Science.gov

Sample records for stiffness measurement lsm

  1. Usefulness of liver stiffness measurement during acute cellular rejection in liver transplantation.

    PubMed

    Crespo, Gonzalo; Castro-Narro, Graciela; García-Juárez, Ignacio; Benítez, Carlos; Ruiz, Pablo; Sastre, Lydia; Colmenero, Jordi; Miquel, Rosa; Sánchez-Fueyo, Alberto; Forns, Xavier; Navasa, Miquel

    2016-03-01

    Liver stiffness measurement (LSM) is a useful method to estimate liver fibrosis and portal hypertension. The inflammatory process that takes place in post-liver transplant acute cellular rejection (ACR) may also increase liver stiffness. We aimed to explore the association between liver stiffness and the severity of ACR, as well as to assess the relationship between liver stiffness and response to rejection treatment in a prospective study that included 27 liver recipients with biopsy-proven ACR, 30 stable recipients with normal liver tests, and 30 hepatitis C virus (HCV)-infected LT recipients with histologically diagnosed HCV recurrence. Patients with rejection were stratified into 2 groups (mild and moderate/severe) according to the severity of rejection evaluated with the Banff score. Routine biomarkers and LSM with FibroScan were performed at the time of liver biopsy (baseline) and at 7, 30, and 90 days in patients with rejection and at baseline in control patients. Median baseline liver stiffness was 5.9 kPa in the mild rejection group, 11 kPa in the moderate/severe group (P = 0.001), 4.2 kPa in stable recipients (P = 0.02 versus mild rejection), and 13.6 kPa in patients with recurrent HCV (P = 0.17 versus moderate/severe rejection). The area under the receiver operator characteristic curve of LSM to discriminate mild versus moderate/severe ACR was 0.924, and a LSM value of 8.5 kPa yielded a positive predictive value of 100% to diagnose moderate/severe rejection. Liver stiffness improved in 7%, 21%, and 64% of patients with moderate/severe rejection at 7, 30, and 90 days. In conclusion, according to the results of this exploratory study, LSM is associated with the severity of ACR in liver transplantation and thus may be of help in its assessment. Liver Transpl 22:298-304, 2016. © 2015 AASLD. PMID:26609794

  2. Liver Stiffness Measurement in Psoriasis: Do Metabolic or Disease Factors Play the Important Role?

    PubMed Central

    Pongpit, Jamrus; Porntharukchareon, Saneerat; Kaewduang, Piyaporn; Promson, Kwannapa; Stitchantrakul, Wasana; Petraksa, Supanna; Thakkinstian, Ammarin; Kositchaiwat, Chomsri; Rajatanavin, Natta; Sobhonslidsuk, Abhasnee

    2016-01-01

    Background. An increased prevalence of metabolic syndrome including nonalcoholic fatty liver disease (NAFLD) was reported in psoriasis. NAFLD can progress to nonalcoholic steatohepatitis and fibrosis. Transient elastography (TE) is a noninvasive liver fibrosis assessment. We evaluated the prevalence of significant liver fibrosis or high liver stiffness measurement (LSM) using the LSM cutoff over 7 kPa and its associated factors in psoriatic patients. Methods. Subjects underwent TE and ultrasonography. Univariate and multivariate analysis were performed for the associated factors. Results. One hundred and sixty-eight patients were recruited. Three patients were excluded due to TE failure. Mean BMI was 24.8 ± 4.7 kg/m2. NAFLD, metabolic syndrome, and diabetes were seen in 105 (63.6%), 83 (50.3%), and 31 (18.8%) patients. The total cumulative dose of methotrexate over 1.5 g was seen in 39 (23.6%) patients. Mean LSM was 5.3 ± 2.9 kPa. High LSM was found in 18 (11.0%) patients. Waist circumference (OR: 1.24; 95% CI: 1.11–1.38; P = 0.0002), diabetes (OR: 12.70; 95% CI: 1.84–87.70; P = 0.010), and AST (OR: 1.08; 95% CI: 1.02–1.16; P = 0.017) were associated with high LSM. Conclusion. 11% of psoriatic patients had significant liver fibrosis by high LSM. Waist circumference, diabetes, and AST level were the independent predictors. PMID:27006950

  3. Leg stiffness measures depend on computational method.

    PubMed

    Hébert-Losier, Kim; Eriksson, Anders

    2014-01-01

    Leg stiffness is often computed from ground reaction force (GRF) registrations of vertical hops to estimate the force-resisting capacity of the lower-extremity during ground contact, with leg stiffness values incorporated in a spring-mass model to describe human motion. Individual biomechanical characteristics, including leg stiffness, were investigated in 40 healthy males. Our aim is to report and discuss the use of 13 different computational methods for evaluating leg stiffness from a double-legged repetitive hopping task, using only GRF registrations. Four approximations for the velocity integration constant were combined with three mathematical expressions, giving 12 methods for computing stiffness using double integrations. One frequency-based method that considered ground contact times was also trialled. The 13 methods thus defined were used to compute stiffness in four extreme cases, which were the stiffest, and most compliant, consistent and variable subjects. All methods provided different stiffness measures for a given individual, but the between-method variations in stiffness were consistent across the four atypical subjects. The frequency-based method apparently overestimated the actual stiffness values, whereas double integrations' measures were more consistent. In double integrations, the choice of the integration constant and mathematical expression considerably affected stiffness values, as variations during hopping were more or less emphasized. Stating a zero centre of mass position at take-off gave more consistent results, and taking a weighted-average of the force or displacement curve was more forgiving to variations in performance. In any case, stiffness values should always be accompanied by a detailed description of their evaluation methods, as our results demonstrated that computational methods affect calculated stiffness. PMID:24188972

  4. Measurement and modeling of muon-induced neutrons in LSM in application for direct dark matter searches

    SciTech Connect

    Kozlov, Valentin; Collaboration: EDELWEISS Collaboration

    2013-08-08

    Due to a very low event rate expected in direct dark matter search experiments, a good understanding of every background component is crucial. Muon-induced neutrons constitute a prominent background, since neutrons lead to nuclear recoils and thus can mimic a potential dark matter signal. EDELWEISS is a Ge-bolometer experiment searching for WIMP dark matter. It is located in the Laboratoire Souterrain de Modane (LSM, France). We have measured muon-induced neutrons by means of a neutron counter based on Gd-loaded liquid scintillator. Studies of muon-induced neutrons are presented and include development of the appropriate MC model based on Geant4 and analysis of a 1000-days measurement campaign in LSM. We find a good agreement between measured rates of muon-induced neutrons and those predicted by the developed model with full event topology. The impact of the neutron background on current EDELWEISS data-taking as well as for next generation experiments such as EURECA is briefly discussed.

  5. Measurement and modeling of muon-induced neutrons in LSM in application for direct dark matter searches

    NASA Astrophysics Data System (ADS)

    Kozlov, Valentin; EDELWEISS Collaboration

    2013-08-01

    Due to a very low event rate expected in direct dark matter search experiments, a good understanding of every background component is crucial. Muon-induced neutrons constitute a prominent background, since neutrons lead to nuclear recoils and thus can mimic a potential dark matter signal. EDELWEISS is a Ge-bolometer experiment searching for WIMP dark matter. It is located in the Laboratoire Souterrain de Modane (LSM, France). We have measured muon-induced neutrons by means of a neutron counter based on Gd-loaded liquid scintillator. Studies of muon-induced neutrons are presented and include development of the appropriate MC model based on Geant4 and analysis of a 1000-days measurement campaign in LSM. We find a good agreement between measured rates of muon-induced neutrons and those predicted by the developed model with full event topology. The impact of the neutron background on current EDELWEISS data-taking as well as for next generation experiments such as EURECA is briefly discussed.

  6. Laser application on haptics: Tactile stiffness measurement

    NASA Astrophysics Data System (ADS)

    Scalise, L.; Memeo, M.; Cannella, F.; Valente, M.; Caldwell, D. G.; Tomasini, E. P.

    2012-06-01

    There is a great interest in exploring the proprieties of the sense of the touch, its detailed knowledge in fact is a key issue in the area of robotics, haptics and human-machine interaction. In this paper, the authors focus their attention on a novel measurement method for the assessment of the tactile stiffness based on a original test rig; tactile stiffness is defined as the ratio between force, exerted by the finger, and the displacement of the finger tip operated during the test. To reach this scope, the paper describes a specific experimental test-rig used for the evaluation of subject tactile sensitivity, where finger force applied during tests as well as displacement and velocity of displacement, operated by the subject under investigation, are measured. Results show that tactile stiffness is linear respect to stimuli spatial difference (which is proportional to the difficulty to detect the variation of them). In particular, it has been possible to relate the force and displacement measured during the tests. The relationship between the response of the subject to the grating, velocity and force is determined. These results permit to carry out the further experimental tests on the same subject avoiding the use of a load cell and therefore simplifying the measurement test rig and data post-processing. Indeed, the first aspect (use of a load cell) can be relevant, because the grating positions are different, requiring a specific re-calibration and setting before each trial; while the second aspect allows simplify the test rig complexity and the processing algorithm.

  7. The Application of Liver Stiffness Measurement in Residents Without Overt Liver Diseases Through a Community-Based Screening Program.

    PubMed

    Cheng, Pin-Nan; Chiu, Yen-Cheng; Chiu, Hung-Chih; Chien, Shih-Chieh

    2016-03-01

    The application of liver stiffness measurement (LSM) by transient elastography (TE) in general population remains to clarify. This cohort study aimed to examine the usefulness of TE and to identify factors associated with significant liver fibrosis in community-based population.We conducted a hepatitis screening program in 2 remote villages of Southern Taiwan. All residents participated voluntarily and received questionnaire evaluation, blood tests, abdominal sonography, and LSM by TE. Residents with any one of following criteria including hepatitis B virus infection, hepatitis C virus infection, more than moderate alcohol drinking, and failure to obtain valid or reliable LSM were excluded.There were 831 residents participated in program. The valid and reliable LSM were obtained in 98.3% and 96.3% of residents, respectively. Finally, a total of 559 residents including 283 residents with nonalcoholic steatotic fatty liver disease (NAFLD) were enrolled for analysis. The mean liver stiffness was 4.9 ± 1.9 kPa. The liver stiffness increased in residents with diabetes mellitus (DM), higher body mass index (BMI), hypertension, abnormal waist-hip circumference ration (WHR), higher waist circumference (WC), and presence of fatty liver. Higher body weight, higher BMI, higher WC, abnormal WHR, abnormal aspartate aminotransferase (AST), abnormal alanine aminotransferase (ALT), and DM were the factors associated with significant fibrosis (liver stiffness ≥7 kPa) in either all participants or NAFLD residents. As determined by multivariate analysis, abnormal AST values and DM were the 2 independent factors in all participants (abnormal AST: OR 3.648, 95% CI 1.134-11.740, P = 0.03; DM: OR 2.882, 95% CI 1.282-6.478, P = 0.01) and in residents with NAFLD (abnormal AST: OR 4.197, 95% CI 1.154-15.262, P = 0.03; DM: OR 3.254, 95% CI 1.258-8.413, P = 0.02).LSM by TE is a useful screening tool in community. In residents, who were absence of chronic hepatitis virus infection or consumed less than moderate alcohol drinking, exhibited DM or abnormal AST values may consider a substantial group with significant fibrosis in community. PMID:27015215

  8. OroSTIFF: Face-referenced measurement of perioral stiffness in health and disease

    PubMed Central

    Chu, Shin-Ying; Kieweg, Douglas; Lee, Jaehoon

    2010-01-01

    A new device and automated measurement technology known as OroSTIFF is described to characterize non-participatory perioral stiffness in healthy adults for eventual application to patients with orofacial movement disorders associated with neuromotor disease, traumatic injury, or congenital clefts of the upper lip. Previous studies of perioral biomechanics required head stabilization for extended periods of time during measurement which precluded sampling patients with involuntary body/head movements (dyskinesias), or pediatric subjects. The OroSTIFF device is face-referenced and avoids the complications associated with head-restraint. Supporting data of non-participatory perioral tissue stiffness using OroSTIFF are included from 10 male and 10 female healthy subjects. The OroSTIFF device incorporates a pneumatic glass air cylinder actuator instrumented for pressure, and an integrated subminiature displacement sensor to encode lip aperture. Perioral electromyograms were simultaneously sampled to confirm passive muscle state for the superior and inferior divisions of the orbicularis oris muscles. Perioral stiffness, derived as a quotient from resultant force (ΔF) and interangle span (ΔX), was modeled with multilevel regression techniques. Real-time calculation of the perioral stiffness function demonstrated a significant quadratic relation between imposed interangle stretch and resultant force. This stiffness growth function also differed significantly between males and females. This study demonstrates the OroSTIFF ‘proof-of-concept’ for cost-effective non-invasive stimulus generation and derivation of perioral stiffness in a group of healthy unrestrained adults, and a case study to illustrate the dose-dependent effects of Levodopa on perioral stiffness in an individual with advanced Parkinson’s disease who exhibited marked dyskinesia and rigidity. PMID:20185131

  9. In vivo measurement of bending stiffness in fracture healing

    PubMed Central

    Hente, Reiner; Cordey, Jacques; Perren, Stephan M

    2003-01-01

    Background Measurement of the bending stiffness a healing fracture represents a valid variable in the assessment of fracture healing. However, currently available methods typically have high measurement errors, even for mild pin loosening. Furthermore, these methods cannot provide actual values of bending stiffness, which precludes comparisons among individual fractures. Thus, even today, little information is available with regards to the fracture healing pattern with respect to actual values of bending stiffness. Our goals were, therefore: to develop a measurement device that would allow accurate and sensitive measurement of bending stiffness, even in the presence of mild pin loosening; to describe the course of healing in individual fractures; and help to evaluate whether the individual pattern of bending stiffness can be predicted at an early stage of healing. Methods A new measurement device has been developed to precisely measure the bending stiffness of the healing fracture by simulating four-point-bending. The system was calibrated on aluminum models and intact tibiae. The influence of pin loosening on measurement error was evaluated. The system was tested at weekly intervals in an animal experiment to determine the actual bending stiffness of the fracture. Transverse fractures were created in the right tibia of twelve sheep, and then stabilized with an external fixator. At ten weeks, bending stiffness of the tibiae were determined in a four-point-bending test device to validate the in-vivo-measurement data. Results In-vivo bending stiffness can be measured accurately and sensitive, even in the early phase of callus healing. Up to a bending stiffness of 10 Nm/degree, measurement error was below 3.4% for one pin loose, and below 29.3% for four pins loose, respectively. Measurement of stiffness data over time revealed a significant logarithmic increase between the third and seventh weeks, whereby the logarithmic rate of change among sheep was similar, but started from different levels. Comparative measurements showed that early individual changes between the third and fourth weeks can be used as a predictor of bending stiffness at seven weeks (r = 0.928) and at ten weeks (r = 0.710). Conclusion Bending stiffness can be measured precisely, with less error in the case of pin loosening. Prediction of the future healing course of the individual fracture can be assessed by changes from the third to the fourth week, with differences in stiffness levels. Therefore, the initial status of the fracture seems to have a high impact on the individual healing course. PMID:14599296

  10. X-Ray And Acoustic Measurements Yield Stiffnesses

    NASA Technical Reports Server (NTRS)

    Madaras, Eric Irvine; Kline, Ronald A.

    1993-01-01

    Analytical technique combines ultrasonic scanning measurements of local velocity of sound in specimen of material with x-ray computed tomographic measurements of local mass density to compute local stiffness of material. Stiffnesses at various locations in specimen then used in finite-element mathematical model of elastic behavior of specimen to compute local stresses, local strains, and overall deformations. Technique enhances value of quantitative nondestructive x-ray and ultrasonic measurements. Especially useful in characterization of carbon/carbon composites and other advanced materials not homogeneous and for which customary simplifying assumption of constant density and/or constant stiffness not valid.

  11. Stiffness measurement using terahertz and acoustic waves for biological samples.

    PubMed

    Yoon, Jong-Hyun; Yang, Young-Joong; Park, Jinho; Son, Heyjin; Park, Hochong; Park, Gun-Sik; Ahn, Chang-Beom

    2015-12-14

    A method is proposed to measure sample stiffness using terahertz wave and acoustic stimulation. The stiffness-dependent vibration is measured using terahertz wave (T-ray) during an acoustic stimulation. To quantify the vibration, time of the peak amplitude of the reflected T-ray is measured. In our experiment, the T-ray is asynchronously applied during the period of the acoustic stimulation, and multiple measurements are taken to use the standard deviation and the maximum difference in the peak times to estimate the amplitude of the vibration. Some preliminary results are shown using biological samples. PMID:26699056

  12. Method of measurement of optical cable stiffness at low temperatures

    NASA Astrophysics Data System (ADS)

    Burdin, Vladimir A.; Alekhin, Ivan N.; Nikulina, Tatiana G.

    2014-04-01

    In this article the new method of determination of optical cable stiffness at low temperatures is offered. The method is allows to simplify process of measurements. Thus presence of technicians at climatic chamber in the course of measurements is not required.

  13. The interday reliability of leg and ankle musculotendinous stiffness measures.

    PubMed

    McLachlan, Ken A; Murphy, Aron J; Watsford, Mark L; Rees, Sven

    2006-11-01

    Two popular methods of assessing lower body musculotendinous stiffness include the hopping and oscillation tests. The disparity and paucity of reliability data prompted this investigation into leg musculotendinous stiffness (Kleg) and ankle musculotendinous stiffness (Kank) measures. Kleg and Kank were assessed on three separate occasions in 20 female subjects. Kleg was determined using bilateral hopping procedures conducted at 2.2 Hz and 3.2 Hz frequencies. Kank was assessed by perturbation of the subject's ankle musculotendinous unit on an instrumented calf raise apparatus at 70% of maximum isometric force (MIF). Excellent reliability was produced for all Kleg measures between all days, whereas Kank exhibited acceptable reliability after one session of familiarization. No relationship was evident between Kleg and Kank. It was concluded that no familiarization session was required for Kleg at the test frequencies and conditions tested, whereas at least one familiarization session was needed to ensure the reliable assessment of Kank. PMID:17293626

  14. Cellular mechanoadaptation to substrate mechanical properties: contributions of substrate stiffness and thickness to cell stiffness measurements using AFM.

    PubMed

    Vichare, Shirish; Sen, Shamik; Inamdar, Mandar M

    2014-02-28

    Mechanosensing by adherent cells is usually studied by quantifying cell responses on hydrogels that are covalently linked to a rigid substrate. Atomic force microscopy (AFM) represents a convenient way of characterizing the mechanoadaptation response of adherent cells on hydrogels of varying stiffness and thickness. Since AFM measurements reflect the effective cell stiffness, therefore, in addition to measuring real cytoskeletal alterations across different conditions, these measurements might also be influenced by the geometry and physical properties of the substrate itself. To better understand how the physical attributes of the gel influence AFM stiffness measurements of cells, we have used finite element analysis to simulate the indentation of cells of various spreads resting on hydrogels of varying stiffness and thickness. Consistent with experimental results, our simulation results indicate that for well spread cells, stiffness values are significantly over-estimated when experiments are performed on cells cultured on soft and thin gels. Using parametric studies, we have developed scaling relationships between the effective stiffness probed by AFM and the bulk cell stiffness, taking cell and tip geometry, hydrogel properties, nuclear stiffness and cell contractility into account. Finally, using simulated mechanoadaptation responses, we have demonstrated that a cell stiffening response may arise purely due to the substrate properties. Collectively, our results demonstrate the need to take hydrogel properties into account while estimating cell stiffness using AFM indentation. PMID:24651595

  15. A method for measuring exchange stiffness in ferromagnetic films

    SciTech Connect

    Girt, Erol; Huttema, W.; Montoya, E.; Kardasz, B.; Eyrich, C.; Heinrich, B.; Mryasov, O. N.; Dobin, A. Yu.; Karis, O.

    2011-04-01

    An exchange stiffness, A{sub ex}, in ferromagnetic films is obtained by fitting the M(H) dependence of two ferromagnetic layers antiferromagnetically coupled across a nonmagnetic spacer layer with a simple micromagnetic model. In epitaxial and textured structures this method allows measuring A{sub ex} between the crystallographic planes perpendicular to the growth direction of ferromagnetic films. Our results show that A{sub ex} between [0001] planes in textured Co grains is 1.54 {+-} 0.12 x 10{sup -11} J/m.

  16. Measurement of stiffness of standing trees and felled logs using acoustics: A review.

    PubMed

    Legg, Mathew; Bradley, Stuart

    2016-02-01

    This paper provides a review on the use of acoustics to measure stiffness of standing trees, stems, and logs. An outline is given of the properties of wood and how these are related to stiffness and acoustic velocity throughout the tree. Factors are described that influence the speed of sound in wood, including the different types of acoustic waves which propagate in tree stems and lumber. Acoustic tools and techniques that have been used to measure the stiffness of wood are reviewed. The reasons for a systematic difference between direct and acoustic measurements of stiffness for standing trees, and methods for correction, are discussed. Other techniques, which have been used in addition to acoustics to try to improve stiffness measurements, are also briefly described. Also reviewed are studies which have used acoustic tools to investigate factors that influence the stiffness of trees. These factors include different silvicultural practices, geographic and environmental conditions, and genetics. PMID:26936543

  17. Sources of Variability in Musculo-Articular Stiffness Measurement

    PubMed Central

    Ditroilo, Massimiliano; Watsford, Mark; Murphy, Aron; De Vito, Giuseppe

    2013-01-01

    The assessment of musculo-articular stiffness (MAS) with the free-oscillation technique is a popular method with a variety of applications. This study examined the sources of variability (load applied and frequency of oscillation) when MAS is assessed. Over two testing occasions, 14 healthy men (27.7±5.2 yr, 1.82±0.04 m, 79.5±8.4 kg) were measured for isometric maximum voluntary contraction and MAS of the knee flexors using submaximal loads relative to the individual's maximum voluntary contraction (MAS%MVC) and a single absolute load (MASABS). As assessment load increased, MAS%MVC (coefficient of variation (CV)  =  8.1–12.1%; standard error of measurement (SEM)  =  51.6–98.8 Nm−1) and frequency (CV  =  4.8–7.0%; SEM  =  0.060–0.075 s−1) variability increased consequently. Further, similar levels of variability arising from load (CV  =  6.7%) and frequency (CV  =  4.8–7.0%) contributed to the overall MAS%MVC variability. The single absolute load condition yielded better reliability scores for MASABS (CV  =  6.5%; SEM  =  40.2 Nm−1) and frequency (CV  =  3.3%; SEM  =  0.039 s−1). Low and constant loads for MAS assessment, which are particularly relevant in the clinical setting, exhibited superior reliability compared to higher loads expressed as a percentage of maximum voluntary contraction, which are more suitable for sporting situations. Appropriate sample size and minimum detectable change can therefore be determined when prospective studies are carried out. PMID:23667662

  18. PolyMUMPs MEMS device to measure mechanical stiffness of single cells in aqueous media

    NASA Astrophysics Data System (ADS)

    Warnat, S.; King, H.; Forbrigger, C.; Hubbard, T.

    2015-02-01

    A method of experimentally determining the mechanical stiffness of single cells by using differential displacement measurements in a two stage spring system is presented. The spring system consists of a known MEMS reference spring and an unknown cellular stiffness: the ratio of displacements is related to the ratio of stiffness. A polyMUMPs implementation for aqueous media is presented and displacement measurements made from optical microphotographs using a FFT based displacement method with a repeatability of ~20 nm. The approach was first validated on a MEMS two stage spring system of known stiffness. The measured stiffness ratios of control structures (i) MEMS spring systems and (ii) polystyrene microspheres were found to agree with theoretical values. Mechanical tests were then performed on Saccharomyces cerevisiae (Baker’s yeast) in aqueous media. Cells were placed (using a micropipette) inside MEMS measuring structures and compressed between two jaws using an electrostatic actuator and displacements measured. Tested cells showed stiffness values between 5.4 and 8.4 N m-1 with an uncertainty of 11%. In addition, non-viable cells were tested by exposing viable cells to methanol. The resultant mean cell stiffness dropped by factor of 3 × and an explicit discrimination between viable and non-viable cells based on mechanical stiffness was seen.

  19. A new method of measuring the stiffness of astronauts' EVA gloves

    NASA Astrophysics Data System (ADS)

    Mousavi, Mehdi; Appendino, Silvia; Battezzato, Alessandro; Bonanno, Alberto; Chen Chen, Fai; Crepaldi, Marco; Demarchi, Danilo; Favetto, Alain; Pescarmona, Francesco

    2014-04-01

    Hand fatigue is one of the most important problems of astronauts during their missions to space. This fatigue is due to the stiffness of the astronauts' gloves known as Extravehicular Activity (EVA) gloves. The EVA glove has a multilayered, bulky structure and is pressurized against the vacuum of space. In order to evaluate the stiffness of EVA gloves, different methods have been proposed in the past. In particular, the effects of wearing an EVA glove on the performance of the hands have been published by many researchers to represent the stiffness of the EVA glove. In this paper, a new method for measuring the stiffness of EVA gloves is proposed. A tendon-actuated finger probe is designed and used as an alternative to the human index finger in order to be placed inside an EVA glove and measure its stiffness. The finger probe is equipped with accelerometers, which work as tilt sensors, to measure the angles of its phalanges. The phalanges are actuated by applying different amount of torque using the tendons of the finger probe. Moreover, a hypobaric glove box is designed and realized to simulate the actual operating pressure of the EVA glove and to measure its stiffness in both pressurized and non-pressurized conditions. In order to prove the right performance of the proposed finger probe, an Orlam-DM EVA glove is used to perform a number of tests. The equation of stiffness for the PIP joint of this glove is extracted from the results acquired from the tests. This equation presents the torque required to flex the middle phalanx of the glove. Then, the effect of pressurization on the stiffness is highlighted in the last section. This setup can be used to measure the stiffness of different kinds of EVA gloves and allows direct, numerical comparison of their stiffness.

  20. Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement

    SciTech Connect

    Pharr, George Mathews; Strader, Jeremy H.; Oliver, W. C.

    2009-01-01

    Experiments were performed on a (100) copper single crystal to examine the influences that small displacement oscillations used in continuous stiffness measurement techniques have on hardness and elastic-modulus measurements in nanoindentation experiments. For the commonly used 2-nm oscillation, significant errors were observed in the measured properties, especially the hardness, at penetration depths as large as 100 nm. The errors originate from the large amount of dynamic unloading that occurs in materials like copper that have high contact stiffness resulting from their high modulus-to-hardness ratios. A simple model for the loading and unloading behavior of an elastic-plastic material is presented that quantitatively describes the errors and can be used to partially correct for them. By correcting the data in accordance with model and performing measurements at smaller displacement oscillation amplitudes, the errors can be reduced. The observations have important implications for the interpretation of the indentation size effect.

  1. Flexural Stiffness of Myosin Va Subdomains as Measured from Tethered Particle Motion

    PubMed Central

    Michalek, Arthur J.; Kennedy, Guy G.; Warshaw, David M.; Ali, M. Yusuf

    2015-01-01

    Myosin Va (MyoVa) is a processive molecular motor involved in intracellular cargo transport on the actin cytoskeleton. The motor's processivity and ability to navigate actin intersections are believed to be governed by the stiffness of various parts of the motor's structure. Specifically, changes in calcium may regulate motor processivity by altering the motor's lever arm stiffness and thus its interhead communication. In order to measure the flexural stiffness of MyoVa subdomains, we use tethered particle microscopy, which relates the Brownian motion of fluorescent quantum dots, which are attached to various single- and double-headed MyoVa constructs bound to actin in rigor, to the motor's flexural stiffness. Based on these measurements, the MyoVa lever arm and coiled-coil rod domain have comparable flexural stiffness (0.034 pN/nm). Upon addition of calcium, the lever arm stiffness is reduced 40% as a result of calmodulins potentially dissociating from the lever arm. In addition, the flexural stiffness of the full-length MyoVa construct is an order of magnitude less stiff than both a single lever arm and the coiled-coil rod. This suggests that the MyoVa lever arm-rod junction provides a flexible hinge that would allow the motor to maneuver cargo through the complex intracellular actin network. PMID:26770194

  2. Flexural Stiffness of Myosin Va Subdomains as Measured from Tethered Particle Motion.

    PubMed

    Michalek, Arthur J; Kennedy, Guy G; Warshaw, David M; Ali, M Yusuf

    2015-01-01

    Myosin Va (MyoVa) is a processive molecular motor involved in intracellular cargo transport on the actin cytoskeleton. The motor's processivity and ability to navigate actin intersections are believed to be governed by the stiffness of various parts of the motor's structure. Specifically, changes in calcium may regulate motor processivity by altering the motor's lever arm stiffness and thus its interhead communication. In order to measure the flexural stiffness of MyoVa subdomains, we use tethered particle microscopy, which relates the Brownian motion of fluorescent quantum dots, which are attached to various single- and double-headed MyoVa constructs bound to actin in rigor, to the motor's flexural stiffness. Based on these measurements, the MyoVa lever arm and coiled-coil rod domain have comparable flexural stiffness (0.034 pN/nm). Upon addition of calcium, the lever arm stiffness is reduced 40% as a result of calmodulins potentially dissociating from the lever arm. In addition, the flexural stiffness of the full-length MyoVa construct is an order of magnitude less stiff than both a single lever arm and the coiled-coil rod. This suggests that the MyoVa lever arm-rod junction provides a flexible hinge that would allow the motor to maneuver cargo through the complex intracellular actin network. PMID:26770194

  3. In vivo and in vitro measurements of pulmonary arterial stiffness: A brief review

    PubMed Central

    Tian, Lian; Chesler, Naomi C.

    2012-01-01

    During the progression of pulmonary hypertension (PH), proximal pulmonary arteries (PAs) undergo remodeling such that they become thicker and the elastic modulus increases. Both of these changes increase the vascular stiffness. The increase in pulmonary vascular stiffness contributes to increased right ventricular (RV) afterload, which causes RV hypertrophy and eventually failure. Studies have found that proximal PA stiffness or its inverse, compliance, is strongly related to morbidity and mortality in patients with PH. Therefore, accurate in vivo measurement of PA stiffness is useful for prognoses in patients with PH. It is also important to understand the structural changes in PAs that occur with PH that are responsible for stiffening. Here, we briefly review the most common parameters used to quantify stiffness and in vivo and in vitro methods for measuring PA stiffness in human and animal models. For in vivo approaches, we review invasive and noninvasive approaches that are based on measurements of pressure and inner or outer diameter or cross-sectional area. For in vitro techniques, we review several different testing methods that mimic one, two or several aspects of physiological loading (e.g., uniaxial and biaxial testing, dynamic inflation-force testing). Many in vivo and in vitro measurement methods exist in the literature, and it is important to carefully choose an appropriate method to measure PA stiffness accurately. Therefore, advantages and disadvantages of each approach are discussed. PMID:23372936

  4. Non-Contact Stiffness Measurement of a Suspended Single Walled Carbon Nanotube Device

    NASA Technical Reports Server (NTRS)

    Zheng, Yun; Su, Chanmin; Getty, Stephanie

    2010-01-01

    A new nanoscale electric field sensor was developed for studying triboelectric charging in terrestrial and Martian dust devils. This sensor is capable to measure the large electric fields for large dust devils without saturation. However, to quantify the electric charges and the field strength it is critical to calibrate the mechanical stiffness of the sensor devices. We performed a technical feasibility study of the Nano E-field Sensor stiffness by a non-contact stiffness measurement method. The measurement is based on laser Doppler vibrometer measurement of the thermal noise due to energy flunctuations in the devices. The experiment method provides a novel approach to acquire data that is essential in analyzing the quantitative performance of the E-field Nano Sensor. To carry out the non-contact stiffness measurement, we fabricated a new Single-Walled Carbon Nanotube (SWCNT) E-field sensor with different SWCNTs suspension conditions. The power spectra of the thermal induced displacement in the nano E-field sensor were measured at the accuracy of picometer. The power spectra were then used to derive the mechanical stiffness of the sensors. Effect of suspension conditions on stiffness and sensor sensitivty was discussed. After combined deformation and resistivity measurement, we can compare with our laboratory testing and field testing results. This new non-contact measurement technology can also help to explore to other nano and MEMS devices in the future.

  5. Aortic wave velocity: a noninvasive method to measure the stiffness of arteries and the clinical results of supplements that appear to improve arterial stiffness.

    PubMed

    Micans, Philip

    2013-02-01

    It has been suggested that arterial stiffness is one of the most important risk factors for the development of a cardiac infarction or stroke. As cardiovascular disease remains the number one killer of individuals before the age of 75, the early detection of cardiovascular disease and its prevention remains paramount in order to sustain a healthy longevity. This article looks at the latest noninvasive technology that can measure arterial stiffness quickly and easily and also highlights a small open trial in which supplements were used to determine their efficacy in helping to reverse/improve arterial stiffness. PMID:23895524

  6. “An Impediment to Living Life”: Why and How Should We Measure Stiffness in Polymyalgia Rheumatica?

    PubMed Central

    Mackie, Sarah Louise; Hughes, Rodney; Walsh, Margaret; Day, John; Newton, Marion; Pease, Colin; Kirwan, John; Morris, Marianne

    2015-01-01

    Objectives To explore patients’ concepts of stiffness in polymyalgia rheumatica (PMR), and how they think stiffness should be measured. Methods Eight focus groups were held at three centres involving 50 patients with current/previous PMR. Each group had at least one facilitator and one rapporteur making field notes. An interview schedule was used to stimulate discussion. Interviews were recorded, transcribed and analysed using an inductive thematic approach. Results Major themes identified were: symptoms: pain, stiffness and fatigue; functional impact; impact on daily schedule; and approaches to measurement. The common subtheme for the experience of stiffness was “difficulty in moving”, and usually considered as distinct from the experience of pain, albeit with a variable overlap. Some participants felt stiffness was the “overwhelming” symptom, in that it prevented them carrying out “fundamental activities” and “generally living life”. Diurnal variation in stiffness was generally described in relation to the daily schedule but was not the same as stiffness severity. Some participants suggested measuring stiffness using a numeric rating scale or a Likert scale, while others felt that it was more relevant and straightforward to measure difficulty in performing everyday activities rather than about stiffness itself. Conclusions A conceptual model of stiffness in PMR is presented where stiffness is an important part of the patient experience and impacts on their ability to live their lives. Stiffness is closely related to function and often regarded as interchangeable with pain. From the patients’ perspective, visual analogue scales measuring pain and stiffness were not the most useful method for reporting stiffness; participants preferred numerical rating scales, or assessments of function to reflect how stiffness impacts on their daily lives. Assessing function may be a pragmatic solution to difficulties in quantifying stiffness. PMID:25955770

  7. Integration of Acoustic Radiation Force and Optical Imaging for Blood Plasma Clot Stiffness Measurement

    PubMed Central

    Wang, Caroline W.; Perez, Matthew J.; Helmke, Brian P.; Viola, Francesco; Lawrence, Michael B.

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood’s transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  8. Measurement of passive ankle stiffness in subjects with chronic hemiparesis using a novel ankle robot

    PubMed Central

    Roy, Anindo; Bever, Christopher T.; Forrester, Larry W.; Macko, Richard F.; Hogan, Neville

    2011-01-01

    Our objective in this study was to assess passive mechanical stiffness in the ankle of chronic hemiparetic stroke survivors and to compare it with those of healthy young and older (age-matched) individuals. Given the importance of the ankle during locomotion, an accurate estimate of passive ankle stiffness would be valuable for locomotor rehabilitation, potentially providing a measure of recovery and a quantitative basis to design treatment protocols. Using a novel ankle robot, we characterized passive ankle stiffness both in sagittal and in frontal planes by applying perturbations to the ankle joint over the entire range of motion with subjects in a relaxed state. We found that passive stiffness of the affected ankle joint was significantly higher in chronic stroke survivors than in healthy adults of a similar cohort, both in the sagittal as well as frontal plane of movement, in three out of four directions tested with indistinguishable stiffness values in plantarflexion direction. Our findings are comparable to the literature, thus indicating its plausibility, and, to our knowledge, report for the first time passive stiffness in the frontal plane for persons with chronic stroke and older healthy adults. PMID:21346215

  9. Turtle utricle dynamic behavior using a combined anatomically accurate model and experimentally measured hair bundle stiffness

    PubMed Central

    Davis, J.L.; Grant, J.W.

    2014-01-01

    Anatomically correct turtle utricle geometry was incorporated into two finite element models. The geometrically accurate model included appropriately shaped macular surface and otoconial layer, compact gel and column filament (or shear) layer thicknesses and thickness distributions. The first model included a shear layer where the effects of hair bundle stiffness was included as part of the shear layer modulus. This solid model’s undamped natural frequency was matched to an experimentally measured value. This frequency match established a realistic value of the effective shear layer Young’s modulus of 16 Pascals. We feel this is the most accurate prediction of this shear layer modulus and fits with other estimates (Kondrachuk, 2001b). The second model incorporated only beam elements in the shear layer to represent hair cell bundle stiffness. The beam element stiffness’s were further distributed to represent their location on the neuroepithelial surface. Experimentally measured striola hair cell bundles mean stiffness values were used in the striolar region and the mean extrastriola hair cell bundles stiffness values were used in this region. The results from this second model indicated that hair cell bundle stiffness contributes approximately 40% to the overall stiffness of the shear layer– hair cell bundle complex. This analysis shows that high mass saccules, in general, achieve high gain at the sacrifice of frequency bandwidth. We propose the mechanism by which this can be achieved is through increase the otoconial layer mass. The theoretical difference in gain (deflection per acceleration) is shown for saccules with large otoconial layer mass relative to saccules and utricles with small otoconial layer mass. Also discussed is the necessity of these high mass saccules to increase their overall system shear layer stiffness. Undamped natural frequencies and mode shapes for these sensors are shown. PMID:25445820

  10. Measurement of the UH-60A Hub Large Rotor Test Apparatus Control System Stiffness

    NASA Technical Reports Server (NTRS)

    Kufeld, Robert M.

    2014-01-01

    This purpose of this report is to provides details of the measurement of the control system stiffness of the UH-60A rotor hub mounted on the Large Rotor Test Apparatus (UH-60A/LRTA). The UH-60A/LRTA was used in the 40- by 80-Foot Wind Tunnel to complete the full-scale wind tunnel test portion of the NASA / ARMY UH-60A Airloads Program. This report describes the LRTA control system and highlights the differences between the LRTA and UH-60A aircraft. The test hardware, test setup, and test procedures are also described. Sample results are shown, including the azimuthal variation of the measured control system stiffness for three different loadings and two different dynamic actuator settings. Finally, the azimuthal stiffness is converted to fixed system values using multi-blade transformations for input to comprehensive rotorcraft prediction codes.

  11. Piezoelectric Sensor to Measure Soft and Hard Stiffness with High Sensitivity for Ultrasonic Transducers.

    PubMed

    Li, Yan-Rui; Su, Chih-Chung; Lin, Wen-Jin; Chang, Shuo-Hung

    2015-01-01

    During dental sinus lift surgery, it is important to monitor the thickness of the remaining maxilla to avoid perforating the sinus membrane. Therefore, a sensor should be integrated into ultrasonic dental tools to prevent undesirable damage. This paper presents a piezoelectric (PZT) sensor installed in an ultrasonic transducer to measure the stiffness of high and low materials. Four design types using three PZT ring materials and a split PZT for actuator and sensor ring materials were studied. Three sensor locations were also examined. The voltage signals of the sensor and the displacement of the actuator were analyzed to distinguish the low and high stiffness. Using sensor type T1 made of the PZT-1 material and the front location A1 provided a high sensitivity of 2.47 Vm/kN. The experimental results demonstrated that our design can measure soft and hard stiffness. PMID:26110400

  12. Optoelectronic tweezers for the measurement of the relative stiffness of erythrocytes

    NASA Astrophysics Data System (ADS)

    Neale, Steven L.; Mody, Nimesh; Selman, Colin; Cooper, Jonathan M.

    2012-10-01

    In this paper we describe the first use of Optoelectronic Tweezers (OET), an optically controlled micromanipulation method, to measure the relative stiffness of erythrocytes in mice. Cell stiffness is an important measure of cell health and in the case of erythrocytes, the most elastic cells in the body, an increase in cell stiffness can indicate pathologies such as type II diabetes mellitus or hypertension (high blood pressure). OET uses a photoconductive device to convert an optical pattern into and electrical pattern. The electrical fields will create a dipole within any polarisable particles in the device, such as cells, and non-uniformities of the field can be used to place unequal forces onto each side of the dipole thus moving the particle. In areas of the device where there are no field gradients, areas of constant illumination, the force on each side of the dipole will be equal, keeping the cell stationary, but as there are opposing forces on each side of the cell it will be stretched. The force each cell will experience will differ slightly so the stretching will depend on the cells polarisability as well as its stiffness. Because of this a relative stiffness rather than absolute stiffness is measured. We show that with standard conditions (20Vpp, 1.5MHz, 10mSm-1 medium conductivity) the cell's diameter changes by around 10% for healthy mouse erythrocytes and we show that due to the low light intensities required for OET, relative to conventional optical tweezers, multiple cells can be measured simultaneously.

  13. Contact-flatted measurement of eye stiffness based on force-displacement relationship

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Ma, Jianguo; Zhang, Xueyong

    2011-12-01

    This paper presents a noninvasive approach in vivo measurement of eye stiffness based on a force-displacement relationship, which is based on a new contact-probe method of simultaneously measuring the static force and displacement. First, a simple spherical eye model is introduced for deriving analytical eye stiffness when a static force is applied to an eye. Next, a measurement system for simultaneously measuring force and displacement when a probe is pressed onto the eye is presented. Static eye stiffness is defined which based on the measured force-displacement relationship. A photoelectric probe transducer acts as displacement detector. A 16-bit single-chip microprocessor with E2PROM in the electronic circuit played the role of a nucleus, which stored the program instructions and the interrelated data. Laboratory experiments were carried out on a simulated eyeball connected to a hydraulic manometer to obtain intraocular pressure at different levels. The experimental results show that the measured eye stiffness nicely matches the analytical result.

  14. Liver Stiffness: A Significant Relationship with the Waveform Pattern in the Hepatic Vein.

    PubMed

    Sekimoto, Tadashi; Maruyama, Hitoshi; Kiyono, Soichiro; Kondo, Takayuki; Shimada, Taro; Takahashi, Masanori; Yokosuka, Osamu; Yamaguchi, Tadashi

    2015-07-01

    The aim of this prospective study was to assess the relationship between liver stiffness and hepatic vein waveform patterns in 42 patients with chronic hepatitis and 55 with cirrhosis. Liver stiffness measurement (LSM) values (FibroScan, Echosens, Paris, France) were significantly lower in the triphasic pattern group (11.3 8.4 kPa) than in the monophasic pattern (32.5 23.5 kPa, p = 0.001) and biphasic pattern (25.6 18.1 kPa, p = 0.001) groups, indicating no significant relationship with portal pressure. The ability to diagnose cirrhosis represented by the highest area under the receiver operating characteristic curve was 0.921 (83.6% sensitivity, 90.5% specificity, best cutoff value: 16.9 kPa) by LSM and 1.000 (best cutoff value: 19.4 kPa) by LSM combined with the monophasic pattern. This study revealed a close linkage between liver stiffness and hepatic vein waveform findings, resulting in a better understanding of hepatic vein hemodynamics and wider application of its analysis. PMID:25858000

  15. Liver Stiffness Measurement-Based Scoring System for Significant Inflammation Related to Chronic Hepatitis B

    PubMed Central

    Hong, Mei-Zhu; Zhang, Ru-Mian; Chen, Guo-Liang; Huang, Wen-Qi; Min, Feng; Chen, Tian; Xu, Jin-Chao; Pan, Jin-Shui

    2014-01-01

    Objectives Liver biopsy is indispensable because liver stiffness measurement alone cannot provide information on intrahepatic inflammation. However, the presence of fibrosis highly correlates with inflammation. We constructed a noninvasive model to determine significant inflammation in chronic hepatitis B patients by using liver stiffness measurement and serum markers. Methods The training set included chronic hepatitis B patients (n = 327), and the validation set included 106 patients; liver biopsies were performed, liver histology was scored, and serum markers were investigated. All patients underwent liver stiffness measurement. Results An inflammation activity scoring system for significant inflammation was constructed. In the training set, the area under the curve, sensitivity, and specificity of the fibrosis-based activity score were 0.964, 91.9%, and 90.8% in the HBeAg(+) patients and 0.978, 85.0%, and 94.0% in the HBeAg(−) patients, respectively. In the validation set, the area under the curve, sensitivity, and specificity of the fibrosis-based activity score were 0.971, 90.5%, and 92.5% in the HBeAg(+) patients and 0.977, 95.2%, and 95.8% in the HBeAg(−) patients. The liver stiffness measurement-based activity score was comparable to that of the fibrosis-based activity score in both HBeAg(+) and HBeAg(−) patients for recognizing significant inflammation (G ≥3). Conclusions Significant inflammation can be accurately predicted by this novel method. The liver stiffness measurement-based scoring system can be used without the aid of computers and provides a noninvasive alternative for the prediction of chronic hepatitis B-related significant inflammation. PMID:25360742

  16. Requirements for nuclear localization of Lsm2-8p and competition between nuclear and cytoplasmic Lsm complexes

    PubMed Central

    Spiller, Michael P.; Reijns, Martin A. M.; Beggs, Jean D.

    2008-01-01

    Summary Lsm proteins are ubiquitous, multifunctional proteins that are involved in the processing and/or turnover of many RNAs. In eukaryotes, a hetero-heptameric complex of Lsm proteins (Lsm2-8p) affects the processing of small stable RNAs and pre-mRNAs in the nucleus, while a different hetero-heptameric complex of Lsm proteins (Lsm1-7p) promotes mRNA decapping and decay in the cytoplasm. These two complexes have six constituent proteins in common, yet localize to separate cellular compartments and perform apparently disparate functions. Little is known about the biogenesis of the Lsm complexes, or how they are recruited to different cellular compartments. We show that in yeast, the nuclear accumulation of Lsm proteins depends on complex formation and that the Lsm8p subunit plays a crucial role. The nuclear localization of Lsm8p is itself most strongly influenced by Lsm2p and Lsm4p, its presumed neighbors in the Lsm2-8p complex. Furthermore, over-expression and depletion experiments imply that Lsm1p and Lsm8p act competitively with respect to the localization of the two complexes, suggesting a potential mechanism for co-regulation of nuclear and cytoplasmic RNA processing. A shift of Lsm proteins from the nucleus to the cytoplasm under stress conditions indicates that this competition is biologically significant. PMID:18029398

  17. Differentiating untreated and cross-linked porcine corneas of the same measured stiffness with optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Li, Jiasong; Han, Zhaolong; Singh, Manmohan; Twa, Michael D.; Larin, Kirill V.

    2014-11-01

    Structurally degenerative diseases, such as keratoconus, can significantly alter the stiffness of the cornea, directly affecting the quality of vision. Ultraviolet-induced collagen cross-linking (CXL) effectively increases corneal stiffness and is applied clinically to treat keratoconus. However, measured corneal stiffness is also influenced by intraocular pressure (IOP). Therefore, experimentally measured changes in corneal stiffness may be attributable to the effects of CXL, changes in IOP, or both. We present a noninvasive measurement method using phase-stabilized swept-source optical coherence elastography to distinguish between CXL and IOP effects on measured corneal stiffness. This method compared the displacement amplitude attenuation of a focused air-pulse-induced elastic wave. The damping speed of the displacement amplitudes at each measurement position along the wave propagation were compared for different materials. This method was initially tested on gelatin and agar phantoms of the same stiffness for validation. Consequently, untreated and CXL-treated porcine corneas of the same measured stiffness, but at different IOPs, were also evaluated. The results suggest that this noninvasive method may have the potential to detect the early stages of ocular diseases such as keratoconus or may be applied during CLX procedures by factoring in the effects of IOP on the measured corneal stiffness.

  18. The Interday Measurement Consistency of and Relationships Between Hamstring and Leg Musculo-articular Stiffness.

    PubMed

    Waxman, Justin P; Schmitz, Randy J; Shultz, Sandra J

    2015-10-01

    Hamstring stiffness (K(HAM)) and leg stiffness (K(LEG)) are commonly examined relative to athletic performance and injury risk. Given these may be modifiable, it is important to understand day-to-day variations inherent in these measures before use in training studies. In addition, the extent to which K(HAM) and K(LEG) measure similar active stiffness characteristics has not been established. We investigated the interday measurement consistency of K(HAM) and K(LEG), and examined the extent to which K(LEG) predicted K(HAM) in 6 males and 9 females. K(HAM) was moderately consistent day-to-day (ICC(2,5) = .71; SEM = 76.3 Nm(-1)), and 95% limits of agreement (95% LOA) revealed a systematic bias with considerable absolute measurement error (95% LOA = 89.6 224.8 Nm(-1)). Day-to-day differences in procedural factors explained 59.4% of the variance in day-to-day differences in K(HAM). Bilateral and unilateral K(LEG) was more consistent (ICC(2,3) range = .87-.94; SEM range = 1.0-2.91 kNm(-1)) with lower absolute error (95% LOA bilateral= -2.0 10.3; left leg = -0.36 3.82; right leg = -1.05 3.61 kNm(-1)). K(LEG) explained 44% of the variance in K(HAM) (P < .01). Findings suggest that procedural factors must be carefully controlled to yield consistent and precise K(HAM) measures. The ease and consistency of K(LEG), and moderate correlation with K(HAM), may steer clinicians toward K(LEG) when measuring lower-extremity stiffness for screening studies and monitoring the effectiveness of training interventions over time. PMID:26035860

  19. A new method of measuring the stiffness of corpus cavernosum penis with ShearWave™ Elastography

    PubMed Central

    Zhang, J-J; Qiao, X-H; Gao, F; Li, F; Bai, M; Zhang, H-P; Liu, Y; Du, L-F

    2015-01-01

    Objective: To evaluate the feasibility of measuring the stiffness of corpus cavernosum penis (CCP) with ShearWave™ Elastography (SWE; SuperSonic Imagine, Aix-en-Provence, France). Methods: 40 healthy volunteers with ages ranging from 19 to 81 years (mean, 36 years; standard deviation, 17 years) were selected in this study. The ultrafast ultrasound device Aixplorer® (SuperSonic Imagine) was used for the research and the probe selected was SuperLinear™ SL15-4 (SuperSonic Imagine). The shear wave stiffness (SWS) of CCP was measured using SWE images. The measurement indexes of SWS included (1) SWS of CCP measured in the transverse section (SWS-T), (2) SWS of CCP measured in the longitudinal section (SWS-L) and (3) mean of SWS-T and SWS-L (SWS-M). The interval between hormone test and SWE examination of each subject was less than 7 days. The paired t-test was used to analyse the differences between SWS-T and SWS-L. The Pearson correlation was used to analyse the correlation of SWS of CCP with age as well as with sex hormone levels. Results: There was no significant difference between SWS-T and SWS-L (p > 0.05). SWS (SWS-T, SWS-L, SWS-M) was negatively correlated with age and oestradiol value, and SWS (SWS-T, SWS-L, SWS-M) was positively correlated with testosterone value. Conclusion: SWE could serve as a new non-invasive method of evaluating the stiffness of CCP. Advances in knowledge: It is the first time that we have discussed the feasibility of measuring the stiffness of CCP with SWE and analysed the correlation of SWS of CCP with age as well as with sex hormone levels. PMID:25694260

  20. Contact stiffness and damping identification for hardware-in-the-loop contact simulator with measurement delay compensation

    NASA Astrophysics Data System (ADS)

    Qi, Chenkun; Zhao, Xianchao; Gao, Feng; Ren, Anye; Sun, Qiao

    2016-06-01

    The hardware-in-the-loop (HIL) contact simulator is to simulate the contact process of two flying objects in space. The contact stiffness and damping are important parameters used for the process monitoring, compliant contact control and force compensation control. In this study, a contact stiffness and damping identification approach is proposed for the HIL contact simulation with the force measurement delay. The actual relative position of two flying objects can be accurately measured. However, the force measurement delay needs to be compensated because it will lead to incorrect stiffness and damping identification. Here, the phase lead compensation is used to reconstruct the actual contact force from the delayed force measurement. From the force and position data, the contact stiffness and damping are identified in real time using the recursive least squares (RLS) method. The simulations and experiments are used to verify that the proposed stiffness and damping identification approach is effective.

  1. A simple indentation device for measuring micrometer-scale tissue stiffness

    NASA Astrophysics Data System (ADS)

    Levental, I.; Levental, K. R.; Klein, E. A.; Assoian, R.; Miller, R. T.; Wells, R. G.; Janmey, P. A.

