour mesenchymal stem cells (MSCs), which contribute to tooth growth and repair. These dental MSCs possess many in vitro features of bone marrow-derived MSCs, including clonogenicity, expression of certain markers, and following stimulation, differentiation into cells that have the characteristics of osteoblasts, chondrocytes and adipocytes. Teeth and their support tissues provide not only an easily accessible source of MSCs but also a tractable model system to study their function and properties in vivo In addition, the accessibility of teeth together with their clinical relevance provides a valuable opportunity to test stem cell-based treatments for dental disorders. This Review outlines some recent discoveries in dental MSC function and behaviour and discusses how these and other advances are paving the way for the development of new biologically based dental therapies. PMID:27381225

  11. Profiling of Discrete Gynecological Cancers Reveals Novel Transcriptional Modules and Common Features Shared by Other Cancer Types and Embryonic Stem Cells

    PubMed Central

    Jacob-Hirsch, Jasmine; Amariglio, Ninette; Vlachos, George D.; Loutradis, Dimitrios; Anagnou, Nicholas P.

    2015-01-01

    Studies on individual types of gynecological cancers (GCs), utilizing novel expression technologies, have revealed specific pathogenetic patterns and gene markers for cervical (CC), endometrial (EC) and vulvar cancer (VC). Although the clinical phenotypes of the three types of gynecological cancers are discrete, the fact they originate from a common embryological origin, has led to the hypothesis that they might share common features reflecting regression to early embryogenesis. To address this question, we performed a comprehensive comparative analysis of their profiles. Our data identified both common features (pathways and networks) and novel distinct modules controlling the same deregulated biological processes in all three types. Specifically, four novel transcriptional modules were discovered regulating cell cycle and apoptosis. Integration and comparison of our data with other databases, led to the identification of common features among cancer types, embryonic stem (ES) cells and the newly discovered cell population of squamocolumnar (SC) junction of the cervix, considered to host the early cancer events. Conclusively, these data lead us to propose the presence of common features among gynecological cancers, other types of cancers, ES cells and the pre-malignant SC junction cells, where the novel E2F/NFY and MAX/CEBP modules play an important role for the pathogenesis of gynecological carcinomas. PMID:26559525

  12. Clonal Evolution of Stem Cells in the Gastrointestinal Tract.

    PubMed

    Fink, Juergen; Koo, Bon-Kyoung

    2016-01-01

    The field of gastrointestinal epithelial stem cells is a rapidly developing area of adult stem cell research. The discovery of Lgr5(+) intestinal stem cells has enabled us to study many hidden aspects of the biology of gastrointestinal adult stem cells. Marked by Lgr5 and Troy, several novel endodermal stem cells have been identified in the gastrointestinal tract. A precise working model of stem cell propagation, dynamics, and plasticity has been revealed by a genetic labeling method, termed lineage tracing. This chapter introduces the reidentification of crypt base columnar cells as Lgr5(+) stem cells in the intestine. Subsequently, it will discuss dynamic clonal evolution and cellular plasticity in the intestinal stem cell zone, as well as in stem cell zones of stomach glands. PMID:27573765

  13. Stem cell aging

    PubMed Central

    Muller-Sieburg, Christa; Sieburg, Hans B.

    2009-01-01

    The question whether stem cells age remains an enigma. Traditionally, aging was thought to change the properties of hematopoietic stem cells (HSC). We discuss here a new model of stem cell aging that challenges this view. It is now well-established that the HSC compartment is heterogeneous, consisting of epigenetically fixed subpopulations of HSC that differ in self-renewal and differentiation capacity. New data show that the representation of these HSC subsets changes during aging. HSC that generate lymphocyte-rich progeny are depleted, while myeloid-biased HSC are enriched in the aged HSC compartment. Myeloid-biased HSC, even when isolated from young donors, have most of the characteristics that had been attributed to aged HSC. Thus, the distinct behavior of the HSC isolated from aged hosts is due to the accumulation of myeloid-biased HSC. By extension this means that the properties of individual HSC are not substantially changed during the lifespan of the organism and that aged hosts do not contain many aged HSC. Myeloid-biased HSC give rise to mature cells slowly but contribute for a long time to peripheral hematopoiesis. We propose that such slow, “lazy” HSC are less likely to be transformed and therefore may safely sustain hematopoiesis for a long time. PMID:19066464

  14. Fighting for territories: time-lapse analysis of dental pulp and dental follicle stem cells in co-culture reveals specific migratory capabilities.

    PubMed

    Schiraldi, C; Stellavato, A; D'Agostino, A; Tirino, V; d'Aquino, R; Woloszyk, A; De Rosa, A; Laino, L; Papaccio, G; Mitsiadis, T A

    2012-01-01

    Stem cell migration is a critical step during the repair of damaged tissues. In order to achieve appropriate cell-based therapies for tooth and periodontal ligament repair it is necessary first to understand the dynamics of tissue-specific stem cell populations such as dental pulp stem cells (DPSC) and dental follicle stem cells (DFSC). Using time-lapse imaging, we analysed migratory and proliferative capabilities of these two human stem cell lines in vitro. When cultured alone, both DPSC and DFSC exhibited low and irregular migration profiles. In co-cultures, DFSC, but not DPSC, spectacularly increased their migration activity and velocity. DFSC rapidly surrounded the DPSC, thus resembling the in vivo developmental process, where follicle cells encircle both dental epithelium and pulp. Cell morphology was dependent on the culture conditions (mono-culture or co-culture) and changed over time. Regulatory genes involved in dental cell migration and differentiation such as TWIST1, MSX1, RUNX2, SFRP1 and ADAM28, were also evaluated in co-cultures. MSX1 up-regulation indicates that DPSC and DFSC retain their odontogenic potential. However, DPSC lose their capacity to differentiate into odontoblasts in the presence of DFSC, as suggested by RUNX2 up-regulation and TWIST1 down-regulation. In contrast, the unchanged levels of SFRP1 expression suggest that DFSC retain their potential to form periodontal tissues even in the presence of DPSC. These findings demonstrate that stem cells behave differently according to their environment, retain their genetic memory, and compete with each other to acquire the appropriate territory. Understanding the mechanisms involved in stem cell migration may lead to new therapeutic approaches for tooth repair. PMID:23180452

  15. Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology.

    PubMed

    Fromstein, Joanna D; Zandstra, Peter W; Alperin, Cecilia; Rockwood, Danielle; Rabolt, John F; Woodhouse, Kimberly A

    2008-03-01

    A successful regenerative therapy to treat damage incurred after an ischemic event in the heart will require an integrated approach including methods for appropriate revascularization of the infarct site, mechanical recovery of damaged tissue, and electrophysiological coupling with native cells. Cardiomyocytes are the ideal cell type for heart regeneration because of their inherent electrical and physiological properties, and cardiomyocytes derived from embryonic stem cells (ESCs) represent an attractive option for tissue-engineering therapies. An important step in developing tissue engineering-based approaches to cardiac cell therapy is understanding how scaffold architecture affects cell behavior. In this work, we generated large numbers of ESC-derived cardiomyocytes in bioreactors and seeded them on porous, 3-dimensional scaffolds prepared using 2 different techniques: electrospinning and thermally induced phase separation (TIPS). The effect of material macro-architecture on the adhesion, viability, and morphology of the seeded cells was determined. On the electrospun scaffolds, cells were elongated in shape, a morphology typical of cultured ESC-derived cardiomyocytes, whereas on scaffolds fabricated using TIPS, the cells retained a rounded morphology. Despite these gross phenotypic and physiological differences, sarcomeric myosin and connexin 43 expression was evident, and contracting cells were observed on both scaffold types, suggesting that morphological changes induced by material macrostructure do not directly correlate to functional differences. PMID:18333789

  16. Novel Tools for Genetic Manipulation of Follicle Stem Cells in the Drosophila Ovary Reveal an Integrin-Dependent Transition from Quiescence to Proliferation

    PubMed Central

    Hartman, Tiffiney R.; Ventresca, Erin M.; Hopkins, Anthony; Zinshteyn, Daniel; Singh, Tanu; O’Brien, Jenny A.; Neubert, Benjamin C.; Hartman, Matthew G.; Schofield, Heather K.; Stavrides, Kevin P.; Talbot, Danielle E.; Riggs, Devon J.; Pritchard, Caroline; O’Reilly, Alana M.

    2015-01-01

    In many tissues, the presence of stem cells is inferred by the capacity of the tissue to maintain homeostasis and undergo repair after injury. Isolation of self-renewing cells with the ability to generate the full array of cells within a given tissue strongly supports this idea, but the identification and genetic manipulation of individual stem cells within their niche remain a challenge. Here we present novel methods for marking and genetically altering epithelial follicle stem cells (FSCs) within the Drosophila ovary. Using these new tools, we define a sequential multistep process that comprises transitioning of FSCs from quiescence to proliferation. We further demonstrate that integrins are cell-autonomously required within FSCs to provide directional signals that are necessary at each step of this process. These methods may be used to define precise roles for specific genes in the sequential events that occur during FSC division after a period of quiescence. PMID:25680813

  17. mRNA-Seq and MicroRNA-Seq Whole-Transcriptome Analyses of Rhesus Monkey Embryonic Stem Cell Neural Differentiation Revealed the Potential Regulators of Rosette Neural Stem Cells

    PubMed Central

    Zhao, Yuqi; Ji, Shuang; Wang, Jinkai; Huang, Jingfei; Zheng, Ping

    2014-01-01

    Rosette neural stem cells (R-NSCs) represent early stage of neural development and possess full neural differentiation and regionalization capacities. R-NSCs are considered as stem cells of neural lineage and have important implications in the study of neurogenesis and cell replacement therapy. However, the molecules regulating their functional properties remain largely unknown. Rhesus monkey is an ideal model to study human neural degenerative diseases and plays intermediate translational roles as therapeutic strategies evolved from rodent systems to human clinical applications. In this study, we derived R-NSCs from rhesus monkey embryonic stem cells (ESCs) and systematically investigated the unique expressions of mRNAs, microRNAs (miRNAs), and signalling pathways by genome-wide comparison of the mRNA and miRNA profilings of ESCs, R-NSCs at early (R-NSCP1) and late (R-NSCP6) passages, and neural progenitor cells. Apart from the R-NSCP1-specific protein-coding genes and miRNAs, we identified several pathways including Hedgehog and Wnt highly activated in R-NSCP1. The possible regulatory interactions among the miRNAs, protein-coding genes, and signalling pathways were proposed. Besides, many genes with alternative splicing switch were identified at R-NSCP1. These data provided valuable resource to understand the regulation of early neurogenesis and to better manipulate the R-NSCs for cell replacement therapy. PMID:24939742

  18. Stem Cells in Aging

    PubMed Central

    Yunis, Edmond J.; Zúñiga, Joaquin; Koka, Prasad S.; Husain, Zaheed; Romero, Viviana; Stern, Joel N.H.; Fridkis-Hareli, Masha

    2008-01-01

    Aging is a genetically programmed decline in the functional effectiveness of the organism. It is manifested by a collective group of changes in cells or organs that occur over the course of a lifespan, limiting the duration of life. Longevity usually refers to long-lived members of a population within species. Organs develop and can involute according to specific timetables. Such timetables correlate with a preordained proliferative capacity of cells mediated by cell and organ clocks. In this review, we discuss different aspects related to genetic and environmental factors that are involved in determining life span. We discuss the influence of ontogenic, genetic and environmental factors in aging. The genetic factors can be studied in embryonic stem cells (ESC) and in niches (microenvironments) of stem cells (SC) using cellular or experimental animal models. We discuss molecular mechanisms involving genes and proteins associated with death pathways, niches, or hubs, on longevity. Moreover, we also discuss genes and proteins, associated with death pathways, on longevity. Unraveling these mechanisms may further our understanding of human aging leading to development of therapeutic interventions with the potential of prolonging life. PMID:19030125

  19. An Induced Pluripotent Stem Cell Model of Hypoplastic Left Heart Syndrome (HLHS) Reveals Multiple Expression and Functional Differences in HLHS-Derived Cardiac Myocytes

    PubMed Central

    Jiang, Yan; Habibollah, Saba; Tilgner, Katarzyna; Collin, Joseph; Barta, Tomas; Al-Aama, Jumana Yousuf; Tesarov, Lenka; Hussain, Rafiqul; Trafford, Andrew W.; Kirkwood, Graham; Sernagor, Evelyne; Eleftheriou, Cyril G.; Przyborski, Stefan; Stojković, Miodrag; Lako, Majlinda; Keavney, Bernard

    2014-01-01

    Hypoplastic left heart syndrome (HLHS) is a serious congenital cardiovascular malformation resulting in hypoplasia or atresia of the left ventricle, ascending aorta, and aortic and mitral valves. Diminished flow through the left side of the heart is clearly a key contributor to the condition, but any myocardial susceptibility component is as yet undefined. Using recent advances in the field of induced pluripotent stem cells (iPSCs), we have been able to generate an iPSC model of HLHS malformation and characterize the properties of cardiac myocytes (CMs) differentiated from these and control-iPSC lines. Differentiation of HLHS-iPSCs to cardiac lineages revealed changes in the expression of key cardiac markers and a lower ability to give rise to beating clusters when compared with control-iPSCs and human embryonic stem cells (hESCs). HLHS-iPSC-derived CMs show a lower level of myofibrillar organization, persistence of a fetal gene expression pattern, and changes in commitment to ventricular versus atrial lineages, and they display different calcium transient patterns and electrophysiological responses to caffeine and β-adrenergic antagonists when compared with hESC- and control-iPSC-derived CMs, suggesting that alternative mechanisms to release calcium from intracellular stores such as the inositol trisphosphate receptor may exist in HLHS in addition to the ryanodine receptor thought to function in control-iPSC-derived CMs. Together our findings demonstrate that CMs derived from an HLHS patient demonstrate a number of marker expression and functional differences to hESC/control iPSC-derived CMs, thus providing some evidence that cardiomyocyte-specific factors may influence the risk of HLHS. PMID:24591732

  20. An induced pluripotent stem cell model of hypoplastic left heart syndrome (HLHS) reveals multiple expression and functional differences in HLHS-derived cardiac myocytes.

