Science.gov

Sample records for step index fiber

  1. Tunneling - radiating effect in elliptical step-index fibers.

    PubMed

    Checcacci, P F; Falciai, R; Scheggi, A M

    1980-04-01

    The tunneling region below cutoff frequency of the different modes in an elliptical step-index fiber is examined. The whispering modes can undergo either a pure tunneling or a tunneling-radiating effect, whereas the bouncing modes show only the tunneling-radiating effect. PMID:19693152

  2. A comparison of temperature sensing characteristics of SMS structures using step and graded index multimode fibers

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Kumar, Arun; Tripathi, Saurabh Mani

    2014-02-01

    A comparative study of the temperature sensitivities of the single-multi-single mode (SMS) fiber structures employing step-index and graded-index multimode fibers (MMFs), for two different doping concentrations of GeO2 in MMF core, is carried out. The temperature sensitivity for graded-index MMF is found to be much larger (approx. 45-285 times) for the entire range of wavelength operation (0.7-1.6 ?m). A physical explanation of the observed behavior is also presented. The study should be useful in designing various fiber optic multimode interference based devices with high or low temperature sensitivities.

  3. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors.

    PubMed

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio; Markos, Christos; Nielsen, Kristian; Rasmussen, Henrik K; Bang, Ole

    2016-01-25

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured POFs. PMID:26832507

  4. Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber.

    PubMed

    Tuniz, Alessandro; Jain, Chhavi; Weidlich, Stefan; Schmidt, Markus A

    2016-02-01

    We show broadband azimuthal polarization state conversion using an entirely connectorized step-index fiber with a central gold nanowire. This device provides broadband polarization discrimination of the low-loss TE01 fiber mode with respect to all other modes, and converts light into the azimuthal polarization state, resulting in a high beam quality and an azimuthal conversion efficiency of 37%. The device is monolithically integrated into fiber circuitry, representing a new platform for plasmonics and fiber optics and enabling important applications in super-resolution microscopy, laser tweezing, and plasmonic superfocussing. PMID:26907394

  5. Characteristics of diffraction beam of TE01 mode of step index fiber

    NASA Astrophysics Data System (ADS)

    Guo, Fuyuan; Li, Lianhuang; Zheng, Hua; Wang, Yi; Dai, Tiangui; Ke, Jinrui

    2011-11-01

    Based on the eigen equation and relationship among three normalized parameters, the approximate expression between the normalized standing parameter and the normalized frequency of TE01 mode of step index fiber is recommended. Then, the characteristics of TE01 mode field distribution is analyzed, the approximate expression between the radial coordinate for maximal amplitude of mode field and the normalized frequency is suggested. For the sake of clarifying the characteristics of diffraction far field of TE01 mode of step index fiber, its expression is given according to the scalar diffraction integral formula. Then, the approximate expression between the normalized spatial frequency for the maximal spatial frequency spectrum and the normalized frequency is suggested. Numerical calculations show that the relative error between approximate value and exact value are small than one percent within a large variable range and this indicate that these approximate expressions are relatively reasonable.

  6. Highly reflective Bragg gratings in slightly etched step-index polymer optical fiber.

    PubMed

    Hu, Xuehao; Pun, Chi-Fung Jeff; Tam, Hwa-Yaw; Mgret, Patrice; Caucheteur, Christophe

    2014-07-28

    During the past few years, a strong progress has been made in the photo-writing of fiber Bragg gratings (FBGs) in polymer optical fibers (POFs), animated by the constant wish to enhance the grating reflectivity and improve the sensing performances. In this paper, we report the photo-inscription of highly reflective gratings in step-index POFs, obtained thanks to a slight etching of the cladding. We demonstrate that a cladding diameter decrease of ~12% is an ideal trade-off to produce highly reflective gratings with enhanced axial strain sensitivity, while keeping almost intact their mechanical resistance. For this, we make use of Trans-4-stilbenemethanol-doped photosensitive step-index poly(methyl methacrylate) (PMMA) POFs. FBGs are inscribed at ~1550 nm by the scanning phase mask technique in POFs of different external diameters. Reflectivity reaching 97% is achieved for 6 mm long FBGs, compared to 25% for non-etched POFs. We also report that a cladding decrease enhances the FBG axial tension while keeping unchanged temperature and surrounding refractive index sensitivities. Finally and for the first time, a measurement is conducted in transmission with polarized light, showing that a photo-induced birefringence of 7 10(-6) is generated (one order of magnitude higher than the intrinsic fiber birefringence), which is similar to the one generated in silica fiber using ultra-violet laser. PMID:25089498

  7. Equilibrium modal power distribution measurement of step-index hard plastic cladding and graded-index silica multimode fibers

    NASA Astrophysics Data System (ADS)

    Tao, Ruichen; Hayashi, Takehiro; Kagami, Manabu; Kobayashi, Shigeru; Yasukawa, Manabu; Yang, Hui; Robinson, David; Baghsiahi, Hadi; Fernndez, F. Anbal; Selviah, David R.

    2015-03-01

    A stable reproducible optical standard source for measuring multimode optical fiber attenuation is required as recent round robin measurements of such fibers at several international companies and national standards organizations showed significant variation when using a source having only the encircled flux in the near field emerging from it defined. The paper presents and compares the far field modal power distributions for (i) 2 km and 3 km step-index multimode Hard Plastic Cladding Fibers, HPCF, (SI-MMF) with 200 ?m silica core diameter, 0.37 numerical aperture (NA) and polymer cladding, (ii) a 10 m silica graded-index multimode fiber (GI-MMF) with 50 ?m core diameter and 0.2 NA, and (ii) a near field Encircled Flux Mode Convertor or "modcon". A free space method for measuring the far field using a Lightemitting diode (LED) centered at 850 nm wavelength with 40 nm 10 dB-bandwidth and a charge-coupled device (CCD) camera is compared with a f-theta multi-element lens based far field pattern (FFP) system. Mandrels of different diameter and different numbers of turns of the fiber around them were used to achieve an equilibrium mode distribution (EMD) for the GI-MMF. The paper defines encircled angular flux (EAF) as the fraction of the total optical power radiating from a multimode optical fiber core within a certain solid angle in the far field. The paper calculates the EAF when the solid angle increases from the far field centroid.

  8. Efficiency of various modulation types in Step Index Polymer Optical Fiber

    NASA Astrophysics Data System (ADS)

    Siuzdak, Jerzy; Stepniak, Grzegorz

    2014-11-01

    Efficiency of PAM, CAP/QAM and OFDM/DMT modulation for Step Index Polymer Optical Fiber channel is analyzed theoretically. It is shown that for the same transmitted optical power and same BER they offer similar data throughputs. However, when the light source has limited dynamics the crucial factor is the peak to average power ratio of the modulating signal. This is the greatest for OFDM/DMT and smaller for CAP and PAM. Consequently, the efficiency for PAM and CAP should be comparable whereas that of DMT - inferior. This conclusion was confirmed by experimental results.

  9. On a possible method to measure the radial profile of the photoelastic constant in step-index optical fiber

    NASA Astrophysics Data System (ADS)

    Acheroy, Sophie; Merken, Patrick; Geernaert, Thomas; Ottevaere, Heidi; Thienpont, Hugo; Berghmans, Francis

    2014-05-01

    We describe a measurement method to determine the radial distribution of the photoelastic coefficient C in a step-index optical glass fiber. This method is based on the measurement of the retardance profile of a transversally illuminated fiber for increasing tensile load. The radial profile C(r) is obtained from the inverse Abel transform of this retardance profile. We measured three step-index glass fibers with three different core radii. The results suggest that C may be constant across the fiber section and that the mean absolute value of C is slightly larger for glass fibers than for fused silica. Additionally, the shape of the actual refractive index profile can be derived from the retardance measurements.

  10. All-fiber broadband supercontinuum source with high efficiency in a step-index high nonlinear silica fiber.

    PubMed

    Gao, Weiqing; Liao, Meisong; Yang, Lingzhen; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake

    2012-03-10

    We demonstrate an all-fiber broadband supercontinuum (SC) source with high efficiency in a step-index high nonlinear silica fiber, which was pumped by a 1557 nm subpicosecond-pulse laser in the normal dispersion region. The broad SC spectrum covers the spectral range from 840 to 2390 nm, and the 10 dB bandwidth from 1120 nm to 2245 nm of the SC covers one octave, assuming the peaks near 1550 nm were filtered. The SC source system is constructed by all-fiber components, which can be fusion-spliced together directly with low loss, less than 0.1 dB. Thus the SC source has high energy transfer efficiency from the pump source. The maximum SC average power of 332 mW is obtained, including the peaks near 1550 nm. The spectral density for the 10 dB bandwidth is in the range from -17.3 to -7.3 dBm/nm. PMID:22410985

  11. Estimation of angle-dependent mode coupling and attenuation in step-index plastic optical fibers from impulse responses.

    PubMed

    Mundus, M; Hohl-Ebinger, J; Warta, W

    2013-07-15

    We report on a method for estimation of angle-dependent mode coupling and attenuation in step-index plastic optical fibers (SI-POFs) from the shapes of impulse responses at two different fiber lengths. While alternating the fiber lengths, deviations between simulated and reference impulse responses are minimized by optimizing both mode coupling and attenuation parameters using pattern-search routines. Applying a matrix-based finite-difference approach to Gloge's time-dependent power flow equation fast computation of simulated impulse responses is enabled. We demonstrate that mode-dependent coupling and attenuation parameters converge to values that reconstruct fiber characteristics reported by other authors. We show that our results can be used for prediction of impulse responses, yielding determination of frequency responses, fiber bandwidths and coupling lengths. We conclude that our method enables characterization of SI-POFs from fiber impulse response measurements. PMID:23938556

  12. Third-harmonic generation with a more than 500?nm tunable spectral range in a step-index tellurite fiber

    NASA Astrophysics Data System (ADS)

    Gao, Weiqing; Cheng, Tonglei; Deng, Dinghuan; Xue, Xiaojie; Suzuki, Takenobu; Ohishi, Yasutake

    2014-09-01

    We demonstrate third-harmonic generation (THG) with a tunable spectral range of more than 500?nm in a step-index tellurite fiber. Third-harmonic (TH) signals with a peak wavelength from 524 to 1043?nm are obtained in a 3?cm-long fiber when the fundamental wavelength shifts from 1560 to 3100?nm. To our knowledge, the tunable spectral range covering almost one octave is the widest tunable range of THG in fibers so far. The far-field patterns of the TH signals by 1560?nm to 2100?nm pumping are recorded by a charge coupled device camera, which are close to the fundamental mode profile. The THG in such a wide tunable range is attributable to the high nonlinearity of the tellurite fiber and the high pump peak power of the pump pulse.

  13. Attenuation and modal dispersion models for spatially multiplexed co-propagating helical optical channels in step index fibers

    NASA Astrophysics Data System (ADS)

    Murshid, Syed H.; Chakravarty, Abhijit; Biswas, Raka

    2011-04-01

    Spatial reuse of optical frequencies has been shown to be possible through a novel spatial domain multiplexing (SDM) technique that uses spatial multiplexer at the input end to launch multiple channels of the same wavelength inside a single strand of carrier fiber and then employs spatial filtering methods to de-multiplex the different optical channels at the output end. The individual SDM channels are confined to dedicated spatial locations inside the fiber while traversing through it owing to helical propagation of light. This presents attenuation and dispersion models of such a system. Experimentally obtained beam profile and resultant crosstalk of two such spatially multiplexed co-propagating SDM channels of the same wavelength over standard step index multimode optical fibers are also presented.

  14. Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm.

    PubMed

    Salem, Reza; Jiang, Zack; Liu, Dongfeng; Pafchek, Robert; Gardner, David; Foy, Paul; Saad, Mohammed; Jenkins, Doug; Cable, Alex; Fendel, Peter

    2015-11-30

    A nearly two-octave wide coherent mid-infrared supercontinuum is demonstrated in a dispersion-engineered step-index indium fluoride fiber pumped near 2 µm. The pump source is an all-fiber femtosecond laser with 100 fs pulse width, 570 mW average power and 50 MHz repetition rate. The supercontinuum spectrum spans from 1.25 µm to 4.6 µm. Numerical modelling of the supercontinuum spectra show good agreement with the measurements. The coherence of the supercontinuum is calculated using a numerical model and shows a high degree of coherence across the generated bandwidth allowing it to be used for frequency comb applications. PMID:26698692

  15. Transmission of laser pulses with high output beam quality using step-index fibers having large cladding

    SciTech Connect

    Yalin, Azer P; Joshi, Sachin

    2014-06-03

    An apparatus and method for transmission of laser pulses with high output beam quality using large core step-index silica optical fibers having thick cladding, are described. The thick cladding suppresses diffusion of modal power to higher order modes at the core-cladding interface, thereby enabling higher beam quality, M.sup.2, than are observed for large core, thin cladding optical fibers. For a given NA and core size, the thicker the cladding, the better the output beam quality. Mode coupling coefficients, D, has been found to scale approximately as the inverse square of the cladding dimension and the inverse square root of the wavelength. Output from a 2 m long silica optical fiber having a 100 .mu.m core and a 660 .mu.m cladding was found to be close to single mode, with an M.sup.2=1.6. Another thick cladding fiber (400 .mu.m core and 720 .mu.m clad) was used to transmit 1064 nm pulses of nanosecond duration with high beam quality to form gas sparks at the focused output (focused intensity of >100 GW/cm.sup.2), wherein the energy in the core was <6 mJ, and the duration of the laser pulses was about 6 ns. Extending the pulse duration provided the ability to increase the delivered pulse energy (>20 mJ delivered for 50 ns pulses) without damaging the silica fiber.

  16. Radiation Effects In Multimode, Step Index Fiber Optic Delay Lines At 1300 Nm

    NASA Astrophysics Data System (ADS)

    Evans, Bruce D.; Maida, John L.; Varshneya, Deepak

    1990-01-01

    Fiber optic delay lines under =100 kpsi bend stress at 22 and -55C were evalu-ated at 1300 nm during and after Co-60 irradiation and compared with similar multi-mode, low-OH, pure silica core/fluorosilica clad fibers under =10 kpsi bend stress. A very small, positive, =15% change in fiber attenuation (dB/km) was observed that suggests under high bend stress optical fibers may incur somewhat more radiation-induced attenuation than unstressed fibers. However, the influence upon overall radiation susceptibility of photonic systems deploying fiber optic delay lines with lengths up to 100 meters and under =100 kpsi stress should be negligible.

  17. Experimental investigation of PAM, CAP and DMT modulations efficiency over a double-step-index polymer optical fiber

    NASA Astrophysics Data System (ADS)

    Stepniak, G.; Siuzdak, J.

    2014-08-01

    Investigated was the transmission over step index POF that is 50 m/100 m long with a red DVD laser as a source and a Si p-i-n commercial photo-detector. The maximum bit rates of three modulation formats: PAM, CAP and DMT were sought. Their constellation sizes and symbol rates were varied in order to maximize FEC limited throughputs for each modulation whereas the laser operating point and relevant optical powers were maintained constant for all the modulations. The maximum throughputs were similar for PAM and CAP, namely 3.3/2 Gbit/s for PAM, and 3.15/2.1 for CAP for 50/100 m fiber, respectively. The bit rates for DMT were 2.65/1.65 Gbit/s for the respective lengths of the fiber. We attribute the inferior performance of DMT to its high value of peak to average power ratio.

  18. Characterization of macrobend sensitivity of step index optical fibers used in intensity sensors

    NASA Astrophysics Data System (ADS)

    York, James F.; Nelson, Gary W.; Varshneya, Deepak

    1991-12-01

    Optical fibers are protected with a variety of materials that act as buffers and jackets. These protective coatings enhance their handling characteristics as well as their resistance to various adverse environments. It is also known that these materials can have an effect on the optical performance of the fiber. This testing explored the effect of bending and temperature variations on the optical performance of fibers protected with various materials.

  19. High peak- and average-power pulse shaped fiber laser in the ns-regime applying step-index XLMA gain fibers

    NASA Astrophysics Data System (ADS)

    Dinger, R.; Grundmann, F.-P.; Hapke, C.; Ruppik, S.

    2014-03-01

    Pulsed fiber lasers and continuous-wave (cw) fiber lasers have become the tool of choice in more and more laser based industrial applications like metal cutting and welding mainly because of their robustness, compactness, high brightness, high efficiency and reasonable costs. However, to further increase the productivity with those laser types there is a great demand for even higher laser power specifications. In this context we demonstrate a pulsed high peak- and averagepower fiber laser in a Master Oscillator Power Amplifier (MOPA) configuration with selectable pulse durations between 1 ns and several hundred nanoseconds. To overcome fiber nonlinearities such as stimulated Raman scattering (SRS) and self-phase-modulation (SPM) flexible Ytterbium doped extra-large mode area (XLMA) step index fibers, prepared by novel powder-sinter technology, have been used as gain fibers. As an example, for 12 ns pulses with a repetition rate of 10 kHz, a pump power limited average laser output power of more than 400 W in combination with peak powers of more than 3.5 MW (close to self-focusing-threshold) has been achieved in stable operation. The potentials of this laser system have been further explored towards longer pulse durations in order to achieve even higher pulse energies by means of pulse shaping techniques. In addition, investigations have been conducted with reduced pulse energies and repetition rates up to 500 kHz and average powers of more than 500 W at nearly diffraction limited beam quality.

  20. Space-time block code based MIMO encoding for large core step index plastic optical fiber transmission systems.

    PubMed

    Raptis, Nikos; Grivas, Evangelos; Pikasis, Evangelos; Syvridis, Dimitris

    2011-05-23

    The performance of Space-Time Block Codes combined with Discrete MultiTone modulation applied in a Large Core Step-Index POF link is examined theoretically. A comparative study is performed considering several schemes that employ multiple transmitters/receivers and a fiber span of 100 m. The performance enhancement of the higher diversity order configurations is revealed by application of a Margin Adaptive Bit Loading technique that employs Chow's algorithm. Simulations results of the above schemes, in terms of Bit Error Rate as a function of the received Signal to Noise Ratio, are provided. An improvement of more than 6 dB for the required electrical SNR is observed for a 3 1 configuration, in order to achieve a 10(-3) BER value, as compared to a conventional Single Input Single output scheme. PMID:21643291

  1. Simplified study of guided modes in plasma cladded step-index optical fiber

    NASA Astrophysics Data System (ADS)

    Mishra, A. K.; Singh, O. N.

    2015-06-01

    In this paper, the effect of plasma cladding on the modal dispersion characteristics of guided modes is explored. The dispersion relation of guided modes which is derived employing the usual boundary conditions, show a strong dependency on the operating frequency. The numerical aperture of plasma cladded light guide decreases on increasing the operating frequency which is quite contrary to conventional dielectric optical fibers. Our study further revealed that this decrease in numerical aperture is more prompt at lower frequency and hence, an unusual dispersion characteristic is displayed by hybrid modes. The transverse modes display the usual dispersion characteristics with only exceptions that these modes occur in pairs with approximately equal cutoff frequency. We hope that the study will be quite useful to investigate the behavior of high power laser beam propagating through air core or hollow fibers.

  2. One step method to attach gold nanoparticles onto the surface of an optical fiber used for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Garca, J. A.; Monzn-Hernndez, D.; Manrquez, J.; Bustos, E.

    2016-01-01

    Localized surface plasmon resonance (LSPR) has recently emerged as an efficient and powerful tool for bio-photonic applications due to its high sensitivity to refractive index changes. One technique to excite LSP is by the interaction of the evanescent wave of the light guided by an optical fiber with metallic nanoparticles deposited over the surface of the fiber. This paper proposes a novel, simple, and fast method to attach gold nanoparticles to the optical fiber surface, which can be used to construct highly sensitive refractive index sensors based on localized surface plasmon resonance. A hetero-core structured fiber, composed by a small section of single-mode fiber inserted in a multimode fiber, was coated with nanoparticles using the method proposed here. A sensor sensitivity and resolution of 765 nm/RIU and ?1 10-4 RIU, respectively, were estimated over a refractive index range of 1.333-1.365. This coating method is appealing to construct optical fiber refractive index sensors since it is very simple and low cost.

  3. Ince-gauss based multiple intermodal phase-matched third-harmonic generations in a step-index silica optical fiber

    NASA Astrophysics Data System (ADS)

    Borne, Adrien; Katsura, Tomotaka; Félix, Corinne; Doppagne, Benjamin; Segonds, Patricia; Bencheikh, Kamel; Levenson, Juan Ariel; Boulanger, Benoit

    2016-01-01

    Several third-harmonic generation processes were performed in a single step-index germanium-doped silica optical fiber under intermodal phase-matching conditions. The nanosecond fundamental beam range between 1400 and 1600 nm. The transverse distributions of the energy were successfully modeled in the form of Ince-Gauss modes, pointing out some ellipticity of fiber core. From these experiments and theoretical calculations, we discuss the implementation of frequency degenerated triple photon generation that shares the same phase-matching condition as third-harmonic generation, which is its reverse process.

  4. Fiber optic refractive index monitor

    DOEpatents

    Weiss, Jonathan David (Albuquerque, NM)

    2002-01-01

    A sensor for measuring the change in refractive index of a liquid uses the lowest critical angle of a normal fiber optic to achieve sensitivity when the index of the liquid is significantly less than the index of the fiber core. Another embodiment uses a liquid filled core to ensure that its index is approximately the same as the liquid being measured.

  5. Approximate solutions of the eigenvalue equation near cutoff for TE0mand TM0m modes for a step index fiber optic: new forms and considerations

    NASA Astrophysics Data System (ADS)

    Schiopu, Carmen L.; Schiopu, Paul

    1998-07-01

    In this work the authors intend to present a new approximate technique of solving the characteristic (eigenvalue) equation for a step index fiber optic near cut-off. To illustrate this new method, there are presented (and demonstrated) two particular forms, corresponding to the case v equals 0 (TE0m and TM0m modes). Solutions of these equations are compared with other solutions suggested by Marcuse and--also--it is analyzed the accuracy of our results compared with the general solution of the characteristic equation.

  6. Near-Diffraction-Limited Operation of Step-Index Large-Mode-Area Fiber Lasers Via Gain Filtering

    SciTech Connect

    Marciante, J.R.; Roides, R.G.; Shkunov, V.V.; Rockwell, D.A.

    2010-06-04

    We present, for the first time to our knowledge, an explicit experimental comparison of beam quality in conventional and confined-gain multimode fiber lasers. In the conventional fiber laser, beam quality degrades with increasing output power. In the confined-gain fiber laser, the beam quality is good and does not degrade with output power. Gain filtering of higher-order modes in 28 ?m diameter core fiber lasers is demonstrated with a beam quality of M^2 = 1.3 at all pumping levels. Theoretical modeling is shown to agree well with experimentally observed trends.

  7. Influence of measurement noise on the determination of the radial profile of the photoelastic coefficient in step-index optical fibers.

    PubMed

    Acheroy, Sophie; Merken, Patrick; Ottevaere, Heidi; Geernaert, Thomas; Thienpont, Hugo; Berghmans, Francis

    2013-12-10

    We discuss a measurement method that aims to determine the radial distribution of the photoelastic constant C in an optical fiber. This method uses the measurement of the retardance profile of a transversely illuminated fiber as a function of applied tensile load and requires the computation of the inverse Abel transform of this retardance profile. We focus on the influence of the measurement error on the obtained values for C. The results suggest that C may not be constant across the fiber and that the mean absolute value of C is slightly larger for glass fibers than for bulk fused silica. This can, for example, influence the accuracy with which one is able to predict the response of optical fiber sensors used for measuring mechanical loads. PMID:24513887

  8. Attenuation and bit error rate for four co-propagating spatially multiplexed optical communication channels of exactly same wavelength in step index multimode fibers

    NASA Astrophysics Data System (ADS)

    Murshid, Syed H.; Chakravarty, Abhijit

    2011-06-01

    Spatial domain multiplexing (SDM) utilizes co-propagation of exactly the same wavelength in optical fibers to increase the bandwidth by integer multiples. Input signals from multiple independent single mode pigtail laser sources are launched at different input angles into a single multimode carrier fiber. The SDM channels follow helical paths and traverse through the carrier fiber without interfering with each other. The optical energy from the different sources is spatially distributed and takes the form of concentric circular donut shaped rings, where each ring corresponds to an independent laser source. At the output end of the fiber these donut shaped independent channels can be separated either with the help of bulk optics or integrated concentric optical detectors. This presents the experimental setup and results for a four channel SDM system. The attenuation and bit error rate for individual channels of such a system is also presented.

  9. Pixelated high-index ring Bragg fibers.

    PubMed

    Baz, Assaad; Bouwmans, Graud; Bigot, Laurent; Quiquempois, Yves

    2012-08-13

    A new type of Anti Resonant Reflecting Optical Waveguide (ARROW) fiber with a low refractive index contrast is reported. This waveguide is similar to a Bragg fiber for which the high index rings are replaced by discontinuous rings made of circular High Index Inclusions (HII). As compared to conventional Bragg fibers, such a new structure enables true Photonic BandGap (PBG) guidance and limits the number of cladding modes located within the high index regions, thus enhancing the guiding properties. A Mode Field Diameter (MFD) of 26 ?m is reported at a wavelength of 1400 nm. Single Mode (SM) behavior is also observed beyond 1400 nm for a 1 m-long fiber. PMID:23038519

  10. Fiber optic liquid refractive index sensor

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Vanita; Gangwar, Rahul Kumar; Singh, Vinod Kumar

    2015-08-01

    In this present work we report fabrication of fiber optic liquid refractive index (RI) measurement sensor based on Michelson Interferometer method. This sensor was assembled by using graded index multimode (MM) fiber with core diameter 50 m and the cladding of fiber was removed by simple chemical method. To perform this experiment a 22 3dB coupler is used. The fiber ends are then immersed in solvent and solution to provide reference and refractive index measurements, respectively. This method was successfully used to measure refractive index of Sodium Chloride (NaCl)-Water solution at different concentrations. The fringe contrast sensitivity of device is 92.90 dB/RIU measured in the RI range from 1.34 to 1.42 which is better than Mach-Zehnder Interferometer sensor [1] and Fabry perot based sensor [2]. The fabrication of sensor is simple, low cost and highly sensitive.

  11. Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber

    NASA Astrophysics Data System (ADS)

    Butterworth, J. H.; Jayasuriya, D.; Li, Q. Q.; Furniss, D.; Moneim, N. A.; Barney, E.; Sujecki, S.; Benson, T. M.; Sanghera, J. S.; Seddon, A. B.

    2014-02-01

    In the 21st century, cancer has become a common and feared illness. Early detection is crucial for delivering the most effective treatment of patients, yet current diagnostic tests depend upon the skill of a consultant clinician and histologist for recognition of the cancerous cells. Therefore it is necessary to develop a medical diagnostic system which can analyze and image tissue instantly, removing the margin of human error and with the additional benefit of being minimally invasive. The molecular fingerprint of biological tissue lies within the mid-infrared (IR) region of the electromagnetic spectrum, 3-25μm wavelength. This can be used to determine a tissue spectral map and provide information about the absence or existence of disease, potentially in real-time and in vivo. However, current mid-IR broadband sources are not bright enough to achieve this. One alternative is to develop broadband, mid-IR, supercontinuum generation (SCG). Chalcogenide glass optical fibers have the potential to provide such mid-IR SC light. A popular chalcogenide glass fiber type is based on Ge-As-Se. For biomedical applications it is prudent to avoid the use of arsenic, on account of its toxicity. This paper investigates replacing arsenic with antimony, towards Ge-Sb-Se smallcore optical fibers for SCG. Physical properties of candidate glass pairs are investigated for glass stability via differential thermal analysis etc. and fiber optical loss measurements of associated fibers are assessed. These results are compared to analogous arsenic-containing chalcogenide glasses and optical fibers, and conclusions are drawn focusing on whether there is potential for antimony chalcogenide glass to be used for SCG for mid-infrared medical diagnostics.

  12. Speckle interferometry using fiber optic phase stepping

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Beheim, Glenn

    1989-01-01

    A system employing closed-loop phase-stepping is used to measure the out-of-plane deformation of a diffusely reflecting object. Optical fibers are used to provide reference and object beam illumination for a standard two-beam speckle interferometer, providing set-up flexibility and ease of alignment. Piezoelectric fiber-stretchers and a phase-measurement/servo system are used to provide highly accurate phase steps. Intensity data is captured with a charge-injection-device camera, and is converted into a phase map using a desktop computer. The closed-loop phase-stepping system provides 90 deg phase steps which are accurate to 0.02 deg, greatly improving this system relative to open-loop interferometers. The system is demonstrated on a speckle interferometer, measuring the rigid-body translation of a diffusely reflecting object with an accuracy + or - 10 deg, or roughly + or - 15 nanometers. This accuracy is achieved without the use of a pneumatically mounted optics table.

  13. Optical similaritons in a tapered graded-index nonlinear-fiber amplifier with an external source

    SciTech Connect

    Raju, Thokala Soloman; Panigrahi, Prasanta K.

    2011-09-15

    We analytically explore a wide class of optical similariton solutions to the nonlinear Schroedinger equation appropriately modified to model beam propagation in a tapered, graded-index nonlinear-fiber amplifier with an external source. Under certain physical conditions, we reduce the coupled nonlinear Schroedinger equations to a single-wave equation that aptly describes similariton propagation through asymmetric twin-core fiber amplifiers. The asymmetric twin-core fiber is composed of two adjoining, closely spaced, single-mode fibers in which the active one is a tapered, graded-index nonlinear-fiber and the passive one is a step-index fiber. We obtain these self-similar waves for different choices of tapered index profile, using a Moebius transformation. Our procedure is applicable for both self-focusing and self-defocusing nonlinearities.

  14. Biocompatible silk step-index optical waveguides

    PubMed Central

    Applegate, Matthew B.; Perotto, Giovanni; Kaplan, David L.; Omenetto, Fiorenzo G.

    2015-01-01

    Biocompatible optical waveguides were constructed entirely of silk fibroin. A silk film (n=1.54) was encapsulated within a silk hydrogel (n=1.34) to form a robust and biocompatible waveguide. Such waveguides were made using only biologically and environmentally friendly materials without the use of harsh solvents. Light was coupled into the silk waveguides by direct incorporation of a glass optical fiber. These waveguides are extremely flexible, and strong enough to survive handling and manipulation. Cutback measurements showed propagation losses of approximately 2 dB/cm. The silk waveguides were found to be capable of guiding light through biological tissue. PMID:26600988

  15. Biocompatible silk step-index optical waveguides.

    PubMed

    Applegate, Matthew B; Perotto, Giovanni; Kaplan, David L; Omenetto, Fiorenzo G

    2015-11-01

    Biocompatible optical waveguides were constructed entirely of silk fibroin. A silk film (n=1.54) was encapsulated within a silk hydrogel (n=1.34) to form a robust and biocompatible waveguide. Such waveguides were made using only biologically and environmentally friendly materials without the use of harsh solvents. Light was coupled into the silk waveguides by direct incorporation of a glass optical fiber. These waveguides are extremely flexible, and strong enough to survive handling and manipulation. Cutback measurements showed propagation losses of approximately 2 dB/cm. The silk waveguides were found to be capable of guiding light through biological tissue. PMID:26600988

  16. Spatial Frequency Multiplexing of Fiber-Optic Interferometric Refractive Index Sensors Based on Graded-Index Multimode Fibers

    PubMed Central

    Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang

    2012-01-01

    Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.

  17. Temperature dependence of the refractive index of optical fibers

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Yong; Qiu, Qi; Shi, Shuang-Jin

    2014-03-01

    Many experimental investigations on the temperature dependence of the refractive index of optical fibers have been reported previously, however a satisfying theoretical explanation for it is still absent. In this paper, a theoretical model about the temperature dependence of the refractive index of optical fibers is presented and it is in agreement with the previous experimental results. This work is a significant reference for the research and development of temperature sensors based on optical fiber delay lines.

  18. High-precision confocal reflection measurement for two dimensional refractive index mapping of optical fibers

    NASA Astrophysics Data System (ADS)

    Raisin, Philippe; Scheuner, Jonas; Romano, Valerio; Ryser, Manuel

    2015-05-01

    We introduce a new fiber-optical approach for reflection based refractive index mapping. Our approach leads to improved stability and reliability over existing free-space confocal instruments and significantly cuts alignment efforts and reduces the number of components needed. Other than properly cleaved fiber end-faces, this setup requires no additional sample preparation. The instrument is calibrated by means of a set of samples with known refractive indices. The index steps of commercially available fibers are measured accurately down to < 10-3. The precision limit of the instrument is currently of the order of 10-4.

  19. Fiber Optic-Based Refractive Index Sensing at INESC Porto

    PubMed Central

    Jorge, Pedro A. S.; Silva, Susana O.; Gouveia, Carlos; Tafulo, Paula; Coelho, Luis; Caldas, Paulo; Viegas, Diana; Rego, Gaspar; Baptista, Jos M.; Santos, Jos L.; Frazo, Orlando

    2012-01-01

    A review of refractive index measurement based on different types of optical fiber sensor configurations and techniques is presented. It addresses the main developments in the area, with particular focus on results obtained at INESC Porto, Portugal. The optical fiber sensing structures studied include those based on Bragg and long period gratings, on micro-interferometers, on plasmonic effects in fibers and on multimode interference in a large spectrum of standard and microstructured optical fibers. PMID:22969405

  20. Characterization of graded index optical fibers by digital holographic interferometry.

    PubMed

    Wahba, Hamdy H; Kreis, Thomas

    2009-03-10

    For the first time to our knowledge, digital holography is used to determine the distribution of parabolic or nonparabolic refractive index fields in graded index optical fibers. The fiber is embedded in an index matching fluid whose refractive index can be varied to a matching and mismatching index with respect to that of the cladding. In experiments for both cases high precision phase-shifting digital holographic interferometry is applied with numerical evaluation employing the multilayer model for recognition of the refraction. Due to the higher redundancy in the multiple phase-shifted holograms better accuracy can be obtained compared to classical two-beam interferometry. Therefore the holographic method is recommended as a nondestructive and noncontacting method for characterizing graded index optical fibers. PMID:19277091

  1. Dispersion flattening by optimization of fiber index profile

    NASA Astrophysics Data System (ADS)

    Santitissadeekorn, Naratip

    The advent of wavelength division multiplexing (WDM) and the development of AllWaveRTM fiber, which has low attenuation over the bandwidth of 1.30 through 1.60 mum, offers the potential for ultra high capacity optical communication systems. What remains to be solved is manageable dispersion over this bandwidth. This requirement demands the design of non-zero dispersion-flattened fibers. This novel type of optical fiber is usually composed of multiple claddings and requires numerical modeling for its design. Thus, the subject matter of the design is to develop a fast, simple and reliable numerical technique that can simulate dispersion characteristics of optical fibers featuring arbitrary refractive index profiles. In this thesis a numerical tool using the pseudospectral method based on Chebyshev interpolation is developed. Using this tool is possible to determine the refractive index profiles of optical fibers to achieve fibers with low dispersion over a broad spectral bandwidth.

  2. Effects of radiation on the bandwidth of graded index fibers

    SciTech Connect

    Henschel, H.; Koehn, O.; Lischka, H.; Schmidt, H.U.; Kuyt, G.; Emmerich, M.; Haemmerle, W.; Hein, H.

    1996-06-01

    The influence of gamma radiation on the bandwidth of graded index fibers of four different manufacturers is measured at about 840 and 1,300 nm wavelength. Increase as well as decrease is observed, depending on fiber type and wavelength. Differential mode attenuation and mode delay measurements, as well as examination of light emission distribution at the fiber endface before and after irradiation are performed to explain the results.

  3. Theory of biaxial graded-index optical fiber

    NASA Technical Reports Server (NTRS)

    Kawalko, Stephen F.; Uslenghi, Piergiorgio L. E.

    1990-01-01

    The problem of wave propagation in a biaxial graded-index fiber with circular symmetry is considered. The problem is formulated in terms of four first-order differential equations for the tangential components of the electric and magnetic fields. A general solution method for solving systems of differential equations is presented. This solution method is then used to solve the system of equations for a particular example of a biaxial graded-index fiber. Numerical results for the propagation constant in the fiber are also given.

  4. Exposed core microstructured optical fiber Bragg gratings: refractive index sensing.

    PubMed

    Warren-Smith, Stephen C; Monro, Tanya M

    2014-01-27

    Bragg gratings have been written in exposed-core microstructured optical fibers for the first time using a femtosecond laser. Second and third order gratings have been written and both show strong reflectivity at 1550 nm, with bandwidths as narrow as 60 pm. Due to the penetration of the guided field outside the fiber the Bragg reflections are sensitive to the external refractive index. As different modes have different sensitivities to refractive index but the same temperature sensitivity the sensor can provide temperature-compensated refractive index measurements. Since these Bragg gratings have been formed by physical ablation, these devices can also be used for high temperature sensing, demonstrated here up to 800C. The fibers have been spliced to single mode fiber for improved handling and integration with commercial interrogation units. PMID:24515155

  5. Theory of biaxial graded-index optical fiber. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kawalko, Stephen F.

    1990-01-01

    A biaxial graded-index fiber with a homogeneous cladding is studied. Two methods, wave equation and matrix differential equation, of formulating the problem and their respective solutions are discussed. For the wave equation formulation of the problem it is shown that for the case of a diagonal permittivity tensor the longitudinal electric and magnetic fields satisfy a pair of coupled second-order differential equations. Also, a generalized dispersion relation is derived in terms of the solutions for the longitudinal electric and magnetic fields. For the case of a step-index fiber, either isotropic or uniaxial, these differential equations can be solved exactly in terms of Bessel functions. For the cases of an istropic graded-index and a uniaxial graded-index fiber, a solution using the Wentzel, Krammers and Brillouin (WKB) approximation technique is shown. Results for some particular permittivity profiles are presented. Also the WKB solutions is compared with the vector solution found by Kurtz and Streifer. For the matrix formulation it is shown that the tangential components of the electric and magnetic fields satisfy a system of four first-order differential equations which can be conveniently written in matrix form. For the special case of meridional modes, the system of equations splits into two systems of two equations. A general iterative technique, asymptotic partitioning of systems of equations, for solving systems of differential equations is presented. As a simple example, Bessel's differential equation is written in matrix form and is solved using this asymptotic technique. Low order solutions for particular examples of a biaxial and uniaxial graded-index fiber are presented. Finally numerical results obtained using the asymptotic technique are presented for particular examples of isotropic and uniaxial step-index fibers and isotropic, uniaxial and biaxial graded-index fibers.

  6. Adiabatic tapered optical fiber fabrication in two step etching

    NASA Astrophysics Data System (ADS)

    Chenari, Z.; Latifi, H.; Ghamari, S.; Hashemi, R. S.; Doroodmand, F.

    2016-01-01

    A two-step etching method using HF acid and Buffered HF is proposed to fabricate adiabatic biconical optical fiber tapers. Due to the fact that the etching rate in second step is almost 3 times slower than the previous droplet etching method, terminating the fabrication process is controllable enough to achieve a desirable fiber diameter. By monitoring transmitted spectrum, final diameter and adiabaticity of tapers are deduced. Tapers with losses about 0.3 dB in air and 4.2 dB in water are produced. The biconical fiber taper fabricated using this method is used to excite whispering gallery modes (WGMs) on a microsphere surface in an aquatic environment. So that they are suitable to be used in applications like WGM biosensors.

  7. Reconstruction of 3D refractive index profiles of PM PANDA optical fiber using digital holographic method

    NASA Astrophysics Data System (ADS)

    Wahba, H. H.

    2014-10-01

    In this paper, the refractive indices distributions on the two birefringent axes of polarization maintaining (PM) PANDA type optical fiber are reconstructed. The local refraction of the incident rays crossing the PM optical fiber is considered. Off-axis digital holographic interferometric phase shifting arrangement is employed in this investigation. The recorded mutual phase shifted holograms, starts with 0° with steps of π/4, are combined and numerically reconstructed in the image plane to obtain the optical interference phase map. Consequently, the optical phase differences due to the PM optical fiber are extracted after unwrapping and background subtraction of the enhanced optical interference phase map. The birefringence and the beat length in the two directions, fast and slow axes of PM optical fiber, of polarizations in the core region are calculated. This holographic technique and the advanced analysis of the phase shifting permit the calculation of the 3D refractive index distributions for PM PANDA optical fiber.

  8. Influence of the power law index on the fiber breakage during injection molding by numerical simulations

    NASA Astrophysics Data System (ADS)

    Desplentere, Frederik; Six, Wim; Bonte, Hilde; Debrabandere, Eric

    2013-04-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length > 15mm) this investigation concentrates on the influence of the power law index on the final fiber length distribution within the injection molded part. To realize this, the Autodesk Simulation Moldflow Insight Scandium 2013 software has been used. In this software, a fiber breakage algorithm is available from this release on. Using virtual material data with realistic viscosity levels allows to separate the influence of the power law index on the fiber breakage from the other material and process parameters. Applying standard settings for the fiber breakage parameters results in an obvious influence on the fiber length distribution through the thickness of the part and also as function of position in the part. Finally, the influence of the shear rate constant within the fiber breakage model has been investigated illustrating the possibility to fit the virtual fiber length distribution to the possible experimentally available data.

  9. Phase stepping optical profilometry using fiber optic Lloyd's mirrors.

    PubMed

    Kösoğlu, Gülşen; Yüksel, Heba; Inci, Mehmet Naci

    2016-02-01

    A three-step phase stepping profilometry based on a fiber optic Lloyd's mirror assembly is employed in the optical profilometry for the first time to measure the shapes of 3D objects. Required π/2 phase shifts for interference fringe pattern are obtained by mechanically sliding the Lloyd assembly via an ordinary micrometer stage. The experimental setup is simple and low cost to construct, and is insensitive to the ambient temperature fluctuations and environmental vibrations that cause unwanted effects on the projected fringe pattern. Consecutive interferograms are captured by a CCD camera and are processed with an algorithm to accomplish 3D topographies. PMID:26836090

  10. Single Step Sintered Calcium Phosphate Fibers from Avian EGG Shell

    NASA Astrophysics Data System (ADS)

    Dadhich, Prabhash; Das, Bodhisatwa; Dhara, Santanu

    2013-11-01

    Different forms of calcium-phosphate (Hydoxyapatite, ?-TCP, ?-TCP, CDHA) minerals are found to be major component of bone tissue. Development of calcium-phosphate (CaP) based fibrous microstructures is of significant research interest worldwide owing to its improved mechanical properties and higher interconnectivity. Here we represent a method for single step sintered wet-spun Fibers of calcium phosphate from avian egg shells for biomedical applications. Raw egg shell powder was mixed with chitosan solution and Phosphoric acid. The mixture is milled in a ball mill overnight and then filtered. The slurry was de-aired using 100 microliter 1-octanol per 100 ml of slurry as antifoaming and wet spun in coagulation bath. Fiber was dried overnight and sintered at different temperatures for microstructure and phase analysis. Both green and sintered Fibers were physico-chemical characterized by SEM, EDX, XRD, TGA, DSC, FTIR, and stereo-zoom microscopy. The fibers obtained in this procedure are found to have highly porous interconnected structures which can provide good cell adhesion and therefore can be used for bioactive scaffold making.

  11. Refractive index measurement based on fiber Bragg grating connected with a multimode fiber core

    NASA Astrophysics Data System (ADS)

    Shao, Min; Qiao, Xueguang; Jiasurname, Zhenan; Fusurname, Haiwei; Liu, Yinggang; Li, Huidong; Zhao, Xue

    2015-09-01

    A novel fiber refractive index sensor based on a fiber-Bragg grating (FBG) connected with a section of multimode fiber core (MMFC) is proposed and demonstrated. The MMFC excites high-order modes to form modal interference, and the core mode reflected by the FBG is sensitive to the surrounding refractive index (SRI) for the power of the core mode within MMFC is dependent on SRI. Measuring the reflective power variation of the core mode could realize the refractive index (RI) detection. Experimental results show that the core mode of FBG has a linear response to RI with enhanced sensitivity of 193.55 dB/RIU in the RI range of 1.3350-1.4042 RIU. The temperature effect of the sensor is also discussed.

  12. Fiber comb filters based on UV-writing Bragg gratings in graded-index multimode fibers

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Lit, John; Gu, Xijia; Wei, Li

    2005-10-01

    We report a new kind of comb filters based on fiber Bragg gratings in graded-index multimode fibers. It produces two groups of spectra with a total of 36 reflection peaks that correspond to 18 principal modes and cross coupled modes. The mode indices and wavelength spacings have been investigated theoretically and experimentally. This kind of comb filters may be used to construct multi-wavelength light sources for sensing, optical communications, and instrumentations

  13. Inline fiber interference-based refractive-index sensor

    NASA Astrophysics Data System (ADS)

    Gong, Zhenfeng; Zhang, Xinpu; Liu, Yun; Liu, Zigeng; Yu, Qingxu; Peng, Wei

    2014-11-01

    We report two fiber multiple-mode interferometers formed in photonic crystal fiber (PCF). The interference between the core and the cladding modes of a PCF is utilized. We use two methods to form a coupling point, and the cladding modes are excited from the fundamental core mode. One method is blowing compressed gas into the air holes and discharging at the coupling point; the air holes will expand due to gas expansion in the discharge process. Similarly, the other is discharging at the coupling point after the air is exhausted from the air holes, and the holes will contract during the process. By making another coupling point at a different location along the fiber, the proposed PCF interferometers are implemented. Experimental results show that the sensitivities of the two devices can achieve 1.54 and 1.45 nm for a 0.01 refractive index change.

  14. Multi-point fiber-optic refractive index sensor by using coreless fibers

    NASA Astrophysics Data System (ADS)

    Liu, Xiuxin; Zhang, Xinpu; Liu, Yun; Liu, Zigeng; Peng, Wei

    2016-04-01

    We present a novel multi-point fiber-optic refractive index (RI) sensor based on two different length coreless fibers spliced between single mode fibers (SMFs). The sensing probe operated based on multimode interference. A multi-point interferometer with 25 mm and 30 mm coreless fiber is fabricated and the measurement of RI is realized by measuring the wavelength shift of resonance dips in the transmission spectrum of the multi-point interferometer. Experimental characterization for a multi-point refractometer is presented. In the RI range of 1.3288-1.3666, the corresponding RI sensitivities are 148.60 nm/RIU and 119.27 nm/RIU for each point, respectively. We demonstrate that this multi-point fiber optic interferometer can be used as a simple transducer for RI sensing with comparable sensitivity.

  15. Templated growth of II-VI semiconductor optical fiber devices and steps towards infrared fiber lasers

    NASA Astrophysics Data System (ADS)

    Sazio, Pier J. A.; Sparks, Justin R.; He, Rongrui; Krishnamurthi, Mahesh; Fitzgibbons, Thomas C.; Chaudhuri, Subhasis; Baril, Neil F.; Peacock, Anna C.; Healy, Noel; Gopalan, Venkatraman; Badding, John V.

    2015-02-01

    ZnSe and other zinc chalcogenide semiconductor materials can be doped with divalent transition metal ions to create a mid-IR laser gain medium with active function in the wavelength range 2 - 5 microns and potentially beyond using frequency conversion. As a step towards fiberized laser devices, we have manufactured ZnSe semiconductor fiber waveguides with low (less than 1dB/cm at 1550nm) optical losses, as well as more complex ternary alloys with ZnSxSe(1-x) stoichiometry to potentially allow for annular heterostructures with effective and low order mode corecladding waveguiding.

  16. Reflectance Imaging by Graded-Index Short Multimode Fiber

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Kanno, Takahiro; Ishihara, Syoutarou; Suto, Hiroshi; Takahashi, Toshihiro; Nishidate, Izumi

    2013-05-01

    The imaging condition and magnifications were measured using a graded-index multimode fiber for optical communication with a diameter of 140 µm and a length of 5 mm. The field of view was about 80 µm and the test pattern of 4.38 µm period was recognized. Reducing the background noise with the polarizer reflectance images of the weed surface were measured to show the cell shapes. There are problems such as background, distortion, and nonuniformity of image quality; however, the feasibility for minimally invasive endoscope has been shown.

  17. Optically induced mode conversion in graded-index fibers using ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Hellwig, Tim; Walbaum, Till; Fallnich, Carsten

    2013-09-01

    We propose the use of graded-index few-mode fibers for mode conversion by long-period gratings (LPG) transiently written by ultrashort laser pulses using the optical Kerr effect. The mode interaction is studied by numerically solving the multi-mode coupled nonlinear Schrdinger equations. We present highly efficient conversion of the LP01- into the LP11-mode preserving the pulse shape in contrast to previous results in step-index fibers. Furthermore, mode conversion using different wavelengths for inducing and probing the LPG is shown. Due to the flat phase-matching curve of the examined modes in the graded-index fiber, mode conversion can be observed for probe center wavelengths of 1,100 nm up to 1,800 nm with a write beam centered around 1,030 nm. Therefore, a complete separation of the probe from the write beam should be possible as well as the application of optically induced guided-mode conversion for all-optical modulation across a broad wavelength range.

  18. Fiber-integrated concept to electrically tune pulsed fiber lasers based on step-chirped fiber Bragg grating arrays.

    PubMed

    Tiess, Tobias; Chojetzki, Christoph; Rothhardt, Manfred; Bartelt, Hartmut; Jger, Matthias

    2015-07-27

    We present a novel method to discretely tune the emission wavelength of pulsed fiber-integrated lasers. As spectral filter, a step-chirped fiber Bragg grating (FBG) array is employed combining a monolithic structure with an unrivaled design freedom enabling large tuning bandwidths as well as tailored spectral characteristics towards fingerprint tuning features. Together with an electrical control mechanism ensuring programmable operation, this tuning method promotes fiber-integrated lasers to access new fields of applications e.g. in biophotonics and distributed sensing. The potential of this tuning concept is investigated based on an Ytterbium-doped fiber laser. The system shows superb emission properties including excellent wavelength stability, high spectral signal contrast (up to 50dB) and narrow linewidth (15GHz) as well as adjustable pulse durations in the nanosecond range with peak powers up to 100W. Additionally, the unique spectral potential of this method is demonstrated by realizing filter designs enabling e.g. a record tuning range of 74nm for fiber-integrated lasers. PMID:26367621

  19. Two-dimensional scanning focused refractive-index microscopy and applications to refractive-index profiling of optical fibers

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowan; Ye, Qing; Sun, Tengqian; Wang, Jin; Deng, Zhichao; Mei, Jianchun; Zhou, Wenyuan; Zhang, Chunping; Tian, Jianguo

    2015-01-01

    The refractive-index profile (RIP) of optical fibers is of fundamental significance in determining critical fiber properties. Here, we present the application of a two-dimensional (2-D) scanning focused refractive-index microscopy (SFRIM) to accurately obtain the 2-D RIP of a graded-index optical fiber. Some modifications are made to SFRIM for better 2-D measurement. Quantitative RIP of the fiber is obtained with derivative total reflection method. The refractive-index accuracy is 0.002. The measured result is in good agreement with theoretical expectation. This method is straightforward, simple, repeatable, and free from signal distortion. This technique is suitable for symmetric and asymmetric optical fibers. The results indicate that this technique can be applied to obtain the RIPs of a wide range of materials and has broad application prospect in many fields.

  20. Interferometric fiber-optic gyroscope performance owing to temperature-induced index fluctuations in the fiber: effect on bias modulation

    NASA Astrophysics Data System (ADS)

    Knudsen, Sverre; Bløtekjær, Kjell

    1995-06-01

    An analysis of the noise floor owing to temperature-induced index fluctuations in the fiber of a dynamically biased interferometric fiber-optic gyroscope is presented. A comparison with shot noise indicates that, for a harmonic bias modulation, thermal noise in the fiber dominates for fiber lengths longer than \\similar 1 - 2km when practical source power levels are considered. The noise can be reduced or eliminated by the proper choice of modulation frequency or waveform.

  1. Towards Silk Fiber Optics: Refractive Index Characterization, Fiber Spinning, and Spinneret Analysis

    NASA Astrophysics Data System (ADS)

    Spitzberg, Joshua David

    Of the many biologically derived materials, whose historical record of use by humans underscores an ex-vivo utility, silk is interesting for it's contemporary repurposing from textile to biocompatible substrate. And while even within this category silk is one of several materials studied for novel repurposing, it has the unique character of being evolutionarily developed specifically for fiber spinning in vivo. The work discussed here is inspired by taking what nature has given, to explore the in vitro spinning of silk towards biocompatible fiber optics applications. A common formulation of silk used in biomedical studies for re-forming it into the various structures begins with the silkworm cocoon, which is degummed and dissolved into an aqueous solution of its miscible protein, fibroin, and post-treated to fabricate solid structures. In the first aim, the optical refractive index (RI) of various post-treatment methods is discussed towards determining RI design techniques. The methods considered in this work for re-forming a solid fiber from the reconstituted silk fibroin (RSF) solution borrow from the industrial techniques of gel spinning, and dry-spinning. In the second aim, methods are applied to RSF and quality of the spun fibers discussed. A feature common to spinning techniques is passing the (silk) material through a spinneret of specific shape. In the third aim, fluid flow through a simplified native silkworm spinneret is modeled towards bio-inspired lessons in design. In chapter 1 the history, reconstitution, are discussed towards understanding the fabrication of several optical device examples. Chapter 2 then prefaces the experiments and measurements in fiber optics by reviewing electromagnetic theory of waveguide function, and loss factors, to be considered in actual device fabrication. Chapter 3 presents results and discussion for the first aim, understanding design principles for the refractive index of RSF. From this point, industrial fiber-spinning approaches are reviewed from a theoretical and methodological perspective in chapter 4. Thus, chapter 5 presents results for the second aim, efforts to apply these techniques using RSF. Chapter 6 discusses the third aim, understanding the design of the silkworm spinneret by an idealized model of natural and reconstituted silk fibroin flow. While the ultimate goal of a structurally and optically smooth and uniform fiber remains elusive, this work serves as a guide for future efforts.

  2. A Highly Sensitive Fiber Optic Sensor Based on Two-Core Fiber for Refractive Index Measurement

    PubMed Central

    Guzmán-Sepúlveda, José Rafael; Guzmán-Cabrera, Rafael; Torres-Cisneros, Miguel; Sánchez-Mondragón, José Javier; May-Arrioja, Daniel Alberto

    2013-01-01

    A simple and compact fiber optic sensor based on a two-core fiber is demonstrated for high-performance measurements of refractive indices (RI) of liquids. In order to demonstrate the suitability of the proposed sensor to perform high-sensitivity sensing in a variety of applications, the sensor has been used to measure the RI of binary liquid mixtures. Such measurements can accurately determine the salinity of salt water solutions, and detect the water content of adulterated alcoholic beverages. The largest sensitivity of the RI sensor that has been experimentally demonstrated is 3,119 nm per Refractive Index Units (RIU) for the RI range from 1.3160 to 1.3943. On the other hand, our results suggest that the sensitivity can be enhanced up to 3485.67 nm/RIU approximately for the same RI range. PMID:24152878

  3. Nonlinear refractive index of a rare-earth-doped fiber laser.

    PubMed

    Bochove, Erik

    2004-10-15

    An expression is derived for the intensity-dependent index of refraction of a rare-earth-doped fiber laser by use of a Kramers-Kronig relation and simple rate equations. The solution is applied to examine the properties of the nonlinear index of an ytterbium-doped silicate fiber laser at 975-nm pump and 1080-nm laser wavelengths. PMID:15532284

  4. Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass

    SciTech Connect

    Chen Jihuan; Zhao Jiarong; Huang Xuguang; Huang Zhenjian

    2010-10-10

    A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with a simple, solid, and compact structure.

  5. Graded index porous optical fibers – dispersion management in terahertz range.

    PubMed

    Ma, Tian; Markov, Andrey; Wang, Lili; Skorobogatiy, Maksim

    2015-03-23

    A graded index porous optical fiber incorporating an air-hole array featuring variable air-hole diameters and inter-hole separations is proposed, fabricated, and characterized in a view of the fiber potential applications in low-loss, low-dispersion terahertz guidance. The proposed fiber features simultaneously low modal and intermodal dispersions, as well as low loss in the terahertz spectral range. We experimentally demonstrate that graded index porous fibers exhibit smaller pulse distortion, larger bandwidth, and higher excitation efficiency when compared to fibers with uniform porosity. PMID:25837124

  6. Mechanical and optical behavior of index guiding photonic crystal fibers (PCF)

    NASA Astrophysics Data System (ADS)

    Kobelke, Jens; Gerth, Kirsten; Kirchhof, Johannes; Schuster, Kay; Moerl, Klaus; Aichele, Claudia

    2004-07-01

    The optical loss behavior of index guiding PC fibers made from high purity silica, was investigated with regard to the preform preparation steps and drawing procedure. Loss effects in the 1.4 μm region are caused mostly by incorporation of hydroxide groups during PC preform preparation. Typical sources are flame heat treatment procedures. However, hydroxide based absorption by water permeation into the holey structure was not observed, not even by storage in humid atmosphere over days. PCFs show additional NIR attenuation, possibly caused by drawing induced atomic defects in the pure silica material. By advanced PC preform preparation the minimum attentuation in the NIR range can be depressed down to 2.9 dB/km at 1.3 μm. PCFs have a reduced tensile strength in comparison with compact silica fibers. The mechanical stability increases with the cross section area of the solid outer cladding. This resembles the behavior of single capillary fibers without inner holey or cobweb structure. The tensile strength of PCFs decreases after a few days of hole contamination with condensed water.