    2010-05-01

    Mechanical properties of cells and extracellular matrices are critical determinants of function in contexts including oncogenic transformation, neuronal synapse formation, hepatic fibrosis and stem cell differentiation. The size and heterogeneity of biological specimens and the importance of measuring their mechanical properties under conditions that resemble their environments in vivo present a challenge for quantitative measurement. Centimeter-scale tissue samples can be measured by commercial instruments, whereas properties at the subcellular (nm) scale are accessible by atomic force microscopy, optical trapping, or magnetic bead microrheometry; however many tissues are heterogeneous on a length scale between micrometers and millimeters which is not accessible to most current instrumentation. The device described here combines two commercially available technologies, a micronewton resolution force probe and a micromanipulator for probing soft biological samples at sub-millimeter spatial resolution. Several applications of the device are described. These include the first measurement of the stiffness of an intact, isolated mouse glomerulus, quantification of the inner wall stiffness of healthy and diseased mouse aortas, and evaluation of the lateral heterogeneity in the stiffness of mouse mammary glands and rat livers with correlation of this heterogeneity with malignant or fibrotic pathology as evaluated by histology.

  2. Extraction of plate bending stiffness from coincidence angles of sound transmission measurements.

    PubMed

    Anderson, Brian E; Shaw, Matthew D; Harker, Blaine M

    2015-01-01

    The bending stiffness in a homogeneous, isotropic, thin plate is experimentally derived from measurements of coincidence angles extracted from supercritical sound transmission versus frequency measurements. A computer controlled turn table rotates a plate sample and a receiver array, placed in the near field of the plate. The array is used to track the transmitted sound through the plate, generated by a far-field stationary source, using beam forming. The array technique enables measurement of plates measuring only one wavelength in width. Two examples are used for proof of concept, including an aluminum plate in air and an alumina plate under water. PMID:25618078

  3. Ultrasound Elastography: The New Frontier in Direct Measurement of Muscle Stiffness

    PubMed Central

    Brandenburg, Joline E.; Eby, Sarah F.; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S.; Chen, Shigao; An, Kai-Nan

    2014-01-01

    The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. PMID:25064780

  4. Simultaneous Measurement of Hepatic and Splenic Stiffness Using MR Elastography: Preliminary Experience

    PubMed Central

    Dyvorne, Hadrien A.; Jajamovich, Guido H.; Besa, Cecilia; Cooper, Nancy; Taouli, Bachir

    2014-01-01

    Purpose To compare MR elastography (MRE) using a single and a dual driver excitation for the quantification of hepatic and splenic stiffness (HS and SS), and to investigate the performance of HS and SS measured with single or dual driver excitation for the detection of liver cirrhosis in subjects with liver disease. Patients and Methods This prospective HIPAA compliant and IRB approved study involved 49 subjects who underwent MRE at 3.0T, comparing 3 different acquisition methods (single driver on the liver, single driver on the spleen and dual driver acoustic excitation). A Mann-Whitney test was used to assess changes in stiffness values. Bland-Altman analysis was used to compare single and dual driver configurations for each organ. Performance for detection of liver cirrhosis was assessed using ROC analysis. Pearson correlation was used to estimate the dependence of HS and SS on spleen size. Results There were 40 noncirrhotic and 9 cirrhotic patients. There was good agreement between stiffness values measured with a single or a dual driver (Bland-Altman limits of agreement -14.3%–18.9 % and -18.1%–29.7 %, CV 6.4 % and 9.4 %, for HS and SS respectively). HS and SS were higher in subjects with liver cirrhosis (p <0.001), with excellent detection performance (AUROC range 0.87–0.93). SS correlated strongly with spleen size (r=0.69, p<0.001) while HS showed weak correlation (r=0.38, p=0.006). Conclusion Using a dual acoustic driver configuration, hepatic and splenic stiffness can be simultaneously estimated with good concordance with single driver measurement. PMID:25294006

  5. Pulmonary Vascular Stiffness: Measurement, Modeling, and Implications in Normal and Hypertensive Pulmonary Circulations

    PubMed Central

    Hunter, Kendall S.; Lammers, Steven R.; Shandas, Robin

    2014-01-01

    This article introduces the concept of pulmonary vascular stiffness, discusses its increasingly recognized importance as a diagnostic marker in the evaluation of pulmonary vascular disease, and describes methods to measure and model it clinically, experimentally, and computationally. It begins with a description of systems-level methods to evaluate pulmonary vascular compliance and recent clinical efforts in applying such techniques to better predict patient outcomes in pulmonary arterial hypertension. It then progresses from the systems-level to the local level, discusses proposed methods by which upstream pulmonary vessels increase in stiffness, introduces concepts around vascular mechanics, and concludes by describing recent work incorporating advanced numerical methods to more thoroughly evaluate changes in local mechanical properties of pulmonary arteries. PMID:23733649

  6. PORTAL HYPERTENSION CORRELATES WITH SPLENIC STIFFNESS AS MEASURED WITH MAGNETIC RESONANCE ELASTOGRAPHY

    PubMed Central

    Nedredal, Geir I.; Yin, Meng; McKenzie, Travis; Lillegard, Joseph; Luebke-Wheeler, Jennifer; Talwalkar, Jayant; Ehman, Richard; Nyberg, Scott L.

    2011-01-01

    Purpose To investigate the correlation between MRE assessed spleen stiffness and direct portal vein pressure gradient (D-HVPG) measurements in a large animal model of portal hypertension. Materials and Methods Cholestatic liver disease was established in adult canines by common bile duct ligation. A spin echo based EPI MRE sequence was used to acquire 3-D/3-axis abdominal MRE data at baseline, four weeks, and eight weeks. Liver biopsies, blood samples, and D-HVPG measurements were obtained simultaneously. Results Animals developed portal hypertension (D-HVPG: 11.05.1 mmHg) with only F1 fibrosis after four weeks. F3 fibrosis was confirmed after eight weeks despite no further rise in portal hypertension (D-HVPG: 11.33.2 mmHg). Mean stiffnesses of the spleen increased over two-fold from baseline (1.720.33 kPa) to four weeks (3.540.31 kPa), and stabilized at eight weeks (3.380.06 kPa) in a pattern consistent with changes in portal pressure. A positive correlation was observed between spleen stiffness and D-HVPG (r2 = 0.86, p<0.01). Conclusion These findings indicate a temporal relationship between portal hypertension and the development of liver fibrosis in a large animal model of cholestatic liver disease. The observed direct correlation between spleen stiffness and D-HVPG suggest a non-invasive MRE approach to diagnose and screen for portal hypertension. PMID:21608066

  7. Simultaneous measurement of real contact area and fault normal stiffness during frictional sliding

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Nagata, K.; Kilgore, B. D.; Nakatani, M.

    2010-12-01

    The tectonic stresses that lead to earthquake slip are concentrated in small regions of solid contact between asperities or gouge particles within the fault. Fault strength is proportional to the contact area within the shearing portion of the fault zone and many fault properties of interest to earthquake hazard research, e.g., occurrence time, recurrence interval, precursory slip, triggered earthquake slip, are controlled by processes acting at the highly stressed contact regions. Unfortunately the contact-scale physical processes controlling earthquake occurrence cannot be easily observed or measured directly. In this pilot study we simultaneously directly measure contact area using transmitted light intensity (LI) [Dieterich and Kilgore, 1994; 1996] and continuously monitor the normal stiffness of the fault using acoustic wave transmission (AT) [Nagata et al., 2008]. The objective of our study is to determine relations amongst contacting area, stiffness, strength, normal stress, shear displacement, and time of contact during sliding. Interface stiffness is monitored using acoustic compressive waves transmitted across the fault. Because the fault is more compliant in compression than the surrounding rock, the fault has an elastic wave transmission coefficient that depends on the fault normal stiffness. Contact area is measured by LI: regions in contact transmit light efficiently while light is scattered elsewhere; therefore transmitted light intensity is presumed proportional to contact area. LI and AT are expected to be correlated; e.g., an elastic contact model suggests that stiffness goes as the square root of contact area. We observe LI and AT for sliding at slip speeds between 0.01 and 10 microns/s and normal stresses between 1 and 2.5 MPa while conducting standard velocity-step, normal stress-step and slide-hold-slide tests. AT and LI correlate during all tests, at all conditions. If the physical relationship, or even an empirical calibration between AT and LI can be established for rough fault surfaces, contact area could be measured with AT for non-transparent materials and at higher normal stresses than in the present experiments.

  8. Applications Of The Microscope System LSM

    NASA Astrophysics Data System (ADS)

    Kapitza, Hans-Georg; Wilke, Volker

    1989-02-01

    The new universal confocal LSM is a second-generation laser scanning microscope. This means, that laser scanning microscopy now made the transition from experimental set-up lab types to integrated workstations, where the manual handling of mechanical and optical components is left to the computer. The built-in microcomputer - now not only drives scanners and transforms signals into images but also controls directly the microscope functions. It turned out that this is a crucial step for making the LSM an universal instrument for widespread use in research and development. The switching from conventiona] microscopy to laser scanning modes and vice versa is performed by simply pressing keys. Not only images can be stored on the built-in hard disk but at the same time automati cally the corresponding set of parameters: Even weeks or months after creating an image the settings of the instrument belonging to this image can be called from the operators panel by loading a parameter file which defines the laser line used and its intensity setting, nosepiece position, zoom factor, averaging conditions, microscopy mode (transmitted, reflected or fluorescence) and parameters for signal conditioning. Since the microscope stand is motorized at a high degree, the computer recreates automatically the exact conditions desired after dialing the number of the parameter file. In this way working with the LSM becomes not only reproducible, but also the user is freed from the handling of mechanical parts and typing commands on a keyboard. Finally the automatized LSM allows true remote control by a host computer necessary for the most demanding 3D-reconstruction. The characteristics pointed out so far are prerequisites for the daily use by microscopists in life science, semiconductor research, development and testing and materials research.

  9. A Mixture of Experts Model for the Diagnosis of Liver Cirrhosis by Measuring the Liver Stiffness

    PubMed Central

    Chang, Ji Hong; Song, Kijun

    2012-01-01

    Objectives The mixture-of-experts (ME) network uses a modular type of neural network architecture optimized for supervised learning. This model has been applied to a variety of areas related to pattern classification and regression. In this research, we applied a ME model to classify hidden subgroups and test its significance by measuring the stiffness of the liver as associated with the development of liver cirrhosis. Methods The data used in this study was based on transient elastography (Fibroscan) by Kim et al. We enrolled 228 HBsAg-positive patients whose liver stiffness was measured by the Fibroscan system during six months. Statistical analysis was performed by R-2.13.0. Results A classical logistic regression model together with an expert model was used to describe and classify hidden subgroups. The performance of the proposed model was evaluated in terms of the classification accuracy, and the results confirmed that the proposed ME model has some potential in detecting liver cirrhosis. Conclusions This method can be used as an important diagnostic decision support mechanism to assist physicians in the diagnosis of liver cirrhosis in patients. PMID:22509471

  10. Profile stiffness measurements in the Helically Symmetric experiment and comparison to nonlinear gyrokinetic calculations

    SciTech Connect

    Weir, G. M.; Faber, B. J.; Likin, K. M.; Talmadge, J. N.; Anderson, D. T.; Anderson, F. S. B.

    2015-05-15

    Stiffness measurements are presented in the quasi-helically symmetric experiment (HSX), in which the neoclassical transport is comparable to that in a tokamak and turbulent transport dominates throughout the plasma. Electron cyclotron emission is used to measure the local electron temperature response to modulated electron cyclotron resonant heating. The amplitude and phase of the heat wave through the steep electron temperature gradient (ETG) region of the plasma are used to determine a transient electron thermal diffusivity that is close to the steady-state diffusivity. The low stiffness in the region between 0.2 ≤ r/a ≤ 0.4 agrees with the scaling of the steady-state heat flux with temperature gradient in this region. These experimental results are compared to gyrokinetic calculations in a flux-tube geometry using the gyrokinetic electromagnetic numerical experiment code with two kinetic species. Linear simulations show that the ETG mode may be experimentally relevant within r/a ≤ 0.2, while the Trapped Electron Mode (TEM) is the dominant long-wavelength microturbulence instability across most of the plasma. The TEM is primarily driven by the density gradient. Non-linear calculations of the saturated heat flux driven by the TEM and ETG bracket the experimental heat flux.

  11. Experimental measurements of hydrodynamic radial forces and stiffness matrices for a centrifugal pump-impeller

    NASA Technical Reports Server (NTRS)

    Chamieh, D. S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1985-01-01

    Measurements of the steady-state hydrodynamic forces on a centrifugal pump impeller are presented as a function of position within two geometrically different volutes. These correspond to the forces experienced by the impeller at zero whirl frequency. The hydrodynamic force matrices derived from these measurements exhibit both diagonal and off-diagonal terms of substantial magnitude. These terms are of the form which would tend to excite a whirl motion in a rotordynamic analysis of the pump; this may be the cause of 'rough running' reported in many pumps. Static pressure measurements in the impeller discharge flow show that the hydrodynamic force on the impeller contains a substantial component due to the nonisotropy of the net momentum flux leaving the impeller. A similar breakdown of the contributions to the stiffness matrices reveals that the major component of these matrices results from the nonisotropy of the momentum flux.

  12. Single-molecule measurement of the stiffness of the rigor myosin head.

    PubMed

    Lewalle, Alexandre; Steffen, Walter; Stevenson, Olivia; Ouyang, Zhenqian; Sleep, John

    2008-03-15

    The force-extension curve of single myosin subfragment-1 molecules, interacting in the rigor state with an actin filament, has been investigated at low [ATP] by applying a slow triangle-wave movement to the optical traps holding a bead-actin-bead dumbbell. In combination with a measurement of the overall stiffness of the dumbbell, this allowed characterization of the three extensible elements, the actin-bead links and the myosin. Simultaneously, another method, based on an analysis of bead position covariance, gave satisfactory agreement. The mean covariance-based estimate for the myosin stiffness was 1.79 pN/nm (SD = 0.7 pN/nm; SE = 0.06 pN/nm (n = 166 myosin molecules)), consistent with a recent report (1.7 pN/nm) from rabbit muscle fibers. In the triangle-wave protocol, the motion of the trapped beads during interactions was linear within experimental error over the physiological range of force applied to myosin (+/-10 pN), consistent with a Hookean model; any nonlinear terms could not be characterized. Bound states subjected to forces that resisted the working stroke (i.e., positive forces) detached at a significantly lower force than when subjected to negative forces, which is indicative of a strain-dependent dissociation rate. PMID:18065470

  13. Experimental measurements of hydrodynamic stiffness matrices for a centrifugal pump impeller

    NASA Technical Reports Server (NTRS)

    Chamieh, D. S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.; Franz, R.

    1982-01-01

    The objective of the Rotor Force Test Facility at the California Institute of Technology is to artificially orbit the center of rotation of an impeller enclosed within a volute over a range of frequencies from zero to synchronous and to measure the resulting forces on the impeller. Preliminary data from the first stage experiments in which the shaft is orbited at low frequency is reported. Steady volute forces along with stiffness matrices due to the change in position of the rotor center are measured. Static pressure taps around the volute are used to obtain volute pressure distributions for various fixed positions of the impeller center and for various flow rates. Static pressure forces are calculated from these pressure distributions allowing a more complete analysis of the components of the impeller forces. Comparison is made with various existing theoretical and experimental results.

  14. Intracardiac Echocardiography (ICE) Measurement of Dynamic Myocardial Stiffness with Shear Wave Velocimetry

    PubMed Central

    Hollender, Peter J.; Wolf, Patrick D.; Goswami, Robi; Trahey, Gregg E.

    2012-01-01

    Acoustic Radiation Force (ARF)-based methods have been demonstrated to be a viable tool for noninvasively estimating tissue elastic properties, and shear wave velocimetry has been used to quantitatively measure the stiffening and relaxation of myocardial tissue in open-chest experiments. Dynamic stiffness metrics may prove to be indicators for certain cardiac diseases, but a clinically-viable means of remotely generating and tracking transverse wave propagation in myocardium is needed. Intracardiac echocardiography (ICE) catheter-tip transducers are demonstrated here as a viable tool for making this measurement. ICE probes achieve favorable proximity to the myocardium, enabling the use of shear wave velocimetry from within the right ventricle throughout the cardiac cycle. This work describes the techniques used to overcome the challenges of using a small probe to perform ARF-driven shear wave velocimetry, and presents in vivo porcine data showing the effectiveness of this method in the interventricular septum. Acoustic Radiation Force (ARF)-based methods have been demonstrated to be a viable tool for noninvasively estimating tissue elastic properties, and shear wave velocimetry has been used to quantitatively measure the stiffening and relaxation of myocardial tissue in open-chest experiments. Dynamic stiffness metrics may prove to be indicators for certain cardiac diseases, but a clinically-viable means of remotely generating and tracking transverse wave propagation in myocardium is needed. Intracardiac echocardiography (ICE) catheter-tip transducers are demonstrated here as a viable tool for making this measurement. ICE probes achieve favorable proximity to the myocardium, enabling the use of shear wave velocimetry from within the right ventricle throughout the cardiac cycle. This work describes the techniques used to overcome the challenges of using a small probe to perform ARF-driven shear wave velocimetry, and presents in vivo porcine data showing the effectiveness of this method in the interventricular septum. PMID:22579544

  15. Association of HIV Infection, Hepatitis C Virus Infection, and Metabolic Factors With Liver Stiffness Measured by Transient Elastography

    PubMed Central

    Bailony, M. Rami; Scherzer, Rebecca; Huhn, Gregory; Plankey, Michael W.; Peters, Marion G.; Tien, Phyllis C.

    2013-01-01

    Background. Few studies have examined the relationship of human immunodeficiency virus (HIV) monoinfection and its associated perturbations with liver fibrosis. Methods. Using multivariable linear regression, we examined the demographic, behavioral, metabolic and viral factors associated with transient elastography–measured liver stiffness in 314 participants (165 HIV positive/hepatitis C virus [HCV] negative, 78 HIV positive/HCV positive, 14 HIV negative/HCV positive, 57 HIV negative/HCV negative) in the Women's Interagency HIV Study. Results. Compared with HIV negative/HCV negative women, HIV positive/HCV positive women had higher median liver stiffness values (7.1 vs 4.4 kPa; P < .001); HIV positive/HCV negative and HIV negative/HCV negative women had similar liver stiffness values (both 4.4 kPa; P = .94). HIV/HCV coinfection remained associated with higher liver stiffness values (74% higher; 95% confidence interval [CI], 49–104) even after multivariable adjustment. Among HCV positive women, waist circumference (per 10-cm increase) was associated with 18% (95% CI, 7.5%–30%) higher liver stiffness values after multivariable adjustment; waist circumference showed little association among HIV positive/HCV negative or HIV negative/HCV negative women. Among HIV positive/HCV negative women, history of AIDS (13%; 95% CI, 4% –27%) and HIV RNA (7.3%; 95% CI, 1.59%–13.3%, per 10-fold increase) were associated with greater liver stiffness. Conclusions. HCV infection but not HIV infection is associated with greater liver stiffness when infected women are compared with those with neither infection. Our finding that waist circumference, a marker of central obesity, is associated with greater liver stiffness in HIV/HCV-coinfected but not HIV-monoinfected or women with neither infection suggests that in the absence of HCV-associated liver injury the adverse effects of obesity are lessened. PMID:23901097

  16. Reliability of Unilateral Vertical Leg Stiffness Measures Assessed During Bilateral Hopping.

    PubMed

    Maloney, Sean J; Fletcher, Iain M; Richards, Joanna

    2015-10-01

    The assessment of vertical leg stiffness is an important consideration given its relationship to performance. Vertical stiffness is most commonly assessed during a bilateral hopping task. The current study sought to determine the intersession reliability, quantified by the coefficient of variation, of vertical stiffness during bilateral hopping when assessed for the left and right limbs independently, which had not been previously investigated. On 4 separate occasions, 10 healthy males performed 30 unshod bilateral hops on a dual force plate system with data recorded independently for the left and right limbs. Vertical stiffness was calculated as the ratio of peak ground reaction force to the peak negative displacement of the center of mass during each hop and was averaged over the sixth through tenth hops. For vertical stiffness, average coefficients of variation of 15.3% and 14.3% were observed for the left and right limbs, respectively. An average coefficient of variation of 14.7% was observed for bilateral vertical stiffness. The current study reports that calculations of unilateral vertical stiffness demonstrate reliability comparable to bilateral calculations. Determining unilateral vertical stiffness values and relative discrepancies may allow a coach to build a more complete stiffness profile of an individual athlete and better inform the training process. PMID:25880542

  17. Diabetes increases stiffness of live cardiomyocytes measured by atomic force microscopy nanoindentation.

    PubMed

    Benech, Juan C; Benech, Nicolás; Zambrana, Ana I; Rauschert, Inés; Bervejillo, Verónica; Oddone, Natalia; Damián, Juan P

    2014-11-15

    Stiffness of live cardiomyocytes isolated from control and diabetic mice was measured using the atomic force microscopy nanoindentation method. Type 1 diabetes was induced in mice by streptozotocin administration. Histological images of myocardium from mice that were diabetic for 3 mo showed disorderly lineup of myocardial cells, irregularly sized cell nuclei, and fragmented and disordered myocardial fibers with interstitial collagen accumulation. Phalloidin-stained cardiomyocytes isolated from diabetic mice showed altered (i.e., more irregular and diffuse) actin filament organization compared with cardiomyocytes from control mice. Sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a) pump expression was reduced in homogenates obtained from the left ventricle of diabetic animals compared with age-matched controls. The apparent elastic modulus (AEM) for live control or diabetic isolated cardiomyocytes was measured using the atomic force microscopy nanoindentation method in Tyrode buffer solution containing 1.8 mM Ca(2+) and 5.4 mM KCl (physiological condition), 100 nM Ca(2+) and 5.4 mM KCl (low extracellular Ca(2+) condition), or 1.8 mM Ca(2+) and 140 mM KCl (contraction condition). In the physiological condition, the mean AEM was 112% higher for live diabetic than control isolated cardiomyocytes (91 ± 14 vs. 43 ± 7 kPa). The AEM was also significantly higher in diabetic than control cardiomyocytes in the low extracellular Ca(2+) and contraction conditions. These findings suggest that the material properties of live cardiomyocytes were affected by diabetes, resulting in stiffer cells, which very likely contribute to high diastolic LV stiffness, which has been observed in vivo in some diabetes mellitus patients. PMID:25163520

  18. [Clinical value and measurement of arterial stiffness for the assessment of cardiovascular risk in light of recent results].

    PubMed

    Nemcsik, János; Tislér, András; Kiss, István

    2015-02-01

    Cardiovascular risk stratification is fundamental for the development of effective prevention and therapeutic strategies. Although there are numerous scores and risk tables available, a difference still exists between the estimated and real number of cardiovascular events. Measurement of arterial stiffness can provide additional information to risk stratification. The most widely accepted parameter of arterial stiffness is aortic pulse wave velocity, which has been included in the guideline of the European Society of Hypertension in 2007 and 2013, although American guidelines still omit it. In this review the authors summarize the evidence with regards to the different steps required for clinical application of arterial stiffness measurement and they also discuss the questions that evolved from the methodological variability of different measurement techniques. PMID:25639634

  19. Biomechanics of hair cell kinocilia: experimental measurement of kinocilium shaft stiffness and base rotational stiffness with Euler–Bernoulli and Timoshenko beam analysis

    PubMed Central

    Spoon, Corrie; Grant, Wally

    2011-01-01

    Vestibular hair cell bundles in the inner ear contain a single kinocilium composed of a 9+2 microtubule structure. Kinocilia play a crucial role in transmitting movement of the overlying mass, otoconial membrane or cupula to the mechanotransducing portion of the hair cell bundle. Little is known regarding the mechanical deformation properties of the kinocilium. Using a force-deflection technique, we measured two important mechanical properties of kinocilia in the utricle of a turtle, Trachemys (Pseudemys) scripta elegans. First, we measured the stiffness of kinocilia with different heights. These kinocilia were assumed to be homogenous cylindrical rods and were modeled as both isotropic Euler–Bernoulli beams and transversely isotropic Timoshenko beams. Two mechanical properties of the kinocilia were derived from the beam analysis: flexural rigidity (EI) and shear rigidity (kGA). The Timoshenko model produced a better fit to the experimental data, predicting EI=10,400 pN μm2 and kGA=247 pN. Assuming a homogenous rod, the shear modulus (G=1.9 kPa) was four orders of magnitude less than Young's modulus (E=14.1 MPa), indicating that significant shear deformation occurs within deflected kinocilia. When analyzed as an Euler–Bernoulli beam, which neglects translational shear, EI increased linearly with kinocilium height, giving underestimates of EI for shorter kinocilia. Second, we measured the rotational stiffness of the kinocilium insertion (κ) into the hair cell's apical surface. Following BAPTA treatment to break the kinocilial links, the kinocilia remained upright, and κ was measured as 177±47 pN μm rad–1. The mechanical parameters we quantified are important for understanding how forces arising from head movement are transduced and encoded by hair cells. PMID:21307074

  20. Feasibility and repeatability for in vivo measurements of stiffness gradients in the canine gastrocnemius tendon using an acoustoelastic strain gauge

    PubMed Central

    Ellison, Michelle; Kobayashi, Hirohito; Delaney, Fern; Danielson, Kelson; Vanderby, Ray; Muir, Peter; Forrest, Lisa J

    2014-01-01

    B-mode ultrasound is an established imaging modality for evaluating canine tendon injury. However, full extent of tendon injury often remains difficult to estimate, as small changes in sonographic appearance are associated with large changes in biomechanical strength. The acoustoelastic strain gauge (ASG) is an ultrasound-based tissue evaluation technique that relates the change in echo intensity observed during relaxation or stretching of tendons to the tissue’s mechanical properties. This technique deduces stiffness gradient (the rate of change of normalized stiffness as a function of tissue strain) by analyzing the ultrasound dynamic images captured from gradually deforming tissue. Acoustoelastic strain gauge has been proven to accurately model strain and stiffness within tendons in vitro. To determine the feasibility and repeatability for in vivo ASG measurements of canine tendon function, stiffness gradients for the gastrocnemius tendons of ten clinically normal dogs were recorded by two non-independent observers at three sites (musculotendinous junction, mid tendon, and insertion). Average stiffness gradient indices (0.0132, 0.0141, 0.0136) and dispersion values (0.0053, 0.0054, 0.0057) for each site, respectively, were consistent with published mechanical properties for normal canine tendon. Mean differences of the average stiffness gradient index and dispersion value between observers and between limbs for each site were less than 16%. Using interclass coefficients (ICC), intraobserver (ICC 0.79–0.98) and interobserver (ICC 0.77–0.95) reproducibility was good to excellent. Right and left limb values were symmetric (ICC 0.74–0.92). Findings from this study indicated that ASG is a feasible and repeatable technique for measuring stiffness gradients in canine tendons. PMID:23663072

  1. Nonalcoholic Fatty Liver Disease as a Risk Factor of Arterial Stiffness Measured by the Cardioankle Vascular Index

    PubMed Central

    Chung, Goh Eun; Choi, Su-Yeon; Kim, Donghee; Kwak, Min-Sun; Park, Hyo Eun; Kim, Min-Kyung; Yim, Jeong Yoon

    2015-01-01

    Abstract Nonalcoholic fatty liver disease (NAFLD) is associated with risk factors for cardiovascular disease. The cardioankle vascular index (CAVI), a new measure of arterial stiffness, was recently developed and is independent of blood pressure. We investigated whether NAFLD is associated with arterial stiffness as measured using the CAVI in an apparently healthy population. A total of 2954 subjects without any known liver diseases were enrolled. NAFLD was diagnosed via typical ultrasonography. The clinical characteristics examined included age, sex, body mass index (BMI), waist circumference (WC), and the levels of aspartate aminotransferase, alanine aminotransferase, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol triglycerides, and glucose. Arterial stiffness was defined using an age- and sex-specific threshold of the upper quartile of the CAVI. NAFLD was found in 1249 (42.3%) of the analyzed subjects. Using an age-, sex-, and BMI-adjusted model, NAFLD was associated with a 42% increase in the risk for arterial stiffness (highest quartile of the CAVI). The risk for arterial stiffness increased according to the severity of NAFLD (adjusted odds ratio [95% confidence interval], 1.27 [1.02???1.57] vs 1.78 [1.37???2.31], mild vs moderate-to-severe, respectively). When adjusted for other risk factors, including BMI, WC, smoking status, diabetes, and hypertension, these relationships remained statistically significant. Patients with NAFLD are at a high risk for arterial stiffness regardless of classical risk factors. The presence of cardiometabolic risk factors may attenuate the prediction of arterial stiffness by means of NAFLD presence. Thus, physicians should carefully assess subjects with NAFLD for atherosclerosis and associated comorbidities. PMID:25816034

  2. Nonalcoholic fatty liver disease as a risk factor of arterial stiffness measured by the cardioankle vascular index.

    PubMed

    Chung, Goh Eun; Choi, Su-Yeon; Kim, Donghee; Kwak, Min-Sun; Park, Hyo Eun; Kim, Min-Kyung; Yim, Jeong Yoon

    2015-03-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with risk factors for cardiovascular disease. The cardioankle vascular index (CAVI), a new measure of arterial stiffness, was recently developed and is independent of blood pressure. We investigated whether NAFLD is associated with arterial stiffness as measured using the CAVI in an apparently healthy population.A total of 2954 subjects without any known liver diseases were enrolled. NAFLD was diagnosed via typical ultrasonography. The clinical characteristics examined included age, sex, body mass index (BMI), waist circumference (WC), and the levels of aspartate aminotransferase, alanine aminotransferase, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol triglycerides, and glucose. Arterial stiffness was defined using an age- and sex-specific threshold of the upper quartile of the CAVI.NAFLD was found in 1249 (42.3%) of the analyzed subjects. Using an age-, sex-, and BMI-adjusted model, NAFLD was associated with a 42% increase in the risk for arterial stiffness (highest quartile of the CAVI). The risk for arterial stiffness increased according to the severity of NAFLD (adjusted odds ratio [95% confidence interval], 1.27 [1.02 - 1.57] vs 1.78 [1.37 - 2.31], mild vs moderate-to-severe, respectively). When adjusted for other risk factors, including BMI, WC, smoking status, diabetes, and hypertension, these relationships remained statistically significant.Patients with NAFLD are at a high risk for arterial stiffness regardless of classical risk factors. The presence of cardiometabolic risk factors may attenuate the prediction of arterial stiffness by means of NAFLD presence. Thus, physicians should carefully assess subjects with NAFLD for atherosclerosis and associated comorbidities. PMID:25816034

  3. Face-Referenced Measurement of Perioral Stiffness and Speech Kinematics in Parkinson's Disease

    ERIC Educational Resources Information Center

    Chu, Shin Ying; Barlow, Steven M.; Lee, Jaehoon

    2015-01-01

    Purpose: Perioral biomechanics, labial kinematics, and associated electromyographic signals were sampled and characterized in individuals with Parkinson's disease (PD) as a function of medication state. Method: Passive perioral stiffness was sampled using the OroSTIFF system in 10 individuals with PD in a medication ON and a medication OFF state…

  4. Noninvasive pulse transit time measurement for arterial stiffness monitoring in microgravity.

    PubMed

    McCall, Corey; Rostosky, Rea; Wiard, Richard M; Inan, Omer T; Giovangrandi, Laurent; Cuttino, Charles Marsh; Kovacs, Gregory T A

    2015-08-01

    The use of a noninvasive hemodynamic monitor to estimate arterial stiffness, by measurement of pulse transit time (PTT), was demonstrated in microgravity. The monitor's utility for space applications was shown by establishing the correlation between ground-based and microgravity-based measurements. The system consists of a scale-based ballistocardiogram (BCG) and a toe-mounted photoplethysmogram (PPG). PTT was measured from the BCG I-wave to the intersecting tangents of the first trough and maximum first derivative of the PPG waveforms of each subject. The system was tested on a recent series of parabolic flights in which the PTT of nine subjects was measured on the ground and in microgravity. An average of 60.2 ms PTT increase from ground to microgravity environments was shown, and was consistent across all test subjects (standard deviation = 32.9 ms). This increase in PTT could be explained by a number of factors associated with microgravity and reported in previous research, including elimination of hydrostatic pressure, reduction of intrathoracic pressure, and reduction of mean arterial pressure induced by vasodilation. PMID:26737764

  5. Evaluation of stiffness changes in a high-rise building by measurements of lateral displacements using GPS technology.

    PubMed

    Choi, Se Woon; Kim, Ill Soo; Park, Jae Hwan; Kim, Yousok; Sohn, Hong Gyoo; Park, Hyo Seon

    2013-01-01

    The outrigger truss system is one of the most frequently used lateral load resisting structural systems. However, little research has been reported on the effect of installation of outrigger trusses on improvement of lateral stiffness of a high-rise building through full-scale measurements. In this paper, stiffness changes of a high-rise building due to installation of outrigger trusses have been evaluated by measuring lateral displacements using a global positioning system (GPS). To confirm the error range of the GPS measurement system used in the full-scale measurement tests, the GPS displacement monitoring system is investigated through a free vibration test of the experimental model. Then, for the evaluation of lateral stiffness of a high-rise building under construction, the GPS displacement monitoring system is applied to measurements of lateral displacements of a 66-story high-rise building before and after installation of outrigger truss. The stiffness improvement of the building before and after the installation is confirmed through the changes of the natural frequencies and the ratios of the base shear forces to the roof displacements. PMID:24233025

  6. Evaluation of Stiffness Changes in a High-Rise Building by Measurements of Lateral Displacements Using GPS Technology

    PubMed Central

    Choi, Se Woon; Kim, Ill Soo; Park, Jae Hwan; Kim, Yousok; Sohn, Hong Gyoo; Park, Hyo Seon

    2013-01-01

    The outrigger truss system is one of the most frequently used lateral load resisting structural systems. However, little research has been reported on the effect of installation of outrigger trusses on improvement of lateral stiffness of a high-rise building through full-scale measurements. In this paper, stiffness changes of a high-rise building due to installation of outrigger trusses have been evaluated by measuring lateral displacements using a global positioning system (GPS). To confirm the error range of the GPS measurement system used in the full-scale measurement tests, the GPS displacement monitoring system is investigated through a free vibration test of the experimental model. Then, for the evaluation of lateral stiffness of a high-rise building under construction, the GPS displacement monitoring system is applied to measurements of lateral displacements of a 66-story high-rise building before and after installation of outrigger truss. The stiffness improvement of the building before and after the installation is confirmed through the changes of the natural frequencies and the ratios of the base shear forces to the roof displacements. PMID:24233025

  7. Estimation of Complex-Valued Stiffness Using Acoustic Waves Measured with Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Oliphant, Travis E.; Ehman, Richard L.; Greenleaf, James F.

    Tissue stiffness can be a useful indicator of diseased tissue. Noninvasive quantitation of the mechanical properties of tissue could improve early detection of such pathology. A method for detecting displacement from propagating shear waves using a phase-contrast MRI technique has been developed previously. In this chapter the principles behind the measurement technique are reviewed, and the mechanical properties that can be determined from the displacement data are investigated for isotropic materials. An algebraic inversion approach useful for piece-wise homogeneous materials is described in detail for the general isotropic case, which is then specialized to incompressible materials as a model for tissue. Results of the inversion approach are presented for an experimental phantom and in-vivo breast tumor. These results show that the technique can be used to obtain shear-wave speed and attenuation in regions where there is sufficient signal-to-noise ratio in the displacement and its second spatial derivatives. The sensitivity to noise is higher in the attenuation estimates than in the shear-wave speed estimates.

  8. Arabidopsis thaliana LSM proteins function in mRNA splicing and degradation

    PubMed Central

    Golisz, Anna; Sikorski, Pawel J.; Kruszka, Katarzyna; Kufel, Joanna

    2013-01-01

    Sm-like (Lsm) proteins have been identified in all organisms and are related to RNA metabolism. Here, we report that Arabidopsis nuclear AtLSM8 protein, as well as AtLSM5, which localizes to both the cytoplasm and nucleus, function in pre-mRNA splicing, while AtLSM5 and the exclusively cytoplasmic AtLSM1 contribute to 5′–3′ mRNA decay. In lsm8 and sad1/lsm5 mutants, U6 small nuclear RNA (snRNA) was reduced and unspliced mRNA precursors accumulated, whereas mRNA stability was mainly affected in plants lacking AtLSM1 and AtLSM5. Some of the mRNAs affected in lsm1a lsm1b and sad1/lsm5 plants were also substrates of the cytoplasmic 5′–3′ exonuclease AtXRN4 and of the decapping enzyme AtDCP2. Surprisingly, a subset of substrates was also stabilized in the mutant lacking AtLSM8, which supports the notion that plant mRNAs are actively degraded in the nucleus. Localization of LSM components, purification of LSM-interacting proteins as well as functional analyses strongly suggest that at least two LSM complexes with conserved activities in RNA metabolism, AtLSM1-7 and AtLSM2-8, exist also in plants. PMID:23620288

  9. Strain measurement on stiff structures: experimental evaluation of three integrated measurement principles

    NASA Astrophysics Data System (ADS)

    Rausch, J.; Hatzfeld, C.; Karsten, R.; Kraus, R.; Millitzer, J.; Werthschtzky, R.

    2012-06-01

    This paper presents an experimental evaluation of three different strain measuring principles. Mounted on a steel beam resembling a car engine mount, metal foil strain gauges, piezoresistive silicon strain gauges and piezoelectric patches are investigated to measure structure-borne forces to control an active mounting structure. FEA simulation determines strains to be measured in the range of 10-8 up to 10-5 m m-1. These low strains cannot be measured with conventional metal foil strain gauges, as shown in the experiment conducted. Both piezoresistive and piezoelectric gauges show good results compared to a conventional piezoelectric force sensor. Depending on bandwidth, overload capacity and primary electronic costs, these principles seem to be worth considering in an adaptronic system design. These parameters are described in detail for the principles investigated.

  10. Measuring the effects of aging and sex on regional brain stiffness with MR elastography in healthy older adults.

    PubMed

    Arani, Arvin; Murphy, Matthew C; Glaser, Kevin J; Manduca, Armando; Lake, David S; Kruse, Scott A; Jack, Clifford R; Ehman, Richard L; Huston, John

    2015-05-01

    Changes in tissue composition and cellular architecture have been associated with neurological disease, and these in turn can affect biomechanical properties. Natural biological factors such as aging and an individual's sex also affect underlying tissue biomechanics in different brain regions. Understanding the normal changes is necessary before determining the efficacy of stiffness imaging for neurological disease diagnosis and therapy monitoring. The objective of this study was to evaluate global and regional changes in brain stiffness as a function of age and sex, using improved MRE acquisition and processing that have been shown to provide median stiffness values that are typically reproducible to within 1% in global measurements and within 2% for regional measurements. Furthermore, this is the first study to report the effects of age and sex over the entire cerebrum volume and over the full frontal, occipital, parietal, temporal, deep gray matter/white matter (insula, deep gray nuclei and white matter tracts), and cerebellum volumes. In 45 volunteers, we observed a significant linear correlation between age and brain stiffness in the cerebrum (P<.0001), frontal lobes (P<.0001), occipital lobes (P=.0005), parietal lobes (P=.0002), and the temporal lobes (P<.0001) of the brain. No significant linear correlation between brain stiffness and age was observed in the cerebellum (P=.74), and the sensory-motor regions (P=.32) of the brain, and a weak linear trend was observed in the deep gray matter/white matter (P=.075). A multiple linear regression model predicted an annual decline of 0.011 ± 0.002 kPa in cerebrum stiffness with a theoretical median age value (76 years old) of 2.56 ± 0.08 kPa. Sexual dimorphism was observed in the temporal (P=.03) and occipital (P=.001) lobes of the brain, but no significant difference was observed in any of the other brain regions (P>.20 for all other regions). The model predicted female occipital and temporal lobes to be 0.23 kPa and 0.09 kPa stiffer than males of the same age, respectively. This study confirms that as the brain ages, there is softening; however, the changes are dependent on region. In addition, stiffness effects due to sex exist in the occipital and temporal lobes. PMID:25698157

  11. Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect

    PubMed Central

    Lee, Jungwoo; Jeong, Jong Seob; Shung, K. Kirk

    2013-01-01

    It has recently been demonstrated that it was possible to individually trap 70 μm droplets flowing within a 500 μm wide microfluidic channel by a 24 MHz single element piezo-composite focused transducer. In order to further develop this non-invasive approach as a microfluidic particle manipulation tool of high precision, the trapping force needs to be calibrated to a known force, i.e., viscous drag force arising from the fluid flow in the channel. However, few calibration studies based on fluid viscosity have been carried out with focused acoustic beams for moving objects in microfluidic environments. In this paper, the acoustic trapping force (Ftrapping) and the trap stiffness (or compliance k) are experimentally determined for a streaming droplet in a microfluidic channel. Ftrapping is calibrated to viscous drag force produced from syringe pumps. Chebyshev-windowed chirp coded excitation sequences sweeping the frequency range from 18 MHz to 30 MHz is utilized to drive the transducer, enabling the beam transmission through the channel/fluid interface for interrogating the droplets inside the channel. The minimum force (Fmin,trapping) required for initially immobilizing drifting droplets is determined as a function of pulse repetition frequency (PRF), duty factor (DTF), and input voltage amplitude (Vin) to the transducer. At PRF = 0.1 kHz and DTF = 30%, Fmin,trapping is increased from 2.2 nN for Vin = 22 Vpp to 3.8 nN for Vin = 54 Vpp. With a fixed Vin = 54 Vpp and DTF = 30%, Fmin,trapping can be varied from 3.8 nN at PRF = 0.1 kHz to 6.7 nN at PRF = 0.5 kHz. These findings indicate that both higher driving voltage and more frequent beam transmission yield stronger traps for holding droplets in motion. The stiffness k can be estimated through linear regression by measuring the trapping force (Ftrapping) corresponding to the displacement (x) of a droplet from the trap center. By plotting Ftrapping – x curves for certain values of Vin (22/38/54 Vpp) at DTF = 10% and PRF = 0.1 kHz, k is measured to be 0.09, 0.14, and 0.20 nN/μm, respectively. With variable PRF from 0.1 to 0.5 kHz at Vin = 54 Vpp, k is increased from 0.20 to 0.42 nN/μm. It is shown that a higher PRF leads to a more compliant trap formation (or a stronger Ftrapping) for a given displacement x. Hence the results suggest that this acoustic trapping method has the potential as a noninvasive manipulation tool for individual moving targets in microfluidics by adjusting the transducer’s excitation parameters. PMID:22824623

  12. Clinical application of liver stiffness measurement using transient elastography in chronic liver disease from longitudinal perspectives.

    PubMed

    Kim, Beom Kyung; Fung, James; Yuen, Man-Fung; Kim, Seung Up

    2013-03-28

    Accurate determination of the presence and degree of fibrosis in liver is of great importance, because the prognosis and management strategies for chronic liver disease depend mainly on these factors. To date, liver biopsy (LB) remains the "gold standard" for assessing the severity of liver fibrosis; however, LB is often limited by its invasiveness, sampling error, and intra/inter-observer variability in histological interpretation. Furthermore, repeated LB examinations within a short time interval are indeed ineligible in a real clinical practice. Thus, due to the pressing need for non-invasive surrogates for liver fibrosis, transient elastography (TE), as a novel ultrasound based technology, has allowed a noninvasive measurement of liver stiffness and has gained in popularity over recent years. In the past few years, additional roles for transient TE beyond the initial purpose of a non-invasive surrogate for LB have included the prediction of the most two critical consequences of fibrosis progression: the development of portal hypertension-related complications and hepatocellular carcinoma. This indicates that the role of transient TE is not merely limited to reducing the need for LB, but transient TE can enable the establishment of tailored management strategies by providing more detailed prognostic information. In particular, under the concept in which the clinical course of liver fibrosis is dynamic and bidirectional, especially when appropriate intervention is commenced, transient TE can be used to track the dynamic changes in fibrotic burden during antiviral or antifibrotic treatment. This review discussed extended applications of transient TE in prediction of the development of real clinical endpoints from a longitudinal perspective. PMID:23569334

  13. Face-Referenced Measurement of Perioral Stiffness and Speech Kinematics in Parkinson's Disease

    PubMed Central

    Barlow, Steven M.; Lee, Jaehoon

    2015-01-01

    Purpose Perioral biomechanics, labial kinematics, and associated electromyographic signals were sampled and characterized in individuals with Parkinson's disease (PD) as a function of medication state. Method Passive perioral stiffness was sampled using the OroSTIFF system in 10 individuals with PD in a medication ON and a medication OFF state and compared to 10 matched controls. Perioral stiffness, derived as the quotient of resultant force and interoral angle span, was modeled with regression techniques. Labial movement amplitudes and integrated electromyograms from select lip muscles were evaluated during syllable production using a 4-D computerized motion capture system. Results Multilevel regression modeling showed greater perioral stiffness in patients with PD, consistent with the clinical correlate of rigidity. In the medication-OFF state, individuals with PD manifested greater integrated electromyogram levels for the orbicularis oris inferior compared to controls, which increased further after consumption of levodopa. Conclusions This study illustrates the application of biomechanical, electrophysiological, and kinematic methods to better understand the pathophysiology of speech motor control in PD. PMID:25629806

  14. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    NASA Astrophysics Data System (ADS)

    Versteijlen, W. G.; van Dalen, K. N.; Metrikine, A. V.; Hamre, L.

    2014-06-01

    The fundamental natural frequency as measured on installed offshore wind turbines is significantly higher than its designed value, and it is expected that the explanation for this can be found in the currently adopted modeling of soil-structure interaction. The small-strain soil stiffness is an important design parameter, as it has a defining influence on the first natural frequency of these structures. In this contribution, in situ seismic measurements are used to derive the small-strain shear modulus of soil as input for 3D soil-structure interaction models to assess the initial soil stiffness at small strains for offshore wind turbine foundations. A linear elastic finite element model of a half-space of solids attached to a pile is used to derive an equivalent first mode shape of the foundation. The second model extends the first one by introducing contact elements between pile and soil, to take possible slip and gap-forming into account. The deflections derived with the 3D models are smaller than those derived with the p- y curve design code. This higher stiffness is in line with the higher measured natural frequencies. Finally a method is suggested to translate the response of 3D models into 1D engineering models of a beam laterally supported by uncoupled distributed springs.

  15. Growth, spectral, thermal, optical, mechanical and etching studies of L-lysine semi-maleate (L-LSM) single crystals

    NASA Astrophysics Data System (ADS)

    Vasudevan, V.; Renuka, N.; Ramesh Babu, R.; Ramamurthi, K.

    2015-02-01

    Organic nonlinear optical material, L-lysine semi-maleate (L-LSM) single crystals were grown by slow cooling solution growth technique. The crystal system of grown L-LSM was confirmed by single crystal and powder X-ray diffraction analyzes. Functional groups of the grown crystal have been identified by Fourier Transform Infrared spectral analysis. The proton and carbon NMR spectral studies confirm the presence of hydrogen and carbon in the grown L-LSM. The melting and thermal decomposition temperatures of the crystal were determined using thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses. Optical transparency, second harmonic generation efficiency, micro hardness, dielectric constant and loss, refractive index and birefringence have also been measured. Further, the growth patterns and dislocations present in the grown crystal are studied.

  16. Correlation of Arterial Stiffness and Bone Mineral Density by Measuring Brachial-Ankle Pulse Wave Velocity in Healthy Korean Women

    PubMed Central

    Kim, Nam-Lee

    2015-01-01

    Background An association between arterial stiffness and osteoporosis has previously been reported. Therefore, we investigated the relationship between arterial stiffness, measured by brachial-ankle pulse wave velocity, and bone mineral density in a sample of healthy women undergoing routine medical checkup. Methods We retrospectively reviewed the medical charts of 135 women who had visited the Health Promotion Center (between May 2009 and December 2012). Brachial-ankle pulse wave velocity was measured using an automatic wave analyzer. Bone mineral density of the lumbar spine (L1-L4) and femur was measured by dual-energy X-ray absorptiometry. Metabolic syndrome was defined according to National Cholesterol Education Program-Adult Treatment Panel III criteria, using body mass index >25 kg/m2 instead of waist circumference >88.9 cm. Results Pearson's correlation analysis revealed significant inverse relationships between pulse wave velocity and bone mineral density of the lumbar spine (r=-0.335, P<0.001), femur neck (r=-0.335, P<0.001), and total femur (r=-0.181, P=0.04). Pulse wave velocity showed the strongest association with age (r=0.586, P<0.001). Multiple regression analysis identified an independent relationship between pulse wave velocity and lumbar spine bone mineral density in women after adjusting for age, metabolic syndrome, body mass index, smoking status, alcohol intake, and exercise (r=-0.229, P=0.01). Conclusion This study confirmed an association between arterial stiffness and bone mineral density in women. PMID:26634100

  17. Right-Left Differences in Knee Extension Stiffness for the Normal Rat Knee: In Vitro Measurements Using a New Testing Apparatus.

    PubMed

    Markolf, Keith L; Evseenko, Denis; Petrigliano, Frank

    2016-04-01

    Knee stiffness following joint injury or immobilization is a common clinical problem, and the rat has been used as a model for studies related to joint stiffness and limitation of motion. Knee stiffness measurements have been reported for the anesthetized rat, but it is difficult to separate the contributions of muscular and ligamentous restraints to the recorded values. in vitro testing of isolated rat knees devoid of musculature allows measurement of joint structural properties alone. In order to measure the effects of therapeutic or surgical interventions designed to alter joint stiffness, the opposite extremity is often used as a control. However, right-left stiffness differences for the normal rat knee have not been reported in the literature. If stiffness changes observed for a treatment group are within the normal right-left variation, validity of the results could be questioned. The objectives of this study were to utilize a new testing apparatus to measure right-left stiffness differences during knee extension in a population of normal rat knees and to document repeatability of the stiffness measurements on successive testing days. Moment versus rotation curves were recorded for 15 right-left pairs of normal rat knees on three consecutive days, with overnight specimen storage in a refrigerator. Each knee was subjected to ten loading-unloading cycles, with the last loading curve used for analysis. Angular rotation (AR), defined here as the change in flexion-extension angle from a specified applied joint moment, is commonly used as a measure of overall joint stiffness. For these tests, ARs were measured from the recorded test curves with a maximum applied extension moment of 100 g cm. Mean rotations for testing days 2 and 3 were 0.81-1.25 deg lower (p < 0.001) than for day 1, but were not significantly different from each other. For each testing day, mean rotations for right knees were 1.12-1.30 deg greater (p < 0.001) than left knees. These right-left stiffness differences should be considered when interpreting the results of knee treatment studies designed to alter knee stiffness when using the opposite extremity as a control. PMID:26863930

  18. Feasibility study of superconducting LSM rocket launcher system

    NASA Technical Reports Server (NTRS)

    Yoshida, Kinjiro; Ohashi, Takaaki; Shiraishi, Katsuto; Takami, Hiroshi

    1994-01-01

    A feasibility study is presented concerning an application of a superconducting linear synchronous motor (LSM) to a large-scale rocket launcher, whose acceleration guide tube of LSM armature windings is constructed 1,500 meters under the ground. The rocket is released from the linear launcher just after it gets to a peak speed of about 900 kilometers per hour, and it flies out of the guide tube to obtain the speed of 700 kilometers per hour at the height of 100 meters above ground. The linear launcher is brought to a stop at the ground surface for a very short time of 5 seconds by a quick control of deceleration. Very large current variations in the single-layer windings of the LSM armature, which are produced at the higher speed region of 600 to 900 kilometers per hour, are controlled successfully by adopting the double-layer windings. The proposed control method makes the rocket launcher ascend stably in the superconducting LSM system, controlling the Coriolis force.

  19. Exchange current model for (La0.8Sr0.2)0.95MnO3 (LSM) porous cathode for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Miyoshi, Kota; Miyamae, Takuma; Iwai, Hiroshi; Saito, Motohiro; Kishimoto, Masashi; Yoshida, Hideo

    2016-05-01

    In this paper, we propose an empirical formula for i0,TPB, the exchange current density per unit triple-phase boundary (TPB) length, for porous lanthanum strontium manganite (LSM) cathodes of solid oxide fuel cells (SOFCs); the evaluation of i0,TPB is of crucial importance in numerical simulations of electrodes based on reconstructed microstructures obtained by a dual beam focused ion beam scanning electron microscopy (FIB-SEM) and tomography techniques. To derive a widely applicable empirical formula for i0,TPB, electrochemical measurements of porous LSM cathodes are conducted under various oxygen partial pressures (0.05-0.25 atm) and temperatures (800-950 °C). By comparing the derived formula with that derived from a thin and dense patterned LSM electrode used in previous studies, it is found that at an air temperature of 800 °C, i0,TPB derived from a porous LSM cathode is approximately 40% smaller than that for the patterned electrode. This can be attributed to the fact that the electrochemical reaction in thin and dense electrodes can occur not only at the TPBs but also at the LSM surface owing to the non-negligible ionic conductivity of LSM. The derived formula is also applied to a three-dimensional numerical simulation to confirm its validity.