    PubMed

    Jiang, Yan; Habibollah, Saba; Tilgner, Katarzyna; Collin, Joseph; Barta, Tomas; Al-Aama, Jumana Yousuf; Tesarov, Lenka; Hussain, Rafiqul; Trafford, Andrew W; Kirkwood, Graham; Sernagor, Evelyne; Eleftheriou, Cyril G; Przyborski, Stefan; Stojković, Miodrag; Lako, Majlinda; Keavney, Bernard; Armstrong, Lyle

    2014-04-01

    Hypoplastic left heart syndrome (HLHS) is a serious congenital cardiovascular malformation resulting in hypoplasia or atresia of the left ventricle, ascending aorta, and aortic and mitral valves. Diminished flow through the left side of the heart is clearly a key contributor to the condition, but any myocardial susceptibility component is as yet undefined. Using recent advances in the field of induced pluripotent stem cells (iPSCs), we have been able to generate an iPSC model of HLHS malformation and characterize the properties of cardiac myocytes (CMs) differentiated from these and control-iPSC lines. Differentiation of HLHS-iPSCs to cardiac lineages revealed changes in the expression of key cardiac markers and a lower ability to give rise to beating clusters when compared with control-iPSCs and human embryonic stem cells (hESCs). HLHS-iPSC-derived CMs show a lower level of myofibrillar organization, persistence of a fetal gene expression pattern, and changes in commitment to ventricular versus atrial lineages, and they display different calcium transient patterns and electrophysiological responses to caffeine and β-adrenergic antagonists when compared with hESC- and control-iPSC-derived CMs, suggesting that alternative mechanisms to release calcium from intracellular stores such as the inositol trisphosphate receptor may exist in HLHS in addition to the ryanodine receptor thought to function in control-iPSC-derived CMs. Together our findings demonstrate that CMs derived from an HLHS patient demonstrate a number of marker expression and functional differences to hESC/control iPSC-derived CMs, thus providing some evidence that cardiomyocyte-specific factors may influence the risk of HLHS. PMID:24591732

  1. Making a Hematopoietic Stem Cell

    PubMed Central

    Daniel, Michael G.; Pereira, Carlos-Filipe; Lemischka, Ihor R.; Moore, Kateri A.

    2016-01-01

    Previous attempts to either generate or expand hematopoietic stem cells (HSCs) in vitro have involved either ex vivo expansion of pre-existing patient or donor HSCs or de novo generation from pluripotent stem cells (PSCs), comprising both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). iPSCs alleviated ESC ethical issues but attempts to generate functional mature hematopoietic stem and progenitor cells (HSPCs) have been largely unsuccessful. New efforts focus on directly reprogramming somatic cells into definitive HSCs and HSPCs. To meet clinical needs and to advance drug discovery and stem cell therapy, alternative approaches are necessary. In this review, we synthesize the strategies used and the key findings made in recent years by those trying to make an HSC. PMID:26526106

  2. Stem cells and cardiovascular disease.

    PubMed

    Abbott, J Dawn; Giordano, Frank J

    2003-01-01

    Several recent discoveries have shifted the paradigm that there is no potential for myocardial regeneration and have fueled enthusiasm for a new frontier in the treatment of cardiovascular disease-stem cells. Fundamental to this emerging field is the cumulative evidence that adult bone marrow stem cells can differentiate into a wide variety of cell types, including cardiac myocytes and endothelial cells. This phenomenon has been termed stem cell plasticity and is the basis for the explosive recent interest in stem cell-based therapies. Directed to cardiovascular disease, stem cell therapy holds the promise of replacing lost heart muscle and enhancing cardiovascular revascularization. Early evidence of the feasibility of stem cell therapy for cardiovascular disease came from a series of animal experiments demonstrating that adult stem cells could become cardiac muscle cells (myogenesis) and participate in the formation of new blood vessels (angiogenesis and vasculogenesis) in the heart after myocardial infarction. These findings have been rapidly translated to ongoing human trials, but many questions remain. This review focuses on the use of adult bone marrow-derived stem cells for the treatment of ischemic cardiovascular disease and will contrast how far we have come in a short time with how far we still need to go before stem cell therapy becomes routine in cardiovascular medicine. PMID:12900745

  3. Why do stem cells exist?

    PubMed

    Heddle, J A; Cosentino, L; Dawod, G; Swiger, R R; Paashuis-Lew, Y

    1996-01-01

    Self-renewing tissues have a differentiation hierarchy such that the stem cells are the only permanent residents of the tissue, and it is in these cells that most cancerous mutations arise. The progeny of the stem cells either remain stem cells or enter a transient proliferating cell population that differentiates to produce the functional cells of the tissue. The reason that this differentiation hierarchy exists has not been established. We show here that alternative hierarchies, in which there would be no stem cells, are feasible and biologically plausible. We show that current evidence from somatic mutation frequencies at both transgenic and endogenous loci implicates cell division in the origin of most somatic mutations. We suggest, therefore, that the existence of stem cells is an evolutionary consequence of a selective pressure to avoid cancer by reducing the number of somatic mutations. The stem cell hierarchy reduces the number of cell divisions of those cells that reside permanently in the tissue, which reduces the number of somatic mutations and thus minimizes the cancer rate. In the small intestine, the existence of stem cells reduces the mutant frequency in the stem cells by about one order of magnitude. Since two or more mutations are required to transform a cell, the protective effect may be 100-fold or more. Similar factors may be expected in other tissues. PMID:8991061

  4. Mimicking Stem Cell Niches to Increase Stem Cell Expansion

    PubMed Central

    Dellatore, Shara M.; Garcia, A. Sofia; Miller, William M.

    2008-01-01

    Summary Niches regulate lineage-specific stem cell self-renewal vs. differentiation in vivo and are comprised of supportive cells and extracellular matrix components arranged in a 3-dimensional topography of controlled stiffness in the presence of oxygen and growth factor gradients. Mimicking stem cell niches in a defined manner will facilitate production of the large numbers of stem cells needed to realize the promise of regenerative medicine and gene therapy. Progress has been made in mimicking components of the niche. Immobilizing cell-associated Notch ligands increased the self-renewal of hematopoietic (blood) stem cells. Culture on a fibrous scaffold that mimics basement membrane texture increased the expansion of hematopoietic and embryonic stem cells. Finally, researchers have created intricate patterns of cell-binding domains and complex oxygen gradients. PMID:18725291

  5. Limbal Stem Cell Transplantation

    PubMed Central

    2008-01-01

    Executive Summary Objective The objective of this analysis is to systematically review limbal stem cell transplantation (LSCT) for the treatment of patients with limbal stem cell deficiency (LSCD). This evidence-based analysis reviews LSCT as a primary treatment for nonpterygium LSCD conditions, and LSCT as an adjuvant therapy to excision for the treatment of pterygium. Background Clinical Need: Condition and Target Population The outer surface of the eye is covered by 2 distinct cell layers: the corneal epithelial layer that overlies the cornea, and the conjunctival epithelial layer that overlies the sclera. These cell types are separated by a transitional zone known as the limbus. The corneal epithelial cells are renewed every 3 to 10 days by a population of stem cells located in the limbus. Nonpterygium Limbal Stem Cell Deficiency When the limbal stem cells are depleted or destroyed, LSCD develops. In LSCD, the conjunctival epithelium migrates onto the cornea (a process called conjunctivalization), resulting in a thickened, irregular, unstable corneal surface that is prone to defects, ulceration, corneal scarring, vascularization, and opacity. Patients experience symptoms including severe irritation, discomfort, photophobia, tearing, blepharospasm, chronic inflammation and redness, and severely decreased vision. Depending on the degree of limbal stem cell loss, LSCD may be total (diffuse) or partial (local). In total LSCD, the limbal stem cell population is completed destroyed and conjunctival epithelium covers the entire cornea. In partial LSCD, some areas of the limbus are unharmed, and the corresponding areas on the cornea maintain phenotypically normal corneal epithelium. Confirmation of the presence of conjunctivalization is necessary for LSCD diagnosis as the other characteristics and symptoms are nonspecific and indicate a variety of diseases. The definitive test for LSCD is impression cytology, which detects the presence of conjunctival epithelium and

  6. Skeletal stem cells.

    PubMed

    Bianco, Paolo; Robey, Pamela G

    2015-03-15

    Skeletal stem cells (SSCs) reside in the postnatal bone marrow and give rise to cartilage, bone, hematopoiesis-supportive stroma and marrow adipocytes in defined in vivo assays. These lineages emerge in a specific sequence during embryonic development and post natal growth, and together comprise a continuous anatomical system, the bone-bone marrow organ. SSCs conjoin skeletal and hematopoietic physiology, and are a tool for understanding and ameliorating skeletal and hematopoietic disorders. Here and in the accompanying poster, we concisely discuss the biology of SSCs in the context of the development and postnatal physiology of skeletal lineages, to which their use in medicine must remain anchored. PMID:25758217

  7. The chiaroscuro stem cell: a unified stem cell theory.

    PubMed

    Quesenberry, Peter J; Colvin, Gerald A; Lambert, Jean-Francois

    2002-12-15

    Hematopoiesis has been considered hierarchical in nature, but recent data suggest that the system is not hierarchical and is, in fact, quite functionally plastic. Existing data indicate that engraftment and progenitor phenotypes vary inversely with cell cycle transit and that gene expression also varies widely. These observations suggest that there is no progenitor/stem cell hierarchy, but rather a reversible continuum. This may, in turn, be dependent on shifting chromatin and gene expression with cell cycle transit. If the phenotype of these primitive marrow cells changes from engraftable stem cell to progenitor and back to engraftable stem cell with cycle transit, then this suggests that the identity of the engraftable stem cell may be partially masked in nonsynchronized marrow cell populations. A general model indicates a marrow cell that can continually change its surface receptor expression and thus responds to external stimuli differently at different points in the cell cycle. PMID:12393432

  8. Mechanotransduction: Tuning Stem Cells Fate

    PubMed Central

    D'Angelo, Francesco; Tiribuzi, Roberto; Armentano, Ilaria; Kenny, Josè Maria; Martino, Sabata; Orlacchio, Aldo

    2011-01-01

    It is a general concern that the success of regenerative medicine-based applications is based on the ability to recapitulate the molecular events that allow stem cells to repair the damaged tissue/organ. To this end biomaterials are designed to display properties that, in a precise and physiological-like fashion, could drive stem cell fate both in vitro and in vivo. The rationale is that stem cells are highly sensitive to forces and that they may convert mechanical stimuli into a chemical response. In this review, we describe novelties on stem cells and biomaterials interactions with more focus on the implication of the mechanical stimulation named mechanotransduction. PMID:24956164

  9. Stem Cells, Redox Signaling, and Stem Cell Aging

    PubMed Central

    Liang, Raymond

    2014-01-01

    Abstract Significance: Functional stem cell decline has been postulated to result in loss of maintenance of tissue homeostasis leading to organismal decline and diseases of aging. Recent Advances: Recent findings implicate redox metabolism in the control of stem cell pool and stem cell aging. Although reactive oxygen species (ROS) are better known for their damaging properties to DNA, proteins and lipids, recent findings suggest that ROS may also be an integral physiological mediator of cellular signaling in primary cells. Critical Issues: Here we review recent published work on major signaling pathways and transcription factors that are regulated by ROS and mediate ROS regulation of stem cell fate. We will specifically focus on how alterations in this regulation may be implicated in disease and particularly in diseases of stem cell aging. In general, based on the work described here we propose a model in which ROS function as stem cell rheostat. Future Directions: Future work in elucidating how ROS control stem cell cycling, apoptotic machinery, and lineage determination should shed light on mechanisms whereby ROS may control stem cell aging. Antioxid. Redox Signal. 20, 1902–1916. PMID:24383555

  10. Quantitative proteome profiling of dystrophic dog skeletal muscle reveals a stabilized muscular architecture and protection against oxidative stress after systemic delivery of MuStem cells.