  7. Characterization of the stress and refractive-index distributions in optical fibers and fiber-based devices

    NASA Astrophysics Data System (ADS)

    Hebenstreit, Florian

    2011-07-01

    Optical fiber technology continues to advance rapidly as a result of the increasing demands on communication systems and the expanding use of fiber-based sensing. New optical fiber types and fiber-based communications components are required to permit higher data rates, an increased number of channels, and more flexible installation requirements. Fiber-based sensors are continually being developed for a broad range of sensing applications, including environmental, medical, structural, industrial, and military. As optical fibers and fiber-based devices continue to advance, the need to understand their fundamental physical properties increases. The residual-stress distribution (RSD) and the refractive-index distribution (RID) play fundamental roles in the operation and performance of optical fibers. Custom RIDs are used to tailor the transmission properties of fibers used for long-distance transmission and to enable fiber-based devices such as long-period fiber gratings (LPFGs). The introduction and modification of RSDs enable specialty fibers, such as polarization-maintaining fiber, and contribute to the operation of fiber-based devices. Furthermore, the RSD and the RID are inherently linked through the photoelastic effect. Therefore, both the RSD and the RID need to be characterized because these fundamental properties are coupled and affect the fabrication, operation, and performance of fibers and fiber-based devices. To characterize effectively the physical properties of optical fibers, the RSD and the RID must be measured without perturbing or destroying the optical fiber. Furthermore, the techniques used must not be limited in detecting small variations and asymmetries in all directions through the fiber. Finally, the RSD and the RID must be characterized concurrently without moving the fiber to enable the analysis of the relationship between the RSD and the RID. Although many techniques exist for characterizing the residual stress and the refractive index in optical fibers, there is no existing methodology that meets all of these requirements. Therefore, the primary objective of the research presented in this thesis was to provide a methodology that is capable of characterizing concurrently the three-dimensional RSD and RID in optical fibers and fiber-based devices. This research represents a detailed study of the requirements for characterizing optical fibers and how these requirements are met through appropriate data analysis and experimental apparatus design and implementation. To validate the developed methodology, the secondary objective of this research was to characterize both unperturbed and modified optical fibers. The RSD and the RID were measured in a standard telecommunications-grade optical fiber, Corning SMF-28. The effects of cleaving this fiber were also analyzed and the longitudinal variations that result from cleaving were explored for the first time. The fabrication of carbon-dioxide-laser-induced (CO2 -laser-induced) LPFGs was also examined. These devices provide many of the functionalities required for fiber-based communications components as well as fiber-based sensors, and they offer relaxed fabrication requirements when compared to LPFGs fabricated by other methods. The developed methodology was used to perform the first measurements of the changes that occur in the RSD and the RID during LPFG fabrication. The analysis of these measurements ties together many of the existing theories of CO2-laser-induced LPFG fabrication to present a more coherent understanding of the processes that occur. In addition, new evidence provides detailed information on the functional form of the RSD and the RID in LPFGs. This information is crucial for the modeling of LPFG behavior, for the design of LPFGs for specific applications, for the tailoring of fabrication parameters to meet design requirements, and for understanding the limitations of LPFG fabrication in commercial optical fibers. Future areas of research concerning the improvement of the developed methodology, the need to characterize other fibers and fiber-based devices, and the characterization of CO2-laser-induced LPFGs are identified and discussed.

  8. Single-step electrospinning of bimodal fiber meshes for ease of cellular infiltration.

    PubMed

    Gentsch, Rafael; Boysen, Bjoern; Lankenau, Andreas; Brner, Hans G

    2010-01-01

    Bimodal fiber meshes with fiber diameters differing by one order of magnitude, are electrospun in a simple one-step process, using a standard single syringe electrospin setup. The nano- and microfiber meshes combine the benefits of nanofibers (cell adhesion, proliferation) with those of microfibers (open structure, large pore size) and are therefore interesting as scaffolds for cellular infiltration. PMID:21590837

  9. PHOSPHITE STABILIZATION EFFECTS ON TWO-STEP MELT-SPUN FIBERS OF POLYLACTIDE. (R826733)

    EPA Science Inventory

    The effects of molecular weight stabilization on mechanical properties of polylactide (PLA) fibers are investigated. The textile-grade PLA contains a 98:02 ratio of L:D stereocenters and fibers are produced by the two step method, involving a primary quench and cold drawing. M...

  10. Self-accelerating Bessel-like beam generated by graded-index multimode fiber

    NASA Astrophysics Data System (ADS)

    Liu, Zhihai; Wei, Yong; Zhang, Yu; Liu, Chunlan; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo

    2015-12-01

    We propose and demonstrate a simple method to generate a Bessel-like beam by using a graded-index multimode fiber. We splice a single-mode fiber and a graded-index multimode fiber with a defined offset (?x=20 ?m), adjust the length (L) of the graded-index multimode fiber to be 400 ?m, and then we can produce a Bessel-like beam with the transverse acceleration of 0.15464 ?m-2. The Bessel-like beam has the transverse self-accelerating properties which provides a new method for micro particles to be transported in a bending trajectories. This transverse self-accelerating Bessel-like beam generator based on the graded-index multimode fiber constitutes a new development for high-precision micro particles experiments and manipulations with its simple structure, high integration and small size.

  11. Influence of the refractive index of liquids in the speckle pattern of multimode fibers

    NASA Astrophysics Data System (ADS)

    Galindez, Carlos; Lomer, Mauro; Rodriguez-Cobo, Luis; Lopez-Higuera, J. M.

    2012-10-01

    The distribution of the intensity of each speckle depends on the relative phases of modes in the multimode fiber, so they are extremely sensitive to external perturbations of the fiber. These perturbations can locally appear in the fiber without disrupting the entire optical assembly. If the refractive index of the outside medium of the fiber is changed, it can cause variations in the speckle pattern at the fiber output. Thus, by changing the refractive index of the outside medium the speckle pattern at the output fiber varies and its influence can be observed. In this paper we demonstrate the influence of the refractive index of liquids in the speckle pattern obtained by a multimode fiber. In order to obtain greater sensitivity of the experimental measurement, the fiber is bent in a U-shape and immersed in a liquid. The core and cladding are 240 microns and 250 microns, respectively. The intensity speckle field is then captured by a CCD camera in digital image format and processed by the computer with a Matlab program. The portion of fiber exposed to the disturbance of the liquid is located 2 meters before the exit of the fiber. The portion of the fiber in contact with the liquid is curved with a radius of 2 mm.

  12. Surface plasmon resonance sensor using an optical fiber with an inverted graded-index profile.

    PubMed

    Bardin, Fabrice; Ivan, Kasík; Trouillet, Alain; Matejec, Vlastimil; Gagnaire, Henri; Chomát, Mirek

    2002-05-01

    A new optical fiber sensor based on surface plasmon resonance is described. It uses an optical fiber with an inverted graded-index profile. A theoretical analysis of the optical propagation when a point light source was used and a computation of the optical power transmitted by the fiber were performed. Experiments were carried out to measure changes of the transmitted power caused by refractive-index variations of the surrounding dielectric medium. Both the simulation and experiments have shown that the sensor exhibits high sensitivity for changes of the surrounding medium in a refractive index range from 1.33 to 1.39. PMID:12009163

  13. Effective refractive index modulation based optical fiber humidity sensor employing etched fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Mundendhar, Pathi; Khijwania, Sunil K.

    2015-09-01

    Relative humidity (RH) sensor employing etched fiber Bragg grating (FBG) is reported where RH variations are captured using effective-index-modulation, rather than traditional strain-modulation. Additionly, linear sensor response over wide dynamic range with optimum characteristics is focused. Comprehensive experimental investigation is carried out for the sensor that comprises uniformly etched cladding in the FBG region. Obtained results are observed to be in agreement with the theoretical analysis. Sensor response is observed to be linear over dynamic range 3-94%RH with ~ 0.082 pm/%RH sensitivity, ~0.6%RH resolution, ~ +/-2.5%RH accuracy, ~ +/-0.2 pm average discrepancy and ~ 0.2s response time during humidification/desiccation.

  14. Reverse dispersion fiber with depressed core-index profile for dispersion-managed fiber pairs

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoqiang; Wang, Ruichun

    2005-11-01

    A reverse dispersion fiber (RDF) with depressed core-index profile has been developed successfully by using plasma chemical vapor deposition (PCVD) process. The fabricated RDF has a core-effective-area of 45 ?m2, a dispersion of -19.65 ps/nm/km and a dispersion slope of -0.132 ps/nm2/km while maintaining the low bending induced attenuation and low PMD value. The dispersion-managed pairs, which consisted of RDF and non-zero dispersion shifted fiber with ultra large effective core-area (ULAF), have the ultra low dispersion slope of less than 0.006 ps/nm2/km at the wavelength range of 1530-1625 nm, and the largest dispersion value is lower than 0.2 ps/nm/km. Moreover, the attenuation characteristic also shows a remarkable flatness over the broadband wavelength, the attenuation at 1550 nm is only 0.224 dB/km. The dispersion-managed pairs are suitable for large capacity, high bit-rate long-haul wavelength division multiplexing (WDM) transmission system without using dispersion compensation mode.

  15. Two-dimensional refractive index and stresses profiles of a homogenous bent optical fiber.

    PubMed

    Ramadan, W A; Wahba, H H; Shams El-Din, M A

    2014-11-01

    We present a significant contribution to the theory of determining the refractive index profile of a bent homogenous optical fiber. In this theory we consider two different processes controlling the index profile variations. The first is the linear index variation due to stress along the bent radius, and the second is the release of this stress on the fiber surface. This release process is considered to have radial dependence on the fiber radius. These considerations enable us to construct the index profile in two dimensions normal to the optical axis, considering the refraction of light rays traversing the fiber. This theory is applied to optical homogenous bent fiber with two bending radii when they are located orthogonal to the light path of the object arm in the holographic setup (like the Mach-Zehnder interferometer). Digital holographic phase shifting interferometry is employed in this study. The recorded phase shifted holograms have been combined, reconstructed, and processed to extract the phase map of the bent optical fiber. A comparison between the extracted optical phase differences and the calculated one indicates that the refractive index profile variation should include the above mentioned two processes, which are considered as a response for stress distribution across the fiber's cross section. The experimentally obtained refractive index profiles provide the stress induced birefringence profile. Thus we are able to present a realistic induced stress profile due to bending. PMID:25402912

  16. Waveguide-loaded silica fibers for coupling to high-index micro-resonators

    NASA Astrophysics Data System (ADS)

    Latawiec, P.; Burek, M. J.; Venkataraman, V.; Lon?ar, M.

    2016-01-01

    Tapered silica fibers are often used to rapidly probe the optical properties of micro-resonators. However, their low refractive index precludes phase-matching when coupling to high-index micro-resonators, reducing efficiency. Here, we demonstrate efficient optical coupling from tapered fibers to high-index micro-resonators by loading the fibers with an ancillary adiabatic waveguide-coupler fabricated via angled-etching. We demonstrate greatly enhanced coupling to a silicon multimode micro-resonator when compared to coupling via the bare fiber only. Signatures of resonator optical bistability are observed at high powers. This scheme can be applied to resonators of any size and material, increasing the functional scope of fiber coupling.

  17. Two novel methods for liquid refractive index or concentration measurement using reflex fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Peng, Bao-jin; Wan, Xu; Wang, Hui; Jin, Hong-zhen; Zhao, Yong

    2006-01-01

    Two novel content meters for liquid refractive index or concentration measurement are proposed based on the simple reflex fiber optic sensor configurations. One sensor exploits a reflex and concentrically arranged fiber probe structure which is very similar to the traditional intensity-modulated fiber optic displacement sensors, but the light captured by receiving fibers is modulated by the varied solute concentration, being in proportion to the liquid refractive index, instead of displacement. The other sensor works based on detecting the edge shift of the reflected light spot, which is modulated by the refractive index variation of the liquid. Theoretical analysis and simulations are carried out with the measurement range of refractive index from 1.0 to 1.5.

  18. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

    PubMed Central

    Reyes, Mauricio; Monzn-Hernndez, David; Martnez-Ros, Alejandro; Silvestre, Enrique; Dez, Antonio; Cruz, Jos Luis; Andrs, Miguel V.

    2013-01-01

    We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.401.442, respectively, are demonstrated. We estimate a long range resolution of 3 10?4 and a short range resolution of 2 10?5 for water solutions. PMID:23979478

  19. Design of reflective optical fiber sensor for determining refractive index and sugar concentration of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Marzuki, Ahmad; Wulan Sari, Nila; Riatun

    2016-02-01

    A reflective optical fiber sensor designed for measuring refractive index and sugar concentration of aqueous solutions is described. Two strains of parallel polymer optical fibers (POF) were wrapped in a bundle such that one of their fiber's end cross-sections had the same distance to the mirror surface. The light coming out from one strain of the fiber was reflected by the mirror to the second fiber. Sugar concentration of the aqueous solution filling the space between the fiber ends and the mirror was varied (1.0 M, 1.5 M, 2.0 M, 2.5 M, 3.0 M, 4.0 M, and 5.0 M). It was shown from the experiment that light intensity detected by photo-detector is linearly related to the percentage of the dissolved sugar in the solution as well as the variation of the sugar solution refractive index (R2 = 0.987).

  20. Performance Evaluation of Single Sideband Radio over Fiber System through Modulation Index Enhancement

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Hu, Xizhen; Huang, Dexiu

    2014-09-01

    The transmission performance of single sideband (SSB) radio over fiber (RoF) system is evaluated through tuning the modulation index of Mach-Zehnder modulator, two different data modulation schemes and the influence of fiber dispersion are considered. The quantitative simulation results validate that there exist an optimum modulation index, and the system performance could be improved if the data signal is modulated on only optical carrier or sidebands.

  1. Experimental study of liquid refractive index sensing based on a U-shaped optical fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi; Yan, Haitao; Li, Liben; Wang, Ming

    2013-12-01

    A U-shaped optical fiber sensing system designed to measure the refractive index of liquid had been proposed. The sensing mechanism of U-shaped optical fiber was discussed. A general single-mode fiber was bent into U-shaped and partially cladding of U-shaped fiber was corroded by HF acid buffer solution. Powers of different diameters of U-shaped fibers had been measured by many experiments. The results showed that the diameter of U-shaped fiber cladding 40 ?m and the diameter of U-shaped was 1 cm were suitable to measure liquid refractive index. Then, this U-shaped optical fiber was immersed in liquid, such as pure water, ethanol, acetone and isopropanol, respectively. The evanescent field of the U-shaped fiber should be modulated by the liquid. The optical signal in the U-shaped fiber was measured with the optical spectrum analyzers(OSA). Finally, the experimental results were analyzed, and the spectra in the air was selected as a reference. The relative intensity was obtained for the different liquid. These results showed that the relative intensity of the liquid had a good linear relationship. This sensing device could accurately demarcate refractive index of liquid. It is simple, low cost, and it can also be applied in measuring the level of liquid.

  2. The optimal design of photonic crystal optical devices with step-wise linear refractive index

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Wu, Xiang-Yao; Li, Hai-Bo; Li, Hong; Liu, Xiao-Jing; Zhang, Si-Qi; Chen, Wan-Jin; Wu, Yi-Heng

    2015-10-01

    In the paper, we have studied one-dimensional step-wise linear photonic crystal with and without defect layer, and analyzed the effect of defect layer position, thickness, refractive index real part and imaginary part on the transmissivity, electric field distribution and output electric field intensity. By calculation, we have obtained a set of optimal parameters, which can be optimally designed optical device, such as optical amplifier, attenuator, optical diode by the step-wise linear photonic crystal.

  3. Quantitative phase and refractive index analysis of optical fibers using differential interference contrast microscopy.

    PubMed

    Kouskousis, Betty; Kitcher, Daniel J; Collins, Stephen; Roberts, Ann; Baxter, Greg W

    2008-10-01

    A systematic and straightforward image processing method to extract quantitative phase and refractive index data from weak phase objects is presented, obtained using differential interference contrast (DIC) microscopy. The method is demonstrated on DIC images of optical fibers where a directional integration routine is applied to the DIC images to extract phase and refractive index information using the data obtained across the whole DIC image. By applying the inverse Abel transform to the resultant phase images, an accurate refractive index profile is obtained. The method presented here is compared to the refracted near-field technique, typically used to obtain the refractive index profile of optical fibers, and shows excellent agreement. It is concluded that through careful image processing procedures, DIC microscopy can be successfully implemented to obtain quantitative phase and refractive index information of optical fibers. PMID:18830309

  4. Fiber-optic Fabry-Perot sensor based on graded-index multimode fiber: numerical simulations and experiments

    NASA Astrophysics Data System (ADS)

    Gong, Yuan; Zhao, Tian; Rao, Yun-Jiang; Wu, Yu; Guo, Yu

    2011-05-01

    Numerical simulations based on the ray-transfer-matrix (RTM) method is realized for explaining the principle of a graded-index multimode fiber (GI-MMF) based hybrid fiber Fabry-Perot (GI-FFP) sensor. It is verified by the numerical simulations and experimental results that the high fringe contrast of the reflective spectrum of the sensor is due to the periodic focusing effect of the GI-MMF. Experimental results are in good agreement with the theory. A typical GI-FFP sensor is fabricated and its response to the external refractive index is measured with a maximum sensitivity of ~160 dB/RIU.

  5. Unusual fault detection and loss analysis in optical fiber connections with refractive index matching material

    NASA Astrophysics Data System (ADS)

    Kihara, Mitsuru; Nagano, Ryuichiro; Izumita, Hisashi; Toyonaga, Masanobu

    2012-05-01

    We investigated and analyzed an unusual fault that occurs in optical access fiber networks, which is caused by a defective fiber connection. We developed a fault-detection system to locate such a fault by using both optical power level and optical pulse measurement methods. We investigated a defective mechanical splice in three laboratory tests: outward appearance, non-destructive, and dismantled. As a result, we confirmed that the defective mechanical splice had large gaps of more than 10 ?m. We also analyzed the unusual fault that occurs from such a defective mechanical splice in mechanically transferrable (MT) connector experiments. The experimental results revealed that the optical performance of fiber connections with a mixture of refractive index matching material and air-filled gaps was extremely unstable and varied widely. In the worst case, the insertion loss worsened to more than 30 dB. The case of the fault caused by a mixture of refractive index matching material and air-filled gaps between the ends of optical fibers is thought to occur independently of the sorts or structures of optical fiber connectors and could be a characteristic peculiar to optical fiber connections using refractive index matching material. These findings can be applied to optical fiber connections that use refractive index matching material, such as MT connectors in outside underground facilities, mechanical splices, or field assembly connectors at aerial and home sites in optical access networks. These findings also support the practical construction and operation of optical network systems.

  6. Cyclic Steps and Antidunes : Relating Their Features to a Suspension Index

    NASA Astrophysics Data System (ADS)

    Yokokawa, M.; Kishima, Y.; Parker, G.

    2010-12-01

    Cyclic Steps and Antidunes : Relating Their Features to a Suspension Index Miwa Yokokawa (1), Yasushi Kishima (1), Gary Parker (2, 3) 1: Osaka Institute of Technology, Hirakata, Osaka, Japan 2: Dept. of Civil & Environmental Engineering, University of Illinois, Urbana, Illinois, U.S.A. 3: Dept. of Geology, University of Illinois, Urbana, Illinois, U.S.A. There are very few comparative studies of the differences in hydraulic conditions and morphologic features of bed- and water-surface-waves associated with cyclic steps and antidunes. In this study, the features of both the bed and the water surface, as well as hydraulic conditions are examined over the spectrum from antidune to cyclic steps. Experiments were performed using a flume at the Osaka Institute of Technology. The resultant features of the bedforms are as follows. In the case of antidunes, bed waves and water surface waves are in phase except when they collapse. Antidunes show several kinds of behavior; migrating downstream, standing, or migrating upstream. Upstream-migrating antidunes are divided into non-breaking, and breaking-types. Breaking antidunes appear alternatively with the plane bed state. Cyclic steps migrate upstream regularly associated with trains of hydraulic jumps, which divide each step. There is a significant change in water depth at the hydraulic jump, so that the phasing between the bed waves and water surface waves break at the each hydraulic jump. There is a kind of compromise between cyclic steps and antidunes, which we designate as intermediate steps. They move upstream and are associated with regular trains of hydraulic jumps. The jumps, however, occasionally collapse toward upstream. When this happens, bed waves move rapidly upstream; low-amplitude water surface waves and bed waves become in phase all over the bed shortly after the collapse. Then after some time, water surface waves become sufficiently prominent to yield regular hydraulic jumps. This cycle is then repeated.The hydraulic conditions for these bedfoms were examined using three non-dimensional parameters, i.e. the Froude Number, the Suspension Index, and the dimensionless particle size. The suspension index is a newly introduced parameter which is the ratio of the shear velocity divided by the settling velocity of the sediment (u*/Vs). Data from previous experimental studies are examined together with the present data in studying the characteristic regimes of bedform formation. In a diagram of Froude Number v.s. Suspension Index, antidunes, intermediate steps and cyclic steps can be divided along the axis of the Suspension Index. In the lowest range of the suspension index, downstream-migrating antidunes and upstream-migrating antidunes that do not break are found. The intermediate steps discussed above are located in the middle range. The highest range corresponds to cyclic steps and breaking antidunes. As described above, the Suspension Index can serve as a scale to quantify the spectrum between antidunes and cyclic steps. The use of the parameter also helps verify that suspension plays an important role in the formation and maintenance of cyclic steps.

  7. One-step Tape Casting of Composites via Slurry on Fiber

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III

    2001-01-01

    A process by which metal matrix composites can be made was presented. The process involves putting a powder slurry on fibers to make a precursor green tape. These green tapes are cut, stacked and hot pressed to form the fully dense composite. A computer program was presented which enables complete quantification and control of the process. Once some easily obtained properties of the slurry and its behavior are determined (such as the shrinkage from the wet to green state, and the density of the green tape) modification of the fiber spacing and blade height give the maker precise control of fiber volume fraction, and fiber architecture in the composite. The process was shown to be accurate and flexible through the production of a wide variety of volume fraction fiber composites made from a wide variety of fibers and powders. The most time consuming step of the tape casting process (other than hot pressing) was winding the fiber on the drum. The tape casting techniques developed resulted in high quality metal matrix composites, with ultimate tensile strength in the range of 215 ksi (1477 MPa), a strain at failure of 1.15 percent, and in fatigue at room temperature 0 to 120 ksi, n = 0.3 Hz, a 4-ply Ti-24Al-11Nb/SCS-6, 32 vol% fiber tape cast composite lasted 202,205 cycles with a maximum strain on the 100th cycle of 0.43 percent.

  8. Exploiting the image of the surface reflectivity to measure refractive index profiling for various optical fibers.

    PubMed

    Weng, Chun-Jen; Hsu, Ken-Yuh; Chen, Yung-Fu

    2015-05-01

    A direct image method of surface reflectivities on a cleaved fiber end with a filtered halogen lamp and a TE-cooled CCD with high dynamic range is proposed to measure the multi-wavelength refractive index profiling (RIP). A polished black glass is used to be a reference standard for measuring the absolute reflectivity of the fiber end. With the developed calibration procedures, both the spatially dependent sensitivity and spectral responsivity of the CCD pixels can be eliminated to achieve the high spatial accuracy. Tested fiber is connected with a fiber terminator to prevent errors from the backside return light. With the present method, the RIP can be precisely measured for not only multi-mode fibers but also single-mode fibers. PMID:25969266

  9. Optimized split-step method for modeling nonlinear pulse propagation in fiber Bragg gratings

    SciTech Connect

    Toroker, Zeev; Horowitz, Moshe

    2008-03-15

    We present an optimized split-step method for solving nonlinear coupled-mode equations that model wave propagation in nonlinear fiber Bragg gratings. By separately controlling the spatial and the temporal step size of the solution, we could significantly decrease the run time duration without significantly affecting the result accuracy. The accuracy of the method and the dependence of the error on the algorithm parameters are studied in several examples. Physical considerations are given to determine the required resolution.

  10. Reflection based Extraordinary Optical Transmission Fiber Optic Probe for Refractive Index Sensing

    PubMed Central

    Lan, Xinwei; Cheng, Baokai; Yang, Qingbo; Huang, Jie; Wang, Hanzheng; Ma, Yinfa; Shi, Honglan; Xiao, Hai

    2014-01-01

    Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range. PMID:24574579

  11. Spectral and spatial characterization of perfluorinated graded-index polymer optical fibers for the distribution of optical wireless communication cells.

    PubMed

    Hajjar, Hani Al; Montero, David S; Lallana, Pedro C; Vázquez, Carmen; Fracasso, Bruno

    2015-02-10

    In this paper, the characterization of a perfluorinated graded-index polymer optical fiber (PF-GIPOF) for a high-bitrate indoor optical wireless system is reported. PF-GIPOF is used here to interconnect different optical wireless access points that distribute optical free-space high-bitrate wireless communication cells. The PF-GIPOF channel is first studied in terms of transmission attenuation and frequency response and, in a second step, the spatial power profile distribution at the fiber output is analyzed. Both characterizations are performed under varying restricted mode launch conditions, enabling us to assess the transmission channel performance subject to potential connectorization errors within an environment where the end users may intervene by themselves on the home network infrastructure. PMID:25968032

  12. High-refractive-index transparent coatings enhance the optical fiber cladding modes refractometric sensitivity.

    PubMed

    Renoirt, Jean-Michel; Zhang, Chao; Debliquy, Marc; Olivier, Marie-Georges; Mgret, Patrice; Caucheteur, Christophe

    2013-11-18

    The high order cladding modes of standard single mode optical fiber appear in quasi-degenerate pairs corresponding to mostly radially or mostly azimuthally polarized light. In this work, we demonstrate that, in the presence of a high-refractive-index coating surrounding the fiber outer surface, the wavelength spacing between the orthogonally polarized cladding modes families can be drastically enhanced. This behavior can be advantageously exploited for refractometric sensing purposes. For this, we make use of tilted fiber Bragg gratings (TFBGs) as spectral combs to excite the orthogonally polarized cladding modes families separately. TFBGs were coated with a nanometer-scale transparent thin film characterized by a refractive index value close to 1.9, well higher than the one of pure silica. This coating brings two important assets: an ~8-fold increase in refractometric sensitivity is obtained in comparison to bare TFBGs while the sensitivity is extended to surrounding refractive index (SRI) values above 1.45. PMID:24514423

  13. Determination of Diameter and Index of Refraction of Textile Fibers by Laser Backscattering

    SciTech Connect

    H. Okuda; B. Stratton; L. Meixler; P. Efthimion; D.Mansfield

    2003-07-24

    A new method was developed to determine both diameters and indices of refraction and hence the birefringence of cylindrical textile and industrial fibers and bundles by measuring intensity patterns of the scattered light over an interval of scattering angles. The measured intensity patterns are compared with theoretical predictions (Mie theory) to determine fiber diameter and index of refraction. It is shown that the method is simple and accurate and may be useful as an on-line, noncontact diagnostic tool in real time.

  14. High power fiber delivery for laser ignition applications.

    PubMed

    Yalin, Azer P

    2013-11-01

    The present contribution provides a concise review of high power fiber delivery research for laser ignition applications. The fiber delivery requirements are discussed in terms of exit energy, intensity, and beam quality. Past research using hollow core fibers, solid step-index fibers, and photonic crystal and bandgap fibers is summarized. Recent demonstrations of spark delivery using large clad step-index fibers and Kagome photonic bandgap fibers are highlighted. PMID:24514929

  15. Refractive index sensing using V-shaped polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Lee, Heeyoung; Hayashi, Neisei; Mizuno, Yosuke; Nakamura, Kentaro

    2015-11-01

    Although polymer optical fiber (POF) tapers with high flexibility have been used to measure the refractive indices (RIs) of liquids, their fabrication have caused some inconvenience including the need to use external heat sources or chemicals. Here, as an alternative, we develop a simple, secure, and low-cost method of measuring RIs of liquids using V-shaped bent POFs. When the bending angle is 120 (experimentally optimized), with increasing RI, the transmitted power increases almost linearly with a dependence coefficient of approximately 210 dB/RI unit.

  16. A Multi-D-Shaped Optical Fiber for Refractive Index Sensing

    PubMed Central

    Chen, Chien-Hsing; Tsao, Tzu-Chein; Tang, Jaw-Luen; Wu, Wei-Te

    2010-01-01

    A novel class of multi-D-shaped optical fiber suited for refractive index measurements is presented. The multi-D-shaped optical fiber was constructed by forming several D-sections in a multimode optical fiber at localized regions with femtosecond laser pulses. The total number of D-shaped zones fabricated could range from three to seven. Each D-shaped zone covered a sensor volume of 100 ?m depth, 250 ?m width, and 1 mm length. The mean roughness of the core surface obtained by the AFM images was 231.7 nm, which is relatively smooth. Results of the tensile test indicated that the fibers have sufficient mechanical strength to resist damage from further processing. The multi-D-shaped optical fiber as a high sensitive refractive-index sensor to detect changes in the surrounding refractive index was studied. The results for different concentrations of sucrose solution show that a resolution of 1.27 10?33.13 10?4 RIU is achieved for refractive indices in the range of 1.333 to 1.403, suggesting that the multi-D-shaped fibers are attractive for chemical, biological, and biochemical sensing with aqueous solutions. PMID:22399908

  17. Tunable fiber laser based on the refractive index characteristic of MMI effects

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Qi, Yanhui; Kang, Zexin; Bai, Yunlong; Jian, Shuisheng

    2014-04-01

    A tunable erbium-doped all-fiber laser has been demonstrated. This tunable laser is based on a tunable fiber filter using the refractive index characteristics of multimode interference effects. A thinner no-core fiber with a diameter of 104 ?m is used to fabricate the tunable fiber filter. The joint point of the thinner no-core fiber with SMF is a taper, which improves its sensitivity for refractive index changes. The filter exhibits a very sensitive response to the change of the environmental refractive index, which is about 1000 nm/RIU in the RI range from 1.418 to 1.427. The tunable fiber laser based on the filter achieved a tunability of 32 nm, with the wavelength tuned from 1532 nm to 1564 nm covering the full C-band. The 3 dB bandwidth of the tunable laser is less than 0.02 nm with the signal-to-noise ratio of about 40 dB.

  18. Elliptical-core two mode fiber sensors and devices incorporating photoinduced refractive index gratings

    NASA Technical Reports Server (NTRS)

    Greene, Jonathan A.; Miller, Mark S.; Starr, Suzanne E.; Fogg, Brian R.; Murphy, Kent A.; Claus, Richard O.; Vengsarkar, Ashish M.

    1991-01-01

    Results of experiments performed using germanium-doped, elliptical core, two-mode optical fibers whose sensitivity to strain was spatially varied through the use of chirped, refractive-index gratings permanently induced into the core using Argon-ion laser light are presented. This type of distributed sensor falls into the class of eighted-fiber sensors which, through a variety of means, weight the strain sensitivity of a fiber according to a specified spatial profile. We describe results of a weighted-fiber vibration mode filter which successfully enhances the particular vibration mode whose spatial profile corresponds to the profile of the grating chirp. We report on the high temperature survivability of such grating-based sensors and discuss the possibility of multiplexing more than one sensor within a single fiber.

  19. Refraction index measurement using long period grating fabricated by symmetrical-hole fiber

    NASA Astrophysics Data System (ADS)

    Kang, Juan; Dong, Xinyong; Li, Mengchao; Zhang, Zaixuan; Jin, Shangzhong

    2010-12-01

    A Long-Period Fiber Grating (LPFG) fabricated by CO2 laser in a symmetrical two-hole single-mode fiber (STHSMF) for refraction index (RI) measurement is demonstrated. The solved sugar liquid of different concentration was filled into the holes by capillary force and its RI was experimentally measured. The results show that resonant peak shifts toward shorter wavelengths with its resonance peak intensity changes a little when the external refractive index increases. RI sensitivity of 141.67 nm/RIU have been achieved with R2 of 0.975.The temperature sensitivity of the STHSMF is also investigated.

  20. Refraction index measurement using long period grating fabricated by symmetrical-hole fiber

    NASA Astrophysics Data System (ADS)

    Kang, Juan; Dong, Xinyong; Li, Mengchao; Zhang, Zaixuan; Jin, Shangzhong

    2011-01-01

    A Long-Period Fiber Grating (LPFG) fabricated by CO2 laser in a symmetrical two-hole single-mode fiber (STHSMF) for refraction index (RI) measurement is demonstrated. The solved sugar liquid of different concentration was filled into the holes by capillary force and its RI was experimentally measured. The results show that resonant peak shifts toward shorter wavelengths with its resonance peak intensity changes a little when the external refractive index increases. RI sensitivity of 141.67 nm/RIU have been achieved with R2 of 0.975.The temperature sensitivity of the STHSMF is also investigated.

  1. Optical fiber Fabry-Perot refractive index sensor based on porous Al2O3 film

    NASA Astrophysics Data System (ADS)

    Huang, Chujia; Yang, Minghong; Xie, Weijing; Dai, Jixiang

    2015-08-01

    A fiber refractive index sensor based on porous alumina is fabricated by pasting porous alumina film with 42.36?m on single mode fiber tip using the UV-cured adhesive. Experimental results show that the proposed sensor has a very high correlation with glycerine concentration (0.0%~80.0%) with correlation coefficient of 99.771%. Its sensitivity and resolution was measure to be 99.771%, 154 nm/RIU and 110-4 respectively when the refractive index changes from 1.333 to 1.443.

  2. Chalcogenide double index fibers: fabrication, design, and application as a chemical sensor

    SciTech Connect

    Le Coq, D.; Boussard-Pledel, C.; Fonteneau, G.; Pain, T.; Bureau, B.; Adam, J.L

    2003-10-30

    Double index chalcogenide fibers, based on tellurium, arsenic, and selenium, have been made by an original technique. This technique, based on the build-in-casting method, is achieved in a sealed silica ampoule. In view of the low attenuation obtained in the mid-infrared (IR), these fibers are used to implement Fiber Evanescent Wave Spectroscopy (FEWS). As the IR light is only propagated through the core of the waveguide, a chemical etching is applied in order to remove the glassy cladding of the sensing zone. IR spectra of ethanol and chloroform, recorded with such sensor, are presented showing the high sensitivity of the method.

  3. Diffusion tensor imaging fiber tracking with reliable tracking orientation and flexible step size?

    PubMed Central

    Yao, Xufeng; Wang, Manning; Chen, Xinrong; Nie, Shengdong; Li, Zhexu; Xu, Xiaoping; Zhang, Xuelong; Song, Zhijian

    2013-01-01

    We propose a method of reliable tracking orientation and flexible step size fiber tracking. A new directional strategy was defined to select one optimal tracking orientation from each directional set, which was based on the single-tensor model and the two-tensor model. The directional set of planar voxels contained three tracking directions: two from the two-tensor model and one from the single-tensor model. The directional set of linear voxels contained only one principal vector. In addition, a flexible step size, rather than fixable step sizes, was implemented to improve the accuracy of fiber tracking. We used two sets of human data to assess the performance of our method; one was from a healthy volunteer and the other from a patient with low-grade glioma. Results verified that our method was superior to the single-tensor Fiber Assignment by Continuous Tracking and the two-tensor eXtended Streamline Tractography for showing detailed images of fiber bundles. PMID:25206444

  4. Study of Refractive Index Change in Ge-Doped Fibers with Vacuum Ultraviolet Light Irradiation

    NASA Astrophysics Data System (ADS)

    Maezono, Yoshinari; Iwasa, Yousuke; Wasamoto, Makoto; Yamamoto, Ikuo; Katto, Masahito; Yokotani, Atsushi

    2008-09-01

    We determined that refractive index change of Ge-doped silica can be induced by vacuum ultraviolet (VUV) light irradiation from Xe2*, Kr2*, and Ar2* excimer lamps using fabricated fiber Bragg grating (FBG) in the core of the hydrogen-loaded fiber as the material. It was found that irradiation with light from Xe2* and Kr2* excimer lamps can change the refractive index in the core and irradiation with light from Ar2* excimer lamps cannot. The change in refractive index under 146 nm light irradiation was greater than that under 172 nm light irradiation. The change in refractive index induced by irradiation with VUV light can be maintained up to approximately 130 C.

  5. Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Kouskousis, Betty P.; Rollinson, Claire M.; Kitcher, Daniel J.; Collins, Stephen F.; Baxter, Greg W.; Wade, Scott A.; Dragomir, Nicoleta M.; Roberts, Ann

    2006-10-01

    A comparison is made between the modeled and experimentally determined microscopic images of a type I Bragg grating produced in the core of an optical fiber using the ultraviolet irradiation of a phase mask. The simulated image of the refractive-index distribution, which assumes a linear relationship between the irradiation intensity and the refractive-index change, is in good agreement with the measured image.

  6. Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating.

    PubMed

    Kouskousis, Betty P; Rollinson, Claire M; Kitcher, Daniel J; Collins, Stephen F; Baxter, Greg W; Wade, Scott A; Dragomir, Nicoleta M; Roberts, Ann

    2006-10-30

    A comparison is made between the modeled and experimentally determined microscopic images of a type I Bragg grating produced in the core of an optical fiber using the ultraviolet irradiation of a phase mask. The simulated image of the refractive-index distribution, which assumes a linear relationship between the irradiation intensity and the refractive-index change, is in good agreement with the measured image. PMID:19529430

  7. Dietary glycemic index, glycemic load, insulin index, fiber and whole grain intake, in relation to risk of prostate cancer

    PubMed Central

    Nimptsch, K; Kenfield, S; Jensen, MK; Stampfer, MJ; Franz, M; Sampson, L; Brand-Miller, JC; Willett, WC; Giovannucci, E

    2011-01-01

    Objective Insulin may play a role in prostate cancer tumorigenesis. Postprandial blood glucose and insulin responses of foods depend importantly on the carbohydrate quality and quantity, represented by glycemic index (GI), glycemic load (GL), fiber, and whole grain content, but are also influenced by intake of protein and other characteristics. The recently developed insulin index (II) quantifies the postprandial insulin secretion, also taking into account these additional characteristics. Methods We investigated the association between dietary GI, GL, II, fiber and whole grains and risk of total prostate cancer (n=5,112) and subgroups of prostate cancer as defined by stage or grade in 49,934 male participants of the Health Professionals Follow-up Study. Multivariate adjusted hazard ratios (HR) and 95% confidence intervals (95% CI) were estimated using Cox proportional hazards regression. Results Dietary GI, GL, II or fiber were not associated with risk of total or subgroups of prostate cancer. We observed a positive association between dietary intake of whole grains and total prostate cancer (HR highest versus lowest quintile 1.13, 95% CI 1.031.24), which was attenuated after restriction to PSA-screened participants (HR 1.03, 95% CI 0.911.17). Conclusions These results suggest that long-term exposure to a diet with a high insulin response does not affect prostate cancer incidence. PMID:21069447

  8. An automatic step adjustment method for average power analysis technique used in fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Ming

    2006-04-01

    An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.

  9. An automatic step adjustment method for average power analysis technique used in fiber amplifiers.

    PubMed

    Liu, Xue-Ming

    2006-04-01

    An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers. PMID:19516389

  10. Low-cost refractive index and strain sensor based on tapered fibers

    NASA Astrophysics Data System (ADS)

    Mas, Sara; Mart, Javier; Monzn-Hernndez, David; Palac, Jess

    2016-02-01

    In this paper, biconical tapered fibers are used to carry out sensing in a simple and effective way by using an incoherent source and a power meter. This approach reduces the cost and complexity of traditional schemes based on tunable lasers while providing similar performance. Refractive index and strain sensing measurements are presented and their performance discussed.

  11. Wavelength dependence of stress-induced time of flight variations in graded-index multimode fibers

    NASA Astrophysics Data System (ADS)

    Kashima, N.; Kawashima, T.; Miyauchi, S.

    2015-10-01

    We investigate the wavelength dependence of stress-induced time of flight variations in graded-index multimode fibers (GI-MMFs) for wavelength ? = 1.26 ?m ?1.58 ?m, theoretically and experimentally. Calculations were made based on simple equations using the refractive index of silica fibers. We measured the wavelength dependence of stress-induced time of flight variations by a newly proposed measurement method. We confirmed the similar wavelength dependence of GI-MMFs to that for standard single mode fibers (SSMF). However, the value of them is different. We compare the experimental and theoretical results for two types of fibers. The comparison indicates that the difference of stress-induced time of flight variations between two types of fibers is mainly due to the group velocity difference. We conclude that there is no significant difference of the photo-elastic constant between the measured SSMFs and GI-MMFs. Although many properties of GI-MMFs depended on the mode power distribution in general, we conclude the dependence of stress-induced time of flight variations on mode power distribution is small for the measured fibers.

  12. New SPR PCF D-type optical fiber sensor configuration for refractive index measurement

    NASA Astrophysics Data System (ADS)

    Santos, D. F.; Guerreiro, A.; Baptista, J. M.

    2015-09-01

    This paper presents the performance analysis of a new geometry sensing configuration for refractive index, based on surface plasmon resonance (SPR) in photonic crystal fiber (PCF) D-type optical fiber with a thin gold layer, using the finite element method (FEM). The configuration is analyzed in terms of the loss. The results are compared with a conventional SPR D-type and with a PCF D-type optical fiber sensor for refractive index measurement. The simulation results show an improvement of the sensitivity and resolution (3.70103nm/RIU and 2.7210-5RIU, respectively, when considering an accurately spectral variation detection of 0.1nm).

  13. Thermal-induced transverse-mode evolution in thermally guiding index-antiguided-core fiber.

    PubMed

    Kong, Lingchao; Cao, Jianqiu; Guo, Shaofeng; Jiang, Zongfu; Lu, Qisheng

    2016-02-10

    The transverse-mode evolution in thermally guided (TG) index-antiguided-core (IAGc) fibers is numerically studied in this paper. With the finite-element method and thermal conduction equations, the fundamental mode evolution with a thermal load is investigated, and four evolution stages (i.e., the cladding-confined, quasi-cladding-confined, quasi-core-confined, and core-confined) are revealed. Thermal load thresholds corresponding to these stages are presented. Furthermore, the field evolutions of high-order modes also are investigated; the filling factors of these modes are discussed as well. The pertinent results can provide significant reference for designing TG IAGc fibers and understanding the thermal effect on the transverse mode of fibers involving the index-antiguided core. PMID:26906395

  14. Premenopausal dietary carbohydrate, glycemic index, glycemic load, and fiber in relation to risk of breast cancer.

    PubMed

    Cho, Eunyoung; Spiegelman, Donna; Hunter, David J; Chen, Wendy Y; Colditz, Graham A; Willett, Walter C

    2003-11-01

    Carbohydrate intake, glycemic index, and glycemic load have been hypothesized to increase risk of breast cancer by raising insulin levels, but these associations have not been studied extensively. The insulin response to dietary carbohydrate is substantially greater among overweight women than among leaner women. Although fiber intake has been hypothesized to reduce the risk of breast cancer, data from early adult life are lacking. We examined dietary carbohydrate, glycemic index, glycemic load, and fiber in relation to breast cancer risk among 90655 premenopausal women in the Nurses' Health Study II aged 26-46 years in 1991. Diet was assessed with a food frequency questionnaire in 1991 and 1995. During 8 years of follow-up, we documented 714 incident cases of invasive breast cancer. Dietary carbohydrate intake, glycemic load, and glycemic index were not related to breast cancer risk in the overall cohort. However, the associations differed by body mass index (BMI): among women with BMI < 25 kg/m(2), the multivariate relative risks for the increasing quintiles of carbohydrate intake were 1.00 (referent), 0.87, 0.77, 0.66, and 0.62 [95% confidence interval, 0.40-0.97; P, test for trend = 0.02]; and among women with BMI >or=25 kg/m(2), the corresponding relative risks were 1.00 (referent), 1.30, 1.35, 1.50, and 1.47 (95% confidence interval, 0.84-2.59; P, test for trend = 0.14; P, test for interaction = 0.02). Similar interaction with BMI was observed for glycemic load, but not for glycemic index. Intakes of total fiber and different types of fiber were not appreciably related to breast cancer risk. Our findings suggest that the associations between carbohydrate intake or glycemic load and breast cancer risk among young adult women differ by body weight. Our data do not support a strong association between fiber intake and breast cancer risk. PMID:14652274

  15. Characterization of refractive index change and fabrication of long period gratings in pure silica fiber by femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Ahmed, Farid; Joe, Hang-Eun; Min, Byung-Kwon; Jun, Martin B. G.

    2015-11-01

    Ultrafast laser induced refractive index (RI) change in the core of a standard telecommunication fiber is quantified using the spectral shift of an in-fiber Bragg grating (FBG) based Fabry-Perot cavity. Measured RI change is used to design and then fabricate long period grating (LPG) in pure silica core single mode fiber (SMF) employing identical laser irradiation conditions used in core index characterization. A core length of 100 μm within the 10 mm long cavity structure is scanned with ultrafast laser pulses, and the corresponding spectral shift is used to calculate index modification. The index change of 0.000449 found in characterization process is used to simulate the LPG in pure silica fiber. Identical index modulation written in pure silica fiber by femtosecond laser radiation provides a rejection band that is in good agreement with the simulation results. The fabricated LPG sensors are also characterized for ambient temperature and RI.

  16. 1N optical fiber coupler based on a polyhedral gradient index lens

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhong; Dai, Wen; Song, Kuiyan; Jin, Wei

    2014-05-01

    A method for building a 1N fiber coupler based on a single polyhedral gradient-index lens (p-GRIN) is proposed. One end of the p-GRIN has polyhedral convex cone shape with N surfaces and is used as the light input port, while the other end is flat and used as the output port. When light from a single mode optical fiber illuminates the input end of the p- GRIN, N spatially separated light beams are generated at the output end and coupled respectively into N different output fibers. Results obtained from ray-tracing agree well with simulation results from the ZEMAX software. The output beam positions and light coupling efficiency to optical fibers could be optimized by adjusting the input cone angle and the distance between input fiber end and cone tip. This method may be adapted for any type of optical fibers and provide a practical solution for light coupling between single- and multi-core fibers.

  17. Walk Ratio (Step Length/Cadence) as a Summary Index of Neuromotor Control of Gait: Application to Multiple Sclerosis

    ERIC Educational Resources Information Center

    Rota, Viviana; Perucca, Laura; Simone, Anna; Tesio, Luigi

    2011-01-01

    In healthy adults, the step length/cadence ratio [walk ratio (WR) in mm/(steps/min) and normalized for height] is known to be constant around 6.5 mm/(step/min). It is a speed-independent index of the overall neuromotor gait control, in as much as it reflects energy expenditure, balance, between-step variability, and attentional demand. The speed…

  18. Walk Ratio (Step Length/Cadence) as a Summary Index of Neuromotor Control of Gait: Application to Multiple Sclerosis

    ERIC Educational Resources Information Center

    Rota, Viviana; Perucca, Laura; Simone, Anna; Tesio, Luigi

    2011-01-01

    In healthy adults, the step length/cadence ratio [walk ratio (WR) in mm/(steps/min) and normalized for height] is known to be constant around 6.5 mm/(step/min). It is a speed-independent index of the overall neuromotor gait control, in as much as it reflects energy expenditure, balance, between-step variability, and attentional demand. The speed

  19. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing

    PubMed Central

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M.

    2015-01-01

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33–1.37) suitable for biosensing applications. PMID:26426022

  20. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing.

    PubMed

    Klantsataya, Elizaveta; Franois, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M

    2015-01-01

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 ?m diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 ?m core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications. PMID:26426022

  1. LLNL Measurements of Graded-Index Multi-Mode Fiber (ITF 47)

    SciTech Connect

    Saito, T.T.

    2000-05-01

    The Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, located in the Nuclear City of Snezhinsk, east of the Ural mountains and the Lawrence Livermore National Laboratories have been investigating the possibility of establishing a commercial optical fiber manufacturing facility. These discussions began in the summer of 1998. At that time three samples (single mode and multi-mode) of optical fiber were left at the Sandia National Laboratory. Sandia measured two of the segments and sent them to LLNL. The optical loss at 1550 nm and 1300 nm were higher than commercially available fiber. The measurements were complicated because the geometry of the fibers also did not meet specification. Since the core was not adequately centered coupling of optical energy into the fiber being tested varied widely depending on which end of the fiber was used for insertion. The results of these measurements were summarized in the informal report dated June 11, 1999, which was hand carried by Dr. Paul Herman during his July 1999 visit. During the July visit a 1.2-km long section of graded-index multimode fiber, ITF 47, was given to Herman. We had requested samples longer than the earlier ones (which were {approx}0.1 km long) in order that a cutback method could be used for the transmission measurements. The optical loss using the cutback technique and the transmission spectral measurements in the 600-1700 mn region are reported. Also physical measurements are reported of the fiber's diameter, concentricity, ellipticity and tensile strength (proof test). The test results are summarized in Table 1, ''Comparative Data for Multi-mode Optical Fiber.'' The table includes the values from the Industrial specification TIA/EIA 402AAAB, the commercial specification for Corning's 50/125 CPC6, the values measured on ITF-47 and provided by C-70, and LLNL's values for ITF-47 as well as the multimode values from the June 1999 samples.

  2. Fiber optic liquid crystalline hydrostatic pressure sensor with gradient-index rod lenses

    NASA Astrophysics Data System (ADS)

    Wolinski, Tomasz R.; Staronski, Leszek R.; Jarmolik, Aleksandra; Domanski, Andrzej W.

    1994-11-01

    A further development of the fiber optic hydrostatic pressure sensor with a liquid crystal film acting as a sensing element is presented. To enhance the amount of the optical signal entering the liquid crystal optrode gradient index (GRIN) rod lenses have been used in the pressure environment. The paper discusses the effect of stress induced birefringence in a GRIN lens, its influence on defocusing phenomena under pressure and the optimized configuration of the fiber optic liquid crystal sensor preset for a required range of pressure.

  3. Application of ferrocene-based polymers as variable index materials in fiber optic gas sensors

    NASA Astrophysics Data System (ADS)

    Shadaram, Mehdi; Martinez, Juan J.; Garcia, Fernando; Tavares, David; Symon, Arnaud; Godbout, Nicolas; Lacroix, Suzanne

    1996-01-01

    Potential application of polymers containing ferrocene as their backbone compound in fiber optic gas sensors are discussed. The refractive indices of these polymers are comparable to silica glass and vary substantially upon exposure to certain gases. The variation in the refractive index of thin films of a ferrocene-based polymer known as methyl-phenyl-silane ferrocenylene polymer upon exposure to ammonia, nitrous oxide, nitric oxide, nitrogen, and oxygen is examined. The structure and operation of tapered optical fiber gas sensors fabricated with the aforementioned polymer are explained. Also covered are the sensitivity and reaction times of two different sensors to ammonia and nitrogen.

  4. Fabrication quality analysis of a fiber optic refractive index sensor created by CO2 laser machining.

    PubMed

    Chen, Chien-Hsing; Yeh, Bo-Kuan; Tang, Jaw-Luen; Wu, Wei-Te

    2013-01-01

    This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 ?m, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 ?m, no obvious optical transmission defects, a numerical aperture of 0.52 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 10(-4) RIU (linear fitting R2 = 0.954) was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 10(-5) RIU, and greater linearity at R2 = 0.999. PMID:23535636

  5. Fabrication Quality Analysis of a Fiber Optic Refractive Index Sensor Created by CO2 Laser Machining

    PubMed Central

    Chen, Chien-Hsing; Yeh, Bo-Kuan; Tang, Jaw-Luen; Wu, Wei-Te

    2013-01-01

    This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 ?m, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 ?m, no obvious optical transmission defects, a numerical aperture of 0.52 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 10?4 RIU (linear fitting R2 = 0.954) was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 10?5 RIU, and greater linearity at R2 = 0.999. PMID:23535636

  6. An analysis method for evaluating gradient-index fibers based on Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Horiuchi, S.; Ushiyama, Z.; Yamamoto, M.

    2011-05-01

    We propose a numerical analysis method for evaluating gradient-index (GRIN) optical fiber using the Monte Carlo method. GRIN optical fibers are widely used in optical information processing and communication applications, such as an image scanner, fax machine, optical sensor, and so on. An important factor which decides the performance of GRIN optical fiber is modulation transfer function (MTF). The MTF of a fiber is swayed by condition of manufacturing process such as temperature. Actual measurements of the MTF of a GRIN optical fiber using this method closely match those made by conventional methods. Experimentally, the MTF is measured using a square wave chart, and is then calculated based on the distribution of output strength on the chart. In contrast, the general method using computers evaluates the MTF based on a spot diagram made by an incident point light source. But the results differ greatly from those by experiment. In this paper, we explain the manufacturing process which affects the performance of GRIN optical fibers and a new evaluation method similar to the experimental system based on the Monte Carlo method. We verified that it more closely matches the experimental results than the conventional method.

  7. Glycemic index and microstructure analysis of a newly developed fiber enriched cookie.

    PubMed

    Schuchardt, Jan Philipp; Wonik, Jasmin; Bindrich, Ute; Heinemann, Michaela; Kohrs, Heike; Schneider, Inga; Möller, Katharina; Hahn, Andreas

    2016-01-20

    A diet with a high glycemic index (GI) is associated with an elevated risk for obesity or type 2 diabetes. We investigated the GI of a newly-developed fiber enriched cookie and characterized the microstructure of ingredients used. In a study with 26 non-diabetic healthy volunteers it was shown that the fiber enriched cookie has a GI of 58.9 in relation to white bread as reference. Using a conversion factor of 1.4, the GI of the fiber enriched cookie in relation to a glucose-solution is 42.0 and can be classified as a low-GI food. Postprandial insulin concentration was significantly lower after consumption of fiber enriched cookies compared to white bread. Glucose release after in vitro digestion was significantly lower from fiber enriched cookies compared to other cookies tested. In addition to its high percentage of fiber, the cookies' low GI can be attributed to the limited gelatinization potential of the starch granules found in the ingredients used. Using confocal laser scanning microscopy it is shown that starch granule surface area of whole grain barley flour, spelt flour and oat flakes bears cluster-shaped protein-NSPS complexes that preferentially absorb water in conditions of water shortage and thereby prevent starch gelatinization. PMID:26514289

  8. Kinetics of UV-induced blue luminescence linked with the observation of the local mean index in fiber Bragg gratings.

    PubMed

    Paccou, L; Lancry, M; Douay, M

    2005-09-19

    We exposed H2-loaded optical fibers to cw UV light and simultaneously measured the intensity of the blue luminescence from the fiber core. The UV-induced blue luminescence experiences a non monotonous evolution and thus cannot be correlated to the refractive index changes. However, a quasi-linear relationship has been found between the increase of the blue luminescence and the refractive index changes in the range 5 10-4 < Deltan mean (or Deltan mod) < 2.5 10-3. Using this property, we analyze a fiber Bragg grating by focusing a UV beam probe onto the fiber core and we record the UV-induced blue luminescence at the end of the fiber. By scanning the UV beam along the fiber, we measure thus the axial profile of the refractive index changes with a spatial resolution of 1 mum. PMID:19498757

  9. Fiber optic based multiparametric spectroscopy in vivo: Toward a new quantitative tissue vitality index

    NASA Astrophysics Data System (ADS)

    Kutai-Asis, Hofit; Barbiro-Michaely, Efrat; Deutsch, Assaf; Mayevsky, Avraham

    2006-02-01

    In our previous publication (Mayevsky et al SPIE 5326: 98-105, 2004) we described a multiparametric fiber optic system enabling the evaluation of 4 physiological parameters as indicators of tissue vitality. Since the correlation between the various parameters may differ in various pathophysiological conditions there is a need for an objective quantitative index that will integrate the relative changes measured in real time by the multiparametric monitoring system into a single number-vitality index. Such an approach to calculate tissue vitality index is critical for the possibility to use such an instrument in clinical environments. In the current presentation we are reporting our preliminary results indicating that calculation of an objective tissue vitality index is feasible. We used an intuitive empirical approach based on the comparison between the calculated index by the computer and the subjective evaluation made by an expert in the field of physiological monitoring. We used the in vivo brain of rats as an animal model in our current studies. The rats were exposed to anoxia, ischemia and cortical spreading depression and the responses were recorded in real time. At the end of the monitoring session the results were analyzed and the tissue vitality index was calculated offline. Mitochondrial NADH, tissue blood flow and oxy-hemoglobin were used to calculate the vitality index of the brain in vivo, where each parameter received a different weight, in each experiment type based on their significance. It was found that the mitochondrial NADH response was the main factor affected the calculated vitality index.

  10. Fabricating Continuous Supercapacitor Fibers with High Performances by Integrating All Building Materials and Steps into One Process.