  20. Variation in within-bone stiffness measured by nanoindentation in mice bred for high levels of voluntary wheel running

    PubMed Central

    Middleton, Kevin M; Goldstein, Beth D; Guduru, Pradeep R; Waters, Julie F; Kelly, Scott A; Swartz, Sharon M; Garland Jr, T

    2010-01-01

    The hierarchical structure of bone, involving micro-scale organization and interaction of material components, is a critical determinant of macro-scale mechanics. Changes in whole-bone morphology in response to the actions of individual genes, physiological loading during life, or evolutionary processes, may be accompanied by alterations in underlying mineralization or architecture. Here, we used nanoindentation to precisely measure compressive stiffness in the femoral mid-diaphysis of mice that had experienced 37 generations of selective breeding for high levels of voluntary wheel running (HR). Mice (n= 48 total), half from HR lines and half from non-selected control (C) lines, were divided into two experimental groups, one with 13–14 weeks of access to a running wheel and one housed without wheels (n = 12 in each group). At the end of the experiment, gross and micro-computed tomography (μCT)-based morphometric traits were measured, and reduced elastic modulus (Er) was estimated separately for four anatomical quadrants of the femoral cortex: anterior, posterior, lateral, and medial. Two-way, mixed-model analysis of covariance (ancova) showed that body mass was a highly significant predictor of all morphometric traits and that structural change is more apparent at the μCT level than in conventional morphometrics of whole bones. Both linetype (HR vs. C) and presence of the mini-muscle phenotype (caused by a Mendelian recessive allele and characterized by a ∼50% reduction in mass of the gastrocnemius muscle complex) were significant predictors of femoral cortical cross-sectional anatomy. Measurement of reduced modulus obtained by nanoindentation was repeatable within a single quadrant and sensitive enough to detect inter-individual differences. Although we found no significant effects of linetype (HR vs. C) or physical activity (wheel vs. no wheel) on mean stiffness, anterior and posterior quadrants were significantly stiffer (P< 0.0001) than medial and lateral quadrants (32.67 and 33.09 GPa vs. 29.78 and 30.46 GPa, respectively). Our findings of no significant difference in compressive stiffness in the anterior and posterior quadrants agree with previous results for mice, but differ from those for large mammals. Integrating these results with others from ongoing research on these mice, we hypothesize that the skeletons of female HR mice may be less sensitive to the effects of chronic exercise, due to decreased circulating leptin levels and potentially altered endocannabinoid signaling. PMID:20402827

  1. A pilot study of scanning acoustic microscopy as a tool for measuring arterial stiffness in aortic biopsies

    PubMed Central

    Akhtar, Riaz; Cruickshank, J. Kennedy; Zhao, Xuegen; Derby, Brian; Weber, Thomas

    2016-01-01

    This study explores the use of scanning acoustic microscopy (SAM) as a potential tool for characterisation of arterial stiffness using aortic biopsies. SAM data is presented for human tissue collected during aortic bypass graft surgery for multi-vessel coronary artery disease. Acoustic wave speed as determined by SAM was compared to clinical data for the patients namely, pulse wave velocity (PWV), blood pressure, cholesterol and glucose levels. There was no obvious trend relating acoustic wave speed to PWV values, and an inverse relationship was found between systolic and diastolic blood pressure and acoustic wave speed. However, in patients with a higher cholesterol or glucose level, the acoustic wave speed increased. A more detailed investigation is needed to relate SAM data to clinical measurements. PMID:26985242

  2. LSM-YSZ Cathodes with Reaction-Infiltrated Nanoparticles

    SciTech Connect

    Lu, Chun; Sholklapper, Tal Z.; Jacobson, Craig P.; Visco, StevenJ.; De Jonghe, Lutgard C.

    2006-01-31

    To improve the LSM-YSZ cathode performance of intermediate temperature solid oxide fuel cells (SOFCs), Sm0.6Sr0.4CoO3-sigma (SSC) perovskite nanoparticles are incorporated into the cathodes by a reaction-infiltration process. The SSC particles are {approx}20 to 80nm in diameter, and intimately adhere to the pore walls of the preformed LSM-YSZ cathodes. The SSC particles dramatically enhance single-cell performance with a 97 percent H2+3 percent H2O fuel, between 600 C and 800 C. Consideration of a simplified TPB (triple phase boundary) reaction geometry indicates that the enhancement may be attributed to the high electrocatalytic activity of SSC for electrochemical reduction of oxygen in a region that can be located a small distance away from the strict triple phase boundaries. The implication of this work for developing high-performance electrodes is also discussed.

  3. 3-D FEM field analysis in controlled-PM LSM for Maglev vehicle

    SciTech Connect

    Yoshida, Kinjiro; Lee, J.; Kim, Y.J.

    1997-03-01

    The magnetic fields in the controlled-PM LSM for Maglev vehicle, of which the width is not only finite with lateral edges, but also an effective electric-airgap is very large, are accurately analyzed by using 3-D FEM. The lateral airgap-flux due to lateral edges of the machine is made clear and its effects on thrust and lift forces are evaluated quantitatively from the comparison with 2-D FEA. The accuracy of 3-D FEA is verified by comparing the calculated results with the measured values.

  4. The Effect of Regular Exercise Training During Pregnancy on Postpartum Brachial-Ankle Pulse Wave Velocity, a Measure of Arterial Stiffness

    PubMed Central

    Kawabata, Ikuno; Nakai, Akihito; Sekiguchi, Atsuko; Inoue, Yuko; Takeshita, Toshiyuki

    2012-01-01

    The aim of our study was to use brachial-ankle pulse wave velocity (baPWV) measurements to noninvasively assess the effect of exercise training on arterial stiffness in normal pregnant women. Arterial stiffness was assessed at the beginning of the early second trimester of pregnancy and 1 month after delivery in 17 women with normal singleton pregnancies who exercised regularly throughout pregnancy: 81 matched controls were used for comparison. No significant differences were observed in baPWV between the exercise and control groups at the beginning of the second trimester. BaPWV 1 month after delivery (1160.2 ± 109.1 cm·second-1) was signifi-cantly higher than that in the early second trimester (1116.7 ± 87.9 cm·second-1) in the control group (indicating increased arterial stiffness), but not in the exercise group (1145.9 ± 88.1 cm/second vs 1122.7 ± 100.2 cm·second-1, respectively: not significant). The results indicated that regular maternal exercise training decreased arterial stiffness in normal pregnant women, which suggests that regular exercise may help prevent hypertensive disorders during pregnancy. Key pointsRegular maternal exercise training decreased arterial stiffness in normal pregnant women, which suggests that regular exercise may help prevent hypertensive disorders during pregnancy.Maternal exercise suggests that disturbances in arterial function during pregnancy may be prevented by regular exercise. PMID:24149358

  5. Reliability of Abdominal Muscle Stiffness Measured Using Elastography during Trunk Rehabilitation Exercises.

    PubMed

    MacDonald, David; Wan, Alan; McPhee, Megan; Tucker, Kylie; Hug, François

    2016-04-01

    The aim of this study was to assess the intra-session and inter-rater reliability of shear modulus measured in abdominal muscles during two commonly used trunk stability exercises. Thirty healthy volunteers performed a series of abdominal hollow and abdominal brace tasks. Supersonic shear imaging was used to measure the shear modulus (considered an index of muscle tension) of the four anterior trunk muscles: obliquus externus abdominis, obliquus internus abdominis, transversus abdominis and rectus abdominis. Because of measurement artifacts, internus abdominis and transversus abdominis data were not analyzed for 36.7% and 26.7% of the participants, respectively. These participants exhibited thicker superficial fat layers than the others. For the remaining participants, fair to excellent intra-session and inter-rater reliability was observed with moderate to high intra-class coefficients (0.45-0.97) and low to moderate standard error of measurement values (0.38-3.53 kPa). Reliability values were consistently greater for superficial than for deeper muscles. PMID:26746381

  6. Size and stiffness measurements on 9.5 m long LHC dipole coils

    SciTech Connect

    Zerobin, F.; Painer, M.; Eichberger, S.; Pichler, S.

    1994-07-01

    For a 10 m long superconducting dipole prototype magnet for CERN`s LHC program in total 17 dummy and superconducting coils were manufactured at ELIN company. The paper presents measurements taken during coil manufacturing. The results are compared to results obtained on models. The influence of cable dimensions on the final dimension and the Young`s Modulus of the coils is described.

  7. In situ measurements of human articular cartilage stiffness by means of a scanning force microscope

    NASA Astrophysics Data System (ADS)

    Imer, Raphaël; Akiyama, Terunobu; de Rooij, Nico F.; Stolz, Martin; Aebi, Ueli; Kilger, Robert; Friederich, Niklaus F.; Wirz, Dieter; Daniels, A. U.; Staufer, Urs

    2007-03-01

    Osteoarthritis is a painful and disabling progressive joint disease, characterized by degradation of articular cartilage. In order to study this disease at early stages, we have miniaturized and integrated a complete scanning force microscope into a standard arthroscopic device fitting through a standard orthopedic canula. This instrument will allow orthopedic surgeons to measure the mechanical properties of articular cartilage at the nanometer and micrometer scale in-vivo during a standard arthroscopy. An orthopedic surgeon assessed the handling of the instrument. First measurements of the elasticity-modulus of human cartilage were recorded in a cadaver knee non minimal invasive. Second, minimally invasive experiments were performed using arthroscopic instruments. Load-displacement curves were successfully recorded.

  8. Magnetization measurements reveal the local shear stiffness of hydrogels probed by ferromagnetic nanorods

    NASA Astrophysics Data System (ADS)

    Bender, P.; Tschöpe, A.; Birringer, R.

    2014-12-01

    The local mechanical coupling of ferromagnetic nanorods in hydrogels was characterized by magnetization measurements. Nickel nanorods were synthesized by the AAO-template method and embedded in gelatine hydrogels with mechanically soft or hard matrix properties determined by the gelatine weight fraction. By applying a homogeneous magnetic field during gelation the nanorods were aligned along the field resulting in uniaxially textured ferrogels. The magnetization curves of the soft ferrogel exhibited not only important similarities but also characteristic differences as compared to the hard ferrogel. The hystereses measured in a field parallel to the texture axis were almost identical for both samples indicating effective coupling of the nanorods with the polymer network. By contrast, measurements in a magnetic field perpendicular to the texture axis revealed a much higher initial susceptibility of the soft as compared to the hard ferrogel. This difference was attributed to the additional rotation of the nanorods allowed by the reduced shear modulus in the soft ferrogel matrix. Two methods for data analysis were presented which enabled us to determine the shear modulus of the gelatine matrix which was interpreted as a local rather than macroscopic quantity in consideration of the nanoscale of the probe particles.

  9. Inverse measurement of stiffness by the normalization technique for J-integral fracture toughness

    SciTech Connect

    Brown, Eric

    2012-06-07

    The single specimen normalization technique for J-integral fracture toughness has been successfully employed by several researchers to study the strongly non-linear fracture response of ductile semicrystalline polymers. As part of the normalization technique the load and the plastic component of displacement are normalized. The normalized data is then fit with a normalization function that approximates a power law for small displacements that are dominated by blunting and smoothly transitions to a linear relationship for large displacements that are dominated by stable crack extension. Particularly for very ductile polymers the compliance term used to determine the plastic displacement can dominate the solution and small errors in determining the elastic modulus can lead to large errors in the normalization or even make it ill-posed. This can be further complicated for polymers where the elastic modulus is strong strain rate dependent and simply using a 'quasistatic' modulus from a dogbone measurement may not equate to the dominant strain rate in the compact tension specimen. The current work proposes directly measuring the compliance of the compact tension specimen in the solution of J-integral fracture toughness and then solving for the elastic modulus. By comparison with a range of strain rate data the dominant strain rate can then be determined.

  10. Stiffness adaptations in shod running.

    PubMed

    Divert, Carolyn; Baur, Heiner; Mornieux, Guillaume; Mayer, Frank; Belli, Alain

    2005-11-01

    When mechanical parameters of running are measured, runners have to be accustomed to testing conditions. Nevertheless, habituated runners could still show slight evolutions of their patterns at the beginning of each new running bout. This study investigated runners' stiffness adjustments during shoe and barefoot running and stiffness evolutions of shoes. Twenty-two runners performed two 4-minute bouts at 3.61 m.s-1 shod and barefoot after a 4-min warm-up period. Vertical and leg stiffness decreased during the shoe condition but remained stable in the barefoot condition, p < 0.001. Moreover, an impactor test showed that shoe stiffness increased significantly during the first 4 minutes, p < 0.001. Beyond the 4th minute, shoe properties remained stable. Even if runners were accustomed to the testing condition, as running pattern remained stable during barefoot running, they adjusted their leg and vertical stiffness during shoe running. Moreover, as measurements were taken after a 4-min warm-up period, it could be assumed that shoe properties were stable. Then the stiffness adjustment observed during shoe running might be due to further habituations of the runners to the shod condition. To conclude, it makes sense to run at least 4 minutes before taking measurements in order to avoid runners' stiffness alteration due to shoe property modifications. However, runners could still adapt to the shoe. PMID:16498177

  11. Diagnosis of GLDAS LSM based aridity index and dryland identification.

    PubMed

    Ghazanfari, Sadegh; Pande, Saket; Hashemy, Mehdy; Sonneveld, Ben

    2013-04-15

    The identification of dryland areas is crucial for guiding policy aimed at intervening in water-stressed areas and addressing the perennial livelihood or food insecurity of these areas. However, the prevailing aridity indices (such as UNEP aridity index) have methodological limitations that restrict their use in delineating drylands and may be insufficient for decision-making frameworks. In this study, we propose a new aridity index based on based on 3 decades of soil moisture time series by accounting for site-specific soil and vegetation that partitions precipitation into the competing demands of evaporation and runoff. Our proposed aridity index is the frequency at which the dominant soil moisture value at a location is not exceeded by the dominant soil moisture values in all of the other locations. To represent the dominant spatial template of the soil moisture conditions, we extract the first eigenfunction from the empirical orthogonal function (EOF) analysis from 3 GLDAS land surface models (LSMs): VIC, MOSAIC and NOAH at 1 × 1 degree spatial resolution. The EOF analysis reveals that the first eigenfunction explains 33%, 43% and 47% of the VIC, NOAH and MOSAIC models, respectively. We compare each LSM aridity indices with the UNEP aridity index, which is created based on LSM data forcings. The VIC aridity index displays a pattern most closely resembling that of UNEP, although all of the LSM-based indices accurately isolate the dominant dryland areas. The UNEP classification identifies portions of south-central Africa, southeastern United States and eastern India as drier than predicted by all of the LSMs. The NOAH and MOSAIC LSMs categorize portions of southwestern Africa as drier than the other two classifications, while all of the LSMs classify portions of central India as wetter than the UNEP classification. We compare all aridity maps with the long-term average NDVI values. Results show that vegetation cover in areas that the UNEP index classifies as drier than the other three LSMs (NDVI values are mostly greater than 0). Finally, the unsupervised clustering of global land surface based on long-term mean temperature and precipitation, soil texture and land slope reveals that areas classified as dry by the UNEP index but not by the LSMs do not have dry region characteristics. The dominant cluster for these areas has high water holding capacity. We conclude that the LSM-based aridity index may identify dryland areas more effectively than the UNEP aridity index because the former incorporates the role of vegetation and soil in the partitioning of precipitation into evaporation, runoff and infiltration. PMID:23500019

  12. A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species.

    PubMed

    Onoda, Yusuke; Schieving, Feike; Anten, Niels P R

    2015-05-01

    Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young's moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses. PMID:25675956

  13. Static determination of exchange stiffness by quantitative domain wall and anisotropy measurements in La_0.7Ca_0.3MnO_3

    NASA Astrophysics Data System (ADS)

    Mathur, Neil; Lloyd, Stephen; Loudon, James; Midgley, Paul; Jo, Moon-Ho; Evetts, Jan; Blamire, Mark

    2001-03-01

    Two parallel studies of the low temperature ferromagnetic phase of the manganite La_0.7Ca_0.3MnO3 were conducted using epitaxial films grown by pulsed laser deposition on NdGaO3 (001). In the first study, the width of a magnetic domain wall was measured using a recently developed Lorentz TEM technique to be 38 nm (linearly extrapolating the angular dependence of moment on position from the wall centre to 90^circ). In the second study, uniaxial magnetocrystalline anisotropy (3.610^4 J m-3) was found along the orthorhombic [100] direction using a vibrating sample magnetometer (an unconventional method was required because the slightly anisotropic substrate is strongly paramagnetic). Combining the two studies suggests that the quantum mechanical exchange stiffness J is 8.910-22 Joules. Our static method gives a similar value to the dynamic value deduced from neutron spin wave stiffness measurements in the long wavelength limit.

  14. High temperature oxidation behavior of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing

    NASA Astrophysics Data System (ADS)

    Lee, Shyong; Chu, Chun-Lin; Tsai, Ming-Jui; Lee, Jye

    2010-01-01

    The current study examined the effect of La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF) and La 0.7Sr 0.3MnO 3 (LSM) coatings on the electrical properties and oxidation resistance of Crofer22 APU at 800 °C hot air. LSCF and LSM were coated on Crofer22 APU by screen printing and sintered over temperatures ranging from 1000 to 1100 °C in N 2. The coated alloy was first checked for compositions, morphology and interface conditions and then treated in a simulated oxidizing environment at 800 °C for 200 h. After measuring the long-term electrical resistance, the area specific resistance (ASR) at 800 °C for the alloy coated with LSCF was less than its counterpart coated with LSM. This work used LSCF coating as a metallic interconnect to reduce working temperature for the solid oxide fuel cell.

  15. Reconstitution of recombinant human LSm complexes for biochemical, biophysical, and cell biological studies.

    PubMed

    Zaric, Bozidarka L; Kambach, Christian

    2008-01-01

    Sm and Sm-like (LSm) proteins are an ancient family of proteins present in all branches of life. Having originally arisen as RNA chaperones and stabilizers, the family has diversified greatly and fulfills a number of central tasks in various RNA processing events, ranging from pre-mRNA splicing to histone mRNA processing to mRNA degradation. Defects in Sm/LSm protein-containing ribonucleoprotein assembly and function lead to severe medical disorders like spinal muscular atrophy. Sm and LSm proteins always assemble into and function in the form of ringlike hexameric or heptameric complexes whose composition and architecture determine their intracellular location and RNA and effector protein binding specificity and function Sm/LSm complexes that have been assembled in vitro from recombinant components provide a flexible and invaluable tool for detailed cell biological, biochemical, and biophysical studies on these biologically and medically important proteins. We describe here protocols for the construction of bacterial LSm coexpression vectors, expression and purification of LSm proteins and subcomplexes, and the in vitro reconstitution of fully functional human LSm1-7 and LSm2-8 heptameric complexes. PMID:19111171

  16. MR Elastography for the Assessment of Hepatic Fibrosis in Patients with Chronic Hepatitis B Infection: Does Histologic Necroinflammation Influence the Measurement of Hepatic Stiffness?

    PubMed Central

    Shi, Yu; Xia, Fei; Dzyubak, Bogdan; Glaser, Kevin J.; Li, Qiuju; Li, Jiahui; Ehman, Richard L.

    2014-01-01

    Purpose To determine the diagnostic performance of magnetic resonance (MR) elastography for the staging of hepatic fibrosis and to evaluate the influence of necroinflammation on hepatic stiffness in patients with chronic hepatitis B virus (HBV) infection by using histopathologic findings as the reference standard. Materials and Methods One hundred thirteen consecutive patients with chronic HBV infection were recruited prospectively in this institutional review boardapproved study after providing written informed consent between March 2012 and October 2013. The stiffness measurements were obtained by using two-dimensional gradient-echo MR elastography with a 3.0-T MR system. The METAVIR scoring system was used for the assessment of fibrosis (F stage) and necroinflammation (A grade). The predictive ability of MR elastography was evaluated by using the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC). Multiple linear regression analyses were conducted to determine the relationship between hepatic stiffness and the variables that showed a significant association in the univariate analysis or those that were of interest for comparison with earlier work (histologic scores, sex, age, aspartate aminotransferase level, and aspartate aminotransferase/alanine aminotransferase ratio). Results MR elastography showed excellent performance for characterization of ?F1, ?F2, ?F3, and F4 findings, with AUC values of 0.961, 0.986, 1.000, and 0.998, respectively. It showed a moderate capability for evaluation of necroinflammatory activity of ?A1, ?A2, and A3 (AUC = 0.806, 0.834, and 0.906, respectively). Multiple linear regression analysis showed that fibrosis, necroinflammation, and sex were independently associated with hepatic stiffness (? = 0.799, 0.277, and 0.070, respectively; P < .05). For pairwise comparisons, log-transformed hepatic stiffness showed no difference between (a) groups F0/A23 and F1/A01 and (b) groups F1/A23 and F2/A01 (P > .99 and P = .486, respectively). Conclusion MR elastography demonstrated excellent performance for distinguishing the stages of hepatic fibrosis in patients with chronic HBV infection. For hepatic tissue with ?F2 fibrosis, necroinflammation can account for a substantial fraction of the increase in hepatic stiffness. RSNA, 2014 PMID:24893048

  17. A Role for Lsm1p in Response to Ultraviolet-Radiation Damage in Saccharomyces cerevisiae

    PubMed Central

    Spicakova, Tatiana; McCann, Kelly; Brown, J. Martin

    2008-01-01

    A genome-wide screen in Saccharomyces cerevisiae identified LSM1 as a new gene affecting sensitivity to ultraviolet (UV) radiation. Lsm1p is a member of a cytoplasmic complex composed of Lsm1p–7p that interacts with the yeast mRNA degradation machinery. To investigate the potential role of Lsm1p in response to UV radiation, we constructed double mutant strains in which LSM1 was deleted in combination with a representative gene from each of three known yeast DNA repair pathways. Our results show that lsm1Δ increases the UV-radiation sensitivity of the rad1Δ and rad51Δ mutants, but not the rad18Δ mutant, placing LSM1 within the post-replication repair/damage tolerance pathway (PRR). When combined with other deletions affecting PRR, lsm1Δ increases the UV-radiation sensitivity of the rev3Δ, rad30Δ and pol30-K164R mutants but not rad5Δ. Furthermore, the UV-radiation sensitivity phenotype of lsm1Δ is partially rescued by mutations in genes involved in 3′ to 5′ mRNA degradation, and mutations predicted to function in RNA interactions confer the most UV-radiation sensitivity. Together, these results suggest that Lsm1p may confer protection against UV-radiation damage by protecting the 3′ ends of mRNAs from exosome-dependent 3′ to 5′ degradation as part of a novel RAD5-mediated, PCNA-K164 ubiquitylation-independent subpathway of PRR. PMID:19024647

  18. Lase Ultrasonic Web Stiffness tester

    SciTech Connect

    Tim Patterson, Ph.D., IPST at Ga Tech

    2009-01-12

    The objective is to provide a sensor that uses non-contact, laser ultrasonics to measure the stiffness of paper during the manufacturing process. This will allow the manufacturer to adjust the production process in real time, increase filler content, modify fiber refining and as result produce a quality product using less energy. The sensor operates by moving back and forth across the paper web, at pre-selected locations firing a laser at the sheet, measuring the out-of-plane velocity of the sheet then using that measurement to calculate sheet stiffness.

  19. Single-step direct measurement of amyloid fibrils stiffness by peak force quantitative nanomechanical atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Adamcik, Jozef; Berquand, Alexandre; Mezzenga, Raffaele

    2011-05-01

    We present an original application of a new atomic force microscopy mode called peak force tapping for the investigation of the mechanical properties of β-lactoglobulin amyloid fibrils. The values of Young's modulus obtained by this technique are in perfect agreement with the indirect evaluation of fibrils stiffness obtained by combining polymer physics and topological statistical analysis on fibrils' structural conformations. This technique shows great promise in the estimation of the elastic properties of nanostructured objects relevant in biology, soft matter, and nanotechnology.

  20. Cytoplasmic LSM-1 protein regulates stress responses through the insulin/IGF-1 signaling pathway in Caenorhabditis elegans.

    PubMed

    Cornes, Eric; Porta-De-La-Riva, Montserrat; Aristizbal-Corrales, David; Brokate-Llanos, Ana Mara; Garca-Rodrguez, Francisco Javier; Ertl, Iris; Daz, Mnica; Fontrodona, Laura; Reis, Kadri; Johnsen, Robert; Baillie, David; Muoz, Manuel J; Sarov, Mihail; Dupuy, Denis; Cern, Julin

    2015-09-01

    Genes coding for members of the Sm-like (LSm) protein family are conserved through evolution from prokaryotes to humans. These proteins have been described as forming homo- or heterocomplexes implicated in a broad range of RNA-related functions. To date, the nuclear LSm2-8 and the cytoplasmic LSm1-7 heteroheptamers are the best characterized complexes in eukaryotes. Through a comprehensive functional study of the LSm family members, we found that lsm-1 and lsm-3 are not essential for C. elegans viability, but their perturbation, by RNAi or mutations, produces defects in development, reproduction, and motility. We further investigated the function of lsm-1, which encodes the distinctive protein of the cytoplasmic complex. RNA-seq analysis of lsm-1 mutants suggests that they have impaired Insulin/IGF-1 signaling (IIS), which is conserved in metazoans and involved in the response to various types of stress through the action of the FOXO transcription factor DAF-16. Further analysis using a DAF-16::GFP reporter indicated that heat stress-induced translocation of DAF-16 to the nuclei is dependent on lsm-1. Consistent with this, we observed that lsm-1 mutants display heightened sensitivity to thermal stress and starvation, while overexpression of lsm-1 has the opposite effect. We also observed that under stress, cytoplasmic LSm proteins aggregate into granules in an LSM-1-dependent manner. Moreover, we found that lsm-1 and lsm-3 are required for other processes regulated by the IIS pathway, such as aging and pathogen resistance. PMID:26150554

  1. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    NASA Astrophysics Data System (ADS)

    Steinbach, G.; Pawlak, K.; Pomozi, I.; Tóth, E. A.; Molnár, A.; Matkó, J.; Garab, G.

    2014-03-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.

  2. Experimental stiffness of tapered bore seals

    NASA Technical Reports Server (NTRS)

    Fleming, D. P.

    1985-01-01

    The stiffness of tapered-bore ring seals was measured with air as the sealed fluid. Static stiffness agreed fairly well with results of a previous analysis. Cross-coupled stiffness due to shaft rotation was much less than predicted. It is suggested that part of the disparity may be due to simplifying assumptions in the analysis; however, these do not appear to account for the entire difference observed.

  3. Measurements of the stiffness and thickness of the pavement asphalt layer using the enhanced resonance search method.

    PubMed

    Zakaria, Nur Mustakiza; Yusoff, Nur Izzi Md; Hardwiyono, Sentot; Nayan, Khairul Anuar Mohd; El-Shafie, Ahmed

    2014-01-01

    Enhanced resonance search (ERS) is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner). This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard. PMID:25276854

  4. Measurements of the Stiffness and Thickness of the Pavement Asphalt Layer Using the Enhanced Resonance Search Method

    PubMed Central

    Zakaria, Nur Mustakiza; Yusoff, Nur Izzi Md.; Hardwiyono, Sentot; Mohd Nayan, Khairul Anuar

    2014-01-01

    Enhanced resonance search (ERS) is a nondestructive testing method that has been created to evaluate the quality of a pavement by means of a special instrument called the pavement integrity scanner (PiScanner). This technique can be used to assess the thickness of the road pavement structure and the profile of shear wave velocity by using the principle of surface wave and body wave propagation. In this study, the ERS technique was used to determine the actual thickness of the asphaltic pavement surface layer, while the shear wave velocities obtained were used to determine its dynamic elastic modulus. A total of fifteen locations were identified and the results were then compared with the specifications of the Malaysian PWD, MDD UKM, and IKRAM. It was found that the value of the elastic modulus of materials is between 3929 MPa and 17726 MPa. A comparison of the average thickness of the samples with the design thickness of MDD UKM showed a difference of 20 to 60%. Thickness of the asphalt surface layer followed the specifications of Malaysian PWD and MDD UKM, while some of the values of stiffness obtained are higher than the standard. PMID:25276854

  5. Nonparticipatory Stiffness in the Male Perioral Complex

    ERIC Educational Resources Information Center

    Chu, Shin-Ying; Barlow, Steven M.; Lee, Jaehoon

    2009-01-01

    Purpose: The objective of this study was to extend previous published findings in the authors' laboratory using a new automated technology to quantitatively characterize nonparticipatory perioral stiffness in healthy male adults. Method: Quantitative measures of perioral stiffness were sampled during a nonparticipatory task using a

  6. Nonparticipatory Stiffness in the Male Perioral Complex

    ERIC Educational Resources Information Center

    Chu, Shin-Ying; Barlow, Steven M.; Lee, Jaehoon

    2009-01-01

    Purpose: The objective of this study was to extend previous published findings in the authors' laboratory using a new automated technology to quantitatively characterize nonparticipatory perioral stiffness in healthy male adults. Method: Quantitative measures of perioral stiffness were sampled during a nonparticipatory task using a…

  7. Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: Correlations between substrate stiffness and cell adhesion

    NASA Astrophysics Data System (ADS)

    Engler, Adam J.; Richert, Ludovic; Wong, Joyce Y.; Picart, Catherine; Discher, Dennis E.

    2004-10-01

    Surface probe measurements of the elasticity of thin film matrices as well as biological samples prove generally important to understanding cell attachment across such systems. To illustrate this, sectioned arteries were probed by atomic force microscopy (AFM) within the smooth muscle cell (SMC)-rich medial layer, yielding an apparent Young's modulus Emedia ˜ 5-8 kPa. Polyacrylamide gels with Egel spanning several-fold above and below this range were then cast 5-70 μm thick and coated with collagen: SMC spreading shows a hyperbolic dependence in projected cell area versus Egel. The modulus that gives half-max spreading is E1/2-spread ˜ 8-10 kPa, proving remarkably close to Emedia. More complex, layer-by-layer microfilms of poly( L-lysine)/hyaluronic acid were also tested and show equivalent trends of increased SMC spreading with increased stiffness. Adhesive spreading of cells thus seems to correlate broadly with the effective stiffness of synthetic materials and tissues.

  8. LSm1-7 complexes bind to specific sites in viral RNA genomes and regulate their translation and replication.

    PubMed

    Galo, Rui Pedro; Chari, Ashwin; Alves-Rodrigues, Isabel; Lobo, Daniela; Mas, Antonio; Kambach, Christian; Fischer, Utz; Dez, Juana

    2010-04-01

    LSm1-7 complexes promote cellular mRNA degradation, in addition to translation and replication of positive-strand RNA viruses such as the Brome mosaic virus (BMV). Yet, how LSm1-7 complexes act on their targets remains elusive. Here, we report that reconstituted recombinant LSm1-7 complexes directly bind to two distinct RNA-target sequences in the BMV genome, a tRNA-like structure at the 3'-untranslated region and two internal A-rich single-stranded regions. Importantly, in vivo analysis shows that these sequences regulate the translation and replication of the BMV genome. Furthermore, both RNA-target sequences resemble those found for Hfq, the LSm counterpart in bacteria, suggesting conservation through evolution. Our results provide the first evidence that LSm1-7 complexes interact directly with viral RNA genomes and open new perspectives in the understanding of LSm1-7 functions. PMID:20181739

  9. Theoretical analysis of segmented Wolter/LSM X-ray telescope systems

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.; Chao, S. H.

    1986-01-01

    The Segmented Wolter I/LSM X-ray Telescope, which consists of a Wolter I Telescope with a tilted, off-axis convex spherical Layered Synthetic Microstructure (LSM) optics placed near the primary focus to accommodate multiple off-axis detectors, has been analyzed. The Skylab ATM Experiment S056 Wolter I telescope and the Stanford/MSFC nested Wolter-Schwarzschild x-ray telescope have been considered as the primary optics. A ray trace analysis has been performed to calculate the RMS blur circle radius, point spread function (PSF), the meridional and sagittal line functions (LST), and the full width half maximum (PWHM) of the PSF to study the spatial resolution of the system. The effects on resolution of defocussing the image plane, tilting and decentrating of the multilayer (LSM) optics have also been investigated to give the mounting and alignment tolerances of the LSM optic. Comparison has been made between the performance of the segmented Wolter/LSM optical system and that of the Spectral Slicing X-ray Telescope (SSXRT) systems.

  10. Relationship Between Urinary Cross-Linked N-Telopeptide of Type-I Collagen and Heel Stiffness Index Measured by Quantitative Ultrasound in Middle-Aged and Elderly Men.

    PubMed

    Nishimura, Takayuki; Arima, Kazuhiko; Abe, Yasuyo; Kanagae, Mitsuo; Mizukami, Satoshi; Okabe, Takuhiro; Tomita, Yoshihito; Goto, Hisashi; Horiguchi, Itsuko; Aoyagi, Kiyoshi

    2015-11-01

    The aim of the present study was to investigate the age-related patterns and the relationship between levels of urinary cross-linked N-telopeptide of type-I collagen (NTx) and heel stiffness index measured by quantitative ultrasound (QUS) in men with a special reference to age groups of aged 40 to 59 years and ≥60 years.A total of 379 men participated in this study. Heel stiffness index (bone mass) was measured by QUS. Spot urine samples were collected, and urinary NTx was measured. The values were corrected for creatinine (Cre) concentration.Stiffness index was significantly lower in men aged ≥60 years compared with men aged 40 to 59 years (P < 0.0001). There was no significant difference of Log (NTx/Cre) by 10-year age groups. Multiple regression analysis showed that higher level of urinary NTx/Cre was significantly correlated with lower stiffness index after adjusting for age and body mass index in men aged ≥60 years, but not in men aged 40 to 59 years.Higher rates of bone resorption were associated with lower stiffness index only in elderly men. Our results may indicate a different mechanism of low bone mass among different age groups. PMID:26554777

  11. Magnetic negative stiffness dampers

    NASA Astrophysics Data System (ADS)

    Shi, Xiang; Zhu, Songye

    2015-07-01

    This communication presents the design principle and experimental validation of two novel configurations of magnetic negative stiffness dampers (MNSDs), both of which are composed of several permanent magnets arranged in a conductive pipe. The MNSD, as a passive device, efficiently integrates negative stiffness and eddy-current damping in a simple and compact design, in which the negative stiffness behavior depends on the different arrangements of the permanent magnets. When applied to structural vibration control, passive MNSD may achieve a performance comparable with semi-active or active control in some applications. Laboratory experiments of small-scale prototypes successfully verified the proposed MNSD design concept.

  12. Indirect measure of visceral adiposity ‘A Body Shape Index’ (ABSI) is associated with arterial stiffness in patients with type 2 diabetes

    PubMed Central

    Bouchi, Ryotaro; Asakawa, Masahiro; Ohara, Norihiko; Nakano, Yujiro; Takeuchi, Takato; Murakami, Masanori; Sasahara, Yuriko; Numasawa, Mitsuyuki; Minami, Isao; Izumiyama, Hajime; Hashimoto, Koshi; Yoshimoto, Takanobu; Ogawa, Yoshihiro

    2016-01-01

    Objective Among indirect measures of visceral adiposity, A Body Shape Index (ABSI), which is defined as waist circumference (WC)/(body mass index (BMI)2/3×height1/2), is unique in that ABSI is positively correlated with visceral adiposity and is supposed to be independent of BMI. ABSI has been also shown to be linearly and positively associated with visceral fat mass and all-cause and cardiovascular disease (CVD) in the general population. It is, however, uncertain whether ABSI could be associated with arterial stiffness in patients with diabetes. Methods This is a cross-sectional study of 607 patients with type 2 diabetes (mean age 64±12 years; 40.0% female). Visceral fat area (VFA, cm2) and subcutaneous fat area (SFA, cm2) were assessed with a dual-impedance analyzer. In order to estimate the risk for CVD, brachial-ankle pulse wave velocity (baPWV, cm) was used for the assessment of arterial stiffness. Results ABSI was significantly and positively correlated with VFA (r=0.138, p=0.001) and negatively associated with BMI (r=−0.085, p=0.037). The correlation of z-score for ABSI with VFA remained significant (r=0.170, p<0.001) but not with BMI (r=0.009, p=0.820). ABSI (standardized β 0.095, p=0.043) but not WC (standardized β −0.060, p=0.200) was significantly and positively correlated with baPWV in the multivariate model including BMI as a covariate. Conclusions ABSI appears to reflect visceral adiposity independently of BMI and to be a substantial marker of arterial stiffening in patients with type 2 diabetes. PMID:27026809

  13. Harmonic Analysis of the Output Voltage of a Third-Harmonic-Injected Inverter for LSM Drives

    NASA Astrophysics Data System (ADS)

    Shigeeda, Hidenori; Okui, Akinobu; Akagi, Hirofumi

    The superconducting magnetic levitation railway system (MAGLEV) under development in Japan uses a pulse-width-modulation (PWM) inverter for driving a linear synchronous motor (LSM). The inverter output voltage contains non-negligible harmonics which cause harmonic resonances in the LSM system, and therefore harmonics of the output voltage have been analyzed in order to control such harmonic resonances. This paper applies a third-harmonic injection method to the inverter for the purpose of enhancing the output voltage without changing the circuit configuration. It performs harmonic analysis of the output voltage of the inverter based on the third-harmonic injection. Validity of the harmonic analysis is verified by computer simulation.

  14. Electromechanical Dynamics Simulations of Superconducting LSM Rocket Launcher System in Attractive-Mode

    NASA Technical Reports Server (NTRS)

    Yoshida, Kinjiro; Hayashi, Kengo; Takami, Hiroshi

    1996-01-01

    Further feasibility study on a superconducting linear synchronous motor (LSM) rocket launcher system is presented on the basis of dynamic simulations of electric power, efficiency and power factor as well as the ascending motions of the launcher and rocket. The advantages of attractive-mode operation are found from comparison with repulsive-mode operation. It is made clear that the LSM rocket launcher system, of which the long-stator is divided optimally into 60 sections according to launcher speeds, can obtain high efficiency and power factor.

  15. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells IV. On the Ohmic loss in anode supported button cells with LSM or LSCF cathodes

    SciTech Connect

    Lu, Zigui; Zhou, Xiao Dong; Templeton, Jared W.; Stevenson, Jeffry W.

    2010-05-08

    Anode-supported solid oxide fuel cells (SOFC) with a variety of YSZ electrolyte thicknesses were fabricated by tape casting and lamination. The preparation of the YSZ electrolyte tapes with various thicknesses was accomplished by using doctor blades with different gaps between the precision machined, polished blade and the casting surface. The green tape was cut into discs, sintered at 1385C for 2 h, and subsequently creep-flattened at 1350C for 2 h. Either LSCF with an SDC interlayer or LSM+YSZ composite was used as the cathode material for the fuel cells. The ohmic resistances of these anode-supported fuel cells were characterized by electrochemical impedance spectroscopy at temperatures from 500C to 750C. A linear relationship was found between the ohmic resistance of the fuel cell and the YSZ electrolyte thickness at all the measuring temperatures for both LSCF and LSM+YSZ cathode fuel cells. The ionic conductivities of the YSZ electrolyte, derived for the fuel cells with LSM+YSZ or LSCF cathodes, were independent of the cathode material and cell configuration. The ionic conductivities of the YSZ electrolyte was slightly lower than that of the bulk material, possibly due to Ni-doping into the electrolyte. The fuel cell with a SDC interlayer and LSCF cathode showed larger intercept resistance than the fuel cell with LSM+YSZ cathode, which was possibly due to the imperfect contact between the SDC interlayer and the YSZ electrolyte and the migration of Zr into the SDC interlayer to form an insulating solid solution during cell fabrication. Calculations of the contribution of the YSZ electrolyte to the total ohmic resistance showed that YSZ was still a satisfactory electrolyte at temperatures above 650C. Explorations should be directed to reduce the intercept resistance to achieve significant improvement in cell performance.

  16. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells: III. Role of volatile boron species on LSM/YSZ and LSCF

    SciTech Connect

    Zhou, Xiao Dong; Templeton, Jared W.; Zhu, Zihua; Chou, Y. S.; Maupin, Gary D.; Lu, Zigui; Brow, R. K.; Stevenson, Jeffry W.

    2010-09-02

    Boron oxide is a key component to tailor the softening temperature and viscosity of the sealing glass for solid oxide fuel cells. The primary concern regarding the use of boron containing sealing glasses is the volatility of boron species, which possibly results in cathode degradation. In this paper, we report the role of volatile boron species on the electrochemical performance of LSM/YSZ and LSCF cathodes at various SOFC operation temperatures. The transport rate of boron, ~ 3.2410-12 g/cm2sec was measured at 750C with air saturated with 2.8% moisture. A reduction in power density was observed in cells with LSM/YSZ cathodes after introduction of the boron source to the cathode air stream. Partial recovery of the power density was observed after the boron source was removed. Results from post-test secondary ion mass spectroscopy (SIMS) analysis the partial recovery in power density correlated with partil removal of the deposited boron by the clean air stream. The presence of boron was also observed in LSCF cathodes by SIMS analysis, however the effect of boron on the electrochemical performance of LSCF cathode was negligible. Coverage of triple phase boundaries in LSM/YSZ was postulated as the cause for the observed reduction in electrochemical performance.

  17. Model-Based Estimation of Knee Stiffness

    PubMed Central

    Pfeifer, Serge; Vallery, Heike; Hardegger, Michael; Riener, Robert; Perreault, Eric J.

    2013-01-01

    During natural locomotion, the stiffness of the human knee is modulated continuously and subconsciously according to the demands of activity and terrain. Given modern actuator technology, powered transfemoral prostheses could theoretically provide a similar degree of sophistication and function. However, experimentally quantifying knee stiffness modulation during natural gait is challenging. Alternatively, joint stiffness could be estimated in a less disruptive manner using electromyography (EMG) combined with kinetic and kinematic measurements to estimate muscle force, together with models that relate muscle force to stiffness. Here we present the first step in that process, where we develop such an approach and evaluate it in isometric conditions, where experimental measurements are more feasible. Our EMG-guided modeling approach allows us to consider conditions with antagonistic muscle activation, a phenomenon commonly observed in physiological gait. Our validation shows that model-based estimates of knee joint stiffness coincide well with experimental data obtained using conventional perturbation techniques. We conclude that knee stiffness can be accurately estimated in isometric conditions without applying perturbations, which presents an important step towards our ultimate goal of quantifying knee stiffness during gait. PMID:22801482

  18. Arterial stiffness: a brief review

    PubMed Central

    Shirwany, Najeeb A; Zou, Ming-hui

    2010-01-01

    Physical stiffening of the large arteries is the central paradigm of vascular aging. Indeed, stiffening in the larger central arterial system, such as the aortic tree, significantly contributes to cardiovascular diseases in older individuals and is positively associated with systolic hypertension, coronary artery disease, stroke, heart failure and atrial fibrillation, which are the leading causes of mortality in the developed countries and also in the developing world as estimated in 2010 by World Health Organizations. Thus, better, less invasive and more accurate measures of arterial stiffness have been developed, which prove useful as diagnostic indices, pathophysiological markers and predictive indicators of disease. This article presents a review of the structural determinants of vascular stiffening, its pathophysiologic determinants and its implications for vascular research and medicine. A critical discussion of new techniques for assessing vascular stiffness is also presented. PMID:20802505

  19. Regional brain stiffness changes across the Alzheimer's disease spectrum☆

    PubMed Central

    Murphy, Matthew C.; Jones, David T.; Jack, Clifford R.; Glaser, Kevin J.; Senjem, Matthew L.; Manduca, Armando; Felmlee, Joel P.; Carter, Rickey E.; Ehman, Richard L.; Huston, John

    2015-01-01

    Magnetic resonance elastography (MRE) is an MRI-based technique to noninvasively measure tissue stiffness. Currently well established for clinical use in the liver, MRE is increasingly being investigated to measure brain stiffness as a novel biomarker of a variety of neurological diseases. The purpose of this work was to apply a recently developed MRE pipeline to measure regional brain stiffness changes in human subjects across the Alzheimer's disease (AD) spectrum, and to gain insights into the biological processes underlying those stiffness changes by correlating stiffness with existing biomarkers of AD. The results indicate that stiffness changes occur mostly in the frontal, parietal and temporal lobes, in accordance with the known topography of AD pathology. Furthermore, stiffness in those areas correlates with existing imaging biomarkers of AD including hippocampal volumes and amyloid PET. Additional analysis revealed preliminary but significant evidence that the relationship between brain stiffness and AD severity is nonlinear and non-monotonic. Given that similar relationships have been observed in functional MRI experiments, we used task-free fMRI data to test the hypothesis that brain stiffness was sensitive to structural changes associated with altered functional connectivity. The analysis revealed that brain stiffness is significantly and positively correlated with default mode network connectivity. Therefore, brain stiffness as measured by MRE has potential to provide new and essential insights into the temporal dynamics of AD, as well as the relationship between functional and structural plasticity as it relates to AD pathophysiology. PMID:26900568

  20. Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells II. Role of Ni diffusion on LSM performance

    SciTech Connect

    Zhou, Xiao Dong; Simner, Steven P.; Templeton, Jared W.; Nie, Zimin; Stevenson, Jeffry W.; Gorman, B. P.

    2010-03-26

    The sintering of a standard (La0.8Sr0.2)0.98MnO3 (LSM-20) solid oxide fuel cell cathode composition (in the temperature range of 1050-1200C) on anode-supported cells utilizing a Ni-YSZ anode and thin YSZ electrolyte (<10 ?m thickness) has revealed the need for a protective ceria interlayer to prevent a detrimental interaction between the YSZ and the LSM. The interaction, however, is not the typically assumed formation of insulating La- and/or Sr-zirconate, but rather the result of Ni diffusion from the anode through the YSZ electrolyte and into the LSM resulting in coarsening and increased densification of the LSM microstructure. As an alternative to the use of a protective ceria interlayer, the presence of YSZ in the cathode material was able to suppress coarsening of LSM, thereby significantly improving the electrochemical performance.

  1. LSm1 binds to the Dengue virus RNA 3' UTR and is a positive regulator of Dengue virus replication.

    PubMed

    Dong, Yangchao; Yang, Jing; Ye, Wei; Wang, Yuan; Miao, Yunbo; Ding, Tianbing; Xiang, Chen; Lei, Yingfeng; Xu, Zhikai

    2015-06-01

    Dengue virus (DENV) is a mosquito-transmitted flavivirus that can cause severe disease in humans. The DENV positive strand RNA genome contains 5' and 3' untranslated regions (UTRs) that have been shown to be required for virus replication and interaction with host cell proteins. In the present study LSm1 was identified as a host cellular protein involved in DENV RNA replication. By using two independent methodologies, we demonstrated a critical interaction between LSm1 and the 3' UTR of DENV. Furthermore, the confocal immunofluorescence analysis showed that the interaction between LSm1 and viral RNA is located in P-body around nucleoli in the cytoplasm. LSm1 knockdown by siRNA specifically reduced the levels of viral RNA in DENV-infected cells and infectious DENV particles in the supernatant. These results provide evidence that LSm1 binding to the DENV RNA 3' UTR positively regulates DENV RNA replication. PMID:25872476

  2. Reflectional transformation for structural stiffness

    SciTech Connect

    Vashi, K.M.

    1990-01-01

    This paper presents a structural reflection-related transformation for structural stiffness. The stiffness transformation addresses reflection of a structure about any of the three coordinate planes and renders the desired stiffness matrix using a stiffness matrix for the same structure before reflection. This transformation is elegant and simple, provides an efficient and technically rigorous approach to derive the required stiffness matrix without structural remodeling, and can be readily programmed to quickly perform the required matrix manipulations. 2 figs.

  3. Regardless-of-Speed Superconducting LSM Controlled-Repulsive MAGLEV Vehicle

    NASA Technical Reports Server (NTRS)

    Yoshida, Kinjiro; Egashira, Tatsuya; Hirai, Ryuichi

    1996-01-01

    This paper proposes a new repulsive Maglev vehicle which a superconducting linear synchronous motor (LSM) can levitate and propel simultaneously, independently of the vehicle speeds. The combined levitation and propulsion control is carried out by controlling mechanical-load angle and armature-current. Dynamic simulations show successful operations with good ride-quality by using a compact control method proposed here.

  4. UPDATES AND EVALUATION OF THE PX-LSM IN MM5

    EPA Science Inventory

    Starting with Version 3.4, there is a new land surface model known as the Pleim-Xiu LSM available in the MM5 system. Pleim and Xiu (1995) described the initial development and testing of this land surface and workshop proceedings provided a basic description of the model and s...

  5. Theoretical analysis of Wolter/LSM X-ray telescope systems

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.; Chao, S.

    1985-01-01

    A ray tracing analysis has been performed for the spectral slicing zoom X-ray telescope for configurations in which a convex layered synthetic microstructure (LSM) optic is placed in front of the prime focus or a concave LSM optic is placed behind the prime focus. The analysis has considered the geometrical shape of the LSM optic to be either a hyperboloid, sphere, ellipsoid or constant optical path aspheric element for two configurations of the glancing incidence X-ray telescope: the ATM Experimental S-056 Wolter I system and the Stanford/MSFC Wolter-Schwarzchild nested system. For the different systems the RMS blur circle radii, the point spread function (PSF), the full width half maximum (FWHM) of the PSF have been evaluated as a function of field angle and magnification of the secondary to determine resolution of the system. The effects of decentration and tilt of the selected LSM element on the performance of the system have been studied to determine mounting and alignment tolerances.

  6. Benchmarking LSM root-zone soil mositure predictions using satellite-based vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of modern land surface models (LSMs) to agricultural drought monitoring is based on the premise that anomalies in LSM root-zone soil moisture estimates can accurately anticipate the subsequent impact of drought on vegetation productivity and health. In addition, the water and energy ...

  7. Objectively measured physical activity and sedentary-time are associated with arterial stiffness in Brazilian young adults

    PubMed Central

    Horta, Bernardo Lessa; Schaan, Beatriz D.; Bielemann, Renata Moraes; Vianna, Carolina Ávila; Gigante, Denise Petrucci; Barros, Fernando C.; Ekelund, Ulf; Hallal, Pedro Curi

    2015-01-01

    Objective To examine the associations between objectively measured physical activity and sedentary time with pulse wave velocity (PWV) in Brazilian young adults. Methods Cross-sectional analysis with participants of the 1982 Pelotas (Brazil) Birth Cohort who were followed-up from birth to 30 years of age. Overall physical activity (PA) assessed as the average acceleration (mg), time spent in moderate-to-vigorous physical activity (MVPA – min/day) and sedentary time (min/day) were calculated from acceleration data. Carotid-femoral PWV (m/s) was assessed using a portable ultrasound. Systolic and diastolic blood pressure (SBP/DBP), waist circumference (WC) and body mass index (BMI) were analyzed as possible mediators. Multiple linear regression and g-computation formula were used in the analyses. Results Complete data were available for 1241 individuals. PWV was significantly lower in the two highest quartiles of overall PA (0.26 m/s) compared with the lowest quartile. Participants in the highest quartile of sedentary time had 0.39 m/s higher PWV (95%CI: 0.20; 0.57) than those in the lowest quartile. Individuals achieving ≥30 min/day in MVPA had lower PWV (β = −0.35; 95%CI: −0.56; −0.14). Mutually adjusted analyses between MVPA and sedentary time and PWV changed the coefficients, although results from sedentary time remained more consistent. WC captured 44% of the association between MVPA and PWV. DBP explained 46% of the association between acceleration and PWV. Conclusions Physical activity was inversely related to PWV in young adults, whereas sedentary time was positively associated. Such associations were only partially mediated by WC and DBP. PMID:26386211

  8. Nanocharacterization of the negative stiffness of ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Alipour Skandani, A.; Ctvrtlik, R.; Al-Haik, M.

    2014-08-01

    Phase changing materials such as ferroelectric materials could exhibit negative stiffness under certain thermomechanical environments. This negative stiffness is embodied by a deflection along the opposite direction of the applied load. So far negative stiffness materials were investigated with the specific morphology of embedded inclusions in stiff matrices then the resulting composite is studied to measure the behavior of each constituent indirectly. In this study, a modified nonisothermal nanoindentation method is developed to measure the negative stiffness of triglycine sulfate single crystal directly. This in-situ method is intended to first demonstrate the feasibility of detecting the negative stiffness via nanoindentation and nanocreep of a ferroelectric material at its Curie point and then to quantify the negative stiffness without the need for embedding the crystal within a stiffer matrix.

  9. Fabrication of gradient porous LSM cathode by optimizing deposition parameters in ultrasonic spray pyrolysis

    SciTech Connect

    Hamedani, Hoda A.; Dahmen, Klaus-Hermann; Li, Dongsheng; Peydaye-Saheli, Houman; Garmestani, Hamid; Khaleel, Mohammad A.

    2008-10-07

    Multiple-step ultrasonic spray pyrolysis was developed to produce a gradient porous lanthanum strontium manganite (LSM) cathode on yttria-stabilized zirconia (YSZ) electrolyte for use in intermediate temperature solid oxide fuel cells (IT-SOFCs). The effect of solvent and precursor type on the morphology and compositional homogeneity of the LSM film was first identified. The LSM film prepared from organo-metallic precursor and organic solvent showed a homogeneous crack-free microstructure before and after heat treatment as opposed to aqueous solution. With respect to the effect of processing parameters, increasing the temperature and solution flow rate in the specific range of 520–580 °C leads to change the microstructure from a dense to a highly porous structure. Using a dilute organic solution a nanocrystalline thin layer was first deposited at 520 °C and solution flow rate of 0.73 ml/min on YSZ surface; then, three gradient porous layers were sprayed from concentrated solution at higher temperatures (540–580 °C) and solution flow rates (1.13–1.58 ml/min) to form a gradient porous LSM cathode film with 30 μm thickness. The microstructure, phase crystallinity and compositional homogeneity of the fabricated films were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive analysis of X-ray (EDX). Results showed that the spray pyrolized gradient film fabricated in the temperature range of 520–580 °C is composed of highly crystalline LSM phase which can remove the need for subsequent heat treatment.