    PubMed

    Lardenois, Aurélie; Jagot, Sabrina; Lagarrigue, Mélanie; Guével, Blandine; Ledevin, Mireille; Larcher, Thibaut; Dubreil, Laurence; Pineau, Charles; Rouger, Karl; Guével, Laëtitia

    2016-07-01

    Proteomic profiling plays a decisive role in the elucidation of molecular signatures representative of a specific clinical context. MuStem cell based therapy represents a promising approach for clinical applications to cure Duchenne muscular dystrophy (DMD). To expand our previous studies collected in the clinically relevant DMD animal model, we decided to investigate the skeletal muscle proteome 4 months after systemic delivery of allogenic MuStem cells. Quantitative proteomics with isotope-coded protein labeling was used to compile quantitative changes in the protein expression profiles of muscle in transplanted Golden Retriever muscular dystrophy (GRMD) dogs as compared to Golden Retriever muscular dystrophy dogs. A total of 492 proteins were quantified, including 25 that were overrepresented and 46 that were underrepresented after MuStem cell transplantation. Interestingly, this study demonstrates that somatic stem cell therapy impacts on the structural integrity of the muscle fascicle by acting on fibers and its connections with the extracellular matrix. We also show that cell infusion promotes protective mechanisms against oxidative stress and favors the initial phase of muscle repair. This study allows us to identify putative candidates for tissue markers that might be of great value in objectively exploring the clinical benefits resulting from our cell-based therapy for DMD. All MS data have been deposited in the ProteomeXchange with identifier PXD001768 (http://proteomecentral.proteomexchange.org/dataset/PXD001768). PMID:27246553

  11. [Stem cells and cardiac regeneration].

    PubMed

    Perez Millan, Maria Ines; Lorenti, Alicia

    2006-01-01

    Stem cells are defined by virtue of their functional attributes: absence of tissue specific differentitated markers, capable of proliferation, able to self-maintain the population, able to produce a large number of differentiated, functional progeny, able to regenerate the tissue after injury. Cell therapy is an alternative for the treatment of several diseases, like cardiac diseases (cell cardiomyoplasty). A variety of stem cells could be used for cardiac repair: from cardiac and extracardiac sources. Each cell type has its own profile of advantages, limitations, and practicability issues in specific clinical settings. Differentiation of bone marrow stem cells to cardiomyocyte-like cells have been observed under different culture conditions. The presence of resident cardiac stem cell population capable of differentiation into cardiomyocyte or vascular lineage suggests that these cells could be used for cardiac tissue repair, and represent a great promise for clinical application. Stem cells mobilization by cytokines may also offer a strategy for cardiac regeneration. The use of stem cells (embryonic and adult) may hold the key to replacing cells lost in many devastating diseases. This potential benefit is a major focus for stem cell research. PMID:17240634

  12. Involvement of Plant Stem Cells or Stem Cell-Like Cells in Dedifferentiation

    PubMed Central

    Jiang, Fangwei; Feng, Zhenhua; Liu, Hailiang; Zhu, Jian

    2015-01-01

    Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells) are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation. PMID:26635851

  13. The new stem cell biology.

    PubMed Central

    Quesenberry, Peter J.; Colvin, Gerald A.; Lambert, Jean-Francois; Frimberger, Angela E.; Dooner, Mark S.; Mcauliffe, Christina I.; Miller, Caroline; Becker, Pamela; Badiavas, Evangelis; Falanga, Vincent J.; Elfenbein, Gerald; Lum, Lawrence G.

    2002-01-01

    Recent studies have indicated that bone marrow stem cells are capable of generating muscle, cardiac, hepatic, renal, and bone cells. Purified hematopoietic stem cells have generated cardiac and hepatic cells and reversed disease manifestations in these tissues. Hematopoietic stem cells also alter phenotype with cell cycle transit or circadian phase. During a cytokine stimulated cell cycle transit, reversible alterations of differentiation and engraftment occur. Primitive hematopoietic stem cells express a wide variety of adhesion and cytokine receptors and respond quickly with migration and podia extensions on exposure to cytokines. These data suggest an "Open Chromatin" model of stem cell regulation in which there is a fluctuating continuum in the stem cell/progenitor cell compartments, rather than a hierarchical relationship. These observations, along with progress in using low dose treatments and tolerization approaches, suggest many new therapeutic strategies involving stem cells and the creation of a new medical specialty; stemology. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:12053709

  14. Adult Stem and Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Geraerts, Martine; Verfaillie, Catherine M.

    The discovery of adult stem cells in most adult tissues is the basis of a number of clinical studies that are carried out, with therapeutic use of hematopoietic stem cells as a prime example. Intense scientific debate is still ongoing as to whether adult stem cells may have a greater plasticity than previously thought. Although cells with some features of embryonic stem cells that, among others, express Oct4, Nanog and SSEA1 are isolated from fresh tissue, it is not clear if the greater differentiation potential is acquired during cell culture. Moreover, adult more pluripotent cells do not have all pluripotent characteristics typical for embryonic stem cells. Recently, some elegant studies were published in which adult cells could be completely reprogrammed to embryonic stem cell-like cells by overexpression of some key transcription factors for pluripotency (Oct4, Sox2, Klf4 and c-Myc). It will be interesting for the future to investigate the exact mechanisms underlying this reprogramming and whether similar transcription factor pathways are present and/or can be activated in adult more pluripotent stem cells.

  15. Stem cells for spine surgery.

    PubMed

    Schroeder, Joshua; Kueper, Janina; Leon, Kaplan; Liebergall, Meir

    2015-01-26

    In the past few years, stem cells have become the focus of research by regenerative medicine professionals and tissue engineers. Embryonic stem cells, although capable of differentiating into cell lineages of all three germ layers, are limited in their utilization due to ethical issues. In contrast, the autologous harvest and subsequent transplantation of adult stem cells from bone marrow, adipose tissue or blood have been experimentally utilized in the treatment of a wide variety of diseases ranging from myocardial infarction to Alzheimer's disease. The physiologic consequences of stem cell transplantation and its impact on functional recovery have been studied in countless animal models and select clinical trials. Unfortunately, the bench to bedside translation of this research has been slow. Nonetheless, stem cell therapy has received the attention of spinal surgeons due to its potential benefits in the treatment of neural damage, muscle trauma, disk degeneration and its potential contribution to bone fusion. PMID:25621119

  16. Bioprinting for stem cell research

    PubMed Central

    Tasoglu, Savas; Demirci, Utkan

    2012-01-01

    Recently, there has been a growing interest to apply bioprinting techniques to stem cell research. Several bioprinting methods have been developed utilizing acoustics, piezoelectricity, and lasers to deposit living cells onto receiving substrates. Using these technologies, spatially defined gradients of immobilized proteins can be engineered to direct stem cell differentiation into multiple subpopulations of different lineages. Stem cells can also be patterned in a high-throughput manner onto flexible implementation patches for tissue regeneration or onto substrates with the goal of accessing encapsulated stem cell of interest for genomic analysis. Here, we review recent achievements with bioprinting technologies in stem cell research, and identify future challenges and potential applications including tissue engineering and regenerative medicine, wound healing, and genomics. PMID:23260439

  17. Stem cell mitochondria during aging.

    PubMed

    Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Shyh-Chang, Ng

    2016-04-01

    Mitochondria are the central hubs of cellular metabolism, equipped with their own mitochondrial DNA (mtDNA) blueprints to direct part of the programming of mitochondrial oxidative metabolism and thus reactive oxygen species (ROS) levels. In stem cells, many stem cell factors governing the intricate balance between self-renewal and differentiation have been found to directly regulate mitochondrial processes to control stem cell behaviors during tissue regeneration and aging. Moreover, numerous nutrient-sensitive signaling pathways controlling organismal longevity in an evolutionarily conserved fashion also influence stem cell-mediated tissue homeostasis during aging via regulation of stem cell mitochondria. At the genomic level, it has been demonstrated that heritable mtDNA mutations and variants affect mammalian stem cell homeostasis and influence the risk for human degenerative diseases during aging. Because such a multitude of stem cell factors and signaling pathways ultimately converge on the mitochondria as the primary mechanism to modulate cellular and organismal longevity, it would be most efficacious to develop technologies to therapeutically target and direct mitochondrial repair in stem cells, as a unified strategy to combat aging-related degenerative diseases in the future. PMID:26851627

  18. FDA Warns About Stem Cell Claims

    MedlinePlus

    ... Home For Consumers Consumer Updates FDA Warns About Stem Cell Claims Share Tweet Linkedin Pin it More sharing ... blood-forming system. back to top Regulation of Stem Cells FDA regulates stem cells in the U.S. to ...

  19. LncRNAs in Stem Cells

    PubMed Central

    Hu, Shanshan; Shan, Ge

    2016-01-01

    Noncoding RNAs are critical regulatory factors in essentially all forms of life. Stem cells occupy a special position in cell biology and Biomedicine, and emerging results show that multiple ncRNAs play essential roles in stem cells. We discuss some of the known ncRNAs in stem cells such as embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adult stem cells, and cancer stem cells with a focus on long ncRNAs. Roles and functional mechanisms of these lncRNAs are summarized, and insights into current and future studies are presented. PMID:26880946

  20. Stem cell mechanics: Auxetic nuclei

    NASA Astrophysics Data System (ADS)

    Wang, Ning

    2014-06-01

    The nuclei of naive mouse embryonic stem cells that are transitioning towards differentiation expand when the cells are stretched and contract when they are compressed. What drives this auxetic phenotype is, however, unclear.

  1. Stem cells and progenitor cells in renal disease.

    PubMed

    Haller, Hermann; de Groot, Kirsten; Bahlmann, Ferdinand; Elger, Marlies; Fliser, Danilo

    2005-11-01

    Stem cells and progenitor cells are necessary for repair and regeneration of injured renal tissue. Infiltrating or resident stem cells can contribute to the replacement of lost or damaged tissue. However, the regulation of circulating progenitor cells is not well understood. We have analyzed the effects of erythropoietin on circulating progenitor cells and found that low levels of erythropoietin induce mobilization and differentiation of endothelial progenitor cells. In an animal model of 5/6 nephrectomy we could demonstrate that erythropoietin ameliorates tissue injury. Full regeneration of renal tissue demands the existence of stem cells and an adequate local "milieu," a so-called stem cell niche. We have previously described a stem cell niche in the kidneys of the dogfish, Squalus acanthus. Further analysis revealed that in the regenerating zone of the shark kidney, stem cells exist that can be induced by loss of renal tissue to form new glomeruli. Such animal models improve our understanding of stem cell behavior in the kidney and may eventually contribute to novel therapies. PMID:16221168

  2. Bone regeneration and stem cells

    PubMed Central

    Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A

    2011-01-01

    Abstract This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. PMID:21129153

  3. Chromatin, epigenetics and stem cells.

    PubMed

    Roloff, Tim C; Nuber, Ulrike A

    2005-03-01

    Epigenetics is a term that has changed its meaning with the increasing biological knowledge on developmental processes. However, its current application to stem cell biology is often imprecise and is conceptually problematic. This article addresses two different subjects, the definition of epigenetics and chromatin states of stem and differentiated cells. We describe mechanisms that regulate chromatin changes and provide an overview of chromatin states of stem and differentiated cells. Moreover, a modification of the current epigenetics definition is proposed that is not restricted by the heritability of gene expression throughout cell divisions and excludes translational gene expression control. PMID:15819395

  4. Stem cells for tooth engineering.

    PubMed

    Bluteau, G; Luder, H U; De Bari, C; Mitsiadis, T A

    2008-01-01

    Tooth development results from sequential and reciprocal interactions between the oral epithelium and the underlying neural crest-derived mesenchyme. The generation of dental structures and/or entire teeth in the laboratory depends upon the manipulation of stem cells and requires a synergy of all cellular and molecular events that finally lead to the formation of tooth-specific hard tissues, dentin and enamel. Although mesenchymal stem cells from different origins have been extensively studied in their capacity to form dentin in vitro, information is not yet available concerning the use of epithelial stem cells. The odontogenic potential resides in the oral epithelium and thus epithelial stem cells are necessary for both the initiation of tooth formation and enamel matrix production. This review focuses on the different sources of stem cells that have been used for making teeth in vitro and their relative efficiency. Embryonic, post-natal or even adult stem cells were assessed and proved to possess an enormous regenerative potential, but their application in dental practice is still problematic and limited due to various parameters that are not yet under control such as the high risk of rejection, cell behaviour, long tooth eruption period, appropriate crown morphology and suitable colour. Nevertheless, the development of biological approaches for dental reconstruction using stem cells is promising and remains one of the greatest challenges in the dental field for the years to come. PMID:18671204

  5. GPCRs in Stem Cell Function

    PubMed Central

    DOZE, VAN A.; PEREZ, DIANNE M.