    PubMed

    Wang, Bingjie; Fang, Xin; Sun, Hao; He, Sisi; Ren, Jing; Zhang, Ye; Peng, Huisheng

    2015-12-01

    Supercapacitor fibers are rapidly produced in minutes by an integrated one-step fabrication process. This method is simple and efficient for large production. A variety of pseudocapacitive active materials including graphene oxide, metal oxide, and conducting polymers can be incorporated. The resulting all-solid-state supercapacitor fibers show remarkable energy-storage capabilities with both high power and energy densities. PMID:26488334

  11. LLNL Measurements of Graded-Index Multi-Mode Optical Fiber (ITF 47)

    NASA Astrophysics Data System (ADS)

    Saito, T. T.

    2000-05-01

    The Russian Federal Nuclear Center-All Russian Research Institute of Technical Physics, located in the Nuclear City of Snezhinsk, east of the Ural mountains and the Lawrence Livermore National Laboratories have been investigating the possibility of establishing a commercial optical fiber manufacturing facility. These discussions began in the summer of 1998. At that time three samples (single mode and multi-mode) of optical fiber were left at the Sandia National Laboratory. Sandia measured two of the segments and sent them to LLNL. The optical loss at 1550 nm and 1300 nm were higher than commercially available fiber. The measurements were complicated because the geometry of the fibers also did not meet specification. Since the core was not adequately centered coupling of optical energy into the fiber being tested varied widely depending on which end of the fiber was used for insertion. The results of these measurements were summarized in the informal report dated June 11, 1999, which was hand carried by Dr. Paul Herman during his July 1999 visit. During the July visit a 1.2-km long section of graded-index multimode fiber, ITF 47, was given to Herman. We had requested samples longer than the earlier ones (which were (approx) 0.1 km long) in order that a cutback method could be used for the transmission measurements. The optical loss using the cutback technique and the transmission spectral measurements in the 600-1700 mn region are reported. Also physical measurements are reported of the fiber's diameter, concentricity, ellipticity and tensile strength (proof test).

  12. Dynamic index modulation mechanism in polarization-maintained fiber Bragg gratings induced by transverse acoustic waves.

    PubMed

    Miao, Ren; Zhang, Wei; Feng, Xue; Zhao, Jianhui; Liu, Xiaoming

    2009-08-20

    A novel index modulation mechanism of polarization-maintained fiber Bragg gratings based on the microbend of stress members induced by a transverse acoustic wave is proposed and investigated experimentally. The index modulation leads to a series of ghost gratings with specific polarization, whose wavelengths can be tuned by the acoustic wave frequency and whose intensities depend on the vibration direction of the transverse acoustic wave. Our method provides a novel way to achieve polarization-dependent narrowband acousto-optic tunable filters. PMID:19696859

  13. Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing

    NASA Astrophysics Data System (ADS)

    Li, Benye; Jiang, Lan; Wang, Sumei; Tsai, Hai-Lung; Xiao, Hai

    2011-11-01

    An improved point-by-point inscription method is proposed to fabricate long period fiber gratings (LPFGs) by using a laser operating at 800 nm with 35 fs duration pulses. The sensitivity to misalignment between the core and the focus is reduced by scanning a rectangular part on the fiber. LPFGs with an attenuation depth of 20 dB are achieved within the wavelength range of 1465-1575 nm. Characterization of the temperature sensitivity and thermal stability of the LPFGs is presented. A 5.6 nm wavelength shift and a 1.2 dB decrease in the attenuation peak are observed following heat treatment at 600 °C for 4 h. The fabricated LPFGs are used as refractive index sensors. The effect of heat treatment on the response of the LPFGs to refractive index changes is also studied.

  14. Refractive index sensors based on the fused tapered special multi-mode fiber

    NASA Astrophysics Data System (ADS)

    Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2016-01-01

    In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

  15. Simultaneous measurement of strain and temperature using a reverse index fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Park, S. O.; Jang, B. W.; Lee, Y. G.; Kim, C. G.; Park, C. Y.

    2010-03-01

    The simultaneous measurement of strain and temperature is necessary for structural health monitoring of composite structures under diverse temperature environments. The FBG (fiber Bragg grating) sensor head is formed by two FBGs, normal and reverse index FBGs, fabricated by different procedures. The FBG sensor head offers the possibility of multiplexing and embedment, a straightforward measurement system and greater reliability due to the absence of a splicing operation. We evaluated the sensor head analytically and experimentally.

  16. Bending loss of leaky modes in optical fibers with arbitrary index profiles.

    PubMed

    Wilczewski, F

    1994-07-15

    Two new bending loss theories for leaky modes in optical fibers with arbitrary refractive-index profiles are presented. The numerical results are compared with the two known theories of Marcuse and Shah and of Vassalo. The two new theories are valid in a larger region of bend radii than the Marcuse-Shah theory. For the first time, to the author's knowledge, it is shown that for even and odd modes the bending loss is different, in general. PMID:19844523

  17. Humidity insensitive step-index polymer optical fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Woyessa, G.; Fasano, A.; Stefani, A.; Markos, C.; Nielsen, K.; Rasmussen, H. K.; Bang, O.

    2015-09-01

    We have fabricated and characterised a humidity insensitive step index(SI) polymer optical fibre(POF) Bragg grating sensors. The fibre was made based on the injection molding technique, which is an efficient method for fast, flexible and cost effective preparation of the fibre preform. The fabricated SIPOF has a core made from TOPAS with a glass transition temperature of 134°C and a cladding from ZEONEX with a glass transition temperature of 138°C. The main advantages of the proposed SIPOF are the low water absorption and good chemical resistance compared to the conventional poly-methyl-methacrylate (PMMA) based SIPOFs. The fibre has a minimum loss of ~6dB/m at 770nm.

  18. New DFB grating structure using dopant-induced refractive index step

    NASA Astrophysics Data System (ADS)

    Glew, R. W.; Hinzer, K.; White, J. K.; Goodchild, D.; Knight, G.; SpringThorpe, A. J.; Dixon-Warren, St. J.

    2004-01-01

    A new distributed feedback (DFB) grating structure using different doping levels of n-type InP to obtain a modulated index of refraction contrast is demonstrated. The grating consists of an array of highly doped n-type InP embedded in low-doped n-type InP. It is shown that the dielectric step (? n=0.058) between n-doping of 510 17 cm -3 and n-doping of 110 19 cm -3 is large enough for device operation. Single mode lasing at a wavelength of 1.55 ?m with an SMSR of >45 dB has been achieved in InGaAlAs/InP devices. This DFB grating structure removes some of the technological drawbacks observed when fabricating the conventional index-coupled grating using an etched and overgrown InGaAsP layer. These manufacturing advantages include the absence of arsenic migration during overgrowth and removal of notching during grating etch.

  19. Refractive-Index-Based Sorting of Colloidal Particles Using a Subwavelength Optical Fiber in a Static Fluid

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Lei, Hongxiang; Li, Baojun

    2013-07-01

    An optical-fiber-based technique is presented for refractive-index-based sorting of colloidal particles in a static fluid. The method employs the different optical scattering forces exerted by a subwavelength optical fiber on colloidal particles with different refractive indices. By launching two counterpropagating laser beams at wavelengths of 808 and 1047 nm into a fiber of 800 nm diameter, the resultant scattering forces acting on polystyrene and SiO2 particles can be in opposite directions, which leads to a countertransport of the particles along the fiber. Experiments are performed using the fiber to sort the particles of 650 nm size.

  20. Single tapered fiber tip for simultaneous measurements of thickness, refractive index and distance to a sample.

    PubMed

    Moreno-Hernández, Carlos; Monzón-Hernández, David; Hernández-Romano, Iván; Villatoro, Joel

    2015-08-24

    We demonstrate the capability of an air cavity Fabry-Perot interferometer (FPI), built with a tapered lead-in fiber tip, to measure three parameters simultaneously, distance, group refractive index and thickness of transparent samples introduced in the cavity. Tapering the lead-in fiber enhances the light coupling back efficiency, therefore is possible to enlarge the air cavity without a significant deterioration of the fringe visibility. Fourier transformation, used to analyze the reflected optical spectrum of our FPI, simplify the calculus to determine the position, thickness and refractive index. Samples made of 7 different glasses; fused silica, BK7, BalF5, SF2, BaF51, SF15, and glass slides were used to test our FPI. Each sample was measured nine times and the results for position, thickness and refractive index showed differences of ± 0.7%, ± 0.1%, and ± 0.16% respectively. The evolution of thickness and refractive index of a block of polydimethylsiloxane (PDMS) elastomer due to temperature changes in the range of 25°C to 90°C were also measured. The coefficients of the thermal expansion and thermo-optic estimated were α = 4.71x10(-4)/°C and dn/dT = -4.66 x10(-4) RIU/°C, respectively. PMID:26368188

  1. Cladded self-written multimode step-index waveguides using a one-polymer approach.

    PubMed

    Gnther, Axel; Petermann, Ann Britt; Gleissner, Uwe; Hanemann, Thomas; Reithmeier, Eduard; Rahlves, Maik; Meinhardt-Wollweber, Merve; Morgner, Uwe; Roth, Bernhard

    2015-04-15

    Low-loss optical-coupling structures are highly relevant for applications in fields as diverse as information and communication technologies, integrated circuits, or flexible and highly-functional polymer sensor networks. For this suitable and reliable production methods are crucial. Self-written waveguides are an interesting solution. In this work, we present a simple and efficient one-polymer approach for self-written optical connections between light-guiding structures such as single-mode and multi-mode optical fibers or waveguides that relies on self focusing of the light inside a photopolymerizing mixture. The optical connections are produced in a two-step process by writing into monomer resin using cw laser light in the blue wavelength range and subsequent UV curing. Since only one photopolymerizing resin is required, we reduced the fabrication complexity compared to previous approaches to obtain a waveguide embedded in a rigid cladding material. We discuss the production method, the results obtained as function of relevant process parameters such as writing speed or curing time, and evaluate optical properties and coupling efficiencies. PMID:25872085

  2. Highly sensitive refractive index fiber inline Mach-Zehnder interferometer fabricated by femtosecond laser micromachining and chemical etching

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Yan; Chu, Dong-Kai; Dong, Xin-Ran; Zhou, Chu; Li, Hai-Tao; Luo-Zhi; Hu, You-Wang; Zhou, Jian-Ying; Cong-Wang; Duan, Ji-An

    2016-03-01

    A High sensitive refractive index (RI) sensor based on Mach-Zehnder interferometer (MZI) in a conventional single-mode optical fiber is proposed, which is fabricated by femtosecond laser transversal-scanning inscription method and chemical etching. A rectangular cavity structure is formed in part of fiber core and cladding interface. The MZI sensor shows excellent refractive index sensitivity and linearity, which exhibits an extremely high RI sensitivity of -17197 nm/RIU (refractive index unit) with the linearity of 0.9996 within the refractive index range of 1.3371-1.3407. The experimental results are consistent with theoretical analysis.

  3. Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings

    SciTech Connect

    Smelser, Christopher W.; Mihailov, Stephen J.; Grobnic, Dan

    2008-05-15

    Ultrafast infrared induced fiber Bragg gratings in a hydrogen-loaded SMF-28 fiber are shown to exhibit complex and, what we believe to be, novel spectral evolutions. It is believed that the induced grating peak profile in the fiber is nonsinusoidal as a result of the nonlinear absorption required to modify the material. Rouard's method is used to show that the observed spectral evolution is a consequence of the saturation of the nonsinusoidal index change profile.

  4. Fabry-Perot interferometer based on etched side-hole fiber for microfluidic refractive index sensing

    NASA Astrophysics Data System (ADS)

    Wu, Shengnan; Yan, Guofeng; Zhou, Bin; He, Sailing

    2015-08-01

    In this paper, we present a novel fiber-optic open-cavity Fabry-Perot interferometer (FPI), which is specially designed for microfluidic refractive index (RI) sensing. An etching Side-hole fiber (SHF) was sandwiched between in two single-mode-fibers (SMF) and then a cavity was opened up by chemical etching method in the SHF. The minute order of the etching process endow such FPIs with low cost and ease of fabrication. For further microfluidic sensing test, the FPI was integrated with a cross microfluidic slit that was fabricated through photolithography. The refractive index response of the FPI was characterized using sodium hydroxide solution with RI range from 1.3400 to 1.3470. Experimental results show that FPIs with different length of open-cavity have the similar liner RI response with different RI sensitivities. The optimal RI sensitivity of more than 1138 nm/RI can be achieved with open-cavity length of 56 μm. The temperature response was also investigated, which shows that FPIs exhibit a very low temperature cross-sensitivities of 4.00 pm/ °C and 1.95 pm/ °C corresponding FPIs with cavity length of 123 μm and 56 μm, respectively. Such good performance renders the FPI a promising in-line microfluidic sensor for temperature-insensitive RI sensing.

  5. TCF-MMF-TCF fiber structure based interferometer for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Fu, Haiwei; Li, Huidong; Shao, Min; Zhao, Na; Liu, Yinggang; Li, Yan; Yan, Xu; Liu, Qinpeng

    2015-06-01

    A liquid refractive index (RI) sensor based on in-fiber Mach-Zehnder interferometer (MZI) by sandwiching multi-mode fiber (MMF) between two short sections of thinned core fiber (TCF) is proposed in this paper. The first section of TCF excites the high-order modes and the second section TCF couples the core mode and high-order modes into lead-out SMF to form intermodal interference. The sensor with MMF length of 20 mm and TCFs length of 1 mm was fabricated. The transmission spectrum variation of the sensor with respect to surrounding refractive index (SRI) has been studied by experiment. The results show that the central wavelength of dips/peaks shifting had a good linearity with SRI. The RI sensitivity of the sensor is 130.00 nm/RIU over the RI range of 1.3333-1.4182. The RI sensitivity increase to 433.60 nm/RIU after etching the MMF cladding of the sensor. The sensor keeps low dependence on temperature before and after etching.

  6. Putty Index: An Important Aid for the Direct Fabrication of Fiber Reinforced Composite Resin FPD.

    PubMed

    Gupta, Nidhi; Singh, Kunwarjeet

    2014-12-01

    Fiber reinforced composite resin fixed partial dentures (FRCFPD) with composite resin, PFM or all ceramic pontic can be used as a short term or long term alternative to conventional fixed partial dentures or implant supported crown in young patients where conventional FPD is contraindicated (large pulp chambers) or in patient's unwilling to invasive implant placement surgical procedure and those who do not want to allow preparation of natural sound abutments for placement of retainers for FPD. FRCFPD can be successfully used for replacing missing anterior tooth (Turker and Sener, J Prosthet Dent 100:254-258, 2008), in conditions which allows minimum occlusal loading of pontic, over jet and overbite not greater than 3mm (Ricketts, Provocations and perceptions in craniofacial orthopedics: dental science and facial art/parts 1 and 2. Rocky Mountain Orthodontics, Denver, p 7023, 1990) and structurally sound and intact abutments for the fiber reinforced matrix (Rose et al., Quintessence Int 33:579-583, 2002). The successful esthetic and functional rehabilitation of missing tooth with fiber reinforced composite resin FPD depends on accurate positioning of pontic in patient's mouth. It is difficult to hold the pontic in proper position with instrument or fingers while direct fabrication in mouth. For accurate positioning, stabilization of pontic is very important which can be achieved with putty index. Putty index maintain pontic in accurate mesiodistal, labiolingual and cervicoincisal position while fabricating FRCFPD directly. PMID:26199513

  7. Effect of temperature rise and hydrostatic pressure on microbending loss and refractive index change in double-coated optical fiber

    NASA Astrophysics Data System (ADS)

    Seraji, Faramarz E.; Toutian, Golnoosh

    This paper presents an analysis of the effect of temperature rise and hydrostatic pressure on microbending loss, refractive index change, and stress components of a double-coated optical fiber by considering coating material parameters such as Young's modulus and the Poisson ratio. It is shown that, when temperature rises, the microbending loss and refractive index changes would decrease with increase of thickness of primary coating layer and will increase after passing through a minima. Increase of thickness of secondary coating layer causes the microbending loss and refractive index changes to decrease. We have shown that the temperature rise affecting the fiber makes the microbending loss and refractive index decrease, linearly. At a particular temperature, the microbending loss takes negative values, due to tensile pressure applied on the fiber. The increase of Young's modulus and the Poisson ratio of primary coating would lower the microbending loss and refractive index change whereas in the secondary coating layer, the condition reverses.

  8. An equivalent-stepped-index-coupled DFB semiconductor laser and laser array realized by stepping the duty cycle of the Sampled Bragg grating

    NASA Astrophysics Data System (ADS)

    Zheng, Junshou; Zhang, Yunshan; Li, Lianyan; Tang, Song; Sh, Yuechun; Chen, Xiangfei

    2015-04-01

    An equivalent-stepped-index-coupled (ESIC) distributed feedback semiconductor laser with an equivalent-stepped duty cycle (ESDC) is proposed and investigated numerically. The ESDC grating profile is realized by stepping the duty cycle of a Sampled Bragg grating (SBG) with the uniform seeding grating. Numerical results show that the light will be distributed in larger region along the laser cavity, that is to say, light field will be flattened and spatial hole burning can be suppressed in such flexible structure. Based on the ESDC structure, different sampling structures in a DFB laser array can also be obtained by stepping the sampling periods; therefore, multi-wavelength laser array can be designed and fabricated, which would simplify the fabrication process, and may be more suitable for the high precision and massive fabrication of DFB laser and laser array with reduced spatial hole burning.

  9. Graphene-deposited photonic crystal fibers for continuous refractive index sensing applications.

    PubMed

    Tan, Y C; Tou, Z Q; Chow, K K; Chan, C C

    2015-11-30

    We present a pilot demonstration of an optical fiber based refractive index (RI) sensor involving the deposition of graphene onto the surface of a segment of a photonic crystal fiber (PCF) in a fiber-based Mach-Zehnder Interferometer (MZI). The fabrication process is relatively simple and only involves the fusion splicing of a PCF between two single mode fibers. The deposition process relies only on the cold transfer of graphene onto the PCF segment, without the need for further physical or chemical treatment. The graphene overlay modified the sensing scheme of the MZI RI sensor, allowing the sensor to overcome limitations to its detectable RI range due to free spectral range issues. This modification also allows for continuous measurements to be obtained without the need for reference values for the range of RIs studied and brings to light the potential for simultaneous dual parameter sensing. The sensor was able to achieve a RI sensitivity of 9.4 dB/RIU for the RIs of 1.33-1.38 and a sensitivity of 17.5 dB/RIU for the RIs of 1.38-1.43. It also displayed good repeatability and the results obtained were consistent with the modeling. PMID:26698755

  10. The role of highly non-linear index change mechanism during femtosecond grating writing in microstructured optical fibers

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, Tigran; Geernaert, Thomas; Thienpont, Hugo; Berghmans, Francis

    2015-03-01

    New methods for fiber Bragg grating inscription in optical fibers use femtosecond laser sources, which can induce refractive index changes even in non-photosensitive fibers and which allow achieving gratings that remain stable at high temperatures. The index change takes place as a result of a highly non-linear multi-photon absorption process. Although such gratings were successfully inscribed in conventional fibers, there are still challenges involved when attempting to fabricate femtosecond gratings in microstructured optical fibers (MOFs). The air holes are usually impeding the delivery of optical power to the core region, which results in a lower grating writing efficiency. In this paper we report on our numerical computations that aim to estimate the influence of the MOF's holey cladding on the induced index change during interferometric grating inscription with an infrared (IR) femtosecond laser source. For high power femtosecond laser pulses at 800 nm the refractive index change in silica stems from a highly non-linear five photon absorption process. Using empirical data on refractive index changes from literature and intensity distribution data from our transverse coupling simulations we propose an approach to reconstruct the non-linear refractive index modification in the MOF core region. We then study the influence of the MOF angular orientation on the induced index change and we model the impact of MOF tapering as a possible way to increase the grating writing efficiency.

  11. Monitoring of high refractive index edible oils using coated long period fiber grating sensors

    NASA Astrophysics Data System (ADS)

    Coelho, Luís.; Viegas, Diana; Santos, José Luís.; de Almeida, Jose Manuel M. M.

    2015-05-01

    Monitoring the quality of high refractive index edible oils is of great importance for the human health. Uncooked edible oils in general are healthy foodstuff, olive oil in particular, however, they are frequently used for baking and cooking. High quality edible oils are made from seeds, nuts or fruits by mechanical processes. Nevertheless, once the mechanical extraction is complete, up to 15% of the oil remains in oil pomace and in the mill wastewater, which can be extracted using organic solvents, often hexane. Optical fiber sensors based on long period fiber gratings (LPFG) have very low wavelength sensitivity when the surround refractive index is higher than the refractive index of the cladding. Titanium dioxide (TiO2) coated LPFG could lead to the realization of high sensitivity chemical sensor for the food industry. In this work LPFG coated with a TiO2 thin film were successfully used for to detect small levels of hexane diluted in edible oils and for real time monitoring the thermal deterioration of edible oils. For a TiO2 coating of 30 nm a wavelength sensitivity of 1361.7 nm/RIU (or 0.97 nm / % V/V) in the 1.4610-1.4670 refractive index range was achieved, corresponding to 0 to 12 % V/V of hexane in olive oil. A sensitivity higher than 638 nm/RIU at 225 ºC was calculated, in the 1.4670-1.4735 refractive index range with a detection limit of thermal deterioration of about 1 minute.

  12. Fiber refractive index sensor based on dual polarized Mach-Zehnder interference caused by a single-mode fiber loop.

    PubMed

    Chen, Lei; Zhang, Wei-Gang; Wang, Li; Zhou, Quan; Sieg, Jonathan; Zhao, De-Long; Wang, Biao; Yan, Tie-Yi; Wang, Song

    2016-01-01

    A novel refractive index (RI) sensor head is proposed and experimentally demonstrated in this paper. The proposed sensor head is composed of a segment of bared single-mode fiber and a fiber holder that is fabricated by a 3D printer. The mechanism of the sensor head is based on dual polarized Mach-Zehnder interference. According to the aforementioned mechanism, we derived that the RI responses of the resonance dips possess an exponential functional manner when the E field is along the fast or slow axes. In addition, based on the finite element method, we found that the resonance dips wavelength responses are more sensitive when the input E field is along the fast axis. A confirmation experiment was performed, and the results confirmed our hypothesis. The maximum arithmetic mean value of RI response is about 657.895  nm/RIU for the proposed sensor head when the ambient RI changes from 1.3350 to 1.4110. Moreover, in the case of the proposed liquid RI sensor head, aligning the E field along the fast axis is the potentially needed condition for polarization. PMID:26835622

  13. A novel method to generate a self-accelerating Bessel-like beam based on graded index multimode optical fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yaxun; Liu, Chunlan; Yu, Zhang; Liu, Zhihai; Zhao, Enming; Yang, Jun; Yuan, Libo

    2015-09-01

    We propose and demonstrate a transverse self-accelerating Bessel-like beam generator based on a graded index multimode optical fiber(GIF). The single-mode fiber and the graded-index multimode fiber are spliced with a defined offset. The offset ?x and the GIF length L affect the final properties of the Bessel-like beam, here we choose the offset ?x=20?m and the GIF length L=430?m to be optimal. The beam accelerates along the designed parabolic path up to 250?m in z direction and 40?m in x direction, the curvature of bending is 16% (40?m/250?m, x/z). This transverse self-accelerating Bessel-like beam generator based on the graded index multimode optical fiber constitutes a new development for high-precision micro particles experiments and manipulations because of its simple structure, high integration and small size.

  14. Experimental analysis of distributed pump absorption and refractive index changes in Yb-doped fibers using acousto-optic interaction.

    PubMed

    Alcusa-Sez, E P; Dez, A; Andrs, M V

    2015-03-01

    In-fiber acousto-optic interaction is used to characterize the refractive index changes at the C band in a single-mode ytterbium-doped optical fiber under 980 nm pumping. The transmission notch created by the acoustic-induced coupling between the core mode and a cladding mode shifts to longer wavelengths when the pump is delivered to the fiber. The electronic contribution to the refractive index change is quantified from the wavelength shift. Using a time-resolved acousto-optic method, we investigate the distribution of pump absorption, and the resulting refractive index change profile, along sections of ytterbium-doped fiber exceeding 1 m long under different pump power levels. PMID:25723408

  15. Temperature insensitive refractive index sensor based on concatenated long period fiber gratings

    NASA Astrophysics Data System (ADS)

    Tripathi, Saurabh M.; Bock, Wojtek J.; Mikulic, Predrag

    2013-10-01

    We propose and demonstrate a temperature immune biosensor based on two concatenated LPGs incorporating a suitable inter-grating-space (IGS). Compensating the thermal induced phase changes in the grating region by use of an appropriate length of the IGS the temperature insensitivity has been achieved. Using standard telecommunication grade single-mode fibers we show that a length ratio of ~8.2 is sufficient to realize the proposed temperature insensitivity. The resulting sensor shows a refractive index sensitivity of 423.28 nm/RIU displaying the capability of detecting an index variation of 2.36 10-6 RIU in the bio-samples. The sensor can also be applied as a temperature insensitive WMD channel isolation filter in the optical communication systems, removing the necessity of any external thermal insulation packaging.

  16. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing.

    PubMed

    Liao, C R; Hu, T Y; Wang, D N

    2012-09-24

    We demonstrate a fiber in-line Fabry-Perot interferometer cavity sensor for refractive index measurement. The interferometer cavity is formed by drilling a micro-hole at the cleaved fiber end facet, followed by fusion splicing. A micro-channel is inscribed by femtosecond laser micromachining to vertically cross the cavity to allow liquid to flow in. The refractive index sensitivity obtained is ~994 nm/RIU (refractive index unit). Such a device is simple in configuration, easy for fabrication and reliable in operation due to extremely low temperature cross sensitivity of ~4.8 10(-6) RIU/C. PMID:23037431

  17. Use of optical fibers in spectrophotometry

    NASA Technical Reports Server (NTRS)

    Ramsey, Lawrence W.

    1988-01-01

    The use of single or small numbers of fiber optic fibers in astronomical spectroscopy with the goal of greater spectrophotometric and radial velocity accuracy is discussed. The properties of multimode step index fibers which are most important for this application are outlined, as are laboratory tests of currently available fibers.

  18. Influence of non-linear index on coherent passive beam combining of fiber lasers

    NASA Astrophysics Data System (ADS)

    Napartovich, A. P.; Elkin, N. N.; Vysotsky, D. V.

    2011-02-01

    Coherent laser beam combining is potentially attractive way to increase the output beam brightness beyond the limits imposed on single-mode lasers by technological problems. Passive phase locking does not need complex external management. A specific feature of fiber amplifiers and lasers is that they possess optical path differences of many wavelengths magnitude. Cold-cavity theory of coherent laser beam combining predicts in this case rather low efficiency of beam combining even for an array of 8 lasers. Experiments, in contrast, demonstrated in such systems that high degree of phasing takes place for up to 20 lasers in an array. Possible explanation of this discrepancy may be associated with a number of factors. These factors are: gain saturation, intensity-dependent index, laser wavelength self-adjustment within the gain bandwidth. Besides, high degree of phase-locking can be established in self-sustained pulse periodic or spiky regime. Our approach takes injection controlled laser as a base unit of an ensemble. Beams from the neighboring lasers are injected into the reference laser in the array. Then a relationship between reference laser characteristics and whole wave field parameters can be found. As an example, fiber laser array with global coupling is numerically simulated with laser wavelength scanned within the gain bandwidth. Non-linear index is found to improve essentially passive phasing efficiency independent of the non-linearity sign.

  19. Fluorescence imaging of lattice re-distribution on step-index direct laser written Nd:YAG waveguide lasers

    SciTech Connect

    Martínez de Mendívil, Jon; Pérez Delgado, Alberto; Lifante, Ginés; Jaque, Daniel; Ródenas, Airán; Benayas, Antonio; Aguiló, Magdalena; Diaz, Francesc; Kar, Ajoy K.

    2015-01-14

    The laser performance and crystalline micro-structural properties of near-infrared step-index channel waveguides fabricated inside Neodymium doped YAG laser ceramics by means of three-dimensional sub-picosecond pulse laser direct writing are reported. Fluorescence micro-mapping of the waveguide cross-sections reveals that an essential crystal lattice re-distribution has been induced after short pulse irradiation. Such lattice re-distribution is evidenced at the waveguide core corresponding to the laser written refractive index increased volume. The waveguides core surroundings also present diverse changes including slight lattice disorder and bi-axial strain fields. The step-index waveguide laser performance is compared with previous laser fabricated waveguides with a stress-optic guiding mechanism in absence of laser induced lattice re-distribution.

  20. Sex, body mass index, and dietary fiber intake influence the human gut microbiome.

    PubMed

    Dominianni, Christine; Sinha, Rashmi; Goedert, James J; Pei, Zhiheng; Yang, Liying; Hayes, Richard B; Ahn, Jiyoung

    2015-01-01

    Increasing evidence suggests that the composition of the human gut microbiome is important in the etiology of human diseases; however, the personal factors that influence the gut microbiome composition are poorly characterized. Animal models point to sex hormone-related differentials in microbiome composition. In this study, we investigated the relationship of sex, body mass index (BMI) and dietary fiber intake with the gut microbiome in 82 humans. We sequenced fecal 16S rRNA genes by 454 FLX technology, then clustered and classified the reads to microbial genomes using the QIIME pipeline. Relationships of sex, BMI, and fiber intake with overall gut microbiome composition and specific taxon abundances were assessed by permutational MANOVA and multivariate logistic regression, respectively. We found that sex was associated with the gut microbiome composition overall (p=0.001). The gut microbiome in women was characterized by a lower abundance of Bacteroidetes (p=0.03). BMI (>25 kg/m2 vs. <25 kg/m2) was associated with the gut microbiome composition overall (p=0.05), and this relationship was strong in women (p=0.03) but not in men (p=0.29). Fiber from beans and from fruits and vegetables were associated, respectively, with greater abundance of Actinobacteria (p=0.006 and false discovery rate adjusted q=0.05) and Clostridia (p=0.009 and false discovery rate adjusted q=0.09). Our findings suggest that sex, BMI, and dietary fiber contribute to shaping the gut microbiome in humans. Better understanding of these relationships may have significant implications for gastrointestinal health and disease prevention. PMID:25874569

  1. Photonic crystal fiber refractive-index sensor based on multimode interferometry

    NASA Astrophysics Data System (ADS)

    Gong, Zhenfeng; Zhang, Xinpu; Liu, Yun; Liu, Zigeng; Peng, Wei

    2014-11-01

    We report a type of multimode fiber interferometers (MMI) formed in photonic crystal fiber (PCF). To excite the cladding modes from the fundamental core mode of a PCF, a coupling point is formed. To form the coupling point, we used the method that is blowing compressed gas into the air-holes and discharging at one point, and the air-holes in this point will expand due to gas expansion in the discharge process. By placing two coupling points in series, a very simple all-fiber MMI can be implemented. The detailed fabrication process is that the one end of the PCF is tightly sealed by a short section of single mode fiber (SMF) spliced to the PCF. The other end of the PCF is sealed into a gas chamber and the opened air holes are pressurized. The PCF is then heated locally by the fusion splicer and the holes with higher gas pressure will expand locally where two bubbles formed. We tested the RI responses of fabricated sensors at room temperature by immersing the sensor into solutions with different NaCl concentration. Experimental results show that as refractive-index (RI) increases, the resonance wavelength of the MMI moves toward longer wavelengths. The sensitivity coefficients are estimated by the linear fitting line, which is 46nm/RIU, 154mn/RIU with the interferometer lengths (IL) of 3mm and 6mm. The interferometer with larger IL has higher RI sensitivity. The temperature cross-sensitivity of the sensor is also tested. The temperature sensitivity can be as low as -16.0pm/C.

  2. Imaging of rat brain using short graded-index multimode fiber

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Kanno, Takahiro; Ishihara, Syoutarou; Suto, Hiroshi; Takahashi, Toshihiro; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi

    2014-03-01

    Clinically it is important to image structures of brain at deeper areas with low invasions, for example, the pathological information is not obtained enough from the white matter. Preliminarily we have measured transmission images of rat brain using the short graded-index multimode fiber (SMMF) with the diameter of 140μm and length of 5mm. SMMF (core diameter, 100μm) was cut using a fiber cleaver and was fixed in a jig. Fiber lengths inside and outside jig were 3mm and 2mm, respectively. The jig was attached at the 20x objective lens. The conventional optical microscope was used to measure images. In basic characteristics, it was confirmed that the imaging conditions almost corresponded to calculations with the ray-transfer matrix and the spatial resolution was evaluated at about 4.4μm by measuring the test pattern. After euthanasia the rat parietal brain was excised with thickness around 1.5mm and was set on the slide glass. The tissue was illuminated through the slide glass by the bundle fiber with Halogen lamp. The tip of SMMF was inserted into the tissue by lifting the sample stage. The transmission image at each depth from 0.1mm to 1.53mm was measured. Around the depth of 1.45mm, granular structures with sizes of 4-5μm were recognized and corresponded to images by HE stained tissue. Total measurement time was within 2 hours. The feasibilities to image the depth of 5 mm with SMMF have been shown.

  3. Sex, Body Mass Index, and Dietary Fiber Intake Influence the Human Gut Microbiome

    PubMed Central

    Dominianni, Christine; Sinha, Rashmi; Goedert, James J.; Pei, Zhiheng; Yang, Liying; Hayes, Richard B.; Ahn, Jiyoung

    2015-01-01

    Increasing evidence suggests that the composition of the human gut microbiome is important in the etiology of human diseases; however, the personal factors that influence the gut microbiome composition are poorly characterized. Animal models point to sex hormone-related differentials in microbiome composition. In this study, we investigated the relationship of sex, body mass index (BMI) and dietary fiber intake with the gut microbiome in 82 humans. We sequenced fecal 16S rRNA genes by 454 FLX technology, then clustered and classified the reads to microbial genomes using the QIIME pipeline. Relationships of sex, BMI, and fiber intake with overall gut microbiome composition and specific taxon abundances were assessed by permutational MANOVA and multivariate logistic regression, respectively. We found that sex was associated with the gut microbiome composition overall (p=0.001). The gut microbiome in women was characterized by a lower abundance of Bacteroidetes (p=0.03). BMI (>25 kg/m2 vs. <25 kg/m2) was associated with the gut microbiome composition overall (p=0.05), and this relationship was strong in women (p=0.03) but not in men (p=0.29). Fiber from beans and from fruits and vegetables were associated, respectively, with greater abundance of Actinobacteria (p=0.006 and false discovery rate adjusted q=0.05) and Clostridia (p=0.009 and false discovery rate adjusted q=0.09). Our findings suggest that sex, BMI, and dietary fiber contribute to shaping the gut microbiome in humans. Better understanding of these relationships may have significant implications for gastrointestinal health and disease prevention. PMID:25874569

  4. Step angles to reduce the north-finding error caused by rate random walk with fiber optic gyroscope.

    PubMed

    Wang, Qin; Xie, Jun; Yang, Chuanchuan; He, Changhong; Wang, Xinyue; Wang, Ziyu

    2015-10-20

    We study the relationship between the step angles and the accuracy of north finding with fiber optic gyroscopes. A north-finding method with optimized step angles is proposed to reduce the errors caused by rate random walk (RRW). Based on this method, the errors caused by both angle random walk and RRW are reduced by increasing the number of positions. For when the number of positions is even, we proposed a north-finding method with symmetric step angles that can reduce the error caused by RRW and is not affected by the azimuth angles. Experimental results show that, compared with the traditional north-finding method, the proposed methods with the optimized step angles and the symmetric step angles can reduce the north-finding errors by 67.5% and 62.5%, respectively. The method with symmetric step angles is not affected by the azimuth angles and can offer consistent high accuracy for any azimuth angles. PMID:26560383

  5. Development of a graded index microlens based fiber optical trap and its characterization using principal component analysis

    PubMed Central

    Nylk, J.; Kristensen, M. V. G.; Mazilu, M.; Thayil, A. K.; Mitchell, C. A.; Campbell, E. C.; Powis, S. J.; Gunn-Moore, F. J.; Dholakia, K.

    2015-01-01

    We demonstrate a miniaturized single beam fiber optical trapping probe based on a high numerical aperture graded index (GRIN) micro-objective lens. This enables optical trapping at a distance of 200?m from the probe tip. The fiber trapping probe is characterized experimentally using power spectral density analysis and an original approach based on principal component analysis for accurate particle tracking. Its use for biomedical microscopy is demonstrated through optically mediated immunological synapse formation. PMID:25909032

  6. Multi-core fiber interferometer using spatial light modulators for measurement of the inter-core group index differences.

    PubMed

    Lee, Hee Jung; Moon, Han Seb; Choi, Sang-Kyung; Park, Hee Su

    2015-05-18

    We demonstrate an experimental technique to generate and measure arbitrary superpositions of core modes in a multi-core fiber. Two spatial light modulators couple the fundamental mode of a single-mode fiber with multiple-core modes of the MCF to constitute a Mach-Zehnder-type multi-path interferometer. The phase tunability of each path is verified by comparing two-, three-, and four-path interference patterns with the theory. Interference fringes in the wavelength domain estimates the inter-core group index differences with a resolution of 10(-5) using a fiber length of 1 m. PMID:26074510

  7. Surface plasmon resonance based fiber optic refractive index sensor utilizing silicon layer: Effect of doping

    NASA Astrophysics Data System (ADS)

    Bhatia, Priya; Gupta, , Banshi D.

    2013-01-01

    We present an experimental study on the surface plasmon resonance (SPR) based fiber optic refractive index sensor utilizing a high index silicon layer between a metal layer and sensing medium using the wavelength interrogation mode of operation. Both n- and p-type silicon have been used. For the metal layer, silver and gold have been used. For a given metal, experimental results predict higher sensitivity of the sensor for the n-type silicon than for the p-type silicon layer. Further, for a given type of silicon, the sensitivity for the gold coated probe is higher than that of the silver coated probe. Numerically, the sensitivity of the n-type silicon with silver as the metal layer is approximately 1.39 times higher than that of the p-type silicon. In the case of gold as the metal layer, the sensitivity of the n-type silicon is approximately 1.50 times that of the p-type silicon. Since the refractive index of both p-type and n-type silicon is the same it appears that the majority charge carriers in silicon play an important role in the sensitivity of the surface plasmon resonance based sensor. The charge carriers are either affecting the field in the analyte region or may be somehow affecting the propagation constant of the surface plasmon wave which is solely due to oscillation of free electrons in the metal layer. In addition, the sensitivity of only the metal coated probes is found to lie between their p-type and n-type silicon coated probes. This suggests that the effect of charge carriers on sensitivity is more than the refractive index of the silicon layer. The effects of charge carriers in silicon, electrons and holes appears to be opposite.

  8. Sensor based on macrobent fiber Bragg grating structure for simultaneous measurement of refractive index and temperature.

    PubMed

    Liu, Tiegen; Chen, Yaofei; Han, Qun; Liu, Fangchao; Yao, Yunzhi

    2016-02-01

    A novel and compact all-fiber sensor based on a macrobent fiber Bragg grating (FBG) structure for simultaneous measurement of refractive index (RI) and temperature is proposed and experimentally investigated. The sensor can be easily fabricated by properly bending an FBG. The bending causes interference between the core mode and the whispering gallery mode, which induces another kind of dip in the transmission spectra of the sensor besides the sharp one of the FBG. Because the two kinds of dips respond differently to the surrounding RI and temperature, these two parameters can be unambiguously measured by the sensor. A sample sensor was fabricated and experimentally investigated, and RI sensitivity of 165.9276 nm/RIU in the range from 1.3330 to 1.3785 and temperature sensitivity of 31.7 pm/°C were achieved. This sensor provides a convenient and economical way for applications where temperature and RI have to be simultaneously measured. PMID:26836081

  9. Ultra-thin silver-coated tilted fiber grating for surface and bulk refractive index measurement

    NASA Astrophysics Data System (ADS)

    Qiu, Xuhui; Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Tam, Hwa-Yaw; Albert, Jacques

    2015-09-01

    An ultra-thin silver-coated tilted fiber Bragg grating (TFBG) sensor with clear surface plasmon resonance (SPR) together with strong evanescent wave in transmission for "surface" and "bulk" surrounding refractive index (SRI) measurement is proposed and experimentally demonstrated. The thickness of the silver coating over the fiber surface is precisely controlled at 12~16 nm (much thinner than 40~50 nm for traditional SPR excitation). The transmission spectrum of the sensor provides a fine comb of narrowband resonances that overlap with the broader absorption of the surface plasmon and thus provide a unique tool to measure small shifts of the plasmon and identify the "surface" SRI changes with high accuracy. Meanwhile, the ultra-thin nanometric-coating permits part of high-order cladding modes to become leaky modes which have a large sensitivity to variations in the background solution for "bulk" SRI measurement. Experimental results show that above two resonances have an inverse amplitude responses to the SRI changing. Biological solutions (urine of rats with different concentration of Aquaporin) with different RI ranging from 1.3400 to 1.3408 were clearly discriminated in-situ by using the differential amplitude monitoring between "cut-off" cladding resonance and plasmonic resonance, with an amplitude variation sensitivity of ~8100 dB/RIU and a limit of detection of ~10-5 RIU.

  10. Supercontinuum generation in all-solid photonic crystal fibers with a low index subwavelength inclusion in the core

    NASA Astrophysics Data System (ADS)

    Pniewski, J.; Kasztelanic, R.; Pysz, D.; Stepien, R.; Buczynski, R.

    2013-08-01

    All-solid photonic crystal fibers are novel fibers which allow us to control dispersion and nonlinear phenomena due to the possibility of using soft glasses and the high nonlinear coefficients of the fibers. We report on dispersion management and supercontinuum generation capabilities in all-solid photonic crystal fibers with a low index subwavelength inclusion in the core. The inclusion makes it possible to engineer the dispersion profile while maintaining a constant effective mode area. Numerical simulations are conducted to analyze dispersion control capability as a function of the geometrical parameters of the fiber cross-section. The structures of photonic crystal fibers have been developed from thermally matched pairs of soft glassesSF6 lead glass and in-house developed silicate glass NC21and have been subsequently analyzed. The dispersion characteristics are modeled for theoretical structures and for the developed fibers. Supercontinuum generation is expected and numerically confirmed for the developed fibers in the range 1150-1600 nm with flatness below 1 dB.

  11. Designing a graded index depressed clad non-zero dispersion shifted optical fiber for wide band transmission system

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipankar; Ghosh, Debashri; Basu, Mousumi

    2008-02-01

    Non-zero dispersion shifted fibers (NZ-DSFs) find extensive use in wavelength division multiplexed (WDM) system as it reduces the non-linear effects like four-wave mixing (FWM) generation. A depressed clad graded index fiber with a central dip in the refractive index profile, as well as without dip, has been modeled to perform as an NZ-DSF using the spot size optimization technique. The performance characteristics of the proposed NZ-DSF have been studied by changing different fiber parameters; such as inner core radius (a), relative refractive index differences ([Delta]+), normalized end position of depressed clad (C), depression parameter ([rho]), etc. for a given value of Petermann-2 spot size . By suitably adjusting the fiber parameters, the effective core areas (Aeff) as simulated here are very large (~80 [mu]m2) so that the effect of non-linearities upon them can be minimized. These NZ-DSFs have also been optimized for WDM transmission system. The dispersion slopes of the proposed fibers with and without dip have been estimated which are comparable with the reported results.

  12. Long period fiber grating based refractive index sensor with enhanced sensitivity using Michelson interferometric arrangement

    NASA Astrophysics Data System (ADS)

    Singh, Amit

    2015-06-01

    The long period fiber grating (LPFG) is widely used as a sensor due to its high sensitivity and resolution. However, the broad bandwidth of the attenuation bands formed by the mode coupling between the fundamental core mode and the cladding modes constitutes a difficulty when the device is used as a conventional sensor. To overcome this limitation, a Michelson interferometer-type sensor configuration has been developed, using an LPFG grating pair formed by coating a mirror at the distal end of the LPFG. This sensor configuration is more convenient to use and is able to overcome the limitations of the single LPFG based sensor as the shifts in the attenuation bands being more easily detectable due to the formation of the sharp spectral fringe pattern in the LPFG based Michelson interferometer. In this work, I studied the LPFG based Michelson interferometer as the refractive index sensor and discussed the sensitivity enhancement of the LPFG based Michelson interferometer as a refractive index sensor by employing higher order cladding modes and by reducing the cladding radius. The results demonstrated the HE17 mode with a cladding radius of 62.5 ?m, in the range of surrounding refractive index (SRI) of 1-1.45, and its resonant peak showed a wavelength shift of 26.99 nm/RIU. When the cladding region was further reduced to 24 ?m, the resonant peak showed a wavelength shift of 569.88 nm/RIU, resulting in a sensitivity enhancement of nearly 21 times. However, as the cladding region was etched further, then the HE17 order cladding mode and higher mode would be cut off. Therefore, the implementation of high sensitivity for SRI sensing with the reduced cladding in the LPFG based Michelson interferometer is dependent on the proper combination of the cladding radius and cladding mode order.

  13. Accurate mode characterization of graded-index multimode fibers for the application of mode-noise analysis

    NASA Astrophysics Data System (ADS)

    Liu, Yueai; Rahman, B. M. A.; Ning, Ya Nong; Grattan, K. T. V.

    1995-03-01

    Guided modes in graded-index multimode optical fibers are accurately analyzed with the vector H-field finite-element method, aided by the use of the WKB method. As a result, exact mode-propagation constants and the corresponding modal eigenfield distributions are provided for the study of the modal noise that is due to the mode-coupling effect.

  14. First steps in developing a multimetric macroinvertebrate index for the Ohio River

    USGS Publications Warehouse

    Applegate, J.M.; Baumann, P.C.; Emery, E.B.; Wooten, M.S.

    2007-01-01

    The causes of degradation of aquatic systems are often complex and stem from a variety of human influences. Comprehensive, multimetric biological indices have been developed to quantify this degradation and its effect on aquatic communities, and measure subsequent recovery from anthropogenic stressors. Traditionally, such indices have concentrated on small-to medium-sized streams. Recently, however, the Ohio River Fish Index (ORFIn) was created to assess biotic integrity in the Ohio River. The goal of the present project was to begin developing a companion Ohio River multimetric index using benthic macroinvertebrates. Hester-Dendy multiplate samplers were used to evaluate benthic macroinvertebrate assemblages in relation to a gradient of water quality disturbance, represented by varying distances downstream of industrial and municipal wastewater outfalls in the Ohio River. In August 1999 and 2000, samplers were set every 100 m downstream of outfalls (12 outfalls in 1999, 22 in 2000) for 300-1000 m, as well as at upstream reference sites. Candidate metrics (n = 55) were examined to determine which have potential to detect changes in water quality downstream of outfalls. These individual measures of community structure were plotted against distance downstream of each outfall to determine their response to water quality disturbance. Values at reference and outfall sites were also compared. Metrics that are ecologically relevant and showed a response to outfall disturbance were identified as potentially valuable in a multimetric index. Multiple box plots of index scores indicated greater response to outfall disturbance during periods of low-flow, and longitudinal river-wide trends. Evaluation of other types of anthropogenic disturbance, as well as continued analysis of the effects of chemical water quality on macroinvertebrate communities in future years will facilitate further development of a multimetric benthic macroinvertebrate index to evaluate biotic integrity in the Ohio River. Copyright ?? 2007 John Wiley & Sons, Ltd.

  15. Refractive index sensor based on combination of tilted fiber Bragg grating and waist-enlarged fusion bitaper

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohang; Zheng, Jie; Yang, Jingyi; Li, Yi; Dong, Xinyong

    2015-12-01

    Refractive index measurement by using the combination of a tilted fiber Bragg grating (TFBG) and a waist-enlarged fusion bitaper (WEFBT) is proposed and demonstrated. The both devices can couple light between core and cladding modes with coupling coefficients depending on ambient refractive index. It is found that the proposed refractive index sensor offers two measurement ranges respectively from 1.333 to 1.428 and from 1.383 to 1.453 when different sensing segment is used, in addition to advantages of reflection operation mode and intensity-modulated measurement.

  16. Gain guided and index alternate-guided fibers designed for large-mode-area and single-mode laser with higher output power and slope efficiency.

    PubMed

    Shen, Xiao; Wei, Wei

    2016-01-25

    A gain guided and index alternate-guided fiber (GGIA-GF) is proposed and numerically demonstrated. The conditions of single mode oscillation are analyzed based on the fiber laser parameters. The output laser power and slope efficiency of the GGIA-GF laser are derived from the improved rate equations. The results show that the output characteristics of the laser based on GGIA-GF can be greatly improved than that of the gain guided and index anti-guided fiber laser through the optimal design of the fiber laser parameters. GGIA-GF would be better applied in the field of large mode area and single mode fiber lasers. PMID:26832493

  17. Refractive index sensing characteristic of single-mode-multimode-single-mode fiber structure based on self-imaging effect

    NASA Astrophysics Data System (ADS)

    Bai, Xuekun; Wang, Haotian; Wang, Shaofei; Pu, Shengli; Zeng, Xianglong

    2015-10-01

    We research the refractive index (RI) sensing characteristic based on the bandpass spectrum caused by the self-imaging effect in the single-mode-multimode-single-mode (SMS) fiber structure theoretically and experimentally. A new selectable parameter, i.e., no-core fiber (NCF) length, is investigated for improving the sensitivity of the sensor. The results show that the sensor's sensitivity will be enhanced by shortening the NCF length when the self-imaging number remains constant. Experimentally, a maximum sensitivity of 1923 nm/RIU (RI unit) has been achieved when the RI ranges from 1.334 to 1.434. This work demonstrates a method to improve the sensitivity of SMS-fiber-structure-based RI sensors featuring a low cost, compact size, low insert loss, and high sensitivity optical fiber RI sensor.

  18. Theoretical investigation of core geometry variation influence on a few-mode optical signal distortion during propagation over silica graded-index multimode fiber with low DMD

    NASA Astrophysics Data System (ADS)

    Bourdine, Anton V.

    2011-12-01

    In recent works an alternative method for design of silica GeO2-doped graded-index multimode optical fibers 50/125 with low differential mode delay (DMD) was introduced. It is based on synthesis of special refractive index profile, providing the equalization of guided mode group velocities. A theoretical approbation of introduced fibers under the modeling of fiber optic link showed good results for a few-mode regime of high-speed laser-based serial data transmission. However on practice a different distributed core geometry parameter variation occurs in real optical fibers due to techniques features of preform manufacturing and fiber drawing. Here results of fiber optic link modeling with proposed multimode fibers 50/125 with low DMD under core diameter variation and refractive index profile deviation from the optimal form, and estimation of their influence on a few-mode optical signal distortion are represented.

  19. Theoretical investigation of core geometry variation influence on a few-mode optical signal distortion during propagation over silica graded-index multimode fiber with low DMD

    NASA Astrophysics Data System (ADS)

    Bourdine, Anton V.

    2012-01-01

    In recent works an alternative method for design of silica GeO2-doped graded-index multimode optical fibers 50/125 with low differential mode delay (DMD) was introduced. It is based on synthesis of special refractive index profile, providing the equalization of guided mode group velocities. A theoretical approbation of introduced fibers under the modeling of fiber optic link showed good results for a few-mode regime of high-speed laser-based serial data transmission. However on practice a different distributed core geometry parameter variation occurs in real optical fibers due to techniques features of preform manufacturing and fiber drawing. Here results of fiber optic link modeling with proposed multimode fibers 50/125 with low DMD under core diameter variation and refractive index profile deviation from the optimal form, and estimation of their influence on a few-mode optical signal distortion are represented.

  20. Block Copolymer Nanocomposites with High Refractive Index Contrast for One-Step Photonics.

    PubMed

    Song, Dong-Po; Li, Cheng; Li, Wenhao; Watkins, James J

    2016-01-26

    Photonic crystals (PhCs) prepared using the self-assembly of block copolymers (BCPs) offer the potential for simple and rapid device fabrication but typically suffer from low refractive index contrast (Δn ≤ 0.1) between the phase-segregated domains. Here, we report the simple fabrication of BCP-based photonic nanocomposites with large differences in refractive index (Δn > 0.27). Zirconium oxide (ZrO2) nanoparticles coated with gallic acid are used to tune the optical constants of the target domains of self-assembled (polynorbornene-graft-poly(tert-butyl acrylate))-block-(polynorbornene-graft-poly(ethylene oxide)) (PtBA-b-PEO) brush block copolymers (BBCPs). Strong hydrogen-bonding interactions between the ligands on ZrO2 and PEO brushes of the BBCPs enable selective incorporation and high loading of up to 70 wt % (42 vol %) of the ZrO2 nanoparticles within the PEO domain, resulting in a significant increase of refractive index from 1.45 to up to 1.70. Consequently, greatly enhanced reflection at approximately 398 nm (increases of ∼250%) was observed for the photonic nanocomposites (domain spacing = 137 nm) relative to that of the unmodified BBCPs, which is consistent with numeric modeling results using transfer matrix methods. This work provides a simple strategy for a wide range tuning of optical constants of BCP domains, thereby enabling the design and creation of high-performance photonic coatings for various applications. The large refractive index contrast enables high reflectivity while simultaneously reducing the coating thickness necessary, compared to pure BCP systems. PMID:26713452

  1. Optical waveguide modeling of refractive index mediated pH responses in silica nanocomposite thin film based fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Wang, C.

    2016-02-01

    Recent experiments have demonstrated a pH-dependent optical transmission of silica based nanocomposite thin film enabled evanescent wave absorption spectroscopy based fiber optic sensors in aqueous solutions. Although the response was observed to linearly correlate with the pH-dependent surface charge density of the silica matrix, the responsible mechanism was not fully clarified. In this manuscript, an optical waveguide model is applied to describe observed responses through a modified effective refractive index of the silica matrix layer as a function of the solution phase pH. The refractive index dependence results from a surface charge dependent ionic adsorption, resulting in concentration of ionic species at charged surfaces. The resultant effective index modification to porous silica is estimated through effective medium theories and applied to an optical waveguide model of a multi-mode fiber optic based sensor response capable of reproducing all experimental observations reported to date.

  2. Dietary fiber and the glycemic index: a background paper for the Nordic Nutrition Recommendations 2012

    PubMed Central

    Øverby, Nina Cecilie; Sonestedt, Emily; Laaksonen, David E.; Birgisdottir, Bryndis Eva

    2013-01-01

    The aim of this study is to review recent data on dietary fiber (DF) and the glycemic index (GI), with special focus on studies from the Nordic countries regarding cardiometabolic risk factors, type 2 diabetes, cardiovascular disease, cancer, and total mortality. In this study, recent guidelines and scientific background papers or updates on older reports on DF and GI published between 2000 and 2011 from the US, EU, WHO, and the World Cancer Research Fund were reviewed, as well as prospective cohort and intervention studies carried out in the Nordic countries. All of the reports support the role for fiber-rich foods and DF as an important part of a healthy diet. All of the five identified Nordic papers found protective associations between high intake of DF and health outcomes; lower risk of cardiovascular disease, type 2 diabetes, colorectal and breast cancer. None of the reports and few of the Nordic papers found clear evidence for the GI in prevention of risk factors or diseases in healthy populations, although association was found in sub-groups, e.g. overweight and obese individuals and suggestive for prevention of type 2 diabetes. It was concluded that DF is associated with decreased risk of different chronic diseases and metabolic conditions. There is not enough evidence that choosing foods with low GI will decrease the risk of chronic diseases in the population overall. However, there is suggestive evidence that ranking food based on their GI might be of use for overweight and obese individuals. Issues regarding methodology, validity and practicality of the GI remain to be clarified. PMID:23538683

  3. Impact of refractive index profile defects on transmission performance in installed multimode fiber

    NASA Astrophysics Data System (ADS)

    Yam, Scott S.-H.; Hnatovsky, Cyril; Taylor, Rod; An, Fu-Tai; Sinha, Supriyo

    2005-09-01

    Multimode fiber (MMF) has found applications in high-speed computer interconnect, local area networks (LAN), and storage area networks (SAN) due to its ease of handling and high performance over short span. However, modal dispersion limits its bandwidth-distance product (BDP) to about 2 Gb/s-km. This limit has been extended by recent new generation of optimized MMF to 28 Gb/s-km, but there is evidence that a substantial portion of installed MMF have imperfect refractive index (RI) profiles due to defects during the manufacturing process, and the BDP might be at best no more than 500 Mbps-km. Different strategies have been proposed to address this issue by employing offset launch, multi-level subcarrier modulation, and mode spatial control. However, our studies have shown that end-to-end system performance of installed MMF can be highly dependent on input launch polarization. In this report, we investigate, for the first time to our knowledge, the relationship between RI profile defect, input launch condition, and transmission performance in commercial-grade MMF, both 50 ?m and 62.5 ?m. To this end, a number of techniques have been deployed. Two-dimensional (2D) MMF RI profile is obtained by a micro-reflectivity technique with a spatial resolution of ~400 nm. MMF transmission characteristics are interrogated using interferometric techniques. Data at 40 Gb/s are transmitted over the same MMF sample at different launch conditions, and the system performance is evaluated by bit-error rate measurements. These results are then analyzed to provide insights to correlate fiber RI profile defects and high-speed data transmission performance for installed commercial-grade MMF for optical access networks.