  10. Sensitivity of overall vehicle stiffness to local joint stiffness

    NASA Technical Reports Server (NTRS)

    Chon, Choon T.

    1987-01-01

    How overall vehicle stiffness is affected by local joint stiffness is discussed. By using the principle of virtual work and the minimum strain energy theorem, a closed form expression for the sensitivity coefficient was derived. The insensitivity of the vehicle stiffness to a particular joint, when its stiffness exceeds a certain value (or threshold value), was proven mathematically. In order to investigate the sensitivity of the structure to the joint stiffness, a so-called stick model was created, and the modeling technique is briefly described. Some data on joint stiffness of tested vehicles are also presented.

  11. Macroscopic Stiffness of Breast Tumors Predicts Metastasis

    PubMed Central

    Fenner, Joseph; Stacer, Amanda C.; Winterroth, Frank; Johnson, Timothy D.; Luker, Kathryn E.; Luker, Gary D.

    2014-01-01

    Mechanical properties of tumors differ substantially from normal cells and tissues. Changes in stiffness or elasticity regulate pro-metastatic behaviors of cancer cells, but effects have been documented predominantly in isolated cells or in vitro cell culture systems. To directly link relative stiffness of tumors to cancer progression, we combined a mouse model of metastatic breast cancer with ex vivo measurements of bulk moduli of freshly excised, intact tumors. We found a high, inverse correlation between bulk modulus of resected tumors and subsequent local recurrence and metastasis. More compliant tumors were associated with more frequent, larger local recurrences and more extensive metastases than mice with relatively stiff tumors. We found that collagen content of resected tumors correlated with bulk modulus values. These data establish that relative differences in tumor stiffness correspond with tumor progression and metastasis, supporting further testing and development of tumor compliance as a prognostic biomarker in breast cancer. PMID:24981707

  12. Stiff person syndrome.

    PubMed

    Nikhilesh, J; Sayeed, Z A; Saravanan, P K; Paul, J

    2001-05-01

    This communication considers a patient with episodic muscle spasms. Pharmacological intervention and electrophysiological studies provided adequate evidence confirming the diagnosis of stiff person syndrome. Electrophysiological studies in present communication similar to earlier reports, confirmed once again the autonomous state of the anterior horn cell in this disease process. PMID:11361276

  13. The Lsm1-7-Pat1 complex promotes viral RNA translation and replication by differential mechanisms.

    PubMed

    Jungfleisch, Jennifer; Chowdhury, Ashis; Alves-Rodrigues, Isabel; Tharun, Sundaresan; Dez, Juana

    2015-08-01

    The Lsm1-7-Pat1 complex binds to the 3' end of cellular mRNAs and promotes 3' end protection and 5'-3' decay. Interestingly, this complex also specifically binds to cis-acting regulatory sequences of viral positive-strand RNA genomes promoting their translation and subsequent recruitment from translation to replication. Yet, how the Lsm1-7-Pat1 complex regulates these two processes remains elusive. Here, we show that Lsm1-7-Pat1 complex acts differentially in these processes. By using a collection of well-characterized lsm1 mutant alleles and a system that allows the replication of Brome mosaic virus (BMV) in yeast we show that the Lsm1-7-Pat1 complex integrity is essential for both, translation and recruitment. However, the intrinsic RNA-binding ability of the complex is only required for translation. Consistent with an RNA-binding-independent function of the Lsm1-7-Pat1 complex on BMV RNA recruitment, we show that the BMV 1a protein, the sole viral protein required for recruitment, interacts with this complex in an RNA-independent manner. Together, these results support a model wherein Lsm1-7-Pat1 complex binds consecutively to BMV RNA regulatory sequences and the 1a protein to promote viral RNA translation and later recruitment out of the host translation machinery to the viral replication complexes. PMID:26092942

  14. Stiffness of Railway Soil-Steel Structures

    NASA Astrophysics Data System (ADS)

    Machelski, Czesław

    2015-12-01

    The considerable influence of the soil backfill properties and that of the method of compacting it on the stiffness of soil-steel structures is characteristic of the latter. The above factors (exhibiting randomness) become apparent in shell deformation measurements conducted during construction and proof test loading. A definition of soil-shell structure stiffness, calculated on the basis of shell deflection under the service load, is proposed in the paper. It is demonstrated that the stiffness is the inverse of the deflection influence function used in structural mechanics. The moving load methodology is shown to be useful for testing, since it makes it possible to map the shell deflection influence line also in the case of group loads (concentrated forces), as in bridges. The analyzed cases show that the shell's span, geometry (static scheme) and the height of earth fill influence the stiffness of the structure. The soil-steel structure's characteristic parameter in the form of stiffness k is more suitable for assessing the quality of construction works than the proposed in code geometric index ω applied to beam structures. As shown in the given examples, parameter k is more effective than stiffness parameter λ used to estimate the deformation of soil-steel structures under construction. Although the examples concern railway structures, the methodology proposed in the paper is suitable also for road bridges.

  15. Variable stiffness torsion springs

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)

    1995-01-01

    In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.

  16. Variable stiffness torsion springs

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)

    1994-01-01

    In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.

  17. NEM1 acts as a suppressor of apoptotic phenotypes in LSM4 yeast mutants.

    PubMed

    Palermo, Vanessa; Stirpe, Mariarita; Torella, Mirko; Falcone, Claudio; Mazzoni, Cristina

    2015-11-01

    Saccharomyces cerevisiae mutants in the essential gene LSM4, involved in messenger RNA decapping, and expressing a truncated form of the LSM4 gene of the yeast Kluyveromyces lactis (Kllsm4Δ1), show premature aging accompanied by the presence of typical markers of apoptosis and high sensitivity to oxidative stressing agents. We isolated multicopy extragenic suppressors of these defects, transforming the Kllsm4Δ1 mutant with a yeast DNA library and selecting clones showing resistance to acetic acid. Here we present one of these clones, carrying a DNA fragment containing the NEM1 gene (Nuclear Envelope Morphology protein 1), which encodes the catalytic subunit of the Nem1p-Spo7p phosphatase holoenzyme. Nem1p regulates nuclear growth by controlling phospholipid biosynthesis and it is required for normal nuclear envelope morphology and sporulation. The data presented here correlate the mRNA metabolism with the biosynthesis of phospholipids and with the functionality of the endoplasmic reticulum. PMID:26316593

  18. Development of engineering prototype of Life Support Module (LSM)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The development of an engineering prototype of a life support system is discussed. The module consists of an electrocardiogram, a defibrillator, a resuscitator, and an aspirator, as well as body temperature and blood pressure measuring instruments. A drug kit is included.

  19. Contribution of cation-? interactions to the stability of Sm/LSm oligomeric assemblies.

    PubMed

    Muci?, Ivana D; Nikoli?, Milan R; Stojanovi?, Sr?an ?

    2015-07-01

    In this work, we have analyzed the influence of cation-? interactions to the stability of Sm/LSm assemblies and their environmental preferences. The number of interactions formed by arginine is higher than lysine in the cationic group, while histidine is comparatively higher than phenylalanine and tyrosine in the ? group. Arg-Tyr interactions are predominant among the various pairs analyzed. The furcation level of multiple cation-? interactions is much higher than that of single cation-? interactions in Sm/LSm interfaces. We have found hot spot residues forming cation-? interactions, and hot spot composition is similar for all aromatic residues. The Arg-Phe pair has the strongest interaction energy of -8.81kcalmol(-1) among all the possible pairs of amino acids. The extent of burial of the residue side-chain correlates with the ??G of binding for residues in the core and also for hot spot residues cation-? bonded across the interface. Secondary structure of the cation-? residues shows that Arg and Lys preferred to be in strand. Among the ? residues, His prefers to be in helix, Phe prefers to be in turn, and Tyr prefers to be in strand. Stabilization centers for these proteins showed that all the five residues found in cation-? interactions are important in locating one or more of such centers. More than 50% of the cation-? interacting residues are highly conserved. It is likely that the cation-? interactions contribute significantly to the overall stability of Sm/LSm proteins. PMID:25408427

  20. A Comparison of FIFE Observation with GEOS Assimilated Data Including a Heterogeneous LSM

    NASA Technical Reports Server (NTRS)

    Bosilovich, M.; Houser, Paul; Molod, Andrea; Nebuda, Sharon

    1999-01-01

    Several recent studies have shown that much can be learned by comparing grid-point data from a data assimilation system with in-situ observations from field experiments. While the surface heterogeneity is acknowledged in these studies, they lack quantitative representations of the influence of heterogeneity on the near-surface meteorology and surface hydrologic and energy balance. Here, we use the Betts and Ball FIFE site-averaged data. Standard deviations of the site-average will provide an estimate of the FIFE site heterogeneity. Recently, the Mosaic Land-Surface Model (LSM) has been incorporated into the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The Mosaic LSM computes the surface energy and hydrologic balance for nine distinct surface types at each grid-point. Each surface type is proportionally weighted to determine the mean grid point properties. Hence, we can compare modeled and observed grid-point variability in addition to the mean properties. Also, assimilated data sets created with and without the LSM are compared. The results indicate the importance of including quantitative estimates of heterogeneity in the analysis of the land surface hydrology and energy balances in assimilation systems.

  1. Cancer cell stiffness: integrated roles of three-dimensional matrix stiffness and transforming potential.

    PubMed

    Baker, Erin L; Lu, Jing; Yu, Dihua; Bonnecaze, Roger T; Zaman, Muhammad H

    2010-10-01

    While significant advances have been made toward revealing the molecular mechanisms that influence breast cancer progression, much less is known about the associated cellular mechanical properties. To this end, we use particle-tracking microrheology to investigate the interplay among intracellular mechanics, three-dimensional matrix stiffness, and transforming potential in a mammary epithelial cell (MEC) cancer progression series. We use a well-characterized model system where human-derived MCF10A MECs overexpress either ErbB2, 14-3-3ζ, or both ErbB2 and 14-3-3ζ, with empty vector as a control. Our results show that MECs possessing ErbB2 transforming potential stiffen in response to elevated matrix stiffness, whereas non-transformed MECs or those overexpressing only 14-3-3ζ do no exhibit this response. We further observe that overexpression of ErbB2 alone is associated with the highest degree of intracellular sensitivity to matrix stiffness, and that the effect of transforming potential on intracellular stiffness is matrix-stiffness-dependent. Moreover, our intracellular stiffness measurements parallel cell migration behavior that has been previously reported for these MEC sublines. Given the current knowledge base of breast cancer mechanobiology, these findings suggest that there may be a positive relationship among intracellular stiffness sensitivity, cell motility, and perturbed mechanotransduction in breast cancer. PMID:20923638

  2. Self-Gated CINE MRI for Combined Contrast-Enhanced Imaging and Wall-Stiffness Measurements of Murine Aortic Atherosclerotic Lesions

    PubMed Central

    den Adel, Brigit; van der Graaf, Linda M.; Strijkers, Gustav J.; Lamb, Hildo J.; Poelmann, Robert E.; van der Weerd, Louise

    2013-01-01

    Background High-resolution contrast-enhanced imaging of the murine atherosclerotic vessel wall is difficult due to unpredictable flow artifacts, motion of the thin artery wall and problems with flow suppression in the presence of a circulating contrast agent. Methods and Results We applied a 2D-FLASH retrospective-gated CINE MRI method at 9.4T to characterize atherosclerotic plaques and vessel wall distensibility in the aortic arch of aged ApoE−/− mice after injection of a contrast agent. The method enabled detection of contrast enhancement in atherosclerotic plaques in the aortic arch after I.V. injection of micelles and iron oxides resulting in reproducible plaque enhancement. Both contrast agents were taken up in the plaque, which was confirmed by histology. Additionally, the retrospective-gated CINE method provided images of the aortic wall throughout the cardiac cycle, from which the vessel wall distensibility could be calculated. Reduction in plaque size by statin treatment resulted in lower contrast enhancement and reduced wall stiffness. Conclusions The retrospective-gated CINE MRI provides a robust and simple way to detect and quantify contrast enhancement in atherosclerotic plaques in the aortic wall of ApoE−/− mice. From the same scan, plaque-related changes in stiffness of the aortic wall can be determined. In this mouse model, a correlation between vessel wall stiffness and atherosclerotic lesions was found. PMID:23472079

  3. Dynamically variable negative stiffness structures.

    PubMed

    Churchill, Christopher B; Shahan, David W; Smith, Sloan P; Keefe, Andrew C; McKnight, Geoffrey P

    2016-02-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  4. Recent Advances in Hypertension: Arterial Stiffness and Hypertension

    PubMed Central

    Mitchell, Gary F.

    2014-01-01

    Over the past decade, increased aortic stiffness has emerged as an important risk factor for target organ damage and cardiovascular disease events. Aortic stiffness can be assessed as pulse wave velocity (PWV), which is a measure of aortic wall stiffness, and pulse pressure (PP), which is affected by wall stiffness and the interaction between flow and diameter. Because these stiffness measures have different sensitivities to geometry and other factors, they are only moderately correlated and play a complementary role in risk prediction. Arterial stiffness has long been viewed as a complication of hypertension that integrates long-term adverse effects of elevated blood pressure and other risk factors. However, PWV is only modestly correlated with risk factors other than age and blood pressure, which likely explains the ability of PWV to add to standard risk prediction models and reclassify risk in a clinically relevant manner. Recent studies have demonstrated that stiffness can antedate and contribute to the pathogenesis of hypertension, raising the possibility that early assessment of arterial stiffness may provide insight into complications including hypertension that develop years later. The role that stiffness plays in the pathogenesis of hypertension and cardiovascular disease has sparked considerable interest in defining basic mechanisms that stiffen the aortic wall, increase PP and contribute to target organ damage with a hope that elucidation of these mechanisms will allow for development of more effective treatments. PMID:24752432

  5. Dynamically variable negative stiffness structures

    PubMed Central

    Churchill, Christopher B.; Shahan, David W.; Smith, Sloan P.; Keefe, Andrew C.; McKnight, Geoffrey P.

    2016-01-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  6. Frequency-Dependent Fracture Specific Stiffness

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.; Folz, M. A.; Acosta-Colon, A.

    2003-12-01

    Monitoring the hydraulic properties of fractures remotely through their seismic signatures is an important goal for field hydrology. Empirical studies have shown that the hydraulic properties of a fracture are implicitly related to the fracture specific stiffness through the amount and distribution of contact area and apertures that arise from two rough surfaces in contact. Complicating this simple picture are seismic measurements that indicate frequency-dependent stiffness, i.e., a scale-dependent fracture stiffness where the scale is set by the wavelength. Thus relating the hydraulic properties of fractures to seismic measurements becomes a scale dependent problem. We have performed laboratory experiments to examine the phenomenon of frequency dependent fracture specific stiffness to aid in the assessment of the hydraulic properties of a fracture using seismic techniques. To this end, we have developed a photolithographic technique with which we can construct synthetic fractures of known fracture geometry with feature sizes controlled over several orders of magnitude. The synthetic fracture (and the control non-fractured samples) are made from acrylic cylinders that measure 15.0 cm in diameter by 7.7 cm in height. The diameter of the samples enables us to sample the acoustic properties of the fracture using acoustic lens over regions that range in scale from 10 mm to 60 mm. A confinement cell controls the normal stress on the fracture. Seismic measurements were made with broadband compressional-mode piezoelectric transducers enabling one-order of magnitude in frequency. We found that when the wavelength is smaller than the asperity size, a linear dependence of fracture specific stiffness on frequency occurs. In this geometric ray regime the asymptotic value of the transmission function provides a direct measure of the contact area of the fracture. On the other hand, when the asperity spacing is less than an eighth of a wavelength, the fracture behaves as a displacement discontinuity and exhibits a frequency-independent fracture specific stiffness. For intermediate asperity spacings, mixed behavior (that may include resonant scattering) was observed. By understanding how to interpret fracture specific stiffness as a function of frequency, we seek to develop a better interpretation of the hydraulic properties of fractures based on seismic measurements. Acknowledgments: The Authors acknowledge support of this research by the Geosciences Research Program, Office of Basic Energy Sciences, US Department of Energy. LJPN wishes to acknowledge Purdue University Faculty Scholar

  7. A Micro-Scale Model for Oxygen Reduction on LSM-YSZ Cathode

    SciTech Connect

    Pakalapati, Suryanarayana Raju; Celik, Ismail; Finklea, Harry; Gong, Mingyang; Liu, Xingbo

    2011-05-01

    In this study, a micro-scale model is developed to simulate the oxygen reduction on LSM-YSZ composite cathode. The model incorporates the effects of cathode microstructural properties on the local transport phenomena and electrochemistry inside the cathode. A detailed reaction mechanism is used in the model which has two parallel routes for oxygen conversion into oxide ions, namely two-phase boundary and three-phase boundary pathways. The model predicts field distributions of local thermodynamic values, over-potential, Faradaic current and other parameters relevant to cathode performance. Electrochemical impedance simulations are performed using the current model to analyze the contribution of various processes to the overall impedance.

  8. Bone stiffness in children: part I. In vivo assessment of the stiffness of femur and tibia in children.

    PubMed

    Chotel, Franck; Braillon, Pierre; Sailhan, Frdric; Gadeyne, Sylvain; Panczer, Grard; Pedrini, Christian; Berard, Jrme

    2008-01-01

    Although there are many publications concerning the mechanical behavior of adult bone, there are few data about mechanical properties of children's bone. In vivo bone stiffness measurement with Orthometer device has been validated and extensively used in adults to assess bone healing after fracture or lengthening. We hypothesized that in vivo stiffness measurement with Orthometer was applicable in children and was correlated with age, height, body weight, and corpulence index. The purpose was to establish baseline stiffness values for femur and tibia in growing children.Sixteen bone measurements (7 femurs and 9 tibias) were obtained during application of an external fixator for leg lengthening in 11 children aged between 5.5 and 16.7 years. A 3-point bending test with an Orthometer was carried out on the intact bone (before osteotomy) under general anesthesia. The anteroposterior stiffness measurement was successful in all children of the series, aged from 5.5 to 16.7 years. A wide variation of femoral and tibial bone stiffness values were observed. The use of a unique value as in adults as the end point of bending stiffness during bone healing process is not possible for children. The anteroposterior bone stiffness was found to have linear correlation with children's height and body weight, but not with age and corpulence indexes. The original data obtained by this study will give a stiffness reference for height and weight and could be useful as reference values for monitoring of healing process after fracture or limb lengthening. PMID:18580368

  9. Dynamic Changes in LSM Nanoparticles on YSZ: A Model System for Non-stationary SOFC Cathode Behavior

    SciTech Connect

    Woo, L Y; Glass, R S; Gorte, R J; Orme, C A; Nelson, A J

    2009-01-05

    The interaction between nanoparticles of strontium-doped lanthanum manganite (LSM) and single crystal yttria-stabilized zirconia (YSZ) was investigated using atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM)/energy-dispersive x-ray spectroscopy (EDX). Nanoparticles of LSM were deposited directly onto single crystal YSZ substrates (100) using an ultrasonic spray nozzle. As samples were annealed from 850 C to 1250 C, nanoparticles gradually decreased in height and eventually disappeared completely. Subsequent reduction in H{sub 2}/H{sub 2}O at 700 C resulted in the reappearance of nanoparticles. Studies were carried out on identical regions of the sample allowing the same nanoparticles to be characterized at different temperatures. Morphological changes indicate the formation of a thin layer of LSM, and XPS results support the observation by indicating an increase in signal from the La and Sr and a decrease in signal from the Y and Zr with increasing temperature. SEM/EDX was used to verify that the nanoparticles in the reduced sample contained La. The changes in the LSM/YSZ morphology may be important in explaining the non-stationary behavior observed in operating fuel cells. The thin layer of LSM initially results in poor cathode performance; reducing conditions then lead to film disruptions, indicating nano/microporosity, that increase oxygen ion diffusion and performance.

  10. Artificial muscles with adjustable stiffness

    NASA Astrophysics Data System (ADS)

    Mutlu, Rahim; Alici, Gursel

    2010-04-01

    This paper reports on a stiffness enhancement methodology based on using a suitably designed contact surface with which cantilevered-type conducting polymer bending actuators are in contact during operation. The contact surface constrains the bending behaviour of the actuators. Depending on the topology of the contact surface, the resistance of the polymer actuators to deformation, i.e. stiffness, is varied. As opposed to their predecessors, these polymer actuators operate in air. Finite element analysis and modelling are used to quantify the effect of the contact surface on the effective stiffness of a trilayer cantilevered beam, which represents a one-end-free, the-other-end-fixed polypyrrole (PPy) conducting polymer actuator under a uniformly distributed load. After demonstrating the feasibility of the adjustable stiffness concept, experiments were conducted to determine the stiffness of bending-type conducting polymer actuators in contact with a range (20-40 mm in radius) of circular contact surfaces. The numerical and experimental results presented demonstrate that the stiffness of the actuators can be varied using a suitably profiled contact surface. The larger the radius of the contact surface is, the higher is the stiffness of the polymer actuators. The outcomes of this study suggest that, although the stiffness of the artificial muscles considered in this study is constant for a given geometric size, and electrical and chemical operation conditions, it can be changed in a nonlinear fashion to suit the stiffness requirement of a considered application. The stiffness enhancement methodology can be extended to other ionic-type conducting polymer actuators.

  11. The stiffness characteristics of hybrid Ilizarov fixators.

    PubMed

    Baran, Onder; Havitcioglu, Hasan; Tatari, Hasan; Cecen, Berivan

    2008-10-20

    The use of hybrid Ilizarov models around femoral area is gaining clinical popularity lately. Hybrid systems show different mechanical properties. The purpose of this report is to examine the stiffness characteristics of the C-arch and half-pins on the hybrid Ilizarov fixators. Eight models that included standard Ilizarov and hybrid models were applied to six femoral sawbones. The distal part of fixation was composed of a two-ring frame applied identically to all bones. The difference of the configuration was at the proximal part, where half-pins with or without C-arches were either added to the proximal two-ring frame or replaced the proximal one- or two-ring frame. Osteotomy was performed in the femoral diaphysis and the bone was distracted 2cm. The stability of the system was tested with the axial compression testing machine. Displacements between the adjacent fracture sides were measured with the video extensometer in three dimensions. We found that proximal half-pin applications alone had less stiffness, but half-pins with C-arch had more stiffness than the model including only half-pins. Additional half-pins onto one- or two-ring frames had more longitudinal stiffness, but this system showed weak resistance against transverse displacement. PMID:18789446

  12. Vascular Smooth Muscle Cell Stiffness as a Mechanism for Increased Aortic Stiffness with Aging

    PubMed Central

    Qiu, Hongyu; Zhu, Yi; Sun, Zhe; Trzeciakowski, Jerome P.; Gansner, Meredith; Depre, Christophe; Resuello, Ranillo R.G.; Natividad, Filipinas F.; Hunter, William C.; Genin, Guy M.; Elson, Elliot L.; Vatner, Dorothy E.; Meininger, Gerald A.; Vatner, Stephen F.

    2010-01-01

    Rationale Increased aortic stiffness, an important feature of many vascular diseases, e.g., aging, hypertension, atherosclerosis and aortic aneurysms, is assumed due to changes in extracellular matrix (ECM). Objective We tested the hypothesis that the mechanisms also involve intrinsic stiffening of vascular smooth muscle cells (VSMCs). Methods and Results Stiffness was measured in vitro both by atomic force microscopy (AFM) and in a reconstituted tissue model, using VSMCs from aorta of young versus old male monkeys (Macaca fascicularis, n=7/group), where aortic stiffness increases by 200 % in vivo. The apparent elastic modulus was increased (P<0.05) in old VSMCs (41.7±0.5 kPa) versus young (12.8±0.3 kPa), but not after disassembly of the actin cytoskeleton with cytochalasin D. Stiffness of the VSMCs in the reconstituted tissue model was also higher (P<0.05) in old (23.3±3.0 kPa) than in young (13.7±2.4 kPa). Conclusions These data support the novel concept, not appreciated previously, that increased vascular stiffness with aging is due not only to changes in ECM, but also to intrinsic changes in VSMCs. PMID:20634486

  13. Stiffness Corrections for the Vibration Frequency of a Stretched Wire

    ERIC Educational Resources Information Center

    Hornung, H. G.; Durie, M. J.

    1977-01-01

    Discusses the need of introducing corrections due to wire stiffness arising from end constraints and wire axis distribution curvature in the measurement of ac electrical frequency by exciting transverse standing waves in a stretched steel wire. (SL)

  14. A Comparison of Total and Intrinsic Muscle Stiffness Among Flexors and Extensors of the Ankle, Knee and Elbow

    NASA Technical Reports Server (NTRS)

    Lemoine, Sandra M.

    1997-01-01

    This study examined 3 methods that assessed muscle stiffness. Muscle stiffness has been quantified by tissue reactive force (transverse stiffness), vibration, and force (or torque) over displacement. Muscle stiffness also has two components: reflex (due to muscle sensor activity) and intrinsic (tonic firing of motor units, elastic nature of actin and myosin cross bridges, and connective tissue). This study compared three methods of measuring muscle stiffness of agonist-antagonist muscle pairs of the ankle, knee and elbow.

  15. Life prediction for white OLED based on LSM under lognormal distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Jianping; Liu, Fang; Liu, Yu; Wu, Helen; Zhu, Wenqing; Wu, Wenli; Wu, Liang

    2012-09-01

    In order to acquire the reliability information of White Organic Light Emitting Display (OLED), three groups of OLED constant stress accelerated life tests (CSALTs) were carried out to obtain failure data of samples. Lognormal distribution function was applied to describe OLED life distribution, and the accelerated life equation was determined by Least square method (LSM). The Kolmogorov-Smirnov test was performed to verify whether the white OLED life meets lognormal distribution or not. Author-developed software was employed to predict the average life and the median life. The numerical results indicate that the white OLED life submits to lognormal distribution, and that the accelerated life equation meets inverse power law completely. The estimated life information of the white OLED provides manufacturers and customers with important guidelines.

  16. A bipolar functionality of Q/N-rich proteins: Lsm4 amyloid causes clearance of yeast prions

    PubMed Central

    Oishi, Keita; Kurahashi, Hiroshi; Pack, Chan-Gi; Sako, Yasushi; Nakamura, Yoshikazu

    2013-01-01

    Prions are epigenetic modifiers that cause partially loss-of-function phenotypes of the proteins in Saccharomyces cerevisiae. The molecular chaperone network that supports prion propagation in the cell has seen a great progress in the last decade. However, the cellular machinery to activate or deactivate the prion states remains an enigma, largely due to insufficient knowledge of prion-regulating factors. Here, we report that overexpression of a [PSI+]-inducible Q/N-rich protein, Lsm4, eliminates the three major prions [PSI+], [URE3], and [RNQ+]. Subcloning analysis revealed that the Q/N-rich region of Lsm4 is responsible for the prion loss. Lsm4 formed an amyloid in vivo, which seemed to play a crucial role in the prion elimination. Fluorescence correlation spectroscopy analysis revealed that in the course of the Lsm4-driven [PSI+] elimination, the [PSI+] aggregates undergo a size increase, which ultimately results in the formation of conspicuous foci in otherwise [psi−]-like mother cells. We also found that the antiprion activity is a general property of [PSI+]-inducible factors. These data provoked a novel “unified” model that explains both prion induction and elimination by a single scheme. PMID:23512891

  17. The Lsm2-8 complex determines nuclear localization of the spliceosomal U6 snRNA

    PubMed Central

    Spiller, Michael P.; Boon, Kum-Loong; Reijns, Martin A. M.; Beggs, Jean D.

    2007-01-01

    Lsm proteins are ubiquitous, multifunctional proteins that are involved in the processing and/or turnover of many, if not all, RNAs in eukaryotes. They generally interact only transiently with their substrate RNAs, in keeping with their likely roles as RNA chaperones. The spliceosomal U6 snRNA is an exception, being stably associated with the Lsm2-8 complex. The U6 snRNA is generally considered to be intrinsically nuclear but the mechanism of its nuclear retention has not been demonstrated, although La protein has been implicated. We show here that the complete Lsm2-8 complex is required for nuclear accumulation of U6 snRNA in yeast. Therefore, just as Sm proteins effect nuclear localization of the other spliceosomal snRNPs, the Lsm proteins mediate U6 snRNP localization except that nuclear retention is the likely mechanism for the U6 snRNP. La protein, which binds only transiently to the nascent U6 transcript, has a smaller, apparently indirect, effect on U6 localization that is compatible with its proposed role as a chaperone in facilitating U6 snRNP assembly. PMID:17251193

  18. Arterial Stiffness, Distensibility, and Strain in Asthmatic Children.

    PubMed

    Akyüz Özkan, Esra; Serin, Halil İbrahim; Khosroshahi, Hashem E; Kılıç, Mahmut; Ekim, Meral; Beysel, Perihan; Geçit, U Aliye; Domur, Esra

    2016-01-01

    BACKGROUND We hypothesized that since asthma is a chronic inflammatory disease, it could lead to the early development of atherosclerosis in childhood-onset asthma. The aim of this study was to investigate arterial stiffness, distensibility, and strain of different peripheral arteries, the parameters of which can be used to detect atherosclerosis in asthmatic children. MATERIAL AND METHODS We studied 22 pediatric patients with asthma and 18 healthy children. Fasting blood glucose and cholesterol levels were evaluated to exclude children with diabetes and hyperlipidemia, which are risk factors for atherosclerosis. Renal, carotid, and brachial arteries diameters were measured. Using the measured data, stiffness, distensibility, and strain of the arteries of all children were calculated. RESULTS Pulse pressure, systolic and diastolic blood pressure, heart rate, cholesterols, and glucose levels of the obese individuals were similar to the controls. In carotid arteries there were no statistical differences regarding stiffness, distensibility, and strain. According to multiple ANCOVA analysis, distensibility and strain of right and left brachial arteries and right renal artery were higher, whereas right renal artery stiffness was lower in asthmatic children than in controls. Approximately one-fifth of the change in the left and right brachial arteries and right renal artery distensibility and strain and a small portion of the change in the right renal artery stiffness were associated with asthma. In contrast, left renal artery distensibility, strain, and stiffness were not associated with asthma. CONCLUSIONS Peripheral arteries had higher distensibility and strain, and lower stiffness in asthmatic children than in controls. PMID:26803723

  19. Arterial Stiffness, Distensibility, and Strain in Asthmatic Children

    PubMed Central

    Özkan, Esra Akyüz; Serin, Halil İbrahim; Khosroshahi, Hashem E.; Kılıç, Mahmut; Ekim, Meral; Beysel, Perihan; Geçit, U. Aliye; Domur, Esra

    2016-01-01

    Background We hypothesized that since asthma is a chronic inflammatory disease, it could lead to the early development of atherosclerosis in childhood-onset asthma. The aim of this study was to investigate arterial stiffness, distensibility, and strain of different peripheral arteries, the parameters of which can be used to detect atherosclerosis in asthmatic children. Material/Methods We studied 22 pediatric patients with asthma and 18 healthy children. Fasting blood glucose and cholesterol levels were evaluated to exclude children with diabetes and hyperlipidemia, which are risk factors for atherosclerosis. Renal, carotid, and brachial arteries diameters were measured. Using the measured data, stiffness, distensibility, and strain of the arteries of all children were calculated. Results Pulse pressure, systolic and diastolic blood pressure, heart rate, cholesterols, and glucose levels of the obese individuals were similar to the controls. In carotid arteries there were no statistical differences regarding stiffness, distensibility, and strain. According to multiple ANCOVA analysis, distensibility and strain of right and left brachial arteries and right renal artery were higher, whereas right renal artery stiffness was lower in asthmatic children than in controls. Approximately one-fifth of the change in the left and right brachial arteries and right renal artery distensibility and strain and a small portion of the change in the right renal artery stiffness were associated with asthma. In contrast, left renal artery distensibility, strain, and stiffness were not associated with asthma. Conclusions Peripheral arteries had higher distensibility and strain, and lower stiffness in asthmatic children than in controls. PMID:26803723

  20. Experimental and theoretical rotordynamic stiffness coefficients for a three-stage brush seal

    NASA Astrophysics Data System (ADS)

    Pugachev, A. O.; Deckner, M.

    2012-08-01

    Experimental and theoretical results are presented for a multistage brush seal. Experimental stiffness is obtained from integrating circumferential pressure distribution measured in seal cavities. A CFD analysis is used to predict seal performance. Bristle packs are modeled by the porous medium approach. Leakage is predicted well by the CFD method. Theoretical stiffness coefficients are in reasonable agreement with the measurements. Experimental results are also compared with a three-teeth-on-stator labyrinth seal. The multistage brush seal gives about 60% leakage reduction over the labyrinth seal. Rotordynamic stiffness coefficients are also improved: the brush seal has positive direct stiffness and smaller cross-coupled stiffness.

  1. Technical Validation of ARTSENS–An Image Free Device for Evaluation of Vascular Stiffness

    PubMed Central

    Radhakrishnan, Ravikumar; Kusmakar, Shitanshu; Thrivikraman, Arya Sree; Sivaprakasam, Mohanasankar

    2015-01-01

    Vascular stiffness is an indicator of cardiovascular health, with carotid artery stiffness having established correlation to coronary heart disease and utility in cardiovascular diagnosis and screening. State of art equipment for stiffness evaluation are expensive, require expertise to operate and not amenable for field deployment. In this context, we developed ARTerial Stiffness Evaluation for Noninvasive Screening (ARTSENS), a device for image free, noninvasive, automated evaluation of vascular stiffness amenable for field use. ARTSENS has a frugal hardware design, utilizing a single ultrasound transducer to interrogate the carotid artery, integrated with robust algorithms that extract arterial dimensions and compute clinically accepted measures of arterial stiffness. The ability of ARTSENS to measure vascular stiffness in vivo was validated by performing measurements on 125 subjects. The accuracy of results was verified with the state-of-the-art ultrasound imaging-based echo-tracking system. The relation between arterial stiffness measurements performed in sitting posture for ARTSENS measurement and sitting/supine postures for imaging system was also investigated to examine feasibility of performing ARTSENS measurements in the sitting posture for field deployment. This paper verified the feasibility of the novel ARTSENS device in performing accurate in vivo measurements of arterial stiffness. As a portable device that performs automated measurement of carotid artery stiffness with minimal operator input, ARTSENS has strong potential for use in large-scale screening.

  2. Simvastatin Ameliorates Matrix Stiffness-Mediated Endothelial Monolayer Disruption

    PubMed Central

    Lampi, Marsha C.; Faber, Courtney J.; Huynh, John; Bordeleau, Francois; Zanotelli, Matthew R.; Reinhart-King, Cynthia A.

    2016-01-01

    Arterial stiffening accompanies both aging and atherosclerosis, and age-related stiffening of the arterial intima increases RhoA activity and cell contractility contributing to increased endothelium permeability. Notably, statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors whose pleiotropic effects include disrupting small GTPase activity; therefore, we hypothesized the statin simvastatin could be used to attenuate RhoA activity and inhibit the deleterious effects of increased age-related matrix stiffness on endothelial barrier function. Using polyacrylamide gels with stiffnesses of 2.5, 5, and 10 kPa to mimic the physiological stiffness of young and aged arteries, endothelial cells were grown to confluence and treated with simvastatin. Our data indicate that RhoA and phosphorylated myosin light chain activity increase with matrix stiffness but are attenuated when treated with the statin. Increases in cell contractility, cell-cell junction size, and indirect measurements of intercellular tension that increase with matrix stiffness, and are correlated with matrix stiffness-dependent increases in monolayer permeability, also decrease with statin treatment. Furthermore, we report that simvastatin increases activated Rac1 levels that contribute to endothelial barrier enhancing cytoskeletal reorganization. Simvastatin, which is prescribed clinically due to its ability to lower cholesterol, alters the endothelial cell response to increased matrix stiffness to restore endothelial monolayer barrier function, and therefore, presents a possible therapeutic intervention to prevent atherogenesis initiated by age-related arterial stiffening. PMID:26761203

  3. Effect of ECM Stiffness on Integrin-Ligand Binding Strength

    NASA Astrophysics Data System (ADS)

    Thomas, Gawain; Wen, Qi

    2014-03-01

    Many studies have shown that cells respond to the stiffness of their extracellular matrix (ECM). However, the mechanism of this stiffness sensing is not fully understood. We believe that cells probe stiffness by applying intracellular force to the ECM via the integrin-mediated adhesions. The linkage of integrins to the cytoskeleton has been modeled as a slip clutch, which has been shown to affect focal adhesion formation and hence force transmission in a stiffness dependent manner. In contrast, the bonds between integrins and ECM have been characterized as ``catch bonds.'' It is unclear how ECM viscoelasticity affects these catch bonds. We report, for the first time, the effects of ECM stiffness on the binding strength of integrins to ECM ligands by measuring the rupture force of individual integrin-ligand bonds of cells on collagen-coated polyacrylamide gels. Results show that the integrin-collagen bonds of 3T3 fibroblasts are nearly four times stronger on a stiff (30 kPa) gel than on a soft (3 kPa) gel. The stronger integrin bonds on stiffer substrates can promote focal adhesion formation. This suggests that the substrate stiffness regulates the cell-ECM adhesions not only by affecting the cytoskeleton-integrin links but also by modulating the binding of integrins to the ECM.

  4. Dynamic dorsoventral stiffness assessment of the ovine lumbar spine.

    PubMed

    Keller, Tony S; Colloca, Christopher J

    2007-01-01

    Posteroanterior spinal stiffness assessments are common in the evaluating patients with low back pain. The purpose of this study was to determine the effects of mechanical excitation frequency on dynamic lumbar spine stiffness. A computer-controlled voice coil actuator equipped with a load cell and LVDT was used to deliver an oscillatory dorsoventral (DV) mechanical force to the L3 spinous process of 15 adolescent Merino sheep. DV forces (48 N peak, approximately 10% body weight) were randomly applied at periodic excitation frequencies of 2.0, 6.0, 11.7 and a 0.5-19.7 Hz sweep. Force and displacement were recorded over a 13-22 s time interval. The in vivo DV stiffness of the ovine spine was frequency dependent and varied 3.7-fold over the 0.5-19.7 Hz mechanical excitation frequency range. Minimum and maximum DV stiffness (force/displacement) were 3.86+/-0.38 and 14.1+/-9.95 N/mm at 4.0 and 19.7 Hz, respectively. Stiffness values based on the swept-sine measurements were not significantly different from corresponding periodic oscillations (2.0 and 6.0 Hz). The mean coefficient of variation in the swept-sine DV dynamic stiffness assessment method was 15%, which was similar to the periodic oscillation method (10-16%). The results indicate that changes in mechanical excitation frequency and animal body mass modulate DV spinal stiffness. PMID:16376350

  5. Evaluation of Arterial Stiffness by Echocardiography: Methodological Aspects

    PubMed Central

    Cho, Jae Yeong

    2016-01-01

    As humans age, degenerative changes in the arterial structure gradually progress and result in the stiffening of the arteries, which is called arteriosclerosis. Arterial stiffness is now an established risk factor of cardiovascular disease (CVD). This stiffening has adverse effects for both the general population as well as for patients with CVD. Measurements of pulse wave velocity and pulse wave analysis are the two most commonly used methods in the evaluation of arterial stiffness, but these methods just allow indirect measures of arterial stiffness. Echocardiography is the most widely used imaging modality in the evaluation of cardiac structure and function and with recent technical advances, it has become possible to evaluate the structure, function and blood flow hemodynamics of the arteries using echocardiography. In the present review, we will discuss the current status of echocardiography in the evaluation of arterial stiffness, especially focusing on the methodological aspects. PMID:27231673

  6. A strain dependent stiffness of stiff cohesionless and cohesive soils

    NASA Astrophysics Data System (ADS)

    Lipiński, Mirosław J.; Wdowska, Małgorzata K.

    2012-10-01

    In the last three decades an interest has grown in prediction of soil stiffness. In case of dense cohesionless soils or natural overconsolidated cohesive soils the working strain to which soil stiffness is referred to covers the range 0.01-1.0%. On the basis of results of comprehensive experimental worked based on advanced triaxial tests results two formulae for Young's modulus distribution accounting for strain range were derived for fine dense sand and heavy overconsolidated sandy clay. The formula for sand accounts also for stress level. In case of overconsolidated sandy clay, stress history, in the form of yield stress, is also accounted for.

  7. Effect of Spinach, a High Dietary Nitrate Source, on Arterial Stiffness and Related Hemodynamic Measures: A Randomized, Controlled Trial in Healthy Adults.

    PubMed

    Jovanovski, Elena; Bosco, Laura; Khan, Kashif; Au-Yeung, Fei; Ho, Hoang; Zurbau, Andreea; Jenkins, Alexandra L; Vuksan, Vladimir

    2015-07-01

    Diets rich in fruits and vegetables reduce risk of adverse cardiovascular events. However, the constituents responsible for this effect have not been well established. Lately, the attention has been brought to vegetables with high nitrate content with evidence that this might represent a source of vasoprotective nitric oxide. We hypothesized that short-term consumption of spinach, a vegetable having high dietary nitrate content, can affect the arterial waveform indicative of arterial stiffness, as well as central and peripheral blood pressure (BP). Using a placebo-controlled, crossover design, 27 healthy participants were randomly assigned to receive either a high-nitrate (spinach; 845 mg nitrate/day) or low-nitrate soup (asparagus; 0.6 mg nitrate/day) for 7 days with a 1-week washout period. On days 1 and 7, profiles of augmentation index, central, and brachial BP were obtained over 180 min post-consumption in 4 fasted visits. A postprandial reduction in augmentation index was observed at 180 min on high-nitrate compared to low-nitrate intervention (-6.54 ± 9.7% vs. -0.82 ± 8.0%, p = 0.01) on Day 1, and from baseline on Day 7 (-6.93 ± 8.7%, p < 0.001; high vs. low: -2.28 ± 12.5%, p = 0.35), suggesting that the nitrate intervention is not associated with the development of tolerance for at least 7 days of continued supplementation. High vs. low-nitrate intervention also reduced central systolic (-3.39 ± 5.6 mmHg, p = 0.004) and diastolic BP (-2.60 ± 5.8 mmHg, p = 0.028) and brachial systolic BP (-3.48 ± 7.4 mmHg, p = 0.022) at 180 min following 7-day supplementation only. These findings suggest that dietary nitrate from spinach may contribute to beneficial hemodynamic effects of vegetable-rich diets and highlights the potential of developing a targeted dietary approach in the management of elevated BP. PMID:26251834

  8. Effect of Spinach, a High Dietary Nitrate Source, on Arterial Stiffness and Related Hemodynamic Measures: A Randomized, Controlled Trial in Healthy Adults

    PubMed Central

    Jovanovski, Elena; Bosco, Laura; Khan, Kashif; Au-Yeung, Fei; Ho, Hoang; Zurbau, Andreea; Jenkins, Alexandra L.

    2015-01-01

    Diets rich in fruits and vegetables reduce risk of adverse cardiovascular events. However, the constituents responsible for this effect have not been well established. Lately, the attention has been brought to vegetables with high nitrate content with evidence that this might represent a source of vasoprotective nitric oxide. We hypothesized that short-term consumption of spinach, a vegetable having high dietary nitrate content, can affect the arterial waveform indicative of arterial stiffness, as well as central and peripheral blood pressure (BP). Using a placebo-controlled, crossover design, 27 healthy participants were randomly assigned to receive either a high-nitrate (spinach; 845 mg nitrate/day) or low-nitrate soup (asparagus; 0.6 mg nitrate/day) for 7 days with a 1-week washout period. On days 1 and 7, profiles of augmentation index, central, and brachial BP were obtained over 180 min post-consumption in 4 fasted visits. A postprandial reduction in augmentation index was observed at 180 min on high-nitrate compared to low-nitrate intervention (-6.54 ± 9.7% vs. -0.82 ± 8.0%, p = 0.01) on Day 1, and from baseline on Day 7 (-6.93 ± 8.7%, p < 0.001; high vs. low: -2.28 ± 12.5%, p = 0.35), suggesting that the nitrate intervention is not associated with the development of tolerance for at least 7 days of continued supplementation. High vs. low-nitrate intervention also reduced central systolic (-3.39 ± 5.6 mmHg, p = 0.004) and diastolic BP (-2.60 ± 5.8 mmHg, p = 0.028) and brachial systolic BP (-3.48 ± 7.4 mmHg, p = 0.022) at 180 min following 7-day supplementation only. These findings suggest that dietary nitrate from spinach may contribute to beneficial hemodynamic effects of vegetable-rich diets and highlights the potential of developing a targeted dietary approach in the management of elevated BP. PMID:26251834

  9. ARTHROSCOPIC TREATMENT OF ELBOW STIFFNESS

    PubMed Central

    Vieira, Luis Alfredo Gómez; Dal Molin, Fabio Farina; Visco, Adalberto; Fernandes, Luis Filipe Daneu; dos Santos, Murilo Cunha Rafael; Cardozo Filho, Nivaldo Souza; Gómez Cordero, Nicolas Gerardo

    2015-01-01

    To present the arthroscopic surgical technique and the evaluation of the results from this technique for treating elbow stiffness. Methods: Between April 2007 and January 2010, ten elbows of ten patients with elbow stiffness underwent arthroscopic treatment to release the range of motion. The minimum follow-up was 11 months, with an average of 27 months. All the patients were male and their average age was 32.8 years (ranging from 22 to 48 years). After the arthroscopic treatment, they were followed up weekly in the first month and every three months thereafter. The clinical evaluation was made using the criteria of the University of California at Los Angeles (UCLA). Results: All the patients were satisfied with the results from the arthroscopic treatment. The average UCLA score was 33.8 points. Conclusion: Arthroscopic treatment for elbow stiffness is a minimally invasive surgical technique that was shown to be efficient for treating this complication.

  10. Impact of blood pressure perturbations on arterial stiffness.

    PubMed

    Lim, Jisok; Pearman, Miriam E; Park, Wonil; Alkatan, Mohammed; Machin, Daniel R; Tanaka, Hirofumi

    2015-12-15

    Although the associations between chronic levels of arterial stiffness and blood pressure (BP) have been fairly well studied, it is not clear whether and how much arterial stiffness is influenced by acute perturbations in BP. The primary aim of this study was to determine magnitudes of BP dependence of various measures of arterial stiffness during acute BP perturbation maneuvers. Fifty apparently healthy subjects, including 25 young (20-40 yr) and 25 older adults (60-80 yr), were studied. A variety of BP perturbations, including head-up tilt, head-down tilt, mental stress, isometric handgrip exercise, and cold pressor test, were used to encompass BP changes induced by physical, mental, and/or mechanical stimuli. When each index of arterial stiffness was plotted with mean BP, all arterial stiffness indices, including cardio-ankle vascular index or CAVI (r = 0.50), carotid-femoral pulse wave velocity or cfPWV (r = 0.51), brachial-ankle pulse wave velocity or baPWV (r = 0.61), arterial compliance (r = -0.42), elastic modulus (r = 0.52), arterial distensibility (r = -0.32), β-stiffness index (r = 0.19), and Young's modulus (r = 0.35) were related to mean BP (all P < 0.01). Changes in CAVI, cfPWV, baPWV, and elastic modulus were significantly associated with changes in mean BP in the pooled conditions, while changes in arterial compliance, arterial distensibility, β-stiffness index, and Young's modulus were not. In conclusion, this study demonstrated that BP changes in response to various forms of pressor stimuli were associated with the corresponding changes in arterial stiffness indices and that the strengths of associations with BP varied widely depending on what arterial stiffness indices were examined. PMID:26468262

  11. LSM14A inhibits porcine reproductive and respiratory syndrome virus (PRRSV) replication by activating IFN-β signaling pathway in Marc-145.

    PubMed

    Li, Zhenhong; Chen, Rui; Zhao, Jinhua; Qi, Ziyu; Ji, Likai; Zhen, Yueran; Liu, Bang

    2015-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is considered as a significant contributor to porcine reproductive and respiratory syndrome, one of the most economically important diseases for the pig industry worldwide. Emerging evidence indicates that pattern recognition receptors play key roles in recognizing pathogen-associated molecular patterns. In the present study, we investigated the effects of a novel pattern recognition receptor LSM14A in regulating PRRSV replication. Results in Marc-145 cells and porcine alveolar macrophages (PAMs) indicated that overexpression of porcine LSM14A effectively inhibited the replication of PRRSV, and knockdown of LSM14A by siRNA enhanced the replication of PRRSV. Mechanistically, LSM14A up-regulated the activities of IFN-β and ISRE promoters, enhanced the production of IFN-β, RIG-I, and ISGs, and inhibited the production of the inflammatory cytokines of TNF-α and IL-6 mRNA. Additionally, the expression pattern of LSM14A during the infection of PRRSV in Tongcheng and Large White pigs was suppressed by the PRRSV challenge. Taken together, our results suggest that LSM14A is an important PRR that inhibits PPRSV replication by inducing IFN-β signaling and restraining inflammatory responses. Furthermore, the down-regulation of LSM14A by PRRSV might represent an important mechanism by which PRRSV invades the host. Our study sheds light on the possibility of developing a new strategy to control this disease. PMID:25408553

  12. Aortic stiffness in normal and hypertensive pregnancy.

    PubMed

    Avni, B; Frenkel, G; Shahar, L; Golik, A; Sherman, D; Dishy, V

    2010-02-01

    The objective of this study was to examine whether aortic stiffness, as assessed by pulse wave analysis, could reliably discriminate between normal and hypertensive pregnancies. One hundred pregnant women were studied: five with severe pre-eclampsia, 27 with gestational hypertension, 14 with chronic hypertension and 54 with normal pregnancy. Central hemodynamic parameters were obtained by an applanation tonometry and included central aortic systolic blood pressure (CSBP), central aortic diastolic blood pressure (CDBP), augmentation pressure (AP), augmentation index (AIx), AIx corrected to a heart rate of 75 (AIx@75) and time to reflection (Tr). All measures of aortic stiffness, including AP, AIx and AIx@75 were significantly higher in women with gestational hypertension and pre-eclampsia compared with normal pregnancies and women with chronic hypertension (p < 0.05 for all comparisons). There were no significant differences between normal pregnancies and women with chronic hypertension (p > 0.05 for all comparisons). Tr was significantly shorter in women with pre-eclampsia and gestational hypertension compared with normal pregnancies (p < 0.05). Aortic stiffness, as assessed by pulse wave analysis, is significantly increased in women with pre-eclampsia and gestational hypertension but not in treated women with chronic hypertension. Pulse wave analysis has a potential as a screening tool in women at high risk for pre-eclampsia. The final role of this method should be determined in prospective studies. PMID:20001391

  13. Lipedema is associated with increased aortic stiffness.

    PubMed

    Szolnoky, G; Nemes, A; Gavallér, H; Forster, T; Kemény, L

    2012-06-01

    Lipedema is a disproportional obesity due to unknown pathomechanism. Its major hallmark is frequent hematoma formation related to increased capillary fragility and reduced venoarterial reflex. Beyond microangiopathy, both venous and lymphatic dysfunction have also been documented. However, arterial circulation in lipedema has not been examined, and therefore we explored aortic elastic properties by echocardiography. Fourteen women with and 14 without lipedema were included in the study. Each subject consented to blood pressure measurement, physical examination, and transthoracic echocardiography. Aortic stiffness index (beta), distensibility, and strain were evaluated from aortic diameter and blood pressure data. Mean systolic (30.0 +/- 3.2 vs. 25.5 +/- 3.6, P < 0.05) and diastolic (27.8 +/- 3.3 vs. 22.3 +/- 3.1) aortic diameters (in mm) and aortic stiffness index (9.05 +/- 7.45 vs. 3.76 +/- 1.22, P < 0.05) were significantly higher, while aortic strain (0.082 +/- 0.04 vs. 0.143 +/- 0.038, P < 0.05) and distensibility (2.24 +/- 1.07 vs. 4.38 +/- 1.61, P < 0.05) were significantly lower in lipedematous patients compared to controls. Thus, lipedema is characterized with increased aortic stiffness. PMID:23057152

  14. Nonlinear Dynamics of Stiff Polymers

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Langer, Stephen A.

    1995-08-01

    A formalism is presented for the nonlinear dynamics of inextensible stiff polymers within the model of local viscous dissipation. By casting the internal elastic forces in an intrinsic representation, enforcing the constraint of local inextensibility through a Lagrange multiplier function, and utilizing techniques from the differential geometry of curve motion, the dynamics of configurations of arbitrary complexity is reduced to a scalar partial differential equation amenable to analytical and efficient numerical study. As an example, the formalism is applied to the ``folding'' dynamics of stiff polymers with pairwise self-interactions and intrinsic curvature.