    2013-01-01

    Many tissues of the body cannot only repair themselves, but also self-renew, a property mainly due to stem cells and the various mechanisms that regulate their behavior. Stem cell biology is a relatively new field. While advances are slowly being realized, stem cells possess huge potential to ameliorate disease and counteract the aging process, causing its speculation as the next panacea. Amidst public pressure to advance rapidly to clinical trials, there is a need to understand the biology of stem cells and to support basic research programs. Without a proper comprehension of how cells and tissues are maintained during the adult life span, clinical trials are bound to fail. This review will cover the basic biology of stem cells, the various types of stem cells, their potential function, and the advantages and disadvantages to their use in medicine. We will next cover the role of G-protein coupled receptors in the regulation of stem cells and their potential in future clinical applications. PMID:23415095

  6. Adhesion in the stem cell niche: biological roles and regulation

    PubMed Central

    Chen, Shuyi; Lewallen, Michelle; Xie, Ting

    2013-01-01

    Stem cell self-renewal is tightly controlled by the concerted action of stem cell-intrinsic factors and signals within the niche. Niche signals often function within a short range, allowing cells in the niche to self-renew while their daughters outside the niche differentiate. Thus, in order for stem cells to continuously self-renew, they are often anchored in the niche via adhesion molecules. In addition to niche anchoring, however, recent studies have revealed other important roles for adhesion molecules in the regulation of stem cell function, and it is clear that stem cell-niche adhesion is crucial for stem cell self-renewal and is dynamically regulated. Here, we highlight recent progress in understanding adhesion between stem cells and their niche and how this adhesion is regulated. PMID:23250203

  7. Stem cell therapy without the cells

    PubMed Central

    Maguire, Greg

    2013-01-01

    As an example of the burgeoning importance of stem cell therapy, this past month the California Institute for Regenerative Medicine (CIRM) has approved $70 million to create a new network of stem cell clinical trial centers. Much work in the last decade has been devoted to developing the use of autologous and allogeneic adult stem cell transplants to treat a number of conditions, including heart attack, dementia, wounds, and immune system-related diseases. The standard model teaches us that adult stem cells exists throughout most of the body and provide a means to regenerate and repair most tissues through replication and differentiation. Although we have often witnessed the medical cart placed in front of the scientific horse in the development of stem cell therapies outside of academic circles, great strides have been made, such as the use of purified stem cells1 instead of whole bone marrow transplants in cancer patients, where physicians avoid re-injecting the patients with their own cancer cells.2 We most often think of stem cell therapy acting to regenerate tissue through replication and then differentiation, but recent studies point to the dramatic effects adult stem cells exert in the repair of various tissues through the release of paracrine and autocrine substances, and not simply through differentiation. Indeed, up to 80% of the therapeutic effect of adult stem cells has been shown to be through paracrine mediated actions.3 That is, the collected types of molecules released by the stem cells, called the secretome, or stem cell released molecules (SRM), number in the 100s, including proteins, microRNA, growth factors, antioxidants, proteasomes, and exosomes, and target a multitude of biological pathways through paracrine actions. The composition of the different molecule types in SRM is state dependent, and varies with cell type and conditions such as age and environment. PMID:24567776

  8. Microbioreactors for Stem Cell Research

    NASA Astrophysics Data System (ADS)

    Freytes, Donald O.; Vunjak-Novakovic, Gordana

    During tissue development and regeneration, stem cells respond to the entire milieu of their environment, through dynamic interactions with the surrounding cells, extracellular matrix, and cascades of molecular and physical regulatory factors. A new generation of culture systems is emerging to offer some of the biological fidelity of a whole organism within highly controllable in vitro settings and provide the cultured cells with the combinations of factors they normally encounter in vivo. There is a growing notion that such "biomimetic" systems are essential for unlocking the full potential of stem cells - for tissue regeneration as well as biological research. In this chapter, we discuss the biological principles for designing biologically inspired culture systems for stem cell research and focus on the control of stem cell microenvironment through surface patterning, microfluidics, and electrical stimulation.

  9. Targeting Breast Cancer Stem Cells

    PubMed Central

    Liu, Suling; Wicha, Max S.

    2010-01-01

    There is increasing evidence that many cancers, including breast cancer, contain populations of cells that display stem-cell properties. These breast cancer stem cells, by virtue of their relative resistance to radiation and cytotoxic chemotherapy, may contribute to treatment resistance and relapse. The elucidation of pathways that regulate these cells has led to the identification of potential therapeutic targets. A number of agents capable of targeting breast cancer stem cells in preclinical models are currently entering clinical trials. Assessment of the efficacy of the agents will require development of innovative clinical trial designs with appropriate biologic and clinical end points. The effective targeting of breast cancer stem cells has the potential to significantly improve outcome for women with both early-stage and advanced breast cancer. PMID:20498387

  10. Stem Cells in the Lung

    PubMed Central

    Liu, Xiaoming; Driskell, Ryan R.; Engelhardt, John F.

    2007-01-01

    The lung is composed of two major anatomically distinct regions—the conducting airways and gas-exchanging airspaces. From a cell biology standpoint, the conducting airways can be further divided into two major compartments, the tracheobronchial and bronchiolar airways, while the alveolar regions of the lung make up the gas-exchanging airspaces. Each of these regions consists of distinct epithelial cell types with unique cellular physiologies and stem cell compartments. This chapter focuses on model systems with which to study stem cells in the adult tracheobronchial airways, also referred to as the proximal airway of the lung. Important in such models is an appreciation for the diversity of stem cell niches in the conducting airways that provide localized environmental signals to both maintain and mobilize stem cells in the setting of airway injury and normal cellular turnover. Because cellular turnover in airways is relatively slow, methods for analysis of stem cells in vivo have required prior injury to the lung. In contrast, ex vivo and in vitro models for analysis of airway stem cells have used genetic markers to track lineage relationships together with reconstitution systems that mimic airway biology. Over the past decades, several widely acceptable methods have been developed and used in the characterization of adult airway stem/ progenitor cells. These include localization of label-retaining cells (LRCs), retroviral tagging of epithelial cells seeded into xenografts, air–liquid interface cultures to track clonal proliferative potential, and multiple transgenic mouse models. This chapter reviews the biologic context and use of these models while providing detailed methods for several of the more broadly useful models for studying adult airway stem/progenitor cell types. PMID:17141060

  11. Proteome analysis of human amniotic mesenchymal stem cells (hA-MSCs) reveals impaired antioxidant ability, cytoskeleton and metabolic functionality in maternal obesity

    PubMed Central

    Capobianco, Valentina; Caterino, Marianna; Iaffaldano, Laura; Nardelli, Carmela; Sirico, Angelo; Del Vecchio, Luigi; Martinelli, Pasquale; Pastore, Lucio; Pucci, Pietro; Sacchetti, Lucia

    2016-01-01

    Maternal obesity increases the risk of obesity and/or obesity-related diseases in the offspring of animal models. The aim of this study was to identify metabolic dysfunctions that could represent an enhanced risk for human obesity or obesity-related diseases in newborn or in adult life, similar to what occurs in animal models. To this aim, we studied the proteome of 12 obese (Ob-) and 6 non-obese (Co-) human amniotic mesenchymal stem cells (hA-MSCs) obtained from women at delivery by cesarean section (pre-pregnancy body mass index [mean ± SD]: 42.7 ± 7.7 and 21.3 ± 3.3 kg/m2, respectively). The proteome, investigated by two-dimensional fluorescence difference gel electrophoresis/mass spectrometry, revealed 62 differently expressed proteins in Ob- vs Co-hA-MSCs (P < 0.05), nine of which were confirmed by western blotting. Bioinformatics analysis showed that these 62 proteins are involved in several statistically significant pathways (P < 0.05), including the stress response, cytoskeleton and metabolic pathways. Oxidative stress was shown to be an early triggering factor of tissue fat accumulation and obesity-related disorders in the offspring of obese animal models. Our finding of a reduced stress response in Ob-hA-MSCs suggests that a similar mechanism could occur also in humans. Long-term follow-up studies of newborns of obese mothers are required to verify this hypothesis. PMID:27125468

  12. Harvesting dental stem cells - Overview

    PubMed Central

    Sunil, P. M.; Manikandan, Ramanathan; Muthumurugan; Yoithapprabhunath, Thukanayakanpalayam Ragunathan; Sivakumar, Muniapillai

    2015-01-01

    Dental stem cells have recently become one of the widely researched areas in dentistry. Ever since the identification of stem cells from various dental tissues like deciduous teeth, dental papilla, periodontal ligament and third molars, storing them for future use for various clinical applications was being explored. Dental stem cells were harvested and isolated using various techniques by different investigators and laboratories. This article explains the technical aspects of preparing the patient, atraumatic and aseptic removal of the tooth and its safe transportation and preservation for future expansion. PMID:26538883

  13. Harvesting dental stem cells - Overview.

    PubMed

    Sunil, P M; Manikandan, Ramanathan; Muthumurugan; Yoithapprabhunath, Thukanayakanpalayam Ragunathan; Sivakumar, Muniapillai

    2015-08-01

    Dental stem cells have recently become one of the widely researched areas in dentistry. Ever since the identification of stem cells from various dental tissues like deciduous teeth, dental papilla, periodontal ligament and third molars, storing them for future use for various clinical applications was being explored. Dental stem cells were harvested and isolated using various techniques by different investigators and laboratories. This article explains the technical aspects of preparing the patient, atraumatic and aseptic removal of the tooth and its safe transportation and preservation for future expansion. PMID:26538883

  14. Microarrayed Materials for Stem Cells

    PubMed Central

    Mei, Ying

    2013-01-01

    Stem cells hold remarkable promise for applications in disease modeling, cancer therapy and regenerative medicine. Despite the significant progress made during the last decade, designing materials to control stem cell fate remains challenging. As an alternative, materials microarray technology has received great attention because it allows for high throughput materials synthesis and screening at a reasonable cost. Here, we discuss recent developments in materials microarray technology and their applications in stem cell engineering. Future opportunities in the field will also be reviewed. PMID:24311967

  15. Dispelling Stem-Cell Ideology.

    PubMed

    Shrader-Frechette, Kristin

    2016-05-01

    Week-old embryos are considered the richest source of stem cells usable in medical treatments. Because the embryos are destroyed when the stem cells are removed, the debate over the embryo's legal, moral, political, and scientific status has exploded. In this debate, Sheldon Krimsky's Stem Cell Dialogues: A Philosophical and Scientific Inquiry into Medical Frontiers (Columbia UP, 2015) is the single best book. Evenhanded, eminently readable, up to date, educational, scientifically precise, powerfully researched, and very entertaining, Krimsky's slim volume is one that no scientist, policy-maker, ethicist, or intelligent reader should miss. PMID:27150419

  16. Stem cells, dot-com.

    PubMed

    Liang, Bryan A; Mackey, Tim K

    2012-09-12

    Direct-to-consumer (DTC) advertising of suspect goods and services has burgeoned because of the Internet. Despite very limited approval for use, DTC stem cell-marketed "treatments" have emerged for an array of conditions, creating global public health and safety risks. However, it remains unclear whether such use of stem cells is subject to drugs or biologics regulations. To address this gap, regulatory agencies should be given clear authority, and the international community should create a framework for appropriate stem cell use. In addition, consumer protection laws should be used to scrutinize providers. PMID:22972840

  17. Diabetes and Stem Cell Function

    PubMed Central

    Fujimaki, Shin; Wakabayashi, Tamami; Takemasa, Tohru; Asashima, Makoto; Kuwabara, Tomoko