  4. Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Jin, Yongzhong; Chen, Jian; Fu, Qingshan; Li, Binghong; Zhang, Huazhi; Gong, Yong

    2015-01-01

    Helical carbon fibers (HCNFs) were synthesized by one-step chemical vapour deposition using cupric tartrate as a catalyst at temperature below 500 C. The bound rubber of natural rubber (NR)/HCNFs were also prepared in this study. The results of thermogravimetry-differential scanning calorimetry (TG/DSC) for cupric tartrate nanoparticles show that the transformation of C4H4CuO6 ? Cu reaction occurs at ?250-310 C. The characterization of scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and Raman spectrum for the synthesized products confirms that the synthesis of HCNFs is highly temperature-dependent. The straight fibers with the fiber diameter of 100-400 nm are obtained at 280 C and HCNFs can be synthesized at higher temperature, with the coil diameter of 0.5-1 ?m and fiber diameter of 100-200 nm at 380 C, and the coil diameter of ?100 nm and fiber diameter of ?80 nm at 480 C. The maximum of the bound-rubber content (37%) can be obtained with the addition of 100 wt.% HCNFs in NR, which indicates that the coiled configuration of HCNFs makes a noticeable contribution to the reinforcement of NR/CB system.

  5. Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect.

    PubMed

    Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-11-01

    An ultra-high sensitivity open-cavity Fabry-Perot interferometer (FPI) gas refractive index (RI) sensor based on the photonic crystal fiber (PCF) and Vernier effect is proposed and demonstrated. The sensor is prepared by splicing a section of PCF to a section of fiber tube fused with a section of single mode fiber. The air holes running along the cladding of the PCF enable the gas to enter or leave the cavity freely. The reflection beam from the last end face of the PCF is used to generate the Vernier effect, which significantly improves the sensitivity of the sensor. Experimental results show that the proposed sensor can provide an ultra-high RI sensitivity of 30899 nm/RIU. This sensor has potential applications in fields such as gas concentration analyzing and humidity monitoring. PMID:26512476

  6. Monitoring of gamma-irradiated Yb-doped optical fibers through pump induced refractive index changes effect

    NASA Astrophysics Data System (ADS)

    Fotiadi, Andrei A.; Petukhova, Irina; Mgret, Patrice; Shubin, Alexey V.; Tomashuk, Alexander L.; Novikov, Sergey G.; Borisova, Christina V.; Zolotovskiy, Igor O.; Antipov, Oleg L.; Panajotov, Krassimir; Thienpont, Hugo

    2012-04-01

    We discuss a radioactivity sensing based on monitoring of color centers formation in Yb-doped fiber under gamma irradiation. New method exploits the dynamic effect of refractive index changes (RIC) induced by laser pumping into the fiber absorption band. In our experiment four identical samples of the single-mode aluminum silicate Yb-doped optical fiber have been ?-irradiated with different doses from a 60Co source. All fibers passed the test in the intereferometric setup for the purpose of the pump induced RIC effect. During the test the phase shifts induced in the fiber by 1-mssquare pump pulses at 980 nm were recorded with a probe signal at eleven different wavelengths ranging from ~1.46 to ~1.61 ?m. The phase traces have been normalized to their maximum values and averaged over 100 traces for each probe wavelength and also over all probe wavelengths. The averaged phase traces highlight the differences in their growing and decaying parts in respect to the case of non-irradiated fibers. These differences are found to be in correlation with the fiber irradiation dose. For non-irradiated fibers decay parts are perfectly fitted by one exponential function with the relaxation time constant equal to the Yb-ion excited state life-time ~750 ?s, to be the same for all fiber samples. However, for irradiated fibers the similar fitting gives a triple exponential decay with time constants estimated as ~750, ~500 and 40?s. For higher irradiation dose the difference with one exponential fitting is more pronounced. Having in mind that the obtained difference in phase shift dynamics could be associated with excitation of some color centers induced in the fiber matrix by gamma irradiation, we represent the normalized phase shifts as a superposition of two contributions. The first contribution is due to excitation of Yb-ion, the same for all fiber samples. The second is due to excitation of color centers. The amplitude of the second part highlights a degree of fiber degradation under gamma radiation and is directly proportional to the concentration of the excited color centers that, in its turn, linearly grows with the irradiation dose. Therefore, new method is regarded as a good candidate for potential applications in fiber dosimeters.

  7. Content analysis of uterine cervix images: initial steps towards content based indexing and retrieval of cervigrams

    NASA Astrophysics Data System (ADS)

    Gordon, Shiri; Zimmerman, Gali; Long, Rodney; Antani, Sameer; Jeronimo, Jose; Greenspan, Hayit

    2006-03-01

    This work is motivated by the need for visual information extraction and management in the growing field of medical image archives. In particular the work focuses on a unique medical repository of digital cervicographic images ("Cervigrams") collected by the National Cancer Institute (NCI) in a longitudinal multi-year study carried out in Guanacaste, Costa Rica. NCI together with the National Library of Medicine (NLM) is developing a unique Web-based database of the digitized cervix images to study the evolution of lesions related to cervical cancer. Such a database requires specific tools that can analyze the cervigram content and represent it in a way that can be efficiently searched and compared. We present a multi-step scheme for segmenting and labeling regions of medical and anatomical interest within the cervigram, utilizing statistical tools and adequate features. The multi-step structure is motivated by the large diversity of the images within the database. The algorithm identifies the cervix region within the image. It than separates the cervix region into three main tissue types: the columnar epithelium (CE), the squamous epithelium (SE), and the acetowhite (AW), which is visible for a short time following the application of acetic acid. The algorithm is developed and tested on a subset of 120 cervigrams that were manually labeled by NCI experts. Initial segmentation results are presented and evaluated.

  8. Spectral reflectance of conodonts: A step toward quantitative color alteration and thermal maturity indexes

    SciTech Connect

    Deaton, B.C.; Nestell, M.; Balsam, W.L.

    1996-07-01

    Changes in the color of conodonts have long been used to assess thermal maturity. Color is a subjective measure, and color changes in conodonts are related to a subjective scale, the conodont alteration index or CAI. In this paper, we propose a simple, nondestructive method for objectively determining CAI and relating CAI to thermal maturity, the spectral reflectance of conodonts (SRC). The diffuse reflectance of about 30 large conodont fragments arranged on a barium-sulfate slide was determined with a total reflectance spectrophotometer in the wavelength range of 300-850 nm. By examining conodonts that ranged form a CAI of 1 to a CAI of 6 we found that the average slope of the reflectance curve from 550 to 800 nm is a good proxy for CAI. A second-order regression equation estimates CAI from this slope with high accuracy (correlation coefficient = 0.99). These estimates appear most accurate for a CAI of 1 to a CAI of 4, where the slopes change most rapidly, but give reasonable results up to a CAI of 6. Based on the results of our analysis of two samples with known thermal maturities form the Valles Caldera region of New Mexico, we propose a preliminary relationship among SRC slope, CAI, and in-situ alteration temperature.

  9. Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber.

    PubMed

    Xu, Yanping; Ren, Meiqi; Lu, Yang; Lu, Ping; Lu, Ping; Bao, Xiaoyi; Wang, Lixian; Messaddeq, Younès; LaRochelle, Sophie

    2016-03-15

    We propose a unique multi-parameter optical fiber sensor based on intramodal stimulated Brillouin scattering of higher-order acoustic modes in inverse-parabolic graded-index fiber (IPGIF) without a mode converter. Both optical modes and acoustic modes guided in the IPGIF are characterized and demonstrated theoretically and experimentally. Simulation analysis shows that the multi-peak feature in the Brillouin gain spectrum of the IPGIF is attributed to the couplings between the guided optical mode and the higher-order acoustic modes. Thanks to the distinct acoustic properties of the peaks induced by the sharp refractive index profile of the IPGIF, the different temperature and strain dependences of the first three Brillouin peaks enable the discrimination of the temperature and strain at an accuracy of 0.85°C and 17.4 με. PMID:26977653

  10. All fiber sensor based on Mach-Zehnder interferometer for simultaneous measurement of temperature and refractive index

    NASA Astrophysics Data System (ADS)

    Cao, Ye; Zhao, Chen; Tong, Zheng-rong

    2015-11-01

    In this paper, we propose and experimentally demonstrate a compact optical fiber sensor based on a Mach-Zehnder interferometer (MZI) cascaded with fiber Bragg grating (FBG) for simultaneous measurement of refractive index (RI) and temperature. In order to get a proper spectrum, we discuss the effects of different structure parameters of MZI. Using the resonant wavelength of the FBG (DipFBG) and the interference dip of the MZI (Dip1), the RI and temperature of the surrounding medium can be determined. The sensor has good operation linearity. The experimental results show that the distinctive spectral sensitivities are 0.071 75 nm/C and -91.766 67 nm/RIU (refraction index unit) for Dip1 and 0.009 09 nm/C for DipFBG.

  11. A Modified EPA Method 1623 that Uses Tangential Flow Hollow-Fiber Ultrafiltration and Heat Dissociation Steps to Detect Waterborne Cryptosporidum and Giardia spp.

    EPA Science Inventory

    This protocol describes the use of a tangential flow hollow-fiber ultrafiltration sample concentration system and a heat dissociation as alternative steps for the detection of waterborne Cryptosporidium and Giardia species using EPA Method 1623.

  12. Polarization-dependent refractive index fiber-optic sensor based on the core-offset with a taper

    NASA Astrophysics Data System (ADS)

    Wang, Youqing; Shen, Changyu; Lou, Weimin; Shentu, Fengying

    2016-01-01

    A polarization-dependent refractive index sensor based on the in-fiber Mach- Zehnder interferometer which is constructed by core-offset fusion splicing a tapered polarization maintaining fiber (PMF) with a length of 20 mm between the core-offset and the taper is proposed. Due to the introduced high environment-sensitivity of the two orthogonal polarization modes in the PMF and the enhancing effect of the tapered PMF, The sensitivity of the fast axis and the slow axis up to ∼-107.51 nm/RI and ∼-74.54 nm/RI in the RI range between 1.333 and 1.381 is obtained, respectively. Such kinds of low-cost and highly sensitive fiber-optic RI sensors would find applications in chemical or biochemical sensing fields.

  13. High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature.

    PubMed

    Pevec, Simon; Donlagic, Denis

    2014-06-30

    This paper presents a highly-sensitive, miniature, all-silica, dual parameter fiber-optic Fabry-Perot sensor, which is suitable for independent measurement of the refractive index and the temperature of the fluid surrounding the sensor. The experimental sensor was produced by a micromachining process based on the selective etching of doped silica glass and a simple assembly procedure that included fiber cleaving, splicing and etching of optical fibers. The presented sensor also allows for direct compensation of the temperature's effect on the fluid's refractive index change and consequently provides opportunities for the detection of very small changes in the surrounding fluid's composition. A measurement resolution of 2x10(-7) RIU was demonstrated experimentally for a component of the refractive index that is related purely to the fluid's composition. This resolution was achieved under non-stabilized temperature conditions. The temperature resolution of the sensor proved to be about 10(-3) C. These high resolution measurements were obtained by phase-tracking of characteristic components in a Fourier transform of sensor's optical spectrum. PMID:24977875

  14. Volatile profile of cashew apple juice fibers from different production steps.

    PubMed

    Nobre, Ana Carolina de Oliveira; de Almeida, Áfia Suely Santos da Silva; Lemos, Ana Paula Dajtenko; Magalhães, Hilton César Rodrigues; Garruti, Deborah dos Santos

    2015-01-01

    This study aimed to determine the volatile profile of cashew apple fibers to verify which compounds are still present after successive washings and thus might be responsible for the undesirable remaining cashew-like aroma present in this co-product, which is used to formulate food products like vegetarian burgers and cereal bars. Fibers were obtained from cashew apple juice processing and washed five times in an expeller press. Compounds were analyzed by the headspace solid-phase micro extraction technique (HS-SPME) and gas chromatography-mass spectrometry (GC-MS), using a DB-5 column. Sensory analysis was also performed to compare the intensity of the cashew-like aroma of the fibers with the original juice. Altogether, 80 compounds were detected, being esters and terpenes the major chemical classes. Among the identified substances, 14 were classified as odoriferous in the literature, constituting the matrix used in the Principal Component Analysis (PCA). Odoriferous esters were substantially reduced, but many compounds were extracted by the strength used in the expeller press and remained until the last wash. Among them are the odoriferous compounds ethyl octanoate, γ-dodecalactone, (E)-2-decenal, copaene, and caryophyllene that may contribute for the mild but still perceptible cashew apple aroma in the fibers that have been pressed and washed five times. Development of a deodorization process should include reduction of pressing force and stop at the second wash, to save water and energy, thus reducing operational costs and contributing to process sustainability. PMID:26023940

  15. Extended step-out length fiber Bragg grating interrogation system for condition monitoring of electrical submersible pumps

    NASA Astrophysics Data System (ADS)

    Fusiek, G.; Niewczas, Pawel; McDonald, James R.

    2005-03-01

    We present details of the design and laboratory evaluation of the fiber Bragg grating (FBG) interrogation system developed specifically for condition monitoring of electrical submersible pumps (ESPs). The system, based on the microelectromechanical systems (MEMS) Fabry-Pérot tunable filter, is capable of interrogating several FBG sensors placed around an ESP unit and configured to measure static and dynamic parameters, e.g., temperature, vibration signature and/or instantaneous voltage, and current. Sensor interrogation over the extended step-out length distance of 24 km is demonstrated in the laboratory in a simple experiment of multipoint dynamic strain monitoring in a vibrated cantilever beam.

  16. Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region.

    PubMed

    Jiang, Biqiang; Lu, Xin; Gan, Xuetao; Qi, Mei; Wang, Yadong; Han, Lei; Mao, Dong; Zhang, Wending; Ren, Zhaoyu; Zhao, Jianlin

    2015-09-01

    We propose and experimentally demonstrate a method to significantly extend the sensitive window of tilted fiber-Bragg grating (TFBG) into low-refractive-index region with the integration of graphene coating. The coupling between cladding modes of TFBG and graphene coating results in an obvious modification of the cladding-mode envelope, which provides a sensitive regime relying on graphene's complex refractive index. Interacting the graphene-coated TFBG with various aqueous solutions, we observe strongly enhanced sensitivity in the low-refractive-index region of 1-1.428, which is about 10-fold extended from that of the unloaded TFBG. The graphene-coated TFBGs present great potentials in the biochemical sensing window. PMID:26368695

  17. A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing

    PubMed Central

    Zhao, Longjiang; Jiang, Lan; Wang, Sumei; Xiao, Hai; Lu, Yongfeng; Tsai, Hai-Lung

    2011-01-01

    During new fiber sensor development experiments, an easy-to-fabricate simple sensing structure with a trench and partially ablated fiber core is fabricated by using an 800 nm 35 fs 1 kHz laser. It is demonstrated that the structure forms a Mach-Zehnder interferometer (MZI) with the interference between the laser light passing through the air in the trench cavity and that in the remained fiber core. The fringe visibilities are all more than 25 dB. The transmission spectra vary with the femtosecond (fs) laser ablation scanning cycle. The free spectral range (FSR) decreases as the trench length increases. The MZI structure is of very high fabrication and sensing repeatability. The sensing mechanism is theoretically discussed, which is in agreement with experiments. The test sensitivity for acetone vapor is about 104 nm/RIU, and the temperature sensitivity is 51.5 pm/°C at 200 ∼ 875 °C with a step of 25 °C. PMID:22346567

  18. Surface-core fiber gratings

    NASA Astrophysics Data System (ADS)

    Osório, Jonas H.; Oliveira, Ricardo; Mosquera, L.; Franco, Marcos A. R.; Heidarialamdarloo, Jamshid; Bilro, Lúcia; Nogueira, Rogério N.; Cordeiro, Cristiano M. B.

    2015-09-01

    In this paper, we report, to our knowledge, the first demonstration of the induction of long-period and Bragg gratings on surface-core optical fibers. Surface-core fibers described herein were fabricated from commercial silica tubes and germanium-doped silica rods by employing a very simple procedure. Being the core on the fiber surface, it can be sensitive to refractive index variations in the environment in which the fiber is immersed. Thus, results concerning the sensitivity of these gratings to environmental refractive index variations are presented. Besides, simulation data are presented for comparison to the experimental behavior and for projecting future steps in this research.

  19. Chalcogenide Glass Fibers for Infrared Sensing and Space Optics

    NASA Astrophysics Data System (ADS)

    Bureau, Bruno; Maurugeon, Sbastien; Charpentier, Frederic; Adam, Jean-Luc; Boussard-Pldel, Catherine; Zhang, Xiang-Hua

    This review deals with chalcogenide glasses and fibers. Chemical compositions and physical properties are given for specific glasses well suited for fiber drawing. Fabrication techniques of glass perform are described. Single-index and step-index single-mode fibers are characterized in terms of optical losses in the infrared. Examples of applications of chalcogenide fibers are given, as well as optical sensors in the fields of environment, microbiology and health, and as mode-filters for infrared interferometry in space.

  20. Dietary Fiber, Carbohydrates, Glycemic Index and Glycemic Load in Relation to Breast Cancer Prognosis in the HEAL Cohort

    PubMed Central

    Belle, Fabin N.; Kampman, Ellen; McTiernan, Anne; Bernstein, Leslie; Baumgartner, Kathy; Baumgartner, Richard; Ambs, Anita; Ballard-Barbash, Rachel; Neuhouser, Marian L.

    2011-01-01

    Background Dietary intake of fiber, carbohydrate, glycemic index (GI), and glycemic load (GL) may influence breast cancer survival, but consistent and convincing evidence is lacking. Methods We investigated associations of dietary fiber, carbohydrates, GI, and GL with breast cancer prognosis among n=688 stage 0 to IIIA breast cancer survivors in the Health, Eating, Activity, and Lifestyle (HEAL) study. Pre- and postmenopausal women from Western Washington State, Los Angeles County, and New Mexico participated. Usual diet was assessed with a food frequency questionnaire. Total mortality, breast cancer mortality, non-fatal recurrence and second occurrence data were obtained from SEER registries and medical records. Cox proportional hazards regression estimated multivariate-adjusted hazard ratios and 95% CIs. Results During a median of 6.7 years follow-up after diagnosis, n= 106 total deaths, n=83 breast cancer-specific deaths and n=82 non-fatal recurrences were confirmed. We observed an inverse association between fiber intake and mortality. Multivariate-adjusted HRRs comparing high to low intake were 0.53 (95% CI 0.23-1.23) and 0.75 (95% CI 0.43-1.31). A threshold effect was observed whereby no additional benefit was observed for intakes >9 g/day. Fiber intake was suggestively inversely associated with breast-cancer specific mortality (HRR=0.68, 95% CI 0.27-1.70) and risk of non-fatal recurrence or second occurrence (HRR=0.68, 95% CI 0.27-1.70), but results were not statistically significant. Conclusion Dietary fiber was associated with a non-significant inverse association with breast cancer events and total mortality. Further studies to assess and confirm this relationship are needed in order to offer effective dietary strategies for breast cancer patients. Impact Increasing dietary fiber may an effective lifestyle modification strategy for breast cancer survivors. PMID:21430298

  1. Phase-stepping fiber-optic projected fringe system for surface topography measurements

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R. (inventor); Beheim, Glenn (inventor)

    1992-01-01

    A projected fringe interferometer for measuring the topography of an object is presented. The interferometer periodically steps the phase angle between a pair of light beams emanating from a common source. The steps are pi/2 radians (90 deg) apart, and at each step a video image of the fringes is recorded and stored. Photodetectors measure either the phase and theta of the beams or 2(theta). Either of the measures can be used to control one of the light beams so that the 90 deg theta is accurately maintained. A camera, a computer, a phase controller, and a phase modulator established closed-loop control of theta. Measuring the phase map of a flat surface establishes a calibration reference.

  2. Comparing analysis of guided modes excitation by fundamental mode injecting through the USF, DSF, and NZDSF fibers coupled to conventional multimode fiber

    NASA Astrophysics Data System (ADS)

    Bourdine, Anton V.

    2004-05-01

    Comparing analysis of guided mode excitation by fundamental mode injecting through the different types of singlemode fibers, coupled to conventional multimode fiber, is proposed. Multimode fiber excitation by singlemode laser source is represented in the form of splice of singlemode and multimode fibers. Mode power redistribution, depended on fiber type, fiber parameters and launch conditions, was researched. Following types of singlemode fibers were considered: usual step index fibers (USFs), dispersion shifted fibers (DSFs) and non-zero dispersion shifted fibers (NZDSFs). The overlap integrals method for calculating mode coupling coefficients at the splice of two optical fibers with mismatched parameters is applied. Modified Gaussian approximation for determination of waveguide parameters of spliced fibers with arbitrary index profile is used. Results of mode coupling parameters calculations at splice of mentioned types singlemode fibers and conventional multimode fibers are represented.

  3. Miniature ⊓-shaped polymer fiber tip for simultaneous measurement of the liquid refractive index and temperature with high sensitivities

    NASA Astrophysics Data System (ADS)

    Li, Min; Liu, Yi; Zhao, Xiuli; Qu, Shiliang; Li, Yan

    2015-10-01

    A miniature fiber sensor tip with both high refractive index (RI) and temperature sensitivities was proposed for measuring the temperature and liquid RI simultaneously. A two-photon polymerization technique was used to fabricate a ⊓-shaped polymer micro-structure on the end-face of an optical fiber. A three-wave Fabry-Pérot interferometer was formed. The size of the proposed FPI can be precisely controlled and the total height is less than 30 μm. Temperature and RI variations can be detected simultaneously using the sensitivity matrix method. The sensor tip can be used in harsh environments, as cross-linking SU-8 has moderate acid and alkali resistance and good mechanical strength.

  4. Improved Optical Fiber Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  5. MIMO equalization with adaptive step size for few-mode fiber transmission systems.

    PubMed

    van Uden, Roy G H; Okonkwo, Chigo M; Sleiffer, Vincent A J M; de Waardt, Hugo; Koonen, Antonius M J

    2014-01-13

    Optical multiple-input multiple-output (MIMO) transmission systems generally employ minimum mean squared error time or frequency domain equalizers. Using an experimental 3-mode dual polarization coherent transmission setup, we show that the convergence time of the MMSE time domain equalizer (TDE) and frequency domain equalizer (FDE) can be reduced by approximately 50% and 30%, respectively. The criterion used to estimate the system convergence time is the time it takes for the MIMO equalizer to reach an average output error which is within a margin of 5% of the average output error after 50,000 symbols. The convergence reduction difference between the TDE and FDE is attributed to the limited maximum step size for stable convergence of the frequency domain equalizer. The adaptive step size requires a small overhead in the form of a lookup table. It is highlighted that the convergence time reduction is achieved without sacrificing optical signal-to-noise ratio performance. PMID:24514973

  6. A novel surrounding refractive index sensor based on the polarization characteristics of thin-cladding long-period fiber grating

    NASA Astrophysics Data System (ADS)

    Bai, Yukun; Zhang, Yue; Ma, Xiurong

    2015-11-01

    In this paper, a new method to measure the surrounding refractive index (SRI) is proposed. It is based on the core-only photoinduced birefringence of long-period fiber grating (LPFG). The relationship between Stokes parameters of output light polarization states and SRI is analyzed using full-vector coupled mode equations. Compared to the conventional LPFG SRI sensors, this sensing method features a fairly good linearity performance and reasonably high resolution over a much broader SRI measurement range from 1 to 1.46 which may be applied to the humidity and vapor sensing.

  7. Surface plasmon resonance refractive index sensor based on polymer photonic crystal fibers with nano-composite materials

    NASA Astrophysics Data System (ADS)

    Hao, Congjing; Lu, Ying; Wu, Baoqun; Duan, Liangcheng; Wang, Mintuo; Yao, Jianquan

    2013-09-01

    A study of polymer photonic crystal fiber (PCF) sensor coated with smart composite materials for measurements of refractive index of analyte is presented in this paper. The proposed sensor combines the characteristics of polymer PCF and composite material, which can make the confinement loss lower than the silica PCF duo to the double interaction of the polymer and silver film. The results obtained in this study demonstrate that polymer PCF sensors coated with composite material and with the polymer PCF's advantages, the sensor's feasibility can be improved further and it can be applied in a broad field, especially in biosensing platforms.

  8. Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting.

    PubMed

    Gibbons, William T; Venstrom, Luke J; De Smith, Robert M; Davidson, Jane H; Jackson, Gregory S

    2014-07-21

    Zirconium-doped ceria (Ce(1-x)Zr(x)O2) was synthesized through a controlled electrospinning process as a promising approach to cost-effective, sinter-resistant material structures for high-temperature, solar-driven thermochemical redox cycles. To approximate a two-step redox cycle for solar fuel production, fibrous Ce(1-x)Zr(x)O2 with relatively low levels of Zr-doping (0 < x < 0.1) were cycled in an infrared-imaging furnace with high-temperature (up to 1500 C) partial reduction and lower-temperature (?800 C) reoxidation via CO2 splitting to produce CO. Increases in Zr content improve reducibility and sintering resistance, and, for x? 0.05, do not significantly slow reoxidation kinetics for CO production. Cycle stability of the fibrous Ce(1-x)Zr(x)O2 (with x = 0.025) was assessed for a range of conditions by measuring rates of O2 release during reduction and CO production during reoxidation and by assessing post-cycling fiber crystallite sizes and surface areas. Sintering increases with reduction temperature but occurs primarily along the fiber axes. Even after 108 redox cycles with reduction at 1400 C and oxidation with CO2 at 800 C, the fibers maintain their structure with surface areas of ?0.3 m(2) g(-1), higher than those observed in the literature for other ceria-based structures operating at similarly high temperature conditions. Total CO production and peak production rate stabilize above 3.0 mL g(-1) and 13.0 mL min(-1) g(-1), respectively. The results show the potential for electrospun oxides as sinter-resistant material structures with adequate surface area to support rapid CO2 splitting in solar thermochemical redox cycles. PMID:24914875

  9. One-step patterning of double tone high contrast and high refractive index inorganic spin-on resist

    SciTech Connect

    Zanchetta, E.; Della Giustina, G.; Brusatin, G.

    2014-09-14

    A direct one-step and low temperature micro-fabrication process, enabling to realize large area totally inorganic TiO? micro-patterns from a spin-on resist, is presented. High refractive index structures (up to 2 at 632 nm) without the need for transfer processes have been obtained by mask assisted UV lithography, exploiting photocatalytic titania properties. A distinctive feature not shared by any of the known available resists and boosting the material versatility, is that the system behaves either as a positive or as negative tone resist, depending on the process parameters and on the development chemistry. In order to explain the resist double tone behavior, deep comprehension of the lithographic process parameters optimization and of the resist chemistry and structure evolution during the lithographic process, generally uncommon in literature, is reported. Another striking property of the presented resist is that the negative tone shows a high contrast up to 19, allowing to obtain structures resolution down to 2 ?m wide. The presented process and material permit to directly fabricate different titania geometries of great importance for solar cells, photo-catalysis, and photonic crystals applications.

  10. Automation for monitoring of the refractive index profile of vapor-phase-deposited soot preforms for optical fiber

    SciTech Connect

    Santos, J.S. dos; Ono, E.; Suzuki, C.K.

    2006-05-15

    The vapor-phase axial deposition process is currently one of the most advantageous methods to produce preforms for optical fibers, due to its high efficiency and reduced production cost. However, this method has great difficulty in determining the refractive index profile, since it is influenced by too many process parameters. In this work, an automation system to determine the refractive index profile by monitoring the preform deposition surface profile during the soot preform deposition stage is presented. Based on a previous study that showed a strong correlation between these two profiles, an automation system was developed in LABVIEW to monitor the deposition surface profile during the preform deposition stage in order to estimate the preform germanium doping profile and refractive index profile, as well as a theoretical study to develop this system in order to minimize the performance impairment. As a result, not only preforms with a predetermined index profile were produced but also a reduction in production cost was obtained by decreasing the number of preform rejects.

  11. Dietary fiber, whole grains, carbohydrate, glycemic index, and glycemic load in relation to risk of prostate cancer

    PubMed Central

    Wang, Rong-jiang; Tang, Jian-er; Chen, Yu; Gao, Jian-guo

    2015-01-01

    Background The relationships between dietary fiber, whole grains, carbohydrate, glycemic index (GI), glycemic load (GL), and prostate cancer risk are unclear. We conducted a systematic review and meta-analysis to investigate these associations. Methods Relevant studies were identified by a search of PubMed database and EMBASE database up to April 2015. A random effects model was used to calculate the summary relative risks (RRs) and their corresponding 95% confidence intervals (CIs). Results Twenty-seven epidemiological studies (18 casecontrol studies and nine cohort studies) were included in the final analysis. The pooled RRs of prostate cancer were 0.94 (95% CI 0.851.05, P=0.285), 1.13 (95% CI 0.981.30, P=0.095), 0.96 (95% CI 0.811.14, P=0.672), 1.06 (95% CI 0.961.18, P=0.254), and 1.04 (95% CI 0.911.18, P=0.590) for dietary fiber, whole grains, carbohydrate, GI, and GL, respectively. There was no evidence of significant publication bias based on the Beggs test and Eggers test. Conclusion The findings of this meta-analysis indicate that, based on available information, dietary fiber, whole grains, carbohydrate, GI, and GL are not associated with the risk of prostate cancer. PMID:26366096

  12. Modal power decomposition of light propagating through multimode optical fiber

    NASA Astrophysics Data System (ADS)

    Bolshakov, Maxim V.; Kundikova, Natalia D.; Vlazneva, Marianna A.

    2016-04-01

    The structure of the light field propagating through multimode fibers is of great interest for creating fiber sensors and other applications. Here, using only one linear polarized component of spatial-intensity profiles in near- and far-field regions of a beam emitted from the fiber, we propose a method for the modal power decomposition. As a simple example, modal power decomposition has been done for optical fibers with a step-like index profile. Experiments have been carried out for the fiber with V=54. The method can be used for fibers with any known refractive index profile, core diameter, indices of the core and cladding.

  13. Effects of Carbohydrate and Dietary Fiber Intake, Glycemic Index and Glycemic Load on HDL Metabolism in Asian Populations.

    PubMed

    Yanai, Hidekatsu; Katsuyama, Hisayuki; Hamasaki, Hidetaka; Abe, Shinichi; Tada, Norio; Sako, Akahito

    2014-10-01

    High-density lipoprotein (HDL) is a lipoprotein which has anti-atherogenic property by reverse cholesterol transport from the peripheral tissues to liver. Low HDL-cholesterol (HDL-C) levels are associated with the development of coronary artery diseases (CADs). Various epidemiological studies have suggested that the development of CAD increase in individuals with less than 40 mg/dL of HDL-C. In spite of accumulation of evidences which suggest a significant association between low HDL-C and cardiovascular diseases, effects of dietary factors on HDL metabolism remained largely unknown. There may be interracial differences in effects of dietary factors on HDL metabolism. Here we reviewed published articles about effects of carbohydrate and dietary fiber intake, glycemic index (GI) and glycemic load (GL), on HDL-C metabolism, regarding meta-analyses and clinical studies performed in Asian population as important articles. Low carbohydrate intake, GI and GL may be beneficially associated with HDL metabolism. Dietary fiber intake may be favorably associated with HDL metabolism in Asian populations. PMID:25110535

  14. Effects of Carbohydrate and Dietary Fiber Intake, Glycemic Index and Glycemic Load on HDL Metabolism in Asian Populations

    PubMed Central

    Yanai, Hidekatsu; Katsuyama, Hisayuki; Hamasaki, Hidetaka; Abe, Shinichi; Tada, Norio; Sako, Akahito

    2014-01-01

    High-density lipoprotein (HDL) is a lipoprotein which has anti-atherogenic property by reverse cholesterol transport from the peripheral tissues to liver. Low HDL-cholesterol (HDL-C) levels are associated with the development of coronary artery diseases (CADs). Various epidemiological studies have suggested that the development of CAD increase in individuals with less than 40 mg/dL of HDL-C. In spite of accumulation of evidences which suggest a significant association between low HDL-C and cardiovascular diseases, effects of dietary factors on HDL metabolism remained largely unknown. There may be interracial differences in effects of dietary factors on HDL metabolism. Here we reviewed published articles about effects of carbohydrate and dietary fiber intake, glycemic index (GI) and glycemic load (GL), on HDL-C metabolism, regarding meta-analyses and clinical studies performed in Asian population as important articles. Low carbohydrate intake, GI and GL may be beneficially associated with HDL metabolism. Dietary fiber intake may be favorably associated with HDL metabolism in Asian populations. PMID:25110535

  15. Fabry-Perot based strain insensitive photonic crystal fiber modal interferometer for inline sensing of refractive index and temperature.

    PubMed

    Dash, Jitendra Narayan; Jha, Rajan

    2015-12-10

    We report a highly stable, compact, strain insensitive inline microcavity-based solid-core photonic crystal fiber (SCPCF) modal interferometer for the determination of the refractive index (RI) of an analyte and its temperature. The interferometer is fabricated by splicing one end of SCPCF with single-mode fiber (SMF) and the other end with hollow-core PCF. This is followed by cleaving the part of the solid glass portion possibly present after the microcavity. The formation of the cavities at the end faces of the SCPCF results in reduction of the period of the interference pattern that helps in achieving distinctiveness in the measurement. Three sensor heads have been fabricated, and each has a different length of the collapsed region formed by splicing SMF with SCPCF. The response of the sensors is found to be sensitive to the length of this collapsed region between SMF and SCPCF with a sensitivity of 53 nm/RI unit (RIU) and resolution of 1.8×10-4 RIU. The temperature response of the sensor is found to be linear, having a temperature sensitivity of 12 pm/°C. In addition to these findings, the effect of strain on the proposed structure is analyzed in both wavelength and intensity interrogation. PMID:26836874

  16. Fiber

    MedlinePLUS

    ... short period of time can cause intestinal gas ( flatulence ), bloating , and abdominal cramps . This problem often goes ... 213. National Research Council. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and ...

  17. Numerical modeling method for the dispersion characteristics of single-mode and multimode weakly-guiding optical fibers with arbitrary radial refractive index profiles

    NASA Astrophysics Data System (ADS)

    Mussina, Raushan; Selviah, David R.; Fernández, F. Aníbal; Tijhuis, Anton G.; de Hon, Bastiaan P.

    2013-03-01

    Accurate, reliable and fast numerical modeling methods are required to design the optimum radial refractive index profile for single and multimode fibers to give specific dispersion characteristics prior to or even obviating costly experimental work. Such profiles include graded index and multiple concentric cladding layers. In this paper, a new numerical method is introduced which enables the derivatives of the propagation coefficient to be calculated analytically up to the third order of a single mode or multimode weakly guiding optical fiber with an arbitrary radial refractive index profile. These quantities are required to determine the group delay, τg, chromatic dispersion, D, and dispersion slope of the fiber. The expansion of the modal fields in terms of Laguerre-Gauss polynomials in the Galerkin method offers certain benefits. In particular, due to simplicity of the basis functions it is possible to carry out further analytical work on the results such as repeated differentiation of the matrix equation resulting from the Galerkin method to define up to the third-order derivatives of the propagation coefficients with respect to wavelength. This avoids approximation errors inherent in numerical differentiation, giving better accuracy and, at the same time, significantly reduces the computation time. A computer program was developed to demonstrate the proposed method for single and multimode fibers with radially arbitrary refractive index profiles. The paper provides simulation results to validate the approach.

  18. 3D laser-written silica glass step-index high-contrast waveguides for the 3.5???m mid-infrared range.

    PubMed

    Martnez, Javier; Rdenas, Airn; Fernandez, Toney; Vzquez de Aldana, Javier R; Thomson, Robert R; Aguil, Magdalena; Kar, Ajoy K; Solis, Javier; Daz, Francesc

    2015-12-15

    We report on the direct laser fabrication of step-index waveguides in fused silica substrates for operation in the 3.5?m mid-infrared wavelength range. We demonstrate core-cladding index contrasts of 0.7% at 3.39?m and propagation losses of 1.3 (6.5)dB/cm at 3.39 (3.68)?m, close to the intrinsic losses of the glass. We also report on the existence of three different laser modified SiO2 glass volumes, their different micro-Raman spectra, and their different temperature-dependent populations of color centers, tentatively clarifying the SiO2 lattice changes that are related to the large index changes. PMID:26670520

  19. Development of a two-step tier-2 dissolution method for blinded overencapsulated erlotinib tablets using UV fiber optic detection.

    PubMed

    Lu, Xujin; Xiao, Baiming; Lo, Lili; Bolgar, Mark S; Lloyd, David K

    2011-08-25

    Measuring dissolution of a comparator drug overencapsulated in a hard gelatin shell is necessary when determining performance of the native and blinded formulations. However, the gelatin in the shell may form cross-links upon storage at stressed conditions, resulting in slow dissolution of the encapsulated drug. The aim of this study was to develop a dissolution approach for a hard-gelatin overencapsulated formulation of a comparator drug, erlotinib, which can overcome cross linking of the capsule shell. In this case, following the USP two-tier dissolution test by simply adding an enzyme did not dissolve the cross-linked capsules because the medium used in the method for erlotinib described in the FDA Dissolution Database contains sodium dodecyl sulfate that inhibits the activity of the enzyme. Changing the method by using different surfactants was not considered acceptable because it is preferable to closely follow the compendial method for the comparator. A two-step tier-2 method was developed as a solution, without significant change to the compendial method conditions. It uses 0.1N HCl + pepsin as the initial medium to help capsule break-up. SDS is added at 15 min after the testing starts to ensure dissolution of the drug. This may be a useful general approach for dealing with cross-linking in over-encapsulated comparators. A UV fiber optic spectrophotometer was used for in situ, real-time detection of the dissolution profile during method development studies. The fast sampling rate available with this type of detection was important in elucidating the events occurring during dissolution and determining the optimal time of the SDS addition. PMID:21620602

  20. Nonlinear refractive index change and optical rectification in a GaN-based step quantum wells with strong built-in electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2015-11-01

    Based on the compact density matrix approach, the linear and nonlinear refractive index change (RIC) and optical rectification (OR) coefficients in a GaN-based step QW with strong built-in electric field (BEF) have been theoretically deduced and investigated in detail. The analytical electronic state is derived by the two airy functions. And the band nonparabolicity is taken into account by using an energy dependence effective mass (EDEM) method. Numerical calculations on a four-layer AlN/GaN/AlxGa1-xN/AlN step QW are performed, and the curves for the geometric factors, the linear, the nonlinear, the total RICs and the OR coefficients as functions of the structural parameters of the step QW are discussed. The features for these curves were specified and reasons for the features were explained reasonably. It is found that the decreasing of well width Lw, and step barrier width Lb and the doped concentration x in step barrier will result in the significant enhancement of the RICs. With the decrease of Lw, Lb and x, the resonant photon energies of RIC and OR coefficients have obvious blue-shift. Moreover, the RIC and OR coefficients behave different dependence on the structural parameters of the GaN-based step QWs. The profound physical reasons are also analyzed.

  1. Distinct docking and stabilization steps of the pseudopilus conformational transition path suggest rotational assembly of type IV pilus-like fibers

    PubMed Central

    Nivaskumar, Mangayarkarasi; Bouvier, Guillaume; Campos, Manuel; Nadeau, Nathalie; Yu, Xiong; Egelman, Edward H.; Nilges, Michael; Francetic, Olivera

    2014-01-01

    SUMMARY The closely related bacterial type II secretion (T2S) and type IV pilus (T4P) systems are sophisticated machines that assemble dynamic fibers promoting protein transport, motility or adhesion. Despite their essential role in virulence, the molecular mechanisms underlying helical fiber assembly remain unknown. Here we use electron microscopy and flexible modeling to study conformational changes of PulG pili assembled by the Klebsiella oxytoca T2SS. Neural network analysis of 3900 pilus models suggested a transition path towards low-energy conformations driven by progressive increase in fiber helical twist. Detailed predictions of inter-protomer contacts along this path were tested by site-directed mutagenesis, pilus assembly and protein secretion analyses. We demonstrate that electrostatic interactions between adjacent protomers (P-P+1) in the membrane drive pseudopilin docking, while P-P+3 and P-P+4 contacts determine downstream fiber stabilization steps. These results support a new model of a spool-like assembly mechanism for fibers of the T2SS-T4P superfamily. PMID:24685147

  2. Distinct docking and stabilization steps of the Pseudopilus conformational transition path suggest rotational assembly of type IV pilus-like fibers.

    PubMed

    Nivaskumar, Mangayarkarasi; Bouvier, Guillaume; Campos, Manuel; Nadeau, Nathalie; Yu, Xiong; Egelman, Edward H; Nilges, Michael; Francetic, Olivera

    2014-05-01

    The closely related bacterial type II secretion (T2S) and type IV pilus (T4P) systems are sophisticated machines that assemble dynamic fibers promoting protein transport, motility, or adhesion. Despite their essential role in virulence, the molecular mechanisms underlying helical fiber assembly remain unknown. Here, we use electron microscopy and flexible modeling to study conformational changes of PulG pili assembled by the Klebsiella oxytoca T2SS. Neural network analysis of 3,900 pilus models suggested a transition path toward low-energy conformations driven by progressive increase in fiber helical twist. Detailed predictions of interprotomer contacts along this path were tested by site-directed mutagenesis, pilus assembly, and protein secretion analyses. We demonstrate that electrostatic interactions between adjacent protomers (P-P+1) in the membrane drive pseudopilin docking, while P-P+3 and P-P+4 contacts determine downstream fiber stabilization steps. These results support a model of a spool-like assembly mechanism for fibers of the T2SS-T4P superfamily. PMID:24685147

  3. A novel vector for a rapid generation of fiber-mutant adenovirus based on one step ligation and quick screening of positive clones.

    PubMed

    Wang, Dongyang; Liu, Shihai; Mao, Qinwen; Zhao, Junli; Xia, Haibin

    2011-03-20

    The generation of fiber-modified adenoviral vector has proven difficult. In the paper, we developed a new system for rapid construction of fiber-modified adenoviral vector containing foreign peptides in the HI loop or C-terminal of the fiber knob. The new system was established through the following processes. First, a unique BamHI mutation was made in the genome of Ad5 without causing amino acid change. Second, two unique restriction enzymes BamHI and SfuI, both with sticky end, were introduced in the HI loop or C-terminal of Ad5 fiber knob. Third, a lacza expression cassette was placed between BamHI and SfuI sites for a quick identification of positive cloning based on white-blue color screening. This system allows generation of recombinant adenoviral vector by a single step, in vitro ligation followed by quick white-color positive clone screening. To prove the principle of the method, Ad5HI-RGD by modifying HI-loop of the fiber knob with RGD motif and Ad5Cter-PK7 by modifying C-terminal of the knob with poly-lysine (pK7) were successfully generated in vitro. Ad5 with a knob modified in the HI loop of the fiber with Tat-PTD, NGR or SIKVAV peptide were also successfully developed. The transduction of the modified viruses for Hela, U87 MG and MDA-MB-231 cells was investigated in vitro compared with unmodified Ad5. In conclusion, the new vector system allows for a rapid generation of fiber-mutant adenovirus and provides useful tool for gene function analysis and cancer gene therapy. PMID:21320554

  4. Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber.

    PubMed

    Wang, Ying; Wang, D N; Liao, C R; Hu, Tianyi; Guo, Jiangtao; Wei, Huifeng

    2013-02-01

    A temperature-insensitive micro Fabry-Pérot (FP) cavity based on simplified hollow-core (SHC) photonic crystal fiber (PCF) is demonstrated. Such a device is fabricated by splicing a section of SHC PCF with single mode fibers at both cleaved ends. An extremely low temperature sensitivity of ~0.273 pm/°C is obtained between room temperature and 900°C. By drilling vertical micro-channels using a femtosecond laser, the micro FP cavity can be filled with liquids and functions as a sensitive refractometer and the refractive index sensitivity obtained is ~851.3 nm/RIU (refractive index unit), which indicates an ultra low temperature cross-sensitivity of ~3.2×10(-7) RIU/°C. PMID:23381407

  5. Mid-infrared supercontinuum generation in As2S3-silica "nano-spike" step-index waveguide.

    PubMed

    Granzow, N; Schmidt, M A; Chang, W; Wang, L; Coulombier, Q; Troles, J; Toupin, P; Hartl, I; Lee, K F; Fermann, M E; Wondraczek, L; Russell, P St J

    2013-05-01

    Efficient generation of a broad-band mid-infrared supercontinuum spectrum is reported in an arsenic trisulphide waveguide embedded in silica. A chalcogenide "nano-spike", designed to transform the incident light adiabatically into the fundamental mode of a 2-mm-long uniform section 1 m in diameter, is used to achieve high launch efficiencies. The nano-spike is fully encapsulated in a fused silica cladding, protecting it from the environment. Nano-spikes provide a convenient means of launching light into sub-wavelength scale waveguides. Ultrashort (65 fs, repetition rate 100 MHz) pulses at wavelength 2 m, delivered from a Tm-doped fiber laser, are launched with an efficiency ~12% into the sub-wavelength chalcogenide waveguide. Soliton fission and dispersive wave generation along the uniform section result in spectral broadening out to almost 4 m for launched energies of only 18 pJ. The spectrum generated will have immediate uses in metrology and infrared spectroscopy. PMID:23669953

  6. Four-week low-glycemic index breakfast with a modest amount of soluble fibers in type 2 diabetic men.

    PubMed

    Kabir, Morvarid; Oppert, Jean-Michel; Vidal, Hubert; Bruzzo, Francoise; Fiquet, Caroline; Wursch, Pierre; Slama, Gerard; Rizkalla, Salwa W

    2002-07-01

    Low-glycemic index diets are associated with a wide range of benefits when followed on a chronic basis. The chronic effects, however, of the substitution of 1 meal per day are not well known in diabetic subjects. Therefore, we aimed to evaluate whether the chronic use of a low-glycemic index breakfast (low-GIB) rich in low-GI carbohydrates and a modest amount of soluble fibers could have an effect on lipemia at a subsequent lunch, and improve glucose and lipid metabolism in men with type 2 diabetes. A total of 13 men with type 2 diabetes were randomly allocated in a double-blind cross-over design to a 4-week daily intake of a low-GI versus a high-GI breakfast separated by a 15-day washout interval. The low-GI breakfast was composed of whole grain bread and muesli containing 3 g beta-glucan from oats. Low-GIB induced lower postprandial plasma glucose peaks than the high-GIB at the beginning (baseline, P <.001) and after the 4-week intake (P <.001). The incremental area under the plasma glucose curve was also lower (P <.001, P <.01, baseline, and 4 weeks, respectively). There was no effect on fasting plasma glucose, insulin, fructosamine, or glycosylated hemoglobin (HbA(1c)). Fasting plasma cholesterol, as well as the incremental area under the cholesterol curve, were lower (P <.03, P <.02) after the 4-week low-GIB period than after the high-GIB period. Apolipoprotein B (apo B) was also decreased by the 4-week low-GIB. There was no effect of the low-GI breakfast on triacylglycerol excursions or glucose and insulin responses at the second meal. The high-GIB, however, tended to decrease the amount of mRNA of leptin in abdominal adipose tissue, but had no effect on peroxisome proliferator-activated receptor gamma (PPARgamma) and cholesterylester transfer protein (CETP) mRNA amounts. In conclusion, the intake of a low-GI breakfast containing a modest amount (3 g) of beta-glucan for 4 weeks allowed good glycemic control and induced low plasma cholesterol levels in men with type 2 diabetes. The decrease in plasma cholesterol associated with low-GI breakfast intake may reduce the risk of developing cardiovascular complications in subjects with type 2 diabetes. PMID:12077724

  7. One-step synthesis of polyaniline fibers with double-soft templates and evaluation of their doping process

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Zhao, Hui; Han, Bing

    2014-12-01

    In this paper, we have developed a simple, facile, and efficient approach to synthesize polyaniline fibers (PANI fibers) from aniline in the presence of (NH4)2S2O8 with sodium dodecyl benzene sulfonate (SDBS) and L-camphorsulfonic acid (L-CSA) as double templates. The chemical constituents of the composites are characterized by Fourier transformation infrared spectroscopy (FTIR). The results demonstrate that the PANI fibers were synthesized successfully. The morphology of the composites was characterized by scanning electron microscopy (SEM). The SEM and UV-Vis images show an interesting growth and doping process. Moreover, cyclic voltammetry (CV) was used to characterize the electrochemical properties of PANI microfibers. They also give a pair of redox peaks and have better operation stability, which indicates that the composites show distinct electrochemical performance. So the PANI microfibers would have potential applications in the fields of analytical chemistry, bioanalysis, etc.

  8. Mode coupling in glass optical fibers and liquid-core optical fibers by three methods

    NASA Astrophysics Data System (ADS)

    Djordjevich, Alexandar; Savovi?, Svetislav

    2015-12-01

    We test Slemon and Wells's function and recently reported Hurand et al.'s (Appl. Opt., 50, 492-499, 2011) function for calculation of coupling characteristics in step-index optical fibers against experimental measurements and against calculations by a related method that is based on the power flow equation. Compared are the coupling length Lc (which is the fiber length where the equilibrium mode distribution is achieved) and length zs (where steady-state distribution is achieved) in three step index glass optical fibers as well as a liquid core optical fiber. The two functions, while simpler to apply being just algebraic formulas, are less accurate over a wide range of numerical apertures. It is also shown that fibers with same coupling coefficient can have much different coupling characteristics.

  9. Walking the Line: A Fibronectin Fiber-Guided Assay to Probe Early Steps of (Lymph)angiogenesis

    PubMed Central

    Mitsi, Maria; Schulz, Martin Michael Peter; Gousopoulos, Epameinondas; Ochsenbein, Alexandra Michaela; Detmar, Michael; Vogel, Viola

    2015-01-01

    Angiogenesis and lymphangiogenesis are highly complex morphogenetic processes, central to many physiological and pathological conditions, including development, cancer metastasis, inflammation and wound healing. While it is described that extracellular matrix (ECM) fibers are involved in the spatiotemporal regulation of angiogenesis, current angiogenesis assays are not specifically designed to dissect and quantify the underlying molecular mechanisms of how the fibrillar nature of ECM regulates vessel sprouting. Even less is known about the role of the fibrillar ECM during the early stages of lymphangiogenesis. To address such questions, we introduced here an in vitro (lymph)angiogenesis assay, where we used microbeads coated with endothelial cells as simple sprouting sources and deposited them on single Fn fibers used as substrates to mimic fibrillar ECM. The fibers were deposited on a transparent substrate, suitable for live microscopic observation of the ensuing cell outgrowth events at the single cell level. Our proof-of-concept studies revealed that fibrillar Fn, compared to Fn-coated surfaces, provides far stronger sprouting and guidance cues to endothelial cells, independent of the tested mechanical strains of the Fn fibers. Additionally, we found that VEGF-A, but not VEGF-C, stimulates the collective outgrowth of lymphatic endothelial cells (LEC), while the collective outgrowth of blood vascular endothelial cells (HUVEC) was prominent even in the absence of these angiogenic factors. In addition to the findings presented here, the modularity of our assay allows for the use of different ECM or synthetic fibers as substrates, as well as of other cell types, thus expanding the range of applications in vascular biology and beyond. PMID:26689200

  10. Axial strain insensitivity of weakly guiding optical fibers

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1993-01-01

    A numerical model has been developed to calculate the modal phase shift of circular step index profile weakly guiding fibers under axial strain. Whenever an optical fiber is under stress, the optical path length, the index of refraction, and the propagation constants of each mode change. In consequence, the phase of each mode is also modified. A relationship for the modal phase shift is presented. This relation is applied to both single mode and two-mode fibers in order to determine the sensitivity characteristics of strained fibers. It was found that the phase shift is strongly dependent on the core refractive index, n(co). It was also found that it is possible to design fibers which are insensitive to axial strain. Practical applications of strain insensitive fibers are discussed.

  11. Making Optical-Fiber Chemical Detectors More Sensitive

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Egalon, Claudio O.

    1993-01-01

    Calculations based on exact theory of optical fiber shown how to increase optical efficiency and sensitivity of active-cladding step-index-profile optical-fiber fluorosensor using evanescent wave coupling. Optical-fiber fluorosensor contains molecules fluorescing when illuminated by suitable light in presence of analyte. Fluorescence coupled into and launched along core by evanescent-wave interaction. Efficiency increases with difference in refractive indices.

  12. Glycemic index, glycemic load, dietary carbohydrate, and dietary fiber intake and risk of liver and biliary tract cancers in Western Europeans

    PubMed Central

    Fedirko, V.; Lukanova, A.; Bamia, C.; Trichopolou, A.; Trepo, E.; Nthlings, U.; Schlesinger, S.; Aleksandrova, K.; Boffetta, P.; Tjnneland, A.; Johnsen, N. F.; Overvad, K.; Fagherazzi, G.; Racine, A.; Boutron-Ruault, M. C.; Grote, V.; Kaaks, R.; Boeing, H.; Naska, A.; Adarakis, G.; Valanou, E.; Palli, D.; Sieri, S.; Tumino, R.; Vineis, P.; Panico, S.; Bueno-de-Mesquita, H. B(as).; Siersema, P. D.; Peeters, P. H.; Weiderpass, E.; Skeie, G.; Engeset, D.; Quirs, J. R.; Zamora-Ros, R.; Snchez, M. J.; Amiano, P.; Huerta, J. M.; Barricarte, A.; Johansen, D.; Lindkvist, B.; Sund, M.; Werner, M.; Crowe, F.; Khaw, K. T.; Ferrari, P.; Romieu, I.; Chuang, S. C.; Riboli, E.; Jenab, M.

    2013-01-01

    Background The type and quantity of dietary carbohydrate as quantified by glycemic index (GI) and glycemic load (GL), and dietary fiber may influence the risk of liver and biliary tract cancers, but convincing evidence is lacking. Patients and methods The association between dietary GI/GL and carbohydrate intake with hepatocellular carcinoma (HCC; N = 191), intrahepatic bile duct (IBD; N = 66), and biliary tract (N = 236) cancer risk was investigated in 477 206 participants of the European Prospective Investigation into Cancer and Nutrition cohort. Dietary intake was assessed by country-specific, validated dietary questionnaires. Hazard ratios and 95% confidence intervals were estimated from proportional hazard models. HBV/HCV status was measured in a nested casecontrol subset. Results Higher dietary GI, GL, or increased intake of total carbohydrate was not associated with liver or biliary tract cancer risk. For HCC, divergent risk estimates were observed for total sugar = 1.43 (1.171.74) per 50 g/day, total starch = 0.70 (0.550.90) per 50 g/day, and total dietary fiber = 0.70 (0.520.93) per 10 g/day. The findings for dietary fiber were confirmed among HBV/HCV-free participants [0.48 (0.231.01)]. Similar associations were observed for IBD [dietary fiber = 0.59 (0.370.99) per 10 g/day], but not biliary tract cancer. Conclusions Findings suggest that higher consumption of dietary fiber and lower consumption of total sugars are associated with lower HCC risk. In addition, high dietary fiber intake could be associated with lower IBD cancer risk. PMID:23123507

  13. Excitation efficiency of an optical fiber core source

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.; Tai, Alan C.

    1992-01-01

    The exact field solution of a step-index profile fiber is used to determine the excitation efficiency of a distribution of sources in the core of an optical fiber. Previous results of a thin-film cladding source distribution to its core source counterpart are used for comparison. The behavior of power efficiency with the fiber parameters is examined and found to be similar to the behavior exhibited by cladding sources. It is also found that a core-source fiber is two orders of magnitude more efficient than a fiber with a bulk distribution of cladding sources. This result agrees qualitatively with previous ones obtained experimentally.

  14. Thulium fiber laser and application development

    NASA Astrophysics Data System (ADS)

    Shah, Lawrence; Gaida, Christian; Gebhardt, Martin; Sincore, Alex; Bradford, Joshua D.; Gehlich, Nils; Mingareev, Ilya; Richardson, Martin

    2014-06-01

    Within the past 10 years, thulium (Tm)-doped fiber lasers have emerged as a flexible platform offering high average power as well as high peak power. Many of the benefits and limitations of Tm:fiber lasers are similar to those for ytterbium (Yb)-doped fiber lasers, however the ~2 m emission wavelength posses unique challenges in terms of laser development as well as several benefits for applications. In this presentation, we will review the progress of laser development in CW, nanosecond, picosecond, and femtosecond regimes. As a review of our efforts in the development of power amplifiers, we will compare large mode area (LMA) stepindex and photonic crystal fiber (PCF) architectures. In our research, we have found Tm-doped step index LMA fibers to offer relatively high efficiency and average powers at the expense of fundamental mode quality. By comparison, Tm-doped PCFs provide the largest mode area and quasi diffraction-limited beam quality however they are approximately half as efficient as step-index fibers. In terms of defense related applications, the most prominent use of Tm:fiber lasers is to pump nonlinear conversion to the mid-IR such as supercontinuum generation and optical parametric oscillators/amplifiers (OPO/A). We have recently demonstrated Tm:fiber pumped OPOs which generate ~28 kW peak power in the mid-IR. In addition, we will show that Tm:fiber lasers also offer interesting capabilities in the processing of semiconductors.