  15. Deletion of the Sm1 encoding motif in the lsm gene results in distinct changes in the transcriptome and enhanced swarming activity of Haloferax cells.

    PubMed

    Maier, Lisa-Katharina; Benz, Juliane; Fischer, Susan; Alstetter, Martina; Jaschinski, Katharina; Hilker, Rolf; Becker, Anke; Allers, Thorsten; Soppa, Jörg; Marchfelder, Anita

    2015-10-01

    Members of the Sm protein family are important for the cellular RNA metabolism in all three domains of life. The family includes archaeal and eukaryotic Lsm proteins, eukaryotic Sm proteins and archaeal and bacterial Hfq proteins. While several studies concerning the bacterial and eukaryotic family members have been published, little is known about the archaeal Lsm proteins. Although structures for several archaeal Lsm proteins have been solved already more than ten years ago, we still do not know much about their biological function, however one can confidently propose that the archaeal Lsm proteins will also be involved in RNA metabolism. Therefore, we investigated this protein in the halophilic archaeon Haloferax volcanii. The Haloferax genome encodes a single Lsm protein, the lsm gene overlaps and is co-transcribed with the gene for the ribosomal L37.eR protein. Here, we show that the reading frame of the lsm gene contains a promoter which regulates expression of the overlapping rpl37R gene. This rpl37R specific promoter ensures high expression of the rpl37R gene in exponential growth phase. To investigate the biological function of the Lsm protein we generated a lsm deletion mutant that had the coding sequence for the Sm1 motif removed but still contained the internal promoter for the downstream rpl37R gene. The transcriptome of this deletion mutant was compared to the wild type transcriptome, revealing that several genes are down-regulated and many genes are up-regulated in the deletion strain. Northern blot analyses confirmed down-regulation of two genes. In addition, the deletion strain showed a gain of function in swarming, in congruence with the up-regulation of transcripts encoding proteins required for motility. PMID:25754521

  16. Rationale and study design of the Prospective comparison of Angiotensin Receptor neprilysin inhibitor with Angiotensin receptor blocker MEasuring arterial sTiffness in the eldERly (PARAMETER) study

    PubMed Central

    Williams, Bryan; Cockcroft, John R; Kario, Kazuomi; Zappe, Dion H; Cardenas, Pamela; Hester, Allen; Brunel, Patrick; Zhang, Jack

    2014-01-01

    Introduction Hypertension in elderly people is characterised by elevated systolic blood pressure (SBP) and increased pulse pressure (PP), which indicate large artery ageing and stiffness. LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor (ARNI), is being developed to treat hypertension and heart failure. The Prospective comparison of Angiotensin Receptor neprilysin inhibitor with Angiotensin receptor blocker MEasuring arterial sTiffness in the eldERly (PARAMETER) study will assess the efficacy of LCZ696 versus olmesartan on aortic stiffness and central aortic haemodynamics. Methods and analysis In this 52-week multicentre study, patients with hypertension aged ≥60 years with a mean sitting (ms) SBP ≥150 to <180 and a PP>60 mm Hg will be randomised to once daily LCZ696 200 mg or olmesartan 20 mg for 4 weeks, followed by a forced-titration to double the initial doses for the next 8 weeks. At 12–24 weeks, if the BP target has not been attained (msSBP <140  and ms diastolic BP <90 mm Hg), amlodipine (2.5–5 mg) and subsequently hydrochlorothiazide (6.25–25 mg) can be added. The primary and secondary endpoints are changes from baseline in central aortic systolic pressure (CASP) and central aortic PP (CAPP) at week 12, respectively. Other secondary endpoints are the changes in CASP and CAPP at week 52. A sample size of 432 randomised patients is estimated to ensure a power of 90% to assess the superiority of LCZ696 over olmesartan at week 12 in the change from baseline of mean CASP, assuming an SD of 19 mm Hg, the difference of 6.5 mm Hg and a 15% dropout rate. The primary variable will be analysed using a two-way analysis of covariance. Ethics and dissemination The study was initiated in December 2012 and final results are expected in 2015. The results of this study will impact the design of future phase III studies assessing cardiovascular protection. Clinical trials identifier EUDract number 2012-002899-14 and ClinicalTrials.gov NCT01692301. PMID:24496699

  17. Effects of age and diabetes on scleral stiffness.

    PubMed

    Coudrillier, Baptiste; Pijanka, Jacek; Jefferys, Joan; Sorensen, Thomas; Quigley, Harry A; Boote, Craig; Nguyen, Thao D

    2015-07-01

    The effects of diabetes on the collagen structure and material properties of the sclera are unknown but may be important to elucidate whether diabetes is a risk factor for major ocular diseases such as glaucoma. This study provides a quantitative assessment of the changes in scleral stiffness and collagen fiber alignment associated with diabetes. Posterior scleral shells from five diabetic donors and seven non-diabetic donors were pressurized to 30?mm Hg. Three-dimensional surface displacements were calculated during inflation testing using digital image correlation (DIC). After testing, each specimen was subjected to wide-angle X-ray scattering (WAXS) measurements of its collagen organization. Specimen-specific finite element models of the posterior scleras were generated from the experimentally measured geometry. An inverse finite element analysis was developed to determine the material properties of the specimens, i.e., matrix and fiber stiffness, by matching DIC-measured and finite element predicted displacement fields. Effects of age and diabetes on the degree of fiber alignment, matrix and collagen fiber stiffness, and mechanical anisotropy were estimated using mixed effects models accounting for spatial autocorrelation. Older age was associated with a lower degree of fiber alignment and larger matrix stiffness for both diabetic and non-diabetic scleras. However, the age-related increase in matrix stiffness was 87% larger in diabetic specimens compared to non-diabetic controls and diabetic scleras had a significantly larger matrix stiffness (p?=?0.01). Older age was associated with a nearly significant increase in collagen fiber stiffness for diabetic specimens only (p?=?0.06), as well as a decrease in mechanical anisotropy for non-diabetic scleras only (p?=?0.04). The interaction between age and diabetes was not significant for all outcomes. This study suggests that the age-related increase in scleral stiffness is accelerated in eyes with diabetes, which may have important implications in glaucoma. PMID:25751456

  18. Resistance training in men is associated with increased arterial stiffness and blood pressure but does not adversely affect endothelial function as measured by arterial reactivity to the cold pressor test.

    PubMed

    Kawano, Hiroshi; Tanimoto, Michiya; Yamamoto, Kenta; Sanada, Kiyoshi; Gando, Yuko; Tabata, Izumi; Higuchi, Mitsuru; Miyachi, Motohiko

    2008-02-01

    Resistance training is a popular mode of exercise, but may result in stiffening of the central arteries. Changes in carotid artery diameter were determined using the cold pressor test (CPT), which results in production of nitric oxide via sympathetic activation and is one of the novel methods available for assessing endothelial function in the carotid artery. To investigate the effect of resistance training on endothelial function, we designed a cross-sectional study of carotid arterial vasoreactivity to CPT in men participating in regular resistance training with increased carotid arterial stiffness compared with age-matched control subjects. Twelve resistance-trained middle-aged men (age 38.7 +/- 1.7 years) and 17 age-matched control subjects (age 36.8 +/- 1.2 years) were studied. The direction and magnitude of changes in carotid artery diameter were measured by B-mode ultrasonography during sympathetic stress induced by submersion of the foot in ice slush for 90 s. Carotid arterial beta-stiffness index, and systolic and mean arterial blood pressure were higher (7.7 +/- 0.7 versus 6.0 +/- 0.4 arbitrary units, 116 +/- 2 versus 131 +/- 4 mmHg and 86 +/- 2 versus 95 +/- 2 mmHg, respectively, all P < 0.05) in the resistance training group compared with control subjects. There were, however, no significant differences in the amount or percentage change in carotid artery diameter in CPT between the two groups (resistance training group, 0.33 +/- 0.07 mm and 5.2 +/- 1.1%; control group, 0.37 +/- 0.06 mm and 5.8 +/- 0.9%, respectively). These findings suggest that while carotid arterial stiffening and higher blood pressure are observed in regular resistance-trained men, these are not associated with abnormalities in carotid arterial vasoreactivity to sympathetic stimulus, which implies intact endothelial function. PMID:17911355

  19. Positive Association Between Adipose Tissue and Bone Stiffness.

    PubMed

    Berg, R M; Wallaschofski, H; Nauck, M; Rettig, R; Markus, M R P; Laqua, R; Friedrich, N; Hannemann, A

    2015-07-01

    Obesity is often considered to have a protective effect against osteoporosis. On the other hand, several recent studies suggest that adipose tissue may have detrimental effects on bone quality. We therefore aimed to investigate the associations between body mass index (BMI), waist circumference (WC), visceral adipose tissue (VAT) or abdominal subcutaneous adipose tissue (SAT), and bone stiffness. The study involved 2685 German adults aged 20-79 years, who participated in either the second follow-up of the population-based Study of Health in Pomerania (SHIP-2) or the baseline examination of the SHIP-Trend cohort. VAT and abdominal SAT were quantified by magnetic resonance imaging. Bone stiffness was assessed by quantitative ultrasound (QUS) at the heel (Achilles InSight, GE Healthcare). The individual risk for osteoporotic fractures was determined based on the QUS-derived stiffness index and classified in low, medium, and high risk. Linear regression models, adjusted for sex, age, physical activity, smoking status, risky alcohol consumption, diabetes, and height (in models with VAT or abdominal SAT as exposure), revealed positive associations between BMI, WC, VAT or abdominal SAT, and the QUS variables broadband-ultrasound attenuation or stiffness index. Moreover, BMI was positively associated with speed of sound. Our study shows that all anthropometric measures including BMI and, WC as well as abdominal fat volume are positively associated with bone stiffness in the general population. As potential predictors of bone stiffness, VAT and abdominal SAT are not superior to easily available measures like BMI or WC. PMID:25929703

  20. Bending Stiffness of Multiwall Sandwich

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.

    1983-01-01

    An analytical and experimental study was carried out to understand the extensional and flexural behavior of multiwall sandwich, a metallic insulation composed of alternate layers of flat and dimpled foil. The multiwall sandwich was structurally analyzed by using several simplifying assumptions combined with a finite element analysis. The simplifying assumptions made in this analysis were evaluated by bending and tensile tests. Test results validate the assumption that flat sheets in compression do not significantly contribute to the flexural stiffness of multiwall sandwich for the multiwall geometry tested. However, calculations show that thicker flat sheets may contribute significantly to bending stiffness and cannot be ignored. Results of this analytical approach compare well with test data; both show that the extensional stiffness of the dimpled sheet in he 0 deg direction is about 30 percent of that for a flat sheet, and that in the 45 deg direction, it is about 10 percent. The analytical and experimental multiwall bending stiffness showed good agreement for the particular geometry tested.

  1. Arterial stiffness in mild primary hyperparathyroidism.

    PubMed

    Rubin, Mishaela R; Maurer, Mathew S; McMahon, Donald J; Bilezikian, John P; Silverberg, Shonni J

    2005-06-01

    When primary hyperparathyroidism was a more symptomatic disease, it was often associated with increased cardiovascular risk. As the clinical manifestations of the disease have changed to a milder, more asymptomatic disorder, investigation is shifting to more subtle cardiovascular abnormalities. We measured arterial stiffness in 39 patients with mild primary hyperparathyroidism [serum calcium, 2.66 +/- 0.2 mmol/liter (10.7 +/- 0.6 mg/dl); PTH, 21.7 +/- 9.5 pmol/liter (89 +/- 39 pg/ml)] and in 134 controls. Arterial stiffness was measured mathematically at the radial artery with a noninvasive device as the "augmentation index" (AIx). The AIx measures the difference between the second and first systolic peaks in the pressure waveform and correlates with increased cardiovascular risk. When physiological variables affecting augmentation index and potentially confounding cardiovascular risk factors (age, gender, heart rate, height, blood pressure, diabetes mellitus, smoking, and hyperlipidemia) were adjusted for, primary hyperparathyroidism was an independent predictor of increased augmentation index (B = 3.37; P < 0.03). A matched-pair analysis showed that 15% of the variance in AIx was uniquely accounted for by the presence of primary hyperparathyroidism. The presence of primary hyperparathyroidism was a stronger predictor of elevated AIx than age, gender, smoking, hypertension, hyperlipidemia, or diabetes mellitus. AIx was also directly correlated with evidence of more active parathyroid disease, including higher PTH levels (r = +0.42; P < 0.05) and lower bone mineral density at the distal one-third radius (r = -0.33; P < 0.05). The diagnosis of primary hyperparathyroidism was therefore an independent predictor of increased AIx, an early measure of arterial stiffness, and the increase was associated with evidence of more active parathyroid disease. PMID:15769995

  2. A review of models of vertical, leg, and knee stiffness in adults for running, jumping or hopping tasks.

    PubMed

    Serpell, Benjamin G; Ball, Nick B; Scarvell, Jennie M; Smith, Paul N

    2012-01-01

    The 'stiffness' concept originates from Hooke's law which states that the force required to deform an object is related to a spring constant and the distance that object is deformed. Research into stiffness in the human body is undergoing unprecedented popularity; possibly because stiffness has been associated with sporting performance and some lower limb injuries. However, some inconsistencies surrounding stiffness measurement exists bringing into question the integrity of some research related to stiffness. The aim of this study was to review literature which describes how vertical, leg and knee stiffness has been measured in adult populations while running, jumping or hopping. A search of the entire MEDLINE, PubMed and SPORTDiscus databases and an iterative reference check was performed. Sixty-seven articles were retrieved; 21 measured vertical stiffness, 51 measured leg stiffness, and 22 measured knee stiffness. Thus, some studies measured several 'types' of stiffness. Vertical stiffness was typically the quotient of ground reaction force and centre of mass displacement. For leg stiffness it was and change in leg length, and for the knee it was the quotient of knee joint moments and change in joint angle. Sample size issues and measurement techniques were identified as limitations to current research. PMID:22845059

  3. Impact of a Land Surface Model (LSM) in a Mesoscale Model on the Prediction of Heavy Precipitation Events

    NASA Astrophysics Data System (ADS)

    Hodur, R.; Jakubiak, B.

    2012-04-01

    High-resolution mesoscale models have shown considerable promise in the prediction of mesoscale precipitation events. In particular, the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS), developed for use by the U.S. Navy, and applied for real-time prediction by the Interdisciplinary Centre for Mathematical and Computational Modeling (ICM), has shown skill in the prediction of significant mesoscale rainfall events. Although the original version of COAMPS used a slab model to represent the land surface, recent experiments have been conducted with a new version of COAMPS that uses the NOAH land surface model (LSM) and the NASA Land Information System (LIS). The NOAH LSM uses 24 different land-use categories and 15 plant functional types. Each grid cell in COAMPS is comprised of a mosaic of up to 5 different land-use types, and those grid cells with a vegetation land-use type are further broken down into a maximum of 4 different plant functional types. Simulations have been performed using the slab- and NOAH LSM-versions of COAMPS on several significant rain events that occurred over Poland during the spring and summer of 2010. These simulations indicate that the land-surface interactions can alter the generation, maintenance, and decay of these rain systems, although these interactions are often small and subtle. This talk will address the configuration of two versions of COAMPS, a brief description of the rain events under study, and the results and validation of the tests that have been performed; along with suggestions for further work that is required in this area. Within the validation of the runs, a comparison will be given of the structure of the boundary layers that are formed using the slab- and NOAH LSM configurations of COAMPS, and how the differences in the boundary layer structures from these two versions of the model affect the timing, strength, and distribution of these precipitation events.

  4. Visualizing the structural evolution of LSM/xYSZ composite cathodes for SOFC by in-situ neutron diffraction.

    PubMed

    Chen, Yan; Yang, Ling; Ren, Fei; An, Ke

    2014-01-01

    Thermal stability of composite cathodes for solid oxide fuel cells, the mixtures of (La0.8Sr0.2)0.95MnO(3-δ) (LSM) and (Y2O3)(x)(ZrO2)(1-x) (xYSZ, x = 3, 6, 8 and 10), is determined using in-situ neutron diffraction. Thanks to the most advanced high flux neutron source, our work highlights the visualization of the phase evolutions in heterogeneous material systems at high temperatures, along with the analysis of the diffusion activities of transition metal ions that reveal the reaction mechanism and kinetics. It is found that the tetragonal-to-cubic phase transition in YSZ at T > 900°C leads to a heterogeneous redistribution of Mn ions. The subsequent reaction of LSM and YSZ occurring at T > 1100°C is revealed as a three-stage kinetic process, yielding La2Zr2O7, SrZrO3 and MnO. The diffusion activities of Y, Mn and La ions in the heterogeneous systems at elevated temperatures are derived by the structural analysis, and the three-stage reaction of YSZ and LSM is found strongly correlated to ions' behaviors as functions of temperature. PMID:24899139

  5. Visualizing the Structural Evolution of LSM/xYSZ Composite Cathodes for SOFC by in-situ Neutron Diffraction

    SciTech Connect

    Chen, Yan; Yang, Ling; Ren, Fei; An, Ke

    2014-01-01

    Composite cathodes for solid oxide fuel cells, the mixtures of (La0.8Sr0.2)0.95MnO3- (LSM) and (Y2O3)x(ZrO2)1-x (xYSZ, x = 3, 6, 8 and 10), have the thermal stability unraveled at elevated temperatures by using in-situ neutron diffraction. The Rietveld refinement analysis of neutron diffraction visualizes the phase evolutions and the ion activities in the material systems. The phase transition of tetragonal YSZ at T > 900 C leads to a heterogeneous redistribution of Mn ions. The reaction of LSM and YSZ occurring at T > 1100 C was revealed as a three-stage process, yielding La2Zr2O7, SrZrO3 and MnO. The activities of Y, Mn and La ions at elevated temperatures are derived by the structural analysis, and the three-stage reaction of YSZ and LSM was found strongly correlated to ions behaviors.

  6. LV wall segmentation using the variational level set method (LSM) with additional shape constraint for oedema quantification

    NASA Astrophysics Data System (ADS)

    Kadir, K.; Gao, H.; Payne, A.; Soraghan, J.; Berry, C.

    2012-10-01

    In this paper an automatic algorithm for the left ventricle (LV) wall segmentation and oedema quantification from T2-weighted cardiac magnetic resonance (CMR) images is presented. The extent of myocardial oedema delineates the ischaemic area-at-risk (AAR) after myocardial infarction (MI). Since AAR can be used to estimate the amount of salvageable myocardial post-MI, oedema imaging has potential clinical utility in the management of acute MI patients. This paper presents a new scheme based on the variational level set method (LSM) with additional shape constraint for the segmentation of T2-weighted CMR image. In our approach, shape information of the myocardial wall is utilized to introduce a shape feature of the myocardial wall into the variational level set formulation. The performance of the method is tested using real CMR images (12 patients) and the results of the automatic system are compared to manual segmentation. The mean perpendicular distances between the automatic and manual LV wall boundaries are in the range of 1-2 mm. Bland-Altman analysis on LV wall area indicates there is no consistent bias as a function of LV wall area, with a mean bias of -121 mm2 between individual investigator one (IV1) and LSM, and -122 mm2 between individual investigator two (IV2) and LSM when compared to two investigators. Furthermore, the oedema quantification demonstrates good correlation when compared to an expert with an average error of 9.3% for 69 slices of short axis CMR image from 12 patients.

  7. Visualizing the Structural Evolution of LSM/xYSZ Composite Cathodes for SOFC by in-situ Neutron Diffraction

    PubMed Central

    Chen, Yan; Yang, Ling; Ren, Fei; An, Ke

    2014-01-01

    Thermal stability of composite cathodes for solid oxide fuel cells, the mixtures of (La0.8Sr0.2)0.95MnO3−δ (LSM) and (Y2O3)x(ZrO2)1−x (xYSZ, x = 3, 6, 8 and 10), is determined using in-situ neutron diffraction. Thanks to the most advanced high flux neutron source, our work highlights the visualization of the phase evolutions in heterogeneous material systems at high temperatures, along with the analysis of the diffusion activities of transition metal ions that reveal the reaction mechanism and kinetics. It is found that the tetragonal-to-cubic phase transition in YSZ at T > 900°C leads to a heterogeneous redistribution of Mn ions. The subsequent reaction of LSM and YSZ occurring at T > 1100°C is revealed as a three-stage kinetic process, yielding La2Zr2O7, SrZrO3 and MnO. The diffusion activities of Y, Mn and La ions in the heterogeneous systems at elevated temperatures are derived by the structural analysis, and the three-stage reaction of YSZ and LSM is found strongly correlated to ions' behaviors as functions of temperature. PMID:24899139

  8. Influence of Compression and Stiffness Apparel on Vertical Jump Performance.

    PubMed

    Wannop, John W; Worobets, Jay T; Madden, Ryan; Stefanyshyn, Darren J

    2016-04-01

    Wannop, JW, Worobets, JT, Madden, R, and Stefanyshyn, DJ. Influence of compression and stiffness apparel on vertical jump performance. J Strength Cond Res 30(4): 1093-1101, 2016-Compression apparel alters both compression of the soft tissues and the hip joint stiffness of athletes. It is not known whether it is the compression elements, the stiffness elements, or some combination that increases performance. Therefore, the purpose of this study was to determine how systematically increasing upper leg compression and hip joint stiffness independently from one another affects vertical jumping performance. Ten male athletes performed countermovement vertical jumps in 8 concept apparel conditions and 1 control condition (loose fitting shorts). The 8 apparel conditions, 4 that specifically altered the amount of compression exerted on the thigh and 4 that altered the hip joint stiffness by means of elastic thermoplastic polyurethane bands, were tested on 2 separate testing sessions (one testing the compression apparel and the other testing the stiffness apparel). Maximum jump height was measured, while kinematic data of the hip, knee, and ankle joint were recorded with a high-speed camera (480 Hz). Both compression and stiffness apparel can have a positive influence on vertical jumping performance. The increase in jump height for the optimal compression was due to increased hip joint range of motion and a trend of increasing the jump time. Optimal stiffness also increased jump height and had the trend of decreasing the hip joint range of motion and hip joint angular velocity. The exact mechanisms by which apparel interventions alter performance is not clear, but it may be due to alterations to the force-length and force-velocity relationships of muscle. PMID:27003453

  9. Therapeutic modification of arterial stiffness: An update and comprehensive review

    PubMed Central

    Wu, Ching-Fen; Liu, Pang-Yen; Wu, Tsung-Jui; Hung, Yuan; Yang, Shih-Ping; Lin, Gen-Min

    2015-01-01

    Arterial stiffness has been recognized as a marker of cardiovascular disease and associated with long-term worse clinical outcomes in several populations. Age, hypertension, smoking, and dyslipidemia, known as traditional vascular risk factors, as well as diabetes, obesity, and systemic inflammation lead to both atherosclerosis and arterial stiffness. Targeting multiple modifiable risk factors has become the main therapeutic strategy to improve arterial stiffness in patients at high cardiovascular risk. Additionally to life style modifications, long-term ω-3 fatty acids (fish oil) supplementation in diet may improve arterial stiffness in the population with hypertension or metabolic syndrome. Pharmacological treatment such as renin-angiotensin-aldosterone system antagonists, metformin, and 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors were useful in individuals with hypertension and diabetes. In obese population with obstructive sleep apnea, weight reduction, aerobic exercise, and continuous positive airway pressure treatment may also improve arterial stiffness. In the populations with chronic inflammatory disease such as rheumatoid arthritis, a use of antibodies against tumor necrosis factor-alpha could work effectively. Other therapeutic options such as renal sympathetic nerve denervation for patients with resistant hypertension are investigated in many ongoing clinical trials. Therefore our comprehensive review provides knowledge in detail regarding many aspects of pathogenesis, measurement, and management of arterial stiffness in several populations, which would be helpful for physicians to make clinical decision. PMID:26635922

  10. Therapeutic modification of arterial stiffness: An update and comprehensive review.

    PubMed

    Wu, Ching-Fen; Liu, Pang-Yen; Wu, Tsung-Jui; Hung, Yuan; Yang, Shih-Ping; Lin, Gen-Min

    2015-11-26

    Arterial stiffness has been recognized as a marker of cardiovascular disease and associated with long-term worse clinical outcomes in several populations. Age, hypertension, smoking, and dyslipidemia, known as traditional vascular risk factors, as well as diabetes, obesity, and systemic inflammation lead to both atherosclerosis and arterial stiffness. Targeting multiple modifiable risk factors has become the main therapeutic strategy to improve arterial stiffness in patients at high cardiovascular risk. Additionally to life style modifications, long-term ω-3 fatty acids (fish oil) supplementation in diet may improve arterial stiffness in the population with hypertension or metabolic syndrome. Pharmacological treatment such as renin-angiotensin-aldosterone system antagonists, metformin, and 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors were useful in individuals with hypertension and diabetes. In obese population with obstructive sleep apnea, weight reduction, aerobic exercise, and continuous positive airway pressure treatment may also improve arterial stiffness. In the populations with chronic inflammatory disease such as rheumatoid arthritis, a use of antibodies against tumor necrosis factor-alpha could work effectively. Other therapeutic options such as renal sympathetic nerve denervation for patients with resistant hypertension are investigated in many ongoing clinical trials. Therefore our comprehensive review provides knowledge in detail regarding many aspects of pathogenesis, measurement, and management of arterial stiffness in several populations, which would be helpful for physicians to make clinical decision. PMID:26635922

  11. Spin stiffness of vector spin glasses

    NASA Astrophysics Data System (ADS)

    Beyer, Frank; Weigel, Martin

    2011-09-01

    We study domain-wall excitations for O(m) vector spin glasses in the limit m→∞, where the energy landscape is simplified considerably compared to XY or Heisenberg models due to the complete disappearance of metastability. Using numerical ground-state calculations and appropriate pairs of complementary boundary conditions, domain-wall defects are inserted into the systems and their excitation energies are measured. This allows us to determine the stiffness exponents for lattices of a range of spatial dimensions d=2,…,7. Compiling these results, we can finally determine the lower critical dimension of the model. The outcome is compared to estimates resulting from field-theoretic calculations.

  12. Relative stiffness of flat conductor cables

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1976-01-01

    The measurement of the bending moment required to obtain a given deflection in short lengths of flat conductor cable (FCC) is presented in this report. Experimental data were taken on 10 different samples of FCC and normalized to express all bending moments (relative stiffness factor) in terms of a cable 5.1 cm (2.0 in.) in width. Data are presented in tabular and graphical form for the covenience of designers who may be interested in finding torques exerted on critical components by short lengths of FCC.

  13. The Relationship of Magnetic Stiffness Between Single and Multiple YBCO Superconductors over Permanent Magnet Guideway

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Lu, Bingjuan; Wang, Suyu

    2011-09-01

    For YBCO bulk levitating over a permanent magnet guideway (PMG), the magnetic stiffness is connected directly with the pinning properties of the measured sample. An experimental setup has been built to investigate the vertical and lateral magnetic stiffness of five high-temperature superconducting (HTS) bulk arrays over a PMG by two methods: the additive method, i.e., calculating the summation of the measured magnetic stiffness values of each HTS bulk in the array; the direct method, i.e., measuring directly the magnetic stiffness of the HTS bulk array. From the experimental results, it is found that the resultant magnetic stiffness of the HTS bulk array composing of multiple YBCO bulk is related with the magnetic stiffness of each individual single bulk, but the additive method does not predict the magnetic stiffness of the array very well because of the interaction between adjacent HTS bulk. The resultant magnetic stiffness of the HTS bulk array is less than the summation magnetic stiffness of each single HTS bulk. One numerical method is used to calculate the magnetic stiffness for comparing with experimental results. The results may be helpful to the design and optimization of the superconducting magnetic levitation system.

  14. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    SciTech Connect

    Grutzik, Scott J.; Zehnder, Alan T.; Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F.

    2013-11-15

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included.

  15. Hydration Status Is Associated with Aortic Stiffness, but Not with Peripheral Arterial Stiffness, in Chronically Hemodialysed Patients.

    PubMed

    Bia, Daniel; Galli, Cintia; Valtuille, Rodolfo; Zócalo, Yanina; Wray, Sandra A; Armentano, Ricardo L; Cabrera Fischer, Edmundo I

    2015-01-01

    Background. Adequate fluid management could be essential to minimize high arterial stiffness observed in chronically hemodialyzed patients (CHP). Aim. To determine the association between body fluid status and central and peripheral arterial stiffness levels. Methods. Arterial stiffness was assessed in 65 CHP by measuring the pulse wave velocity (PWV) in a central arterial pathway (carotid-femoral) and in a peripheral pathway (carotid-brachial). A blood pressure-independent regional arterial stiffness index was calculated using PWV. Volume status was assessed by whole-body multiple-frequency bioimpedance. Patients were first observed as an entire group and then divided into three different fluid status-related groups: normal, overhydration, and dehydration groups. Results. Only carotid-femoral stiffness was positively associated (P < 0.05) with the hydration status evaluated through extracellular/intracellular fluid, extracellular/Total Body Fluid, and absolute and relative overhydration. Conclusion. Volume status and overload are associated with central, but not peripheral, arterial stiffness levels with independence of the blood pressure level, in CHP. PMID:26167301

  16. Hydration Status Is Associated with Aortic Stiffness, but Not with Peripheral Arterial Stiffness, in Chronically Hemodialysed Patients

    PubMed Central

    Bia, Daniel; Galli, Cintia; Valtuille, Rodolfo; Zócalo, Yanina; Wray, Sandra A.; Armentano, Ricardo L.; Cabrera Fischer, Edmundo I.

    2015-01-01

    Background. Adequate fluid management could be essential to minimize high arterial stiffness observed in chronically hemodialyzed patients (CHP). Aim. To determine the association between body fluid status and central and peripheral arterial stiffness levels. Methods. Arterial stiffness was assessed in 65 CHP by measuring the pulse wave velocity (PWV) in a central arterial pathway (carotid-femoral) and in a peripheral pathway (carotid-brachial). A blood pressure-independent regional arterial stiffness index was calculated using PWV. Volume status was assessed by whole-body multiple-frequency bioimpedance. Patients were first observed as an entire group and then divided into three different fluid status-related groups: normal, overhydration, and dehydration groups. Results. Only carotid-femoral stiffness was positively associated (P < 0.05) with the hydration status evaluated through extracellular/intracellular fluid, extracellular/Total Body Fluid, and absolute and relative overhydration. Conclusion. Volume status and overload are associated with central, but not peripheral, arterial stiffness levels with independence of the blood pressure level, in CHP. PMID:26167301

  17. Elastic metamaterial beam with remotely tunable stiffness

    NASA Astrophysics Data System (ADS)

    Qian, Wei; Yu, Zhengyue; Wang, Xiaole; Lai, Yun; Yellen, Benjamin B.

    2016-02-01

    We demonstrate a dynamically tunable elastic metamaterial, which employs remote magnetic force to adjust its vibration absorption properties. The 1D metamaterial is constructed from a flat aluminum beam milled with a linear array of cylindrical holes. The beam is backed by a thin elastic membrane, on which thin disk-shaped permanent magnets are mounted. When excited by a shaker, the beam motion is tracked by a Laser Doppler Vibrometer, which conducts point by point scanning of the vibrating element. Elastic waves are unable to propagate through the beam when the driving frequency excites the first elastic bending mode in the unit cell. At these frequencies, the effective mass density of the unit cell becomes negative, which induces an exponentially decaying evanescent wave. Due to the non-linear elastic properties of the membrane, the effective stiffness of the unit cell can be tuned with an external magnetic force from nearby solenoids. Measurements of the linear and cubic static stiffness terms of the membrane are in excellent agreement with experimental measurements of the bandgap shift as a function of the applied force. In this implementation, bandgap shifts by as much as 40% can be achieved with ˜30 mN of applied magnetic force. This structure has potential for extension in 2D and 3D, providing a general approach for building dynamically tunable elastic metamaterials for applications in lensing and guiding elastic waves.

  18. Stiffness threshold of randomly distributed carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Chen, Yuli; Pan, Fei; Guo, Zaoyang; Liu, Bin; Zhang, Jianyu

    2015-11-01

    For carbon nanotube (CNT) networks, with increasing network density, there may be sudden changes in the properties, such as the sudden change in electrical conductivity at the electrical percolation threshold. In this paper, the change in stiffness of the CNT networks is studied and especially the existence of stiffness threshold is revealed. Two critical network densities are found to divide the stiffness behavior into three stages: zero stiffness, bending dominated and stretching dominated stages. The first critical network density is a criterion to judge whether or not the network is capable of carrying load, defined as the stiffness threshold. The second critical network density is a criterion to measure whether or not most of the CNTs in network are utilized effectively to carry load, defined as bending-stretching transitional threshold. Based on the geometric probability analysis, a theoretical methodology is set up to predict the two thresholds and explain their underlying mechanisms. The stiffness threshold is revealed to be determined by the statical determinacy of CNTs in the network, and can be estimated quantitatively by the stabilization fraction of network, a newly proposed parameter in this paper. The other threshold, bending-stretching transitional threshold, which signs the conversion of dominant deformation mode, is verified to be well evaluated by the proposed defect fraction of network. According to the theoretical analysis as well as the numerical simulation, the average intersection number on each CNT is revealed as the only dominant factor for the electrical percolation and the stiffness thresholds, it is approximately 3.7 for electrical percolation threshold, and 5.2 for the stiffness threshold of 2D networks. For 3D networks, they are 1.4 and 4.4. And it also affects the bending-stretching transitional threshold, together with the CNT aspect ratio. The average intersection number divided by the fourth root of CNT aspect ratio is found to be an invariant at the bending-stretching transitional threshold, which is 6.7 and 6.3 for 2D and 3D networks, respectively. Based on this study, a simple piecewise expression is summarized to describe the relative stiffness of CNT networks, in which the relative stiffness of networks depends on the relative network density as well as the CNT aspect ratio. This formula provides a solid theoretical foundation for the design optimization and property prediction of CNT networks.

  19. Evaluating pulp stiffness from fibre bundles by ultrasound

    NASA Astrophysics Data System (ADS)

    Karppinen, Timo; Montonen, Risto; Määttänen, Marjo; Ekman, Axel; Myllys, Markko; Timonen, Jussi; Hæggström, Edward

    2012-06-01

    A non-destructive ultrasonic tester was developed to measure the stiffness of pulp bundles. The mechanical properties of pulp are important when estimating the behaviour of paper under stress. Currently available pulp tests are tedious and alter the fibres structurally and mechanically. The developed tester employs (933 ± 15) kHz tweezer-like ultrasonic transducers and time-of-flight measurement through (9.0 ± 2.5) mm long and (0.8 ± 0.1) mm thick fibre bundles kept at (19.1 ± 0.4) °C and (62 ± 1)% RH. We determined the stiffness of soft wood pulps produced by three kraft pulping modifications: standard kraft pulp, (5.2 ± 0.4) GPa, prehydrolysis kraft pulp, (4.3 ± 0.4) GPa, and alkali extracted prehydrolysis kraft pulp, (3.3 ± 0.4) GPa. Prehydrolysis and alkali extraction processes mainly lowered the hemicellulose content of the pulps, which essentially decreased the fibre-wall stiffness hence impairing the stiffness of the fibre networks. Our results indicate that the method allows ranking of pulps according to their stiffness determined from bundle-like samples taken at an early phase of the papermaking process.

  20. Modeling Short-Range Stiffness of Feline Lower Hindlimb Muscles

    PubMed Central

    Cui, Lei; Perreault, Eric J.; Maas, Huub; Sandercock, Thomas

    2008-01-01

    The short-range stiffness (SRS) of skeletal muscles is a critical property for understanding muscle contributions to limb stability, since it represents a muscle’s capacity to resist external perturbations before reflexes or voluntary actions can intervene. A number of studies have demonstrated that a simple model, consisting of a force-dependent active stiffness connected in series with a constant passive stiffness, is sufficient to characterize the SRS of individual muscles over the entire range of obtainable forces. The purpose of this study was to determine if such a model could be used to characterize the SRS-force relationship in a number of architecturally distinct muscles. Specifically, we hypothesized that the active and passive stiffness components for a specific muscle can be estimated from anatomical measurements, assuming uniform active and passive stiffness properties across all muscles. This hypothesis was evaluated in six feline lower hindlimb muscle types with different motor unit compositions and architectures. The SRS-force relationships for each muscle type were predicted based on anatomical measurements and compared to experimental data. The model predictions were accurate to within 30%, when uniform scaling properties were assumed across all muscles. Errors were greatest for the extensor digitorum longus (EDL). When this muscle was removed from the analysis, prediction errors dropped to less than 8%. Subsequent analyses suggested that these errors may have resulted from differences in the tendon elastic modulus, as compared to the other muscles tested. PMID:18499113

  1. NAFLD and Increased Aortic Stiffness: Parallel or Common Physiopathological Mechanisms?

    PubMed Central

    Villela-Nogueira, Cristiane A.; Leite, Nathalie C.; Cardoso, Claudia R. L.; Salles, Gil F.

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) has become the leading cause of chronic liver diseases worldwide. Liver inflammation and fibrosis related to NAFLD contribute to disease progression and increasing liver-related mortality and morbidity. Increasing data suggest that NAFLD may be linked to atherosclerotic vascular disease independent of other established cardiovascular risk factors. Central arterial stiffness has been recognized as a measure of cumulative cardiovascular risk marker load, and the measure of carotid-femoral pulse wave velocity (cf-PWV) is regarded as the gold standard assessment of aortic stiffness. It has been shown that increased aortic stiffness predicts cardiovascular morbidity and mortality in several clinical settings, including type 2 diabetes mellitus, a well-known condition associated with advanced stages of NAFLD. Furthermore, recently-published studies reported a strong association between NAFLD and increased arterial stiffness, suggesting a possible link in the pathogenesis of atherosclerosis and NAFLD. We sought to review the published data on the associations between NAFLD and aortic stiffness, in order to better understand the interplay between these two conditions and identify possible common physiopathological mechanisms. PMID:27104526

  2. Optimal semi-active damping of cables with bending stiffness

    NASA Astrophysics Data System (ADS)

    Boston, C.; Weber, F.; Guzzella, L.

    2011-05-01

    The problem of optimal semi-active damping of cables with bending stiffness is investigated with an evolutionary algorithm. The developed damping strategy is validated on a single strand cable with a linear motor attached close to the anchor position. The motor is operated in force feedback mode during free decay of cable vibrations, during which time the decay ratios of the cable modes are measured. It is shown from these experiments that the damping ratios predicted in simulation are close to those measured. The semi-active damping strategy found by the evolutionary algorithm is very similar in character to that for a cable without bending stiffness, being the superposition of an amplitude-dependent friction and negative stiffness element. However, due to the bending stiffness of the cable, the tuning of the above elements as a function of the relevant cable parameters is greatly altered, especially for damper positions close to a fixed end anchor, where the mode shape depends strongly on bending stiffness. It is furthermore demonstrated that a semi-active damper is able to dissipate significantly more energy for a cable with simply supported ends compared to fixed ends due to larger damper strokes and thereby increased energy dissipation in the device.

  3. Multi-fingered haptic palpation utilizing granular jamming stiffness feedback actuators

    NASA Astrophysics Data System (ADS)

    Li, Min; Ranzani, Tommaso; Sareh, Sina; Seneviratne, Lakmal D.; Dasgupta, Prokar; Wurdemann, Helge A.; Althoefer, Kaspar

    2014-09-01

    This paper describes a multi-fingered haptic palpation method using stiffness feedback actuators for simulating tissue palpation procedures in traditional and in robot-assisted minimally invasive surgery. Soft tissue stiffness is simulated by changing the stiffness property of the actuator during palpation. For the first time, granular jamming and pneumatic air actuation are combined to realize stiffness modulation. The stiffness feedback actuator is validated by stiffness measurements in indentation tests and through stiffness discrimination based on a user study. According to the indentation test results, the introduction of a pneumatic chamber to granular jamming can amplify the stiffness variation range and reduce hysteresis of the actuator. The advantage of multi-fingered palpation using the proposed actuators is proven by the comparison of the results of the stiffness discrimination performance using two-fingered (sensitivity: 82.2%, specificity: 88.9%, positive predicative value: 80.0%, accuracy: 85.4%, time: 4.84 s) and single-fingered (sensitivity: 76.4%, specificity: 85.7%, positive predicative value: 75.3%, accuracy: 81.8%, time: 7.48 s) stiffness feedback.

  4. Estimation of Stiffness Parameter on the Common Carotid Artery

    NASA Astrophysics Data System (ADS)

    Koya, Yoshiharu; Mizoshiri, Isao; Matsui, Kiyoaki; Nakamura, Takashi

    The arteriosclerosis is on the increase with an aging or change of our living environment. For that reason, diagnosis of the common carotid artery using echocardiogram is doing to take precautions carebropathy. Up to the present, several methods to measure stiffness parameter of the carotid artery have been proposed. However, they have analyzed at the only one point of common carotid artery. In this paper, we propose the method of analysis extended over a wide area of common carotid artery. In order to measure stiffness parameter of common carotid artery from echocardiogram, it is required to detect two border curves which are boundaries between vessel wall and blood. The method is composed of two steps. The first step is the detection of border curves, and the second step is the calculation of stiffness parameter using diameter of common carotid artery. Experimental results show the validity of the proposed method.

  5. Impact of Irrigation Methods on LSM Spinup and Initialization of WRF Forecasts

    NASA Astrophysics Data System (ADS)

    Lawston, P.; Santanello, J. A.; Zaitchik, B. F.; Beaudoing, H.

    2013-12-01

    In the United States, irrigation represents the largest consumption of fresh water and accounts for approximately one-third of all water usage. Irrigation has been shown to modify local hydrology and regional climate through a repartitioning of water at the surface and through the atmosphere, and can in some cases drastically change the terrestrial energy budget in agricultural areas during the growing season. Vegetation cover and soil moisture primarily control water and energy fluxes from the surface so accurate representation of the land surface characteristics is key to determining and predicting atmospheric conditions. This study utilizes NASA's Land Information System (LIS) and the NASA Unified Weather Research and Forecasting (NU-WRF) model to investigate changes in land-atmosphere interactions resulting from drip, flood, and sprinkler irrigation methods. The study area encompasses a 500 km x 600 km region of the Central Great Plains including portions of Nebraska, Kansas, Iowa, and Missouri. This area provides a steep irrigation gradient, as much of the western region is heavily irrigated while minimal irrigation occurs in the eastern section. Five-year irrigated LIS spinups were used to initialize two-day, 1-km WRF forecasts. Two forecast periods were chosen, one in a drier than normal year (2006) and one in a wetter than normal year (2008) to evaluate the sensitivity of the irrigation approaches and impacts to the background climate conditions. The offline and coupled simulation results show that both LIS spinups and NU-WRF forecasts are sensitive to irrigation and irrigation methods, as exhibited by significant changes to temperature, soil moisture, boundary layer height, and the partitioning of latent and sensible heat fluxes. Dry year impacts are greater than those in the wet year suggesting that the magnitude of these changes is dependent on the existing precipitation regime. Sprinkler and flood irrigation schemes impact the NU-WRF forecast the most, while drip irrigation has a comparatively small effect. Evaluation of the irrigation schemes using observations of soil moisture, fluxes, and meteorological state variables shows that a realistic characterization of the land surface in terms of land cover classification, soil type, and soil moisture anomalies via a LSM spinup are critical to producing a proper simulation of irrigation in land surface and coupled models.

  6. Dynamic phototuning of 3D hydrogel stiffness

    PubMed Central

    Stowers, Ryan S.; Allen, Shane C.; Suggs, Laura J.

    2015-01-01

    Hydrogels are widely used as in vitro culture models to mimic 3D cellular microenvironments. The stiffness of the extracellular matrix is known to influence cell phenotype, inspiring work toward unraveling the role of stiffness on cell behavior using hydrogels. However, in many biological processes such as embryonic development, wound healing, and tumorigenesis, the microenvironment is highly dynamic, leading to changes in matrix stiffness over a broad range of timescales. To recapitulate dynamic microenvironments, a hydrogel with temporally tunable stiffness is needed. Here, we present a system in which alginate gel stiffness can be temporally modulated by light-triggered release of calcium or a chelator from liposomes. Others have shown softening via photodegradation or stiffening via secondary cross-linking; however, our system is capable of both dynamic stiffening and softening. Dynamic modulation of stiffness can be induced at least 14 d after gelation and can be spatially controlled to produce gradients and patterns. We use this system to investigate the regulation of fibroblast morphology by stiffness in both nondegradable gels and gels with degradable elements. Interestingly, stiffening inhibits fibroblast spreading through either mesenchymal or amoeboid migration modes. We demonstrate this technology can be translated in vivo by using deeply penetrating near-infrared light for transdermal stiffness modulation, enabling external control of gel stiffness. Temporal modulation of hydrogel stiffness is a powerful tool that will enable investigation of the role that dynamic microenvironments play in biological processes both in vitro and in well-controlled in vivo experiments. PMID:25646417

  7. A New Sampling Method for Spleen Stiffness Measurement Based on Quantitative Acoustic Radiation Force Impulse Elastography for Noninvasive Assessment of Esophageal Varices in Newly Diagnosed HCV-Related Cirrhosis

    PubMed Central

    Rizzo, Leonardo; Attanasio, Massimo; Berretta, Massimiliano; Malaguarnera, Michele; Morra, Aldo; L'Abbate, Luca; Balestreri, Luca; Nunnari, Giuseppe; Cacopardo, Bruno

    2014-01-01

    In our study, we evaluated the feasibility of a new sampling method for splenic stiffness (SS) measurement by Quantitative Acoustic Radiation Force Impulse Elastography (Virtual Touch Tissue Quantification (VTTQ)).We measured SS in 54 patients with HCV-related cirrhosis of whom 28 with esophageal varices (EV), 27 with Chronic Hepatitis C (CHC) F1–F3, and 63 healthy controls. VTTQ-SS was significantly higher among cirrhotic patients with EV (3.37 m/s) in comparison with controls (2.19 m/s, P < 0.001), CHC patients (2.37 m/s, P < 0.001), and cirrhotic patients without EV (2.7 m/s, P < 0.001). Moreover, VTTQ-SS was significantly higher among cirrhotic patients without EV in comparison with both controls (P < 0.001) and CHC patients (P < 0.01). The optimal VTTQ-SS cut-off value for predicting EV was 3.1 m/s (AUROC = 0.96, sensitivity 96.4%, specificity 88.5%, positive predictive value 90%, negative predictive value 96%, positive likelihood ratio 8.36, and negative likelihood ratio 0.04). In conclusion, VTTQ-SS is a promising noninvasive and reliable diagnostic tool to screen cirrhotic patients for EV and reduce the need for upper gastrointestinal endoscopy. By using our cut-off value of 3.1 m/s, we would avoid endoscopy in around 45% of cirrhotic subjects, with significant time and cost savings. PMID:24729970

  8. Increased Cardiovascular Stiffness and Impaired Age-related Functional Status

    PubMed Central

    Andersen, Mousumi M.; Kritchevsky, Stephen B.; Morgan, Timothy M.; Hire, Don G.; Vasu, Sujethra; Brinkley, Tina E.; Kitzman, Dalane W.; Hamilton, Craig A.; Soots, Sandra

    2015-01-01

    Our objective was to determine if increased cardiovascular (CV) stiffness is associated with disability in middle-aged and older adults at risk for congestive heart failure. CV stiffness (brachial pulse pressure/left ventricular stroke volume indexed to body surface area) and total disability (the summed assessment of activities of daily living, mobility, and instrumental activities of daily living) were measured in 445 individuals. A subset of 109 randomly selected individuals also underwent physical function testing. Total disability was associated with CV stiffness (p = .01), driven by an association with mobility (p = .005), but not activities of daily living (p = .13) or instrumental activities of daily living (p = .61). After accounting for age, these correlations remained significant for men (p = .04), but not for women. CV stiffness was also associated with increased 400-m walk time (p = .02). In middle-aged and elderly men at risk for congestive heart failure, CV stiffness is associated with decreased mobility and physical function, and increased overall disability. PMID:24963155

  9. Dynamically tuned magnetostrictive spring with electrically controlled stiffness

    NASA Astrophysics Data System (ADS)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-03-01

    This paper presents the design and testing of an electrically controllable magnetostrictive spring that has a dynamically tunable stiffness (i.e., a magnetostrictive Varispring). The device enables in situ stiffness tuning or stiffness switching for vibration control applications. Using a nonlinear electromechanical transducer model and an analytical solution of linear, mechanically induced magnetic diffusion, Terfenol-D is shown to have a faster rise time to stepped voltage inputs and a significantly higher magnetic diffusion cut-off frequency relative to Galfenol. A Varispring is manufactured using a laminated Terfenol-D rod. Further rise time reductions are achieved by minimizing the rod’s diameter and winding the electromagnet with larger wire. Dynamic tuning of the Varispring’s stiffness is investigated by measuring the Terfenol-D rod’s strain response to dynamic, compressive, axial forces in the presence of sinusoidal or square wave control currents. The Varispring’s rise time is \\lt 1 ms for 1 A current switches. Continuous modulus changes up to 21.9 GPa and 500 Hz and square wave modulus changes (dynamic {{Δ }}E effect) up to 12.3 GPa and 100 Hz are observed. Stiffness tunability and tuning bandwidth can be considerably increased by operating about a more optimal bias stress and improving the control of the electrical input.

  10. Diabetes and Risk of Arterial Stiffness: A Mendelian Randomization Analysis.

    PubMed

    Xu, Min; Huang, Ya; Xie, Lan; Peng, Kui; Ding, Lin; Lin, Lin; Wang, Po; Hao, Mingli; Chen, Yuhong; Sun, Yimin; Qi, Lu; Wang, Weiqing; Ning, Guang; Bi, Yufang

    2016-06-01

    We aimed to explore the causal association between type 2 diabetes (T2D) and increased arterial stiffness. We performed a Mendelian randomization (MR) analysis in 11,385 participants from a well-defined community study in Shanghai during 2011-2013. We genotyped 34 T2D-associated common variants identified in East Asians and created a genetic risk score (GRS). We assessed arterial stiffness noninvasively with the measurement of brachial-ankle pulse wave velocity (baPWV). We used the instrumental variable (IV) estimator to qualify the causal relationship between T2D and increased arterial stiffness. We found each 1-SD increase in T2D_GRS was associated with 6% higher risk in increased arterial stiffness (95% CI 1.01, 1.12), after adjustment of other metabolic confounders. Using T2D_GRS as the IV, we demonstrated a causal relationship between T2D and arterial stiffening (odds ratio 1.24, 95% CI 1.06, 1.47; P = 0.008). When categorizing the genetic loci according to their effect on insulin secretion or resistance, we found genetically determined decrease in insulin secretion was associated with increase in baPWV (βIV = 122.3 cm/s, 95% CI 41.9, 204.6; P = 0.0005). In conclusion, our results provide evidence supporting a causal association between T2D and increased arterial stiffness in a Chinese population. PMID:26953161

  11. Influence of passive stiffness of hamstrings on postural stability.

    PubMed

    Kuszewski, Michał; Gnat, Rafał; Sobota, Grzegorz; Myśliwiec, Andrzej

    2015-03-29

    The aim of the study was to explore whether passive stiffness of the hamstrings influences the strategy of maintaining postural stability. A sample of 50 subjects was selected; the final analyses were based on data of 41 individuals (33 men, 8 women) aged 21 to 29 (mean = 23.3, SD = 1.1) years. A quasi- experimental ex post facto design with repeated measures was used. Categories of independent variables were obtained directly prior to the measurement of the dependent variables. In stage one of the study, passive knee extension was measured in the supine position to assess hamstring stiffness. In stage two, the magnitude of postural sway in antero-posterior direction was measured, while varying the body position on a stabilometric platform, both with and without visual control. The margin of safety was used as a measure of postural control. The magnitude of the margin of safety increased significantly between the open-eye and closed-eye trials. However, although we registered a visible tendency for a larger increase of the margin of safety associated with lower levels of passive hamstrings stiffness, no significant differences were found. Therefore, this study demonstrated that hamstring stiffness did not influence the strategy used to maintain postural stability. PMID:25964809

  12. Influence of Passive Stiffness of Hamstrings on Postural Stability

    PubMed Central

    Kuszewski, Michał; Gnat, Rafał; Sobota, Grzegorz; Myśliwiec, Andrzej

    2015-01-01

    The aim of the study was to explore whether passive stiffness of the hamstrings influences the strategy of maintaining postural stability. A sample of 50 subjects was selected; the final analyses were based on data of 41 individuals (33 men, 8 women) aged 21 to 29 (mean = 23.3, SD = 1.1) years. A quasi- experimental ex post facto design with repeated measures was used. Categories of independent variables were obtained directly prior to the measurement of the dependent variables. In stage one of the study, passive knee extension was measured in the supine position to assess hamstring stiffness. In stage two, the magnitude of postural sway in antero-posterior direction was measured, while varying the body position on a stabilometric platform, both with and without visual control. The margin of safety was used as a measure of postural control. The magnitude of the margin of safety increased significantly between the open-eye and closed-eye trials. However, although we registered a visible tendency for a larger increase of the margin of safety associated with lower levels of passive hamstrings stiffness, no significant differences were found. Therefore, this study demonstrated that hamstring stiffness did not influence the strategy used to maintain postural stability. PMID:25964809

  13. Performance Assessment of a New Variable Stiffness Probing System for Micro-CMMs.

    PubMed

    Alblalaihid, Khalid; Kinnell, Peter; Lawes, Simon; Desgaches, Dorian; Leach, Richard

    2016-01-01

    When designing micro-scale tactile probes, a design trade-off must be made between the stiffness and flexibility of the probing element. The probe must be flexible enough to ensure sensitive parts are not damaged during contact, but it must be stiff enough to overcome attractive surface forces, ensure it is not excessively fragile, easily damaged or sensitive to inertial loads. To address the need for a probing element that is both flexible and stiff, a novel micro-scale tactile probe has been designed and tested that makes use of an active suspension structure. The suspension structure is used to modulate the probe stiffness as required to ensure optimal stiffness conditions for each phase of the measurement process. In this paper, a novel control system is presented that monitors and controls stiffness, allowing two probe stiffness values ("stiff" and "flexible") to be defined and switched between. During switching, the stylus tip undergoes a displacement of approximately 18 µm, however, the control system is able ensure a consistent flexible mode tip deflection to within 12 nm in the vertical axis. The overall uncertainty for three-dimensional displacement measurements using the probing system is estimated to be 58 nm, which demonstrates the potential of this innovative variable stiffness micro-scale probe system. PMID:27070611

  14. Effective stiffness of qPlus sensor and quartz tuning fork.

    PubMed

    Kim, Jongwoo; Won, Donghyun; Sung, Baekman; An, Sangmin; Jhe, Wonho

    2014-06-01

    Quartz tuning forks (QTFs) have been extensively employed in scanning probe microscopy. For quantitative measurement of the interaction in nanoscale using QTF as a force sensor, we first measured the effective stiffness of qPlus sensors as well as QTFs and then compared the results with the cantilever beam theory that has been widely used to estimate the stiffness. Comparing with the stiffness and the resonance frequency in our measurement, we found that those calculated based on the beam theory are considerably overestimated. For consistent analysis of experimental and theoretical results, we present the formula to calculate the stiffness of qPlus sensor or QTF, based on the resonance frequency. We also demonstrated that the effective stiffness of QTF is twice that of qPlus sensor, which agrees with the recently suggested model. Our study demonstrates the use of QTF for quantitative measurement of interaction force at the nanoscale in scanning probe microscopy. PMID:24727200

  15. Stiffness and damping of elastomeric O-ring bearing mounts

    NASA Technical Reports Server (NTRS)

    Smalley, A. J.