    2015-01-01

    Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment. PMID:26075247

  18. Stem cell therapy independent of stemness.

    PubMed

    Lee, Techung

    2012-12-26

    Mesenchymal stem cell (MSC) therapy is entering a new era shifting the focus from initial feasibility study to optimization of therapeutic efficacy. However, how MSC therapy facilitates tissue regeneration remains incompletely characterized. Consistent with the emerging notion that secretion of multiple growth factors/cytokines (trophic factors) by MSC provides the underlying tissue regenerative mechanism, the recent study by Bai et al demonstrated a critical therapeutic role of MSC-derived hepatocyte growth factor (HGF) in two animal models of multiple sclerosis (MS), which is a progressive autoimmune disorder caused by damage to the myelin sheath and loss of oligodendrocytes. Although current MS therapies are directed toward attenuation of the immune response, robust repair of myelin sheath likely requires a regenerative approach focusing on long-term replacement of the lost oligodendrocytes. This approach appears feasible because adult organs contain various populations of multipotent resident stem/progenitor cells that may be activated by MSC trophic factors as demonstrated by Bai et al This commentary highlights and discusses the major findings of their studies, emphasizing the anti-inflammatory function and trophic cross-talk mechanisms mediated by HGF and other MSC-derived trophic factors in sustaining the treatment benefits. Identification of multiple functionally synergistic trophic factors, such as HGF and vascular endothelial growth factor, can eventually lead to the development of efficacious cell-free therapeutic regimens targeting a broad spectrum of degenerative conditions. PMID:23516128

  19. Intestinal Stem Cells: Got Calcium?

    PubMed

    Nászai, Máté; Cordero, Julia B

    2016-02-01

    Calcium ions are well-known intracellular signalling molecules. A new study identifies local cytoplasmic calcium as a central integrator of metabolic and proliferative signals in Drosophila intestinal stem cells. PMID:26859268

  20. Bone marrow (stem cell) donation

    MedlinePlus

    Stem cell transplant; Allogeneic-donation ... There are two types of bone marrow donation: Autologous bone marrow transplant is when people donate their own bone marrow. "Auto" means self. Allogenic bone marrow transplant is when another person ...

  1. Pancreatic Stem Cells Remain Unresolved

    PubMed Central

    Morahan, Grant

    2014-01-01

    Diabetes mellitus is caused by absolute (type 1) or relative (type 2) deficiency of insulin-secreting islet β cells. An ideal treatment of diabetes would, therefore, be to replace the lost or deficient β cells, by transplantation of donated islets or differentiated endocrine cells or by regeneration of endogenous islet cells. Due to their ability of unlimited proliferation and differentiation into all functional lineages in our body, including β cells, embryonic stem cells and induced pluripotent stem cells are ideally placed as cell sources for a diabetic transplantation therapy. Unfortunately, the inability to generate functional differentiated islet cells from pluripotent stem cells and the poor availability of donor islets have severely restricted the broad clinical use of the replacement therapy. Therefore, endogenous sources that can be directed to becoming insulin-secreting cells are actively sought after. In particular, any cell types in the developing or adult pancreas that may act as pancreatic stem cells (PSC) would provide an alternative renewable source for endogenous regeneration. In this review, we will summarize the latest progress and knowledge of such PSC, and discuss ways that facilitate the future development of this often controversial, but crucial research. PMID:25132582

  2. Stem Cells and Calcium Signaling

    PubMed Central

    Tonelli, Fernanda M.P.; Santos, Anderson K.; Gomes, Dawidson A.; da Silva, Saulo L.; Gomes, Katia N.; Ladeira, Luiz O.

    2014-01-01

    The increasing interest in stem cell research is linked to the promise of developing treatments for many lifethreatening, debilitating diseases, and for cell replacement therapies. However, performing these therapeutic innovations with safety will only be possible when an accurate knowledge about the molecular signals that promote the desired cell fate is reached. Among these signals are transient changes in intracellular Ca2+ concentration [Ca2+]i. Acting as an intracellular messenger, Ca2+ has a key role in cell signaling pathways in various differentiation stages of stem cells. The aim of this chapter is to present a broad overview of various moments in which Ca2+-mediated signaling is essential for the maintenance of stem cells and for promoting their development and differentiation, also focusing on their therapeutic potential. PMID:22453975

  3. Plasticity of spermatogonial stem cells.

    PubMed

    Cooke, Paul S; Simon, Liz; Nanjappa, Manjunatha K; Medrano, Theresa I; Berry, Suzanne E

    2015-01-01

    There have been significant breakthroughs over the past decade in the development and use of pluripotent stem cells as a potential source of cells for applications in regenerative medicine. It is likely that this methodology will begin to play an important role in human clinical medicine in the years to come. This review describes the plasticity of one type of pluripotent cell, spermatogonial stem cells (SSCs), and their potential therapeutic applications in regenerative medicine and male infertility. Normally, SSCs give rise to sperm when in the testis. However, both human and murine SSCs can give rise to cells with embryonic stem (ES) cell-like characteristics that can be directed to differentiate into tissues of all three embryonic germ layers when placed in an appropriate inductive microenvironment, which is in contrast to other postnatal stem cells. Previous studies have reported that SSCs expressed an intermediate pluripotent phenotype before differentiating into a specific cell type and that extended culture was necessary for this to occur. However, recent studies from our group using a tissue recombination model demonstrated that SSCs differentiated rapidly into another tissue, in this case, prostatic epithelium, without expression of pluripotent ES cell markers before differentiation. These results suggest that SSCs are capable of directly differentiating into other cell types without going through an intermediate ES cell-like stage. Because SSCs do not require reprogramming to achieve a pluripotent state, they are an attractive source of pluripotent cells for use in regenerative medicine. PMID:25677134

  4. Stem cell isolation: Differential stickiness

    NASA Astrophysics Data System (ADS)

    Abilez, Oscar J.; Wu, Joseph C.

    2013-06-01

    Technologies to isolate colonies of human pluripotent stem cells from other cell types in a high-throughput manner are lacking. A microfluidic-based approach that exploits differences in the adhesion strength between these cells and a substrate may soon fill the gap.

  5. Plasticity of spermatogonial stem cells

    PubMed Central

    Cooke, Paul S; Simon, Liz; Nanjappa, Manjunatha K; Medrano, Theresa I; Berry, Suzanne E

    2015-01-01

    There have been significant breakthroughs over the past decade in the development and use of pluripotent stem cells as a potential source of cells for applications in regenerative medicine. It is likely that this methodology will begin to play an important role in human clinical medicine in the years to come. This review describes the plasticity of one type of pluripotent cell, spermatogonial stem cells (SSCs), and their potential therapeutic applications in regenerative medicine and male infertility. Normally, SSCs give rise to sperm when in the testis. However, both human and murine SSCs can give rise to cells with embryonic stem (ES) cell-like characteristics that can be directed to differentiate into tissues of all three embryonic germ layers when placed in an appropriate inductive microenvironment, which is in contrast to other postnatal stem cells. Previous studies have reported that SSCs expressed an intermediate pluripotent phenotype before differentiating into a specific cell type and that extended culture was necessary for this to occur. However, recent studies from our group using a tissue recombination model demonstrated that SSCs differentiated rapidly into another tissue, in this case, prostatic epithelium, without expression of pluripotent ES cell markers before differentiation. These results suggest that SSCs are capable of directly differentiating into other cell types without going through an intermediate ES cell-like stage. Because SSCs do not require reprogramming to achieve a pluripotent state, they are an attractive source of pluripotent cells for use in regenerative medicine. PMID:25677134

  6. Comparison of Mesenchymal Stem Cell Markers in Multiple Human Adult Stem Cells

    PubMed Central

    Maleki, Masoud; Ghanbarvand, Farideh; Reza Behvarz, Mohammad; Ejtemaei, Mehri; Ghadirkhomi, Elham

    2014-01-01

    Objectives: Mesenchymal stem cells (MSCs) are adult stem cells which identified by adherence to plastic, expression of cell surface markers including CD44, CD90, CD105, CD106, CD166, and Stro-1, lack of the expression of hematopoietic markers, no immunogenic effect and replacement of damaged tissues. These properties led to development of progressive methods to isolation and characterization of MSCs from various sources for therapeutic applications in regenerative medicine. Methods: We isolated MSC-like cells from testis biopsies, ovary, hair follicle and umbilical cord Wharton’s jelly and investigated the expression of specific cell surface antigens using flow cytometry in order to verify stemness properties of these cells. Results: All four cell types adhered to plastic culture flask a few days after primary culture. All our cells positively expressed common MSC- specific cell surface markers. Moreover, our results revealed the expression of CD19and CD45 antigens in these cells. Conclusion: According to our results, high expression of CD44 in spermatogonial stem cells (SSCs), hair follicle stem cells (HFSCs),granulosa cells (GCs)and Wharton’s jelly- MSCs (WJ-MSCs)may help them to maintain stemness properties. Furthermore, we suggest that CD105+SSCs, HFSCs and WJ-MSCs revealed the osteogenic potential of these cells. Moreover, high expression of CD90 in SSCs and HFSCs may associate to higher growth and differentiation potential of these cells. Further, the presence of CD19 on SSCs and GCs may help them to efficiency in response to trans-membrane signals. Thus, these four types of MSCs may be useful in clinical applications and cell therapy. PMID:25473449

  7. Reprogrammed pluripotent stem cells from somatic cells.

    PubMed

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-06-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-like pluripotency by transferring somatic cell nuclei into oocytes, by cell fusion with pluripotent cells. Retroviral-mediated introduction of four factors, Oct4, Sox2, Klf4 and c-Myc can successfully reprogram somatic cells into ES cell-like pluripotent stem cells, known as induced pluripotent stem (iPS) cells. These cells closely resemble ES cells in gene expression pattern, cell biologic and phenotypic characteristics. However, to reach the eventual goal of clinical application, it is necessary to overcome the major drawbacks such as low reprogramming efficiency and genomic alterations due to viral integration. In this review, we discuss the current reprogramming techniques and mechanisms of nuclear reprogramming induced by transcription factor transduction. PMID:24298328

  8. Spatiotemporal coordination of stem cell commitment during epidermal homeostasis.

    PubMed

    Rompolas, Panteleimon; Mesa, Kailin R; Kawaguchi, Kyogo; Park, Sangbum; Gonzalez, David; Brown, Samara; Boucher, Jonathan; Klein, Allon M; Greco, Valentina

    2016-06-17

    Adult tissues replace lost cells via pools of stem cells. However, the mechanisms of cell self-renewal, commitment, and functional integration into the tissue remain unsolved. Using imaging techniques in live mice, we captured the lifetime of individual cells in the ear and paw epidermis. Our data suggest that epidermal stem cells have equal potential to either divide or directly differentiate. Tracking stem cells over multiple generations reveals that cell behavior is not coordinated between generations. However, sibling cell fate and lifetimes are coupled. We did not observe regulated asymmetric cell divisions. Lastly, we demonstrated that differentiating stem cells integrate into preexisting ordered spatial units of the epidermis. This study elucidates how a tissue is maintained by both temporal and spatial coordination of stem cell behaviors. PMID:27229141

  9. Spatiotemporal coordination of stem cell commitment during epidermal homeostasis

    PubMed Central

    Rompolas, Panteleimon; Mesa, Kailin R.; Kawaguchi, Kyogo; Park, Sangbum; Gonzalez, David; Brown, Samara; Boucher, Jonathan; Klein, Allon M.; Greco, Valentina

    2016-01-01

    Adult tissues replace lost cells via pools of stem cells. However, the mechanisms of cell self-renewal, commitment, and functional integration into the tissue remain unsolved. Using imaging techniques in live mice, we captured the lifetime of individual cells in the ear and paw epidermis. Our data suggest that epidermal stem cells have equal potential to either divide or directly differentiate. Tracking stem cells over multiple generations reveals that cell behavior is not coordinated between generations. However, sibling cell fate and lifetimes are coupled. We did not observe regulated asymmetric cell divisions. Lastly, we demonstrated that differentiating stem cells integrate into preexisting ordered spatial units of the epidermis. This study elucidates how a tissue is maintained by both temporal and spatial coordination of stem cell behaviors. PMID:27229141

  10. 25 YEARS OF EPIDERMAL STEM CELLS

    PubMed Central

    Ghadially, Ruby

    2012-01-01

    This is a chronicle of concepts in the field of epidermal stem cell biology and a historic look at their development over time. The last 25 years have seen the evolution of epidermal stem cell science, from first fundamental studies to a sophisticated science. The study of epithelial stem cell biology was aided by the ability to visualize the distribution of stem cells and their progeny through lineage analysis studies. The excellent progress we have made in understanding epidermal stem cell biology is discussed in this article. The challenges we still face in understanding epidermal stem cell include defining molecular markers for stem and progenitor subpopulations, determining the locations and contributions of the different stem cell niches, and mapping regulatory pathways of epidermal stem cell proliferation and differentiation. However, our rapidly evolving understanding of epidermal stem cells has many potential uses that promise to translate into improved patient therapy. PMID:22205306

  11. A systemic transcriptome analysis reveals the regulation of neural stem cell maintenance by an E2F1–miRNA feedback loop

    PubMed Central

    Palm, Thomas; Hemmer, Kathrin; Winter, Julia; Fricke, Inga B.; Tarbashevich, Katsiaryna; Sadeghi Shakib, Fereshteh; Rudolph, Ina-Maria; Hillje, Anna-Lena; De Luca, Paola; Bahnassawy, Lamia'a; Madel, Rabea; Viel, Thomas; De Siervi, Adriana; Jacobs, Andreas H.; Diederichs, Sven; Schwamborn, Jens C.