  15. Empirical relations to determine the normalized spot size of a single-mode trapezoidal index fiber and computation of its propagation characteristics

    NASA Astrophysics Data System (ADS)

    Mallick, Aswini Kumar; Sarkar, Somenath

    2014-07-01

    Simple and complete empirical relations are presented here to determine a normalized spot size in terms of normalized frequencies over a long range and aspect ratio of a trapezoidal index single-mode fiber considering Gaussian approximation of the fundamental mode following the Marcuse method for the first time. After verification of their validity for arbitrary values of aspect ratio and normalized frequency, we calculate various propagation characteristics viz. dispersion and splice loss by using our formulations. Upon comparison, we observe an excellent match and the validity of our results with exact values and other results available in the literature. These formulas should attract the attention of experimentalists as a simple alternative to the rigorous methods of estimating the propagation characteristics of such fibers.

  16. Heterogeneous trench-assisted few-mode multi-core fiber with graded-index profile and square-lattice layout for low differential mode delay.

    PubMed

    Tu, Jiajing; Saitoh, Kunimasa; Amma, Yoshimichi; Takenaga, Katsuhiro; Matsuo, Shoichiro

    2015-07-13

    We propose a kind of heterogeneous trench-assisted graded-index few-mode multi-core fiber with square-lattice layout. For each core in the fiber, effective area (A(eff)) of LP(01) mode and LP(11) mode can achieve about 110 ?m(2) and 220 ?m(2). Absolute value of differential mode delay (|DMD|) is smaller than 100 ps/km over C + L bands, which can decrease the complexity of digital signal processing at the receiver end. Considering the upper limit of cladding diameter (D(cl)) and cable cutoff wavelength of LP(21) mode in the cores located at the inner layer, we set core pitch (?) as 43 ?m. In this case, D(cl) is about 220.4 ?m, inter-core crosstalk (XT) is lower than -40 dB/500 km and the relative core multiplicity factor (RCMF) reaches 15.93. PMID:26191840

  17. Fiber-coupled ultraviolet planar laser-induced fluorescence for combustion diagnostics.

    PubMed

    Loccisano, Frank; Joshi, Sachin; Franka, Isaiah S; Yin, Zhiyao; Lempert, Walter R; Yalin, Azer P

    2012-09-20

    Multimode silica step-index optical fibers are examined for use in planar laser-induced fluorescence (PLIF) for combustion diagnostics using ultraviolet (UV) laser sources. The multimode step-index fibers are characterized at UV wavelengths by examining their energy damage thresholds and solarization performance. The beam quality achievable with large clad step-index multimode fibers is also studied. Emphasis is placed on simultaneously achieving high output energy and beam quality (low output M(2)). The use of multimode fibers to deliver UV pulses at 283 nm for PLIF measurements of OH radicals in a Hencken burner is demonstrated. The fiber delivery capability of UV light will benefit combustion diagnostics in hostile environments, such as augmentor and combustor rigs. PMID:23033042

  18. Migration of additive molecules in a polymer filament obtained by melt spinning: Influence of the fiber processing steps

    NASA Astrophysics Data System (ADS)

    Gesta, E.; Skovmand, O.; Espuche, E.; Fulchiron, R.

    2015-12-01

    The purpose of this study is to understand the influence of the yarn processing on the migration of additives molecules, especially insecticide, within polyethylene (PE) yarns. Yarns were manufactured in the laboratory focusing on three key-steps (spinning, post-stretching and heat-setting). Influence of each step on yarn properties was investigated using tensile tests, differential scanning calorimetry and wide-angle X-ray diffraction. The post-stretching step was proved to be critical in defining yarn mechanical and structural properties. Although a first orientation of polyethylene crystals was induced during spinning, the optimal orientation was only reached by post-stretching. The results also showed that the heat-setting did not significantly change these properties. The presence of additives crystals at the yarn surface was evidenced by scanning-electron microscopy. These studies performed at each yarn production step allowed a detailed analysis of the additives' ability to migrate. It is concluded that while post-stretching decreased the migration rate, heat-setting seems to boost this migration.

  19. FIBER OPTICS: Ray invariants and wave equations for transverse modes in three-dimensional graded-index waveguides

    NASA Astrophysics Data System (ADS)

    Voevodin, V. G.; Morozov, A. N.; Stepanov, V. E.

    1992-09-01

    A theory of the second ray invariant is proposed using the theory of plane Frenet curves. Its existence requires that the coordinate dependence of the refractive index in the waveguide cross section should satisfy the regularity condition: curves of equal refractive index differ only by an amount which can be obtained using an isotropic scaling transformation. The theoretical conclusions are illustrated using the example of waveguides having the generalized refractive index distribution n ( r ) = n [ (x/ a) + (y/ b)q].

  20. Pretreatment based on two-step steam explosion combined with an intermediate separation of fiber cells--optimization of fermentation of corn straw hydrolysates.

    PubMed

    Zhang, Yuzhen; Fu, Xiaoguo; Chen, Hongzhang

    2012-10-01

    Pretreatment is necessary for lignocellulose to achieve a highly efficient enzymatic hydrolysis and fermentation. However, coincident with pretreatment, compounds inhibiting microorganism growth are formed. Some tissues or cells, such as thin-walled cells that easily hydrolyze, will be excessively degraded because of the structural heterogeneity of lignocellulose, and some inhibitors will be generated under the same pretreatment conditions. Results showed, compared with one-step steam explosion (1.2 MPa/8 min), two-step steam explosion with an intermediate separation of fiber cells (ISFC) (1.1 Mpa/4 min-ISFC-1.2 MPa/4 min) can increase enzymatic hydrolyzation by 12.82%, reduce inhibitor conversion by 33%, and increase fermentation product (2,3-butanediol) conversion by 209%. Thus, the two-step steam explosion with ISFC process is proposed to optimize the hydrolysis process of lignocellulose by modifying the raw material from the origin. This novel process reduces the inhibitor content, promotes the biotransformation of lignocellulose, and simplifies the process of excluding the detoxification unit operation. PMID:22858472

  1. Suppression of dynamic laser speckle signals in multimode fibers of various lengths.

    PubMed

    Petoukhova, Anna L; Cleven, Ester; de Mul, Frits F M; Steenbergen, Wiendelt

    2004-04-01

    The effects of fiber coupling and fiber length on photocurrent fluctuations are studied when the light of a laser diode transmitted to and from a dynamic turbid medium by a step-index multimode fiber is studied. When the laser light is coupled asymmetrically, filling only the higher-order modes, the photocurrent fluctuations are suppressed significantly when fiber lengths of as much as 16 m are added between the laser and the medium. Addition of as much as 16 m of detection fiber, or any fiber in the case of symmetric light coupling, leads to much less or no suppression of the photocurrent fluctuations. PMID:15074413

  2. Improve the flame retardancy of cellulose fibers by grafting zinc ion.

    PubMed

    Zhang, KeKe; Zong, Lu; Tan, Yeqiang; Ji, Quan; Yun, Weicai; Shi, Ran; Xia, Yanzhi

    2016-01-20

    Zinc ion as the only flame retardant of cellulose fibers was successfully grafted onto cellulose fibers. Grafting maleic anhydride onto cellulose fibers via homogeneous acylation reaction between N,N-dimethyl formamide (DMF) as the first step. Then, graft zinc ion onto the formed cellulose fibers was conducted with zinc carbonate. The resulting copolymers were characterized by FTIR. Flame retardancy and thermal degradation of zinc-ion-modified cellulose fibers (cellulose-Zn fibers) was investigated by limiting oxygen index (LOI), cone calorimeter (CONE), XRD, TG and SEM. Zinc ion could effectively improve flame retardancy and thermal degradation when its content increases up to 4.96 wt%. PMID:26572337

  3. Advances in infrared fibers

    NASA Astrophysics Data System (ADS)

    Tao, Guangming; Abouraddy, Ayman F.

    2015-05-01

    Infrared (IR) fibers that transmit radiation at wavelengths from ~ 2 ?m up to ~ 25 ?m, a spectrum that extends across both the mid-IR (MIR) and far-IR (FIR), has gained extensive attention concomitant with the recent availability of MIR semiconductors sources and detectors. Chalcogenide glasses (ChGs) are a leading candidate for IR fibers by virtue of their wide optical transmission windows and high nonlinearity in the IR region. After extensive studies since the 1960s, the development and applications of ChG IR fibers are primarily hindered by their unfavorable mechanical properties. Here, we summarize our recent advances in low-cost, robust multimaterial ChG IR fibers with broad transmission windows and low optical losses, based on our multimaterial fiber preforms produced by several fabrication methodologies. Hundreds of meters of fibers are thermally drawn in an ambient atmosphere with desired step-index structure from a macroscopic multimaterial preform that contains few grams of ChG. These simple and efficient processes overcome many of the traditional obstacles, and therefore enable rapid production in an industrial setting.

  4. Effect of temperature on optical fiber transmission. [for spacecraft communication

    NASA Technical Reports Server (NTRS)

    Yeung, W. F.; Johnston, A. R.

    1978-01-01

    Results are presented concerning the effects of temperature on the transmission properties of various optical fibers including a silicone plastic clad, an acrylic plastic clad, and CVD step-index fibers both with and without polyurethane jackets. Results are presented for the normalized transmitted power vs temperature, the index of refraction vs temperature, and induced attenuation coefficients vs temperature. The data show that the intrinsic transmission of a CVD fiber is independent of temperature over the -110 to +150 C range. Plastic clad fused silica fibers are subject to transmission losses at lower temperatures due to changes in the optical index of the cladding polymer. Acrylic-clad and plastic-clad silica fibers also show transmission losses at lower temperatures, but to lesser extents.

  5. Simulation-guided design and fabrication of long-period gratings in photonic crystal fiber as refractive index transduction platform for multi-parameter sensing

    NASA Astrophysics Data System (ADS)

    He, Zonghu

    2011-12-01

    Fiber optic sensing technology based on conventional, all-solid optical fiber has been broadly used for chemical and biological sensing and detection. The advent of photonic crystal fiber (PCF) offers transformative opportunities due to its unique waveguiding and microstructural features. Incorporating long period gratings (LPG) in PCF has the potential to further catapult LPG-PCF based sensing technology in terms of greatly improved sensing capabilities and significantly expanded field of applications. This doctoral dissertation aims to synergistically integrate LPG and index guiding PCF as refractive index transduction platform to explore its potential for multi-parameter sensing and measurements. The phase matching conditions, core mode to cladding mode coupling, and power overlap were theoretically simulated to aid in the design and fabrication of the LPG-PCF platform using CO2 laser. For sensing of aqueous solutions, we developed a novel means of LPG fabrication while maintaining a steady liquid flow in the PCF air channels. This approach greatly improves the quality and reproducibility of the fabrication process. More importantly, it helps preserve the general resonance coupling condition when an aqueous analyte solution is probed. We have theoretically predicted and experimentally achieved a sensitivity of 10-7 refractive index unit using our fabricated LPG-PCF platform due to the strong overlap between the cladding mode evanescent field and the analyte within the PCF air channels. For label-free biosensing, we integrated the LPG-PCF with a home-build microfluidic flow cell that can be optically coupled with the sensing platform while allowing continuous flow of the reagents. As a result, we have demonstrated the ability to monitor a series of surface binding events in situ. Our LPG-PCF is able to consistently detect monolayer biomolecular binding events with a measured resonance wavelength shift of about 0.75 nm per nanometer thick layer formed. Overall, theoretically and experimentally, we have shown that LPG-PCF represents a powerful refractive index transduction platform that can be used for sensing and measurements of multiple parameters. We have clearly shown that LPG-PCF has the potential to be a viable alternative to the surface plasmon resonance-based commercial refractometers for affinity-based biological measurements.

  6. Humidity coefficient correction in the calculation equations of air refractive index by He-Ne laser based on phase step interferometry.

    PubMed

    Chen, Qianghua; Liu, Jinghai; He, Yongxi; Luo, Huifu; Luo, Jun; Wang, Feng

    2015-02-10

    The refractive index of air (RIA) is an important parameter in precision measurement. The revisions to Edlen's equations by Boensch and Potulski [Metrologia 35, 133 (1998)] are mostly used to calculate the RIA at present. Since the humidity correction coefficients in the formulas were performed with four wavelengths of a Cd(114) lamp (644.0, 508.7, 480.1, and 467.9 nm) and at the temperature range of 19.6C-20.1C, the application is restricted when an He-Ne laser is used as the light source, which is mostly applied in optical precision measurement, and the environmental temperature is far away from 20C as well. To solve this problem, a measurement system based on phase step interferometry for measuring the effect of the humidity to the RIA is presented, and a corresponding humidity correction equation is derived. The analysis and comparison results show that the uncertainty of the presented equation is better than that of Boensch and Potulski's. It is more suitable in present precision measurements by He-Ne laser, and the application temperature range extends to 14.6C-24.0C as well. PMID:25968028

  7. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre

    NASA Astrophysics Data System (ADS)

    Petersen, Christian Rosenberg; Møller, Uffe; Kubat, Irnis; Zhou, Binbin; Dupont, Sune; Ramsay, Jacob; Benson, Trevor; Sujecki, Slawomir; Abdel-Moneim, Nabil; Tang, Zhuoqi; Furniss, David; Seddon, Angela; Bang, Ole

    2014-11-01

    The mid-infrared spectral region is of great technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinctive spectral fingerprints. To date, the limitations of mid-infrared light sources such as thermal emitters, low-power laser diodes, quantum cascade lasers and synchrotron radiation have precluded mid-infrared applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. Here, we demonstrate experimentally that launching intense ultra-short pulses with a central wavelength of either 4.5 μm or 6.3 μm into short pieces of ultra-high numerical-aperture step-index chalcogenide glass optical fibre generates a mid-infrared supercontinuum spanning 1.5 μm to 11.7 μm and 1.4 μm to 13.3 μm, respectively. This is the first experimental demonstration to truly reveal the potential of fibres to emit across the mid-infrared molecular ‘fingerprint region’, which is of key importance for applications such as early cancer diagnostics, gas sensing and food quality control.

  8. Very high intensity fiber transmission systems

    SciTech Connect

    Setchell, R.E.

    1995-12-31

    Various applications are currently motivating interest in the transmission of very high laser intensities through optical fibers. As intensities within a fiber are increased, however, laser breakdown or laser-induced fiber damage will eventually occur and interrupt fiber transmission. For a number of years we have been studying these effects during the transmission of Q-switched, Nd/YAG laser pulses through step-index, multimode, fused-silica fiber. We have found that fiber transmission is often limited by a plasma-forming breakdown occurring at the fiber entrance face. This breakdown results in subtle surface modifications that can leave the surface more resistant to further breakdown or damage events. Catastrophic fiber damage can also occur as a result of a number of different mechanisms, with damage appearing at fiber end faces, within the initial ``entry`` segment of the fiber path, and at other internal sites due to effects related to the particular fiber routing. An overview of these past observations is presented, and issues requiring further study are identified.

  9. Distributed Measurement of the Chromatic Dispersion of an Optical Fiber Using a Wavelength-Tunable OTDR

    NASA Astrophysics Data System (ADS)

    Murdoch, Stuart G.; Svendsen, David A.

    2006-04-01

    In this paper, a distributed measurement of the chromatic dispersion (CD) of an optical fiber is presented. The measurement is based on the analysis of a set of bidirectional optical time domain reflectometer traces collected over the wavelength range of interest. To calculate the distributed CD of the fiber, several approximations are required. The validity of these approximations is verified via a numerical simulation for both step-index and dispersion-shifted fibers (DSFs). These simulations allow the placement of an upper bound on the error of the measurement. Experimentally, measurements of both step-index and DSFs are reported.

  10. The effect of ALD-grown Al2O3 on the refractive index sensitivity of CVD gold-coated optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Mandia, David J.; Zhou, Wenjun; Ward, Matthew J.; Joress, Howie; Sims, Jeffrey J.; Giorgi, Javier B.; Albert, Jacques; Barry, Seán T.

    2015-10-01

    The combined effect of nanoscale dielectric and metallic layers prepared by atomic layer deposition (ALD) and chemical vapor deposition (CVD) on the refractometric properties of tilted optical fiber Bragg gratings (TFBG) is studied. A high index intermediate layer made up of either 50 nm or 100 nm layers of Al2O3 (refractive index near 1.62) was deposited by ALD and followed by thin gold layers (30-65 nm) deposited from a known single-source gold (I) iminopyrrolidinate CVD precursor. The fabricated devices were immersed in different surrounding refractive indices (SRI) and the spectral transmission response of the TFBGs was measured. Preliminary results indicate that the addition of the dielectric Al2O3 pre-coating enhances the SRI sensitivity by up to 75% but this enhancement is highly dependent on the polarization and dielectric thickness. In fact, the sensitivity decreases by up to 50% for certain cases. These effects are discussed with support from TFBG simulations and models, by quantifying the penetration of the evanescently coupled light out of the fiber through the various coating layers. Additional characterization studies have been carried out on these samples to further correlate the optical behaviour of the coated TFBGs with the physical properties of the gold and Al2O3 layers, using atomic force microscopy x-ray photoelectron spectroscopy and an ensemble of other optical and x-ray absorption spectroscopy techniques. The purity, roughness, and morphology of gold thin films deposited by CVD onto the dielectric-TFBG surface are also provided.

  11. The effect of ALD-grown Al?O? on the refractive index sensitivity of CVD gold-coated optical fiber sensors.

    PubMed

    Mandia, David J; Zhou, Wenjun; Ward, Matthew J; Joress, Howie; Sims, Jeffrey J; Giorgi, Javier B; Albert, Jacques; Barry, Sen T

    2015-10-30

    The combined effect of nanoscale dielectric and metallic layers prepared by atomic layer deposition (ALD) and chemical vapor deposition (CVD) on the refractometric properties of tilted optical fiber Bragg gratings (TFBG) is studied. A high index intermediate layer made up of either 50 nm or 100 nm layers of Al2O3 (refractive index near 1.62) was deposited by ALD and followed by thin gold layers (30-65 nm) deposited from a known single-source gold (I) iminopyrrolidinate CVD precursor. The fabricated devices were immersed in different surrounding refractive indices (SRI) and the spectral transmission response of the TFBGs was measured. Preliminary results indicate that the addition of the dielectric Al2O3 pre-coating enhances the SRI sensitivity by up to 75% but this enhancement is highly dependent on the polarization and dielectric thickness. In fact, the sensitivity decreases by up to 50% for certain cases. These effects are discussed with support from TFBG simulations and models, by quantifying the penetration of the evanescently coupled light out of the fiber through the various coating layers. Additional characterization studies have been carried out on these samples to further correlate the optical behaviour of the coated TFBGs with the physical properties of the gold and Al2O3 layers, using atomic force microscopy x-ray photoelectron spectroscopy and an ensemble of other optical and x-ray absorption spectroscopy techniques. The purity, roughness, and morphology of gold thin films deposited by CVD onto the dielectric-TFBG surface are also provided. PMID:26437035

  12. Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber.

    PubMed

    Gerosa, Rodrigo M; Spadoti, Danilo H; de Matos, Christiano J S; Menezes, Leonardo de S; Franco, Marcos A R

    2011-11-21

    A photonic crystal fiber (PCF) with a section of one of the holes next to the solid core filled with an index-matched liquid is studied. Liquid filling alters the core geometry, which locally comprises the original silica core, the liquid channel and the silica around it. It is demonstrated that when light reaches the filled section, it periodically and efficiently couples to the liquid, via the excitation of a number of modes of the composite core, with coupling lengths ranging from tens to hundreds of microns. The resulting modal-interference-modulated spectrum shows temperature sensitivity as high as 5.35 nm/°C. The proposed waveguide geometry presents itself as an interesting way to pump and/or to probe liquid media within the fiber, combining advantages usually found separately in liquid-filled hollow-core PCFs (high light-liquid overlap) and in solid-core PCFs (low insertion losses). Therefore, pumping and luminescence guiding with a PCF filled with a Rhodamine solution is also demonstrated. PMID:22109496

  13. Flax Fiber - Interfacial Bonding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measured flax fiber physical and chemical properties potentially impact bonding and thus stress transfer between the matrix and fiber within composites. These first attempts at correlating flax fiber quality and biofiber composites contain the initial steps towards identifying key flax fiber charac...

  14. Active fibers from sol-gel derived granulated silica: state of the art and potential

    NASA Astrophysics Data System (ADS)

    Romano, Valerio; Sandoz, Frederic

    2010-10-01

    In the recent past we have studied the granulated silica method as a versatile and cost effective way of fiber preform production. We have used the sol-gel technology combined with a laser-assisted remelting step to produce high homogeneity Rare Earth or Transition Metal - activated microsized particles for the fiber core. For the fiber cladding pure or index-raised granulated Silica has been employed. Silica glass tubes, appropriately filled with these granular materials, are then drawn to fibers, eventually after an optional quality enhancing vitrification step. The process offers a high degree of compositional flexibility with respect to dopants; it further facilitates to achieve high concentrations even in cases when several dopants are used. By this "rapid preform production" technique, that is also ideally suited for the preparation of microstructured optical fibers, several fibers ranging from broadband emitters, PCFs and large mode area fibers have been produced and will be presented here.

  15. Sol-gel-based doped granulated silica for the rapid production of optical fibers

    NASA Astrophysics Data System (ADS)

    Romano, Valerio; Pilz, Soenke; Etissa, Dereje

    2014-03-01

    In the recent past we have studied the granulated silica method as a versatile and cost effective way of fiber preform production. We have used the sol-gel technology combined with a laser-assisted remelting step to produce high homogeneity rare earth or transition metal-activated microsized particles for the fiber core. For the fiber cladding pure or index-raised granulated silica has been employed. Silica glass tubes, appropriately filled with these granular materials, are then drawn to fibers, eventually after an optional quality enhancing vitrification step. The process offers a high degree of compositional flexibility with respect to dopants; it further facilitates to achieve high concentrations even in cases when several dopants are used and allows for the implementation of fiber microstructures. By this "rapid preform production" technique, that is also ideally suited for the preparation of microstructured optical fibers, several fibers have been produced and three of them will be presented here.

  16. FIBER AND INTEGRATED OPTICS: Emission properties of graded-index corrugated waveguides with a metal or semiconductor coating

    NASA Astrophysics Data System (ADS)

    Ataya, B. A.; Osovitski?, A. N.

    1992-02-01

    A numerical method was used to investigate the emission of TE-polarized light from a graded-index corrugated waveguide coated with a metal or semiconductor and either with or without a buffer layer. The main emission characteristics of these systems were analyzed. In the case of metallized dielectric structures an optimal corrugation depth was established for which the emitted power is a maximum. It was found that when the parameters of a structure with a buffer layer were correctly chosen and a highly reflective metal coating was used, practically all the power in the waveguide wave could be emitted along a specified direction. A structure with a buffer layer and an aluminum coating was investigated experimentally.

  17. High-brightness power delivery for fiber laser pumping: simulation and measurement of low-NA fiber guiding

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya

    2015-02-01

    Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 ?m core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 ?m, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.

  18. Specialty fibers for fiber optic sensor application

    NASA Astrophysics Data System (ADS)

    Bennett, K.; Koh, J.; Coon, J.; Chien, C. K.; Artuso, A.; Chen, X.; Nolan, D.; Li, M.-J.

    2007-09-01

    Over the last several years, Fiber Optic Sensor (FOS) applications have seen an increased acceptance in many areas including oil & gas production monitoring, gyroscopes, current sensors, structural sensing and monitoring, and aerospace applications. High level optical and mechanical reliability of optical fiber is necessary to guarantee reliable performance of FOS. In this paper, we review recent research and development activities on new specialty fibers. We discuss fiber design concepts and present both modeling and experimental results. The main approaches to enhancing fiber attributes include new index profile design and fiber coating modification.

  19. Interlaboratory comparison of radiation-induced attenuation in optical fibers

    SciTech Connect

    Friebele, E.J.; Lyons, P.B.; Blackburn, J.C.; Henschel, H.; Johan, A.; Krinsky, J.A.; Robinson, A.; Schneider, W.; Smith, D.; Taylor, E.W.; Los Alamos National Lab., NM; Harry Diamond Labs., Adelphi, MD; Fraunhofer-Institut fuer Naturwissenschaftlich-Technische Trendanalysen , Euskirchen; Direction des Recherches, Etudes et Techni

    1989-08-01

    A comparison of the losses induced in step index multimode, graded index multimode and single mode fibers by pulsed radiation exposure has been made among 12 laboratories over a period of 5 years. The recoveries of the incremental attenuations from 10{sup -9} to 10{sup 1} s are reported. Although a standard set of measurement parameters was attempted, differences between the laboratories are evident; possible origins for these are discussed. 18 refs., 18 figs., 7 tabs.

  20. Hybrid CATV/16-QAM-Digital CATV/16-QAM-OFDM in-building network over passive optical network and gradient index-plastic optical fiber/visible light communication transport

    NASA Astrophysics Data System (ADS)

    Li, Chung-Yi; Ying, Cheng-Ling; Lin, Chun-Yu

    2015-03-01

    We propose and experimentally demonstrate a hybrid CATV/16-QAM-Digital CATV/16-QAM-OFDM in-building network over a 40-km single-mode fiber and graded index-plastic optical fiber/10-m visible light communication. The application of external injection technology with the addition of an optoelectronic feedback that raises the resonance frequency of the laser diode results in increased system transmission capability. Good performances of carrier-to-noise ratio, composite second-order, and composite triple-beat are obtained for the CATV signal. A low bit-error-rate value is achieved for the 16-QAM-Digital CATV/16-QAM-OFDM signal.

  1. Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core.

    PubMed

    Sáez-Rodríguez, D; Nielsen, K; Rasmussen, H K; Bang, O; Webb, D J

    2013-10-01

    In this Letter, we report the fabrication of a highly photosensitive, microstructured polymer optical fiber using benzyl dimethyl ketal as a dopant, as well as the inscription of a fiber Bragg grating in the fiber. A refractive index change in the core of at least 3.2×10(-4) has been achieved, providing a grating with a strong transmission rejection of -23 dB with an inscription time of only 13 min. The fabrication method has a big advantage compared to doping step index fiber since it enables doping of the fiber without using extra dopants to compensate for the index reduction in the core introduced by the photosensitive agent. PMID:24081048

  2. Study of laser-induced damage to large core silica fiber by Nd:YAG and Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoguang; Li, Jie; Hokansson, Adam; Whelan, Dan; Clancy, Michael

    2009-02-01

    As a continuation of our earlier study at 2.1 μm wavelength, we have investigated the laser damage to several types of step-index, large core (1500 μm) silica fibers at two new wavelengths by high power long pulsed Nd:YAG (1064 nm) and Alexandrite (755 nm) lasers. It was observed that fibers with different designs showed a significant difference in performance at these wavelengths. We will also report a correlation of damage to the fibers between the two laser wavelengths. The performance analyses of different fiber types under the given test conditions will enable optimization of fiber design for specific applications.

  3. Eyewear-style three-dimensional endoscope derived from microstructured polymer fiber with the function of image transmission

    NASA Astrophysics Data System (ADS)

    Kong, De-Peng; Wang, Li-Li; He, Zheng-Quan; Chu, Jiu-Rong; Ma, Tian

    2013-02-01

    A method of fabricating multi-core polymer image fiber is proposed. Image fiber preform is fabricated by stacking thousands of polymer fibers each with a 0.25-mm diameter orderly in a die by only one step. The preform is heated and stretched into image fiber with an outer diameter of 2 mm. Then a portable eyewear-style three-dimensional (3D) endoscope system is designed, fabricated, and characterized. This endoscopic system is composed of two graded index lenses, two pieces of 0.35-m length image guide fibers, and a pair of oculars. It shows good flexibility and portability, and can provide the depth information accordingly.

  4. Chromatic dispersion behavior of Si-NC Er doped optical fiber

    NASA Astrophysics Data System (ADS)

    Salman Ogli, A.; Rostami, A.

    2008-09-01

    The chromatic dispersion for conventional and Er-doped fibers using the refractive index approximation is examined. A first, analytical method for investigation of dispersion in step index triple clad optical fiber is used. To design of zero-dispersion shifted fiber for optical communication purpose manipulation of the refractive index and radius of the core are considered. We show that in presence of the Si-NC-Er ions, zero-dispersion wavelength is displaced and the dispersion quantity is increased. In this work, we try to optimize system parameters to obtain minimum dispersion and dispersion shifted fiber with control of the doping levels of Er ions and Si-NC as well as doping profiles. For especial case, we assumed the Gaussian inhomogeneous core refractive index for zero-dispersion wavelength and dispersion managements.

  5. A modified EPA Method 1623 that uses tangential flow hollow-fiber ultrafiltration and heat dissociation steps to detect waterborne Cryptosporidium and Giardia spp.

    PubMed

    Rhodes, Eric R; Villegas, Leah Fohl; Shaw, Nancy J; Miller, Carrie; Villegas, Eric N

    2012-01-01

    Cryptosporidium and Giardia species are two of the most prevalent protozoa that cause waterborne diarrheal disease outbreaks worldwide. To better characterize the prevalence of these pathogens, EPA Method 1623 was developed and used to monitor levels of these organisms in US drinking water supplies (12). The method has three main parts; the first is the sample concentration in which at least 10 L of raw surface water is filtered. The organisms and trapped debris are then eluted from the filter and centrifuged to further concentrate the sample. The second part of the method uses an immunomagnetic separation procedure where the concentrated water sample is applied to immunomagnetic beads that specifically bind to the Cryptosporidium oocysts and Giardia cysts allowing for specific removal of the parasites from the concentrated debris. These (oo)cysts are then detached from the magnetic beads by an acid dissociation procedure. The final part of the method is the immunofluorescence staining and enumeration where (oo)cysts are applied to a slide, stained, and enumerated by microscopy. Method 1623 has four listed sample concentration systems to capture Cryptosporidium oocysts and Giardia cysts in water: Envirochek filters (Pall Corporation, Ann Arbor, MI), Envirochek HV filters (Pall Corporation), Filta-Max filters (IDEXX, Westbrook, MA), or Continuous Flow Centrifugation (Haemonetics, Braintree, MA). However, Cryptosporidium and Giardia (oo)cyst recoveries have varied greatly depending on the source water matrix and filters used(1,14). A new tangential flow hollow-fiber ultrafiltration (HFUF) system has recently been shown to be more efficient and more robust at recovering Cryptosporidium oocysts and Giardia cysts from various water matrices; moreover, it is less expensive than other capsule filter options and can concentrate multiple pathogens simultaneously(1-3,5-8,10,11). In addition, previous studies by Hill and colleagues demonstrated that the HFUF significantly improved Cryptosporidium oocysts recoveries when directly compared with the Envirochek HV filters(4). Additional modifications to the current methods have also been reported to improve method performance. Replacing the acid dissociation procedure with heat dissociation was shown to be more effective at separating Cryptosporidium from the magnetic beads in some matrices(9,13) . This protocol describes a modified Method 1623 that uses the new HFUF filtration system with the heat dissociation step. The use of HFUF with this modified Method is a less expensive alternative to current EPA Method 1623 filtration options and provides more flexibility by allowing the concentration of multiple organisms. PMID:22805201

  6. Source polarization effects in an optical fiber fluorosensor

    NASA Technical Reports Server (NTRS)

    Egalon, Claudio O.; Rogowski, Robert S.

    1992-01-01

    The exact field solution of a step-index profile fiber was used to determine the injection efficiency of a thin-film distribution of polarized sources located in the cladding of an optical fiber. Previous results for random source orientation were confirmed. The behavior of the power efficiency, P(eff), of a polarized distribution of sources was found to be similar to the behavior of a fiber with sources with random orientation. However, for sources polarized in either the x or y direction, P(eff) was found to be more efficient.

  7. Improved deep UV fiber for medical and spectroscopy applications

    NASA Astrophysics Data System (ADS)

    Khalilov, Valery; Shannon, John; Timmerman, Richard; Geshell, Dale

    2015-03-01

    An effort to demonstrate long term transmission stability in a high -OH synthetic fused silica step index multimode optical fiber optimized for Deep-UV operation, designated as FDP, was successfully completed at Polymicro Technologies. The development achieved significant improvement in long term stability for the 214 and 265nm absorption bands typically associated with solarization effects in fused silica. The improvements were applied to fiber core sizes from 67 to 100m, a common size range for bundle applications used in medical and spectroscopy. Results of UV degradation measurements for the fiber with minimum 70 hour exposures are presented along with a description of the test protocols.

  8. Spectrally efficient polymer optical fiber transmission

    NASA Astrophysics Data System (ADS)

    Randel, Sebastian; Bunge, Christian-Alexander

    2011-01-01

    The step-index polymer optical fiber (SI-POF) is an attractive transmission medium for high speed communication links in automotive infotainment networks, in industrial automation, and in home networks. Growing demands for quality of service, e.g., for IPTV distribution in homes and for Ethernet based industrial control networks will necessitate Gigabit speeds in the near future. We present an overview on recent advances in the design of spectrally efficient and robust Gigabit-over-SI-POF transmission systems.

  9. Mode mixing in fiber optic oximeter

    NASA Astrophysics Data System (ADS)

    Amirkhanian, Varoujan D.; Lee, Wylie I.

    1990-07-01

    Most catheter based oximeters use optical fiber to deliver two M more colors of light to the blood and collect the reflected lights with another optical fiber. Oxygen saturation of the blood is calculated from intensity of the returned lights. The coupling efficiency of this type of two-fiber sensor depends on the separation of fibers, the numerical aperture (NA) of the fibers, and the launching condition of lights from LED's to the transmission fiber. A micro-optical integrator was designed to combine outputs from two LED's into a multimode step-index fiber pig-tail through a high NA microball lens. The mismatch in the modes of propagation between red and IR lights was corrected by looping and sine-wave bending the fiber before it was coupled to an NA limiting GRIN lens, which also serves as an exit window. A far-field scan of two lights shows these two lights have spatial overlap of 92% or better. The overlap at the tip of the catheter, after it was coupled to the mode mixing pig-tail, is better than 98%. The addition of this simple method of mode-mixing has improved the overlap by nearly 30% and has substantially improved the accuracy of the oximeter, especially when in vitro calibration is used before taking the measurement in blood.

  10. Multimode optical fiber

    DOEpatents

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  11. Thermally induced mode coupling in rare-earth doped fiber amplifiers.

    PubMed

    Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard; Broeng, Jes; Lgsgaard, Jesper

    2012-06-15

    We present a simple semianalytical model of thermally induced mode coupling in multimode rare-earth doped fiber amplifiers. The model predicts that power can be transferred from the fundamental mode to a higher-order mode when the operating power exceeds a certain threshold, and thus provides an explanation of recently reported mode instability in such fiber amplifiers under high average-power operation. We apply our model to a simple step-index fiber design, and investigate how the power threshold depends on various design parameters of the fiber. PMID:22739915

  12. On the application of optical-fiber image scramblers to astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Heacox, W. D.

    1986-01-01

    Single, step-index optical fibers, when properly employed, can function as optically efficient image scramblers. Their use as optical feeds for astronomical slit spectrographs can reduce zonal error levels in those instruments by orders of magnitude. As a consequence, the application of optical-fiber couplers to new and existing spectrographs may greatly increase the wavelength metric quality of conventional astronomical spectroscopy. The optical efficiencies of fiber couplers of a few tens of meters in length can be comparable to those of typical coude mirror trains in the visible portions of the spectrum. Elements of the design of fiber couplers are illustrated by discussion of a currently operational instrument.

  13. Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors

    NASA Astrophysics Data System (ADS)

    Ul Hassan, Hafeez; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-09-01

    The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Frster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode polymer optical fiber for an excitation and emission wavelength of 550 nm and 650nm, respectively. The model suggests an increase of a factor of 1.6 to 4 in the collected fluorescent power for an ideal CPC tip, as compared to the plane-cut fiber tip for fiber lengths between 5 and 45mm.

  14. Spatially resolved modal spectroscopy of Er:Yb doped multifilament-core fiber amplifier.

    PubMed

    Le Gout, Julien; Delaporte, Julien; Lombard, Laurent; Canat, Guillaume

    2012-02-27

    The spatially resolved spectral (S2) imaging method is applied on an active microstructured fiber, with a multi-filament core (MFC). This type of fiber has been designed to be the last amplifying stage of a source for a long range coherent lidar. Studying the influence of the bending radius on the modal content with or without gain, we demonstrate that an upper-bound of the high-order modes content can be found by performing the S2 imaging on the bleached fiber. S2 imaging is then used to verify that the output beam of the MFC fiber can be made effectively single-mode. We also show that it can be simply adapted for measuring the fiber birefringence. Finally, a comparison of the MFC fiber mode area with that of a standard large mode area Erbium doped step index fiber illustrates the interest of the MFC structure for high power amplifiers. PMID:22418363

  15. Security: Step by Step

    ERIC Educational Resources Information Center

    Svetcov, Eric

    2005-01-01

    This article provides a list of the essential steps to keeping a school's or district's network safe and sound. It describes how to establish a security architecture and approach that will continually evolve as the threat environment changes over time. The article discusses the methodology for implementing this approach and then discusses the

  16. Security: Step by Step

    ERIC Educational Resources Information Center

    Svetcov, Eric

    2005-01-01

    This article provides a list of the essential steps to keeping a school's or district's network safe and sound. It describes how to establish a security architecture and approach that will continually evolve as the threat environment changes over time. The article discusses the methodology for implementing this approach and then discusses the…

  17. Laser-direct writing of single mode and multi-mode polymer step index waveguide structures for optical backplanes and interconnection assemblies

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin; Middlebrook, Christopher

    2015-01-01

    A laser direct writing (LDW) method is implemented as a cost efficient polymer waveguide (WG) fabrication method for prototyping large substrates for optical backplanes and optical interconnection assemblies. The LDW setup utilizes a 3-axis air-bearing motion platform to reduce WG fabrication error to within 0.15 ?m. A UV laser diode coupled single mode fiber with a focusing lens module is capable of LDW WGs at both multimode (50 ?m) and single mode (6 ?m) dimensions. Correlation between LDW parameters and fabricated WG dimensions using Dow Corning OE-4140 UV-Cured Optical Elastomer (ncore = 1.5142, nclad = 1.5064) is discussed theoretically and confirmed experimentally for both applications. A theoretical model is developed and utilized for producing LDW multi-mode (0.04 dB/cm, ? = 850 nm) and single mode (0.55 dB/cm, ? = 1310 nm) WGs. Measured propagation losses of LDW WGs are comparable to losses of photolithographic multi-mode (0.04 dB/cm @ 850 nm) and single mode (0.59 dB/cm @ 1310 nm) WG builds. LDW multi-mode and single mode WG radial bend and crossing losses are evaluated for advanced optical communication channel routing capabilities and do not exhibit significant deviations from photolithographic-manufactured WG device loss.

  18. Preparation and characterisation of optical fiber tips for nanoscopic applications

    NASA Astrophysics Data System (ADS)

    Bierlich, Jrg; Kobelke, Jens; Brand, David; Kirsch, Konstantin; Dellith, Jan; Bartelt, Hartmut

    2012-04-01

    Silica-based fiber tips are used in a variety of spectroscopic, micro- or nanoscopic optical sensor applications. The efficiency of such measurement systems is dependent on the tip geometry and the diameter of the tapered fiber end. In the present study we investigated the preparation of geometrically predefined, nanoscaled fiber tips by taking advantage of the dopant concentration profiles of highly doped step-index fibers. For this purpose, a gas phase etching process using hydrofluoric acid (HF) vapor was applied. The shaping of the fiber tips was based on very different etching rates as a result of the doping characteristics of specific optical fibers. Technological studies on the influence of the etching gas atmosphere on the temporal tip shaping and the final geometry were performed using undoped and doped silica fibers. The influence of the doping characteristics was investigated in phosphorus-, germanium-, fluorine- and boron-doped glass fibers. Narrow exposed as well as protected internal fiber tips in various shapes and tip radiuses down to less than 15 nm were achieved and characterized geometrically and topologically. For investigations of surface plasmon resonance effects the fiber tips were coated with nanometer-sized silver layers by means of vapour deposition and finally subjected to an annealing treatment.

  19. Mid-infrared supercontinuum generation in fluoroindate fiber.

    PubMed

    Thberge, Francis; Daigle, Jean-Franois; Vincent, Denis; Mathieu, Pierre; Fortin, Jean; Schmidt, Bruno E; Thir, Nicolas; Lgar, Franois

    2013-11-15

    We report the generation of mid-infrared supercontinua in a step-index fluoroindate-based fiber. The large core of the fluoroindate fiber allows the guiding of multiwatt laser power over a broad spectral range. These fibers exhibit zero dispersion at 1.83 ?m, minimal loss of 0.1 dB/m at 3.2 ?m up to only 0.8 dB/m at 5 ?m. These specifications enable mid-infrared supercontinuum generation and propagation with low loss. By using mid-infrared ultrashort laser pulses from an optical parametric amplifier, we demonstrate generation of a 20 dB spectral flatness supercontinua from 2.7 to 4.7 ?m in the fluoroindate fiber, which is twice the spectral broadening compared to a ZBLAN fiber under similar conditions. PMID:24322105

  20. Compact three-core fibers with ultra-low differential group delays for broadband mode-division multiplexing.

    PubMed

    Wu, Yunfei; Chiang, Kin Seng

    2015-08-10

    An approximate explicit condition for the achievement of zero differential group delay (DGD) in a homogeneous multicore fiber (MCF) is presented and verified numerically for a step-index three-core fiber. This condition is explored for the study of compact three-core fibers with low DGDs. To achieve an ultra-low DGD in the C-band, a three-core fiber with a central refractive-index dip in each core is proposed and analyzed in detail. A specific design with three touching cores and a core-cladding index difference of 0.3% yields a maximum DGD smaller than 3.2 ps/km in the C-band. The fiber is suitable for broadband mode-division multiplexing applications and the design approach could be applied to MCFs with more cores. PMID:26367940

  1. Photosensitivity and Hydroxyl in Hydrogenated Silica Fibers

    NASA Astrophysics Data System (ADS)

    Tan, Gu; Lin, Xiang-zhi; Liu, Hong-du; Fu, Li-bin; E, Pun Y. B.; P, Chung S.

    1998-09-01

    Optical loss spectra and refractive index changes have been measured in the hydrogenated standard telecommunication fiber and photosensitive fiber. The index changes due to ultraviolet exposure were found to be closely related with the OH formation in both types of fibers. A direct photolytical model is proposed to explain the effect of hydrogen loading on the enhancement of the photosensitivity in silica fibers.

  2. Helvacioglu reproducibility index: a new algorithm to evaluate the effects of misalignments on the measurements of retinal nerve fiber layer by spectral-domain OCT

    PubMed Central

    Helvacioglu, Firat; Uyar, Osman Murat; Sencan, Sadik; Tunc, Zeki; Kapran, Ziya

    2015-01-01

    AIM To evaluate the effect of misalignment on the measurements of retinal nerve fiber layer (RNFL) by spectral-domain optical coherence tomography (OCT). METHODS A total of 42 eyes from 21 healthy young subjects underwent RNFL measurements with RTVue spectral-domain OCT (Optovue Inc., Fremont, California, USA). Two baseline measurements with perfectly aligned central circle to the borders of the optic nerve and four misaligned measurements which were misaligned towards to four quadrants were taken. The differences in RNFL between the baseline and misaligned measurements were analyzed with a new algorithm called Helvacioglu reproducibility index (HRI) which is designed to measure the reproducibility of the scans by evaluating the RNFL changes in the four main quadrants. RESULTS The average RNFL scores of the first two baseline measurements have good correlation (c=0.930) and good reproducibility scores (0.150.07). Superior misaligned measurements had significantly lower superior quadrant score and higher inferior quadrant score, similar nasal and little higher temporal scores (P1, P2<0.001, P3=0.553, P4=0.001). Inferior misaligned measurements had significantly higher superior quadrant score and lower inferior quadrant score with similar temporal and little lower nasal scores (P1, P2<0.001, P3=0.315, P4=0.016). Nasal misaligned measurements had significantly higher temporal quadrant score and lower nasal quadrant score with little lower superior and inferior scores (P1, P2, P4<0.001, P3=0.005). Temporal misaligned measurements had significantly higher nasal quadrant score and lower temporal quadrant score with similar superior and little higher inferior scores (P1, P2<0.001, P3=0.943, P4=0.001). CONCLUSION Good alignment of the central circle to the borders of optic nerve is crucial to have correct and repeatable RNFL measurements. Misalignment to a quadrant resulted in falsely low readings at that quadrant and falsely high readings at the opposite quadrant. PMID:26558218

  3. Fiber design and realization of point-by-point written fiber Bragg gratings in polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Stefani, Alessio; Stecher, Matthias; Town, Graham E.; Bang, Ole

    2012-04-01

    An increasing interest in making sensors based on fiber Bragg gratings (FBGs) written in polymer optical fibers (POFs) has been seen recently. Mostly microstructured POFs (mPOFs) have been chosen for this purpose because they are easier to fabricate compared, for example, to step index fibers and because they allow to tune the guiding parameters by modifying the microstructure. Now a days the only technique used to write gratings in such fibers is the phase mask technique with UV light illumination. Despite the good results that have been obtained, a limited flexibility on the grating design and the very long times required for the writing of FBGs raise some questions about the possibility of exporting POF FBGs and the sensors based on them from the laboratory bench to the mass production market. The possibility of arbitrary design of fiber Bragg gratings and the very short time required to write the gratings make the point-by-point grating writing technique very interesting and would appear to be able to fill this technological gap. On the other end this technique is hardly applicable for microstructured fibers because of the writing beam being scattered by the air-holes. We report on the design and realization of a microstructured polymer optical fiber made of PMMA for direct writing of FBGs. The fiber was designed specifically to avoid obstruction of the writing beam by air-holes. The realized fiber has been used to point-by-point write a 5 mm long fourth order FBG with a Bragg wavelength of 1518 nm. The grating was inspected under Differential Interferometric Contrast microscope and the reflection spectrum was measured. This is, to the best of our knowledge, the first FBGs written into a mPOF with the point-by-point technique and also the fastest ever written into a polymer optical fiber, with less than 2.5 seconds needed.

  4. Fiber propagation of vector modes.

    PubMed

    Ndagano, Bienvenu; Brüning, Robert; McLaren, Melanie; Duparré, Michael; Forbes, Andrew

    2015-06-29

    Here we employ both dynamic and geometric phase control of light to produce radially modulated vector-vortex modes, the natural modes of optical fibers. We then measure these modes using a vector modal decomposition set-up as well as a tomography measurement, the latter providing a degree of the non-separability of the vector states, akin to an entanglement measure for quantum states. We demonstrate the versatility of the approach by creating the natural modes of a step-index fiber, which are known to exhibit strong mode coupling, and measure the modal cross-talk and non-separability decay during propagation. Our approach will be useful in mode division multiplexing schemes for transport of classical and quantum states. PMID:26191742

  5. Fiber propagation of vector modes

    NASA Astrophysics Data System (ADS)

    Ndagano, Bienvenu; Brning, Robert; McLaren, Melanie; Duparr, Michael; Forbes, Andrew

    2015-06-01

    Here we employ both dynamic and geometric phase control of light to produce radially modulated vector-vortex modes, the natural modes of optical fibers. We then measure these modes using a vector modal decomposition set-up as well as a tomography measurement, the latter providing a degree of the non-separability of the vector states, akin to an entanglement measure for quantum states. We demonstrate the versatility of the approach by creating the natural modes of a step-index fiber, which are known to exhibit strong mode coupling, and measure the modal cross-talk and non-separability decay during propagation. Our approach will be useful in mode division multiplexing schemes for transport of classical and quantum states.

  6. FIBER AND INTEGRATED OPTICS: Analysis of the characteristics of a radio signal at the output of a multimode interference-type fiber channel

    NASA Astrophysics Data System (ADS)

    Bratchikov, A. N.; Glukhov, I. P.

    1992-02-01

    An analysis is made of a theoretical model of an interference fiber channel for transmission of microwave signals. It is assumed that the channel consists of a multimode fiber waveguide with a step or graded refractive-index profile. A typical statistic of a longitudinal distribution of inhomogeneities is also assumed. Calculations are reported of the interference losses, the spectral profile of the output radio signal, the signal/noise ratio in the channel, and of the dependences of these parameters on: the type, diameter, and the length of the multimode fiber waveguide; the spectral width of the radiation source; the frequency offset between the interfering optical signals.

  7. Fiber optic laser rod

    DOEpatents

    Erickson, G.F.

    1988-04-13

    A laser rod is formed from a plurality of optical fibers, each forming an individual laser. Synchronization of the individual fiber lasers is obtained by evanescent wave coupling between adjacent optical fiber cores. The fiber cores are dye-doped and spaced at a distance appropriate for evanescent wave coupling at the wavelength of the selected dye. An interstitial material having an index of refraction lower than that of the fiber core provides the optical isolation for effective lasing action while maintaining the cores at the appropriate coupling distance. 2 figs.

  8. Silyl-acetylene polymers for use as precursors to silicon carbide fibers

    SciTech Connect

    Meyer, M.K.

    1991-12-20

    The steps involved in production of silicon carbide fiber using silyl acetylene polymer precursors can be separated into four processing steps: polymer synthesis, fiber spinning, fiber crosslinking, and pyrolysis. Practical experimental considerations in each step are discussed.

  9. Next Step for STEP

    SciTech Connect

    Wood, Claire; Bremner, Brenda

    2013-08-09

    The Siletz Tribal Energy Program (STEP), housed in the Tribe’s Planning Department, will hire a data entry coordinator to collect, enter, analyze and store all the current and future energy efficiency and renewable energy data pertaining to administrative structures the tribe owns and operates and for homes in which tribal members live. The proposed data entry coordinator will conduct an energy options analysis in collaboration with the rest of the Siletz Tribal Energy Program and Planning Department staff. An energy options analysis will result in a thorough understanding of tribal energy resources and consumption, if energy efficiency and conservation measures being implemented are having the desired effect, analysis of tribal energy loads (current and future energy consumption), and evaluation of local and commercial energy supply options. A literature search will also be conducted. In order to educate additional tribal members about renewable energy, we will send four tribal members to be trained to install and maintain solar panels, solar hot water heaters, wind turbines and/or micro-hydro.

  10. Estimation of cut-off wavelength of rare earth doped single-mode fibers

    NASA Astrophysics Data System (ADS)

    Kaur, Jagneet; Thyagarajan, K.; Pal, B. P.

    1999-11-01

    A new empirical relation is proposed describing spectral variation of mode-field radius (MFR) as inferred from measurements in the far-field of the fiber. It is shown that using this relation, it is possible to estimate the cut-off wavelength ( ?c) of the fiber. The proposed technique is successfully tested through measurements made on two standard step index single-mode fibers, as well as on an erbium doped fiber (EDF) having ?c falling within its strong absorption band around 980 nm. This empirical formula is more accurate than the widely used Marcuse's formula to describe spectral dependence of MFR determined through measurements made in the fiber's far-field. The proposed technique is especially suited for estimation of ?c of doped fibers in which ?c falls within an absorption band.

  11. Palladium particles embedded into silica optical fibers for hydrogen gas detection

    NASA Astrophysics Data System (ADS)

    Leparmentier, Stphanie; Auguste, Jean-Louis; Humbert, Georges; Delaizir, Galle; Delepine-Lesoille, Sylvie; Bertrand, Johan; Buschaert, Stphane; Perisse, Jocelyn; Mac, Jean Reynald

    2014-05-01

    In this paper, we report the fabrication and characterization of a new concept of optical fibers whose cladding is composed of palladium particles embedded into the silica glass cladding. Since conventional fiber processes are not suitable for such realizations, we developed an original process based on powder technology to prepare our specific preforms. Step, graded index and photonic crystal optical fibers with original shapes were realized. The use of high purity powders as raw materials combined to a specific preforms heat treatment allowed the fabrication of resistant and long length metal-cladding optical fibers. Microstructured Pd-SiO2 composite cladding optical fibers with single-mode behavior and optical losses lower than 2 dB/m at 1530 nm were characterized. Hydrogen-induced attenuation sensitivity of these fibers at the 1245 nm wavelength was demonstrated after long H2 exposure. Dehydrogenation kinetics calculations and experiments were studied.

  12. Simulating Optical Fibers.

    ERIC Educational Resources Information Center

    Edgar, Dale

    1988-01-01

    Described is a demonstration of Snell's law using a laser beam and an optical fiber. Provided are the set-up method of the demonstration apparatus and some practical suggestions including "index matching" technique using vaseline. (YP)

  13. Power scaling of ytterbium(3+)-doped phosphate fiber lasers and amplifiers

    NASA Astrophysics Data System (ADS)

    Lee, Yin-Wen

    The initial motivation for this work was to build a high-power single-frequency, single-mode, linearly polarized fiber MOPA for gravitational-wave detection. Although spectacular progress has been made over the past few years in the development of single-frequency Yb3+-doped silica fiber laser sources, their maximum output powers are still limited by the onset of stimulated Brillouin scattering. To further scale the output power of single-frequency silica fiber laser sources with step-index single-mode fibers, increasing the ion concentration in the gain fiber is required. Unfortunately, excessive amounts of rare-earth ions in silica fibers cause concentration quenching, photodarkening, and crystallization. To this end, phosphate glass is a good alternative because of the high solubility of rare-earth oxides in this host. For example, the solubility of Yb2O3 in phosphate glass is at least 26 wt.%, i.e., 10 times higher than in silica. Such a high ion concentration significantly reduces the required fiber length and enables the use of a short step-index single-mode fiber without suffering from SBS up to very high output powers. To investigate the feasibility of extracting high powers from this gain medium, we measured several key material properties of the Yb3+-doped phosphate fibers, including the SBS gain coefficient, photodarkening resistance, and fiber background loss. Our experimental results showed that, compared to silica fibers, phosphate fibers exhibit a 50% weaker SBS gain coefficient and allow a 6-times-higher Yb3+ concentration without the onset of photodarkening. We measured the scattering and absorption loss of the phosphate fiber by using an integrating sphere and a fiber calorimeter, respectively. The results showed that 77% of the fiber background loss originates from impurity absorption, and the rest from scattering. It indicates that absorption loss must be reduced to improve the efficiency of the fiber laser. The studies of these material properties allow us to precisely evaluate the potential for power scaling of phosphate fiber lasers and amplifiers. As a proof of principle, we experimentally demonstrate truly single-mode fiber lasers and amplifiers with record output powers of several tens of watts. These laser sources include a 57-W multiple-frequency 1.06-mum fiber laser with a slope efficiency of 52.7%, and a 16-W single-frequency fiber MOPA. This is the first report of a watt-level CW Yb3+-doped phosphate fiber amplifier. We showed through numerical simulations that the exceptional characteristics of phosphate fibers can be extended to a 700-W single-frequency fiber amplifier from a step-index single-mode fiber. The peak thermal load of this 700-W phosphate fiber MOPA was calculated to be 800 W/m, which can be handled by suitable cooling. In summary, all results presented in this dissertation confirm that Yb3+-doped phosphate fibers constitute a promising gain element for power-scaling truly single-mode single-frequency fiber laser amplifiers.

  14. Theory of fiber-optic, evanescent-wave spectroscopy and sensors

    NASA Astrophysics Data System (ADS)

    Messica, A.; Greenstein, A.; Katzir, A.

    1996-05-01

    A general theory for fiber-optic, evanescent-wave spectroscopy and sensors is presented for straight, uncladded, step-index, multimode fibers. A three-dimensional model is formulated within the framework of geometric optics. The model includes various launching conditions, input and output end-face Fresnel transmission losses, multiple Fresnel reflections, bulk absorption, and evanescent-wave absorption. An evanescent-wave sensor response is analyzed as a function of externally controlled parameters such as coupling angle, f number, fiber length, and diameter. Conclusions are drawn for several experimental apparatuses.

  15. Efficient one-third harmonic generation in highly Germania-doped fibers enhanced by pump attenuation.

    PubMed

    Huang, Tianye; Shao, Xuguang; Wu, Zhifang; Lee, Timothy; Sun, Yunxu; Lam, Huy Quoc; Zhang, Jing; Brambilla, Gilberto; Ping, Shum

    2013-11-18

    We provide a comprehensive study on one-third harmonic generation (OTHG) in highly Germania-doped fiber (HGDF) by analyzing the phase matching conditions for the step index-profile and optimizing the design parameters. For stimulated OTHG in HGDF, the process can be enhanced by fiber attenuation at the pump wavelength which dynamically compensates the accumulated phase-mismatch along the fiber. With 500 W pump and 35 W seed power, simulation results show that a 31% conversion efficiency, which is 4 times higher than the lossless OTHG process, can be achieved in 34 m of HGDF with 90 mol. % GeO2 doping in the core. PMID:24514350

  16. Development of the multiwavelength monolithic integrated fiber optics terminal

    NASA Technical Reports Server (NTRS)

    Chubb, C. R.; Bryan, D. A.; Powers, J. K.; Rice, R. R.; Nettle, V. H.; Dalke, E. A.; Reed, W. R.