    1977-01-01

    A test rig to measure the dynamic stiffness and damping of elastomer O rings was described. Test results for stiffness and loss coefficient in the frequency range from 50 Hz to 1000 Hz are presented. Results are given for three different materials, for five temperatures, for three amplitudes, for five values of squeeze for three values of stretch for three values of cross-section diameter and for three values of groove width. All test data points were plotted. In addition, trend summary plots were presented which compare the effect of material, temperature, amplitude, squeeze, stretch, cross-section diameter, and groove width. O ring deflections under a static load for different material were presented; and effective static stiffness values were compared with dynamic values.

  16. Modifiable risk factors for increased arterial stiffness in outpatient nephrology.

    PubMed

    Elewa, Usama; Fernandez-Fernandez, Beatriz; Alegre, Raquel; Sanchez-Niño, Maria D; Mahillo-Fernández, Ignacio; Perez-Gomez, Maria Vanessa; El-Fishawy, Hussein; Belal, Dawlat; Ortiz, Alberto

    2015-01-01

    Arterial stiffness, as measured by pulse wave velocity (PWV), is an independent predictor of cardiovascular events and mortality. Arterial stiffness increases with age. However, modifiable risk factors such as smoking, BP and salt intake also impact on PWV. The finding of modifiable risk factors may lead to the identification of treatable factors, and, thus, is of interest to practicing nephrologist. We have now studied the prevalence and correlates of arterial stiffness, assessed by PWV, in 191 patients from nephrology outpatient clinics in order to identify modifiable risk factors for arterial stiffness that may in the future guide therapeutic decision-making. PWV was above normal levels for age in 85/191 (44.5%) patients. Multivariate analysis showed that advanced age, systolic BP, diabetes mellitus, serum uric acid and calcium polystyrene sulfonate therapy or calcium-containing medication were independent predictors of PWV. A new parameter, Delta above upper limit of normal PWV (Delta PWV) was defined to decrease the weight of age on PWV values. Delta PWV was calculated as (measured PWV) - (upper limit of the age-adjusted PWV values for the general population). Mean±SD Delta PWV was 0.76±1.60 m/sec. In multivariate analysis, systolic blood pressure, active smoking and calcium polystyrene sulfonate therapy remained independent predictors of higher delta PWV, while age, urinary potassium and beta blocker therapy were independent predictors of lower delta PWV. In conclusion, arterial stiffness was frequent in nephrology outpatients. Systolic blood pressure, smoking, serum uric acid, calcium-containing medications, potassium metabolism and non-use of beta blockers are modifiable factors associated with increased arterial stiffness in Nephrology outpatients. PMID:25880081

  17. Modifiable Risk Factors for Increased Arterial Stiffness in Outpatient Nephrology

    PubMed Central

    Elewa, Usama; Fernandez-Fernandez, Beatriz; Alegre, Raquel; Sanchez-Niño, Maria D.; Mahillo-Fernández, Ignacio; Perez-Gomez, Maria Vanessa; El-Fishawy, Hussein; Belal, Dawlat; Ortiz, Alberto

    2015-01-01

    Arterial stiffness, as measured by pulse wave velocity (PWV), is an independent predictor of cardiovascular events and mortality. Arterial stiffness increases with age. However, modifiable risk factors such as smoking, BP and salt intake also impact on PWV. The finding of modifiable risk factors may lead to the identification of treatable factors, and, thus, is of interest to practicing nephrologist. We have now studied the prevalence and correlates of arterial stiffness, assessed by PWV, in 191 patients from nephrology outpatient clinics in order to identify modifiable risk factors for arterial stiffness that may in the future guide therapeutic decision-making. PWV was above normal levels for age in 85/191 (44.5%) patients. Multivariate analysis showed that advanced age, systolic BP, diabetes mellitus, serum uric acid and calcium polystyrene sulfonate therapy or calcium-containing medication were independent predictors of PWV. A new parameter, Delta above upper limit of normal PWV (Delta PWV) was defined to decrease the weight of age on PWV values. Delta PWV was calculated as (measured PWV) - (upper limit of the age-adjusted PWV values for the general population). Mean±SD Delta PWV was 0.76±1.60 m/sec. In multivariate analysis, systolic blood pressure, active smoking and calcium polystyrene sulfonate therapy remained independent predictors of higher delta PWV, while age, urinary potassium and beta blocker therapy were independent predictors of lower delta PWV. In conclusion, arterial stiffness was frequent in nephrology outpatients. Systolic blood pressure, smoking, serum uric acid, calcium-containing medications, potassium metabolism and non-use of beta blockers are modifiable factors associated with increased arterial stiffness in Nephrology outpatients. PMID:25880081

  18. Stiffness Simulation Using Non-linear FEA

    SciTech Connect

    Xu, W.L.; Ai, J.; Lu, J.X.; Ying, B.H.

    2005-08-05

    In this paper, Stamping-stiffness coupling simulation techniques are proposed, i.e., stamping, springback and stiffness is simulated with dynamic-explicit FE method, static-implicit FE method, and dynamic-explicit FE method continually. Carrying out process for three steps and some key technical factors are listed. The stiffness for double-curvature box parts is analyzed by this method.The simulation result is compared with experimental one, and satisfied calculation accuracy is obtained.

  19. Investigation of Soft-Tissue Stiffness Alteration in Denervated Human Tissue Using an Ultrasound Indentation System

    PubMed Central

    Makhsous, Mohsen; Venkatasubramanian, Ganapriya; Chawla, Aditya; Pathak, Yagna; Priebe, Michael; Rymer, William Z; Lin, Fang

    2008-01-01

    Background/Objective: Differences in soft-tissue stiffness may provide for a quantitative assessment and detection technique for pressure ulcers or deep-tissue injury. An ultrasound indentation system may provide a relatively convenient, simple, and noninvasive method for quantitative measurement of changes in soft-tissue stiffness in vivo. Methods: The Tissue Ultrasound Palpation System (TUPS) was used to quantitatively measure changes in soft-tissue stiffness at different anatomical locations within and between able-bodied persons and individuals with chronic spinal cord injury (SCI). The stiffness of soft tissue was measured at the ischial tuberosity, greater trochanter, posterior midthigh, and biceps brachii. Additionally, soft-tissue thickness and soft-tissue deformation were also measured. Results: Significant differences in soft-tissue stiffness were observed within the various anatomical locations tested, in both the able-bodied and SCI groups. Differences in soft-tissue stiffness were also observed between the 2 groups. Participants with SCI had significantly softer tissue in their buttock-thigh area. Conclusions: TUPS is a clinically feasible technology that can reliably and effectively detect changes in soft-tissue stiffness. The study has provided a better understanding of the tissue mechanical response to external loading, specifically in the SCI population, suggesting the use of tissue stiffness as a parameter to detect and assess pressure-related soft-tissue injury. PMID:18533418

  20. A Novel Technique of Quantifying Flexural Stiffness of Rod-Like Structures.

    PubMed

    Yao, Da-Kang; Shao, Jin-Yu

    2008-03-18

    In cellular and molecular biomechanics, extensional stiffness of rod-like structures such as leukocyte microvilli can be easily measured with many techniques, but not many techniques are available for measuring their flexural stiffness. In this paper, we report a novel technique of measuring the flexural stiffness of rod-like structures. This technique is based on image deconvolution and, as an example, it was used for determining the flexural stiffness of neutrophil microvilli. The probes we used were 40-nm-diameter fluorescent beads, which were bound to the tips of neutrophil microvilli by anti-L-selectin antibody. The fluorescent images of the bead, which was positioned at the center of the cell bottom, were acquired with high magnification and long exposure time (3 s). Using a Gaussian function as the point spread function of our imaging system, we established a convolution equation based on Boltzmann's law, which yields an analytical expression that relates the bead image profile to the flexural stiffness of the microvillus. The flexural stiffness was then obtained by the least squares regression. On average, the flexural stiffness was determined to be 7 pN/mum for single neutrophil microvilli. With the resolution of our imaging system, this technique can be used for measuring any flexural stiffness smaller than 34 pN/mum and it has great potential in single molecule biomechanics. PMID:20333317

  1. A Novel Technique of Quantifying Flexural Stiffness of Rod-Like Structures

    PubMed Central

    Yao, Da-Kang; Shao, Jin-Yu

    2010-01-01

    In cellular and molecular biomechanics, extensional stiffness of rod-like structures such as leukocyte microvilli can be easily measured with many techniques, but not many techniques are available for measuring their flexural stiffness. In this paper, we report a novel technique of measuring the flexural stiffness of rod-like structures. This technique is based on image deconvolution and, as an example, it was used for determining the flexural stiffness of neutrophil microvilli. The probes we used were 40-nm-diameter fluorescent beads, which were bound to the tips of neutrophil microvilli by anti-L-selectin antibody. The fluorescent images of the bead, which was positioned at the center of the cell bottom, were acquired with high magnification and long exposure time (3 s). Using a Gaussian function as the point spread function of our imaging system, we established a convolution equation based on Boltzmann’s law, which yields an analytical expression that relates the bead image profile to the flexural stiffness of the microvillus. The flexural stiffness was then obtained by the least squares regression. On average, the flexural stiffness was determined to be 7 pN/μm for single neutrophil microvilli. With the resolution of our imaging system, this technique can be used for measuring any flexural stiffness smaller than 34 pN/μm and it has great potential in single molecule biomechanics. PMID:20333317

  2. Investigation on Prototype Superconducting Linear Synchronous Motor (LSM) for 600-km/h Wheel-Type Railway

    NASA Astrophysics Data System (ADS)

    Eom, Beomyong; Lee, Changhyeong; Kim, Seokho; Lee, Changyoung; Yun, Sangwon

    The existing wheel-type high-speed railway with a rotatable motor has a limit of 600 km/h speed. The normal conducting electromagnet has several disadvantages to realize 600 km/h speed. Several disadvantages are the increased space and weight, and the decreased electric efficiency to generate the required high magnetic field. In order to reduce the volume and weight, superconducting electromagnets can be considered for LSM (Linear Synchronous Motor). Prior to the fabrication of the real system, a prototype demo-coil is designed and fabricated using 2G high temperature superconducting wire. The prototype HTS coil is cooled by the conduction using a GM cryocooler. To reduce the heat penetration, thermal design was performed for the current leads, supporting structure and radiation shield considering the thermal stress. The operating temperature and current are 30∼40 K and 100 A. The coil consists of two double pancake coils (N, S pole, respectively) and it is driven on a test rail, which is installed for the test car. This paper describes the design and test results of the prototype HTS LSM system. Thermal characteristics are investigated with additional dummy thermal mass on the coil after turning off the cryocooler.

  3. Coarse-graining stiff bonds

    NASA Astrophysics Data System (ADS)

    Español, P.; de la Torre, J. A.; Ferrario, M.; Ciccotti, G.

    2011-11-01

    The method of constraints in molecular dynamics is useful because it avoids the resolution of high frequency motions with very small time steps. However, the price to pay is that both the dynamics and the statistics of a constrained system differ from those of the unconstrained one. Instead of using constraints, we propose to dispose of high frequency motions by a coarse-graining procedure in which fast variables are eliminated. These fast variables are thus modeled as friction and thermal fluctuations. We illustrate the methodology with a simple model case, a diatomic molecule in a monoatomic solvent, in which the bond between the atoms of a diatomic molecule is stiff. Although the example is very simple and does not display the interesting effects of "wrong" statistics of the constrained system (i.e. the well-known issue connected to the Fixman potential), it is well suited to give the proof of concept of the whole procedure.

  4. Intraventricular filling under increasing left ventricular wall stiffness and heart rates

    NASA Astrophysics Data System (ADS)

    Samaee, Milad; Lai, Hong Kuan; Schovanec, Joseph; Santhanakrishnan, Arvind; Nagueh, Sherif

    2015-11-01

    Heart failure with normal ejection fraction (HFNEF) is a clinical syndrome that is prevalent in over 50% of heart failure patients. HFNEF patients show increased left ventricle (LV) wall stiffness and clinical diagnosis is difficult using ejection fraction (EF) measurements. We hypothesized that filling vortex circulation strength would decrease with increasing LV stiffness irrespective of heart rate (HR). 2D PIV and hemodynamic measurements were acquired on LV physical models of varying wall stiffness under resting and exercise HRs. The LV models were comparatively tested in an in vitro flow circuit consisting of a two-element Windkessel model driven by a piston pump. The stiffer LV models were tested in comparison with the least stiff baseline model without changing pump amplitude, circuit compliance and resistance. Increasing stiffness at resting HR resulted in diminishing cardiac output without lowering EF below 50% as in HFNEF. Increasing HR to 110 bpm in addition to stiffness resulted in lowering EF to less than 50%. The circulation strength of the intraventricular filling vortex diminished with increasing stiffness and HR. The results suggest that filling vortex circulation strength could be potentially used as a surrogate measure of LV stiffness. This research was supported by the Oklahoma Center for Advancement of Science and Technology (HR14-022).

  5. Performance analysis of a semi-active mount made by a new variable stiffness spring

    NASA Astrophysics Data System (ADS)

    Azadi, Mojtaba; Behzadipour, Saeed; Faulkner, Garry

    2011-06-01

    A new variable stiffness mount (VSM), is created and its performance is experimentally measured and analyzed. VSMs have extensive applications in the vibration control of machineries including automotive industry. The variable stiffness in this design is realized by the prestress stiffness of a cable-based mechanism at a singular configuration. Changing the prestress, through a piezo actuator and a simple on-off controller, results in significant stiffness change in short time and at low energy costs. The stiffness of the VSM is characterized through static and dynamic tests. The performance of the VSM is then evaluated and compared with an equivalent passive mount in two main areas of transmissibility and shock absorption. The response time of the semi-active VSM is also measured in a realistic scenario. A summary of the performance tests are presented at the end.

  6. Concept for design of variable stiffness damper

    NASA Technical Reports Server (NTRS)

    Lohr, J. J.

    1967-01-01

    Damping mechanism, containing polymeric-like materials is applicable to a wide range of shock and vibration. The polymeric-like material changes from a relatively stiff material to a relatively soft, rubbery material in the region of their glass transition temperatures. The energy absorption characteristics and stiffness are controllable with temperature.

  7. Relative stiffness of flat-conductor cable

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1977-01-01

    Bending moment data were taken on ten different cable samples and normalized to express all stiffness factors in terms of cable 5.1 cm in width. Relative stiffness data and nominal physical characteristics are tabulated and presented in graphical form for designers who may be interested in finding torques exerted on critical components by short lengths of cable.

  8. Curvature dependent modulation of fish fin stiffness

    NASA Astrophysics Data System (ADS)

    Nguyen, Khoi; Yu, Ning; Bandi, Mahesh; Venkadesan, Madhusudhan; Mandre, Shreyas

    Propulsion and maneuvering ability of fishes depends on the stiffness of their fins. However, increasing stiffness by simply adding material to thicken the fin would incur a substantial energetic cost associated with flapping the fin. We propose that fishes increase stiffness of the fin not by building thicker fins, but by geometrically coupling out-of-plane bending of the fin's rays with in-plane stretching of a stiff membrane that connects the rays. We present a model of fin elasticity for ray-finned fish, where we decompose the fin into a series of elastic beams (rays) with springy interconnections (membrane). In one limit, where the membranes are infinitely extensible, the fin's stiffness is no more than the sum of the stiffness of individual rays. At the other limit of an inextensible membrane, fin stiffness reaches an asymptotic maximum. The asymptote value increases monotonically with curvature. We propose that musculature at the base of the fin controls fin curvature, and thereby modulates stiffness.

  9. Stiffness and hysteresis properties of some prosthetic feet.

    PubMed

    van Jaarsveld, H W; Grootenboer, H J; de Vries, J; Koopman, H F

    1990-12-01

    A prosthetic foot is an important element of a prosthesis, although it is not always fully recognized that the properties of the foot, along with the prosthetic knee joint and the socket, are in part responsible for the stability and metabolic energy cost during walking. The stiffness and the hysteresis, which are the topics of this paper, are not properly prescribed, but could be adapted to improve the prosthetic walking performance. The shape is strongly related to the cosmetic appearance and so can not be altered to effect these improvements. Because detailed comparable data on foot stiffness and hysteresis, which are necessary to quantify the differences between different types of feet, are absent in literature, these properties were measured by the authors in a laboratory setup for nine different prosthetic feet, bare and with two different shoes. One test cycle consisted of measurements of load deformation curves in 66 positions, representing the range from heel strike to toe-off. The hysteresis is defined by the energy loss as a part of the total deformation energy. Without shoes significant differences in hysteresis between the feet exist, while with sport shoes the differences in hysteresis between the feet vanish for the most part. Applying a leather shoe leads to an increase of hysteresis loss for all tested feet. The stiffness turned out to be non-constant, so mean stiffness is used.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2095529

  10. Cardiovascular Health and Arterial Stiffness: The Maine Syracuse Longitudinal Study

    PubMed Central

    Crichton, Georgina E; Elias, Merrill F; Robbins, Michael A

    2014-01-01

    Ideal cardiovascular health is a recently defined construct by the American Heart Association (AHA) to promote cardiovascular disease reduction. Arterial stiffness is a major risk factor for cardiovascular disease. The extent to which the presence of multiple prevalent cardiovascular risk factors and health behaviors is associated with arterial stiffness is unknown. The aim of this study was to examine the association between the AHA construct of cardiovascular health and arterial stiffness, as indexed by pulse wave velocity and pulse pressure. The AHA health metrics, comprising of four health behaviors (smoking, body mass index, physical activity, and diet) and three health factors (total cholesterol, blood pressure, and fasting plasma glucose) were evaluated among 505 participants in the Maine-Syracuse Longitudinal Study. Outcome measures were carotid-femoral pulse wave velocity (PWV) and pulse pressure measured at 4 to 5-year follow-up. Better cardiovascular health, comprising both health factors and behaviors, was associated with lower arterial stiffness, as indexed by pulse wave velocity and pulse pressure. Those with at least five health metrics at ideal levels had significantly lower PWV (9.8 m/s) than those with two or less ideal health metrics (11.7 m/s) (P<0.001). This finding remained with the addition of demographic and PWV-related variables (P=0.004). PMID:24384629

  11. Influence of substrate stiffness on the phenotype of heart cells.

    PubMed

    Bhana, Bashir; Iyer, Rohin K; Chen, Wen Li Kelly; Zhao, Ruogang; Sider, Krista L; Likhitpanichkul, Morakot; Simmons, Craig A; Radisic, Milica

    2010-04-15

    Adult cardiomyocytes (CM) retain little capacity to regenerate, which motivates efforts to engineer heart tissues that can emulate the functional and mechanical properties of native myocardium. Although the effects of matrix stiffness on individual CM have been explored, less attention was devoted to studies at the monolayer and the tissue level. The purpose of this study was to characterize the influence of substrate mechanical stiffness on the heart cell phenotype and functional properties. Neonatal rat heart cells were seeded onto collagen-coated polyacrylamide (PA) substrates with Young's moduli of 3, 22, 50, and 144 kPa. Collagen-coated glass coverslips without PA represented surfaces with effectively "infinite" stiffness. The local elastic modulus of native neonatal rat heart tissue was measured to range from 4.0 to 11.4 kPa (mean value of 6.8 kPa) and for native adult rat heart tissue from 11.9 to 46.2 kPa (mean value of 25.6 kPa), motivating our choice of the above PA gel stiffness. Overall, by 120 h of cultivation, the lowest stiffness PA substrates (3 kPa) exhibited the lowest excitation threshold (ET; 3.5 +/- 0.3 V/cm), increased troponin I staining (52% positively stained area) but reduced cell density, force of contraction (0.18 +/- 0.1 mN/mm(2)), and cell elongation (aspect ratio = 1.3-1.4). Higher stiffness (144 kPa) PA substrates exhibited reduced troponin I staining (30% positively stained area), increased fibroblast density (70% positively stained area), and poor electrical excitability. Intermediate stiffness PA substrates of stiffness comparable to the native adult rat myocardium (22-50 kPa) were found to be optimal for heart cell morphology and function, with superior elongation (aspect ratio > 4.3), reasonable ET (ranging from 3.95 +/- 0.8 to 4.4 +/- 0.7 V/cm), high contractile force development (ranging from 0.52 +/- 0.2 to 1.60 +/- 0.6 mN/mm(2)), and well-developed striations, all consistent with a differentiated phenotype. PMID:20014437

  12. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    SciTech Connect

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

  13. Performance Assessment of a New Variable Stiffness Probing System for Micro-CMMs

    PubMed Central

    Alblalaihid, Khalid; Kinnell, Peter; Lawes, Simon; Desgaches, Dorian; Leach, Richard

    2016-01-01

    When designing micro-scale tactile probes, a design trade-off must be made between the stiffness and flexibility of the probing element. The probe must be flexible enough to ensure sensitive parts are not damaged during contact, but it must be stiff enough to overcome attractive surface forces, ensure it is not excessively fragile, easily damaged or sensitive to inertial loads. To address the need for a probing element that is both flexible and stiff, a novel micro-scale tactile probe has been designed and tested that makes use of an active suspension structure. The suspension structure is used to modulate the probe stiffness as required to ensure optimal stiffness conditions for each phase of the measurement process. In this paper, a novel control system is presented that monitors and controls stiffness, allowing two probe stiffness values (“stiff” and “flexible”) to be defined and switched between. During switching, the stylus tip undergoes a displacement of approximately 18 µm, however, the control system is able ensure a consistent flexible mode tip deflection to within 12 nm in the vertical axis. The overall uncertainty for three-dimensional displacement measurements using the probing system is estimated to be 58 nm, which demonstrates the potential of this innovative variable stiffness micro-scale probe system. PMID:27070611

  14. Stiffness control of balance in quiet standing.

    PubMed

    Winter, D A; Patla, A E; Prince, F; Ishac, M; Gielo-Perczak, K

    1998-09-01

    Our goal was to provide some insights into how the CNS controls and maintains an upright standing posture, which is an integral part of activities of daily living. Although researchers have used simple performance measures of maintenance of this posture quite effectively in clinical decision making, the mechanisms and control principles involved have not been clear. We propose a relatively simple control scheme for regulation of upright posture that provides almost instantaneous corrective response and reduces the operating demands on the CNS. The analytic model is derived and experimentally validated. A stiffness model was developed for quiet standing. The model assumes that muscles act as springs to cause the center-of-pressure (COP) to move in phase with the center-of-mass (COM) as the body sways about some desired position. In the sagittal plane this stiffness control exists at the ankle plantarflexors, in the frontal plane by the hip abductors/adductors. On the basis of observations that the COP-COM error signal continuously oscillates, it is evident that the inverted pendulum model is severely underdamped, approaching the undamped condition. The spectrum of this error signal is seen to match that of a tuned mass, spring, damper system, and a curve fit of this "tuned circuit" yields omega n the undamped natural frequency of the system. The effective stiffness of the system, Ke, is then estimated from Ke = I omega n2, and the damping B is estimated from B = BW X I, where BW is the bandwidth of the tuned response (in rad/s), and I is the moment of inertia of the body about the ankle joint. Ten adult subjects were assessed while standing quietly at three stance widths: 50% hip-to-hip distance, 100 and 150%. Subjects stood for 2 min in each position with eyes open; the 100% stance width was repeated with eyes closed. In all trials and in both planes, the COP oscillated virtually in phase (within 6 ms) with COM, which was predicted by a simple 0th order spring model. Sway amplitude decreased as stance width increased, and Ke increased with stance width. A stiffness model would predict sway to vary as Ke-0.5. The experimental results were close to this prediction: sway was proportional to Ke(-0.55). Reactive control of balance was not evident for several reasons. The visual system does not appear to contribute because no significant difference between eyes open and eyes closed results was found at 100% stance width. Vestibular (otolith) and joint proprioceptive reactive control were discounted because the necessary head accelerations, joint displacements, and velocities were well below reported thresholds. Besides, any reactive control would predict that COP would considerably lag (150-250 ms) behind the COM. Because the average COP was only 4 ms delayed behind the COM, reactive control was not evident; this small delay was accounted for by the damping in the tuned mechanical system. PMID:9744933

  15. The Difference between Stiffness and Quasi-stiffness in the Context of Biomechanical Modeling

    PubMed Central

    Rouse, Elliott J.; Gregg, Robert D.; Hargrove, Levi J.; Sensinger, Jonathon W.

    2014-01-01

    The ankle contributes the majority of mechanical power during walking and is a frequently studied joint in biomechanics. Specifically, researchers have extensively investigated the torque-angle relationship for the ankle during dynamic tasks, such as walking and running. The slope of this relationship has been termed the “quasi-stiffness.” However, over time, researchers have begun to interchange the concepts of quasi-stiffness and stiffness. This is an especially important distinction as researchers currently begin to investigate the appropriate control systems for recently developed powered prosthetic legs. The quasi-stiffness and stiffness are distinct concepts in the context of powered joints, and are equivalent in the context of passive joints. The purpose of this paper is to demonstrate the difference between the stiffness and quasi-stiffness using a simple impedance controlled inverted pendulum model and a more sophisticated biped walking model, each with the ability to modify the trajectory of an impedance controller’s equilibrium angle position. In both cases, stiffness values are specified by the controller and the quasi-stiffness are shown during a single step. Both models have widely varying quasi-stiffness but each have a single stiffness value. Therefore, from this simple modeling approach, the differences and similarities between these two concepts are elucidated. PMID:23212310

  16. Leg and Joint Stiffness in Children with Spastic Diplegic Cerebral Palsy during Level Walking

    PubMed Central

    Wang, Ting-Ming; Huang, Hsing-Po; Li, Jia-Da; Hong, Shih-Wun; Lo, Wei-Ching; Lu, Tung-Wu

    2015-01-01

    Individual joint deviations are often identified in the analysis of cerebral palsy (CP) gait. However, knowledge is limited as to how these deviations affect the control of the locomotor system as a whole when striving to meet the demands of walking. The current study aimed to bridge the gap by describing the control of the locomotor system in children with diplegic CP in terms of their leg stiffness, both skeletal and muscular components, and associated joint stiffness during gait. Twelve children with spastic diplegia CP and 12 healthy controls walked at a self-selected pace in a gait laboratory while their kinematic and forceplate data were measured and analyzed during loading response, mid-stance, terminal stance and pre-swing. For calculating the leg stiffness, each of the lower limbs was modeled as a non-linear spring, connecting the hip joint center and the corresponding center of pressure, with varying stiffness that was calculated as the slope (gradient) of the axial force vs. the deformation curve. The leg stiffness was further decomposed into skeletal and muscular components considering the alignment of the lower limb. The ankle, knee and hip of the limb were modeled as revolute joints with torsional springs whose stiffness was calculated as the slope of the moment vs. the angle curve of the joint. Independent t-tests were performed for between-group comparisons of all the variables. The CP group significantly decreased the leg stiffness but increased the joint stiffness during stance phase, except during terminal stance where the leg stiffness was increased. They appeared to rely more on muscular contributions to achieve the required leg stiffness, increasing the muscular demands in maintaining the body posture against collapse. Leg stiffness plays a critical role in modulating the kinematics and kinetics of the locomotor system during gait in the diplegic CP. PMID:26629700

  17. Leg and Joint Stiffness in Children with Spastic Diplegic Cerebral Palsy during Level Walking.

    PubMed

    Wang, Ting-Ming; Huang, Hsing-Po; Li, Jia-Da; Hong, Shih-Wun; Lo, Wei-Ching; Lu, Tung-Wu

    2015-01-01

    Individual joint deviations are often identified in the analysis of cerebral palsy (CP) gait. However, knowledge is limited as to how these deviations affect the control of the locomotor system as a whole when striving to meet the demands of walking. The current study aimed to bridge the gap by describing the control of the locomotor system in children with diplegic CP in terms of their leg stiffness, both skeletal and muscular components, and associated joint stiffness during gait. Twelve children with spastic diplegia CP and 12 healthy controls walked at a self-selected pace in a gait laboratory while their kinematic and forceplate data were measured and analyzed during loading response, mid-stance, terminal stance and pre-swing. For calculating the leg stiffness, each of the lower limbs was modeled as a non-linear spring, connecting the hip joint center and the corresponding center of pressure, with varying stiffness that was calculated as the slope (gradient) of the axial force vs. the deformation curve. The leg stiffness was further decomposed into skeletal and muscular components considering the alignment of the lower limb. The ankle, knee and hip of the limb were modeled as revolute joints with torsional springs whose stiffness was calculated as the slope of the moment vs. the angle curve of the joint. Independent t-tests were performed for between-group comparisons of all the variables. The CP group significantly decreased the leg stiffness but increased the joint stiffness during stance phase, except during terminal stance where the leg stiffness was increased. They appeared to rely more on muscular contributions to achieve the required leg stiffness, increasing the muscular demands in maintaining the body posture against collapse. Leg stiffness plays a critical role in modulating the kinematics and kinetics of the locomotor system during gait in the diplegic CP. PMID:26629700

  18. Stiff Coatings on Compliant Biofibers

    PubMed Central

    Holten-Andersen, Niels; Zhao, Hua; Waite, J. Herbert

    2009-01-01

    For lasting holdfast attachment, the mussel Mytilus californianus coats its byssal threads with a protective cuticle 2-5 μm thick that is 4-6 times stiffer than the underlying collagen fibers. Although cuticle hardness (0.1 GPa) and stiffness (2 GPa) resemble those observed in related mussels, a more effective dispersion of microdamage enables M. californianus byssal threads to sustain strains to almost 120% before cuticle rupture occurs. Underlying factors for the superior damage tolerance of the byssal cuticle were explored in its microarchitecture and in the cuticular protein, mcfp-1. Cuticle microstructure was distinctly granular, with granule diameters (∼200 nm) only a quarter of those in M. galloprovincialis cuticle, for example. Compared with homologous proteins in related mussel species, mcfp-1 from M. californianus had a similar mass (∼92 kDa) and number of tandemly repeated decapeptides, and contained the same post-translational modifications, namely, trans-4-hydroxyproline, trans-2,3-cis-3,4-dihydroxyproline, and 3,4-dihydroxyphenylalanine (Dopa). The prominence of isoleucine in mcfp-1, however, distinguished it from homologues in other species. The complete protein sequence deduced from cDNAs for two related variants revealed a highly conserved consensus decapeptide PKISYPPTYK that is repeated 64 times and differs slightly from the consensus peptide (AKPSYPPTYK) of both M. galloprovincialis and M. edulis proteins. PMID:19220048

  19. Smart fabric adaptive stiffness for active vibration absorbers

    NASA Astrophysics Data System (ADS)

    Albanese, Anne-Marie; Cunefare, Kenneth A.

    2004-07-01

    Unconstrained magnetorheological-elastomers (MRE) experience a stiffness increase and elastomeric deformation in response to an applied magnetic field. An MRE consists of ferromagnetic particles dispersed in a host elastomer matrix. This study considers whether the stiffness change of MRE springs is due to magnetic particle-to-particle interactions or to elastomer deformation. If the stiffening is attributable to magnetic particle interaction, then it should occur even in the absence of the elastomer. To test this hypothesis, a smart fabric consisting of low-carbon steel thread in one direction and nonmagnetic thread in the other was created. Two extension springs were placed in parallel with this smart fabric, and placed in between two iron masses. An electromagnet coil wound about one of the masses provided the source of magnetic field across the smart fabric. The frequency response of the device was measured when the coil was driven by a DC current, at 0.5 Amp increments, from 0 to 4. The device exhibited a 33% increase in stiffness at 4 Amps compared to the stiffness at 0 Amps. While this shift is not as large as shifts observed in MREs, the design was not optimized for iron content, and only had a 0.6% iron content.

  20. Arterial stiffness of lifelong Japanese female pearl divers.

    PubMed

    Tanaka, Hirofumi; Tomoto, Tsubasa; Kosaki, Keisei; Sugawara, Jun

    2016-05-15

    Japanese female pearl divers called Ama specialize in free diving in the cold sea for collecting foods and pearls in oysters. Exercising in the water combined with marked bradycardia and pressor responses provides a circulatory challenge to properly buffer or cushion elevated cardiac pulsations. Because Ama perform repeated free dives throughout their lives, it is possible that they may have adapted similar arterial structure and function to those seen in diving mammals. We compared arterial stiffness of lifelong Japanese pearl divers with age-matched physically inactive adults living in the same fishing villages. A total of 115 Japanese female pearl divers were studied. Additionally, 50 physically inactive adults as well as 33 physically active adults (participating in community fitness programs) living in the same coastal villages were also studied. There were no differences in age (∼65 yr), body mass index, and brachial blood pressure between the groups. Measures of arterial stiffness, cardio-ankle vascular index and β-stiffness index were lower (P < 0.05) in pearl divers and physically active adults than in their physically inactive peers. Augmentation pressure and augmentation index adjusted for the heart rate of 75 beats/min were lower (P < 0.05) in pearl divers than in other groups. These results indicate that lifelong Japanese pearl divers demonstrate reduced arterial stiffness and arterial wave reflection compared with age-matched physically inactive peers living in the same fishing villages. PMID:26984889

  1. Stiff substrates enhance cultured neuronal network activity

    PubMed Central

    Zhang, Quan-You; Zhang, Yan-Yan; Xie, Jing; Li, Chen-Xu; Chen, Wei-Yi; Liu, Bai-Lin; Wu, Xiao-an; Li, Shu-Na; Huo, Bo; Jiang, Lin-Hua; Zhao, Hu-Cheng

    2014-01-01

    The mechanical property of extracellular matrix and cell-supporting substrates is known to modulate neuronal growth, differentiation, extension and branching. Here we show that substrate stiffness is an important microenvironmental cue, to which mouse hippocampal neurons respond and integrate into synapse formation and transmission in cultured neuronal network. Hippocampal neurons were cultured on polydimethylsiloxane substrates fabricated to have similar surface properties but a 10-fold difference in Young's modulus. Voltage-gated Ca2+ channel currents determined by patch-clamp recording were greater in neurons on stiff substrates than on soft substrates. Ca2+ oscillations in cultured neuronal network monitored using time-lapse single cell imaging increased in both amplitude and frequency among neurons on stiff substrates. Consistently, synaptic connectivity recorded by paired recording was enhanced between neurons on stiff substrates. Furthermore, spontaneous excitatory postsynaptic activity became greater and more frequent in neurons on stiff substrates. Evoked excitatory transmitter release and excitatory postsynaptic currents also were heightened at synapses between neurons on stiff substrates. Taken together, our results provide compelling evidence to show that substrate stiffness is an important biophysical factor modulating synapse connectivity and transmission in cultured hippocampal neuronal network. Such information is useful in designing instructive scaffolds or supporting substrates for neural tissue engineering. PMID:25163607

  2. Quantifying Parameter Sensitivity, Interaction and Transferability in Hydrologically Enhanced Versions of Noah-LSM over Transition Zones

    NASA Technical Reports Server (NTRS)

    Rosero, Enrique; Yang, Zong-Liang; Wagener, Thorsten; Gulden, Lindsey E.; Yatheendradas, Soni; Niu, Guo-Yue

    2009-01-01

    We use sensitivity analysis to identify the parameters that are most responsible for shaping land surface model (LSM) simulations and to understand the complex interactions in three versions of the Noah LSM: the standard version (STD), a version enhanced with a simple groundwater module (GW), and version augmented by a dynamic phenology module (DV). We use warm season, high-frequency, near-surface states and turbulent fluxes collected over nine sites in the US Southern Great Plains. We quantify changes in the pattern of sensitive parameters, the amount and nature of the interaction between parameters, and the covariance structure of the distribution of behavioral parameter sets. Using Sobol s total and first-order sensitivity indexes, we show that very few parameters directly control the variance of the model output. Significant parameter interaction occurs so that not only the optimal parameter values differ between models, but the relationships between parameters change. GW decreases parameter interaction and appears to improve model realism, especially at wetter sites. DV increases parameter interaction and decreases identifiability, implying it is overparameterized and/or underconstrained. A case study at a wet site shows GW has two functional modes: one that mimics STD and a second in which GW improves model function by decoupling direct evaporation and baseflow. Unsupervised classification of the posterior distributions of behavioral parameter sets cannot group similar sites based solely on soil or vegetation type, helping to explain why transferability between sites and models is not straightforward. This evidence suggests a priori assignment of parameters should also consider climatic differences.

  3. Effect of Pressure on Liver Stiffness During the Development of Liver Fibrosis in Rabbits.

    PubMed

    Tang, Wen Bo; Xu, Qing Hua; Jiao, Zi Yu; Wu, Rong; Song, Qing; Luo, Yu Kun

    2016-01-01

    This study was designed to investigate whether hepatic arterial pressure and portal pressure have an effect on liver stiffness during the development of liver fibrosis. Liver fibrosis was induced in 50 healthy New Zealand white rabbits. Laparotomy was performed to measure liver stiffness, and the portal vein and hepatic artery were successively ligated to repeat the measurements. A significant difference was observed among liver stiffness values measured at different time points (F = 22.82, p < 0.001). Differences between original liver stiffness and liver stiffness measured after portal ligation were positively correlated with portal pressure (r = 0.801, p < 0.001). In animals with grade 4 liver fibrosis, the increase in liver stiffness caused by pressure was greater than that caused by extracellular matrix accumulation (p = 0.002). In conclusion, hepatic arterial pressure and portal pressure have a significant effect on liver stiffness during the development of liver fibrosis. PMID:26497767

  4. Is the negative equivalent stiffness of a system possible?

    NASA Astrophysics Data System (ADS)

    Zhao, Mohan

    2016-01-01

    The negative stiffness concept is seldom encountered in high school courses as well as in college courses. This paper reports a system with negative equivalent stiffness, which is the most important component in constructing a quasi-zero stiffness isolator.

  5. The effects of isometric and isotonic training on hamstring stiffness and anterior cruciate ligament loading mechanisms.

    PubMed

    Blackburn, J Troy; Norcross, Marc F

    2014-02-01

    Greater hamstring musculotendinous stiffness is associated with lesser ACL loading mechanisms. Stiffness is enhanced via training, but previous investigations evaluated tendon rather than musculotendinous stiffness, and none involved the hamstrings. We evaluated the effects of isometric and isotonic training on hamstring stiffness and ACL loading mechanisms. Thirty-six healthy volunteers were randomly assigned to isometric, isotonic, and control groups. Isometric and isotonic groups completed 6 weeks of training designed to enhance hamstring stiffness. Stiffness, anterior tibial translation, and landing biomechanics were measured prior to and following the interventions. Hamstring stiffness increased significantly with isometric training (15.7%; p=0.006), but not in the isotonic (13.5%; p=0.089) or control (0.4%; p=0.942) groups. ACL loading mechanisms changed in manners consistent with lesser loading, but these changes were not statistically significant. These findings suggest that isometric training may be an important addition to ACL injury prevention programs. The lack of significant changes in ACL loading mechanisms and effects of isotonic training were likely due to the small sample sizes per group and limited intervention duration. Future research using larger sample sizes and longer interventions is necessary to determine the effects of enhancing hamstring stiffness on ACL loading and injury risk. PMID:24268874

  6. Effect of sprung (suspended) floor on lower extremity stiffness during a force-returning ballet jump.

    PubMed

    Hackney, James; Brummel, Sara; Becker, Dana; Selbo, Aubrey; Koons, Sandra; Stewart, Meredith

    2011-12-01

    Our objective in this study was to compare stiffness of bilateral lower extremities (LEs) in ballet dancers performing sauté on a low-stiffness "sprung floor" to that during the same movement on a high-stiffness floor (wood on concrete). LE stiffness was calculated as the ratio of vertical ground reaction force (in kN) to compression of the lower limb (in meters). Seven female dancers were measured for five repetitions each at the point of maximum leg compression while performing sauté on both of the surfaces, such that 43 ms of data were represented for each trial. The stiffness of bilateral LEs at the point of maximum compression was higher by a mean difference score of 2.48 ± 2.20 kN/m on the low-stiffness floor compared to a high-stiffness floor. Paired t-test analysis of the difference scores yielded a one-tailed probability of 0.012. This effect was seen in six out of seven participants (one participant showed no difference between floor conditions). The finding of increased stiffness of the LEs in the sprung floor condition suggests that some of the force of landing the jump was absorbed by the surface, and therefore did not need to be absorbed by the participants' LEs themselves. This in turn implies that a sprung dance floor may help to prevent dance-related injuries. PMID:22211195

  7. Stiffness matrix formulation for double row angular contact ball bearings: Analytical development and validation

    NASA Astrophysics Data System (ADS)

    Gunduz, Aydin; Singh, Rajendra

    2013-10-01

    Though double row angular contact ball bearings are widely used in industrial, automotive, and aircraft applications, the scientific literature on double row bearings is sparse. It is also shown that the stiffness matrices of two single row bearings may not be simply superposed to obtain the stiffness matrix of a double row bearing. To overcome the deficiency in the literature, a new, comprehensive, analytical approach is proposed based on the Hertzian theory for back-to-back, face-to-face, and tandem arrangements. The elements of the five-dimensional stiffness matrix for double row angular contact ball bearings are computed given either the mean bearing displacement or the mean load vector. The diagonal elements of the proposed stiffness matrix are verified with a commercial code for all arrangements under three loading scenarios. Some changes in stiffness coefficients are investigated by varying critical kinematic and geometric parameters to provide more insight. Finally, the calculated natural frequencies of a shaft-bearing experiment are successfully compared with measurements, thus validating the proposed stiffness formulation. For double row angular contact ball bearings, the moment stiffness and cross-coupling stiffness terms are significant, and the contact angle changes under loads. The proposed formulation is also valid for paired (duplex) bearings which behave as an integrated double row unit when the surrounding structural elements are sufficiently rigid.

  8. Clipped viscous damping with negative stiffness for semi-active cable damping

    NASA Astrophysics Data System (ADS)

    Weber, F.; Boston, C.

    2011-04-01

    This paper investigates numerically and experimentally clipped viscous damping with negative stiffness for semi-active cable damping. From simulations it is concluded that unclipped and clipped viscous damping with negative stiffness is equivalent to unclipped and clipped LQR. It is shown that optimized unclipped viscous damping with negative stiffness generates critical cable damping by an anti-node at the actuator position. The resulting curvature at the actuator position is larger than the curvature close to the anchors due to the disturbance forces which may lead to premature cable fatigue at the actuator position. Optimized clipped viscous damping with negative stiffness does not show this drawback, can be implemented using a semi-active damper and produces twice as much cable damping as optimal viscous damping. Close to the optimal tuning, it leads to approximately the same control force as optimal semi-active friction damping with negative stiffness, which explains the superior cable damping. The superior damping results from the negative stiffness that increases the damper motion. Clipped viscous damping with negative stiffness is validated on a strand cable with a magneto-rheological damper. The measured cable damping is twice that achieved by emulated viscous damping, which confirms the numerical results. A tuning rule for clipped viscous damping with negative stiffness of real cables with flexural rigidity is given.

  9. Dynamic stiffness formulation for free orthotropic plates

    NASA Astrophysics Data System (ADS)

    Ghorbel, O.; Casimir, J. B.; Hammami, L.; Tawfiq, I.; Haddar, M.

    2015-06-01

    This paper presents a procedure for developing the dynamic stiffness matrix of a free orthotropic Kirchhoff plate. The dynamic stiffness matrix is computed for free edge boundary conditions of the plate that allow assembly procedures. The method is based on a strong formulation of Kirchhoff plate equations and series solutions, taking advantage of the symmetry and Gorman type decomposition of the free boundary conditions. The performances of the so-called Dynamic Stiffness Method (DSM) are evaluated by comparing the harmonic responses of an orthotropic Kirchhoff plate with those obtained from the Finite Element Method using four noded quadrilateral elements.

  10. Arterial stiffness, central hemodynamics, and cardiovascular risk in hypertension

    PubMed Central

    Palatini, Paolo; Casiglia, Edoardo; Gąsowski, Jerzy; Głuszek, Jerzy; Jankowski, Piotr; Narkiewicz, Krzysztof; Saladini, Francesca; Stolarz-Skrzypek, Katarzyna; Tikhonoff, Valérie; Van Bortel, Luc; Wojciechowska, Wiktoria; Kawecka-Jaszcz, Kalina

    2011-01-01

    This review summarizes several scientific contributions at the recent Satellite Symposium of the European Society of Hypertension, held in Milan, Italy. Arterial stiffening and its hemodynamic consequences can be easily and reliably measured using a range of noninvasive techniques. However, like blood pressure (BP) measurements, arterial stiffness should be measured carefully under standardized patient conditions. Carotid-femoral pulse wave velocity has been proposed as the gold standard for arterial stiffness measurement and is a well recognized predictor of adverse cardiovascular outcome. Systolic BP and pulse pressure in the ascending aorta may be lower than pressures measured in the upper limb, especially in young individuals. A number of studies suggest closer correlation of end-organ damage with central BP than with peripheral BP, and central BP may provide additional prognostic information regarding cardiovascular risk. Moreover, BP-lowering drugs can have differential effects on central aortic pressures and hemodynamics compared with brachial BP. This may explain the greater beneficial effect provided by newer antihypertensive drugs beyond peripheral BP reduction. Although many methodological problems still hinder the wide clinical application of parameters of arterial stiffness, these will likely contribute to cardiovascular assessment and management in future clinical practice. Each of the abovementioned parameters reflects a different characteristic of the atherosclerotic process, involving functional and/or morphological changes in the vessel wall. Therefore, acquiring simultaneous measurements of different parameters of vascular function and structure could theoretically enhance the power to improve risk stratification. Continuous technological effort is necessary to refine our methods of investigation in order to detect early arterial abnormalities. Arterial stiffness and its consequences represent the great challenge of the twenty-first century for affluent countries, and “de-stiffening” will be the goal of the next decades. PMID:22174583

  11. “Smooth Muscle Cell Stiffness Syndrome”—Revisiting the Structural Basis of Arterial Stiffness

    PubMed Central

    Sehgel, Nancy L.; Vatner, Stephen F.; Meininger, Gerald A.

    2015-01-01

    In recent decades, the pervasiveness of increased arterial stiffness in patients with cardiovascular disease has become increasingly apparent. Though, this phenomenon has been well documented in humans and animal models of disease for well over a century, there has been surprisingly limited development in a deeper mechanistic understanding of arterial stiffness. Much of the historical literature has focused on changes in extracellular matrix proteins—collagen and elastin. However, extracellular matrix changes alone appear insufficient to consistently account for observed changes in vascular stiffness, which we observed in our studies of aortic stiffness in aging monkeys. This led us to examine novel mechanisms operating at the level of the vascular smooth muscle cell (VSMC)—that include increased cell stiffness and adhesion to extracellular matrix—which that may be interrelated with other mechanisms contributing to arterial stiffness. We introduce these observations as a new concept—the Smooth Muscle Cell Stiffness Syndrome (SMCSS)—within the field of arterial stiffness and posit that stiffening of vascular cells impairs vascular function and may contribute stiffening to the vasculature with aging and cardiovascular disease. Importantly, this review article revisits the structural basis of arterial stiffness in light of these novel findings. Such classification of SMCSS and its contextualization into our current understanding of vascular mechanics may be useful in the development of strategic therapeutics to directly target arterial stiffness. PMID:26635621

  12. An acoustic startle alters knee joint stiffness and neuromuscular control.

    PubMed

    DeAngelis, A I; Needle, A R; Kaminski, T W; Royer, T R; Knight, C A; Swanik, C B

    2015-08-01

    Growing evidence suggests that the nervous system contributes to non-contact knee ligament injury, but limited evidence has measured the effect of extrinsic events on joint stability. Following unanticipated events, the startle reflex leads to universal stiffening of the limbs, but no studies have investigated how an acoustic startle influences knee stiffness and muscle activation during a dynamic knee perturbation. Thirty-six individuals were tested for knee stiffness and muscle activation of the quadriceps and hamstrings. Subjects were seated and instructed to resist a 40-degree knee flexion perturbation from a relaxed state. During some trials, an acoustic startle (50 ms, 1000 Hz, 100 dB) was applied 100 ms prior to the perturbation. Knee stiffness, muscle amplitude, and timing were quantified across time, muscle, and startle conditions. The acoustic startle increased short-range (no startle: 0.044 ± 0.011 N·m/deg/kg; average startle: 0.047 ± 0.01 N·m/deg/kg) and total knee stiffness (no startle: 0.036 ± 0.01 N·m/deg/kg; first startle 0.027 ± 0.02 N·m/deg/kg). Additionally, the startle contributed to decreased [vastus medialis (VM): 13.76 ± 33.6%; vastus lateralis (VL): 6.72 ± 37.4%] but earlier (VM: 0.133 ± 0.17 s; VL: 0.124 ± 0.17 s) activation of the quadriceps muscles. The results of this study indicate that the startle response can significantly disrupt knee stiffness regulation required to maintain joint stability. Further studies should explore the role of unanticipated events on unintentional injury. PMID:25212407

  13. Vascular stiffness in insulin resistance and obesity

    PubMed Central

    Jia, Guanghong; Aroor, Annayya R.; DeMarco, Vincent G.; Martinez-Lemus, Luis A.; Meininger, Gerald A.; Sowers, James R.

    2015-01-01

    Obesity, insulin resistance, and type 2 diabetes are associated with a substantially increased prevalence of vascular fibrosis and stiffness, with attendant increased risk of cardiovascular and chronic kidney disease. Although the underlying mechanisms and mediators of vascular stiffness are not well understood, accumulating evidence supports the role of metabolic and immune dysregulation related to increased adiposity, activation of the renin angiotensin aldosterone system, reduced bioavailable nitric oxide, increased vascular extracellular matrix (ECM) and ECM remodeling in the pathogenesis of vascular stiffness. This review will give a brief overview of the relationship between obesity, insulin resistance and increased vascular stiffness to provide a contemporary understanding of the proposed underlying mechanisms and potential therapeutic strategies. PMID:26321962

  14. Programmable variable stiffness 2D surface design

    NASA Astrophysics Data System (ADS)

    Trabia, Sarah; Hwang, Taeseon; Yim, Woosoon

    2014-03-01

    Variable stiffness features can contribute to many engineering applications ranging from robotic joints to shock and vibration mitigation. In addition, variable stiffness can be used in the tactile feedback to provide the sense of touch to the user. A key component in the proposed device is the Biased Magnetorheological Elastomer (B-MRE) where iron particles within the elastomer compound develop a dipole interaction energy. A novel feature of this device is to introduce a field induced shear modulus bias via a permanent magnet which provides an offset with a current input to the electromagnetic control coil to change the compliance or modulus of a base elastomer in both directions (softer or harder). The B-MRE units can lead to the design of a variable stiffness surface. In this preliminary work, both computational and experimental results of the B-MRE are presented along with a preliminary design of the programmable variable stiffness surface design.