    2013-01-01

    Stem cell fate decisions are controlled by a molecular network in which transcription factors and miRNAs are of key importance. To systemically investigate their impact on neural stem cell (NSC) maintenance and neuronal commitment, we performed a high-throughput mRNA and miRNA profiling and isolated functional interaction networks of involved mechanisms. Thereby, we identified an E2F1–miRNA feedback loop as important regulator of NSC fate decisions. Although E2F1 supports NSC proliferation and represses transcription of miRNAs from the miR-17∼92 and miR-106a∼363 clusters, these miRNAs are transiently up-regulated at early stages of neuronal differentiation. In these early committed cells, increased miRNAs expression levels directly repress E2F1 mRNA levels and inhibit cellular proliferation. In mice, we demonstrated that these miRNAs are expressed in the neurogenic areas and that E2F1 inhibition represses NSC proliferation. The here presented data suggest a novel interaction mechanism between E2F1 and miR-17∼92 / miR-106a∼363 miRNAs in controlling NSC proliferation and neuronal differentiation. PMID:23396440

  12. Proteomic Definitions of Mesenchymal Stem Cells

    PubMed Central

    Maurer, Martin H.

    2011-01-01

    Mesenchymal stem cells (MSCs) are pluripotent cells isolated from the bone marrow and various other organs. They are able to proliferate and self-renew, as well as to give rise to progeny of at least the osteogenic, chondrogenic, and adipogenic lineages. Despite this functional definition, MSCs can also be defined by their expression of a distinct set of cell surface markers. In the current paper, studies investigating the proteome of human MSCs are reviewed with the aim to identify common protein markers of MSCs. The proteomic analysis of MSCs revealed a distinct set of proteins representing the basic molecular inventory, including proteins for (i) cell surface markers, (ii) the responsiveness to growth factors, (iii) the reuse of developmental signaling cascades in adult stem cells, (iv) the interaction with molecules of the extracellular matrix, (v) the expression of genes regulating transcription and translation, (vi) the control of the cell number, and (vii) the protection against cellular stress. PMID:21437194

  13. Engineering stem cell niches in bioreactors

    PubMed Central

    Liu, Meimei; Liu, Ning; Zang, Ru; Li, Yan; Yang, Shang-Tian

    2013-01-01

    Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as “niches”, to impact stem cell fate decision. The niche factors include the regulatory factors such as oxygen, extracellular matrix (synthetic and decellularized), paracrine/autocrine signaling and physical forces (i.e., mechanical force, electrical force and flow shear). The use of novel bioreactors with precise control and recapitulation of niche factors through modulating reactor operation parameters can enable efficient stem cell expansion and differentiation. Recently, the development of microfluidic devices and microbioreactors also provides powerful tools to manipulate the stem cell microenvironment by adjusting flow rate and cytokine gradients. In general, bioreactor engineering can be used to better modulate stem cell niches critical for stem cell expansion, differentiation and applications as novel cell-based biomedicines. This paper reviews important factors that can be more precisely controlled in bioreactors and their effects on stem cell engineering. PMID:24179601

  14. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division.

    PubMed

    Høyem, Marte Rørvik; Måløy, Frode; Jakobsen, Per; Brandsdal, Bjørn Olav

    2015-09-01

    We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells. PMID:25997796

  15. Alkaline Phosphatase in Stem Cells

    PubMed Central

    Štefková, Kateřina; Procházková, Jiřina; Pacherník, Jiří

    2015-01-01

    Alkaline phosphatase is an enzyme commonly expressed in almost all living organisms. In humans and other mammals, determinations of the expression and activity of alkaline phosphatase have frequently been used for cell determination in developmental studies and/or within clinical trials. Alkaline phosphatase also seems to be one of the key markers in the identification of pluripotent embryonic stem as well as related cells. However, alkaline phosphatases exist in some isoenzymes and isoforms, which have tissue specific expressions and functions. Here, the role of alkaline phosphatase as a stem cell marker is discussed in detail. First, we briefly summarize contemporary knowledge of mammalian alkaline phosphatases in general. Second, we focus on the known facts of its role in and potential significance for the identification of stem cells. PMID:25767512

  16. Tenascins in stem cell niches.

    PubMed

    Chiquet-Ehrismann, Ruth; Orend, Gertraud; Chiquet, Matthias; Tucker, Richard P; Midwood, Kim S

    2014-07-01

    Tenascins are extracellular matrix proteins with distinct spatial and temporal expression during development, tissue homeostasis and disease. Based on their expression patterns and knockout phenotypes an important role of tenascins in tissue formation, cell adhesion modulation, regulation of proliferation and differentiation has been demonstrated. All of these features are of importance in stem cell niches where a precise regulation of growth versus differentiation has to be guaranteed. In this review we summarize the expression and possible functions of tenascins in neural, epithelial and osteogenic stem cell niches during normal development and organ turnover, in the hematopoietic and pro-inflammatory niche as well as in the metastatic niche during cancer progression. PMID:24472737

  17. Hematopoietic stem cells: multiparameter regulation.

    PubMed

    Song, Kedong; Li, Liying; Wang, Yiwei; Liu, Tianqing

    2016-04-01

    Hematopoietic stem cells (HSCs) are capable to self-renew with multi-potency which generated much excitement in clinical therapy. However, the main obstacle of HSCs in clinical application was insufficient number of HSCs which were derived from either bone marrow, peripheral blood or umbilical cord blood. This review briefly discusses the indispensable utility of growth factors and cytokines, stromal cells, extracellular matrix, bionic scaffold and microenvironment aiming to control the hematopoiesis in all directions and provide a better and comprehensive understanding for in vitro expansion of hematopoietic stem cells. PMID:26883144

  18. Quantitative Phosphoproteomic Study Reveals that Protein Kinase A Regulates Neural Stem Cell Differentiation Through Phosphorylation of Catenin Beta-1 and Glycogen Synthase Kinase 3β.

    PubMed

    Wang, Shuxin; Li, Zheyi; Shen, Hongyan; Zhang, Zhong; Yin, Yuxin; Wang, Qingsong; Zhao, Xuyang; Ji, Jianguo

    2016-08-01

    Protein phosphorylation is central to the understanding of multiple cellular signaling pathways responsible for regulating the self-renewal and differentiation of neural stem cells (NSCs). Here we performed a large-scale phosphoproteomic analysis of rat fetal NSCs using strong cation exchange chromatography prefractionation and citric acid-assisted two-step enrichment with TiO2 strategy followed by nanoLC-MS/MS analysis. Totally we identified 32,546 phosphosites on 5,091 phosphoproteins, among which 23,945 were class I phosphosites, and quantified 16,000 sites during NSC differentiation. More than 65% of class I phosphosites were novel when compared with PhosphoSitePlus database. Quantification results showed that the early and late stage of NSC differentiation differ greatly. We mapped 69 changed phosphosites on 20 proteins involved in Wnt signaling pathway, including S552 on catenin beta-1 (Ctnnb1) and S9 on glycogen synthase kinase 3β (Gsk3β). Western blotting and real-time PCR results proved that Wnt signaling pathway plays critical roles in NSC fate determination. Furthermore, inhibition and activation of PKA dramatically affected the phosphorylation state of Ctnnb1 and Gsk3β, which regulates the differentiation of NSCs. Our data provides a valuable resource for studying the self-renewal and differentiation of NSCs. Stem Cells 2016;34:2090-2101. PMID:27097102

  19. MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31.

    PubMed

    Baglìo, Serena Rubina; Devescovi, Valentina; Granchi, Donatella; Baldini, Nicola

    2013-09-15

    Osteogenesis is the result of a complex sequence of events that involve the differentiation of mesenchymal stem cells (MSC) into osteoblasts. MSCs are multipotent adult stem cells that can give rise to different cell types of the mesenchymal germ layer. The differentiation fate of MSCs depends on the microenvironmental signals received by these cells and is tightly regulated by multiple pathways that lead to the activation of specific transcription factors. Among the transcription factors involved in osteogenic differentiation Osterix (Sp7) plays a key role and has been shown to be fundamental for bone homeostasis. However, the molecular events governing the expression of this transcription factor are not fully understood. In this study we set out to investigate the changes in the microRNA (miRNA) expression that occur during the osteogenic differentiation of bone marrow-derived MSCs. To this purpose, we analyzed the miRNA expression profile of MSCs deriving from 3 donors during the differentiation and mineralization processes by microarray. 29 miRNAs were significantly and consistently modulated during the osteogenic differentiation and 5 during the mineralization process. Interestingly, most of the differentially expressed miRNAs have been reported to be implicated in stemness maintenance, differentiation and/or oncogenesis. Subsequently, we focused our attention on the regulation of Osterix by miRNAs and demonstrated that one of the miRNAs differentially modulated during osteogenic differentiation, miR-31, controls Osterix expression through association to the 3' untranslated region of this transcription factor. By analyzing miR-31 and Osterix expression levels we found an inverse miRNA-target expression trend during osteogenic differentiation and in osteosarcoma cell lines. Moreover, the inhibition of the microRNA activity led to an increase in the endogenous expression of Osterix. Our results define a miRNA signature characterizing the osteogenic

  20. Stem cells: sources and therapies.

    PubMed

    Monti, Manuela; Perotti, Cesare; Del Fante, Claudia; Cervio, Marila; Redi, Carlo Alberto

    2012-01-01

    The historical, lexical and conceptual issues embedded in stem cell biology are reviewed from technical, ethical, philosophical, judicial, clinical, economic and biopolitical perspectives. The mechanisms assigning the simultaneous capacity to self-renew and to differentiate to stem cells (immortal template DNA and asymmetric division) are evaluated in the light of the niche hypothesis for the stemness state. The induction of cell pluripotency and the different stem cells sources are presented (embryonic, adult and cord blood). We highlight the embryonic and adult stem cell properties and possible therapies while we emphasize the particular scientific and social values of cord blood donation to set up cord blood banks. The current scientific and legal frameworks of cord blood banks are reviewed at an international level as well as allogenic, dedicated and autologous donations. The expectations and the challenges in relation to present-day targeted diseases like diabetes mellitus type I, Parkinson's disease and myocardial infarction are evaluated in the light of the cellular therapies for regenerative medicine. PMID:23283430

  1. Glioblastoma stem cells and stem cell-targeting immunotherapies.

    PubMed

    Esparza, Rogelio; Azad, Tej D; Feroze, Abdullah H; Mitra, Siddhartha S; Cheshier, Samuel H

    2015-07-01

    Advancements in immunotherapeutics promise new possibilities for the creation of glioblastoma (GBM) treatment options. Ongoing work in cancer stem cell biology has progressively elucidated the role of this tumor sub-population in oncogenesis and has distinguished them as prime therapeutic targets. Current clinical trials take a multifaceted approach with the intention of harnessing the intrinsic cytotoxic capabilities of the immune system to directly target glioblastoma cancer stem cells (gCSC) or indirectly disrupt their stromal microenvironment. Monoclonal antibodies (mAbs), dendritic cell (DC) vaccines, and chimeric antigen receptor (CAR) T cell therapies have emerged as the most common approaches, with particular iterations incorporating cancer stem cell antigenic markers in their treatment designs. Ongoing work to determine the comprehensive antigenic profile of the gCSC in conjunction with efforts to counter the immunosuppressive tumor microenvironment holds much promise in future immunotherapeutic strategies against GBM. Given recent advancements in these fields, we believe there is tremendous potential to improve outcomes of GBM patients in the continuing evolution of immunotherapies targeted to cancer stem cell populations in GBM. PMID:25682090

  2. Human stem cell ethics: beyond the embryo.

    PubMed

    Sugarman, Jeremy

    2008-06-01

    Human embryonic stem cell research has elicited powerful debates about the morality of destroying human embryos. However, there are important ethical issues related to stem cell research that are unrelated to embryo destruction. These include particular issues involving different types of cells used, the procurement of such cells, in vivo use of stem cells, intellectual property, and conflicts of interest. PMID:18522846

  3. Stem-cell ecology and stem cells in motion

    PubMed Central

    Scadden, David T.