    1982-01-01

    This paper describes the development of the Multiwavelength Monolithic Integrated Fiber Optic Terminal (MMIFOT) for the NASA Johnson Space Center. The program objective is to utilize guided wave optical technology to develop wavelength-multiplexing and -demultiplexing units, using a single mode optical fiber for transmission between terminals. Intensity modulated injection laser diodes, chirped diffraction gratings and thin film lenses are used to achieve the wavelength-multiplexing and -demultiplexing. The video and audio data transmission test of an integrated optical unit with a Luneburg collimation lens, waveguide diffraction grating and step index condensing lens is described.

  17. Numerical analysis of the harmonic components of the Bragg wavelength content in spectral responses of apodized fiber Bragg gratings written by means of a phase mask with a variable phase step height.

    PubMed

    Osuch, Tomasz

    2016-02-01

    The influence of the complex interference patterns created by a phase mask with variable diffraction efficiency in apodized fiber Bragg grating (FBGs) formation on their reflectance spectra is studied. The effect of the significant contributions of the zeroth and higher (m>±1) diffraction orders on the Bragg wavelength peak and its harmonic components is analyzed numerically. The results obtained for Gaussian and tanh apodization profiles are compared with similar data calculated for a uniform grating. It is demonstrated that when an apodized FBG is written using a phase mask with variable diffraction efficiency, significant enhancement of the harmonic components and a reduction of the Bragg wavelength peak in the grating spectral response are observed. This is particularly noticeable for the Gaussian apodization profile due to the substantial contributions of phase mask sections with relatively small phase steps in the FBG formation. PMID:26831768

  18. The tellurite highly nonlinear microstructured fibers for THG and SC generations

    NASA Astrophysics Data System (ADS)

    Liao, Meisong; Chaudhari, Chitrarekha; Qin, Guanshi; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake

    2010-04-01

    Tellurite highly nonlinear microstructured fibers were fabricated by pumping a positive pressure of nitrogen gas into the holes of cane in the fiber drawing process. By adjusting the pump pressure to inflate the holes of the fiber, the microstructures were reshaped, and the chromatic dispersions were tailored. Two kinds of fiber were fabricated. One is an air-clad fiber with a 1 ?m hexagonal core, which is the smallest core in this shape for the air-clad fiber. By changing the inflation pressure, the diameter ratio of holey region to core (DRHC) was changed in the range of 1-20. Fibers with DRHC of 3.5, 10, 20 were demonstrated. By increasing the DRHC, the zero dispersion wavelengths were shifted to the short wavelength and the confinement loss were decreased. Another is a complex microstructure fiber with a 1.8 ?m core surrounded by four ring holes. The shape of the microstructure was reshaped so heavily by the inflation pressure that it is obviously different from the original shape in the cane. The correlations among pump pressure, hole size, surface tension and temperature gradient were investigated. The temperature gradient at the bottom of the preform's neck region was evaluated quantitatively. The chromatic dispersion of this fiber was compared with that of a step-index air-clad fiber. It was found that this fiber had a much more flattened chromatic dispersion. Supercontinuum generations were investigated by the pump of a 1557 nm femtosecond fiber laser. Intense third harmonic generations were obtained from the 1?m haxgonal core fiber. Broad and flattened spectrum was obtained from the complex microstructure fiber. This investigations show that, by using a positive pressure to reshape the microstructure and by controlling the fabrication conditions exactly, highly nonlinear soft glass fibers with desirable chromatic dispersion can be fabricated, and such fibers have interesting applications in highly nonlinear field such as THG and SC generation.

  19. Delivery of ultrashort spatially focused pulses through a multimode fiber

    NASA Astrophysics Data System (ADS)

    Morales-Delgado, Edgar E.; Papadopoulos, Ioannis N.; Farahi, Salma; Psaltis, Demetri; Moser, Christophe

    2015-08-01

    Multimode optical fibers potentially allow the transmission of larger amounts of information than their single mode counterparts because of their high number of supported modes. However, propagation of a light pulse through a multimode fiber suffers from spatial distortions due to the superposition of the various exited modes and from time broadening due to modal dispersion. We present a method based on digital phase conjugation to selectively excite in a multimode fiber specific optical fiber modes that follow similar optical paths as they travel through the fiber. The excited modes interfere constructively at the fiber output generating an ultrashort spatially focused pulse. The excitation of a limited number of modes following similar optical paths limits modal dispersion, allowing the transmission of the ultrashort pulse. We have experimentally demonstrated the delivery of a focused spot of pulse width equal to 500 fs through a 30 cm, 200 micrometer core step index multimode fiber. The results of this study show that two-photon imaging capability can be added to ultra-thin lensless endoscopy using commercial multimode fibers.

  20. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, G.A.; Hrubesh, L.W.; Poco, J.F.; Sandler, P.H.

    1997-11-04

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency. 4 figs.

  1. Aerogel-clad optical fiber

    DOEpatents

    Sprehn, Gregory A.; Hrubesh, Lawrence W.; Poco, John F.; Sandler, Pamela H.

    1997-01-01

    An optical fiber is surrounded by an aerogel cladding. For a low density aerogel, the index of refraction of the aerogel is close to that of air, which provides a high numerical aperture to the optical fiber. Due to the high numerical aperture, the aerogel clad optical fiber has improved light collection efficiency.

  2. Algorithm for estimation of material dispersion of fused silica glass optical fibers

    NASA Astrophysics Data System (ADS)

    Burdin, Vladimir A.

    2015-03-01

    The simple algorithm for taking into account the material dispersion in the calculations of the dispersion characteristics of optical fibers is introduced. In contrast to known solutions based on an approximation of dependencies of Sellmeier coefficients from the impurity concentration the proposed version of algorithm is based on the linear approximation of dependencies of the refractive index of the impurity concentration. The offered algorithm for calculating of the spectral characteristics of chromatic dispersion was tested on the examples of optical fibers with step-index profile. As examples it was considered the optical fiber with a pure silica glass as cladding material and a GeO2 doped silica glass as material of core and the optical fiber with fluorine doped silica glass as cladding material and pure silica glass as material of core. The comparison of the experimental data with the theoretical curves obtained using known methods and the theoretical curves obtained using proposed algorithms are presented.

  3. Phase-matching of the HE11 and HE13 modes of highly doped GeO2–SiO2 fiber waveguides at 1596 nm and 532 nm, respectively, for triple-photon generation

    NASA Astrophysics Data System (ADS)

    Tsvetkov, S.; Katamadze, K.; Borshchevskaia, N.; Sysolyatin, A.; Fedorov, M.; Kulik, S.; Salganskii, M.; Belanov, A.

    2016-02-01

    We theoretically investigate a phase-matching (PM) between the HE11 and HE13 modes at wavelengths 1596 and 532 nm, respectively, of a real germania-silica fiber waveguide, whose preform was made by MCVD technology. For several measured refractive index profiles of the fiber preform, the corresponding waveguide diameters, providing homogeneous PM, both with modal dispersion and power characteristics, are calculated. The PM parameters obtained for the real fiber are compared to that calculated for a standard step-index fiber model.

  4. Micromachine Wedge Stepping Motor

    SciTech Connect

    Allen, J.J.; Schriner, H.K.

    1998-11-04

    A wedge stepping motor, which will index a mechanism, has been designed and fabricated in the surface rnicromachine SUMMiT process. This device has demonstrated the ability to index one gear tooth at a time with speeds up to 205 teeth/see. The wedge stepper motor has the following features, whi:h will be useful in a number of applications. o The ability to precisely position mechanical components. . Simple pulse signals can be used for operation. o Only 2 drive signals are requixed for operation. o Torque and precision capabilities increase with device size . The device to be indexed is restrained at all times by the wedge shaped tooth that is used for actuation. This paper will discuss the theory of operation and desi=m of the wedge stepping motor. The fabrication and testing of I he device will also be presented.

  5. Fiber bundle phase conjugate mirror

    SciTech Connect

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  6. High resolution gamma ray telescope using scintillating fibers and position sensitive photomultipliers

    NASA Astrophysics Data System (ADS)

    Atac, Muzaffer; Cline, David B.; Chrisman, David; Kolonko, James J.; Park, June; Fenyves, Ervin J.; Chaney, Roy C.

    1989-08-01

    Recently high photon yielding and long attenuation length step index scintillating plastic fibers have been developed. Scintillating fibers of 1 mm diameter made of polystyrene doped with butyl-PBD and POPOP (λ = 420 nm), and clad with PMMA (poly-methylmetacrylate) have resulted attenuation lengths over 2 meters. Scintillating fibers stacked up into scintillating fiber planes U, V and W that are rotated by 60° angle relative to each other and coupled to position sensitive photomultipliers can be used as high resolution imaging gamma-ray detectors. We are presenting the design of a large area gamma-ray telescope with high angular and energy resolution for space based experiments, using scintillating fibers and recently developed position sensitive photomultiplier tubes.

  7. The influence of the drawing process on the intrinsic stress in optical fibers and the arising possibility to optimize the birefringence of PM fibers

    NASA Astrophysics Data System (ADS)

    Just, Florian; Jger, Matthias; Bartelt, Hartmut

    2012-04-01

    The properties of optical fibers can significantly be influenced by intrinsic stress. It is well known that these stresses are caused by various reasons, e.g. the variations in the thermal expansion coecient of the differently doped regions in the fiber. The so called thermal stresses are only dependent on the composition of the fiber and not on its preparation history. Another main reason for stress in the final fiber is the mechanical force that is applied during the fiber drawing process. It generates so called mechanical stress that depends on the composition of the fiber and the thermal history of the fiber fabrication process. Using a non-destructive polarimetric system, we are able to measure the intrinsic stress state in optical fibers as well as in their preforms. Knowing on the one hand the thermal induced stresses in the preform of a fiber and on the other hand the final stress state in the fiber itself, we are able to differentiate between the two kinds of stress. In this paper we present results of stress measurements on optical ber preforms and fibers. We show, that the measured stress profile in the preform matches the theoretically assumed stress profile for thermal stress very well. Moreover we used this preform to draw fibers under different drawing conditions represented in a large difference in the applied force during the fiber drawing. We present the stress results for these differently fabricated fibers and show how huge the effect of the drawing tension can be. We find that for high drawing forces, the stress state can be reversed in comparison to the thermal stresses that are induced by the material composition. Due to the fact that stress on the one hand has a strong effect on the mechanical properties of glass and modifies the refractive index, this can lead to signicant effects on the fiber stability and modal behaviour. Finally, we present a way to compensate the additionally induced mechanical stress, which is for example a very good possibility to increase the stress birefringence in polarization maintaining (PM) fibers with panda structure. We compare the mechanical stress states of such Panda Fibers after their fabrication with the state after an additional high temperature step. We clearly find that it is possible to improve the birefringence of these fibers using appropriate preparation steps.

  8. Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission.

    PubMed

    Tao, Guangming; Shabahang, Soroush; Ren, He; Khalilzadeh-Rezaie, Farnood; Peale, Robert E; Yang, Zhiyong; Wang, Xunsi; Abouraddy, Ayman F

    2014-07-01

    We describe an approach for producing robust multimaterial chalcogenide glass fibers for mid-wave and long-wave mid-infrared transmission. By combining the traditional rod-in-tube process with multimaterial coextrusion, we prepare a hybrid glass-polymer preform that is drawn continuously into a robust step-index fiber with a built-in, thermally compatible polymer jacket. Using tellurium-based chalcogenides, the fibers have a transparency window covering the 3-12 ?m spectral range, making them particularly attractive for delivering quantum cascade laser light and in space applications. PMID:24978794

  9. Mode couplings and elasto-optic effects study in a proposed mechanical microperturbed multimode optical fiber sensor.

    PubMed

    Bichler, Anthony; Lecler, Sylvain; Serio, Bruno; Fischer, Sylvain; Pfeiffer, Pierre

    2012-11-01

    A step index multimode optical fiber with a perturbation on a micrometer scale, inducing a periodic deformation of the fiber section along its propagation axis, is theoretically investigated. The studied microperturbation is mechanically achieved using two microstructured jaws squeezing the straight fiber. As opposed to optical fiber microbend sensors, the optical axis of the proposed transducer is not bended; only the optical fiber section is deformed. Further, the strain applied on the fiber produces a periodical elliptical modification of the core and a modulation of the index of refraction. As a consequence of the micrometer scale perturbation period, the resulting mode coupling occurs directly between guided and radiated modes. To simulate the transmission induced by these kinds of perturbations, simplified models considering only total mode couplings are often used. In order to investigate the range of validity of this approximation, results are compared to the electromagnetic mode couplings rigorously computed for the first time, to our knowledge, with a large multimode fiber (more than 6000 linear polarized modes) using the Marcuse model. In addition, in order to have a more complete modeling of the proposed transducer, the anisotropic elasto-optic effects in the stressed multimode fiber are considered. In this way, the transmission of the microperturbed optical fiber transmission and, therefore, the behavior of the transducer are physically explained and its applications as a future stretching sensor are discussed. PMID:23201801

  10. Picosecond Yb-doped single-trench fiber amplifier with diffraction limited output

    NASA Astrophysics Data System (ADS)

    Jain, Deepak; Gorman, Philip; Codemard, Christophe; Jung, Yongmin; Zervas, Michalis N.; Sahu, Jayanta K.

    2015-03-01

    We propose a novel fiber design single-trench fiber (STF) for large mode area fiber laser and amplifier. Fiber offers cylindrical symmetry and also offer higher refractive index of core compared to cladding. This avoids the need of stack and draw process and refractive index compensation of core doped with index raising rare earth and co-dopants ions, which are an indispensable condition in most of other fiber designs. That is why, this fiber design can be fabricated with conventional modified chemical vapour deposition process in conjunction with solution doping process, which can dramatically reduce the fabrication cost, hence suitable for mass production. Fiber offers very high loss (>10dB/m) and low power fraction in core (<50%) to the higher order modes for low loss of fundamental mode (<0.1dB/m) and high power fraction in core (>80%) thanks to the resonant coupling between core and ring modes. We fabricated a preform for 30?m core STF using MCVD process in conjunction with solution doping process in a single step, without using any micro-structuration and pixilation of core. Experiments ensure the robust single mode behaviour irrespective of launching condition of input beam. Furthermore, this fiber used in three stages MOPA provides 80kW peak pulses with repetition rate of 500 kHz, average power up to 10W, with M2 ~ 1.14. Moreover, all solid structure ensures easy cleaving and splicing. In nutshell, an ultra-low cost, monolithic, compact, and an effective single mode fiber amplifier device can be achieved using single-trench fiber.

  11. Robust fiber clustering of cerebral fiber bundles in white matter

    NASA Astrophysics Data System (ADS)

    Yao, Xufeng; Wang, Yongxiong; Zhuang, Songlin

    2014-11-01

    Diffusion tensor imaging fiber tracking (DTI-FT) has been widely accepted in the diagnosis and treatment of brain diseases. During the rendering pipeline of specific fiber tracts, the image noise and low resolution of DTI would lead to false propagations. In this paper, we propose a robust fiber clustering (FC) approach to diminish false fibers from one fiber tract. Our algorithm consists of three steps. Firstly, the optimized fiber assignment continuous tracking (FACT) is implemented to reconstruct one fiber tract; and then each curved fiber in the fiber tract is mapped to a point by kernel principal component analysis (KPCA); finally, the point clouds of fiber tract are clustered by hierarchical clustering which could distinguish false fibers from true fibers in one tract. In our experiment, the corticospinal tract (CST) in one case of human data in vivo was used to validate our method. Our method showed reliable capability in decreasing the false fibers in one tract. In conclusion, our method could effectively optimize the visualization of fiber bundles and would help a lot in the field of fiber evaluation.

  12. Step Pultrusion

    NASA Astrophysics Data System (ADS)

    Langella, A.; Carbone, R.; Durante, M.

    2012-12-01

    The pultrusion process is an efficient technology for the production of composite material profiles. Thanks to this positive feature, several studies have been carried out, either to expand the range of products made using the pultrusion technology, or improve its already high production rate. This study presents a process derived from the traditional pultrusion technology named "Step Pultrusion Process Technology" (SPPT). Using the step pultrusion process, the final section of the composite profiles is obtainable by means of a progressive cross section increasing through several resin cure stations. This progressive increasing of the composite cross section means that a higher degree of cure level can be attained at the die exit point of the last die. Mechanical test results of the manufactured pultruded samples have been used to compare both the traditional and the step pultrusion processes. Finally, there is a discussion on ways to improve the new step pultrusion process even further.

  13. Indexing Images.

    ERIC Educational Resources Information Center

    Rasmussen, Edie M.

    1997-01-01

    Focuses on access to digital image collections by means of manual and automatic indexing. Contains six sections: (1) Studies of Image Systems and their Use; (2) Approaches to Indexing Images; (3) Image Attributes; (4) Concept-Based Indexing; (5) Content-Based Indexing; and (6) Browsing in Image Retrieval. Contains 105 references. (AEF)

  14. The optimal fiber volume fraction and fiber-matrix property compatibility in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Pan, Ning

    1992-01-01

    Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.

  15. Large-aperture, tapered fiber-coupled, 10-kHz particle-image velocimetry.

    PubMed

    Hsu, Paul S; Roy, Sukesh; Jiang, Naibo; Gord, James R

    2013-02-11

    We demonstrate the design and implementation of a fiber-optic beam-delivery system using a large-aperture, tapered step-index fiber for high-speed particle-image velocimetry (PIV) in turbulent combustion flows. The tapered fiber in conjunction with a diffractive-optical-element (DOE) fiber-optic coupler significantly increases the damage threshold of the fiber, enabling fiber-optic beam delivery of sufficient nanosecond, 532-nm, laser pulse energy for high-speed PIV measurements. The fiber successfully transmits 1-kHz and 10-kHz laser pulses with energies of 5.3 mJ and 2 mJ, respectively, for more than 25 min without any indication of damage. It is experimentally demonstrated that the tapered fiber possesses the high coupling efficiency (~80%) and moderate beam quality for PIV. Additionally, the nearly uniform output-beam profile exiting the fiber is ideal for PIV applications. Comparative PIV measurements are made using a conventionally (bulk-optic) delivered light sheet, and a similar order of measurement accuracy is obtained with and without fiber coupling. Effective use of fiber-coupled, 10-kHz PIV is demonstrated for instantaneous 2D velocity-field measurements in turbulent reacting flows. Proof-of-concept measurements show significant promise for the performance of fiber-coupled, high-speed PIV using a tapered optical fiber in harsh laser-diagnostic environments such as those encountered in gas-turbine test beds and the cylinder of a combustion engine. PMID:23481818

  16. Nanoscopic tip sensors fabricated by gas phase etching of optical glass fibers

    NASA Astrophysics Data System (ADS)

    Bierlich, Jrg; Kobelke, Jens; Brand, David; Kirsch, Konstantin; Dellith, Jan; Bartelt, Hartmut

    2012-12-01

    Silica-based fiber tips are used in a variety of spectroscopic, micro- or nano-scopic optical sensor applications and photonic micro-devices. The miniaturization of optical sensor systems and the technical implementation using optical fibers can provide new sensor designs with improved properties and functionality for new applications. The selective-etching of specifically doped silica fibers is a promising method in order to form complex photonic micro structures at the end or within fibers such as tips and cavities in various shapes useful for the all-fiber sensor and imaging applications. In the present study, we investigated the preparation of geometrically predefined, nanoscaled fiber tips by taking advantage of the dopant concentration profiles of highly doped step-index fibers. For this purpose, a gas phase etching process using hydrofluoric acid (HF) vapor was applied. The shaping of the fiber tips was based on very different etching rates as a result of the doping characteristics of specific optical fibers. Technological studies on the influence of the etching gas atmosphere on the temporal tip shaping and the final geometry were performed using undoped and doped silica fibers. The influence of the doping characteristics was investigated in phosphorus-, germanium-, fluorine- and boron-doped glass fibers. Narrow exposed as well as protected internal fiber tips in various shapes and tip radiuses down to less than 15 nm were achieved and characterized geometrically and topologically. For investigations into surface plasmon resonance effects, the fiber tips were coated with nanometer-sized silver layers by means of vapour deposition and finally subjected to an annealing treatment.

  17. Surface plasmon excitation at near-infrared wavelengths in polymer optical fibers.

    PubMed

    Hu, Xuehao; Mgret, Patrice; Caucheteur, Christophe

    2015-09-01

    We report the first excitation of surface plasmon waves at near-infrared telecommunication wavelengths using polymer optical fibers (POFs) made of poly(methyl methacrylate) (PMMA). For this, weakly tilted fiber-Bragg gratings (TFBGs) have been photo-inscribed in the core of step-index POFs and the fiber coated with a thin gold layer. Surface plasmon resonance is excited with radially polarized modes and is spectrally observed as a singular extinction of some cladding-mode resonances in the transmitted amplitude spectrum of gold-coated TFBGs. The refractometric sensitivity can reach ?550??nm/RIU (refractive index unit) with a figure of merit of more than 2000 and intrinsic temperature self-compensation. This kind of sensor is particularly relevant to in situ operation. PMID:26368696

  18. Optical fiber tip templating using direct focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Micco, A.; Ricciardi, A.; Pisco, M.; La Ferrara, V.; Cusano, A.

    2015-11-01

    We report on a method for integrating sub-wavelength resonant structures on top of optical fiber tip. Our fabrication technique is based on direct milling of the glass on the fiber facet by means of focused ion beam. The patterned fiber tip acts as a structured template for successive depositions of any responsive or functional overlay. The proposed method is validated by depositing on the patterned fiber a high refractive index material layer, to obtain a double-layer photonic crystal slab supporting guided resonances, appearing as peaks in the reflection spectrum. Morphological and optical characterizations are performed to investigate the effects of the fabrication process. Our results show how undesired effects, intrinsic to the fabrication procedure should be taken into account in order to guarantee a successful development of the device. Moreover, to demonstrate the flexibility of our approach and the possibility to engineering the resonances, a thin layer of gold is also deposited on the fiber tip, giving rise to a hybrid photonic-plasmonic structure with a complementary spectral response and different optical field distribution at the resonant wavelengths. Overall, this work represents a significant step forward the consolidation of Lab-on-Fiber Technology.

  19. Optical fiber tip templating using direct focused ion beam milling

    PubMed Central

    Micco, A.; Ricciardi, A.; Pisco, M.; La Ferrara, V.; Cusano, A.

    2015-01-01

    We report on a method for integrating sub-wavelength resonant structures on top of optical fiber tip. Our fabrication technique is based on direct milling of the glass on the fiber facet by means of focused ion beam. The patterned fiber tip acts as a structured template for successive depositions of any responsive or functional overlay. The proposed method is validated by depositing on the patterned fiber a high refractive index material layer, to obtain a ‘double-layer’ photonic crystal slab supporting guided resonances, appearing as peaks in the reflection spectrum. Morphological and optical characterizations are performed to investigate the effects of the fabrication process. Our results show how undesired effects, intrinsic to the fabrication procedure should be taken into account in order to guarantee a successful development of the device. Moreover, to demonstrate the flexibility of our approach and the possibility to engineering the resonances, a thin layer of gold is also deposited on the fiber tip, giving rise to a hybrid photonic-plasmonic structure with a complementary spectral response and different optical field distribution at the resonant wavelengths. Overall, this work represents a significant step forward the consolidation of Lab-on-Fiber Technology. PMID:26531887

  20. Optical fiber tip templating using direct focused ion beam milling.

    PubMed

    Micco, A; Ricciardi, A; Pisco, M; La Ferrara, V; Cusano, A

    2015-01-01

    We report on a method for integrating sub-wavelength resonant structures on top of optical fiber tip. Our fabrication technique is based on direct milling of the glass on the fiber facet by means of focused ion beam. The patterned fiber tip acts as a structured template for successive depositions of any responsive or functional overlay. The proposed method is validated by depositing on the patterned fiber a high refractive index material layer, to obtain a 'double-layer' photonic crystal slab supporting guided resonances, appearing as peaks in the reflection spectrum. Morphological and optical characterizations are performed to investigate the effects of the fabrication process. Our results show how undesired effects, intrinsic to the fabrication procedure should be taken into account in order to guarantee a successful development of the device. Moreover, to demonstrate the flexibility of our approach and the possibility to engineering the resonances, a thin layer of gold is also deposited on the fiber tip, giving rise to a hybrid photonic-plasmonic structure with a complementary spectral response and different optical field distribution at the resonant wavelengths. Overall, this work represents a significant step forward the consolidation of Lab-on-Fiber Technology. PMID:26531887

  1. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber

    PubMed Central

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W.

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled GinzburgLandau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers. PMID:21731106

  2. Performance Enhancement Of A Low Cost Multimode Fiber Optic Rotation Sensor

    NASA Astrophysics Data System (ADS)

    Fredricks, Ronald J.; Johnson, Dean R.

    1989-02-01

    Several fiber optic Sagnac interferometers employing multimode fiber of both high and ffedimiNrrumbers and simple LED light sources, have been designed and built by the authors over the past two years. New results showing improved performance fran that reported at the August '87 SPIE are given in this paper. The ratios of maximum unambiguous rate signal to random 3a drift signal are now in the range 50-150 a performance enhancement of between 4 and 10. We have found that a step index ring rather than a grajled Index one is necess for good driftperformance and that best results are obtained when all the other ring elements (PZT coary il and I/O slitter are also fabricated fram step index fiber. The 3a drifts in our 200 meter 10 cm diameter breadboards, in particular, are around 1/sec. Using high V number fiber (100 pm/0.29 NA) no static mode mixers are required to desensitize this relatively short sense coil fram environmental pertubations. With unambiguous maxi rum rates on the order of 200/sec using simple detection of the MT fundamental signal the performance of these breadboard systems is now as good or better than many law cost "Coriolis" type rate sensors on the market.

  3. Optical fiber sensor having a sol-gel fiber core and a method of making

    DOEpatents

    Tao, Shiquan; Jindal, Rajeev; Winstead, Christopher; Singh, Jagdish P.

    2006-06-06

    A simple, economic wet chemical procedure is described for making sol-gel fibers. The sol-gel fibers made from this process are transparent to ultraviolet, visible and near infrared light. Light can be guided in these fibers by using an organic polymer as a fiber cladding. Alternatively, air can be used as a low refractive index medium. The sol-gel fibers have a micro pore structure which allows molecules to diffuse into the fiber core from the surrounding environment. Chemical and biochemical reagents can be doped into the fiber core. The sol-gel fiber can be used as a transducer for constructing an optical fiber sensor. The optical fiber sensor having an active sol-gel fiber core is more sensitive than conventional evanescent wave absorption based optical fiber sensors.

  4. Single mode fiber array for planet detection using a visible nulling interferometer

    NASA Technical Reports Server (NTRS)

    Liu, Duncan; Levine, B. Martin; Shao, Michael; Aguayo, Franciso

    2005-01-01

    We report the design, fabrication, and testing of a coherent large mode field diameter fiber array to be used as a spatial filter in a planet finding visible nulling interferometer. The array is a key component of a space instrument for visible-light detection and spectroscopy of Earth like extrasolar planets. In this concept, a nulling interferometer is synthesized from a pupil image of a single aperture which is then spatially filtered by a coherent array of single mode fibers to suppress the residual scattered star light. The use of the fiber array preserves spatial information between the star and planet. The fiber array uses a custom commercial large mode field or low NA step-index single mode fiber to relax alignment tolerances. A matching custom micro lens array is used to couple light into the fibers, and to recollimate the light out of the fiber array. The use of large mode field diameter fiber makes the fabrication of a large spatial filter array with 300 to 1000 elements feasible.

  5. Effects of Accelerated Aging on Fiber Damage Thresholds

    SciTech Connect

    Setchell, R.E.

    1999-02-15

    Laser-induced damage mechanisms that can occur during high-intensity fiber transmission have been under study for a number of years. Our particular interest in laser initiation of explosives has led us to examine damage processes associated with the transmission of Q-switched, Nd:YAG pulses at 1.06 {micro}m through step-index, multimode, fused silica fiber. Laser breakdown at the fiber entrance face is often the first process to limit fiber transmission but catastrophic damage can also occur at either fiber end face, within the initial entry segment of the fiber, and at other internal sites along the fiber path. Past studies have examined how these various damage mechanisms depend upon fiber end-face preparation, fiber fixturing and routing, laser characteristics, and laser-to-fiber injection optics. In some applications of interest, however, a fiber transmission system may spend years in storage before it is used. Consequently, an important additional issue for these applications is whether or not there are aging processes that can result in lower damage thresholds over time. Fiber end-face contamination would certainly lower breakdown and damage thresholds at these surfaces, but careful design of hermetic seals in connectors and other end-face fixtures can minimize this possibility. A more subtle possibility would be a process for the slow growth of internal defects that could lead to lower thresholds for internal damage. In the current study, two approaches to stimulating the growth of internal defects were used in an attempt to produce observable changes in internal damage thresholds. In the first approach test fibers were subjected to a very high tensile stress for a time sufficient for some fraction to fail from static fatigue. In the second approach, test fibers were subjected to a combination of high tensile stress and large, cyclic temperature variations. Both of these approaches were rather arbitrary due to the lack of an established growth mechanism for internal defects. Damage characteristics obtained from fibers subjected to each of these aging environments were compared to results from fresh fibers tested under identical conditions. A surprising result was that internal damage was not observed in any of the tested fibers. Only breakdown at the fiber entrance face and catastrophic damage at both end faces were observed. Fiber end faces were not sealed during the accelerated aging environments, and thresholds at these faces were significantly lower in the aged fibers. However, most fibers transmitted relatively high pulse energies before damaging, and a large fraction never damaged before we reached the limits of our test laser. The absence of any observable affect on internal damage thresholds is encouraging, but the current results do not rule out the possibility that some other approach to accelerated aging could reveal a growth mechanism for internal defects.

  6. Stepped nozzle

    DOEpatents

    Sutton, George P.

    1998-01-01

    An insert which allows a supersonic nozzle of a rocket propulsion system to operate at two or more different nozzle area ratios. This provides an improved vehicle flight performance or increased payload. The insert has significant advantages over existing devices for increasing nozzle area ratios. The insert is temporarily fastened by a simple retaining mechanism to the aft end of the diverging segment of the nozzle and provides for a multi-step variation of nozzle area ratio. When mounted in place, the insert provides the nozzle with a low nozzle area ratio. During flight, the retaining mechanism is released and the insert ejected thereby providing a high nozzle area ratio in the diverging nozzle segment.

  7. Stepped nozzle

    DOEpatents

    Sutton, G.P.

    1998-07-14

    An insert is described which allows a supersonic nozzle of a rocket propulsion system to operate at two or more different nozzle area ratios. This provides an improved vehicle flight performance or increased payload. The insert has significant advantages over existing devices for increasing nozzle area ratios. The insert is temporarily fastened by a simple retaining mechanism to the aft end of the diverging segment of the nozzle and provides for a multi-step variation of nozzle area ratio. When mounted in place, the insert provides the nozzle with a low nozzle area ratio. During flight, the retaining mechanism is released and the insert ejected thereby providing a high nozzle area ratio in the diverging nozzle segment. 5 figs.

  8. Fiber biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber cells arising from seed epidermis is the most important agricultural textile commodity in the world. To produce fully mature fibers, approximately two months of fiber developmental process are required. The timing of four distinctive fiber development stages consisting of initiation, ...

  9. Chiral fiber sensors

    NASA Astrophysics Data System (ADS)

    Kopp, Victor I.; Churikov, Victor M.; Singer, Jonathan; Neugroschl, Daniel; Genack, Azriel Z.

    2010-04-01

    We have fabricated a variety of chiral fiber sensors by twisting one or more standard or custom optical fibers with noncircular or nonconcentric core as they pass though a miniature oven. The resulting structures are as stable as the glass material and can be produced with helical pitch ranging from microns to hundreds of microns. The polarization selectivity of the chiral gratings is determined by the geometry of the fiber cross section. Single helix structures are polarization insensitive, while double helix gratings interact only with a single optical polarization component. Both single and double helix gratings may function as a fiber long period grating, coupling core and cladding modes or as a diffraction grating scattering light from the fiber core out of the fiber. The resulting dips in the transmission spectrum are sensitive to fiber elongation, twist and temperature, and (in the case of the long period gratings) to the refractive index of the surrounding medium. The suitability of chiral gratings for sensing temperature, elongation, twist and liquid levels will be discussed. Gratings made of radiation sensitive glass can be used to measure the cumulative radiation dose, while gratings made of radiation-hardened glass are suitable for stable sensing of the environment in nuclear power plants. Excellent temperature stability up to 900°C is found in pure silica chiral diffraction grating sensors.

  10. A New Type of Motor: Pneumatic Step Motor

    PubMed Central

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2011-01-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  11. A New Type of Motor: Pneumatic Step Motor.

    PubMed

    Stoianovici, Dan; Patriciu, Alexandru; Petrisor, Doru; Mazilu, Dumitru; Kavoussi, Louis

    2007-02-01

    This paper presents a new type of pneumatic motor, a pneumatic step motor (PneuStep). Directional rotary motion of discrete displacement is achieved by sequentially pressurizing the three ports of the motor. Pulsed pressure waves are generated by a remote pneumatic distributor. The motor assembly includes a motor, gearhead, and incremental position encoder in a compact, central bore construction. A special electronic driver is used to control the new motor with electric stepper indexers and standard motion control cards. The motor accepts open-loop step operation as well as closed-loop control with position feedback from the enclosed sensor. A special control feature is implemented to adapt classic control algorithms to the new motor, and is experimentally validated. The speed performance of the motor degrades with the length of the pneumatic hoses between the distributor and motor. Experimental results are presented to reveal this behavior and set the expectation level. Nevertheless, the stepper achieves easily controllable precise motion unlike other pneumatic motors. The motor was designed to be compatible with magnetic resonance medical imaging equipment, for actuating an image-guided intervention robot, for medical applications. For this reason, the motors were entirely made of nonmagnetic and dielectric materials such as plastics, ceramics, and rubbers. Encoding was performed with fiber optics, so that the motors are electricity free, exclusively using pressure and light. PneuStep is readily applicable to other pneumatic or hydraulic precision-motion applications. PMID:21528106

  12. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  13. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S.

    2010-06-01

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  14. Fiber optic structures for dynamic stress sensing

    NASA Astrophysics Data System (ADS)

    Plaga, Robert; Lesiak, Piotr; Woli?ski, Tomasz R.

    2011-10-01

    The paper presents influence of the HB1500 bow-tie optical fiber coating on the fiber angular sensitivity for dynamic stress induced by an acoustic wave. An experimental setup is explained and fiber parameters are presented, what is a step forward to predict and simulate behavior of optical fibers embedded in composite materials. Both sensitivities of the fiber (with and without coating) are compared versus the angle between the birefringence axis and the acoustic wave propagation direction. An influence of the fiber coating has also been experimentally examined.

  15. Comparison of growth dynamics and temporal stability of Bragg gratings written in polymer fibers of different types

    NASA Astrophysics Data System (ADS)

    Statkiewicz-Barabach, G.; Kowal, D.; Mergo, P.; Urbanczyk, W.

    2015-08-01

    We compare the dynamics of the Bragg gratings formation in a microstructured polymer fiber made of pure PMMA and step-index PMMA fiber with a core made of PMMA/PS copolymer. The gratings were fabricated using a standard phase mask method. In the fiber with a PMMA/PS core, based on the rate of the Bragg peaks height and bandwidth rise versus the irradiation time, we identified three phases of the grating growth, named respectively type I, mixed and type II gratings. In the pure PMMA microstructured fiber we did not observe a significant increase in the Bragg peaks width during the inscription. We have monitored the behavior of the gratings for 8 months since the fabrication and demonstrated significant differences in the long-term stability depending on the grating type.

  16. Tunable random fiber laser

    SciTech Connect

    Babin, S. A.; Podivilov, E. V.; El-Taher, A. E.; Harper, P.; Turitsyn, S. K.

    2011-08-15

    An optical fiber is treated as a natural one-dimensional random system where lasing is possible due to a combination of Rayleigh scattering by refractive index inhomogeneities and distributed amplification through the Raman effect. We present such a random fiber laser that is tunable over a broad wavelength range with uniquely flat output power and high efficiency, which outperforms traditional lasers of the same category. Outstanding characteristics defined by deep underlying physics and the simplicity of the scheme make the demonstrated laser a very attractive light source both for fundamental science and practical applications.

  17. Low-crosstalk multicore fibers for long-haul transmission

    NASA Astrophysics Data System (ADS)

    Saitoh, Kunimasa; Koshiba, Masanori; Takenaga, Katsuhiro; Matsuo, Shouichiro

    2012-01-01

    The limitations of crosstalk and core-to-core distance in step-index multi-core fibers (SI-MCFs) are clarified for long-haul transmission, and the low-crosstalk MCF structures of trench-assisted MCFs (TA-MCFs) are investigated for realizing large effective area (Aeff) and high core density, simultaneously, with a limited cladding diameter. It is shown that the crosstalk between neighboring cores in TA-MCFs can be greatly suppressed even if the Aeff and the cutoff wavelength are fixed compared with SI-MCFs. In addition, the possibility of MCFs with heterogeneous core arrangement is considered for transmission fibers and low-crosstalk heterogeneous MCFs with bending radius insensitive characteristics are investigated.

  18. Delivery of an ultrashort spatially focused pulse to the other end of a multimode fiber using digital phase conjugation

    NASA Astrophysics Data System (ADS)

    Morales Delgado, Edgar E.; Papadopoulos, Ioannis N.; Farahi, Salma; Psaltis, Demetri; Moser, Christophe

    2015-03-01

    Multimode optical fibers potentially allow the transmission of larger amounts of information than their single mode counterparts because of their high number of supported modes. However, propagation of a light pulse through a multimode fiber suffers from spatial distortions due to the superposition of the various exited modes and from time broadening due to modal dispersion. We present a method based on digital phase conjugation to selectively excite in a multimode fiber specific optical fiber modes that follow similar optical paths as they travel through the fiber. The excited modes interfere constructively at the fiber output generating an ultrashort spatially focused pulse. The excitation of a limited number of modes following similar optical paths limits modal dispersion, allowing the transmission of the ultrashort pulse. We have experimentally demonstrated the delivery of a focused spot of pulse width equal to 500 fs through a 30 cm, 200 micrometer core step-index multimode fiber. The results of this study show that two-photon imaging capability can be added to ultra-thin lensless endoscopy using commercial multimode fibers.

  19. Fiber Bragg grating inscription with UV femtosecond exposure and two beam interference for fiber laser applications

    NASA Astrophysics Data System (ADS)

    Becker, Martin; Brckner, Sven; Lindner, Eric; Rothhardt, Manfred; Unger, Sonja; Kobelke, Jens; Schuster, Kay; Bartelt, Hartmut

    2010-06-01

    Fiber Bragg grating based fiber lasers are promising for stable all fiber laser solutions. Standard methods for fiber Bragg gratings in fiber lasers apply germanium doped passive fibers which are connected to the amplifier section of the fiber laser with a splice. The connection is usually recoated using a low-index polymer coating to maintain guidance properties for the pump light. At high pump powers the spliced connections are affected by absorbed pump light and are prone to thermal degradation. Fiber Bragg gratings made with femtosecond laser exposure allow the direct inscription of resonator mirrors for fiber lasers into the amplifying section of the fiber laser. Such a technology has a number of advantages. The number of splices in the laser cavity is reduced. Fiber Bragg grating inscription does not relay on hydrogenation to increase the photosensitivity of the fiber. This is of special interest since hydrogen loading in large mode area fibers is a time consuming procedure due to the diffusion time of hydrogen in silica glass. Finally, one gets direct access to fiber Bragg gratings in air-clad fibers. In this paper we use a two beam interferometric inscription setup in combination with an frequency tripled femtosecond laser for grating inscription. It allows to write fiber Bragg gratings in rare earth doped fibers with a reflection wavelength span that covers the Ytterbium amplification band. Reflections with values higher than 90% have been realized.

  20. Fiber Techniques

    ERIC Educational Resources Information Center

    Nalle, Leona

    1976-01-01

    Describes a course in fiber techniques, which covers design methods involving fibers and fabric, that students in the Art Department at Sleeping Giant Junior High School had the opportunity to learn. (Author/RK)

  1. An SMS fiber structure based on chalcogenide multimode fiber

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Brambilla, Gilberto; Ding, Ming; Zhang, Xueliang; Semenova, Yuliya; Wu, Qiang; Farrell, Gerald

    2012-06-01

    We theoretically and experimentally investigate a singlemode-multimode-singlemode (SMS) structure based on chalcogenide (As2S3) multimode fiber and conventional silica singlemode fibers. The experimental results show a general agreement with the numerical simulation results based on a wide angle-beam propagation method (WA-BPM). The chalcogenide fiber and silica fibers were mechanically spliced and packaged using a UV cured polymer with a low refractive index on a microscope slide. Multimode interference variation was observed by photo-induced refractive index changes resulting from both a localized laser irradiation at a wavelength of 405 nm and a UV lamp. Our result provides a platform for the development of compact, high-optical-quality, and robust photonic nonlinear devices.

  2. Fiber optic sensor for angular position measurement: application for an electrical power-assisted steering system

    NASA Astrophysics Data System (ADS)

    Javahiraly, Nicolas; Chakari, Ayoub

    2013-05-01

    To achieve a very effective automotive power steering system, we need two important data, the angular position of the wheel and the torque applied on the shaft by the driver of the car. We present a new accurate optical fiber angular position sensor connected to an automotive power steering column. In this new design, the sensor allows the measurement of the angular position of a car steering wheel over a large and adjustable range ( several turns of the wheel). The wheel rotation induces micro-bending in the transducer part of the optical fiber sensing system. This system operates as an amplitude modulation sensor based on mode coupling in the transducing fiber in the case when all the modes are equally excited. We study the sensor response both theoretically and experimentally with a multimode step index optical fiber [rf (fiber radius) = 300 ?m rc (core radius) = 50 ?m nc (core index) = 1,457; N.A. = 0, 22 and the wavelength is 632,8 nm at the ambient Temperature (20C)]. We show that the sensitivity can be controlled as a function of the sensor's length. We compare modeling and experimental validation and we conclude with a perspective on what could soon be an industrial sensor.

  3. Wavelength dependent measurements of optical fiber transit time, material dispersion, and attenuation

    SciTech Connect

    COCHRANE,KYLE ROBERT; BAILEY,JAMES E.; LAKE,PATRICK WAYNE; CARLSON,ALAN L.

    2000-04-18

    A new method for measuring the wavelength dependence of the transit time, material dispersion, and attenuation of an optical fiber is described. The authors inject light from a 4-ns risetime pulsed broad-band flashlamp into various length fibers and record the transmitted signals with a time-resolved spectrograph. Segments of data spanning an approximately 3,000 {angstrom} range are recorded from a single flashlamp pulse. Comparison of data acquired with short and long fibers enables the determination of the transit time and the material dispersion as functions of wavelength dependence for the entire recorded spectrum simultaneously. The wavelength dependent attenuation is also determined from the signal intensities. The method is demonstrated with experiments using a step index 200-{micro}m-diameter SiO{sub 2} fiber. The results agree with the transit time determined from the bulk glass refractive index to within {+-} 0.035% for the visible (4,000--7,200 {angstrom}) spectrum and 0.12% for the ultraviolet (2,650--4,000 {angstrom}) spectrum, and with the attenuation specified by the fiber manufacturer to within {+-} 10%.

  4. A transmission line model for propagation in elliptical core optical fibers

    NASA Astrophysics Data System (ADS)

    Georgantzos, E.; Papageorgiou, C.; Boucouvalas, A. C.

    2015-12-01

    The calculation of mode propagation constants of elliptical core fibers has been the purpose of extended research leading to many notable methods, with the classic step index solution based on Mathieu functions. This paper seeks to derive a new innovative method for the determination of mode propagation constants in single mode fibers with elliptic core by modeling the elliptical fiber as a series of connected coupled transmission line elements. We develop a matrix formulation of the transmission line and the resonance of the circuits is used to calculate the mode propagation constants. The technique, used with success in the case of cylindrical fibers, is now being extended for the case of fibers with elliptical cross section. The advantage of this approach is that it is very well suited to be able to calculate the mode dispersion of arbitrary refractive index profile elliptical waveguides. The analysis begins with the deployment Maxwell's equations adjusted for elliptical coordinates. Further algebraic analysis leads to a set of equations where we are faced with the appearance of harmonics. Taking into consideration predefined fixed number of harmonics simplifies the problem and enables the use of the resonant circuits approach. According to each case, programs have been created in Matlab, providing with a series of results (mode propagation constants) that are further compared with corresponding results from the ready known Mathieu functions method.

  5. Dietary Fiber

    MedlinePLUS

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble ... types have important health benefits. Good sources of dietary fiber include Whole grains Nuts and seeds Fruit and ...

  6. FLAX FIBERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flax (Linum usitatissimum L.) is a versatile plant, supplying both fiber and seed for industrial uses. The long, strong fibers processed for linen are prized for comfort and appearance in textiles, while shorter fibers are used in textile blends and for specialty paper, reinforced composites, and a...

  7. Theory and modeling of photodarkening-induced quasi static degradation in fiber amplifiers.

    PubMed

    Ward, Benjamin

    2016-02-22

    A theory of photodarkening-induced quasi-static degradation in fiber amplifiers is presented. As the doped core of a fiber photodarkens and continues to absorb more power converting it to heat, the intensity grating created by higher order mode interference with the fundamental mode moves toward the input end. This creates a persistent absorption grating that remains phase-shifted from the modal interference pattern. This leads to power transfer from the fundamental mode to a higher order mode with a very small frequency offset that occurs on a time scale of minutes to hours. This process is modeled in large mode area step index and photonic crystal fibers and is found to produce reasonable threshold values. PMID:26907007

  8. Fiber Optic Velocity Interferometry

    SciTech Connect

    Neyer, Barry T.

    1988-04-01

    This paper explores the use of a new velocity measurement technique that has several advantages over existing techniques. It uses an optical fiber to carry coherent light to and from a moving target. A Fabry-Perot interferometer, formed by a gradient index lens and the moving target, produces fringes with a frequency proportional to the target velocity. This technique can measure velocities up to 10 km/s, is accurate, portable, and completely noninvasive.

  9. [Carbohydrates and fiber].

    PubMed

    Lajolo, F M; de Menezes, E W; Filisetti-Cozzi, T M

    1988-09-01

    Dietary carbohydrates comprise two fractions that may be classified as digestible, and which are useful as energy sources (simple and complex carbohydrates) and fiber, which is presumed to be of no use to the human body. There are insufficient epidemiologic data on the metabolic effects of simple carbohydrates and it is not advisable to make quantitative recommendations of intake. It is questionable to recommend in developing countries that a fixed proportion of dietary energy be derived from simple sugars, due to the high prevalence of deficient energy intake, cultural habits, and regional differences in food intake and physical activity. In relation to recommendations of complex carbohydrates, it should be considered that their absorption is influenced by many factors inherent to the individual and to the foods. Fiber is defined as a series of different substances derived from tissue structures, cellular residues and undigested chemical substances that may be partially utilized after intestinal bacteria have acted on them. There is not a clear definition of the chemical composition of fiber, but it consists mainly of polysaccharides (such as cellulose, hemicellulose and pectins), lignin and end products of the interactions of various food components. The effects of fiber, such as control of food intake, regulation of gastrointestinal transit, post-prandial blood concentrations of cholesterol, glucose and insulin, flatulence and alterations in nutrient bioavailability are due to various physical properties inherent to its chemical components. Impairment of nutrient absorption may be harmful, mainly among populations whose food intake is lower than their energy needs, and with a high fiber content. This may be particularly important in pregnant women, growing children and the elderly, and should be considered when making nutrient recommendations. A precise knowledge of fiber is also important to calculate the real energy value of foods, mainly for two reasons: 1) the proportion of "crude fiber" (as measured by acid and alkaline digestion) leads to an over-estimation of the proportion of digestible carbohydrates calculated by difference; 2) fiber may alter the polysaccharide utilization of some foods, as shown by the "glycemic index". It is difficult to make recommendations on dietary fiber due to insufficient data on intake, fiber composition, its physiological effects, and epidemiological studies. However, a preliminary evaluation of the diets from most Latin American countries shows large intakes of vegetable foods and, consequently, an adequate fiber intake may be expected. PMID:2856370

  10. Investigations on birefringence effects in polymer optical fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Hu, X.; Sez-Rodrguez, D.; Bang, O.; Webb, D. J.; Caucheteur, C.

    2014-05-01

    Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyser. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. The response to lateral force was finally investigated. As it induces birefringence in addition to the photo-induced one, an increase of the PDL and DGD values were noticed.

  11. Carbon Fibers Conductivity Studies

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.; Butkus, A. M.

    1980-01-01

    In an attempt to understand the process of electrical conduction in polyacrylonitrile (PAN)-based carbon fibers, calculations were carried out on cluster models of the fiber consisting of carbon, nitrogen, and hydrogen atoms using the modified intermediate neglect of differential overlap (MINDO) molecular orbital (MO) method. The models were developed based on the assumption that PAN carbon fibers obtained with heat treatment temperatures (HTT) below 1000 C retain nitrogen in a graphite-like lattice. For clusters modeling an edge nitrogen site, analysis of the occupied MO's indicated an electron distribution similar to that of graphite. A similar analysis for the somewhat less stable interior nitrogen site revealed a partially localized II electron distribution around the nitrogen atom. The differences in bonding trends and structural stability between edge and interior nitrogen clusters led to a two-step process proposed for nitrogen evolution with increasing HTT.

  12. Resonantly pumped amplification in a Tm-doped large mode-area photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Sincore, Alex; Shah, Lawrence; Wysmolek, Mateusz; Ryan, Robert; Abdulfattah, Ali; Richardson, Martin

    2015-03-01

    Ultra-large mode area thulium-doped photonic crystal fibers (Tm:PCF) have enabled the highest peak powers in 2 micron fiber laser systems to date. However, Tm:PCFs are limited by slope efficiencies of <50% when pumped with 790 nm laser diodes. A well-known alternative is pumping at 1550 nm with erbium/ytterbium-doped fiber (Er/Yb:fiber) lasers for efficiencies approaching ~70%. However, these 1550 nm pump lasers are also relatively inefficient themselves. A recently demonstrated and more attractive approach to enable slope efficiencies over 90% in thuliumdoped step-index fibers is resonant pumping (or in-band pumping). This utilizes a high power thulium fiber laser operating at a shorter wavelength as the pump. In this manuscript, we describe an initial demonstration of resonant pumping in Tm:PCF. While the extracted power was still in the exponential regime due to pump power limitations, slope efficiencies in excess of ~64 have been observed, and there is still room for improvement. These initial results show promise for applying resonant pumping in Tm:PCF to improve efficiencies and facilitate high power scaling in ultralarge mode area systems.

  13. Optical and spectroscopic characterization of Er3+-Yb3+co-doped tellurite glasses and fibers

    NASA Astrophysics Data System (ADS)

    Narro-Garca, R.; Desirena, H.; Chillcce, E. F.; Barbosa, L. C.; Rodriguez, E.; De la Rosa, E.

    2014-04-01

    Optical and spectroscopic properties of Er3+-Yb3+ co-doped TeO2-WO3-Nb2O5-Na2O-Al2O3 glasses and fibers were investigated. Emission spectra and fluorescence lifetimes of 4I13/2 level of Er3+ion as a function of rare earth concentration and fiber length were measured in glasses. Results show that the self-absorption effect broadens the spectral bandwidth of 4I13/2?4I15/2 transition and lengthens the lifetime significantly from 3.5 to 4.6 ms. Fibers were fabricated by the rod-in-tube technique using a Heathway drawing tower. The emission power of these Er3+-Yb3+ co-doped Step Index Tellurite Fibers (SITFs; lengths varying from 2 to 60 cm) were generated by a 980 nm diode laser pump and then the emission power spectra were acquired with an OSA. The maximum emission power spectra, within the 1530-1560 nm region, were observed for fiber lengths ranging from 3 to 6 cm. The highest bandwidth obtained was 108 nm for 8 cm fiber length around 1.53 m.

  14. Carbon fiber production using high pressure treatment of a precursor material

    SciTech Connect

    Lewis, I.C.; Moore, A.W.

    1983-09-06

    A process for producing a carbon fiber includes the steps of heat treating a selected precursor material under high pressure, thereafter solvent extracting the treated precursor material to obtain mesophase pitch, spinning the mesophase pitch into at least one pitch fiber, thermosetting the pitch fiber, and carbonizing the pitch fiber to obtain the carbon fiber.

  15. Simple method of fabrication tapered fiber

    NASA Astrophysics Data System (ADS)

    Vega, Fabio; Torres, Cesar; Diaz, Leonardo; Mattos, L.

    2013-11-01

    This paper presents a simple method for manufacturing fiber tapered through elongation, by the combination of heating with a butane torch and controlled stretch. Reducing the diameter of the multimode fiber of 100 microns to 10 microns, the displacement of the fiber is performed through bipolar stepping motors with one driver L293B and one PIC16F628A microcontroller for controlling movement. The system allows control of the desired fiber diameter up to 10 microns; the results are seen in a microscope and a rule of separation 2.5?m micrometer to calculate the diameter of the fiber.

  16. Characterization of double-clad thulium-doped fiber with increased quantum conversion efficiency

    NASA Astrophysics Data System (ADS)

    Aubrecht, Jan; Cajzl, Jakub; Peterka, Pavel; Honztko, Pavel; Koka, Pavel; Baravets, Yauhen; Becker, Martin; Podrazk, Ond?ej; Todorov, Filip; Kak, Ivan

    2015-05-01

    In this paper we present experimental results of characterization of the experimentally prepared thulium-doped optical fibers in double-clad hexagonal fiber geometry for cladding optical pumping at a wavelength of 793 nanometers. The fiber was fabricated by the modified chemical vapor deposition and solution doping method and coated with polymer with lower refractive index than silica. The fiber was characterized in views of its refractive index profiles, thulium ions concentration, spectral absorptions, fluorescence lifetime, and performance in fiber laser.

  17. Thermal activation of regenerated fiber Bragg grating in few mode fibers

    NASA Astrophysics Data System (ADS)

    Lai, Man-Hong; Gunawardena, Dinusha S.; Lim, Kok-Sing; Machavaram, Venkata R.; Lee, Say-Hoe; Chong, Wu-Yi; Lee, Yen-Sian; Ahmad, Harith

    2016-03-01

    This work demonstrated for the first time, the thermal regeneration of two and four modes graded index fiber Bragg gratings using high temperature tube furnace. During the regeneration process, the seed grating is erased and a new grating with lower index contrast is formed. The thermal calibration shows that the temperature sensitivity of regenerated grating is slightly higher for fiber with larger core. On the other hand, the regeneration temperature is lower for fiber with smaller core. The temperature sustainability up to 900 °C is observed for the produced regenerated gratings in few mode fibers.

  18. Fiber optic level sensor for cryogens

    NASA Technical Reports Server (NTRS)

    Sharma, M.

    1981-01-01

    Sensor is useful in cryogenic environments where liquids of very low index of refraction are encountered. It is "yes/no" indication of whether liquid is in contact with sensor. Sharp bends in fiber alter distribution of light among propagation modes. This amplifies change in light output observed when sensor contacts liquid, without requiring long fiber that would increse insertion loss.

  19. Experiments on room temperature optical fiber-fiber direct bonding

    NASA Astrophysics Data System (ADS)

    Hao, Jinping; Yan, Ping; Xiao, Qirong; Wang, Yaping; Gong, Mali

    2012-08-01

    High quality permanent connection between optical fibers is a significant issue in optics and communication. Studies on room temperature optical large diameter fiber-fiber direct bonding, which is essentially surface interactions of glass material, are presented here. Bonded fiber pairs are obtained for the first time through the bonding technics illustrated here. Two different kinds of bonding technics are provided-fresh surface (freshly grinded and polished) bonding and hydrophobic surface (activated by H2SO4 and HF) bonding. By means of fresh surface bonding, a bonded fiber pair with light transmitting efficiency of 98.1% and bond strength of 21.2 N is obtained. Besides, in the bonding process, chemical surface treatment of fibers' end surfaces is an important step. Therefore, various ways of surface treatment are analyzed and compared, based on atomic force microscopy force curves of differently disposed surfaces. According to the comparison, fresh surfaces are suggested as the prior choice in room temperature optical fiber-fiber bonding, owing to their larger adhesive force, attractive force, attractive distance, and adhesive range.

  20. "Photonic lantern" spectral filters in multi-core Fiber.