  15. Medial Tibiofemoral-Joint Stiffness in Males and Females Across the Lifespan

    PubMed Central

    Aronson, Patricia; Rijke, Arie; Hertel, Jay; Ingersoll, Christopher D.

    2014-01-01

    Context: Analyzing ligament stiffness between males and females at 3 maturational stages across the lifespan may provide insight into whether changes in ligament behavior with aging may contribute to joint laxity. Objective: To compare the stiffness of the medial structures of the tibiofemoral joint and the medial collateral ligament to determine if there are differences at 3 distinct ages and between the sexes. Design: Cross-sectional study. Setting: Laboratory. Patients or Other Participants: A total of 108 healthy and physically active volunteers with no previous knee surgery, no acute knee injury, and no use of exogenous hormones in the past 6 months participated. They were divided into 6 groups based on sex and age (8–10, 18–40, 50–75 years). Main Outcome Measure(s): Ligament stiffness of the tibiofemoral joint was measured with an arthrometer in 0° and 20° of tibiofemoral-joint flexion. The slope values of the force-strain line that represents stiffness of the medial tibiofemoral joint at 0° and the medial collateral ligament at 20° of flexion were obtained. Results: When height and mass were controlled, we found a main effect (P < .001) for age group: the 8- to 10-year olds were less stiff than both the 18- to 40- and the 50- to 75-year-old groups. No effects of sex or tibiofemoral-joint position on stiffness measures were noted when height and mass were included as covariates. Conclusions: Prepubescent medial tibiofemoral-joint stiffness was less than postpubescent knee stiffness. Medial tibiofemoral-joint stiffness was related to height and mass after puberty in men and women. PMID:24955624

  16. Active Stiffness and Strength in People With Unilateral Anterior Shoulder Instability: A Bilateral Comparison

    PubMed Central

    Olds, Margie; McNair, Peter; Nordez, Antoine; Cornu, Christophe

    2011-01-01

    Context: Active muscle stiffness might protect the unstable shoulder from recurrent dislocation. Objective: To compare strength and active stiffness in participants with unilateral anterior shoulder instability and to examine the relationship between active stiffness and functional ability. Design: Cross-sectional study. Setting: University research laboratory. Patients or Other Participants: Participants included 16 males (age range, 16–40 years; height = 179.4 ± 6.1 cm; mass = 79.1 ± 6.8 kg) with 2 or more episodes of unilateral traumatic anterior shoulder instability. Main Outcome Measure(s): Active stiffness and maximal voluntary strength were measured bilaterally in participants. In addition, quality of life, function, and perceived instability were measured using the Western Ontario Stability Index, American Shoulder and Elbow Surgeons Standardized Shoulder Assessment Form, and Single Alpha Numeric Evaluation, respectively. Results: We found less horizontal adduction strength (t15 = −4.092, P = .001) and less stiffness at 30% (t14 = −3.796, P = .002) and 50% (t12 = −2.341, P = .04) maximal voluntary strength in the unstable than stable shoulder. Active stiffness was not correlated with quality of life, function, or perceived instability (r range, 0.0–0.25; P > .05). Conclusions: The observed reduction in stiffness in the unstable shoulder warrants inclusion of exercises in the rehabilitation program to protect the joint from perturbations that might lead to dislocation. The lack of association between active stiffness and quality of life, function, or perceived instability might indicate that stiffness plays a less direct role in shoulder stability. PMID:22488190

  17. Dynamic influences of changing gear tooth stiffness

    SciTech Connect

    Morguel, O.K.; Esat, I.

    1997-07-01

    One of the principal sources of vibratory excitation of gear a system is due to the angular speed fluctuation of meshing gears due to non-linearities and profile errors and tooth and supporting bearings flexibility. The transmission error is also influenced by the varying force at the contact point of the meshing gear teeth. The varying contact force itself is influenced by the varying tooth stiffness due to change of orientation of teeth relative to each other, during the contact phase of each pair. This paper presents a simplified single degree of freedom gear system. It is assumed that one member of the gear pair is rigid and flexibility of the gear tooth is attributed only to one section of the gear system. This enables the equation to be simplified to a single degree of freedom system. The resulting non-linear equation is solved iteratively by employing a method which combines piecewise linearization for the stiffness and resulting contact orientation shift due to shaft and tooth flexibility. The contact shift will be referred as the phase shift in this report. The early finding indicates that there are significant differences between the response of the system incorporating three different tooth stiffness, namely, constant tooth stiffness, rectangular wave tooth stiffness and sinusoidal tooth stiffness. The results also implies that any design specification associated with gears has to include gear tooth influences, especially if the excitation is of a major concern. The rectangular stiffness variation which most accurately describes the tooth stiffness gives a response fluctuation, studied in the frequency domain shows that the effective natural frequencies fluctuates between certain upper and lower limits. Thus the paper suggest that any design study should consider these limits.

  18. An analysis of traction drive torsional stiffness

    NASA Technical Reports Server (NTRS)

    Rohn, D. A.; Loewenthal, S. H.

    1983-01-01

    The tangential compliance of elastic bodies in concentrated contact applied to traction drive elements to determine their torsional stiffness was analyzed. Static loading and rotating conditions are considered. The effects of several design variables are shown. The theoretical torsional stiffness of a fixed ratio multiroller drive is computed and compared to experimental values. It is shown that the torsional compliance of the traction contacts themselves is a relatively small portion of the overall drive system compliance.

  19. Stiff limb syndrome: a case report

    PubMed Central

    2010-01-01

    Introduction Stiff limb syndrome is a clinical feature of the stiff person syndrome, which is a rare and disabling neurologic disorder characterized by muscle rigidity and episodic spasms that involve axial and limb musculature. It is an autoimmune disorder resulting in a malfunction of aminobutyric acid mediated inhibitory networks in the central nervous system. We describe a patient diagnosed by neurological symptoms of stiff limb syndrome with a good outcome after treatment, and a review of the related literature. Case presentation A 49-year-old male patient presented with a progressive stiffness and painful spasms of his both legs resulting in a difficulty of standing up and walking. The diagnosis of stiff limb syndrome was supported by the dramatically positive response to treatment using diazepam 25 mg/day and baclofen 30 mg/day. Conclusion This clinical case highlights the importance of a therapeutic test to confirm the diagnosis of stiff limb syndrome especially when there is a high clinical suspicion with unremarkable electromyography PMID:20205913

  20. Structural Response of Compression-Loaded, Tow-Placed, Variable Stiffness Panels

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Guerdal, Zafer; Starnes, James H., Jr.

    2002-01-01

    Results of an analytical and experimental study to characterize the structural response of two compression-loaded variable stiffness composite panels are presented and discussed. These variable stiffness panels are advanced composite structures, in which tows are laid down along precise curvilinear paths within each ply and the fiber orientation angle varies continuously throughout each ply. The panels are manufactured from AS4/977-3 graphite-epoxy pre-preg material using an advanced tow placement system. Both variable stiffness panels have the same layup, but one panel has overlapping tow bands and the other panel has a constant-thickness laminate. A baseline cross-ply panel is also analyzed and tested for comparative purposes. Tests performed on the variable stiffness panels show a linear prebuckling load-deflection response, followed by a nonlinear response to failure at loads between 4 and 53 percent greater than the baseline panel failure load. The structural response of the variable stiffness panels is also evaluated using finite element analyses. Nonlinear analyses of the variable stiffness panels are performed which include mechanical and thermal prestresses. Results from analyses that include thermal prestress conditions correlate well with measured variable stiffness panel results. The predicted response of the baseline panel also correlates well with measured results.

  1. Stiffness is more than just duration and severity: a qualitative exploration in people with rheumatoid arthritis

    PubMed Central

    Dures, Emma; Kirwan, John; Pollock, Jon; Baker, Gill; Edmunds, Avis; Hewlett, Sarah

    2015-01-01

    Objective. Stiffness is internationally recognized as an important indicator of inflammatory activity in RA but is poorly understood and difficult to measure. The aim of this study was to explore the experience of stiffness from the patient perspective. Methods. Semi-structured interviews conducted with 16 RA patients were analysed independently by researchers and pat.ient partners using inductive thematic analysis. Results. Six themes were identified. Part of having RA identified stiffness as a normal consequence of RA, perceived as associated with disease-related aspects such as fluctuating disease activity, other RA symptoms and disease duration. Local and widespread highlighted stiffness occurring not only in joints, but also over the whole body, being more widespread during the morning or flare. Linked to behaviour and environment illustrated factors that influence stiffness, including movement, medications and weather. Highly variable captured the fluctuating nature of stiffness within and between patients and in relation to temporality, duration and intensity. Impacts on daily life emphasized the effect of stiffness on a range of domains, including physical function, quality of life, psychological well-being, activities of daily living and participation in work and leisure activities. Requires self-management detailed self-management strategies targeting both the symptom and its consequences. Conclusion. Patients’ experiences of stiffness were varied, complex and not exclusive to the morning period. Importantly, stiffness was reported in terms of impact rather than the traditional measurement concepts of severity or duration. Based on these findings, further research is needed to develop a patient-centred measure that adequately reflects inflammatory activity. PMID:25231178

  2. Stiffness nanotomography of human epithelial cancer cells

    NASA Astrophysics Data System (ADS)

    Staunton, Jack R.; Doss, Bryant L.; Gilbert, C. Michael; Kasas, Sandor; Ros, Robert

    2012-02-01

    The mechanical stiffness of individual cells is important in both cancer initiation and metastasis. We present atomic force microscopy (AFM) based nanoindentation experiments on various human mammary and esophagus cell lines covering the spectrum from normal immortalized cells to highly metastatic ones. The combination of an AFM with a confocal fluorescence lifetime imaging microscope (FLIM) in conjunction with the ability to move the sample and objective independently allow for precise alignment of AFM probe and laser focus with an accuracy down to a few nanometers. This enables us to correlate the mechanical properties with the point of indentation in the FLIM image. We are using force-volume measurements as well as force indentation curves on distinct points on the cells to compare the elastic moduli of the nuclei, nucleoli, and the cytoplasm, and how they vary within and between individual cells and cell lines. Further, a detailed analysis of the force-indentation curves allows study of the cells' mechanical properties at different indentation depths and to generate 3D elasticity maps.

  3. Experimental exposure to diesel exhaust increases arterial stiffness in man

    PubMed Central

    Lundbck, Magnus; Mills, Nicholas L; Lucking, Andrew; Barath, Stefan; Donaldson, Ken; Newby, David E; Sandstrm, Thomas; Blomberg, Anders

    2009-01-01

    Introduction Exposure to air pollution is associated with increased cardiovascular morbidity, although the underlying mechanisms are unclear. Vascular dysfunction reduces arterial compliance and increases central arterial pressure and left ventricular after-load. We determined the effect of diesel exhaust exposure on arterial compliance using a validated non-invasive measure of arterial stiffness. Methods In a double-blind randomized fashion, 12 healthy volunteers were exposed to diesel exhaust (approximately 350 ?g/m3) or filtered air for one hour during moderate exercise. Arterial stiffness was measured using applanation tonometry at the radial artery for pulse wave analysis (PWA), as well as at the femoral and carotid arteries for pulse wave velocity (PWV). PWA was performed 10, 20 and 30 min, and carotid-femoral PWV 40 min, post-exposure. Augmentation pressure (AP), augmentation index (AIx) and time to wave reflection (Tr) were calculated. Results Blood pressure, AP and AIx were generally low reflecting compliant arteries. In comparison to filtered air, diesel exhaust exposure induced an increase in AP of 2.5 mmHg (p = 0.02) and in AIx of 7.8% (p = 0.01), along with a 16 ms reduction in Tr (p = 0.03), 10 minutes post-exposure. Conclusion Acute exposure to diesel exhaust is associated with an immediate and transient increase in arterial stiffness. This may, in part, explain the increased risk for cardiovascular disease associated with air pollution exposure. If our findings are confirmed in larger cohorts of susceptible populations, this simple non-invasive method of assessing arterial stiffness may become a useful technique in measuring the impact of real world exposures to combustion derived-air pollution. PMID:19284640

  4. Experimental procedure for the evaluation of tooth stiffness in spline coupling including angular misalignment

    NASA Astrophysics Data System (ADS)

    Curà, Francesca; Mura, Andrea

    2013-11-01

    Tooth stiffness is a very important parameter in studying both static and dynamic behaviour of spline couplings and gears. Many works concerning tooth stiffness calculation are available in the literature, but experimental results are very rare, above all considering spline couplings. In this work experimental values of spline coupling tooth stiffness have been obtained by means of a special hexapod measuring device. Experimental results have been compared with the corresponding theoretical and numerical ones. Also the effect of angular misalignments between hub and shaft has been investigated in the experimental planning.

  5. Natural variation in embryo mechanics: gastrulation in Xenopus laevis is highly robust to variation in tissue stiffness

    PubMed Central

    von Dassow, Michelangelo; Davidson, Lance A.

    2009-01-01

    How sensitive is morphogenesis to the mechanical properties of embryos? To estimate an upper bound on the sensitivity of early morphogenetic movements to tissue mechanical properties, we assessed natural variability in the apparent stiffness among gastrula-stage Xenopus laevis embryos. We adapted micro-aspiration methods to make repeated, non-destructive measurements of apparent tissue stiffness in whole embryos. Stiffness varied by close to a factor of 2 among embryos within a single clutch. Variation between clutches was of similar magnitude. On the other hand, the direction of change in stiffness over the course of gastrulation was the same in all embryos and in all clutches. Neither pH nor salinity two environmental factors we predicted could affect variability in nature affected tissue stiffness. Our results indicate that gastrulation in X. laevis is robust to at least two-fold variation in tissue stiffness. PMID:19097119

  6. Investigation of In Vivo skin stiffness anisotropy in breast cancer related lymphoedema.

    PubMed

    Coutts, L V; Miller, N R; Mortimer, P S; Bamber, J C

    2016-01-01

    There is a limited range of suitable measurement techniques for detecting and assessing breast cancer related lymphoedema (BCRL). This study investigated the suitability of using skin stiffness measurements, with a particular focus on the variation in stiffness with measurement direction (known as anisotropy). In addition to comparing affected tissue with the unaffected tissue on the corresponding site on the opposite limb, volunteers without BCRL were tested to establish the normal variability in stiffness anisotropy between these two corresponding regions of skin on each opposite limb. Multi-directional stiffness was measured with an Extensometer, within the higher stiffness region that skin typically displays at high applied strains, using a previously established protocol developed by the authors. Healthy volunteers showed no significant difference in anisotropy between regions of skin on opposite limbs (mean decrease of 4.7 +/-2.5% between non-dominant and dominant arms), whereas BCRL sufferers showed a significant difference between limbs (mean decrease of 51.0+/-16.3% between unaffected and affected arms). A large difference in anisotropy was apparent even for those with recent onset of the condition, indicating that the technique may have potential to be useful for early detection. This difference also appeared to increase with duration since onset. Therefore, measurement of stiffness anisotropy has potential value for the clinical assessment and diagnosis of skin conditions such as BCRL. The promising results justify a larger study with a larger number of participants. PMID:26684433

  7. The cellular decapping activators LSm1, Pat1, and Dhh1 control the ratio of subgenomic to genomic Flock House virus RNAs.

    PubMed

    Gimnez-Barcons, Mireia; Alves-Rodrigues, Isabel; Jungfleisch, Jennifer; Van Wynsberghe, Priscilla M; Ahlquist, Paul; Dez, Juana

    2013-06-01

    Positive-strand RNA viruses depend on recruited host factors to control critical replication steps. Previously, it was shown that replication of evolutionarily diverse positive-strand RNA viruses, such as hepatitis C virus and brome mosaic virus, depends on host decapping activators LSm1-7, Pat1, and Dhh1 (J. Diez et al., Proc. Natl. Acad. Sci. U. S. A. 97:3913-3918, 2000; A. Mas et al., J. Virol. 80:246 -251, 2006; N. Scheller et al., Proc. Natl. Acad. Sci. U. S. A. 106:13517-13522, 2009). By using a system that allows the replication of the insect Flock House virus (FHV) in yeast, here we show that LSm1-7, Pat1, and Dhh1 control the ratio of subgenomic RNA3 to genomic RNA1 production, a key feature in the FHV life cycle mediated by a long-distance base pairing within RNA1. Depletion of LSM1, PAT1, or DHH1 dramatically increased RNA3 accumulation during replication. This was not caused by differences between RNA1 and RNA3 steady-state levels in the absence of replication. Importantly, coimmunoprecipitation assays indicated that LSm1-7, Pat1, and Dhh1 interact with the FHV RNA genome and the viral polymerase. By using a strategy that allows dissecting different stages of the replication process, we found that LSm1-7, Pat1, and Dhh1 did not affect the early replication steps of RNA1 recruitment to the replication complex or RNA1 synthesis. Furthermore, their function on RNA3/RNA1 ratios was independent of the membrane compartment, where replication occurs and requires ATPase activity of the Dhh1 helicase. Together, these results support that LSm1-7, Pat1, and Dhh1 control RNA3 synthesis. Their described function in mediating cellular mRNP rearrangements suggests a parallel role in mediating key viral RNP transitions, such as the one required to maintain the balance between the alternative FHV RNA1 conformations that control RNA3 synthesis. PMID:23536653

  8. Ultrasonographic vascular mechanics to assess arterial stiffness: a review.

    PubMed

    Teixeira, Rogério; Vieira, Maria João; Gonçalves, Alexandra; Cardim, Nuno; Gonçalves, Lino

    2016-03-01

    In recent years, the role of arterial stiffness in the development of cardiovascular diseases has been explored more extensively. Local arterial stiffness may be gauged via ultrasound, measuring pulse transit time relative to changing vessel diameters and distending pressures. Recently, direct vessel-wall tracking systems have been devised based on new ultrasonographic methodologies, such as tissue Doppler imaging and speckle-tracking analysis-vascular mechanics. These advances have been evaluated in varying arterial distributions, are proved surrogates of pulse wave velocity, and are ascending in clinical importance. In the course of this review, we describe fundamental concepts and methodologies involved in ultrasound assessment of vascular mechanics. We also present relevant clinical studies and discuss the potential clinical utility of such diagnostic pursuits. PMID:26546802

  9. Human corneal epithelial cell response to substrate stiffness.

    PubMed

    Molladavoodi, Sara; Kwon, Hyock-Ju; Medley, John; Gorbet, Maud

    2015-01-01

    It has been reported that mechanical stimulus can affect cellular behavior. While induced differentiation in stem cells and proliferation and directional migration in fibroblasts are reported as responses to mechanical stimuli, little is known about the response of cells from the cornea. In the present study, we investigated whether changes in substrate stiffness (measured by elastic modulus) affected the behavior of human corneal epithelial cells (HCECs). Polyacrylamide substrates with different elastic moduli (compliant, medium and stiff) were prepared and HCECs were cultured on them. HCECs responses, including cell viability, apoptosis, intercellular adhesion molecule-1 (ICAM-1) expression, integrin-?3?1 expression and changes in cytoskeleton structure (actin fibers) and migratory behavior, were studied. No statistically significant cell activation, as measured by ICAM-1 expression, was observed. However, on compliant substrates, a higher number of cells were found to be apoptotic and disrupted actin fibers were observed. Furthermore, cells displayed a statistically significant lower migration speed on compliant substrates when compared with the stiffer substrates. Thus, corneal epithelial cells respond to changes in substrate stiffness, which may have implications in the understanding and perhaps treatment of corneal diseases, such as keratoconus. PMID:25305512

  10. High-frequency mode conversion technique for stiff lesion detection with magnetic resonance elastography (MRE).

    PubMed

    Mariappan, Yogesh K; Glaser, Kevin J; Manduca, Armando; Romano, Anthony J; Venkatesh, Sudhakar K; Yin, Meng; Ehman, Richard L

    2009-12-01

    A novel imaging technique is described in which the mode conversion of longitudinal waves is used for the qualitative detection of stiff lesions within soft tissue using magnetic resonance elastography (MRE) methods. Due to the viscoelastic nature of tissue, high-frequency shear waves attenuate rapidly in soft tissues but much less in stiff tissues. By introducing minimally-attenuating longitudinal waves at a significantly high frequency into tissue, shear waves produced at interfaces by mode conversion will be detectable in stiff regions, but will be significantly attenuated and thus not detectable in the surrounding soft tissue. This contrast can be used to detect the presence of stiff tissue. The proposed technique is shown to readily depict hard regions (mimicking tumors) present in tissue-simulating phantoms and ex vivo breast tissue. In vivo feasibility is demonstrated on a patient with liver metastases in whom the tumors are readily distinguished. Preliminary evidence also suggests that quantitative stiffness measurements of stiff regions obtained with this technique are more accurate than those from conventional MRE because of the short shear wavelengths. This rapid, qualitative technique may lend itself to applications in which the localization of stiff, suspicious neoplasms is coupled with more sensitive techniques for thorough characterization. PMID:19859936

  11. Biphasic response of cell invasion to matrix stiffness in 3-dimensional biopolymer networks

    PubMed Central

    Lang, Nadine R.; Skodzek, Kai; Hurst, Sebastian; Mainka, Astrid; Steinwachs, Julian; Schneider, Julia; Aifantis, Katerina E.; Fabry, Ben

    2015-01-01

    When cells come in contact with an adhesive matrix, they begin to spread and migrate with a speed that depends on the stiffness of the extracellular matrix. On a flat surface, migration speed decreases with matrix stiffness mainly due to an increased stability of focal adhesions. In a 3-dimensional (3D) environment, cell migration is thought to be additionally impaired by the steric hindrance imposed by the surrounding matrix. For porous 3D biopolymer networks such as collagen gels, however, the effect of matrix stiffness on cell migration is difficult to separate from effects of matrix pore size and adhesive ligand density, and is therefore unknown. Here we used glutaraldehyde as a crosslinker to increase the stiffness of self-assembled collagen biopolymer networks independently of collagen concentration or pore size. Breast carcinoma cells were seeded onto the surface of 3D collagen gels, and the invasion depth was measured after 3 days of culture. Cell invasion in gels with pore sizes larger than 5 ?m increased with higher gel stiffness, whereas invasion in gels with smaller pores decreased with higher gel stiffness. These data show that 3D cell invasion is enhanced by higher matrix stiffness, opposite to cell behavior in 2D, as long as the pore size does not fall below a critical value where it causes excessive steric hindrance. These findings may be important for optimizing the recellularization of soft tissue implants or for the design of 3D invasion models in cancer research. PMID:25462839

  12. Hyperemia-Related Changes in Arterial Stiffness: Comparison between Pulse Wave Velocity and Stiffness Index in the Vascular Reactivity Assessment

    PubMed Central

    Torrado, Juan; Bia, Daniel; Zócalo, Yanina; Farro, Ignacio; Farro, Federico; Armentano, Ricardo L.

    2012-01-01

    Carotid-to-radial pulse wave velocity (PWVcr) has been proposed to evaluate endothelial function. However, the measurement of PWVcr is not without limitations. A new simple approach could have wide application. Stiffness index (SI) is obtained by analysis of the peripheral pulse wave and gives reproducible information about stiffness of large arteries. This study assessed the effects of hyperemia on SI and compared it with PWVcr in 14 healthy subjects. Both were measured at rest and during 8 minutes after ischemia. SI temporal course was determined. At 1 minute, SI and PWVcr decreased (5.58 ± 0.24 to 5.34 ± 0.23 m/s, P < 0.05; 7.8 ± 1.0 to 7.2 ± 0.9 m/s; P < 0.05, resp.). SI was positively related to PWVcr in baseline (r = 0.62 , P < 0.05), at 1 minute (r = 0.79, P < 0.05), and during the whole experimental session (r = 0.52, P < 0.05). Conclusion. Hyperemia significantly decreases SI in healthy subjects. SI was related to PWVcr and could be used to facilitate the evaluation of hyperemia-related changes in arterial stiffness. PMID:22919496

  13. Effect of heat treatment on stiffness and damping of Sic/Ti-15-3

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Lerch, Bradley A.

    1992-01-01

    The effect of heat treatment on material properties of Sic/Ti-15-3 was measured by vibration tests. Heat treatment changes the microstructure, which stiffens the matrix and reduces its damping capacity. Test results illustrate how the changes in matrix material affect the stiffness and damping properties of the composite. Damping was found to be more sensitive than stiffness to microstructural changes in the matrix. Effects of heat treatment temperature and exposure time are presented.

  14. Hyper-damping properties of a stiff and stable linear oscillator with a negative stiffness element

    NASA Astrophysics Data System (ADS)

    Antoniadis, I.; Chronopoulos, D.; Spitas, V.; Koulocheris, D.

    2015-06-01

    A simple, stiff, statically and dynamically stable linear oscillator incorporating a negative stiffness element is used as a template to provide a generic theoretical basis for a novel vibration damping and isolation concept. This oscillator is designed to present the same overall static stiffness, the same mass and to use the same damping element as a reference classical linear SDoF oscillator. Thus, no increase of the structure mass or the viscous damping is needed, as in the case of a traditional linear isolator, no decrease of the overall structure stiffness is required as in the case of 'zero-stiffness' oscillators with embedded negative stiffness elements. The difference from these two templates consists entirely in the proper redistribution and reallocation of the stiffness and the damping elements of the system. Once such an oscillator is optimally designed, it is shown to exhibit an extraordinary apparent damping ratio, which is even several orders of magnitude higher than that of the original SDoF system, especially in cases where the original damping of the SDoF system is extremely low. This extraordinary damping behavior is a result of the phase difference between the positive and the negative stiffness elastic forces, which is in turn a consequence of the proper redistribution of the stiffness and the damping elements. This fact ensures that an adequate level of elastic forces exists throughout the entire frequency range, able to counteract the inertial and the excitation forces. Consequently, a resonance phenomenon, which is inherent in the original linear SDoF system, cannot emerge in the proposed oscillator. The optimal parameter selection for the design of the negative stiffness oscillator is discussed. To further exhibit the advantages that such a design can generate, the suggested oscillator is implemented within a periodic acoustic metamaterial structure, inducing a radical increase in the damping of the propagating acoustic waves. The concept may find numerous technological applications, either as traditional vibration isolators or within advanced composite materials and metamaterials.

  15. End-on soft x ray imaging of Field-Reversed Configurations (FRCs) on the Field-Reversal-C (FRX-C)/Large Scale Modification (LSM) experiment

    NASA Astrophysics Data System (ADS)

    Taggart, D. P.; Gribble, R. J.; Bailey, A. D., III; Sugimoto, S.

    Recently, a prototype soft x ray pinhole camera was fielded on FRX-C/LSM at Los Alamos and TRX at Spectra Technology. The soft x ray FRC images obtained using this camera stand out in high contrast to their surroundings. It was particularly useful for studying the FRC during and shortly after formation when, at certain operating conditions, flute-like structures at the edge and internal structures of the FRC were observed which other diagnostics could not resolve. Building on this early experience, a new soft x ray pinhole camera was installed on FRX-C/LSM, which permits more rapid data acquisition and briefer exposures. It will be used to continue studying FRC formation and to look for internal structure later in time which could be a signature of instability. The initial operation of this camera is summarized.

  16. Nanoscale Directional Motion towards Regions of Stiffness

    NASA Astrophysics Data System (ADS)

    Chang, Tienchong; Zhang, Hongwei; Guo, Zhengrong; Guo, Xingming; Gao, Huajian

    2015-01-01

    How to induce nanoscale directional motion via some intrinsic mechanisms pertaining to a nanosystem remains a challenge in nanotechnology. Here we show via molecular dynamics simulations that there exists a fundamental driving force for a nanoscale object to move from a region of lower stiffness toward one of higher stiffness on a substrate. Such nanoscale directional motion is induced by the difference in effective van der Waals potential energy due to the variation in stiffness of the substrate; i.e., all other conditions being equal, a nanoscale object on a stiffer substrate has lower van der Waals potential energy. This fundamental law of nanoscale directional motion could lead to promising routes for nanoscale actuation and energy conversion.

  17. Nanoscale directional motion towards regions of stiffness.

    PubMed

    Chang, Tienchong; Zhang, Hongwei; Guo, Zhengrong; Guo, Xingming; Gao, Huajian

    2015-01-01

    How to induce nanoscale directional motion via some intrinsic mechanisms pertaining to a nanosystem remains a challenge in nanotechnology. Here we show via molecular dynamics simulations that there exists a fundamental driving force for a nanoscale object to move from a region of lower stiffness toward one of higher stiffness on a substrate. Such nanoscale directional motion is induced by the difference in effective van der Waals potential energy due to the variation in stiffness of the substrate; i.e., all other conditions being equal, a nanoscale object on a stiffer substrate has lower van der Waals potential energy. This fundamental law of nanoscale directional motion could lead to promising routes for nanoscale actuation and energy conversion. PMID:25615480

  18. Effects of the decellularization method on the local stiffness of acellular lungs.

    PubMed

    Melo, Esther; Garreta, Elena; Luque, Tomas; Cortiella, Joaquin; Nichols, Joan; Navajas, Daniel; Farré, Ramon

    2014-05-01

    Lung bioengineering, a novel approach to obtain organs potentially available for transplantation, is based on decellularizing donor lungs and seeding natural scaffolds with stem cells. Various physicochemical protocols have been used to decellularize lungs, and their performance has been evaluated in terms of efficient decellularization and matrix preservation. No data are available, however, on the effect of different decellularization procedures on the local stiffness of the acellular lung. This information is important since stem cells directly sense the rigidity of the local site they are engrafting to during recellularization, and it has been shown that substrate stiffness modulates cell fate into different phenotypes. The aim of this study was to assess the effects of the decellularization procedure on the inhomogeneous local stiffness of the acellular lung on five different sites: alveolar septa, alveolar junctions, pleura, and vessels' tunica intima and tunica adventitia. Local matrix stiffness was measured by computing Young's modulus with atomic force microscopy after decellularizing the lungs of 36 healthy rats (Sprague-Dawley, male, 250-300 g) with four different protocols with/without perfusion through the lung circulatory system and using two different detergents (sodium dodecyl sulfate [SDS] and 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate [CHAPS]). The local stiffness of the acellular lung matrix significantly depended on the site within the matrix (p<0.001), ranging from ∼ 15 kPa at the alveolar septum to ∼ 60 kPa at the tunica intima. Acellular lung stiffness (p=0.003) depended significantly, albeit modestly, on the decellularization process. Whereas perfusion did not induce any significant differences in stiffness, the use of CHAPS resulted in a ∼ 35% reduction compared with SDS, the influence of the detergent being more important in the tunica intima. In conclusion, lung matrix stiffness is considerably inhomogeneous, and conventional decellularization procedures do not result in substantially different local stiffness in the acellular lung. PMID:24083889

  19. Arterial stiffness, pulse pressure, and the kidney.

    PubMed

    Safar, Michel E; Plante, Gérard E; Mimran, Albert

    2015-05-01

    Classical studies indicate that the contribution of kidneys to hypertension is almost exclusively related to the association between mean arterial pressure (MAP) and vascular resistance. Recent reports including estimates of glomerular filtration rate (GFR) have shown that pulse pressure (PP) and pulse wave velocity, 2 major indices of arterial stiffness, now emerge as significant predictors of cardiovascular risk and age-associated decline in GFR. Such findings are mainly observed in patients with hypertension and renal failure and in atherosclerotic subjects undergoing coronary angiography. In such patients, amplification of PP between ascending and terminal aorta at the renal site is constantly increased over 10mm Hg (P < 0.001), whereas MAP level remains continuously unmodified. This PP amplification is significantly associated with presence of proteinuria. Furthermore, increases in plasma creatinine and aortic stiffness are independently and positively correlated (P < 0.001) both in cross-sectional and longitudinal studies. All these relationships associating PP, arterial stiffness, and renal function are mainly observed in patients 60 years of age or older. Furthermore, in renal transplant patients and their donors, subjects have been recruited for evaluations of arterial stiffness and posttransplant decline in GFR. Determinants of GFR decline were evaluated 1 and 9 years after transplantation. The first year GFR decline was related to smoking and acute rejection, whereas the later was significantly and exclusively associated with donor age and aortic stiffness. Thus, in hypertensive humans, the observed association between PP and GFR suggests that the 2 parameters are substantially mediated by arterial stiffness, not exclusively by vascular resistance. PMID:25480804

  20. Land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user`s guide. Technical note

    SciTech Connect

    Bonan, G.B.

    1996-01-01

    This technical note describes version 1 of the LSM land surface model. In this model, land surface processes are described in terms of biophysical fluxes (latent heat, sensible heat, momentum, reflected solar radiation, emitted longwave radiation) and biochemical fluxes (CO2) that depend on the ecological and hydrologic state of the land. Consequently, ecological and hydrological sub-models are needed to simulate temporal changes in terrestrial biomass and water.

  1. The 5' and 3' domains of yeast U6 snRNA: Lsm proteins facilitate binding of Prp24 protein to the U6 telestem region.

    PubMed Central

    Ryan, Daniel E; Stevens, Scott W; Abelson, John

    2002-01-01

    The 5' and 3' domains of yeast U6 snRNA contain sequences that are thought to be important for binding to Prp24 and Lsm proteins. By extensive mutational analysis of yeast U6 snRNA, we confirmed that the 3' terminal uridine tract of U6 snRNA is important for U6 binding to Lsm proteins in yeast. Binding of Prp24 protein to U6 RNA is dependent on or is strongly enhanced by U6 binding of Lsm proteins. This supports a model for U6 snRNP assembly in which U6 RNA binds to the Lsm2-8 core prior to binding Prp24 protein. Using compensatory base-pairing analysis, we show that at least half of the recently identified U6 telestem as well as a nucleotide sequence in the other half of the telestem are important for binding of U6 RNA to Prp24 protein. Surprisingly, disruption of base pairing in the unconfirmed half of the telestem enhanced U6-Prp24 binding. Truncation of the entire 3' terminal domain or nearly the entire 5' terminal domain of yeast U6 allowed for detectable levels of splicing to proceed in vitro. In addition to gaining knowledge of the function of the 5' and 3' domains of yeast U6, our results help define the minimal set of requirements for yeast U6 RNA function in splicing. We present a revised secondary structural model of yeast U6 snRNA in free U6 snRNPs. PMID:12212846

  2. Effects of inorganic phosphate analogues on stiffness and unloaded shortening of skinned muscle fibres from rabbit.

    PubMed Central

    Chase, P B; Martyn, D A; Kushmerick, M J; Gordon, A M

    1993-01-01

    1. We examined the effects of aluminofluoride (AlFx) and orthovanadate (Vi), tightly binding analogues of orthophosphate (Pi), on the mechanical properties of glycerinated fibres from rabbit psoas muscle. Maximum Ca(2+)-activated force, stiffness, and unloaded shortening velocity (Vus) were measured under conditions of steady-state inhibition (up to 1 mM of inhibitor) and during the recovery from inhibition. 2. Stiffness was measured using either step or sinusoidal (1 kHz) changes in fibre length. Sarcomere length was monitored continuously by helium-neon laser diffraction during maximum Ca2+ activation. Stiffness was determined from the changes in sarcomere length and the corresponding changes in force. Vus was measured using the slack test method. 3. AlF chi and Vi each reversibly inhibited force, stiffness and Vus. Actively cycling cross-bridges were required for reversal of these inhibitory effects. Recovery from inhibition by AlF chi was 3- to 4-fold slower than that following removal of V1. 4. At various degrees of inhibition, AlF chi and Vi both inhibited steady-state isometric force more than either Vus or stiffness. For both AlF chi and Vi, the relatively greater inhibition of force over stiffness persisted during recovery from steady-state inhibition. We interpret these results to indicate that the cross-bridges with AlF chi or Vi bound are analogous to those which occur early in the cross-bridge cycle. PMID:8487194

  3. The influence of bearing stiffness on the vibration properties of statically overdetermined gearboxes

    NASA Astrophysics Data System (ADS)

    Razpotnik, M.; Bischof, T.; Boltežar, M.

    2015-09-01

    In the design process of every modern car, the appropriate acoustic behaviour of each integral part is of great importance. This is particularly so for gearboxes. The stiffness of a rolling-element bearing is one of the main contributors to the transmission of vibrations from the interior of the gearbox to the housing. Many methods have been proposed to determine the bearing stiffness; this stiffness is related to the load in a nonlinear way. In this article, a new method for defining the proper bearing stiffness of statically overdetermined gearboxes is proposed. To achieve this an iterative process is conducted, with an initial guess for the loads on the bearings, which provides the initial values for their stiffnesses. The calculated stiffnesses are then inserted into a finite element method (FEM) model of a gearbox, where the new load vectors on the bearings are calculated. The described process runs until the convergence of the loads on the bearings is reached. Afterwards, the frequency-response functions (FRFs) are numerically calculated. As a reference point for our calculations, the measured FRFs are obtained. The measurements were performed on a simple, but statically overdetermined, gearbox with the option for moment adjustments between the two shafts. The calculated results in the form of FRFs are compared with the measurements.

  4. Normalized stiffness ratios for mechanical characterization of isotropic acoustic foams.

    PubMed

    Sahraoui, Sohbi; Brouard, Bruno; Benyahia, Lazhar; Parmentier, Damien; Geslain, Alan

    2013-12-01

    This paper presents a method for the mechanical characterization of isotropic foams at low frequency. The objective of this study is to determine the Young's modulus, the Poisson's ratio, and the loss factor of commercially available foam plates. The method is applied on porous samples having square and circular sections. The main idea of this work is to perform quasi-static compression tests of a single foam sample followed by two juxtaposed samples having the same dimensions. The load and displacement measurements lead to a direct extraction of the elastic constants by means of normalized stiffness and normalized stiffness ratio which depend on Poisson's ratio and shape factor. The normalized stiffness is calculated by the finite element method for different Poisson ratios. The no-slip boundary conditions imposed by the loading rigid plates create interfaces with a complex strain distribution. Beforehand, compression tests were performed by means of a standard tensile machine in order to determine the appropriate pre-compression rate for quasi-static tests. PMID:25669274

  5. Arterial Stiffness and Wave Reflection: Biomarkers of Cardiovascular Risk

    PubMed Central

    Mitchell, Gary F.

    2009-01-01

    Arterial stiffness and excessive pressure pulsatility have emerged as important risk factors for cardiovascular disease. Arterial stiffness increases with age and in the presence of traditional cardiovascular disease risk factors, such as hypertension, diabetes and lipid disorders. Pathologic stiffening of large arteries with advancing age and risk factor exposure predominantly involves the elastic aorta and carotid arteries, whereas stiffness changes are relatively limited in muscular arteries. Aortic stiffening is associated with increased pulse wave velocity and pulse pressure, which are related but distinct measures of the pulsatile energy content of the pressure waveform. A dramatic increase in pulsatile energy content of pressure and flow waves in the arterial system places considerable pulsatile stress on the heart, large arteries and distal circulation. Large artery stiffening is associated with abnormalities in microvascular structure and function that may contribute to tissue damage, particularly in susceptible high flow organs such as the brain and kidneys. This brief review summarizes results of recent research on risk factors for and adverse effects of large artery stiffening. PMID:20161241

  6. Conformational Analysis of Stiff Chiral Polymers with End-Constraints

    PubMed Central

    Kim, Jin Seob; Chirikjian, Gregory S.

    2010-01-01

    We present a Lie-group-theoretic method for the kinematic and dynamic analysis of chiral semi-flexible polymers with end constraints. The first is to determine the minimum energy conformations of semi-flexible polymers with end constraints, and the second is to perform normal mode analysis based on the determined minimum energy conformations. In this paper, we use concepts from the theory of Lie groups and principles of variational calculus to model such polymers as inextensible or extensible chiral elastic rods with coupling between twisting and bending stiffnesses, and/or between twisting and extension stiffnesses. This method is general enough to include any stiffness and chirality parameters in the context of elastic filament models with the quadratic elastic potential energy function. As an application of this formulation, the analysis of DNA conformations is discussed. We demonstrate our method with examples of DNA conformations in which topological properties such as writhe, twist, and linking number are calculated from the results of the proposed method. Given these minimum energy conformations, we describe how to perform the normal mode analysis. The results presented here build both on recent experimental work in which DNA mechanical properties have been measured, and theoretical work in which the mechanics of non-chiral elastic rods has been studied. PMID:20198114

  7. Helical growth trajectories in plant roots interacting with stiff barriers

    NASA Astrophysics Data System (ADS)

    Gerbode, Sharon; Noar, Roslyn; Harrison, Maria

    2009-03-01

    Plant roots successfully navigate heterogeneous soil environments with varying nutrient and water concentrations, as well as a variety of stiff obstacles. While it is thought that the ability of roots to penetrate into a stiff lower soil layer is important for soil erosion, little is known about how a root actually responds to a rigid interface. We have developed a laser sheet imaging technique for recording the 3D growth dynamics of plant roots interacting with stiff barriers. We find that a root encountering an angled interface does not grow in a straight line along the surface, but instead follows a helical trajectory. These experiments build on the pioneering studies of roots grown on a tilted 2D surface, which reported ``root waving,'' a similar curved pattern thought to be caused by the root's sensitivity to both gravity and the rigid surface on which it is grown. Our measurements extend these results to the more physiologically relevant case of 3D growth, where the spiral trajectory can be altered by tuning the relative strengths of the gravity and touch stimuli, providing some intuition for the physical mechanism driving it.

  8. Atherosclerosis, arterial stiffness and antihypertensive drug therapy.

    PubMed

    Safar, Michel E; Smulyan, Harold

    2007-01-01

    Increased aortic stiffness is a consequence of cardiovascular (CV) aging and may be observed in the elderly with or without hypertension. Hypertension and arterial stiffness are independent risk factors for CV events, but such events may also be complicated by atherosclerosis, especially in the older population. The purpose of this chapter is to determine whether, in the presence of atherosclerosis, systolic hypertension in the elderly requires specific drug therapy. It will be shown that, in addition to the targeted drug treatment of associated hypercholesterolemia and/or hyperglycemia, the major problem nowadays is to find specific antihypertensive drugs causing a selective reduction of systolic blood pressure (SBP). PMID:17075219

  9. The stiff shoulder; A case study.

    PubMed

    Hall, Kevin; Mercer, Christopher

    2015-12-01

    Clinicians working in outpatient departments and advanced practitioner clinics frequently encounter patients presenting with multidirectional stiffness of the glenohumeral joint. This case report describes the assessment and treatment of a patient presenting with glenohumeral joint stiffness and describes the possible differential diagnoses. The evidence base used to inform the decision-making process is presented and the use of radiology that helped to ultimately establish the diagnosis is discussed. The clinical reasoning process of applying knowledge and experience to identify patient problems and to make appropriate decisions that result in positive patient outcomes is discussed. The case report highlights the importance of early diagnosis. PMID:26096901

  10. A new strategy for stiffness evaluation of sheet metal parts

    NASA Astrophysics Data System (ADS)

    Cai, Q.; Volk, W.; Düster, A.; Rank, E.

    2011-08-01

    In the automotive industry, surfaces of styling models are shaped very often in physical models. For example, in the styling process of a car body important design work is realized by clay models and the resulting geometry information typically comes from optical scans. The scanned data is given in the form of point clouds which is then utilized in the virtual planning process for engineering work, e.g. to evaluate the load-carrying capacity. This is an important measure for the stiffness of the car body panels. In this contribution, the following two issues are discussed: what is the suitable geometric representation of the stiffness of the car body and how it is computed if only discrete point clouds exist. In the first part, the suitable geometric representation is identified by constructing continuous CAD models with different geometric parameters, e.g. Gaussian curvature and mean curvature. The stiffness of models is then computed in LS-DYNA and the influence of different geometric parameters is presented based on the simulation result. In the second part, the point clouds from scanned data, rather than continuous CAD models, are directly utilized to estimate the Gaussian curvature, which is normally derived from continuous surfaces. The discrete Gauss-Bonnet algorithm is applied to estimate the Gaussian curvature of the point clouds and the sensitivity of the algorithm with respect to the mesh quality is analyzed. In this way, the stiffness evaluation process in an early stage can be accelerated since the transformation from discrete data to continuous CAD data is labor-intensive. The discrete Gauss-Bonnet algorithm is finally applied to a sheet metal model of the BMW 3 series.

  11. Stiffness and force in activated frog skeletal muscle fibers.

    PubMed

    Cecchi, G; Griffiths, P J; Taylor, S

    1986-02-01

    Single fibers, isolated intact from frog skeletal muscles, were held firmly very near to each end by stiff metal clasps fastened to the tendons. The fibers were then placed horizontally between two steel hooks inserted in eyelets of the tendon clasps. One hook was attached to a capacitance gauge force transducer (resonance frequency up to approximately 50 kHz) and the other was attached to a moving-coil length changer. This allowed us to impose small, rapid releases (complete in less than 0.15 ms) and high frequency oscillations (up to 13 kHz) to one end of a resting or contracting fiber and measure the consequences at the other end with fast time resolution at 4 to 6 degrees C. The stiffness of short fibers (1.8-2.6 mm) was determined directly from the ratio of force to length variations produced by the length changer. The resonance frequency of short fibers was so high (approximately 40 kHz) that intrinsic oscillations were not detectably excited. The stiffness of long fibers, on the other hand, was calculated from measurement of the mechanical resonance frequency of a fiber. Using both short and long fibers, we measured the sinusoids of force at one end of a contracting fiber that were produced by relatively small sinusoidal length changes at the other end. The amplitudes of the sinusoidal length changes were small compared with the size of step changes that produce nonlinear force-extension relations. The sinusoids of force from long fibers changed amplitude and shifted phase with changes in oscillation frequency in a manner expected of a transmission line composed of mass, compliance, and viscosity, similar to that modelled by (Ford, L. E., A. F. Huxley, and R. M. Simmons, 1981, J. Physiol. (Lond.), 311:219-249). A rapid release during the plateau of tetanic tension in short fibers caused a fall in force and stiffness, a relative change in stiffness that putatively was much smaller than that of force. Our results are, for the most part, consistent with the cross-bridge model of force generation proposed by Huxley, A. F., and R. M. Simmons (1971, Nature (Lond.), 213:533-538). However, stiffness in short fibers developed markedly faster than force during the tetanus rise. Thus our findings show the presence of one or more noteworthy cross-bridge states at the onset and during the rise of active tension towards a plateau in that attachment apparently is followed by a relatively long delay before force generation occurs. A set of equations is given in the Appendix that describes the frequency dependence of the applied sinusoid and its response. This model predicts that frequency dependent changes can be used as a measure of a change in stiffness. PMID:3955178

  12. Quantification of Myocardial Stiffness using Magnetic Resonance Elastography in Right Ventricular Hypertrophy: Initial Feasibility in Dogs

    PubMed Central

    da Silveira, Juliana S; Scansen, Brian A; Wassenaar, Peter A; Raterman, Brian; Eleswarpu, Chethan; Jin, Ning; Mo, Xiaokui; White, Richard D; Bonagura, John D; Kolipaka, Arunark

    2015-01-01

    Introduction Myocardial stiffness is an important determinant of cardiac function and is currently invasively and indirectly assessed by catheter angiography. This study aims to demonstrate the feasibility of quantifying right ventricular (RV) stiffness noninvasively using cardiac magnetic resonance elastography (CMRE) in dogs with severe congenital pulmonary valve stenosis (PVS) causing RV hypertrophy, and compare it to remote myocardium in the left ventricle (LV). Additionally, correlations between stiffness and selected pathophysiologic indicators from transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging were explored. Methods In-vivo CMRE was performed on nine dogs presenting severe congenital PVS using a 1.5T MRI scanner. T1-MOLLI, T2-prepared-bSSFP, gated-cine GRE-MRE and LGE (PSIR) sequences were used to acquire a basal short-axis slice. RV and LV-free-wall (FW) stiffness measurements were compared against each other and also correlated to ventricular mass, RV and LV FW thickness, T1 and T2 relaxation times, and extracellular volume fraction (ECV). Peak transpulmonary pressure gradient and myocardial strain were also acquired on eight dogs by TTE and correlated to RV-FW systolic stiffness. Potential correlations were evaluated by Spearman’s rho (rs). Results RV-FW stiffness was found to be significantly higher than the LV-FW stiffness both during end-systole (ES) (p=0.002) and end-diastole (ED) (p=0.029). Significant correlations were observed between RV-FW ES and LV-FW ED stiffness versus ECV (rs=0.75; p-value=0.05). Non-significant moderate correlations were found between LV-FW ES (rs=0.54) and RV-FW ED (rs=0.61) versus ECV. Furthermore, non-significant correlations were found between RV or LV-FW stiffness and the remaining variables (rs<0.54; p-value>0.05). Conclusion This study demonstrates the feasibility of determining RV stiffness. The positive correlations between stiffness and ECV might indicate some interdependence between stiffness and myocardial extracellular matrix alterations. However, further studies are warranted to validate our initial observations. PMID:26471513

  13. Variable stiffness and damping semi-active vibration control technology based on magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Zhao, Shiyu; Deng, Huaxia; Zhang, Jin; Sun, ShuaiShuai; Li, Weihua; Wang, Lei

    2013-10-01

    Vibration is a source to induce uncertainty for the measurement. The traditional passive vibration control method has low efficiency and limited working conditions. The active vibration control method is not practical for its power demanding, complexity and instability. In this paper, a novel semi-active vibration control technology based on magnetorheological (MR) fluid is presented with dual variable stiffness and damping capability. Because of the rheological behavior depending on the magnetic field intensity, MR fluid is used in many damping semi-active vibration control systems. The paper proposed a structure to allow the both overall damping and stiffness variable. The equivalent damping and stiffness of the structure are analyzed and the influences of the parameters on the stiffness and damping changing are further discussed.

  14. The Effects of Barefoot and Shod Running on Limb and Joint Stiffness Characteristics in Recreational Runners.

    PubMed

    Sinclair, Jonathan; Atkins, Stephen; Taylor, Paul J

    2016-01-01

    The authors aimed to determine the effects of barefoot (BF) and several commercially available barefoot-inspired (BFIS) footwear models on limb and joint stiffness characteristics compared with conventional footwear (CF). Fifteen male participants ran over a force platform at 4.0 m.s(-1), in BF, BFIS, and CF conditions. Measures of limb and joint stiffness were calculated for each footwear. The results indicate that limb and knee stiffness were greater in BF and minimalist BFIS than in CF. CF and more structured BFIS were associated with a greater ankle stiffness compared with BF and minimalist BFIS. These findings serve to provide further insight into the susceptibility of runners to different injury mechanisms as a function of footwear. PMID:25978696

  15. Stiffness Control of a Continuum Manipulator in Contact with a Soft Environment

    PubMed Central

    Mahvash, Mohsen; Dupont, Pierre E.

    2010-01-01

    Stiffness control of a continuum robot can prevent excessive contact forces during robot navigation inside delicate, uncertain and confined environments. Furthermore, it enables the selection of tip stiffnesses that match varying task requirements. This paper introduces a computationally-efficient approach to continuum-robot stiffness control that is based on writing the forward kinematic model as the product of two transformations. The first transformation calculates the non-contact kinematics of the robot and can be formulated based on the specific type of continuum robot under consideration. The second transformation calculates the tip deflection due to applied forces and is efficiently computed using the special Cosserat rod model. To implement a desired tip stiffness, the two transformations are used to solve for the actuator positions that deform the manipulator so as to generate the required tip force at the measured tip position. The efficacy of the proposed controller is demonstrated experimentally on a concentric-tube continuum robot. PMID:21399719

  16. The effects of thermal cycling on matrix cracking and stiffness changes in composite tubes

    NASA Technical Reports Server (NTRS)

    Cohen, D.; Hyer, M. W.; Tompkins, S. S.

    1984-01-01

    The study investigated the accumulation of transverse matrix cracks and the resultant loss of torsional, extensional, and bending stiffnesses in 8 layer 0.5 in. diameter crossply tubes subjected to thermal cycling. The tubes were graphite-epoxy and the temperature range during cycling was -250 to 200 F. The effect of fiber and matrix properties was investigated through the use of T300 and P75S fibers and 934 and CE339 resins. The study considered 0, 10, 50, 100, 300, and 500 thermal cycles. Photomicrographs, X-rays, and edge replication were used to evaluate cracking. Special loading fixtures were used to measure stiffness changes. An important finding was that for the tubes studied, even with extensive cracking, the bending and extensional stiffnesses were not affected. The torsional stiffness, however, was strongly affected.