    2008-01-01

    This review highlights major scientific developments over the past 50 years or so in concepts related to stem-cell ecology and to stem cells in motion. Many thorough and eloquent reviews have been presented in the last 5 years updating progress in these issues. Some paradigms have been challenged, others validated, or new ones brought to light. In the present review, we will confine our remarks to the historical development of progress. In doing so, we will refrain from a detailed analysis of controversial data, emphasizing instead widely accepted views and some challenging novel ones. PMID:18398055

  4. Common stemness regulators of embryonic and cancer stem cells

    PubMed Central

    Hadjimichael, Christiana; Chanoumidou, Konstantina; Papadopoulou, Natalia; Arampatzi, Panagiota; Papamatheakis, Joseph; Kretsovali, Androniki

    2015-01-01

    Pluripotency of embryonic stem cells (ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal transducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors (cancer stem cells), provides a common conceptual and research framework for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies. PMID:26516408

  5. A Co-Culture Model of Fibroblasts and Adipose Tissue-Derived Stem Cells Reveals New Insights into Impaired Wound Healing After Radiotherapy

    PubMed Central

    Haubner, Frank; Muschter, Dominique; Pohl, Fabian; Schreml, Stephan; Prantl, Lukas; Gassner, Holger G.

    2015-01-01

    External radiation seems to be associated with increased amounts of cytokines and other cellular modulators. Impaired microcirculation and fibrosis are examples of typical long term damage caused by radiotherapy. Adipose tissue-derived stem cells (ASC) are discussed to enhance wound healing, but their role in wounds due to radiotherapy is poorly understood. Normal human fibroblasts (NHF) and ASCs were co-cultured and external radiation with doses from 2–12 Gray (Gy) was delivered. Cell proliferation and mRNA levels of matrix metalloproteinases (MMP1, MMP2 and MMP13) were determined 48 h after irradiation of the co-cultures by qPCR. Additionally, tissue inhibitors of matrix metalloproteinases (TIMP1, TIMP2) were determined by enzyme-linked immunosorbent assay (ELISA). There was a reduction of cell proliferation after external radiation in mono-cultures of NHFs and ASCs compared to controls without irradiation. The co-culture of ASCs and NHFs showed reduced impairment of cell proliferation after external radiation. Gene expression of MMP1 and MMP13 was reduced after external irradiation in NHF. MMP2 expression of irradiated NHFs was increased. In the co-culture setting, MMP1 and MMP2 gene expression levels were upregulated. TIMP1 and TIMP2 protein expression was increased after irradiation in NHFs and their co-cultures with ASCs. ASCs seem to stimulate cell proliferation of NHFs and modulate relevant soluble mediators as well as proteinases after external radiation. PMID:26528967

  6. Cancer stem cell signaling pathways.

    PubMed

    Matsui, William H

    2016-09-01

    Tissue development and homeostasis are governed by the actions of stem cells. Multipotent cells are capable of self-renewal during the course of one's lifetime. The accurate and appropriate regulation of stem cell functions is absolutely critical for normal biological activity. Several key developmental or signaling pathways have been shown to play essential roles in this regulatory capacity. Specifically, the Janus-activated kinase/signal transducer and activator of transcription, Hedgehog, Wnt, Notch, phosphatidylinositol 3-kinase/phosphatase and tensin homolog, and nuclear factor-κB signaling pathways have all been shown experimentally to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. Unsurprisingly, many of these crucial signaling pathways are dysregulated in cancer. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of cancer stem cells (CSCs). CSCs are a relatively rare population of cancer cells capable of self-renewal, differentiation, and generation of serially transplantable heterogeneous tumors of several types of cancer. PMID:27611937

  7. Cell adhesion in regulation of asymmetric stem cell division

    PubMed Central

    Yamashita, Yukiko M.

    2010-01-01

    Adult stem cells inevitably communicate with their cellular neighbors within the tissues they sustain. Indeed, such communication, particularly with components of the stem cell niche, is essential for many aspects of stem cell behavior, including the maintenance of stem cell identity and asymmetric cell division. Cell adhesion mediates this communication by placing stem cells in close proximity to the signaling source and by providing a polarity cue that orients stem cells. Here, I review the recent discovery that cell adhesion molecules govern the behavior of stem cells. PMID:20724132

  8. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    SciTech Connect

    Nicolay, Nils H.; Sommer, Eva; Lopez, Ramon; Wirkner, Ute; Trinh, Thuy; Sisombath, Sonevisay; Debus, Jürgen; Ho, Anthony D.; Saffrich, Rainer; Huber, Peter E.

    2013-12-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.

  9. Stem Cell Transplantation for Neuroprotection in Stroke

    PubMed Central

    Shinozuka, Kazutaka; Dailey, Travis; Tajiri, Naoki; Ishikawa, Hiroto; Kaneko, Yuji; Borlongan, Cesar V.

    2013-01-01

    Stem cell-based therapies for stroke have expanded substantially over the last decade. The diversity of embryonic and adult tissue sources provides researchers with the ability to harvest an ample supply of stem cells. However, the optimal conditions of stem cell use are still being determined. Along this line of the need for optimization studies, we discuss studies that demonstrate effective dose, timing, and route of stem cells. We recognize that stem cell derivations also provide uniquely individual difficulties and limitations in their therapeutic applications. This review will outline the current knowledge, including benefits and challenges, of the many current sources of stem cells for stroke therapy. PMID:24147217

  10. Brief report: human pluripotent stem cell models of fanconi anemia deficiency reveal an important role for fanconi anemia proteins in cellular reprogramming and survival of hematopoietic progenitors.

    PubMed

    Yung, Sun K; Tilgner, Katarzyna; Ledran, Maria H; Habibollah, Saba; Neganova, Irina; Singhapol, Chatchawan; Saretzki, Gabriele; Stojkovic, Miodrag; Armstrong, Lyle; Przyborski, Stefan; Lako, Majlinda

    2013-05-01

    Fanconi anemia (FA) is a genomic instability disorder caused by mutations in genes involved in replication-dependant-repair and removal of DNA cross-links. Mouse models with targeted deletions of FA genes have been developed; however, none of these exhibit the human bone marrow aplasia. Human embryonic stem cell (hESC) differentiation recapitulates many steps of embryonic hematopoietic development and is a useful model system to investigate the early events of hematopoietic progenitor specification. It is now possible to derive patient-specific human-induced pluripotent stem cells (hiPSC); however, this approach has been rather difficult to achieve in FA cells due to a requirement for activation of FA pathway during reprogramming process which can be bypassed either by genetic complementation or reprogramming under hypoxic conditions. In this study, we report that FA-C patient-specific hiPSC lines can be derived under normoxic conditions, albeit at much reduced efficiency. These disease-specific hiPSC lines and hESC with stable knockdown of FANCC display all the in vitro hallmarks of pluripotency. Nevertheless, the disease-specific hiPSCs show a much higher frequency of chromosomal abnormalities compared to parent fibroblasts and are unable to generate teratoma composed of all three germ layers in vivo, likely due to increased genomic instability. Both FANCC-deficient hESC and hiPSC lines are capable of undergoing hematopoietic differentiation, but the hematopoietic progenitors display an increased apoptosis in culture and reduced clonogenic potential. Together these data highlight the critical requirement for FA proteins in survival of hematopoietic progenitors, cellular reprogramming, and maintenance of genomic stability. PMID:23280624

  11. Stem cells sources for intervertebral disc regeneration

    PubMed Central

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-01-01

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  12. Stem cells sources for intervertebral disc regeneration.

    PubMed

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-05-26

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  13. Stem Cells in the Limbal Stroma.

    PubMed

    Funderburgh, James L; Funderburgh, Martha L; Du, Yiqin

    2016-04-01

    The corneal stroma contains a population of mesenchymal cells subjacent to the limbal basement membrane with characteristics of adult stem cells. These 'niche cells' support limbal epithelial stem cell viability. In culture by themselves, the niche cells display a phenotype typical of mesenchymal stem cells. These stromal stem cells exhibit a potential to differentiate to multiple cell types, including keratocytes, thus providing an abundant source of these rare cells for experimental and bioengineering applications. Stromal stem cells have also shown the ability to remodel pathological stromal tissue, suppressing inflammation and restoring transparency. Because stromal stem cells can be obtained by biopsy, they offer a potential for autologous stem cell treatment for stromal opacities. This review provides an overview of the status of work on this interesting cell population. PMID:26804252

  14. Leydig cells: From stem cells to aging.

    PubMed

    Chen, Haolin; Ge, Ren-Shan; Zirkin, Barry R

    2009-07-10

    Leydig cells are the testosterone-producing cells of the testis. The adult Leydig cell population ultimately develops from undifferentiated mesenchymal-like stem cells present in the interstitial compartment of the neonatal testis. Four distinct stages of adult Leydig cell development have been identified and characterized: stem Leydig cells, progenitor Leydig cells, immature Leydig cells and adult Leydig cells. The stem Leydig cells are undifferentiated cells that are capable of indefinite self-renewal, differentiation, and replenishment of the Leydig cell niche. Progenitor Leydig cells are derived from the stem Leydig cells. These spindle-shaped cells are luteinizing hormone (LH) receptor positive, have high mitotic activity, and produce little testosterone but rather testosterone metabolites. The progenitor Leydig cells give rise to immature Leydig cells which are round, contain large amounts of smooth endoplasmic reticulum, and produce some testosterone but also very high levels of testosterone metabolites. A single division of these cells produces adult Leydig cells, which are terminally differentiated cells that produce high levels of testosterone. As men age, serum testosterone levels decline, and this is associated with alterations in body composition, energy level, muscle strength, physical, sexual and cognitive functions, and mood. In the Brown Norway rat, used extensively as a model for male reproductive aging, age-related reductions in serum testosterone result from significant decline in the ability of aged Leydig cells to produce testosterone in response to LH stimulation. This review describes Leydig cell development and aging. Additionally, the molecular mechanisms by which testosterone synthesis declines with aging are discussed. PMID:19481681

  15. The regulatory niche of intestinal stem cells.

    PubMed

    Sailaja, Badi Sri; He, Xi C; Li, Linheng

    2016-09-01

    The niche constitutes a unique category of cells that support the microenvironment for the maintenance and self-renewal of stem cells. Intestinal stem cells reside at the base of the crypt, which contains adjacent epithelial cells, stromal cells and smooth muscle cells, and soluble and cell-associated growth and differentiation factors. We summarize here recent advances in our understanding of the crucial role of the niche in regulating stem cells. The stem cell niche maintains a balance among quiescence, proliferation and regeneration of intestinal stem cells after injury. Mesenchymal cells, Paneth cells, immune cells, endothelial cells and neural cells are important regulatory components that secrete niche ligands, growth factors and cytokines. Intestinal homeostasis is regulated by niche signalling pathways, specifically Wnt, bone morphogenetic protein, Notch and epidermal growth factor. These insights into the regulatory stem cell niche during homeostasis and post-injury regeneration offer the potential to accelerate development of therapies for intestine-related disorders. PMID:27060879

  16. Isolation and characterization of cancer stem cells from medulloblastoma.

    PubMed

    Liu, J; Chi, N; Zhang, J Y; Zhu, W; Bian, Y S; Chen, H G

    2015-01-01

    Brain cancer stem cells are a subset of tumor cells present in several types of brain tumor that evade treatment regimens and are responsible for tumor recurrence. Recent reports on several tumors have suggested that Hoechst 33342 dye exclusion is a powerful technique for isolating cancer stem cell-like side population (SP) cells. In the present study, we attempted to isolate the SP cells from medulloblastoma, a malignant brain tumor in children. The tumor samples obtained were subjected to fluorescence-activated cell sorting analysis for SP cell isolation. Further, the SP cells were characterized by a sphere-formation assay and analyzed for expression of stem cell genes by reverse transcription-polymerase chain reaction (RT-PCR). Using flow cytometry, we isolated 2.9% of cancer stem-like SP cells from malignant medulloblastoma, which was reduced to 0.4% in the presence of verapamil, an inhibitor of ABC transporter. These SP cells undergo rapid proliferation and have a high tendency to form tumor spheres when compared with non-SP cells. Further, RT-PCR analysis revealed that the isolated SP cells have increased expression of neural stem cell markers such as nestin, Notch1, and the ABC transporter protein ABCG2. Therefore, our findings suggest that SP cells of medulloblastoma share the characteristics of cancer stem cells. The increased expression of stem cell markers and ABCG2 protein may function collectively and be responsible for drug and apoptosis resistance, as well as tumor recurrence and invasion. PMID:25966102