    PubMed

    Birks, T A; Mangan, B J; Dez, A; Cruz, J L; Murphy, D F

    2012-06-18

    Fiber Bragg gratings are written across all 120 single-mode cores of a multi-core optical Fiber. The Fiber is interfaced to multimode ports by tapering it within a depressed-index glass jacket. The result is a compact multimode "photonic lantern" filter with astrophotonic applications. The tapered structure is also an effective mode scrambler. PMID:22714465

  1. An Incorrect Index of Skewness.

    ERIC Educational Resources Information Center

    Pettibone, Timothy J.; Diamond, James J.

    Checking of parametric assumptions is an often ignored step in the inferential process. A misconception regarding symmetry (one aspect of "robustness") is prevalent: that in nonsymmetric distributions the mean and median are always non-coincidental. It is to this fallacious point that the discussion is directed. A generally accepted index of…

  2. Multi-wavelength fiber laser based on a fiber Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Estudillo-Ayala, J. M.; Jauregui-Vazquez, D.; Haus, J. W.; Perez-Maciel, M.; Sierra-Hernandez, J. M.; Avila-Garcia, M. S.; Rojas-Laguna, R.; Lopez-Dieguez, Y.; Hernandez-Garcia, J. C.

    2015-12-01

    In this work we report experimental studies of an erbium-doped fiber laser design that simultaneously emits up to three wavelengths. The laser cavity configuration has an all-fiber, Fabry-Perot interferometer, based on the insertion of air cavities in the fiber, near one end of a conventional single-mode fiber. The laser emissions have a side-mode suppression ratio over 25 dB, wavelength variations around 0.04 nm, and 2 dB power fluctuations. By using a simple, controlled fiber curvature technique cavity losses are varied over a section of convectional single-mode fiber and the laser output is switched between single-, dual-, and triple-wavelength emission. Moreover, by applying a refractive index change over the fiber filter the emission wavelengths are shifted. The fiber laser offers a compact, simple, and low-cost design for a multiple wavelength outputs that can be adopted in future applications.

  3. Wide-band dual-mode operation of multi-core fibers with air-hole structure

    NASA Astrophysics Data System (ADS)

    Lin, Zhen; Ren, Guobin; Zheng, Siwen; Jian, Shuisheng

    2013-10-01

    A novel multi-core dual-mode fiber consisting of 11 cores with eight air holes for wide-band dual-mode operation is proposed in this paper. Modal properties, operation range and effective area affected by core-to-core distance, core-to-pitch ratio, relative index difference and center core diameter are investigated systematically. For 11-core dual-mode fiber with air-hole structure, simulation shows that it can support both a strict dual-mode operation (propagation in HE11 mode and HE21 mode only) and low bending losses (less than 0.8 dB/m at R>0.20 m), meanwhile maintaining a large effective area up to 1120.33 ?m2. With a proper design of structural parameters the effective area of the 11-core dual-mode could be even higher. It has great advantages over conventional few-mode fibers, multi-core fibers and step-index single-mode fibers in terms of less mode coupling, larger effective area and lower bending loss.

  4. Fiber-based optofluidics

    NASA Astrophysics Data System (ADS)

    Domachuk, P.; Eggleton, B. J.

    2007-05-01

    Optofluidics is the combination of photonic and microfluidic technologies to achieve enhanced functionality and compactness in devices with applications in sensing, chemistry, biomedical engineering, photonic devices and fundamental microfluidics research. Such a broad definition of the field lends itself many embodiments. Fiber optics provides a unique and versatile platform for building optofluidic devices. Optical fibers can be used not only in their traditional role, acting as a high quality waveguide for delivering light to an optofluidic device. Microstructured optical fibers and the voids that constitute them can provide a home for the fluid phase. Photonic crystal fibers, for example, can be filled with fluids to change the band gap properties of the fiber. The use of the fluid phase to tune photonic structures has several benefits. The fluid phase is inherently mobile allowing the tuning medium to be dynamically reconfigured through any connected aperture of the device. The nature of the fluid can also be adjusted through its chemistry, allowing for a very broad range of optical properties thus further enhancing tunability. Very high refractive index contrasts can be obtained between the fluid phase and the surrounding air, which can lead to great compactness in interferometric devices and novel, tunable, interferometric structures such as the single beam interferometer presented here. One of the great utilities of optofluidic devices is that where a photonic structure is tuned using microfluidics, the same structure can be used in reverse, where a photonic structure is exposed to an unknown fluid and can act as a sensor. A fiber Fabry-Perot is utilized here to measure the concentration of saline.

  5. Low cost fiber optic sensing of sugar solution

    NASA Astrophysics Data System (ADS)

    Muthuraju, M. E.; Patlolla, Anurag Reddy; Vadakkapattu Canthadai, Badrinath; Pachava, Vengalrao

    2015-03-01

    The demand for highly sensitive and reliable sensors to assess the refractive index of liquid get many applications in chemical and biomedical areas. Indeed, the physical parameters such as concentration, pressure and density, etc., can be found using the refractive index of liquid. In contrast to the conventional refractometer for measurement, optical fiber sensor has several advantages like remote sensing, small in size, low cost, immune to EMI etc., In this paper we have discussed determination of refractive index of sugar solution using optical fiber. An intensity modulated low cost plastic fiber optic refractive index sensor has been designed for the study. The sensor is based on principle of change in angle of reflected light caused by refractive index change of the medium surrounding the fiber. The experimental results obtained for the sugar solution of different refractive indices prove that the fiber optic sensor is cable of measuring the refractive indices as well as the concentrations.

  6. A Statistical Analysis of Cotton Fiber Properties

    NASA Astrophysics Data System (ADS)

    Ghosh, Anindya; Das, Subhasis; Majumder, Asha

    2015-10-01

    This paper reports a statistical analysis of different cotton fiber properties, such as strength, breaking elongation, upper half mean length, length uniformity index, short fiber index, micronaire, reflectance and yellowness measured from 1200 cotton bales. The uni-variate, bi-variate and multi-variate statistical analysis have been invoked to elicit interrelationship between above-mentioned properties taking them up singularly, pairwise and multiple way, respectively. In multi-variate analysis all cotton fiber properties are simultaneously considered for multi-dimensional techniques of principal factor analysis.

  7. Multiplexed displacement fiber sensor using thin core fiber exciter.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2015-06-01

    This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (< - 75 dB) was employed to probe the refractive index discontinuity between the air and buffer coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors. PMID:26133865

  8. Multiplexed displacement fiber sensor using thin core fiber exciter

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2015-06-01

    This letter reports a multiplexed optical displacement sensor using a thin core fiber (TCF) exciter. The TCF exciter is followed by a stripped single mode optical fiber. A small section of buffer is used as the movable component along the single mode fiber. Ultra-weak cladding mode reflection (< - 75 dB) was employed to probe the refractive index discontinuity between the air and buffer coating boundary. The position change of the movable buffer segment results in a delay change of the cladding mode reflection. Thus, it is a measure of the displacement of the buffer segment with respect to the glass fiber. The insertion loss of one sensor was measured to be less than 3 dB. A linear relationship was evaluated between the measurement position and absolute position of the moving actuator. Multiplexed capability was demonstrated and no cross talk was found between the sensors.

  9. Coating Carbon Fibers With Platinum

    NASA Technical Reports Server (NTRS)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  10. Distributed fiber optical HC leakage and pH sensing techniques for implementation into smart structures

    NASA Astrophysics Data System (ADS)

    Buerck, Jochen M.; Vogel, Bernhard H.; Roth, Siegmar; Ebrahimi, Sasan; Kraemer, Karl

    2004-07-01

    Interaction of target molecules with the evanescent wave of light guided in optical fibers is among the most promising sensing schemes for building up smart chemical sensor technologies. If the technique of optical time domain reflectometry (OTDR) is combined with silicone-clad quartz glass fibers distributed chemical sensing is possible. Hydrocarbon (HC) detection and location is done by automated identification of the position of the corresponding step drop (light loss) in the backscatter signal induced by local refractive index increase in the silicone cladding due to a penetrating HC compound. A commercially available mini-OTDR was adapted to sensing fibers of up to nearly 2-kilometer length and location of typical HC fuels could be demonstrated. The instrument is applicable for fuel leakage monitoring in large technical installations such as tanks or pipelines with spatial resolution down to 1 m. A similar technique using measurements in the Vis spectral range is being developed for health monitoring of large structures, e.g., for early detection of corrosion caused by water ingress and pH changes in reinforced concrete. Here, a pH indicator dye and a phase transfer reagent are immobilized in the originally hydrophobic fiber cladding, leading to a pH induced absorption increase and a step drop signal in the backscatter curve. The configuration of the distributed sensing cables, the instrumental setups, and examples for HC and pH sensing are presented.

  11. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  12. Interferometric Fiber Optic Sensors

    PubMed Central

    Lee, Byeong Ha; Kim, Young Ho; Park, Kwan Seob; Eom, Joo Beom; Kim, Myoung Jin; Rho, Byung Sup; Choi, Hae Young

    2012-01-01

    Fiber optic interferometers to sense various physical parameters including temperature, strain, pressure, and refractive index have been widely investigated. They can be categorized into four types: Fabry-Perot, Mach-Zehnder, Michelson, and Sagnac. In this paper, each type of interferometric sensor is reviewed in terms of operating principles, fabrication methods, and application fields. Some specific examples of recently reported interferometeric sensor technologies are presented in detail to show their large potential in practical applications. Some of the simple to fabricate but exceedingly effective Fabry-Perot interferometers, implemented in both extrinsic and intrinsic structures, are discussed. Also, a wide variety of Mach-Zehnder and Michelson interferometric sensors based on photonic crystal fibers are introduced along with their remarkable sensing performances. Finally, the simultaneous multi-parameter sensing capability of a pair of long period fiber grating (LPG) is presented in two types of structures; one is the Mach-Zehnder interferometer formed in a double cladding fiber and the other is the highly sensitive Sagnac interferometer cascaded with an LPG pair. PMID:22736961

  13. Optical Fiber Protection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  14. Optical Fibers

    NASA Astrophysics Data System (ADS)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  15. Wetting morphologies on randomly oriented fibers.

    PubMed

    Sauret, Alban; Boulogne, Franois; Soh, Beatrice; Dressaire, Emilie; Stone, Howard A

    2015-06-01

    We characterize the different morphologies adopted by a drop of liquid placed on two randomly oriented fibers, which is a first step toward understanding the wetting of fibrous networks. The present work reviews previous modeling for parallel and touching crossed fibers and extends it to an arbitrary orientation of the fibers characterized by the tilting angle and the minimum spacing distance. Depending on the volume of liquid, the spacing distance between fibers and the angle between the fibers, we highlight that the liquid can adopt three different equilibrium morphologies: 1) a column morphology in which the liquid spreads between the fibers, 2) a mixed morphology where a drop grows at one end of the column or 3) a single drop located at the node. We capture the different morphologies observed using an analytical model that predicts the equilibrium configuration of the liquid based on the geometry of the fibers and the volume of liquid. PMID:26123768

  16. A proteome quality index.

    PubMed

    Zaucha, Jan; Stahlhacke, Jonathan; Oates, Matt E; Thurlby, Natalie; Rackham, Owen J L; Fang, Hai; Smithers, Ben; Gough, Julian

    2015-01-01

    We present the Proteome Quality Index (PQI; http://pqi-list.org), a much-needed resource for users of bacterial and eukaryotic proteomes. Completely sequenced genomes for which there is an available set of protein sequences (the proteome) are given a one- to five-star rating supported by 11 different metrics of quality. The database indexes over 3000 proteomes at the time of writing and is provided via a website for browsing, filtering and downloading. Previous to this work, there was no systematic way to account for the large variability in quality of the thousands of proteomes, and this is likely to have profoundly influenced the outcome of many published studies, in particular large-scale comparative analyses. The lack of a measure of proteome quality is likely due to the difficulty in producing one, a problem that we have approached by integrating multiple metrics. The continued development and improvement of the index will require the contribution of additional metrics by us and by others; the PQI provides a useful point of reference for the scientific community, but it is only the first step towards a 'standard' for the field. PMID:25339269

  17. Fiber optic fluid detector

    DOEpatents

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  18. Fiber optic fluid detector

    DOEpatents

    Angel, S. Michael (Livermore, CA)

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  19. Effective index model predicts modal frequencies of vertical-cavity lasers

    SciTech Connect

    SERKLAND,DARWIN K.; HADLEY,G. RONALD; CHOQUETTE,KENT D.; GEIB,KENT M.; ALLERMAN,ANDREW A.

    2000-04-18

    Previously, an effective index optical model was introduced for the analysis of lateral waveguiding effects in vertical-cavity surface-emitting lasers. The authors show that the resultant transverse equation is almost identical to the one typically obtained in the analysis of dielectric waveguide problems, such as a step-index optical fiber. The solution to the transverse equation yields the lateral dependence of the optical field and, as is recognized in this paper, the discrete frequencies of the microcavity modes. As an example, they apply this technique to the analysis of vertical-cavity lasers that contain thin-oxide apertures. The model intuitively explains the experimental data and makes quantitative predictions in good agreement with a highly accurate numerical model.

  20. Large effective-area fibers

    NASA Astrophysics Data System (ADS)

    Safaai-Jazi, Ahmad; Hattori, H. T.; Baghdadi, J. A.

    1999-04-01

    Refractive-index nonlinearities have negligible effect on the performance of short-haul fiber-optic communication links utilizing electronic repeaters. However, in long optical fiber links, nonlinearities can cause severe signal degradations. To mitigate nonlinear effects, new generation of fibers, referred to as large effective-area fibers, have been introduced in recent years. This paper reviews the latest research and development work on these fibers conducted by several research groups around the world. Attention is focused on a class of large effective-area fibers that are based on a depressed-core multiple-cladding design. Transmission properties, including dispersion, dispersion slope, effective area, mode-field diameter, bending loss, polarization-mode dispersion, and cutoff wavelength are discussed. Dispersion-shifted, non-zero dispersion-shifted, and dispersion-flattened designs are addressed. Design optimization, particularly with regard to effective area, bending loss, and polarization-mode dispersion, is elaborated upon. The trade-off between effective-area and bending loss is emphasized. Results for dispersion-shifted and non-zero dispersion-shifted large effective-area fibers with zero polarization-mode dispersion and low bending loss at 1.55 micrometer wavelength are presented.

  1. Automatic inference of indexing rules for MEDLINE

    PubMed Central

    Nvol, Aurlie; Shooshan, Sonya E; Claveau, Vincent

    2008-01-01

    Background: Indexing is a crucial step in any information retrieval system. In MEDLINE, a widely used database of the biomedical literature, the indexing process involves the selection of Medical Subject Headings in order to describe the subject matter of articles. The need for automatic tools to assist MEDLINE indexers in this task is growing with the increasing number of publications being added to MEDLINE. Methods: In this paper, we describe the use and the customization of Inductive Logic Programming (ILP) to infer indexing rules that may be used to produce automatic indexing recommendations for MEDLINE indexers. Results: Our results show that this original ILP-based approach outperforms manual rules when they exist. In addition, the use of ILP rules also improves the overall performance of the Medical Text Indexer (MTI), a system producing automatic indexing recommendations for MEDLINE. Conclusion: We expect the sets of ILP rules obtained in this experiment to be integrated into MTI. PMID:19025687

  2. Beam Quality after Propagation of Nd:YAG Laser Light through Large-Core Optical Fibers

    NASA Astrophysics Data System (ADS)

    Kuhn, Andreas; Blewett, Ian J.; Hand, Duncan P.; Jones, Julian D. C.

    2000-12-01

    Laser beam characteristics are altered during propagation through large-core optical fibers. The distribution of modes excited by the input laser beam is modified by means of mode coupling on transmission through the fiber, leading to spatial dispersion of the profile and, ultimately and unavoidably, to degradation in the quality of the delivered beam unless the beam is spatially filtered with consequent power loss. Furthermore, a mismatch between the intensity profile of a typical focused high-power laser beam and the profile of the step-index fiber gives rise to additional beam-quality degradation. Modern materials processing applications demand ever higher delivered beam qualities (as measured by a parameter such as M 2 ) to achieve greater machining precision and efficiency, a demand that is currently in conflict with the desire to utilize the convenience and flexibility of large-core fiber-optic beam delivery. We present a detailed experimental investigation of the principal beam-quality degradation effects associated with fiber-optic beam delivery and use numerical modeling to aid an initial discussion of the causes of such degradation.

  3. Registration of TTU-0782 upland cotton germplasm line with superior fiber quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A germplasm line of upland cotton (Gossypium hirsutum L.) designated as TTU 0782 with improved fiber quality was developed. It possesses longer fiber length, higher fiber bundle strength, high uniformity index, low short fiber content, high maturity ratio, and low nep counts. Spinning tests also ind...

  4. The segal crystallinity index as it relates to crystallite size

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers are composed of crystals of cellulose that yield a diffraction pattern, although fibers from varying sources and histories are said to have different degrees of crystallinity. There are many methods to assess this crystallinity. One of the most popular is the Segal Crystallinity Index ...

  5. Refractive index determination in axially symmetric oprtically inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Ionescu-Pallas, Nicholas; Vlad, Valentin I.; Bociort, Florian

    The focussing method from transversally light, put forward by Dietrich Marcuse in view of determining the refractive index profile (RIP) in optical fibers and fiber performs, is revised. A more rigorous derivation of the Marcuse formula is given, establishing the conditions of its validity and a simplified version is initially proposed, able to avoid the systematic errors in the processing of light intensity data.

  6. Fireblocking Fibers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    PBI was originally developed for space suits. In 1980, the need for an alternative to asbestos and stricter government anti-pollution standards led to commercialization of the fire blocking fiber. PBI is used for auto racing driver suits and aircraft seat covers. The fiber does not burn in air, is durable and easily maintained. It has been specified by a number of airliners and is manufactured by Hoechst-Celanese Corporation.

  7. One Step Forward, Half a Step Backward?

    ERIC Educational Resources Information Center

    Russo, Charles J.

    2004-01-01

    More than thirty cases involving desegregation of public school systems handed down in the first 25 years after Brown v. Board of Education, Topeka, Kansas, by the U.S. Supreme Court are discussed. However, the last 25 years have resulted in a situation of having the nation taking one step forward and half a step backwards, due to the conditions

  8. Stepping motor controller

    SciTech Connect

    Bourret, S.C.; Swansen, J.E.

    1984-08-07

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  9. Step-Growth Polymerization.

    ERIC Educational Resources Information Center

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  10. Stepping motor controller

    DOEpatents

    Bourret, Steven C. (Los Alamos, NM); Swansen, James E. (Los Alamos, NM)

    1984-01-01

    A stepping motor is microprocessingly controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  11. Stepping motor controller

    DOEpatents

    Bourret, S.C.; Swansen, J.E.

    1982-07-02

    A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.

  12. Estimation of ovular fiber production in cotton

    SciTech Connect

    Van't Hof, Jack

    1998-09-01

    The present invention is a method for rendering cotton fiber cells that are post-anthesis and pre-harvest available for analysis of their physical properties. The method includes the steps of hydrolyzing cotton fiber cells and separating cotton fiber cells from cotton ovules thereby rendering the cells available for analysis. The analysis of the fiber cells is through any suitable means, e.g., visual inspection. Visual inspection of the cells can be accomplished by placing the cells under an instrument for detection, such as microscope or other means.

  13. Estimation of ovular fiber production in cotton

    SciTech Connect

    Van`t Hof, J.

    1998-09-01

    The present invention is a method for rendering cotton fiber cells that are post-anthesis and pre-harvest available for analysis of their physical properties. The method includes the steps of hydrolyzing cotton fiber cells and separating cotton fiber cells from cotton ovules thereby rendering the cells available for analysis. The analysis of the fiber cells is through any suitable means, e.g., visual inspection. Visual inspection of the cells can be accomplished by placing the cells under an instrument for detection, such as microscope or other means. 4 figs.

  14. Modal noise impact in radio over fiber multimode fiber links.

    PubMed

    Gasulla, I; Capmany, J

    2008-01-01

    A novel analysis is given on the statistics of modal noise for a graded-index multimode fiber (MMF) link excited by an analog intensity modulated laser diode. We present the speckle contrast as a function of the power spectrum of the modulated source and the transfer function of the MMF which behaves as an imperfect transversal microwave photonic filter. The theoretical results confirm that the modal noise is directly connected with the coherence properties of the optical source and show that the performance of high-frequency Radio Over Fiber (ROF) transmission through MMF links for short and middle reach distances is not substantially degraded by modal noise. PMID:18521139

  15. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    PubMed Central

    Zhu, Tao; Wu, Di; Liu, Min; Duan, De-Wen

    2012-01-01

    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It's known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented. PMID:23112608

  16. Rapid Quantification of 3D Collagen Fiber Alignment and Fiber Intersection Correlations with High Sensitivity

    PubMed Central

    Sun, Meng; Bloom, Alexander B.; Zaman, Muhammad H.

    2015-01-01

    Metastatic cancers aggressively reorganize collagen in their microenvironment. For example, radially orientated collagen fibers have been observed surrounding tumor cell clusters in vivo. The degree of fiber alignment, as a consequence of this remodeling, has often been difficult to quantify. In this paper, we present an easy to implement algorithm for accurate detection of collagen fiber orientation in a rapid pixel-wise manner. This algorithm quantifies the alignment of both computer generated and actual collagen fiber networks of varying degrees of alignment within 5. We also present an alternative easy method to calculate the alignment index directly from the standard deviation of fiber orientation. Using this quantitative method for determining collagen alignment, we demonstrate that the number of collagen fiber intersections has a negative correlation with the degree of fiber alignment. This decrease in intersections of aligned fibers could explain why cells move more rapidly along aligned fibers than unaligned fibers, as previously reported. Overall, our paper provides an easier, more quantitative and quicker way to quantify fiber orientation and alignment, and presents a platform in studying effects of matrix and cellular properties on fiber alignment in complex 3D environments. PMID:26158674

  17. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, Jeffrey D. (Lenoir City, TN)

    1997-01-01

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion.

  18. Concentric core optical fiber with multiple-mode signal transmission

    DOEpatents

    Muhs, J.D.

    1997-05-06

    A concentric core optical fiber provides for the simultaneous but independent transmission of signals over a single optical fiber. The concentric optical fiber is constructed of a single-mode or multimode inner optical fiber defined by a core and a cladding of a lower index of refraction than the core and an outer optical fiber defined by additional cladding concentrically disposed around the cladding and of an index of refraction lower than the first mentioned cladding whereby the latter functions as the core of the outer optical fiber. By employing such an optical fiber construction with a single-mode inner core or optical fiber, highly sensitive interferometric and stable less sensitive amplitude based sensors can be placed along the same length of a concentric core optical fiber. Also, by employing the concentric core optical fiber secure telecommunications can be achieved via the inner optical fiber since an intrusion of the concentric optical fiber will first cause a variation in the light being transmitted through the outer optical fiber and this variation of light being used to trigger a suitable alarm indicative of the intrusion. 3 figs.

  19. Simulation of the coherent MDM transmission using principal modes of the optical fiber as signal carriers

    NASA Astrophysics Data System (ADS)

    Lyubopytov, Vladimir S.; Zakirov, Robert A.; Vinogradova, Irina L.; Sultanov, Albert K.

    2015-03-01

    In this paper we demonstrate computer simulation results obtained for the coherent mode division multiplexed (MDM) 5x5 QPSK transmission using principal modes (PMs) of the stepped-index few-mode fiber (FMF) as a basis of independent signal carriers. The output signal recovering and the fiber propagation matrix determination are considered to be carried out in optical domain by means of reconfigurable multibranch diffractive optical elements (DOEs). Both the cases of Gaussian and Nyquist raised-cosine pulse shaping are considered for optical signal modulation. The simulation results show, that the transmission in the basis of PMs in strong coupling regime allows the reliability of the coherent MDM system to be fundamentally improved. As a result, utilization of the optical signal processing for MDM transmission could minimize substantially the DSP circuit complexity required for the real-time recovering of the transmitted signal.

  20. Optimization and Application of Reflective LSPR Optical Fiber Biosensors Based on Silver Nanoparticles

    PubMed Central

    Chen, Jiangping; Shi, Se; Su, Rongxin; Qi, Wei; Huang, Renliang; Wang, Mengfan; Wang, Libing; He, Zhimin

    2015-01-01

    In this study, we developed a reflective localized surface plasmon resonance (LSPR) optical fiber sensor, based on silver nanoparticles (Ag NPs). To enhance the sensitivity of the LSPR optical sensor, two key parameters were optimized, the length of the sensing area and the coating time of the Ag NPs. A sensing length of 1.5 cm and a 1-h coating time proved to be suitable conditions to produce highly sensitive sensors for biosensing. The optimized sensor has a high refractive index sensitivity of 387 nm/RIU, which is much higher than that of other reported individual silver nanoparticles in solutions. Moreover, the sensor was further modified with antigen to act as a biosensor. Distinctive wavelength shifts were found after each surface modification step. In addition, the reflective LSPR optical fiber sensor has high reproducibility and stability. PMID:26016910

  1. Coherence property of mid-infrared supercontinuum generation in tapered chalcogenide fibers with different structures

    NASA Astrophysics Data System (ADS)

    Liu, Lai; Nagasaka, Kenshiro; Qin, Guanshi; Suzuki, Takenobu; Ohishi, Yasutake

    2016-01-01

    We have numerically investigated the coherence property of mid-infrared supercontinuum generation in tapered step-index chalcogenide fibers with different structures. The pump source is a 4 ?m laser with pulse width of 500 fs and peak power of 1 kW. The length ratio is the ratio of transition region length near the laser input to the other transition region length near the output. We calculate the bandwidth and the spectrally averaged coherence of the supercontinuum spectra generated in fibers with different length ratios under the same pumping condition. Numerical results show that as the length ratio increases, the bandwidth decreases from 4.84 ?m to 4.11 ?m while the spectrally averaged coherence increases from 0.53 to 0.9 and then jitters near the maximum. The length ratio within 1-1.5 is preferable to keep a balance between bandwidth and coherence.

  2. Processing and characterization of core-clad tellurite glass preforms and fibers fabricated by rotational casting

    NASA Astrophysics Data System (ADS)

    Massera, J.; Haldeman, A.; Milanese, D.; Gebavi, H.; Ferraris, M.; Foy, P.; Hawkins, W.; Ballato, J.; Stolen, R.; Petit, L.; Richardson, K.

    2010-03-01

    We report results on the processing and characterization of tellurite-based glass preforms (core and cladding bulk glasses) and fibers within the TeO 2-Bi 2O 3-ZnO glass system. The core-clad fiber has been drawn from a core-clad preform prepared via rotational casting. Using Cu as a tracer to assess interface quality between the core and clad layers, we show excellent cladding layer thickness uniformity across lengths of up to 40 mm in a 65 mm long perform. No measurable diffusion of Cu between the core and the clad has been observed, within the accuracy of measurement, indicating good stability and interface quality during casting of melted glass. Micro-Raman spectroscopy has been used to identify subtle post-draw structural modification induced in the preform following the fiber drawing. These changes have been attributed to modification to the bulk glass' thermal history upon drawing and small scale molecular orientation of chain units within the tellurite glass matrix produced during the fiber drawing process. The resulting fiber was found to have an index step of (0.009 0.002) between the fiber core and clad composition at 632 nm and propagation losses of (3.2 0.1) dB/m at 632 nm and (2.1 0.1) dB/m at 1.5 ?m. The primary source of loss in the near-IR (NIR) is associated with residual hydroxyl (OH -) groups in the bulk preform which remain in the glass fiber.

  3. Evanescently coupled optical fiber refractometer based a tilted fiber Bragg grating and a D-shaped fiber.

    PubMed

    Cai, Zhongyue; Liu, Fu; Guo, Tuan; Guan, Bai-Ou; Peng, Gang-Ding; Albert, Jacques

    2015-08-10

    A novel tip-reflective and power-referenced refractometer based on strong fiber-to-fiber optical coupling for a large range of surrounding refractive index (SRI) (from 1.33 to 1.45) is proposed and experimentally demonstrated. A short D-shaped fiber stub is placed in parallel and close contact to another standard circular fiber containing a weakly tilted Bragg grating (TFBG). The TFBG couples the light from the circular fiber's core into its cladding where it remains guided. Apart from the direct light coupling over the contact interface, the evanescent field from the guided cladding modes penetrates the surroundings and reaches the D-fiber core by tunneling across the medium into which the fiber pair is located. The amount of tunneling depends strongly on the SRI so that the total amount of light collected by the D-fiber provides a measure of the SRI. Sensitivities ranging from ~1000 to 13000 nW/RIU (Refractive Index Unit) have been obtained and the result is independent of temperature (within +/-10 nW of uncertainty). The measurement can be temperature-referenced through measurement of the TFBG spectrum if needed. PMID:26367949

  4. Novel optical fiber design for DTS measurement purposes

    NASA Astrophysics Data System (ADS)

    Siska, Petr; Hajek, Lukas; Vasinek, Vladimir; Koudelka, Petr; Latal, Jan

    2015-07-01

    This article is dealing with an optical fiber refractive index design optimized for utilization in DTS (Distributed Temperature Sensing) measurements. Presented optical fiber uses wavelength of 850 nm for communication purposes and 1060 nm for sensory operation. The aim of this work is to design an optical fiber with redistribution of the optical field at 850 nm similar to communication multi-mode optical fiber 50/125 μm and for wavelength of 1060 nm the redistribution of the optical field will be shifted closer to the core-cladding boundary to increase its sensitivity to temperature. Optical properties obtained from fiber design are compared with standard multi-mode optical fiber with graded refractive index to ensure that new optical fiber design has better sensing characteristics, but still keeps good enough communication properties at the same time.

  5. Coiled Fiber Pulsed Laser Simulator

    Energy Science and Technology Software Center (ESTSC)

    2009-01-29

    This suite of codes simulates the transient output pulse from an optically-pumped coiled fiber amplifier. The input pulse is assumed to have a Gaussian time dependence and a spatial dependence that may be Gaussian or an eigenmode of the straight of bent fiber computed using bend10 or bend20. Only one field component is used (semivectorial approximation). The fully-spatially-dependent fiber gain profile is specified is subroutines "inversion" and "interp_inversion" and is presently read from a datamore » file, although other means of specifying fiber gain could be reallized through modification of these subroutines. The input pulse is propagated through the fiber, including the following physical effects: spatial and temporal gain saturation, self-focusing, bend losses, and confinement from a user-defined fiber index profile. The user can follow the propagation progress with 3D graphics that show an intensity profile via user-modifiable cutting planes through the time space axes. A restart capability is also included. Approximate solutions in the frequency domain may be obtained much faster using the auxilliary codes bendbpm10 (full vector), bendbpm20 (semivectoral), and bendbpm21 (semivectoral with gain sheet spproximation for gain and self-focusing). These codes all include bend loss and spatial (but not temporal) gain saturation.« less

  6. Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems.

    PubMed

    Gaida, Christian; Stutzki, Fabian; Jansen, Florian; Otto, Hans-Jrgen; Eidam, Tino; Jauregui, Cesar; de Vries, Oliver; Limpert, Jens; Tnnermann, Andreas

    2014-01-15

    We present a novel ytterbium (Yb)-doped large-pitch fiber design with significantly increased pump absorption and higher energy storage/gain per unit length, which enables high-peak-power fiber laser systems with smaller footprints. Up to now index matching between core and surrounding material in microstructured fibers was achieved by co-doping the active core region with fluorine. Here we carry out the index matching by passively doping the cladding with germanium, thus raising its index of refraction. Hence, the fluorine in the core can be omitted, which leads to an effective increase of the core doping concentration, while detrimental effects such as photo-darkening and lifetime quenching are avoided by maintaining the bulk Yb concentration. Experiments and simulations show that a gain higher than 50 dB/m and an output average power higher than 100 W with excellent beam quality are feasible even with a fiber length of only 40 cm. PMID:24562108

  7. Photovoltaic fibers

    NASA Astrophysics Data System (ADS)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4-5 % range.

  8. A Step Circuit Program.

    ERIC Educational Resources Information Center

    Herman, Susan

    1995-01-01

    Aerobics instructors can use step aerobics to motivate students. One creative method is to add the step to the circuit workout. By incorporating the step, aerobic instructors can accommodate various fitness levels. The article explains necessary equipment and procedures, describing sample stations for cardiorespiratory fitness, muscular strength,

  9. Stepped Hydraulic Geometry in Stepped Channels

    NASA Astrophysics Data System (ADS)

    Comiti, F.; Cadol, D. D.; Wohl, E.

    2007-12-01

    Steep mountain streams typically present a stepped longitudinal profile. Such stepped channels feature tumbling flow, where hydraulic jumps represent an important source of channel roughness (spill resistance). However, the extent to which spill resistance persists up to high flows has not been ascertained yet, such that a faster, skimming flow has been envisaged to begin at those conditions. In order to analyze the relationship between flow resistance and bed morphology, a mobile bed physical model was developed at Colorado State University (Fort Collins, USA). An 8 m-long, 0.6 m-wide flume tilted at a constant 14% slope was used, testing 2 grain-size mixtures differing only for the largest fraction. Experiments were conducted under clear water conditions. Reach-averaged flow velocity was measured using salt tracers, bed morphology and flow depth by a point gage, and surface grain size using commercial image-analysis software. Starting from an initial plane bed, progressively higher flow rates were used to create different bed structures. After each bed morphology was stable with its forming discharge, lower-than-forming flows were run to build a hydraulic geometry curve. Results show that even though equilibrium slopes ranged from 8.5% to 14%, the reach-averaged flow was always sub-critical. Steps formed through a variety of mechanisms, with immobile clasts playing a dominant role by causing local scouring and/or trapping moving smaller particles. Overall, step height, step pool steepness, relative pool area and volume increased with discharge up to the threshold when the bed approached fully- mobilized conditions. For bed morphologies surpassing a minimum profile roughness, a stepped velocity- discharge relationship is evident, with sharp rises in velocity correlated with the disappearance of rollers in pools at flows approaching the formative discharge for each morphology. Flow resistance exhibits an opposite pattern, with drops in resistance being a function of the height of the drowned steps. Step formation seems to occur under a hydraulic regime different from the lower flows, because spill resistance begins below step-forming flows.

  10. Design, study, and achievement of a fiber optic amplitude modulation sensor for angular position detection: application to an automotive steering sytem

    NASA Astrophysics Data System (ADS)

    Javahiraly, Nicolas; Perrotton, Cdric; Chakari, Ayoub; Meyrueis, Patrick

    2009-05-01

    The reliable, accurate and low cost measurement of angular position is an important challenge for numerous industries such as aerospace or automotive industries. We propose a new optical fiber angular position sensor connected to an automotive power steering column. This sensor allows the measurement of the angular position of a car steering wheel over a large range (+/- 3 turns of wheel). The wheel rotation induces micro-bending in the transducer part of the optical fiber sensing system. This system operates as an amplitude modulation sensor based on mode coupling in the transducing fiber in the case when all the modes are equally excited. We study the sensor's response both theoretically and experimentally with a multimode step index optical fiber [Rf (fiber radius) = 300?m rc (core radius) = 50?m nc (core index) = 1,457; N.A. = 0, 22 and the wavelength is 632, 8 nm at the ambient Temperature (20C)]. This sensor has been tested between (-3x360) and (+3x360) degrees with 0,147 sensitivity. We show that the sensitivity can be controlled as a function of the sensor's length and the study of the sensor's output power as a function of the angular position has been achieved. We compare modeling and experimental validation and we conclude by a perspective of what could be soon an industrial sensor.

  11. Fluoride glass fibers: applications and prospects

    NASA Astrophysics Data System (ADS)

    Poulain, Marcel

    1998-09-01

    Fluoride glass fibers have been intensively developed for the last 20 years. A major effort was devoted to the fabrication of low loss fibers for repeaterless long haul telecommunications. This step which ended in the late eighties provided the basic technology for the manufacturing of multimode and single mode fibers with minimum losses below 10 dB/km. Such fibers area now used for various passive applications requiring the handling of IR signal. In this respect, fluoride fibers are complementary to silica fibers when wavelength exceeds 2 micrometers . Some practical set ups are operating for IR imaging, remote spectroscopy and thermometry. Special fibers such as polarization maintaining fibers have been developed for interferometric astronomy, which could also apply to sensors. UV transmission has still to be developed. Laser power delivery is another field of application for these fibers. YAG:Er laser at 2.9 micrometers attracts a growing interest for medical applications, ophthalmology and dentistry, while prospects for CO laser are positive. Active fibers are based on rare earth doped single mode fibers. They lead to the definition of numerous new laser lines and emphasized the potential of up conversion for the generation of visible light using IR pumping laser diodes. High power output has been achieved in the blue and the red light, which open prospects for compact and all solid state fiber lasers for a wide range of applications, from displays to medical uses. Optical amplification makes another field of R and D centered on telecommunication needs. Pr3+ doped fluoride fibers have been used for the 1.3 micrometers band, and Er based fluoride fiber amplifiers exhibit wider and flatter gain than those made from silica. Optical amplification may be implemented at other wavelengths for more general purposes.

  12. Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip

    DOEpatents

    Kittrell, W. Carter; Wang, Yuhuang; Kim, Myung Jong; Hauge, Robert H.; Smalley, Richard E.; Marek leg, Irene Morin

    2010-06-01

    The present invention is directed to fibers of epitaxially grown single-wall carbon nanotubes (SWNTs) and methods of making same. Such methods generally comprise the steps of: (a) providing a spun SWNT fiber; (b) cutting the fiber substantially perpendicular to the fiber axis to yield a cut fiber; (c) etching the cut fiber at its end with a plasma to yield an etched cut fiber; (d) depositing metal catalyst on the etched cut fiber end to form a continuous SWNT fiber precursor; and (e) introducing feedstock gases under SWNT growth conditions to grow the continuous SWNT fiber precursor into a continuous SWNT fiber.

  13. Indexing Consistency and Quality.

    ERIC Educational Resources Information Center

    Zunde, Pranas; Dexter, Margaret E.

    A measure of indexing consistency is developed based on the concept of 'fuzzy sets'. It assigns a higher consistency value if indexers agree on the more important terms than if they agree on less important terms. Measures of the quality of an indexer's work and exhaustivity of indexing are also proposed. Experimental data on indexing consistency

  14. Miniature fiber optic surface plasmon resonance biosensors

    NASA Astrophysics Data System (ADS)

    Slavik, Radan; Brynda, Eduard; Homola, Jiri; Ctyroky, Jiri

    1999-01-01

    A novel design of surface plasmon resonance fiber optic sensor is reported which leads to a compact, highly miniaturized sensing element with excellent sensitivity. The sensing device is based on a side-polished single-mode optical fiber with a thin metal overlayer supporting surface plasmon waves. The strength of interaction between a fiber mode and a surface plasmon wave depends strongly on the refractive index near the sensing surface. Therefore, refractive index changes associated with biospecific interaction between antibodies immobilized on the sensor and antigen molecules can be monitored by measuring light intensity variations. Detection of horse radish peroxidase (HRP) of the concentration of 100 ng/ml has been accomplished using the fiber optic sensor with a matrix of monoclonal antibodies against HRP immobilized on the sensor surface.

  15. Exceptional stiffening in composite fiber networks

    NASA Astrophysics Data System (ADS)

    Shahsavari, A. S.; Picu, R. C.

    2015-07-01

    We study the small strain elastic behavior of composite athermal fiber networks constructed by adding stiffer fibers to a cross-linked base network. We observe that if the base network is in the affine deformation regime, the composite behaves similar to a fiber-reinforced continuum. When the base network is in the nonaffine deformation regime, the stiffness of the composite increases by orders of magnitude upon the addition of a small fraction of stiff fibers. The increase is not gradual, but rather occurs in two steps. Of these, one is associated with the stiffness percolation of the network of added fibers. The other, which occurs at very small fractions of stiff fibers, is due to the percolation of perturbation zones, or "interphases," induced in the base network by the stiff fibers, regions where the energy is stored mostly in the axial deformation mode. Their size controls the stiffening transition and depends on base network parameters and the length of added fibers. It is also shown that the perturbation field introduced in the base network by the presence of a stiff fiber is much longer ranged than in the case when the fiber is tied to a continuum of same modulus with the base network.

  16. Fibrillogenesis in Continuously Spun Synthetic Collagen Fiber

    PubMed Central

    Caves, Jeffrey M.; Kumar, Vivek A.; Wen, Jing; Cui, Wanxing; Martinez, Adam; Apkarian, Robert; Coats, Julie E.; Berland, Keith; Chaikof, Elliot L.

    2013-01-01

    The universal structural role of collagen fiber networks has motivated the development of collagen gels, films, coatings, injectables, and other formulations. However, reported synthetic collagen fiber fabrication schemes have either culminated in short, discontinuous fiber segments at unsuitably low production rates, or have incompletely replicated the internal fibrillar structure that dictates fiber mechanical and biological properties. We report a continuous extrusion system with an off-line phosphate buffer incubation step for the manufacture of synthetic collagen fiber. Fiber with a cross-section of 5314 by 213 m and an ultimate tensile strength of 9419 MPa was continuously produced at 60 m/hr from an ultrafiltered monomeric collagen solution. The effect of collagen solution concentration, flow rate, and spinneret size on fiber size was investigated. The fiber was further characterized by microdifferential scanning calorimetry, transmission electron microscopy (TEM), second harmonic generation (SHG) analysis, and in a subcutaneous murine implant model. Calorimetry demonstrated stabilization of the collagen triple helical structure, while TEM and SHG revealed a dense, axially aligned D-periodic fibril structure throughout the fiber cross-section. Implantation of glutaraldehyde crosslinked and non-crosslinked fiber in the subcutaneous tissue of mice demonstrated limited inflammatory response and biodegradation after a 6-week implant period. PMID:20024969

  17. Analysis of mode transitions in a long-period fiber grating with a nano-overlay of diamond-like carbon

    NASA Astrophysics Data System (ADS)

    Brabant, D.; Koba, M.; Smietana, Mateusz; Bock, Wojtek J.

    2014-09-01

    This work presents optimization analysis of the sensitivity to variations of the external refractive index (RI) of long-period fiber grating (LPFG) coated with a nano-overlay of diamond-like carbon (DLC) material. Through numerical simulations, we have shown that both the dual-resonance and mode transition phenomena can be simultaneously exploited to substantially increase the sensitivity to variations of the external RI. The tuning of the DLC layer thickness to displace the dual-resonance band into a more suitable region of the spectrum is also reported. To perform this analysis, we implemented a novel pseudo-heuristic simulation model based on a 4-layer step-index fiber layer model and coupled mode theory. The dispersion dependence on the DLC overlay thickness was modeled from experimental data. LPFG parameters were fitted to an experimental transmission spectrum. The simulation model and the obtain results provides guidance for the fabrication of the device.

  18. Photonic lantern with cladding-removable fibers

    NASA Astrophysics Data System (ADS)

    Sun, Weimin; Yan, Qi; Bi, Yao; Yu, Haijiao; Liu, Xiaoqi; Xue, Jiuling; Tian, He; Liu, Yongjun

    2014-07-01

    Recently, spectral measurement becomes an important tool in astronomy to find exoplanets etc. The fibers are used to transfer light from the focal plate to spectrometers. To get high-resolution spectrum, the input slits of the spectrometers should be as narrow as possible. In opposite, the light spots from the fibers are circle, which diameters are clearly wider than the width of the spectrometer slits. To reduce the energy loss of the fiber-guide star light, many kinds of image slicers were designed and fabricated to transform light spot from circle to linear. Some different setup of fiber slicers are introduced by different research groups around the world. The photonic lanterns are candidates of fiber slicers. Photonic lantern includes three parts: inserted fibers, preform or tubing, taped part of the preform or tubing. Usually the optical fields concentrate in the former-core area, so the light spots are not uniform from the tapered end of the lantern. We designed, fabricated and tested a special kind of photonic lantern. The special fibers consist polymer cladding and doped high-index core. The polymer cladding could be easily removed using acetone bath, while the fiber core remains in good condition. We inserted the pure high-index cores into a pure silica tubing and tapered it. During the tapering process, the gaps between the inserted fibers disappeared. Finally we can get a uniform tapered multimode fiber end. The simulation results show that the longer the taper is, the lower the loss is. The shape of the taper should be controlled carefully. A large-zone moving-flame taper machine was fabricated to make the special photonic lantern. Three samples of photonic lanterns were fabricated and tested. The lanterns with cladding-removable fibers guide light uniform in the tapered ends that means these lanterns could collect more light from those ends.

  19. New-type fiber optical liquid refractometer

    NASA Astrophysics Data System (ADS)

    Chiu, Ming-Hung; Wang, Shinn-Fwu

    2004-10-01

    A new type of fiber optical liquid refractometer based on total-internal reflection heterodyne interferometry (TIRHI) is proposed. The phase shift difference due to the TIR effects between the P and S-polarizations is measured using heterodyne interferometry with a D-type fiber sensor. Substituting the phase shift difference into Fresnel's equations, the refractive index can be calculated. It has some merits, such as, high sensitivity and stability, small size and real-time measurement.

  20. Fiber-optic refractometer based on a phase-shifted fiber Bragg grating on a side-hole fiber.

    PubMed

    Zhang, Qi; Hu, Lingling; Qi, Yuefeng; Liu, Guigen; Ianno, Natale; Han, Ming

    2015-06-29

    A fiber-optic refractive index (RI) sensor based on a ?-phase-shifted fiber-Bragg-grating (?FBG) inscribed on a side-hole fiber is presented. The reflection spectrum of the ?FBG features two narrow notches associated with the two polarization modes and the spectral spacing of the notches is used for high-sensitivity RI sensing with little temperature cross-sensitivity. The side-hole fiber maintains its outer diameter and mechanical strength. The side-hole fiber is also naturally integrated into a microfluidic system for convenient sample delivery and reduced sample amount. A novel demodulation method based on laser frequency modulation to enhance the sensor dynamic range is proposed and demonstrated. PMID:26191687

  1. Optimization of laser fibers for high pump light absorption

    NASA Astrophysics Data System (ADS)

    Bierlich, Jörg; Kobelke, Jens; Jetschke, Sylvia; Grimm, Stephan; Unger, Sonja; Schuster, Kay

    2014-03-01

    For the implementation of novel fiber laser concepts, such as extra-large mode area (X-LMA) fiber lasers or multi-core fiber lasers alternative manufacturing processes for highly-doped silica glasses and the laser fibers fabricated from it are required. For efficient laser operation a high absorption of pump power in the active fiber core is a necessary condition. To increase the pump light absorption the fiber development aimed at the preparation of laser-active and adapted passive single-large core fibers up to multi-core structures with 7 large cores showing broken circular fiber symmetry. The optimization of the optical fibers which will be shown in detail is based on the combination of several innovative manufacturing methods such as the powder sintering technology (REPUSIL), the preform preparation by stack-and-draw technique and the fiber drawing process. The described procedure is particularly suitable to produce multifilament glass preforms resp. laser fibers with large cores in which the radial and lateral indices of refraction can be adjusted homogeneously and reproducibly. Due to the realized increase of the laser-active core volume in these fibers the pump light absorption could be considerably increased and the resulting shorter fiber length allows the use of fibers with a moderate attenuation. The results concerning the characterization of materials science and the optical aspects e. g. the dopant concentration distributions and related refractive index profiles as well attenuation and pump absorption spectra will be presented.

  2. Characterization of new natural cellulosic fiber from Lygeum spartum L.

    PubMed

    Belouadah, Z; Ati, A; Rokbi, M

    2015-12-10

    Integration of new natural fibers in polymer composites field can contribute to increase the production of natural reinforcements and expand their use into new applications. In the present work, new cellulosic fibers were extracted from Lygeum spartum L. plant using an eco-friendly method. The morphological, physico-chemical, thermal and mechanical properties of L. spartum L. fibers were reported for the first time in this paper. The stem anatomy and fiber SEM micrographs showed a strong presence of fiber cells. ATR-FTIR and X-ray analysis proved that these fibers are rich in cellulose content with crystallinity index of 46.19%. The thermogravimetric analysis indicates that the L. spartum fibers are thermally stable until 220 C with apparent activation energy of 68.77 kJ/mol. Young's modulus, tensile strength and strain at failure were determined from the single fiber tensile test as 13.2 GPa, 280 MPa, and 3.7% respectively. PMID:26428144

  3. Intrinsic Fabry-Perot optical fiber sensors and their multiplexing

    SciTech Connect

    Wang, Anbo

    2007-12-11

    An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

  4. DIDA: Distributed Indexing Dispatched Alignment.

    PubMed

    Mohamadi, Hamid; Vandervalk, Benjamin P; Raymond, Anthony; Jackman, Shaun D; Chu, Justin; Breshears, Clay P; Birol, Inanc

    2015-01-01

    One essential application in bioinformatics that is affected by the high-throughput sequencing data deluge is the sequence alignment problem, where nucleotide or amino acid sequences are queried against targets to find regions of close similarity. When queries are too many and/or targets are too large, the alignment process becomes computationally challenging. This is usually addressed by preprocessing techniques, where the queries and/or targets are indexed for easy access while searching for matches. When the target is static, such as in an established reference genome, the cost of indexing is amortized by reusing the generated index. However, when the targets are non-static, such as contigs in the intermediate steps of a de novo assembly process, a new index must be computed for each run. To address such scalability problems, we present DIDA, a novel framework that distributes the indexing and alignment tasks into smaller subtasks over a cluster of compute nodes. It provides a workflow beyond the common practice of embarrassingly parallel implementations. DIDA is a cost-effective, scalable and modular framework for the sequence alignment problem in terms of memory usage and runtime. It can be employed in large-scale alignments to draft genomes and intermediate stages of de novo assembly runs. The DIDA source code, sample files and user manual are available through http://www.bcgsc.ca/platform/bioinfo/software/dida. The software is released under the British Columbia Cancer Agency License (BCCA), and is free for academic use. PMID:25923767

  5. DIDA: Distributed Indexing Dispatched Alignment

    PubMed Central

    Mohamadi, Hamid; Vandervalk, Benjamin P; Raymond, Anthony; Jackman, Shaun D; Chu, Justin; Breshears, Clay P; Birol, Inanc

    2015-01-01

    One essential application in bioinformatics that is affected by the high-throughput sequencing data deluge is the sequence alignment problem, where nucleotide or amino acid sequences are queried against targets to find regions of close similarity. When queries are too many and/or targets are too large, the alignment process becomes computationally challenging. This is usually addressed by preprocessing techniques, where the queries and/or targets are indexed for easy access while searching for matches. When the target is static, such as in an established reference genome, the cost of indexing is amortized by reusing the generated index. However, when the targets are non-static, such as contigs in the intermediate steps of a de novo assembly process, a new index must be computed for each run. To address such scalability problems, we present DIDA, a novel framework that distributes the indexing and alignment tasks into smaller subtasks over a cluster of compute nodes. It provides a workflow beyond the common practice of embarrassingly parallel implementations. DIDA is a cost-effective, scalable and modular framework for the sequence alignment problem in terms of memory usage and runtime. It can be employed in large-scale alignments to draft genomes and intermediate stages of de novo assembly runs. The DIDA source code, sample files and user manual are available through http://www.bcgsc.ca/platform/bioinfo/software/dida. The software is released under the British Columbia Cancer Agency License (BCCA), and is free for academic use. PMID:25923767

  6. Regeneration of fiber Bragg gratings under strain.

    PubMed

    Wang, Tao; Shao, Li-Yang; Canning, John; Cook, Kevin

    2013-04-01

    The effect of strain on both the index modulation, Δn(mod), and average index, Δn, during grating regeneration within two types of fibers is studied. Significant tunability of the Bragg wavelength (λ(B)>48 nm) is observed during postannealing at or above the strain temperature of the glass. The main reason for the grating wavelength shift during annealing with load is the elongation of the fiber. As well, the observed Moiré interference cycling through regeneration indicates the presence of two gratings. PMID:23545963

  7. Resonance optical activity in multihelicoidal optical fibers.

    PubMed

    Alexeyev, C N; Lapin, B P; Yavorsky, M A

    2016-03-01

    We have studied the effect of optical activity (OA) in optical fibers with multihelical distribution of refractive index profiles near the resonance wavelength, at which the conversion of an incident Gaussian beam into an optical vortex (and vice versa) takes place. We have shown that at such a wavelength the polarization vector of the input Gaussian beam rotates within the fiber at an average rate proportional to the difference in propagation constants of left- and right-circularly polarized optical vortices with the same topological charge. We also show that for certain fiber lengths the magnitude of OA can greatly exceed its average level and reach anomalously high values. PMID:26974091

  8. STEP Technology Development

    NASA Astrophysics Data System (ADS)

    Torii, R.; Step Team

    STEP (Satellite Test of the Equivalence Principle) is a space experiment to test the Equivalence Principle to one part in 1018 by comparing the rates of fall of four test mass pairs in Earth orbit. The STEP instrument supports four differential accelerometers, operated simultaneously to maximize the quality and quantity of data. The instrument is inserted into a Dewar of liquid helium at a nominal temperature of 1.8 K. Aerogel, a low density porous glass, is placed in the liquid helium Dewar to reduce helium mass motion. Recent NASA funding has enabled the STEP team at Stanford to continue hardware development and advance STEP technology. We focus near term on the development of critical flight technologies needed to prototype STEP payload hardware: accelerometer, probe, and Dewar. We will present our most recent progress in STEP technology development and our future plans to bring all our key technologies to full maturity.

  9. Reflective refractometer based on strong optical coupling between a tilted fiber Bragg grating and a parallel D-shaped fiber

    NASA Astrophysics Data System (ADS)

    Cai, Zhongyue; Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Peng, Gang-Ding; Albert, Jacques

    2015-09-01

    A novel fiber-to-fiber tip-reflection sensing configuration for power-referenced refractometry with the capability to measure surrounding refractive index (SRI) as low as 1.33 is proposed and demonstrated. A short D-shaped fiber stub is parallel adjacent to another unshaped fiber containing a weakly tilted Bragg grating (TFBG). Light from the unshaped fiber can be effectively coupled into the adjacent D-shaped fiber through the TFBG which functions as a "bridge" between the core and cladding. Strong "comb" like cladding modes over a broad wavelength range have been recaptured in D-shaped fiber in reflection. These re-coupled cladding modes show different amounts of power as the SRI changes and the sensitivity is much higher than reported in-fiber sensing schemes, especially for low SRI measurement.

  10. Polyimide Fibers

    NASA Technical Reports Server (NTRS)

    St.Clair, Terry L. (Inventor); Fay, Catharine C. (Inventor); Working, Dennis C. (Inventor)

    1998-01-01

    A polyimide fiber having textile physical property characteristics and the process of melt extruding same from a polyimide powder. Polyimide powder formed as the reaction product of the monomers 3.4'-ODA and ODPA, and end- capped with phthalic anhydride to control the molecular weight thereof, is melt extruded in the temperature range of 340 C. to 360 C. and at heights of 100.5 inches. 209 inches and 364.5 inches. The fibers obtained have a diameter in the range of 0.0068 inch to 0.0147 inch; a mean tensile strength in the range of 15.6 to 23.1 ksi; a mean modulus of 406 to 465 ksi, and a mean elongation in the range of 14 to 103%.

  11. Polyimide Fibers

    NASA Technical Reports Server (NTRS)

    St.Clair, Terry L. (Inventor); Fay, Catharine C. (Inventor); Working, Dennis C. (Inventor)

    1997-01-01

    A polyimide fiber having textile physical property characteristics and the process of melt extruding same from a polyimide powder. Polyimide powder formed as the reaction product of the monomers 3.4'-ODA and ODPA, and endcapped with phthalic anhydride to control the molecular weight thereof, is melt extruded in the temperature range of 340? C. to 360? C. and at heights of 100.5 inches, 209 inches and 364.5 inches. The fibers obtained have a diameter in the range of 0.0068 inch to 0.0147 inch; a mean tensile strength in the range of 15.6 to 23.1 ksi; a mean modulus of 406 to 465 ksi; and a mean elongation in the range of 14 to 103%.

  12. Effect of adding the novel fiber, PGX®, to commonly consumed foods on glycemic response, glycemic index and GRIP: a simple and effective strategy for reducing post prandial blood glucose levels - a randomized, controlled trial

    PubMed Central

    2010-01-01

    Background Reductions in postprandial glycemia have been demonstrated previously with the addition of the novel viscous polysaccharide (NVP), PolyGlycopleX® (PGX®), to an OGTT or white bread. This study explores whether these reductions are sustained when NVP is added to a range of commonly consumed foods or incorporated into a breakfast cereal. Methods Ten healthy subjects (4M, 6F; age 37.3 ± 3.6 y; BMI 23.8 ± 1.3 kg/m2), participated in an acute, randomized controlled trial. The glycemic response to cornflakes, rice, yogurt, and a frozen dinner with and without 5 g of NVP sprinkled onto the food was determined. In addition, 3 granolas with different levels of NVP and 3 control white breads and one white bread and milk were also consumed. All meals contained 50 g of available carbohydrate. Capillary blood samples were taken fasting and at 15, 30, 45, 60, 90 and 120 min after the start of the meal. The glycemic index (GI) and the glycemic reduction index potential (GRIP) were calculated. The blood glucose concentrations at each time and the iAUC values were subjected to repeated-measures analysis of variance (ANOVA) examining for the effect of test meal. After demonstration of significant heterogeneity, differences between individual means was assessed using GLM ANOVA with Tukey test to adjust for multiple comparisons. Results Addition of NVP reduced blood glucose response irrespective of food or dose (p < 0.01). The GI of cornflakes, cornflakes+NVP, rice, rice+NVP, yogurt, yogurt+NVP, turkey dinner, and turkey dinner+NVP were 83 ± 8, 58 ± 7, 82 ± 8, 45 ± 4, 44 ± 4, 38 ± 3, 55 ± 5 and 41 ± 4, respectively. The GI of the control granola, and granolas with 2.5 and 5 g of NVP were 64 ± 6, 33 ± 5, and 22 ± 3 respectively. GRIP was 6.8 ± 0.9 units per/g of NVP. Conclusion Sprinkling or incorporation of NVP into a variety of different foods is highly effective in reducing postprandial glycemia and lowering the GI of a food. Clinical Trial registration NCT00935350. PMID:21092221

  13. Modal caustics and dispersion mechanism in optical fibers.

    PubMed

    Checcacci, P F; Falciai, R; Scheggi, A M

    1978-01-01

    Modal dispersion is explained through the frequency dependence of modal caustics in the ray optics treatment of propagation in multimode optical fibers. Examples are shown for different index profiles that give rise to dispersion equalization or deterioration. PMID:19680394

  14. Integrated fiber optic probe for dynamic light scattering

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans S.; Khan, Romel R.; Suh, Kwang

    1993-01-01

    An integrated fiber optic probe, comprising a monomode optical fiber fusion spliced to a short length of a graded-index multimode fiber, is fabricated for use as a coherent receiver in dynamic light scattering. The multimode fiber is cleaved to provide a gradient-index fiber lens with a focal length of 125 microns and an f-number close to unity. An integrated fiber receiver is used to measure the intensity-intensity autocorrelation data from a 0.05 percent by weight concentration of an aqueous suspension of polystyrene latex spheres. Analysis of 100 independent data sets indicates that the particle size can be recovered with an accuracy of +/- 1 percent.

  15. Environmental stability of intercalated graphite fibers

    NASA Technical Reports Server (NTRS)

    Gaier, J. R.; Jaworske, D. A.

    1985-01-01

    Graphite fibers intercalated with bromine, iodine monochloride, ferric chloride, and cupric chloride were subjected to stability tests under four environments which are encountered by engineering materials in the aerospace industry: ambient laboratory conditions, as would be experienced during handling operations and terrestrial applications; high vacuum, as would be experienced in space applications; high humidity, as would be experienced in marine applications; and high temperature, as would be experienced in some processing steps and applications. Monitoring the resistance of the fibers at ambient laboratory conditions revealed that only the ferric chloride intercalated fibers were unstable, due to absorption of water from the air. All four types of intercalated fibers were unstable, due to absorption of water from the air. All four types of intercalated fibers were stable for long periods under high vacuum. Ferric chloride, cupric chloride, and iodine monochloride intercalated fibers were sensitive to high humidity conditions. All intercalated fibers began to degrade above 250 C. The order of their thermal stability, from lowest to highest, was cupric chloride, iodine monochloride, bromine, and ferric chloride. Of the four types of intercalated fibers tested, the bromine intercalated fibers appear to have the most potential for application, based on environmental stability.

  16. Nucleic acid indexing

    DOEpatents

    Guilfoyle, Richard A.; Guo, Zhen

    2001-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  17. Nucleic acid indexing

    DOEpatents

    Guilfoyle, Richard A.; Guo, Zhen

    1999-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  18. Indexing Consistency and Quality.

    ERIC Educational Resources Information Center

    Zunde, Pranas; Dexter, Margaret E.

    Proposed is a measure of indexing consistency based on the concept of "fuzzy sets." By this procedure a higher consistency value is assigned if indexers agree on the more important terms than if they agree on less important terms. Measures of the quality of an indexer's work and exhaustivity of indexing are also proposed. Experimental data on

  19. Lobby index in networks

    NASA Astrophysics Data System (ADS)

    Korn, A.; Schubert, A.; Telcs, A.

    2009-06-01

    We propose a new node centrality measure in networks, the lobby index, which is inspired by Hirschs h-index. It is shown that in scale-free networks with exponent ? the distribution of the l-index has power tail with exponent ?(?+1). Properties of the l-index and extensions are discussed.

  20. The Twelve Steps Experientially.

    ERIC Educational Resources Information Center

    Horne, Lianne

    Experiential activities provide each participant with the ability to see, feel, and experience whatever therapeutic issue the facilitator is addressing, and usually much more. This paper presents experiential activities to address the 12 steps of recovery adopted from Alcoholics Anonymous. These 12 steps are used worldwide for many other recovery…

  1. Steps in Test Construction.

    ERIC Educational Resources Information Center

    Tanguma, Jesus

    This paper addresses four steps in test construction specification: (1) the purpose of the test; (2) the content of the test; (3) the format of the test; and (4) the pool of items. If followed, such steps not only will assist the test constructor but will also enhance the students' learning. Within the "Content of the Test" section, two examples…

  2. Carbon fiber manufacturing via plasma technology

    DOEpatents

    Paulauskas, Felix L.; Yarborough, Kenneth D.; Meek, Thomas T.

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  3. Computing discharge using the index velocity method

    USGS Publications Warehouse

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratingsthe index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression techniques in which the mean cross-sectional velocity for the standard section is related to the measured index velocity. Most ratings are simple-linear regressions, but more complex ratings may be necessary in some cases. Once the rating is established, validation measurements should be made periodically. Over time, validation measurements may provide additional definition to the rating or result in the creation of a new rating. The computation of discharge is the last step in the index velocity method, and in some ways it is the most straight-forward step. This step differs little from the steps used to compute discharge records for stage-discharge gaging stations. The ratings are entered into database software used for records computation, and continuous records of discharge are computed.

  4. STEP Experiment Requirements

    NASA Technical Reports Server (NTRS)

    Brumfield, M. L. (Compiler)

    1984-01-01

    A plan to develop a space technology experiments platform (STEP) was examined. NASA Langley Research Center held a STEP Experiment Requirements Workshop on June 29 and 30 and July 1, 1983, at which experiment proposers were invited to present more detailed information on their experiment concept and requirements. A feasibility and preliminary definition study was conducted and the preliminary definition of STEP capabilities and experiment concepts and expected requirements for support services are presented. The preliminary definition of STEP capabilities based on detailed review of potential experiment requirements is investigated. Topics discussed include: Shuttle on-orbit dynamics; effects of the space environment on damping materials; erectable beam experiment; technology for development of very large solar array deployers; thermal energy management process experiment; photovoltaic concentrater pointing dynamics and plasma interactions; vibration isolation technology; flight tests of a synthetic aperture radar antenna with use of STEP.

  5. Continuous Fiber Ceramic Composites (CFCC)

    SciTech Connect

    R. A. Wagner

    2002-12-18

    This report summarizes work to develop CFCC's for various applications in the Industries of the Future (IOF) and power generation areas. Performance requirements range from relatively modest for hot gas filters to severe for turbine combustor liners and infrared burners. The McDermott Technology Inc. (MTI) CFCC program focused on oxide/oxide composite systems because they are known to be stable in the application environments of interest. The work is broadly focused on dense and porous composite systems depending on the specific application. Dense composites were targeted at corrosion resistant components, molten aluminum handling components and gas turbine combustor liners. The development work on dense composites led to significant advances in fiber coatings for oxide fibers and matrix densification. Additionally, a one-step fabrication process was developed to produce low cost composite components. The program also supported key developments in advanced oxide fibers that resulted in an improved version of Nextel 610 fiber (commercially available as Nextel 650) and significant progress in the development of a YAG/alumina fiber. Porous composite development focused on the vacuum winding process used to produce hot gas filters and infrared burner components.

  6. The influence of the fiber drawing process on intrinsic stress and the resulting birefringence optimization of PM fibers

    NASA Astrophysics Data System (ADS)

    Just, Florian; Spittel, Ron; Bierlich, Jörg; Grimm, Stephan; Jäger, Matthias; Bartelt, Hartmut

    2015-04-01

    The propagation properties of optical fibers can be significantly influenced by intrinsic stress. These effects are often undesired but in some cases essential for certain applications, e.g. in polarization maintaining (PM) fibers. In this paper, we present systematic studies on the influence of the fiber drawing process on the generated stress and demonstrate an approach to significantly increase the stress induced birefringence of PM-fibers. It is shown that the thermal stress caused by the material composition is superimposed with the mechanical stress caused by the fiber fabrication process. This intrinsic stress has a strong effect on the optical and mechanical properties of the glass and thus influences the fiber stability and modal behavior. By applying a thermal annealing step, the mechanical stress due to the fiber drawing process can be canceled. It is shown that this annealing step compensates the stress reducing influence of the drawing process on the birefringence of PM-fibers with panda structure. The comparison of the intrinsic stress states after fabrication with the state after the additional high temperature annealing step clearly shows that it is possible to improve the overall birefringence of panda fibers using appropriate preparation steps.

  7. What the Index Medicus indexes, and why.

    PubMed

    Truelson, S D

    1966-10-01

    The main criterion for selecting journals for indexing in Index Medicus, and thereby largely in MEDLARS, is quality. Subject scope varies with the voiced needs of the biomedical community. The Index aims to cover the best journals in all relevant subject fields, but the percentage of journals on a subject indexed depends on the quality of each journal. Country and language coverage depends on quality, even in the case of the best journals of each, although American biases may affect such selection. While a number of guidelines exist for identifying quality journals, information necessary to apply them confidently is often difficult to obtain. The National Library of Medicine is advised by an Ad Hoc Panel on the Selection of Journals for Index Medicus, composed both of NLM officers and extramural members. Criticism has been voiced that too many titles are indexed, compared with titles actually used, but no meaningful statistics of use exist which can identify titles which should be excluded from indexing. Continuing suggestions from users regarding titles indexed would benefit everyone. PMID:5922258

  8. Temperature-independent polymer optical fiber evanescent wave sensor.

    PubMed

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Zhao, Mingfu; Huang, Yun; Chen, Rong

    2015-01-01

    Although the numerous advantages of polymer optical fibers have been exploited in the fields of sensors and telecommunications, such fibers still experience a critical problem: the temperature dependency. Therefore, we explored the temperature-independent operation of a polymer fiber-optic evanescent wave sensor immersed in distilled water. We investigated variations in the surface morphology, deformation trajectory, refractive index, and weight of the fiber-sensing region with varying water temperature. We also examined the spectral transmission and transmitted light intensity of fibers subjected to a heating-cooling treatment. We observed that the light-transmission modes and sensitivity of the sensor were affected by changes in the surface morphology, diameter, and refractive index of the sensing region caused by changes in temperature. The transmitted light intensity of the sensor was maintained at a constant level after five cycles of the heating-cooling treatment, after which the fibers exhibited a smooth surface, low refractive index, and large fiber diameter. Consequently, we utilized the heating-cooling-treated fiber to realize a temperature-independent, U-shaped polymer fiber-optic evanescent wave sensor. The temperature independence was evaluated using glucose solutions in the range of 10 to 70 °C. The fabricated sensor showed significant temperature independence and high degree of consistency in measuring solutions. PMID:26112908

  9. Temperature-independent polymer optical fiber evanescent wave sensor

    PubMed Central

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Zhao, Mingfu; Huang, Yun; Chen, Rong

    2015-01-01

    Although the numerous advantages of polymer optical fibers have been exploited in the fields of sensors and telecommunications, such fibers still experience a critical problem: the temperature dependency. Therefore, we explored the temperature-independent operation of a polymer fiber-optic evanescent wave sensor immersed in distilled water. We investigated variations in the surface morphology, deformation trajectory, refractive index, and weight of the fiber-sensing region with varying water temperature. We also examined the spectral transmission and transmitted light intensity of fibers subjected to a heating-cooling treatment. We observed that the light-transmission modes and sensitivity of the sensor were affected by changes in the surface morphology, diameter, and refractive index of the sensing region caused by changes in temperature. The transmitted light intensity of the sensor was maintained at a constant level after five cycles of the heating-cooling treatment, after which the fibers exhibited a smooth surface, low refractive index, and large fiber diameter. Consequently, we utilized the heating-cooling-treated fiber to realize a temperature-independent, U-shaped polymer fiber-optic evanescent wave sensor. The temperature independence was evaluated using glucose solutions in the range of 10 to 70 °C. The fabricated sensor showed significant temperature independence and high degree of consistency in measuring solutions. PMID:26112908

  10. Temperature-independent polymer optical fiber evanescent wave sensor

    NASA Astrophysics Data System (ADS)

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Zhao, Mingfu; Huang, Yun; Chen, Rong

    2015-06-01

    Although the numerous advantages of polymer optical fibers have been exploited in the fields of sensors and telecommunications, such fibers still experience a critical problem: the temperature dependency. Therefore, we explored the temperature-independent operation of a polymer fiber-optic evanescent wave sensor immersed in distilled water. We investigated variations in the surface morphology, deformation trajectory, refractive index, and weight of the fiber-sensing region with varying water temperature. We also examined the spectral transmission and transmitted light intensity of fibers subjected to a heating-cooling treatment. We observed that the light-transmission modes and sensitivity of the sensor were affected by changes in the surface morphology, diameter, and refractive index of the sensing region caused by changes in temperature. The transmitted light intensity of the sensor was maintained at a constant level after five cycles of the heating-cooling treatment, after which the fibers exhibited a smooth surface, low refractive index, and large fiber diameter. Consequently, we utilized the heating-cooling-treated fiber to realize a temperature-independent, U-shaped polymer fiber-optic evanescent wave sensor. The temperature independence was evaluated using glucose solutions in the range of 10 to 70 °C. The fabricated sensor showed significant temperature independence and high degree of consistency in measuring solutions.

  11. Silicone polymer waveguide bridge for Si to glass optical fibers

    NASA Astrophysics Data System (ADS)

    Kruse, Kevin L.; Riegel, Nicholas J.; Middlebrook, Christopher T.

    2015-03-01

    Multimode step index polymer waveguides achieve high-speed, (<10 Gb/s) low bit-error-rates for onboard and embedded circuit applications. Using several multimode waveguides in parallel enables overall capacity to reach beyond 100 Gb/s, but the intrinsic bandwidth limitations due to intermodal dispersion limit the data transmission rates within multimode waveguides. Single mode waveguides, where intermodal dispersion is not present, have the potential to further improve data transmission rates. Single mode waveguide size is significantly less than their multimode counterparts allowing for greater density of channels leading to higher bandwidth capacity per layer. Challenges in implementation of embedded single mode waveguides within printed circuit boards involves mass production fabrication techniques to create precision dimensional waveguides, precision alignment tolerances necessary to launch a mode, and effective coupling between adjoining waveguides and devices. An emerging need in which single mode waveguides can be utilized is providing low loss fan out techniques and coupling between on-chip transceiver devices containing Si waveguide structures to traditional single mode optical fiber. A polymer waveguide bridge for Si to glass optical fibers can be implemented using silicone polymers at 1310 nm. Fabricated and measured prototype devices with modeling and simulation analysis are reported for a 12 member 1-D tapered PWG. Recommendations and designs are generated with performance factors such as numerical aperture and alignment tolerances.

  12. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, J.D.

    1995-05-30

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber`s transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature. 5 figs.

  13. Evaluation of Small Form Factor Fiber Optic Interconnects for the NASA Electronics Parts and Packaging Program (NEPP)

    NASA Technical Reports Server (NTRS)

    Ott, Melanie; Thomes, W. Joe; Blair, Diana; Chuska, Rick; Switzer, Rob

    2010-01-01

    The Diamond AVIM optical fiber connector has been used for over a decade in flight environments. AVIM which stands for Aviation Intermediate Maintenance is always referenced as a fiber optic connector type from the DIN (Deutsches Institut fur Normung) family of optical fiber connectors. The newly available Mini AVIM and DMI (Definition Multimedia Interface) connectors also by Diamond provide similar features as the high performance AVIM with the added benefits of being small form factor for board mount and internal box use where long connectors and strain relief can not be accommodated. Transceiver, fiber laser technology and receiver optic technology based on small sized constraints will benefit the most by the reduction in connector form factor. It is for this reason that the Mini AVIM is being evaluated for multimode and single mode optical fiber use in both fiber based and cable based packaging configurations. In a fiber based termination, there are no cable materials to bond to the connector. The only bonding that is conducted is the mounting of the fiber with epoxy to the connector ferrules (which are called DMI ferrules). In a cable configuration, the compatibility of the connector subcomponents along with the upjacketing materials of the cable around the fiber needs to be considered carefully for termination fabrication. Cabled terminations will show greater insertion loss and high probability of failures during thermal cycling testing. This is due to the stressing of the combination of materials that each have different Coefficients of Thermal Expansion (CTE's) and that are bonded together to the connector subcomponents. As the materials flex during thermal excursions, forces are applied to the termination and can make the system fail if the grouping of materials (per their CTE's) are not compatible and this includes cable materials, epoxies, ferrule and connector body components. For this evaluation, multimode 100 micron core step index fiber was used for the fiber terminated condition, and single mode SMF-28 upjacketed with W.L. Gore Flexlite was used for the cabled configuration. For background purposes, a comparison is presented here for information purposes between the high performance AVIM connector features and the Mini AVIM small form factor connectors. Basic connector features are described here.

  14. Lawrence Berkeley Lab Indexing Toolbox

    Energy Science and Technology Software Center (ESTSC)

    2003-09-08

    The Lawrence Berkeley Lab Indexing Toolbox is intended to be used in the context of X-ray crystallography experiments involving biological macromolecules. Macromolecules such as proteins form 3-dimensional periodic arrays (crystal) which in turn lead to lattice-like diffraction patterns when the crystal sample is irradiated with collimated X-rays from a synchrotron or other X-ray source. Once the diffraction pattern is captured on an imaging device the next step is to deduce the periodic nature of themore » crystal sample, along with its internal symmetry. this analysis, known as "indexing" is a well-studied problem. However, there are no other implementations designed to operate in an automated setting, in which the human experimentalist is not prosent to manually verify the results of indexing. In particular LABELIT uses three novel algorithms to facilitate automation: a more robust way to verify the position of the incident X-ray beam on the image, a better way to verify that the deduced lattice is consistent with the observed crystal lattice, and new method to deduce the internal symmetry from measurements of the lattice. Moreover, the algorithms are implemented in a Python framework that permits indexing to fail (in rare cases) without crashing the program, thus allowing the software to be incorporated in robotic systems where unattended operation is expected. It will be especially useful for high throughput operations at snychrotron beamlines.« less

  15. The index of human insecurity.

    PubMed

    Lonergan, S; Gustavson, K; Carter, B

    2000-01-01

    In the past, human security has been endangered not only by military threats, but also of resource scarcity, rapid population growth, human rights abuses, and outbreaks of infectious diseases, environmental degradation, pollution, and loss of biodiversity. As a result, the Index of Human Insecurity (IHI) was developed as a classification system that distinguishes the perception of vulnerability and insecurity of different countries. In calculating IHI, the following steps must be used: 1) establishment of complete time series for indicators and countries; 2) standardization of data; and 3) classification of data and calculation of indexes. Indicators used in IHI include the environment, economy, society, and institutions. Furthermore, the indicators used actually define the meaning of human security, compare the relative levels of insecurity, and exclude the vulnerability to natural hazards and income distribution. Comparing the efficacy of using the IHI with Human Development Index, it indicated the transparency of IHI in identifying variability in human security; stronger theoretical base of IHI to both human security and development; and the efficacy of IHI in addressing the issue of perception. To end, policy implications and future applications of IHI indicate that despite the need for constant evaluation of the index, it demonstrates a potential for measuring sustainability, development and human security. PMID:12295923

  16. Multimedia indexing over the Web

    NASA Astrophysics Data System (ADS)

    Agnew, Brent; Faloutsos, Christos; Wang, Zhenyu; Welch, Donald J.; Xue, Xiaogang

    1997-01-01

    There has been work on database systems that can retrieve multimedia objects by their content. We are extending this work by using the World Wide Web as source and storage for multimedia objects much like current text search engines do for textual information. A system that can access all types of multimedia objects by their content is a formidable task and improvements are constantly being made to indexing techniques. We have taken an important first step in demonstrating the viability of this technique while laying the groundwork for a larger, more capable system. We have implemented a simple indexing scheme while concentrating on building the infrastructure to support this system. Our system can retrieve references to images on the WWW, index those images, and store those images using spatial access methods. We then use query by example to find a set of images on the WWW that resemble our query image. Due to its design, it is easy to include additional context features, to substitute different indexing schemes, and add other types of multimedia to our system like time sequences, voice and video.

  17. Lawrence Berkeley Lab Indexing Toolbox

    SciTech Connect

    2003-09-08

    The Lawrence Berkeley Lab Indexing Toolbox is intended to be used in the context of X-ray crystallography experiments involving biological macromolecules. Macromolecules such as proteins form 3-dimensional periodic arrays (crystal) which in turn lead to lattice-like diffraction patterns when the crystal sample is irradiated with collimated X-rays from a synchrotron or other X-ray source. Once the diffraction pattern is captured on an imaging device the next step is to deduce the periodic nature of the crystal sample, along with its internal symmetry. this analysis, known as "indexing" is a well-studied problem. However, there are no other implementations designed to operate in an automated setting, in which the human experimentalist is not prosent to manually verify the results of indexing. In particular LABELIT uses three novel algorithms to facilitate automation: a more robust way to verify the position of the incident X-ray beam on the image, a better way to verify that the deduced lattice is consistent with the observed crystal lattice, and new method to deduce the internal symmetry from measurements of the lattice. Moreover, the algorithms are implemented in a Python framework that permits indexing to fail (in rare cases) without crashing the program, thus allowing the software to be incorporated in robotic systems where unattended operation is expected. It will be especially useful for high throughput operations at snychrotron beamlines.

  18. Strong fibers

    SciTech Connect

    Li, Che-Yu.

    1991-03-01

    This program was directed to a new and generic approach to the development of new materials with novel and interesting properties, and to the precision fabrication of these materials in one and two-dimensional forms. Advanced deposition processes and microfabrication technology were used to produce fibers and grids of metals, semiconductors, ceramics, and mixtures of controlled composition and structure, and with new and interesting mechanical and physical properties. Deposition processes included electron beam evaporation, co-deposition of mixtures by dual electron beam evaporation, thermal evaporation, sputtering of a single element or compound, sputtering of a single element in a gaseous atmosphere to produce compounds, plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), and selective tungsten chemical vapor deposition (W-CVD). The approach was to use the deposition processes in coordination with patterns generated by optical lithography to produce fibers with transverse dimensions in the micron range, and lengths from less than a millimeter to several centimeters. The approach is also applicable to the production of two-dimensional grids and particulates of controlled sizes and geometries.

  19. Method of identifying features in indexed data

    DOEpatents

    Jarman, Kristin H. (Richland, WA) [Richland, WA; Daly, Don Simone (Richland, WA) [Richland, WA; Anderson, Kevin K. (Richland, WA) [Richland, WA; Wahl, Karen L. (Richland, WA) [Richland, WA

    2001-06-26

    The present invention is a method of identifying features in indexed data, especially useful for distinguishing signal from noise in data provided as a plurality of ordered pairs. Each of the plurality of ordered pairs has an index and a response. The method has the steps of: (a) providing an index window having a first window end located on a first index and extending across a plurality of indices to a second window end; (b) selecting responses corresponding to the plurality of indices within the index window and computing a measure of dispersion of the responses; and (c) comparing the measure of dispersion to a dispersion critical value. Advantages of the present invention include minimizing signal to noise ratio, signal drift, varying baseline signal and combinations thereof.

  20. How indexes have changed

    SciTech Connect

    Farrar, G.L.

    1993-01-03

    The accompanying table compares refinery construction and operating wages monthly for the years 1990 and 1991. The Nelson-Farrar refinery construction cost indexes are inflation indexes, while the operating indexes incorporate a productivity which shows improvement with experience and the increasing size of operations. The refinery construction wage indexes in the table show a steady advance over the 2-year period. Common labor indexes moved up faster than skilled indexes. Refinery operating wages showed a steady increase, while productivities averaged higher near the end of the period. Net result is that labor costs remained steady for the period.

  1. How indexes have changed

    SciTech Connect

    Farrar, G.L.

    1994-04-04

    The accompanying table compares refinery construction and operating wages monthly for the years 1992 and 1993. The Nelson-Farrar refinery construction cost indexes are inflation indexes, while the operating indexes incorporate a productivity which shows improvement with experience and the increasing size of operations. The refinery construction wage indexes in the table show a steady advance over the 2-year period. Common labor indexes moved up faster than skilled indexes. Refinery operating wages showed a steady increase, while productivities averaged higher near the end of the period. Net results is that labor costs remained steady for the period.

  2. CENDI Indexing Workshop

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The CENDI Indexing Workshop held at NASA Headquarters, Two Independence Square, 300 E Street, Washington, DC, on September 21-22, 1994 focused on the following topics: machine aided indexing, indexing quality, an indexing pilot project, the MedIndEx Prototype, Department of Energy/Office of Scientific and Technical Information indexing activities, high-tech coding structures, category indexing schemes, and the Government Information Locator Service. This publication consists mostly of viewgraphs related to the above noted topics. In an appendix is a description of the Government Information Locator Service.

  3. Bridge SHM system based on fiber optical sensing technology

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng

    2015-09-01

    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  4. Ribbon Fiber Laser-Theory and Experiment

    SciTech Connect

    Beach, R J; Feit, M D; Brasure, L D; Payne, S A

    2002-05-10

    A scalable fiber laser approach is described based on phase-locking multiple gain cores in an antiguided structure. The waveguide is comprised of periodic sequences of gain- and no-gain-loaded segments having uniform index, within the cladding region. Initial experimental results are presented.

  5. Fiber exposure reassessed with the new indices

    SciTech Connect

    Schneider, T.; Skotte, J. )

    1990-02-01

    The concentration of airborne fibers longer than 5 microns, thinner than 3 microns, and with an aspect ratio exceeding 3 as counted by phase contrast optical microscopy is the most widely used fiber exposure index. Recently, more adequate, specific exposure indices for asbestosis, lung cancer, and mesothelioma risk have been suggested by Lippmann. The consequences of using these indices are examined on the basis of calculations for a broad range of theoretical and published size distributions. Optical microscopy appears to be a good predictor of the exposure indices for asbestosis and for lung cancer after scaling. Only fibers longer than about 3 microns need to be counted in a transmission electron microscope. The lung cancer index still cannot explain the large differences of risk among chrysotile exposures. Both the mesothelioma exposure index and the ratio mesothelioma to lung cancer index ranks in order of increasing risk: wollastonite, glass and mineral wool, amosite, glass microfibers, chrysotile, and crocidolite. Amosite is thus not ranked according to epidemiological evidence. Detailed size information should be made available so that the size criteria can be adjusted. It may still prove necessary to use fiber type specific concentration limits.

  6. Top-hat random fiber Bragg grating.

    PubMed

    Yin, Hongwei; Gbadebo, Adenowo; Turitsyna, Elena G

    2015-08-01

    We examined the possibility of using noise or pseudo-random variations of the refractive index in the design of fiber Bragg gratings (FBGs). We demonstrated theoretically and experimentally that top-hat FBGs may be designed and fabricated using this approach. The reflectivity of the fabricated top-hat FBG matches quite well with that of the designed one. PMID:26258365

  7. Study of fiber optic sugar sensor

    NASA Astrophysics Data System (ADS)

    Jayanth Kumar, A.; Gowri, N. M.; Venkateswara Raju, R.; Nirmala, G.; Bellubbi, B. S.; Radha Krishna, T.

    2006-08-01

    Over the last two decades, the fiber optic technology has passed through many analytical stages. Some commercially available fiber optic sensors, though in a small way, are being used for automation in mechanical and industrial environments. They are also used for instrumentation and controls. In the present work, an intensity-modulated intrinsic fiber optic sugar sensor is presented. This type of sensor, with slight modification, can be used for on-line determination of the concentration of sugar content in sugarcane juice in sugar industry. In the present set-up, a plastic fiber made of polymethylmethacrylate is used. A portion of the cladding (1 cm, 2 cm, 3 cm) at the mid-point along the length of the fiber is removed. This portion is immersed in sugar solution of known concentration and refractive index. At one end of the fiber an 850 nm source is used and at the other end a power meter is connected. By varying the concentration of sugar solution, the output power is noted. These studies are made due to the change in refractive index of the fluid. The device was found to be very sensitive which is free from EMI and shock hazards, stable and repeatable and they can be remotely interfaced with a computer to give on-line measurements and thus become useful for application in sugar industries.

  8. Fiber-Coupled Acousto-Optical-Filter Spectrometer

    NASA Technical Reports Server (NTRS)

    Levin, Kenneth H.; Li, Frank Yanan

    1993-01-01

    Fiber-coupled acousto-optical-filter spectrometer steps rapidly through commanded sequence of wavelengths. Sample cell located remotely from monochromator and associated electronic circuitry, connected to them with optical fibers. Optical-fiber coupling makes possible to monitor samples in remote, hazardous, or confined locations. Advantages include compactness, speed, and no moving parts. Potential applications include control of chemical processes, medical diagnoses, spectral imaging, and sampling of atmospheres.

  9. Slow light in fiber sensors

    NASA Astrophysics Data System (ADS)

    Digonnet, Michel J. F.; Wen, He; Terrel, Matthew A.; Fan, Shanhui

    2012-03-01

    This paper examines the sensitivity improvements that have been achieved by making use of slow light in a variety of fiber sensors. We show in particular that slow light can have dramatically different impacts depending on its nature (material or structural) and on the parameter that is being sensed. In a fiber optic gyroscope measuring an absolute rotation for example, structural slow light does not enhance the maximum sensitivity achievable for a given loss and sensing area compared to a non-resonant structure such as a Sagnac-based fiber optic gyroscope. However, it does reduce the length of fiber required to achieve this sensitivity. For fiber sensors relying on the measurement of absorption, such as gas detectors, structural slow light improves the sensitivity because it increases the effective path length through the absorber and therefore the level of absorption. Material slow light, on the other hand, has been measured to have no impact on the sensitivity. For many other parameters besides rotation and absorption, the sensitivity is expected to be enhanced by either type of slow light, by orders of magnitude with suitable configurations. We illustrate this enormous potential with two configurations of strain sensors utilizing a fiber Bragg grating (FBG) as the sensing and slow-light medium. In properly designed FBGs supporting light with a group index in the range of 50 to 130, we measured a maximum sensitivity of 1.7-3.14 105 strain-1 and a record minimum detectable strain of 820-880 fɛ/√Hz. This value is ~730 lower than the previous record using conventional light in a passive FBG sensor, in accord with predictions. Further enhancements are expected with straightforward improvements in FBG design.

  10. Toxin detection using a fiber-optic-based biosensor

    NASA Astrophysics Data System (ADS)

    Ogert, Robert A.; Shriver-Lake, Lisa C.; Ligler, Frances S.

    1993-05-01

    Using an evanescent wave fiber optic-based biosensor developed at Naval Research Laboratory, ricin toxin can be detected in the low ng/ml range. Sensitivity was established at 1 - 5 ng/ml using a two-step assay. The two-step assay showed enhanced signal levels in comparison to a one-step assay. A two-step assay utilizes a 10 minute incubation of an immobilized affinity purified anti-ricin antibody fiber optic probe in the ricin sample before placement in a solution of fluorophore-labeled goat anti-ricin antibodies. The specific fluorescent signal is obtained by the binding of the fluorophore-labeled antibodies to ricin which is bound by the immobilized antibodies on the fiber optic probe. The toxin can be detected directly from urine and river water using this fiber optic assay.

  11. Tunable Fabry-Perot filter in cobalt doped fiber formed by optically heated fiber Bragg gratings pair

    NASA Astrophysics Data System (ADS)

    Li, Ying; Zhou, Bin; Zhang, Liang; He, Sailing

    2015-06-01

    In this paper, a tunable fiber Fabry-Perot (F-P) filter by all-optical heating is proposed. Two high reflective fiber Bragg gratings (FBG) fabricated in cobalt doped single mode fiber form the F-P cavity. The cobalt-doped fiber used here is an active fiber, and it transforms optical power from a control laser into heat effectively due to the nonradiative processes. The generated heat raises the refraction index of the fiber and enlarges the F-P cavity's length, realizing the all-optical tuning characteristics. By adjusting the power of the control laser, the resonant wavelength of our proposed fiber F-P filter can be high precisely controlled. The cavity length of the filter is carefully designed to make sure the longitude mode spacing is comparable to the grating bandwidth, making it single mode operating.

  12. Axial contraction in etched optical fiber due to internal stress reduction.

    PubMed

    Lim, Kok-Sing; Yang, Hang-Zhou; Chong, Wu-Yi; Cheong, Yew-Ken; Lim, Chin-Hong; Ali, Norfizah M; Ahmad, Harith

    2013-02-11

    When an optical fiber is dipped in an etching solution, the internal stress profile in the fiber varies with the fiber diameter. We observed a physical contraction as much as 0.2% in the fiber axial dimension when the fiber was reduced from its original diameter to ~6 m through analysis using high resolution microscope images of the grating period of an etched FBG at different fiber diameters. This axial contraction is related to the varying axial stress profile in the fiber when the fiber diameter is reduced. On top of that, the refractive index of fiber core increases with reducing fiber diameter due to stress-optic effect. The calculated index increment is as much as 1.8 10(-3) at the center of fiber core after the diameter is reduced down to ~6 m. In comparison with the conventional model that assumes constant grating period and neglects the variation in stress-induced index change in fiber core, our proposed model indicates a discrepancy as much as 3nm in Bragg wavelength at a fiber diameter of ~6 m. PMID:23481713

  13. Continuous, linearly intermixed fiber tows and composite molded article thereform

    NASA Technical Reports Server (NTRS)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    2000-01-01

    The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a carbon fiber tow; (b) forming a thermoplastic polymeric fiber tow; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

  14. Longitudinal fiber parameter measurements of multi-core fiber using OTDR.

    PubMed

    Ohashi, Masaharu; Miyoshi, Yuji; Kubota, Hirokazu; Maruyama, Ryo; Kuwaki, Nobuo

    2014-12-01

    A novel technique is proposed for measuring the longitudinal fiber parameters of multi-core fiber (MCF). The mode field diameter (MFD)of a fiber link composed of MCF is successfully estimated with a modified optical time domain reflectometer (OTDR). The measurement accuracy of the MFD distribution is revealed by simulation as a function of the mode coupling coefficient. It is also shown that the relative-index difference and chromatic dispersion of MCF can be estimated with the present technique. PMID:25606943

  15. Silica Bottle Resonator Sensor for Refractive Index and Temperature Measurements

    PubMed Central

    Nemova, Galina; Kashyap, Raman

    2016-01-01

    We propose and theoretically demonstrate a bottle resonator sensor with a nanoscale altitude and with alength several of hundreds of microns made on the top of the fiber with a radius of tens microns for refractive index and temperature sensor applications. The whispering gallery modes (WGMs) in the resonators can be excited with a taper fiber placed on the top of the resonator. These sensors can be considered as an alternative to fiber Bragg grating (FBG) sensors.The sensitivity of TM-polarized modes is higher than the sensitivity of the TE-polarized modes, but these values are comparable and both polarizations are suitable for sensor applications. The sensitivity ~150 (nm/RIU) can be reached with abottle resonator on the fiber with the radius 10 μm. It can be improved with theuse of a fiber with a smaller radius. The temperature sensitivity is found to be ~10 pm/K. The temperature sensitivity can decrease ~10% for a fiber with a radius rco = 10 μm instead of a fiber with a radius rco = 100 μm. These sensors have sensitivities comparable to FBG sensors. A bottle resonator sensor with a nanoscale altitude made on the top of the fiber can be easily integrated in any fiber scheme. PMID:26761011

  16. Silica Bottle Resonator Sensor for Refractive Index and Temperature Measurements.

    PubMed

    Nemova, Galina; Kashyap, Raman

    2016-01-01

    We propose and theoretically demonstrate a bottle resonator sensor with a nanoscale altitude and with alength several of hundreds of microns made on the top of the fiber with a radius of tens microns for refractive index and temperature sensor applications. The whispering gallery modes (WGMs) in the resonators can be excited with a taper fiber placed on the top of the resonator. These sensors can be considered as an alternative to fiber Bragg grating (FBG) sensors.The sensitivity of TM-polarized modes is higher than the sensitivity of the TE-polarized modes, but these values are comparable and both polarizations are suitable for sensor applications. The sensitivity ~150 (nm/RIU) can be reached with abottle resonator on the fiber with the radius 10 ?m. It can be improved with theuse of a fiber with a smaller radius. The temperature sensitivity is found to be ~10 pm/K. The temperature sensitivity can decrease ~10% for a fiber with a radius rco = 10 ?m instead of a fiber with a radius rco = 100 ?m. These sensors have sensitivities comparable to FBG sensors. A bottle resonator sensor with a nanoscale altitude made on the top of the fiber can be easily integrated in any fiber scheme. PMID:26761011

  17. Development of an ingredient containing apple peel, as a source of polyphenols and dietary fiber.

    PubMed

    Henrquez, Carolina; Speisky, Hernn; Chiffelle, Italo; Valenzuela, Tania; Araya, Manuel; Simpson, Ricardo; Almonacid, Sergio

    2010-08-01

    Apple peel is a waste product from dried apple manufacture. The content of phenolic compounds, dietary fiber, and mineral are higher in apple peel, compared to other edible parts of this fruits. The objective of this study was to develop an ingredient from Granny Smith apple peel, using a pilot scale double drum-dryer, as drying technology. The control of all steps to maximize the retention of phenolic compounds and dietary fiber was considered. Operational conditions, such as drying temperature and time were determined, as well as important preprocessing steps like grinding and PPO inhibition. In addition, the physical-chemical characteristics, mineral and sugar content, and technological functional properties such as water retention capacity, solubility index, and dispersability among others, were analyzed. A simple, economical, and suitable pilot scale process, to produce a powder ingredient from apple peel by-product, was obtained. The drying process includes the application of ascorbic acid at 0.5% in the fresh apple peel slurry, drum-dryer operational conditions were 110 degrees C, 0.15 rpm and 0.2 mm drum clearance. The ingredient developed could be considered as a source of phenolic compounds (38.6 mg gallic acid equivalent/g dry base) and dietary fiber (39.7% dry base) in the formulation of foods. Practical Application: A method to develop an ingredient from Granny Smith apple peel using a pilot scale double drum-dryer as drying technology was developed. The method is simple, economical, feasible, and suitable and maximizes the retention of phenolic compounds and dietary fiber present in the raw matter. The ingredient could be used in the formulation of foods. PMID:20722929

  18. High gain ytterbium doped Ge pedestal large pitch fiber

    NASA Astrophysics Data System (ADS)

    Gaida, Christian; Stutzki, Fabian; Jansen, Florian; Otto, Hans-Jrgen; Eidam, Tino; Jauregui, Cesar; Limpert, Jens; Tnnermann, Andreas

    2014-03-01

    Large mode area rod-type fibers have enabled amplification of ultra-short pulses to mJ pulse energy and MW peak powers. For very large mode field areas, fibers have to be designed as rigid rods with typical fiber lengths of around 1 m for efficient operation. A shorter fiber length can be desirable to reduce the packaging size of commercial systems and to decrease the impact of parasitic nonlinear effects for peakpower scaling. The fiber design presented here is based on a modified large-pitch fiber with an effectively higher ytterbium concentration in the fiber core. To achieve index matching the cladding index needs to be changed. In this contribution we propose to co-dope the passive host material with germanium to match both indices and to obtain a higher Yb-concentration within the active core. Compared to standard LPF, where the core index is reduced by co-doping the core with Flourine, the ytterbium doping concentration of this novel germanium-pedestal LPF is doubled. A detailed numerical and experimental investigation shows that with short fiber lengths <40cm is feasible to achieve output powers beyond 100W with 10W seed. Significantly higher gains, of nearly 30 dB, can be achieved for fiber lengths in the order of 60cm. A similar gain can be expected in a conventional LPF with 1.20 m length. In conclusion, we demonstrate a fiber design for significantly enhanced energy storage per fiber length and improved pump absorption. This concept will notably reduce the footprint of ultra-short fiber laser systems.

  19. Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings

    NASA Astrophysics Data System (ADS)

    Fujimaki, Makoto; Nishihara, Yoshitaka; Ohki, Yoshimichi; Brebner, John L.; Roorda, Sjoerd

    2000-11-01

    Ion implantation induces a refractive index increase in silica-based glass, which is mainly due to densification of the glass. The refractive index increase can be used to fabricate optical fiber gratings that are formed with periodic refractive index modulation in the core of an optical fiber. In this article, the generation mechanism of the densification has been investigated through measurements of thickness changes of silica glass induced by proton and He2+ ion implantation. Furthermore, fabrication of the optical fiber grating using the refractive index increase has been demonstrated. From the result, ideal implantation conditions to fabricate the gratings are discussed.

  20. The Europe 2020 Index

    ERIC Educational Resources Information Center

    Pasimeni, Paolo

    2013-01-01

    This paper presents a new index to quantify, measure and monitor the progress towards the objectives of the Europe 2020 strategy. This index is based on a set of relevant, accepted, credible, easy to monitor and robust indicators presented by the European Commission at the time the strategy was launched. The internal analysis of the index shows

  1. The Europe 2020 Index

    ERIC Educational Resources Information Center

    Pasimeni, Paolo

    2013-01-01

    This paper presents a new index to quantify, measure and monitor the progress towards the objectives of the Europe 2020 strategy. This index is based on a set of relevant, accepted, credible, easy to monitor and robust indicators presented by the European Commission at the time the strategy was launched. The internal analysis of the index shows…

  2. Machine-Aided Indexing.

    ERIC Educational Resources Information Center

    Jacobs, Charles R.

    Progress is reported at the 1,000,000 word level on the development of a partial syntatic analysis technique for indexing text. A new indexing subroutine for hyphens is provided. New grammars written and programmed for Machine Aided Indexing (MAI) are discussed. (ED 069 290 is a related document) (Author)

  3. Design procedures for fiber composite box beams

    NASA Technical Reports Server (NTRS)

    Chamis, Cristos C.; Murthy, Pappu L. N.

    1989-01-01

    Step-by-step procedures are described which can be used for the preliminary design of fiber composite box beams subjected to combined loadings. These procedures include a collection of approximate closed-form equations so that all the required calculations can be performed using pocket calculators. Included is an illustrative example of a tapered cantilever box beam subjected to combined loads. The box beam is designed to satisfy strength, displacement, buckling, and frequency requirements.

  4. Design Procedures for Fiber Composite Box Beams

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Murthy, Pappu L. N.

    1988-01-01

    Step-by-step procedures are described which can be used for the preliminary design of fiber composite box beams subjected to combined loadings. These procedures include a collection of approximate closed-form equations so that all the required calculations can be performed using pocket calculators. Included is an illustrated example of a tapered cantilever box beam subjected to combined loads. The box beam is designed to satisfy strength, displacement, buckling, and frequency requirements.

  5. Tellurium halide IR fibers for remote spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xhang H.; Ma, Hong Li; Blanchetiere, Chantal; Le Foulgoc, Karine; Lucas, Jacques; Heuze, Jean; Colardelle, P.; Froissard, P.; Picque, D.; Corrieu, G.

    1994-07-01

    The new family of IR transmitting glasses, the TeX glasses, based on the association of tellurium and halide (Cl, Br, or I) are characterized by a wide optical window extending from 2 to 18 micrometers and a strong stability towards devitrification. Optical fibers drawn from these glasses exhibit low losses in the 7 - 10 micrometers range (less than 1 dB/m for single index fibers, 1 - 2 dB/m for fibers having a core-clad structure). The TeX glass fibers have been used in a remote analysis set-up which is mainly composed of a FTIR spectrometer coupled with a HgCdTe detector. This prototype system permits qualitative and quantitative analysis in a wide wavelength region lying from 3 to 13 micrometers , covering the fundamental absorption of more organic species. The evolution of a lactic and an alcoholic fermentation has been monitored by means of this set-up.

  6. Single-mode optical fiber liquids analyzer

    NASA Astrophysics Data System (ADS)

    Mrquez-Cruz, Violeta A.; Hernndez-Cordero, Juan A.

    2010-10-01

    We propose a single-mode optical fiber sensor for characterization of physical and chemical properties of liquids. The sensor is based on monitoring changes in the back-reflected signal from the interface between the fiber end-face and the liquid sample. Changes in the reflection spectrum are registered while dipping the cleaved end of an optical fiber into liquid samples and different spectral variations are observed owing as a consequence of characteristic properties, such as surface tension, viscosity and refractive index, among others. We present results obtained for different liquids (distilled water, methanol, glycerin, silicone, mineral oil) showing the feasibility of this approach for developing a simple fiber optic liquid analyzer.

  7. FOSenSim: fiber optic sensor simulator

    NASA Astrophysics Data System (ADS)

    Hivarkar, Umesh N.; Shaligram, Arvind D.

    2001-09-01

    An integrated software package is built-up for simulation studies of optical fibers and fiber optic sensors. The FOSenSim is a user interactive menu driven software package developed as a central simulation tool for optical fibers and FO sensors. This package incorporates simulation modules for study of optical fiber based on wave theory and various FO sensors based on ray optics and analytical geometry. The detailed mathematical models are developed for liquid level detector, through beam and reflection type displacement sensor, and refractive index sensor. The simulant results are used as a feedback for sensor design and fabrication process. At present, FOSenSim supports these sensors. However, due to modularity in software programming, it can be easily upgraded to incorporate other FO sensors.

  8. A simple all-solid tellurite microstructured optical fiber.

    PubMed

    Cheng, Tonglei; Duan, Zhongchao; Liao, Meisong; Gao, Weiqing; Deng, Dinghuan; Suzuki, Takenobu; Ohishi, Yasutake

    2013-02-11

    A simple all-solid tellurite microstructured optical fiber which has only one layer of high-index rods in the cladding is proposed and fabricated in the paper. The core and the cladding with the low index are made from the TeO(2)-ZnO-Na(2)O-La(2)O(3) glass, and the high-index rods are made from the TeO(2)-Li(2)O-WO(3)-MoO(3)-Nb(2)O(5) glass. The guiding regime in this fiber can be explained by ARROW model. The fiber can support the near- and mid-infrared light transmitting in the core within the transmission bands while the all-solid silica microstructured optical fiber cannot. When the pump light is outside the transmission bands, the light will transmit in six TLWMN rods. PMID:23481791

  9. Designing the Structure of Carbon Fibers for Optimal Mechanical Properties

    SciTech Connect

    Ozcan, Soydan; Vautard, Frederic; Naskar, Amit K

    2014-01-01

    Carbon fiber manufacturing follows generic processing steps: formation of thermoplastic fibers, stabilization, and carbonization. The final structures and end properties of the carbon fiber can differ significantly depending on the precursor chemistry and the associated processing sciences. Polyacrylonitrile (PAN) and mesophase pitch are the predominant precursors used in the production of carbon fibers. PAN-based carbon fibers consist of nanocrystalline graphitic domains typically 1.5 5 nm in size surrounded by amorphous carbon; in contrast, pitch-based carbon fibers are 10 50 nm crystallites with the graphitic (002) planes mostly aligned parallel to the fiber axis. It has been seen that the skin core structure of PAN-based carbon fibers plays a significant role in their mechanical properties. Designing a more homogenous carbon fiber microstructure by controlling the starting polymer and process parameters results in a different set of tensile strengths and elastic moduli. In this study the microstructural defect distribution (0.1 200 nm), measured by small-angle X-ray scattering, was shown to be directly related to the tensile strength of the carbon fibers. Here the formation of carbon structures from various polymer precursors is reviewed. Such a comprehensive understanding offers the opportunity to design carbon fiber microstructures with improved properties and to ultimately create new types of carbon fibers from alternative precursors at reduced cost.

  10. Computer-aided fiber analysis for crime scene forensics

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Arndt, Christian; Makrushin, Andrey; Dittmann, Jana

    2012-03-01

    The forensic analysis of fibers is currently completely manual and therefore time consuming. The automation of analysis steps can significantly support forensic experts and reduce the time, required for the investigation. Moreover, a subjective expert belief is extended by objective machine estimation. This work proposes the pattern recognition pipeline containing the digital acquisition of a fiber media, the pre-processing for fiber segmentation, and the extraction of the distinctive characteristics of fibers. Currently, basic geometrical features like width, height, area of optically dominant fibers are investigated. In order to support the automatic classification of fibers, supervised machine learning algorithms are evaluated. The experimental setup includes a car seat and two pieces clothing of a different fabric. As preliminary work, acrylic as synthetic and sheep wool as natural fiber are chosen to be classified. While sitting on the seat, a test person leaves textile fibers. The test aims at automatic distinguishing of clothes through the fiber traces gained from the seat with the help of adhesive tape. The digitalization of fiber samples is provided by a contactless chromatic white light sensor. First test results showed, that two optically very different fibers can be properly assigned to their corresponding fiber type. The best classifier achieves an accuracy of 75 percent correctly classified samples for our suggested features.

  11. Sensing Features of Long Period Gratings in Hollow Core Fibers

    PubMed Central

    Iadicicco, Agostino; Campopiano, Stefania

    2015-01-01

    We report on the investigation of the sensing features of the Long-Period fiber Gratings (LPGs) fabricated in hollow core photonic crystal fibers (HC-PCFs) by the pressure assisted Electric Arc Discharge (EAD) technique. In particular, the characterization of the LPG in terms of shift in resonant wavelengths and changes in attenuation band depth to the environmental parameters: strain, temperature, curvature, refractive index and pressure is presented. The achieved results show that LPGs in HC-PCFs represent a novel high performance sensing platform for measurements of different physical parameters including strain, temperature and, especially, for measurements of environmental pressure. The pressure sensitivity enhancement is about four times greater if we compare LPGs in HC and standard fibers. Moreover, differently from LPGs in standard fibers, these LPGs realized in innovative fibers, i.e., the HC-PCFs, are not sensitive to surrounding refractive index. PMID:25855037

  12. Photonic crystal fiber half-taper probe based refractometer.

    PubMed

    Wang, Pengfei; Ding, Ming; Bo, Lin; Guan, Chunying; Semenova, Yuliya; Sun, Weimin; Yuan, Libo; Brambilla, Gilberto; Farrell, Gerald

    2014-04-01

    A compact single-mode photonic crystal fiber single-mode fiber tip (SPST) refractive index sensor is demonstrated in this Letter. A CO2 laser cleaving technique is utilized to provide a clean-cut fiber tip, which is then coated by a layer of gold to increase reflection. An average sensitivity of 39.1 nm/RIU and a resolvable index change of 2.56×10(-4) are obtained experimentally with a ∼3.2 μm diameter SPST. The temperature dependence of this fiber-optic sensor probe is presented. The proposed SPST refractometer is also significantly less sensitive to temperature and an experimental demonstration of this reduced sensitivity is presented in the Letter. Because of its compactness, ease of fabrication, linear response, low temperature dependency, easy connectivity to other fiberized optical components and low cost, this refractometer could find various applications in chemical and biological sensing. PMID:24686678

  13. Sensing features of long period gratings in hollow core fibers.

    PubMed

    Iadicicco, Agostino; Campopiano, Stefania

    2015-01-01

    We report on the investigation of the sensing features of the Long-Period fiber Gratings (LPGs) fabricated in hollow core photonic crystal fibers (HC-PCFs) by the pressure assisted Electric Arc Discharge (EAD) technique. In particular, the characterization of the LPG in terms of shift in resonant wavelengths and changes in attenuation band depth to the environmental parameters: strain, temperature, curvature, refractive index and pressure is presented. The achieved results show that LPGs in HC-PCFs represent a novel high performance sensing platform for measurements of different physical parameters including strain, temperature and, especially, for measurements of environmental pressure. The pressure sensitivity enhancement is about four times greater if we compare LPGs in HC and standard fibers. Moreover, differently from LPGs in standard fibers, these LPGs realized in innovative fibers, i.e., the HC-PCFs, are not sensitive to surrounding refractive index. PMID:25855037

  14. Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy

    PubMed Central

    Waechter, Helen; Litman, Jessica; Cheung, Adrienne H.; Barnes, Jack A.; Loock, Hans-Peter

    2010-01-01

    Waveguide-based cavity ring-down spectroscopy (CRD) can be used for quantitative measurements of chemical concentrations in small amounts of liquid, in gases or in films. The change in ring-down time can be correlated to analyte concentration when using fiber optic sensing elements that change their attenuation in dependence of either sample absorption or refractive index. Two types of fiber cavities, i.e., fiber loops and fiber strands containing reflective elements, are distinguished. Both types of cavities were coupled to a variety of chemical sensor elements, which are discussed and compared. PMID:22294895

  15. Improvement of the coupling efficiency between LEDs and optical fibers.

    PubMed

    Solomin, A Z; Alexopoulos, N G

    1979-06-15

    A truncated spherical lens geometry is evaluated for layered lenses with various index profiles to determine power coupling efficiency between an LED and an optical fiber. The equations for the efficiency calculation through multiple boundaries are discussed, and numerical results are presented for optical fibers with numerical aperture values of 0.14, 0.23, and 0.35. The layered Luneburg profile is found to give the highest efficiency when the lens and fiber have a significantly larger size than the LED. The layered Maxwell fisheye profile is most efficient when the lens, fiber, and LED are of similar radius. PMID:20212603

  16. Modeling of transient modal instability in fiber amplifiers.

    PubMed

    Ward, Benjamin G

    2013-05-20

    A model of transient modal instability in fiber amplifiers is presented. This model combines an optical beam propagation method that incorporates laser gain through local solution of the rate equations and refractive index perturbations caused by the thermo-optic effect with a time-dependent thermal solver with a quantum defect heating source term. This model predicts modal instability a fiber amplifier operating at 241, 270, and 287 Watts of output power characterized by power coupling to un-seeded modes, the presence of stable and unstable regions within the fiber, and rapid intensity variations along the fiber. The instability becomes more severe as the power is increased. PMID:23736426

  17. Gene-rich islands for fiber development in the cotton genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber is an economically important seed trichome and the world's leading natural fiber used in the manufacture of textiles. As a step towards elucidating the genomic organization and distribution of gene networks responsible for cotton fiber development, we investigated the distribution of f...

  18. Dietary fiber and the glycemic response.

    PubMed

    Jenkins, D J; Jenkins, A L

    1985-12-01

    Addition of purified fiber to carbohydrate test meals has been shown to flatten the glycemic response in both normal and diabetic volunteers, reduce the insulin requirement in patients on the artificial pancreas and in the longer term reduce urinary glucose loss and improve diabetes control. In the context of high fiber-high carbohydrate diets these findings have had a major impact in influencing recommendations for the dietary management of diabetes internationally. The mechanism of action appears in part to be due to the effect of fiber in slowing absorption rather than by increasing colonic losses of carbohydrate. Consequently postprandial GIP and insulin levels are reduced and the more viscous purified fibers (e.g., guar and pectin) appear most effective. In addition it has been suggested that colonic fermentation products of fiber may enhance glucose utilization. More recently it has become clear that many aspects of carbohydrate foods (food form, antinutrients, etc.) in addition to fiber may influence the rate of digestion and has led to a classification especially of starchy foods in terms of glycemic index to define the degree to which equicarbohydrate portions of different foods raise the blood glucose. Use of such data may maximize the effectiveness of high carbohydrate and high fiber diets in the management of diabetes and related disorders. PMID:3001740

  19. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, Jonathan D.

    1995-01-01

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber's transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature.

  20. A birefringence study of changes in myosin orientation during relaxation of skinned muscle fibers induced by photolytic ATP release.

    PubMed Central

    Peckham, M; Ferenczi, M A; Irving, M

    1994-01-01

    The birefringence of isolated skinned fibers from rabbit psoas muscle was measured continuously during relaxation from rigor produced by photolysis of caged ATP at sarcomere length 2.8-2.9 microns, ionic strength 0.1 M, 15 degrees C. Birefringence, the difference in refractive index between light components polarized parallel and perpendicular to the fiber axis, depends on the average degree of alignment of the myosin head domain with the fiber axis. After ATP release birefringence increased by 5.8 +/- 0.7% (mean +/- SE, n = 6) with two temporal components. A small fast component had an amplitude of 0.9 +/- 0.2% and rate constant of 63 s-1. By the completion of this component, the instantaneous stiffness had decreased to about half the rigor value, and the force response to a step stretch showed a rapid (approximately 1000 s-1) recovery phase. Subsequently a large slow birefringence component with rate constant 5.1 s-1 accompanied isometric force relaxation. Inorganic phosphate (10 mM) did not affect the fast birefringence component but accelerated the slow component and force relaxation. The fast birefringence component was probably caused by formation of myosin.ATP or myosin.ADP.Pi states that are weakly bound to actin. The average myosin head orientation at the end of this component is slightly more parallel to the fiber axis than in rigor. PMID:7811926