  17. Hematopoietic stem cells: an overview.

    PubMed

    Mosaad, Youssef Mohamed

    2014-12-01

    Considerable efforts have been made in recent years in understanding the mechanisms that govern hematopoietic stem cell (HSC) origin, development, differentiation, self-renewal, aging, trafficking, plasticity and transdifferentiation. Hematopoiesis occurs in sequential waves in distinct anatomical locations during development and these shifts in location are accompanied by changes in the functional status of the stem cells and reflect the changing needs of the developing organism. HSCs make a choice of either self-renewal or committing to differentiation. The balance between self-renewal and differentiation is considered to be critical to the maintenance of stem cell numbers. It is still under debate if HSC can rejuvenate infinitely or if they do not possess ''true" self-renewal and undergo replicative senescence such as any other somatic cell. Gene therapy applications that target HSCs offer a great potential for the treatment of hematologic and immunologic diseases. However, the clinical success has been limited by many factors. This review is intended to summarize the recent advances made in the human HSC field, and will review the hematopoietic stem cell from definition through development to clinical applications. PMID:25457002

  18. Ciprofloxacin Improves the Stemness of Human Dermal Papilla Cells

    PubMed Central

    Kiratipaiboon, Chayanin; Tengamnuay, Parkpoom; Chanvorachote, Pithi

    2016-01-01

    Improvement in the expansion method of adult stem cells may augment their use in regenerative therapy. Using human dermal papilla cell line as well as primary dermal papilla cells as model systems, the present study demonstrated that ciprofloxacin treatment could prevent the loss of stemness during culture. Clonogenicity and stem cell markers of dermal papilla cells were shown to gradually decrease in the culture in a time-dependent manner. Treatment of the cells with nontoxic concentrations of ciprofloxacin could maintain both stem cell morphology and clonogenicity, as well as all stem cells markers. We found that ciprofloxacin exerted its effect through ATP-dependent tyrosine kinase/glycogen synthase kinase3β dependent mechanism which in turn upregulated β-catenin. Besides, ciprofloxacin was shown to induce epithelial-mesenchymal transition in DPCs as the transcription factors ZEB1 and Snail were significantly increased. Furthermore, the self-renewal proteins of Wnt/β-catenin pathway, namely, Nanog and Oct-4 were significantly upregulated in the ciprofloxacin-treated cells. The effects of ciprofloxacin in preserving stem cell features were confirmed in the primary dermal papilla cells directly obtained from human hair follicles. Together, these results revealed a novel application of ciprofloxacin for stem cell maintenance and provided the underlying mechanisms that are responsible for the stemness in dermal papilla cells. PMID:26649051

  19. Mesenchymal Stem Cells as Therapeutics

    PubMed Central

    Parekkadan, Biju; Milwid, Jack M.

    2013-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that are being clinically explored as a new therapeutic for treating a variety of immune-mediated diseases. First heralded as a regenerative therapy for skeletal tissue repair, MSCs have recently been shown to modulate endogenous tissue and immune cells. Preclinical studies of the mechanism of action suggest that the therapeutic effects afforded by MSC transplantation are short-lived and related to dynamic, paracrine interactions between MSCs and host cells. Therefore, representations of MSCs as drug-loaded particles may allow for pharmacokinetic models to predict the therapeutic activity of MSC transplants as a function of drug delivery mode. By integrating principles of MSC biology, therapy, and engineering, the field is armed to usher in the next generation of stem cell therapeutics. PMID:20415588

  20. Stem Cells Deemed Safe for ALS Patients

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_159627.html Stem Cells Deemed Safe for ALS Patients But further ... June 29, 2016 (HealthDay News) -- Scientists report that stem cell therapy appears to be safe for people ...

  1. Stem Cells Deemed Safe for ALS Patients

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_159627.html Stem Cells Deemed Safe for ALS Patients But further research ... June 29, 2016 (HealthDay News) -- Scientists report that stem cell therapy appears to be safe for people with ...

  2. International Society for Stem Cell Research

    MedlinePlus

    ... Industry Committee Session RUCDR Humanity in a Dish Stem Cell Engineering Junior Investigator Events Career Panel Meet the ... Scientific Program Confirmed Speakers Support/Exhibit Meeting Supporters Stem Cell Engineering 2014 Program Committee Featured Speakers Deepak Srivastava ...

  3. Stem Cell Transplant Patients and Fungal Infections

    MedlinePlus

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  4. From Stem Cell to Embryo without Centrioles

    PubMed Central

    Stevens, Naomi R.; Raposo, Alexandre A.S.F.; Basto, Renata; St Johnston, Daniel; Raff, Jordan W.

    2007-01-01

    Summary Centrosome asymmetry plays a key role in ensuring the asymmetric division of Drosophila neural stem cells (neuroblasts [NBs]) and male germline stem cells (GSCs) [1–3]. In both cases, one centrosome is anchored close to a specific cortical region during interphase, thus defining the orientation of the spindle during the ensuing mitosis. To test whether asymmetric centrosome behavior is a general feature of stem cells, we have studied female GSCs, which divide asymmetrically, producing another GSC and a cystoblast. The cystoblast then divides and matures into an oocyte, a process in which centrosomes exhibit a series of complex behaviors proposed to play a crucial role in oogenesis [4–6]. We show that the interphase centrosome does not define spindle orientation in female GSCs and that DSas-4 mutant GSCs [7], lacking centrioles and centrosomes, invariably divide asymmetrically to produce cystoblasts that proceed normally through oogenesis—remarkably, oocyte specification, microtubule organization, and mRNA localization are all unperturbed. Mature oocytes can be fertilized, but embryos that cannot support centriole replication arrest very early in development. Thus, centrosomes are dispensable for oogenesis but essential for early embryogenesis. These results reveal that asymmetric centrosome behavior is not an essential feature of stem cell divisions. PMID:17716897

  5. Making Heads or Tails: Planarian Stem Cells in the Classroom†

    PubMed Central

    Srougi, Melissa C.; Thomas-Swanik, Jackie; Chan, John D.; Marchant, Jonathan S.; Carson, Susan

    2014-01-01

    Stem cells hold great promise in the treatment of diseases ranging from cancer to dementia. However, as rapidly as the field of stem cell biology has emerged, heated political debate has followed, scrutinizing the ethical implications of stem cell use. It is therefore imperative to promote scientific literacy by educating students about stem cell biology. Yet, there is a definite lack of material to engage students in this subject at the basic science level. Therefore, we have developed and implemented a hands-on introductory laboratory module that introduces students to stem cell biology and can be easily incorporated into existing curricula. Students learn about stem cell biology using an in vivo planarian model system in which they down-regulate two genes important in stem cell differentiation using RNA interference and then observe the regenerative phenotype. The module was piloted at the high school, community college, and university levels. Here, we report that introductory biology students enrolled at a community college were able to demonstrate gains in learning after completion of a one-hour lecture and four 45-minute laboratory sessions over the course of three weeks. These gains in learning outcomes were objectively evaluated both before and after its execution using a student quiz and experimental results. Furthermore, students’ self-assessments revealed increases in perceived knowledge as well as a general interest in stem cells. Therefore, these data suggest that this module is a simple, useful way to engage and to teach students about stem cell biology. PMID:24839511

  6. The Glycans of Stem Cells

    PubMed Central

    Lanctot, Pascal M.; Gage, Fred H.; Varki, Ajit P.

    2009-01-01

    Summary Glycans cover all cellular surfaces and, not surprisingly, are involved in many facets of stem cell biology and technology. For instance, coaxing stem cells to either proliferate or differentiate into the specific cell types needed for transplantation requires intricate glycan-dependent modulation of signalling molecules such as FGF-2, Wnt and Notch. Moreover, due to their prominent cell-surface localization and lineage-specific signatures, glycan epitopes such as the stage-specific embryonic antigens (Lewis X/SSEA-1, SSEA3–4) and tumor-rejection antigens (TRA1–60, 1–81) are ideally suited for identifying and isolating specific cell types from heterogeneous populations. Finally, the non-human sialic acid Neu5Gc has been detected on the surface of human embryonic stem cells due to metabolic incorporation from animal products used for their culture. Transplantation of Neu5Gc-contaminated cells poses immunological risks due to the presence, in humans, of circulating antibodies recognizing this glycan epitope. PMID:17681848

  7. Salivary Gland Cancer Stem Cells

    PubMed Central

    Adams, April; Warner, Kristy; Nör, Jacques E.

    2013-01-01

    Emerging evidence suggests the existence of a tumorigenic population of cancer cells that demonstrate stem cell-like properties such as self-renewal and multipotency. These cells, termed cancer stem cells (CSC), are able to both initiate and maintain tumor formation and progression. Studies have shown that CSC are resistant to traditional chemotherapy treatments preventing complete eradication of the tumor cell population. Following treatment, CSC are able to re-initiate tumor growth leading to patient relapse. Salivary gland cancers are relatively rare but constitute a highly significant public health issue due to the lack of effective treatments. In particular, patients with mucoepidermoid carcinoma or adenoid cystic carcinoma, the two most common salivary malignancies, have low long-term survival rates due to the lack of response to current therapies. Considering the role of CSC in resistance to therapy in other tumor types, it is possible that this unique sub-population of cells is involved in resistance of salivary gland tumors to treatment. Characterization of CSC can lead to better understanding of the pathobiology of salivary gland malignancies as well as to the development of more effective therapies. Here, we make a brief overview of the state-of-the-science in salivary gland cancer, and discuss possible implications of the cancer stem cell hypothesis to the treatment of salivary gland malignancies. PMID:23810400

  8. Stem Cell Research Policies around the World

    PubMed Central

    Dhar, Deepali; Hsi-en Ho, John

    2009-01-01

    The proliferation of stem cell research, conflated with its ethical and moral implications, has led governments to attempt regulation of both the science and funding of stem cells. Due to a diversity of opinions and cultural viewpoints, no single policy or set of rules exist to govern stem cell research. Instead, each country has developed its own policy. The following map catalogs the general legal and political milleu regarding stem cell research by country. PMID:19774124

  9. Stem Cell Treatment of the Heart

    PubMed Central

    Angelini, Paolo; Markwald, Roger R.

    2005-01-01

    Stem cells are multipotent, undifferentiated cells capable of multiplication and differentiation. Preliminary experimental evidence suggests that stem cells derived from embryonic or adult tissues (especially bone marrow) may develop into myocardial cells. Some experts believe that this phenomenon occurs naturally in human beings, specifically during recovery from a myocardial infarction. Recently, stem cells have been used with the therapeutic intention of regenerating damaged tissues. Cardiac experiments, mainly with adult homologous stem cells, have proved that this therapy is safe and may improve myocardial vascularization and pump function. We review current fundamental concepts regarding the normal development of embryonic stem cells into myocardial tissue and the heart as a whole. We describe the multiple conditions that naturally enable a stem cell to become a myocardial cell and a group of stem cells to become a heart. We also discuss the challenge of translating basic cellular and molecular mechanisms into effective, clinically relevant treatment options. PMID:16429891

  10. Cancer stem cells: the lessons from pre-cancerous stem cells

    PubMed Central

    Gao, Jian-Xin

    2008-01-01

    Abstract How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of ‘clonal evolution’ for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of pre-cancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the clonal evolution is not contradictory to the CSC hypothesis but is rather an aspect of the process of CSC development [2]. The discovery of pCSC has revealed and will continue to reveal the volatile properties of CSC with respect to their phenotype, differentiation and tumourigenic capacity during initiation and progression. Both pCSC and CSC might also serve as precursors of tumour stromal components such as tumour vasculogenic stem/progenitor cells (TVPCs). Thus, the CSC hypothesis covers the developing process of tumour-initiating cells (TIC) → pCSC → CSC → cancer, a cellular process that should parallel the histological process of hyperplasia/metaplasia (TIC) → pre-cancerous lesions (pCSC) → malignant lesions (CSC → cancer). The embryonic stem (ES) cell and germ line stem (GS) cell genes are subverted in pCSCs. Especially the GS cell protein piwil2 may play an important role during the development of TIC → pCSC → CSC, and this protein may be used as a common biomarker for early detection, prevention, and treatment of cancer. As cancer stem cell research is yet in its infancy, definitive conclusions regarding the role of pCSC cannot be made at this time. However, this review will discuss what we have learned from pCSC and how this has led to innovative ideas that may eventually have major impacts on the understanding and treatment of cancer. PMID:18053092