  17. Ambulatory Arterial Stiffness Index and circadian blood pressure variability.

    PubMed

    Bahrainwala, Jehan; Patel, Ami; Diaz, Keith M; Veerabhadrappa, Praveen; Cohen, Debbie L; Cucchiara, Andrew; Townsend, Raymond R

    2015-09-01

    The manner in which the circulation accommodates each heartbeat may underlie blood pressure (BP) variability. We used the Ambulatory Arterial Stiffness Index (AASI), which reflects this ventricular-vascular interaction, in untreated individuals with prehypertension and Stage 1 hypertension to evaluate two different measures of BP variability using the brachial pulse pressure (PP) obtained over 24hours. We enrolled 64 untreated adults with systolic BP between 130-159mmHg and diastolic values of <100mmHg who underwent 24-hour ambulatory BP monitoring with calculation of 24-hour AASIs. Variability in brachial PP was determined using the standard deviation of the measurements over 24hours and the average real variability. The 24-hour AASI correlated with both measures of 24-hour PP variability (P<.001 for both). Subdividing the 24-hour stiffness index into daytime and nighttime components showed modest differences in their relationship to PP variability, with the daytime being significantly different from 24-hour AASI and the standard deviation of the brachial PP consistently having a higher correlation to the AASI when compared with the average real variability. These observations may be useful to understand differences in variability measures of BP measurements, such as PP, to measures like the AASI as reported in longitudinal studies. PMID:26260424

  18. Vibration suppression by stiffness control

    NASA Technical Reports Server (NTRS)

    Fanson, James; Caughey, Thomas; Chen, Jay

    1987-01-01

    The feasibility of using piezoelectric ceramics as both sensors and actuators for vibration suppression in a lightweight, flimsy structure was demonstrated. Multimode control was achieved using one sensor and actuator pair. The Positive Position Feedback control strategy requires only knowledge of the natural frequencies of the structure. Implementation of the Positive Position Feedback used only strain measurements to achieve damping, no velocities, or acceleration are needed. All spillover is stabilizing for sufficient small gains.

  19. Use of reflectance interference contrast microscopy to characterize the endothelial glycocalyx stiffness

    PubMed Central

    Job, Kathleen M.; Dull, Randal O.

    2012-01-01

    Reflectance interference contrast microscopy (RICM) was used to study the mechanics of the endothelial glycocalyx. This technique tracks the vertical position of a glass microsphere probe that applies very light fluctuating loads to the outermost layer of the bovine lung microvascular endothelial cell (BLMVEC) glycocalyx. Fluctuations in probe vertical position are used to estimate the effective stiffness of the underlying layer. Stiffness was measured before and after removal of specific glycocalyx components. The mean stiffness of BLMVEC glycocalyx was found to be ∼7.5 kT/nm2 (or ∼31 pN/nm). Enzymatic digestion of the glycocalyx with pronase or hyaluronan with hyaluronidase increased the mean effective stiffness of the glycocalyx; however, the increase of the mean stiffness on digestion of heparan sulfate with heparinase III was not significant. The results imply that hyaluronan chains act as a cushioning layer to distribute applied forces to the glycocalyx structure. Effective stiffness was also measured for the glycocalyx exposed to 0.1%, 1.0%, and 4.0% BSA; glycocalyx compliance increased at two extreme BSA concentrations. The RICM images indicated that glycocalyx thickness increases with BSA concentrations. Results demonstrate that RICM is sensitive to detect the subtle changes of glycocalyx compliance at the fluid-fiber interface. PMID:22505668

  20. Comparative study of a muscle stiffness sensor and electromyography and mechanomyography under fatigue conditions.

    PubMed

    Han, Hyonyoung; Jo, Sungho; Kim, Jung

    2015-07-01

    This paper proposes the feasibility of a stiffness measurement for muscle contraction force estimation under muscle fatigue conditions. Bioelectric signals have been widely studied for the estimation of the contraction force for physical human-robot interactions, but the correlation between the biosignal and actual motion is decreased under fatigue conditions. Muscle stiffness could be a useful contraction force estimator under fatigue conditions because it measures the same physical quantity as the muscle contraction that generates the force. Electromyography (EMG), mechanomyography (MMG), and a piezoelectric resonance-based active muscle stiffness sensor were used to analyze the biceps brachii under isometric muscle fatigue conditions with reference force sensors at the end of the joint. Compared to EMG and MMG, the change in the stiffness signal was smaller (p < 0.05) in the invariable contraction force generation test until failure. In addition, in the various contraction level force generation tests, the stiffness signal under the fatigue condition changed <10% (p < 0.05) compared with the signal under non-fatigue conditions. This result indicates that the muscle stiffness signal is less sensitive to muscle fatigue than other biosignals. This investigation provides insights into methods of monitoring and compensating for muscle fatigue. PMID:25752771

  1. Dynamic stiffness removal for direct numerical simulations

    SciTech Connect

    Lu, Tianfeng; Law, Chung K.; Yoo, Chun Sang; Chen, Jacqueline H.

    2009-08-15

    A systematic approach was developed to derive non-stiff reduced mechanisms for direct numerical simulations (DNS) with explicit integration solvers. The stiffness reduction was achieved through on-the-fly elimination of short time-scales induced by two features of fast chemical reactivity, namely quasi-steady-state (QSS) species and partial-equilibrium (PE) reactions. The sparse algebraic equations resulting from QSS and PE approximations were utilized such that the efficiency of the dynamic stiffness reduction is high compared with general methods of time-scale reduction based on Jacobian decomposition. Using the dimension reduction strategies developed in our previous work, a reduced mechanism with 52 species was first derived from a detailed mechanism with 561 species. The reduced mechanism was validated for ignition and extinction applications over the parameter range of equivalence ratio between 0.5 and 1.5, pressure between 10 and 50 atm, and initial temperature between 700 and 1600 K for ignition, and worst-case errors of approximately 30% were observed. The reduced mechanism with dynamic stiffness removal was then applied in homogeneous and 1-D ignition applications, as well as a 2-D direct numerical simulation of ignition with temperature inhomogeneities at constant volume with integration time-steps of 5-10 ns. The integration was numerically stable and good accuracy was achieved. (author)

  2. Design and testing of a dynamically tuned magnetostrictive spring with electrically controlled stiffness

    NASA Astrophysics Data System (ADS)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2015-04-01

    This paper details the development of an electrically-controlled, variable-stiffness spring based on magnetostrictive materials. The device, termed a magnetostrictive Varispring, can be applied as a semi- active vibration isolator or switched stiffness vibration controller for reducing transmitted vibrations. The Varispring is designed using 1D linear models that consider the coupled electrical response, mechanically-induced magnetic diffusion, and the effect of internal mass on dynamic stiffness. Modeling results illustrate that a Terfenol-D-based Varispring has a rise time almost an order of magnitude smaller and a magnetic diffusion cut-off frequency over two orders of magnitude greater than a Galfenol-based Varispring. The results motivate the use of laminated Terfenol-D rods for a greater stiffness tuning range and increased bandwidth. The behavior of a prototype Varispring is examined under vibratory excitation up to 6 MPa and 25 Hz using a dynamic load frame. For this prototype, stiffness is indirectly varied by controlling the excitation current. Preliminary measurements of continuous stiffness tuning via sinusoidal currents up to 1 kHz are presented. The measurements demonstrate that the Young's modulus of the Terfenol-D rod inside the Varispring can be continuously varied by up to 21.9 GPa. The observed stiffness tuning range is relatively constant up to 500 Hz, but significantly decreases thereafter. The stiffness tuning range can be greatly increased by improving the current and force control such that a more consistent current can be applied and the Varispring can be accurately tested at a more optimal bias stress.

  3. Design and Testing of a Dynamically-Tuned Magnetostrictive Spring with Electrically-Controlled Stiffness

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin; Asnani, Vivake M.; Dapino, Marcelo J.

    2015-01-01

    This paper details the development of an electrically-controlled, variable-stiffness spring based on magnetostrictive materials. The device, termed a magnetostrictive Varispring, can be applied as a semi-active vibration isolator or switched stiffness vibration controller for reducing transmitted vibrations. The Varispring is designed using 1D linear models that consider the coupled electrical response, mechanically-induced magnetic diffusion, and the effect of internal mass on dynamic stiffness. Modeling results illustrate that a Terfenol-D-based Varispring has a rise time almost an order of magnitude smaller and a magnetic diffusion cut-off frequency over two orders of magnitude greater than a Galfenol-based Varispring. The results motivate the use of laminated Terfenol-D rods for a greater stiffness tuning range and increased bandwidth. The behavior of a prototype Varispring is examined under vibratory excitation up to 6 MPa and 25 Hz using a dynamic load frame. For this prototype, stiffness is indirectly varied by controlling the excitation current. Preliminary measurements of continuous stiffness tuning via sinusoidal currents up to 1 kHz are presented. The measurements demonstrate that the Young's modulus of the Terfenol-D rod inside the Varispring can be continuously varied by up to 21.9 GPa. The observed stiffness tuning range is relatively constant up to 500 Hz, but significantly decreases thereafter. The stiffness tuning range can be greatly increased by improving the current and force control such that a more consistent current can be applied and the Varispring can be accurately tested at a more optimal bias stress.

  4. Magnetic levitation and stiffness in melt-textured Y-Ba-Cu-O

    SciTech Connect

    Hull, J.R.; Mulcahy, T.M. ); Salama, K.; Selvamanickam, V. ); Weinberger, B.R.; Lynds, L. )

    1992-09-01

    Magnetic levitation and stiffness have been measured in several systems composed of a permanent magnet elastically suspended above a stationary melt-textured sample of Y-Ba-Cu-O. The levitation force and vertical stiffness have been calculated on the basis of magnetization measurements of the same system, and the calculated results showed excellent agreement with the experimental measurements. Based on the force and magnetization measurements, it is predicted that the same Y-Ba-Cu-O material configured in a geometry suitable for magnetic bearings could produce a levitation pressure of 100--400 kPa at 20 K.

  5. WRF tests on sensitivity to PBL and LSM schemes during atmospheric transition periods: validation with BLLAST case study

    NASA Astrophysics Data System (ADS)

    Sastre, Mariano; Steeneveld, Gert-Jan; Yagüe, Carlos; Román-Cascón, Carlos; Maqueda, Gregorio

    2014-05-01

    The structure and properties at a certain time of the atmospheric or planetary boundary layer (PBL) has a major importance in land-atmosphere interaction and exchange processes, i.e. in pollutants concentration, humidity or different energy vertical fluxes. Transition periods at this part of the troposphere are found difficult to properly interpret, as far as among all the processes taking place at that timing, it is not clearly stated the predominance of just one of them; moreover, a drastic change in the motion scales present in the lower atmosphere is sometimes produced. Atmospheric global models fail at representing transitional events in the PBL, mainly because of sub-grid scale phenomena. These micrometeorological processes require to be better simulated. Weather Research and Forecast (WRF) mesoscale model offers a considerable amount of physical options and parameterizations, including different PBL and land surface model (LSM) schemes. This fact justifies a model experiment to evaluate its behavior and try to understand the differences in model performance for transition periods in the atmosphere, specifically when it moves on from a convective to a stratified stable structure at its lower region. The Boundary Layer Late Afternoon and Sunset Turbulent (BLLAST) project organized and conducted a field campaign [1] during summer 2011 in Lannemezan (France), getting together a wide amount of meteorological instrumentation. The available extensive experimental dataset from that campaign offers an excellent opportunity for model validation. Results of WRF sensitivity tests are presented, comparing simulations among themselves and validating them with the observational data. Different atmospheric variables involved in the late afternoon and evening transition processes are considered, both at surface (i.e. energy balance) and at higher levels (thermodynamic vertical structure), in order to obtain a wider view of the problem. [1] Lothon, M. and co-authors (2012): The Boundary-Layer Late Afternoon and Sunset Turbulence field experiment. Paper 14B.1, 20th Symposium on Boundary-Layers and turbulence, Boston, MA, Amer. Meteor. Soc., 12 pp.

  6. Cartesian stiffness for wrist joints: analysis on the Lie group of 3D rotations and geometric approximation for experimental evaluation.

    PubMed

    Campolo, Domenico

    2013-01-01

    This paper is concerned with the analysis and the numerical evaluation from experimental measurements of the static, Cartesian stiffness of wrist joints, in particular the human wrist. The primary aim is to extend from Euclidean spaces to so(3), the group of rigid body rotations, previous methods for assessing the end-point stiffness of the human arm, typically performed via a robotic manipulandum. As a first step, the geometric definition of Cartesian stiffness from current literature is specialised to the group so(3). Emphasis is placed on the choice of the unique, natural, affine connection on so(3) which guarantees symmetry of the stiffness matrix in presence of conservative fields for any configuration, also out of equilibrium. As the main contribution of this study, a coordinate-independent approximation based on the geometric notion of geodesics is proposed which provides a working equation for evaluating stiffness directly from experimental measurements. Finally, a graphical representation of the stiffness is discussed which extends the ellipse method often used for end-point stiffness visualisation and which is suitable to compare stiffness matrices evaluated at different configurations. PMID:22224937

  7. Modeling and Preliminary Testing Socket-Residual Limb Interface Stiffness of Above-Elbow Prostheses

    PubMed Central

    Sensinger, Jonathon W.; Weir, Richard F. ff.

    2011-01-01

    The interface between the socket and residual limb can have a significant effect on the performance of a prosthesis. Specifically, knowledge of the rotational stiffness of the socket-residual limb (S-RL) interface is extremely useful in designing new prostheses and evaluating new control paradigms, as well as in comparing existing and new socket technologies. No previous studies, however, have examined the rotational stiffness of S-RL interfaces. To address this problem, a math model is compared to a more complex finite element analysis, to see if the math model sufficiently captures the main effects of S-RL interface rotational stiffness. Both of these models are then compared to preliminary empirical testing, in which a series of X-rays, called fluoroscopy, is taken to obtain the movement of the bone relative to the socket. Force data are simultaneously recorded, and the combination of force and movement data are used to calculate the empirical rotational stiffness of elbow S-RL interface. The empirical rotational stiffness values are then compared to the models, to see if values of Young’s modulus obtained in other studies at localized points may be used to determine the global rotational stiffness of the S-RL interface. Findings include agreement between the models and empirical results and the ability of persons to significantly modulate the rotational stiffness of their S-RL interface a little less than one order of magnitude. The floor and ceiling of this range depend significantly on socket length and co-contraction levels, but not on residual limb diameter or bone diameter. Measured trans-humeral S-RL interface rotational stiffness values ranged from 24–140 Nm/rad for the four subjects tested in this study. PMID:18403287

  8. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy

    PubMed Central

    2013-01-01

    Background Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: “spasticity” vs. “contracture”). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Methods Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. Results In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p < .001). Ratio between neural and non-neural contributors varied substantially within adolescents with CP. Significant associations of SPAT (spasticity test) score with both tissue stiffness and reflexive torque show agreement with clinical phenotype. Conclusions Using an instrumented and model based approach, increased joint stiffness in CP could be mainly attributed to higher reflexive torque compared to control subjects. Ratios between contributors varied substantially within adolescents with CP. Quantitative differentiation of neural and non-neural stiffness contributors in CP allows for assessment of individual patient characteristics and tailoring of therapy. PMID:23880287

  9. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines

    PubMed Central

    Swaminathan, Vinay; Mythreye, Karthikeyan; OBrien, E Tim; Berchuck, Andrew; Blobe, Gerard C; Superfine, Richard

    2011-01-01

    Cancer cells are defined by their ability to invade through the basement membrane, a critical step during metastasis. While increased secretion of proteases, which facilitates degradation of the basement membrane, and alterations in the cytoskeletal architecture of cancer cells have been previously studied, the contribution of the mechanical properties of cells in invasion is unclear. Here we apply a magnetic tweezer system to establish that stiffness of patient tumor cells and cancer cell lines inversely correlates with migration and invasion through three-dimensional basement membranes, a correlation known as a power law. We found that cancer cells with the highest migratory and invasive potential are five times less stiff than cells with the lowest migration and invasion potential. Moreover, decreasing cell stiffness by pharmacological inhibition of myosin II increases invasiveness, while increasing cell stiffness by restoring expression of the metastasis suppressor T?RIII/betaglycan decreases invasiveness. These findings are the first demonstration of the power law relation between the stiffness and the invasiveness of cancer cells and show that mechanical phenotypes can be used to grade the metastatic potential of cell populations with the potential for single cell grading. The measurement of a mechanical phenotype, taking minutes rather than hours needed for invasion assays, is promising as a quantitative diagnostic method and as a discovery tool for therapeutics. By demonstrating that altering stiffness predictably alters invasiveness, our results indicate that pathways regulating these mechanical phenotypes are novel targets for molecular therapy of cancer. PMID:21642375

  10. Arterial stiffness variations by gender in African-American and Caucasian children.

    PubMed Central

    Hlaing, WayWay M.; Prineas, Ronald J.

    2006-01-01

    OBJECTIVE: Most arterial stiffness studies have been conducted in adult populations as a part of the aging process in the arterial system. Arterial stiffness is an important early marker of disease identification that may lead to improved cardiovascular health. The aim of this study was to assess the gender and ethnic differences in the arterial stiffness levels among children and adolescents. DESIGN: From a subgroup of schoolchildren who participated in a prospective cohort study in Minnesota, Caucasian and African-American children who completed 16 timed visits were included in this report (n=487). The participants were followed from 1978 (7.68 +/- 0.72 years) to 1987 (16.65 +/- 0.71 years). A surrogate measure of arterial stiffness-arterial pulse pressure (APP in mmHg)--was used. RESULTS: Adjusted APP differences started to appear around 12.67 years and persisted throughout the study. Boys consistently had higher APP levels than the girls. Ethnic differences in adjusted APP levels were observed at an earlier age (7.68 years) but did not persist after age 10. CONCLUSION: APP levels were different between gender and ethnic groups in youth. These early indications of arterial stiffness warrant further exploration of arterial stiffness etiology. PMID:16708504

  11. Distraction osteogenesis device to estimate the axial stiffness of the callus in Vivo.

    PubMed

    Mora-Macías, J; Reina-Romo, E; Domínguez, J

    2015-10-01

    Knowing the evolution of callus stiffness is very important in distraction osteogenesis and bone healing. It allows the characterization of the bone maturation process and the assessment of the moment to retire the fixator. A new distractor device that monitors the callus axial stiffness is presented in this study. It quantifies the callus stiffness during the bone transport process with some advantages over previous methods to assess stiffness during simple distraction and bone healing. This device avoids a misalignment between bone segments, uses real load conditions, monitors forces continuously, does not involve radiation for patients, and allows the study of the complete distraction process, i.e., the distraction and consolidation phases. The device was calibrated in vitro simulating different real bone load conditions depending on the stage of the process. The stiffness of the callus could be estimated for values between 4.2 N/mm and 9066.8 N/mm. The average relative error in measurements carried out in in vitro calibration tests was 7.8% during the distraction phase and 9.5% during the consolidation phase. These results improve the accuracy and increase the callus stiffness range of estimation with respect to other devices in the literature. In addition, the device was used successfully in vivo in a preliminary experiment. PMID:26320818

  12. Chronic intrauterine pulmonary hypertension increases main pulmonary artery stiffness and adventitial remodeling in fetal sheep.

    PubMed

    Dodson, R Blair; Morgan, Matthew R; Galambos, Csaba; Hunter, Kendall S; Abman, Steven H

    2014-12-01

    Persistent pulmonary hypertension of the newborn (PPHN) is a clinical syndrome that is characterized by high pulmonary vascular resistance due to changes in lung vascular growth, structure, and tone. PPHN has been primarily considered as a disease of the small pulmonary arteries (PA), but proximal vascular stiffness has been shown to be an important predictor of morbidity and mortality in other diseases associated with pulmonary hypertension (PH). The objective of this study is to characterize main PA (MPA) stiffness in experimental PPHN and to determine the relationship of altered biomechanics of the MPA with changes in extracellular matrix (ECM) content and orientation of collagen and elastin fibers. MPAs were isolated from control and PPHN fetal sheep model and were tested by planar biaxial testing to measure stiffness in circumferential and axial vessel orientations. Test specimens were fixed for histological assessments of the vascular wall ECM constituents collagen and elastin. MPAs from PPHN sheep had increased mechanical stiffness (P < 0.05) and altered ECM remodeling compared with control MPA. A constitutive mathematical model and histology demonstrated that PPHN vessels have a smaller contribution of elastin and a greater role for collagen fiber engagement compared with the control arteries. We conclude that exposure to chronic hemodynamic stress in late-gestation fetal sheep increases proximal PA stiffness and alters ECM remodeling. We speculate that proximal PA stiffness further contributes to increased right ventricular impedance in experimental PPHN, which contributes to abnormal transition of the pulmonary circulation at birth. PMID:25326575

  13. Immediate effects of kinematic taping on lower extremity muscle tone and stiffness in flexible flat feet

    PubMed Central

    Wang, Joong-San; Um, Gi-Mai; Choi, Jung-Hyun

    2016-01-01

    [Purpose] This study aimed to examine the immediate effects of kinematic taping on the tone and stiffness in the leg muscles of subjects with flexible flat feet. [Subjects and Methods] A total of 30 subjects, 15 in the kinematic taping and 15 in the sham taping group, were administered respective taping interventions. Subsequently, the foot pressure and the tone and stiffness in the tibialis anterior, rectus femoris, medial gastrocnemius, and the long head of the biceps femoris muscles of both the lower extremities were measured. [Results] The foot pressure of the dominant leg significantly decreased in the kinematic taping group. The muscle tone and stiffness in the rectus femoris muscle of the dominant and non-dominant leg, tibialis anterior muscle of the dominant leg, medial gastrocnemius muscle of the non-dominant leg, and the stiffness in the dominant leg significantly decreased. The muscle tone and stiffness generally increased in the sham taping group. However, no significant difference was observed between the 2 groups. [Conclusion] This study demonstrated that kinematic taping on flexible flat feet had positive effects of immediately reducing the abnormally increased foot pressure and the tone and stiffness in the lower extremity muscles. PMID:27190479

  14. Comparative study of diastolic filling under varying left ventricular wall stiffness

    NASA Astrophysics Data System (ADS)

    Mekala, Pritam; Santhanakrishnan, Arvind

    2014-11-01

    Pathological remodeling of the human cardiac left ventricle (LV) is observed in hypertensive heart failure as a result of pressure overload. Myocardial stiffening occurs in these patients prior to chronic maladaptive changes, resulting in increased LV wall stiffness. The goal of this study was to investigate the change in intraventricular filling fluid dynamics inside a physical model of the LV as a function of wall stiffness. Three LV models of varying wall stiffness were incorporated into an in vitro flow circuit driven by a programmable piston pump. Windkessel elements were used to tune the inflow and systemic pressure in the model with least stiffness to match healthy conditions. Models with stiffer walls were comparatively tested maintaining circuit compliance, resistance and pump amplitude constant. 2D phase-locked PIV measurements along the central plane showed that with increase in wall stiffness, the peak velocity and cardiac output inside the LV decreased. Further, inflow vortex ring propagation toward the LV apex was reduced with increasing stiffness. The above findings indicate the importance of considering LV wall relaxation characteristics in pathological studies of filling fluid dynamics.

  15. Effects of golf shaft stiffness on strain, clubhead presentation and wrist kinematics.

    PubMed

    Betzler, Nils F; Monk, Stuart A; Wallace, Eric S; Otto, Steve R

    2012-06-01

    The aim of this study was to quantify and explain the effect of shaft stiffness on the dynamics of golf drives. Twenty golfers performed swings with two clubs designed to differ only in shaft bending stiffness. Wrist kinematics and clubhead presentation to the ball were determined using optical motion capture systems in conjunction with a radar device for capturing ball speed, launch angle, and spin. Shaft stiffness had a marginally small effect on clubhead and ball speeds, which increased by 0.45% (p < 0.001) and 0.7% (p = 0.008), respectively, for the less stiff club. Two factors directly contributed to these increases: (i) a faster recovery of the lower flex shaft from lag to lead bending just before impact (p < 0.001); and (ii) an increase of 0.4% in angular velocity of the grip of the lower flex club at impact (p = 0.003). Unsurprisingly, decreases in shaft stiffness led to more shaft bending at the transition from backswing to downswing (p < 0.001). Contrary to previous research, lead bending at impact marginally increased for the stiffer shaft (p = 0.003). Overall, and taking effect sizes into account, the changes in shaft stiffness in isolation did not have a meaningful effect on the measured parameters, for the type of shaft investigated. PMID:22900403

  16. Photoinduced variable stiffness of spiropyran-based composites

    SciTech Connect

    Samoylova, E.; Ceseracciu, L.; Allione, M.; Diaspro, A.; Barone, A. C.; Athanassiou, A.

    2011-11-14

    A quantitative demonstration of reversible stiffness upon appropriate light stimulus in a spiropyran-polymeric composite is presented. The polymeric films containing 3% wt. of the photochromic spiropyran were irradiated with alternating ultraviolet and visible light and the storage modulus was measured. A reversible change in modulus of about 7% was observed. The modulus change was attributed to an interaction of the polar merocyanine with the polymeric chains and/or to a variation of effective free volume induced by merocyanine aggregates formed in the polymer upon ultraviolet irradiation. The effect is fully reversed when the merocyanine isomers turn back to the spiropyran state after visible irradiation.

  17. Photoinduced variable stiffness of spiropyran-based composites

    NASA Astrophysics Data System (ADS)

    Samoylova, E.; Ceseracciu, L.; Allione, M.; Diaspro, A.; Barone, A. C.; Athanassiou, A.

    2011-11-01

    A quantitative demonstration of reversible stiffness upon appropriate light stimulus in a spiropyran-polymeric composite is presented. The polymeric films containing 3% wt. of the photochromic spiropyran were irradiated with alternating ultraviolet and visible light and the storage modulus was measured. A reversible change in modulus of about 7% was observed. The modulus change was attributed to an interaction of the polar merocyanine with the polymeric chains and/or to a variation of effective free volume induced by merocyanine aggregates formed in the polymer upon ultraviolet irradiation. The effect is fully reversed when the merocyanine isomers turn back to the spiropyran state after visible irradiation.

  18. Scaling of Fluid Flow and Seismic Stiffness of Fractures

    NASA Astrophysics Data System (ADS)

    Petrovitch, C.; Nolte, D.; Pyrak-Nolte, L. J.

    2011-12-01

    A firm understanding of the relationship between the hydraulic and mechanical properties of fractures has been long sought. Seismic techniques probe the mechanical properties of fractures, e.g. fracture specific stiffness. Providing a connection between fluid flow and fracture stiffness would enable remote estimation of the flow properties in the subsurface. Linking theses two properties would improve society's ability to assess the risk related to the extraction of drinkable water, oil production, and the storage of CO2 in subsurface reservoirs. This relationship is complicated because the subsurface is composed of a hierarchy of structures and processes that span a large range of length and time scales. A scaling approach enables researchers to translate laboratory measurements towards the field scale and vise a versa. We performed a computational study of the scaling of the flow-stiffness relationship for planar fractures with uncorrelated aperture distributions. Three numerical models were required to study the scaling properties of the flow-stiffness relationship for single fractures. Firstly, the fracture topologies where constructed using a stratified continuum percolation method. Only uncorrelated fracture geometries were considered to provide a baseline of understanding for the different interacting critical thresholds occurring in the hydraulic and mechanical properties. Secondly, fracture stiffness was calculated by modeling the deformation of asperities and a deformable half space. This model computed the displacement-stress curves for a given fracture, from which the stiffness was extracted. Thirdly, due to the sensitive nature of the critical phenomena associated with fluid flow through fractures, two network flow models were used for verification. The fractures were first modeled as a network of elliptical pipes and the corresponding linear system of equations was solved. The second method consisted of using a lattice grid network, where the flow is computed using the "cubic law." Fractures were generated at five sizes (1, 0.5, 0.25, 0.125, and 0.0625m) to provide an order of magnitude variation. Each fracture was constructed such that the contact area ranged from approximately 5% to 30%. The rocks were given the properties of granite and stressed to a maximum load of 70MPa. The deformation solver was given 50 steps to reach the final load so that its flow rate could be monitored during each loading step. The results clearly showed a dependence on scale. Under low loads flow-stiffness was in an effective medium regime. However as the load increased, a distinct scale dependence emerged. This occurs because as the load increases there is an overall increase in contact area, which in turn moves the flow dynamics into a critical regime. From this finite size scaling effect, we analyzed how the uncorrelated topologies length scales changed under load to compute the flow exponents for the system. Acknowledgments: Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DE-FG02-09ER16022), the Geo-mathematical Imaging Group at Purdue University, and the Purdue Research Foundation.

  19. Blood pressure and arterial stiffness in obese children and adolescents.

    PubMed

    Hvidt, Kristian Nebelin

    2015-03-01

    Obesity, elevated blood pressure (BP) and arterial stiffness are risk factors for cardiovascular disease. A strong relationship exists between obesity and elevated BP in both children and adults. Obesity and elevated BP in childhood track into adult life increasing the risk of cardiovascular disease in adulthood. Ambulatory BP is the most precise measure to evaluate the BP burden, whereas carotid-femoral pulse wave velocity (cfPWV) is regarded as the gold standard for evaluating arterial (i.e. aortic) stiffness. These measures might contribute to a better understanding of obesity's adverse impact on the cardiovascular system, and ultimately a better prevention and treatment of childhood obesity. The overall aim of the present PhD thesis is to investigate arterial stiffness and 24-hour BP in obese children and adolescents, and evaluate whether these measures are influenced by weight reduction. The present PhD thesis is based on four scientific papers.  In a cross-sectional design, 104 severe obese children and adolescents with an age of 10-18 years were recruited when newly referred to the Children's Obesity Clinic, Holbæk University Hospital, and compared to 50 normal weighted age and gender matched control individuals. Ambulatory BP was measured, and cfPWV was investigated in two ways in respect to the distance measure of aorta; the previously recommended length - the so called subtracted distance, and the currently recommended length - the direct distance. In a longitudinal design, the obese patients were re-investigated after one-year of lifestyle intervention at the Children's Obesity Clinic in purpose of reducing the degree of obesity. In the cross-sectional design, the obese group had higher measures of obesity, while matched for age, gender and height, when compared to the control group. In the longitudinal design, 74% of the 72 followed up obese patients experienced a significant weight reduction. CfPWV was dependent on the method used to measure the length of the aorta. The subtracted distance was not consistent in its relation to height in the obese and the control group. Opposite, the direct distance was consistent in its relation to height in the two groups. Therefore, cfPWV using the direct distance (cfPWV-direct) was regarded as the appropriate measure of arterial stiffness. CfPWV-direct was reduced in the obese group after adjustment for known confounders. In the longitudinal design, weight reduction across one year did not have an impact on cfPWV-direct in the obese patients. In fact, cfPWV-direct was higher at follow-up, which was explained by the increased age and partly by changes in BP and heart rate. The obese group had a relatively higher night- than day-time BP when compared to the control group. The obesity-related elevated night-time BP was independent of arterial stiffness and insulin resistance. Although night-time systolic BP was related to arterial stiffness and tended to be related to insulin resistance, insulin resistance and arterial stiffness were not related. In the longitudinal design, changes in anthropometric obesity measures across one year were associated with changes in 24-hour, day- and night-time BP, and consistent when evaluated in standardised values that accounted for growth. No association was found between changes in anthropometric obesity measures and changes in clinic BP. In conclusion, the results suggest that obesity in children is not "yet" associated with structural changes in aorta when evaluated with the appropriate new method of cfPWV. In this respect, weight reduction did not have an impact on arterial stiffness. The ambulatory BP, namely the night-time BP, was elevated in the obese patients, whereas changes in anthropometric obesity measures were related to changes in ambulatory BP but not to changes in clinic BP. In perspective, it is reassuring that weight changes are accompanied with a change in 24-hour BP as ambulatory BP is the most precise measure to evaluate the BP burden, and it emphasises the use of 24-hour ambulatory BP measurements in children and adolescents. It is important to recognise, that obese children who recover their normal weight before adulthood will have a similar cardiovascular risk as those who were never obese. Hence, early treatment and prevention of childhood obesity is important because it may prevent irreversible damage to the cardiovascular system. PMID:25748874

  20. Wave Propagation of Myocardial Stretch: Correlation with Myocardial Stiffness

    PubMed Central

    Pislaru, Cristina; Pellikka, Patricia A.; Pislaru, Sorin V.

    2015-01-01

    The mechanism of flow propagation during diastole in the left ventricle (LV) has been well described. Little is known about the associated waves propagating along the heart wall s. These waves may have a mechanism similar to pulse wave propagation in arteries. The major goal of the study was to evaluate the effect of myocardial stiffness and preload on this wave transmission. Methods Longitudinal late diastolic deformation and wave speed (Vp) of myocardial stretch in the anterior LV wall were measured using sonomicrometry in sixteen pigs. Animals with normal and altered myocardial stiffness (acute myocardial infarction) were studied with and without preload alterations. Elastic modulus estimated from Vp (EVP; Moens-Korteweg equation) was compared to incremental elastic modulus obtained from exponential end -diastolic stress-strain relation (ESS). Myocardial distensibility and α-and β-coefficients of stress-strain relations were calculated. Results Vp was higher at reperfusion compared to baseline (2.6±1.3 m/s vs. 1.3±0.4 m/s; p=0.005) and best correlated with ESS (r 2=0.80, p<0.0001), β-coefficient (r2=0.78, p<0.0001), distensibility (r2=0.47, p=0.005), and wall thickness/diameter ratio (r2=0.42, p=0.009). Elastic moduli (EVP and ESS) were strongly correlated (r2=0.83, p<0.0001). Increasing preload increased Vp and EVP and decreased distensibility. At multivariate analysis, ESS, wall thickness, and end-diastolic and systolic LV pressures were independent predictors of Vp (r2model=0.83, p<0.0001). Conclusions The main determinants of wave propagation of longitudinal myocardial stretch were myocardial stiffness and LV geometry and pressure. This local wave speed could potentially be measured noninvasively by echocardiography. PMID:25193091

  1. Wave propagation of myocardial stretch: correlation with myocardial stiffness.

    PubMed

    Pislaru, Cristina; Pellikka, Patricia A; Pislaru, Sorin V

    2014-01-01

    The mechanism of flow propagation during diastole in the left ventricle (LV) has been well described. Little is known about the associated waves propagating along the heart walls. These waves may have a mechanism similar to pulse wave propagation in arteries. The major goal of the study was to evaluate the effect of myocardial stiffness and preload on this wave transmission. Longitudinal late diastolic deformation and wave speed (Vp) of myocardial stretch in the anterior LV wall were measured using sonomicrometry in 16 pigs. Animals with normal and altered myocardial stiffness (acute myocardial infarction) were studied with and without preload alterations. Elastic modulus estimated from Vp (E VP; Moens-Korteweg equation) was compared to incremental elastic modulus obtained from exponential end-diastolic stress-strain relation (E SS). Myocardial distensibility and α- and β-coefficients of stress-strain relations were calculated. Vp was higher at reperfusion compared to baseline (2.6 ± 1.3 vs. 1.3 ± 0.4 m/s; p = 0.005) and best correlated with E SS (r2 = 0.80, p < 0.0001), β-coefficient (r2 = 0.78, p < 0.0001), distensibility (r2 = 0.47, p = 0.005), and wall thickness/diameter ratio (r2 = 0.42, p = 0.009). Elastic moduli (E VP and E SS) were strongly correlated (r2 = 0.83, p < 0.0001). Increasing preload increased Vp and E VP and decreased distensibility. At multivariate analysis, E SS, wall thickness, and end-diastolic and systolic LV pressures were independent predictors of Vp (r2 model = 0.83, p < 0.0001). In conclusion, the main determinants of wave propagation of longitudinal myocardial stretch were myocardial stiffness and LV geometry and pressure. This local wave speed could potentially be measured noninvasively by echocardiography. PMID:25193091

  2. Childhood Onset of Stiff-Man Syndrome

    PubMed Central

    Clardy, Stacey L.; Lennon, Vanda A.; Dalmau, Josep; Pittock, Sean J.; Jones, H. Royden; Renaud, Deborah L.; Harper, Charles M.; Matsumoto, Joseph Y.; McKeon, Andrew

    2016-01-01

    IMPORTANCE Reports of pediatric-onset stiff-man syndrome (SMS) are rare. This may be an underrecognized disorder in child neurology practice. OBJECTIVE To describe patients with disorders in the SMS spectrum beginning in childhood. DESIGN, SETTING, AND PARTICIPANTS This study was a medical record review and serological evaluation conducted at child and adult neurology clinics at the Mayo Clinic, Rochester, Minnesota. Systematic review of the literature was conducted of patients who presented from 1984-2012 with onset of symptomatic SMS occurring at age 18 years or younger. MAIN OUTCOMES AND MEASURES Response to symptomatic and immunotherapies, patient and physician reported, including modified Rankin scale. RESULTS We identified 8 patients with childhood-onset SMS, representing 5% of patients with SMS evaluated at Mayo Clinic during a period of 29 years (4 were girls). The median age at symptom onset was 11 years (range, 1-14 years). The diagnosis in 3 patients was not established until adulthood (median symptom duration at diagnosis, 14 years; range, 0-46 years). The phenotypes encountered were: classic SMS (n = 5, involving the low back and lower extremities), variant SMS (n = 2, limited to 1 limb [with dystonic posture] or back), and progressive encephalomyelitis with rigidity and myoclonus (n = 1). Initial misdiagnoses included functional movement disorder (n = 2), generalized dystonia and parkinsonism (n = 1), and hereditary spastic paraparesis (n = 1). Six patients had 1 or more coexisting autoimmune disorders: type 1 diabetes mellitus (n = 4), thyroid disease (n = 2), and vitiligo (n = 2). Serologic study results revealed glutamic acid decarboxylase 65–IgG in all cases (median value, 754 nmol/L; range, 0.06-3847 nmol/L; normal value, ≤0.02 nmol/L) and glycine receptor antibody in 3 cases. Improvements were noted with symptomatic therapy (diazepam, 6 of 6 patients treated, and oral baclofen, 3 of 3 treated) and immunotherapy (intravenous immune globulin, 3 of 4 treated and plasmapheresis, 3 of 4 treated). The 3 patients with glycine receptor antibody all improved with immunotherapy. At last follow-up, 4 patients had mild or no symptoms, but 4 had moderate or severe residual symptoms and required maintenance symptomatic therapy (n = 5) and immunotherapy (n = 4). Ten of 12 pediatric SMS cases identified by literature review had a severe whole-body phenotype resembling progressive encephalomyelitis with rigidity and myoclonus. CONCLUSIONS AND RELEVANCE Childhood-onset SMS is a rare but underrecognized and treatable disorder. Serological and electrophysiological testing aid diagnosis. PMID:24100349

  3. Basic study of intrinsic elastography: Relationship between tissue stiffness and propagation velocity of deformation induced by pulsatile flow

    NASA Astrophysics Data System (ADS)

    Nagaoka, Ryo; Iwasaki, Ryosuke; Arakawa, Mototaka; Kobayashi, Kazuto; Yoshizawa, Shin; Umemura, Shin-ichiro; Saijo, Yoshifumi

    2015-07-01

    We proposed an estimation method for a tissue stiffness from deformations induced by arterial pulsation, and named this proposed method intrinsic elastography (IE). In IE, assuming that the velocity of the deformation propagation in tissues is closely related to the stiffness, the propagation velocity (PV) was estimated by spatial compound ultrasound imaging with a high temporal resolution of 1 ms. However, the relationship between tissue stiffness and PV has not been revealed yet. In this study, the PV of the deformation induced by the pulsatile pump was measured by IE in three different poly(vinyl alcohol) (PVA) phantoms of different stiffnesses. The measured PV was compared with the shear wave velocity (SWV) measured by shear wave imaging (SWI). The measured PV has trends similar to the measured SWV. These results obtained by IE in a healthy male show the possibility that the mechanical properties of living tissues could be evaluated by IE.

  4. Light weight high-stiffness stage platen

    DOEpatents

    Spence, Paul A.

    2001-01-01

    An improved light weight, stiff stage platen for photolithography is provided. The high stiffness of the stage platen is exemplified by a relatively high first resonant vibrational mode as determined, for instance, by finite element modal analysis. The stage platen can be employed to support a chuck that is designed to secure a mask or wafer. The stage platen includes a frame that has interior walls that define an interior region and that has exterior walls wherein the outer surfaces of at least two adjacent walls are reflective mirror surfaces; and a matrix of ribs within the interior region that is connected to the interior walls wherein the stage platen exhibits a first vibrational mode at a frequency of greater than about 1000 Hz.

  5. Does short-term whole-body vibration training affect arterial stiffness in chronic stroke? A preliminary study

    PubMed Central

    Yule, Christie E.; Stoner, Lee; Hodges, Lynette D.; Cochrane, Darryl J.

    2016-01-01

    [Purpose] Previous studies have shown that stroke is associated with increased arterial stiffness that can be diminished by a program of physical activity. A novel exercise intervention, whole-body vibration (WBV), is reported to significantly improve arterial stiffness in healthy men and older sedentary adults. However, little is known about its efficacy in reducing arterial stiffness in chronic stroke. [Subjects and Methods] Six participants with chronic stroke were randomly assigned to 4 weeks of WBV training or control followed by cross-over after a 2-week washout period. WBV intervention consisted of 3 sessions of 5 min intermittent WBV per week for 4 weeks. Arterial stiffness (carotid arterial stiffness, pulse wave velocity [PWV], pulse and wave analysis [PWA]) were measured before/after each intervention. [Results] No significant improvements were reported with respect to carotid arterial stiffness, PWV, and PWA between WBV and control. However, carotid arterial stiffness showed a decrease over time following WBV compared to control, but this was not significant. [Conclusion] Three days/week for 4 weeks of WBV seems too short to elicit appropriate changes in arterial stiffness in chronic stroke. However, no adverse effects were reported, indicating that WBV is a safe and acceptable exercise modality for people with chronic stroke. PMID:27134400

  6. Does short-term whole-body vibration training affect arterial stiffness in chronic stroke? A preliminary study.

    PubMed

    Yule, Christie E; Stoner, Lee; Hodges, Lynette D; Cochrane, Darryl J

    2016-03-01

    [Purpose] Previous studies have shown that stroke is associated with increased arterial stiffness that can be diminished by a program of physical activity. A novel exercise intervention, whole-body vibration (WBV), is reported to significantly improve arterial stiffness in healthy men and older sedentary adults. However, little is known about its efficacy in reducing arterial stiffness in chronic stroke. [Subjects and Methods] Six participants with chronic stroke were randomly assigned to 4 weeks of WBV training or control followed by cross-over after a 2-week washout period. WBV intervention consisted of 3 sessions of 5 min intermittent WBV per week for 4 weeks. Arterial stiffness (carotid arterial stiffness, pulse wave velocity [PWV], pulse and wave analysis [PWA]) were measured before/after each intervention. [Results] No significant improvements were reported with respect to carotid arterial stiffness, PWV, and PWA between WBV and control. However, carotid arterial stiffness showed a decrease over time following WBV compared to control, but this was not significant. [Conclusion] Three days/week for 4 weeks of WBV seems too short to elicit appropriate changes in arterial stiffness in chronic stroke. However, no adverse effects were reported, indicating that WBV is a safe and acceptable exercise modality for people with chronic stroke. PMID:27134400

  7. The stiffness tailoring of megawatt wind turbine

    NASA Astrophysics Data System (ADS)

    Li, Z. M.; Li, C.; Ye, Z.; Wu, P.; Lu, Y. F.

    2013-12-01

    Wind power has developed rapidly in recently years, the wind turbine's blades determine the performance of the device and the power. In this paper, we used integrated tailoring aimed at institutional characteristics of horizontal axis wind turbine with the composite laminated plate theory, then analyzed the composite blades of wind turbine by combining experimental analysis and finite elements method, and finally studied the influences that composite material properties on stiffness tailoring with changes in the number of different layers.

  8. Stiff modes in spinvalve simulations with OOMMF

    NASA Astrophysics Data System (ADS)

    Mitropoulos, Spyridon; Tsiantos, Vassilis; Ovaliadis, Kyriakos; Kechrakos, Dimitris; Donahue, Michael

    2016-04-01

    Micromagnetic simulations are an important tool for the investigation of magnetic materials. Micromagnetic software uses various techniques to solve differential equations, partial or ordinary, involved in the dynamic simulations. Euler, Runge-Kutta, Adams, and BDF (Backward Differentiation Formulae) are some of the methods used for this purpose. In this paper, spinvalve simulations are investigated. Evidence is presented showing that these systems have stiff modes, and that implicit methods such as BDF are more effective than explicit methods in such cases.

  9. Stress-Induced Variations in the Stiffness of Micro- and Nanocantilever Beams

    PubMed Central

    Karabalin, R. B.; Villanueva, L. G.; Matheny, M. H.; Sader, J. E.; Roukes, M. L.

    2013-01-01

    The effect of surface stress on the stiffness of cantilever beams remains an outstanding problem in the physical sciences. While numerous experimental studies report significant stiffness change due to surface stress, theoretical predictions are unable to rigorously and quantitatively reconcile these observations. In this Letter, we present the first controlled measurements of stress-induced change in cantilever stiffness with commensurate theoretical quantification. Simultaneous measurements are also performed on equivalent clamped-clamped beams. All experimental results are quantitatively and accurately predicted using elasticity theory. We also present conclusive experimental evidence for invalidity of the longstanding and unphysical axial force model, which has been widely applied to interpret measurements using cantilever beams. Our findings will be of value in the development of micro- and nanoscale resonant mechanical sensors. PMID:23003973

  10. Stress-Induced Variations in the Stiffness of Micro- and Nanocantilever Beams

    NASA Astrophysics Data System (ADS)

    Karabalin, R. B.; Villanueva, L. G.; Matheny, M. H.; Sader, J. E.; Roukes, M. L.

    2012-06-01

    The effect of surface stress on the stiffness of cantilever beams remains an outstanding problem in the physical sciences. While numerous experimental studies report significant stiffness change due to surface stress, theoretical predictions are unable to rigorously and quantitatively reconcile these observations. In this Letter, we present the first controlled measurements of stress-induced change in cantilever stiffness with commensurate theoretical quantification. Simultaneous measurements are also performed on equivalent clamped-clamped beams. All experimental results are quantitatively and accurately predicted using elasticity theory. We also present conclusive experimental evidence for invalidity of the long-standing and unphysical axial force model, which has been widely applied to interpret measurements using cantilever beams. Our findings will be of value in the development of micro- and nanoscale resonant mechanical sensors.

  11. The immediate effect of PNF pattern on muscle tone and muscle stiffness in chronic stroke patient

    PubMed Central

    Wang, Joong-San; Lee, Sang-Bin; Moon, Sang-Hyun

    2016-01-01

    [Purpose] The purpose of this study was to investigate the immediate effect of proprioceptive neuromuscular facilitation on muscle tone and muscle stiffness in stroke patients. [ Subjects and Methods] The subjects consisted of 15 patients with chronic stroke (stroke group) and 15 healthy persons (healthy group). We measured the effects of proprioceptive neuromuscular facilitation intervention on the lower extremity using a muscle tone measurement device; this detected changes in muscle tone and stiffness in the lower extremity muscles. [Results] Measurements taken before the intervention showed that, on average, the lower extremity muscles of the stroke group showed abnormally increased muscle tone and stiffness compared to the lower extremity muscles of the healthy group. After the intervention, the average muscle tone and stiffness in the lower extremity muscles of the stroke group decreased, but this change was insignificant, and the differences between the two groups were also insignificant. [Conclusion] Based on the findings of this study, we recommend proprioceptive neuromuscular facilitation treatment of both affected and non-affected sides to decrease the abnormally increased muscle tone and stiffness in the lower extremity muscles of chronic stroke patients. PMID:27134394

  12. Lifestyle modification decreases arterial stiffness in overweight and obese men: dietary modification vs. exercise training.

    PubMed

    Maeda, Seiji; Zempo-Miyaki, Asako; Sasai, Hiroyuki; Tsujimoto, Takehiko; So, Rina; Tanaka, Kiyoji

    2015-02-01

    Obesity and increased arterial stiffness are independent risk factors for cardiovascular disease. Arterial stiffness is increased in obese individuals than in age-matched nonobese individuals. We demonstrated that dietary modification and exercise training are effective in reducing arterial stiffness in obese persons. However, the differences in the effect on arterial stiffness between dietary modification and exercise training are unknown. The purpose of the current study was to compare the effect of dietary modification and aerobic exercise training on arterial stiffness and endothelial function in overweight and obese persons. Forty-five overweight and obese men (48 ± 1 year) completed either a dietary modification (well-balanced nutrient, 1680 kcal/day) or an exercise-training program (walking, 40-60 min/day, 3 days/week) for 12 weeks. Before and after the intervention, all participants underwent anthropometric measurements. Arterial stiffness was measured based on carotid arterial compliance, brachial-ankle pulse wave velocity (baPWV), and endothelial function was determined by circulating level of endothelin-1 (ET-1) and nitric oxide metabolite (nitrites/nitrate as metabolite: NOx). Body mass and waist circumference significantly decreased after both intervention programs. Weight loss was greater after dietary modification than after exercise training (-10.1 ± 0.6 kg vs. -3.6 ± 0.5 kg, p < .01). Although arterial stiffness and the plasma levels of ET-1 and NOx were improved after dietary modification or exercise training, there were no differences in those improvements between the 2 types of interventions. Exercise training improves arterial function in obese men without as much weight loss as after dietary modification. PMID:25029200

  13. Lamb Wave Stiffness Characterization of Composites Undergoing Thermal-Mechanical Aging

    NASA Technical Reports Server (NTRS)

    Seale, Michael D.; Madaras, Eric I.

    2004-01-01

    The introduction of new, advanced composite materials into aviation systems requires a thorough understanding of the long term effects of combined thermal and mechanical loading upon those materials. Analytical methods investigating the effects of intense thermal heating combined with mechanical loading have been investigated. The damage mechanisms and fatigue lives were dependent on test parameters as well as stress levels. Castelli, et al. identified matrix dominated failure modes for out-of-phase cycling and fiber dominated damage modes for in-phase cycling. In recent years, ultrasonic methods have been developed that can measure the mechanical stiffness of composites. To help evaluate the effect of aging, a suitably designed Lamb wave measurement system is being used to obtain bending and out-of-plane stiffness coefficients of composite laminates undergoing thermal-mechanical loading. The system works by exciting an antisymmetric Lamb wave and calculating the velocity at each frequency from the known transducer separation and the measured time-of-flight. The same peak in the waveforms received at various distances is used to measure the time difference between the signals. The velocity measurements are accurate and repeatable to within 1% resulting in reconstructed stiffness values repeatable to within 4%. Given the material density and plate thickness, the bending and out-of-plane shear stiffnesses are calculated from a reconstruction of the dispersion curve. A mechanical scanner is used to move the sensors over the surface to map the time-of-flight, velocity, or stiffnesses of the entire specimen. Access to only one side of the material is required and no immersion or couplants are required because the sensors are dry coupled to the surface of the plate. In this study, the elastic stiffnesses D(sub 11), D(sub 22), A(sub 44), and A(sub 55) as well as time-of-flight measurements for composite samples that have undergone combined thermal and mechanical aging for a duration of 10,000 hours are reported.

  14. Magnetic Resonance Elastography as a Method for the Assessment of Effective Myocardial Stiffness throughout the Cardiac Cycle

    PubMed Central

    Kolipaka, Arunark; Araoz, Philip A.; McGee, Kiaran P.; Manduca, Armando; Ehman, Richard L.

    2011-01-01

    Magnetic resonance elastography (MRE) is a noninvasive technique in which images of externally generated waves propagating in tissue are used to measure stiffness. The first aim is to determine, from a range of driver configurations the optimal driver for the purpose of generating waves within the heart in vivo. The second aim is to quantify the shear stiffness of normal myocardium throughout the cardiac cycle using MRE and to compare MRE stiffness to left ventricular (LV) chamber pressure in an in vivo pig model. MRE was performed in 6-pigs with 6-different driver setups including no motion, 3-noninvasive drivers and 2-invasive drivers. MRE wave displacement amplitudes were calculated for each driver. During the same MRI examination, LV pressure and MRI-measured LV volume were obtained, and MRE myocardial stiffness was calculated for 20 phases of the cardiac cycle. No discernible waves were imaged when no external motion was applied, and a single pneumatic drum driver produced higher amplitude waves than the other noninvasive drivers (P <0.05). Pressure-volume loops overlaid onto stiffness-volume loops showed good visual agreement. Pressure and MRE-measured effective stiffness showed good correlation (R2 = 0.84). MRE shows potential as a noninvasive method for estimating effective myocardial stiffness throughout the cardiac cycle. PMID:20578052

  15. Cosmology with a stiff matter era

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2015-11-01

    We consider the possibility that the Universe is made of a dark fluid described by a quadratic equation of state P =K ρ2 , where ρ is the rest-mass density and K is a constant. The energy density ɛ =ρ c2+K ρ2 is the sum of two terms: a rest-mass term ρ c2 that mimics "dark matter" (P =0 ) and an internal energy term u =K ρ2=P that mimics a "stiff fluid" (P =ɛ ) in which the speed of sound is equal to the speed of light. In the early universe, the internal energy dominates and the dark fluid behaves as a stiff fluid (P ˜ɛ , ɛ ∝a-6). In the late universe, the rest-mass energy dominates and the dark fluid behaves as pressureless dark matter (P ≃0 , ɛ ∝a-3). We provide a simple analytical solution of the Friedmann equations for a universe undergoing a stiff matter era, a dark matter era, and a dark energy era due to the cosmological constant. This analytical solution generalizes the Einstein-de Sitter solution describing the dark matter era, and the Λ CDM model describing the dark matter era and the dark energy era. Historically, the possibility of a primordial stiff matter era first appeared in the cosmological model of Zel'dovich where the primordial universe is assumed to be made of a cold gas of baryons. A primordial stiff matter era also occurs in recent cosmological models where dark matter is made of relativistic self-gravitating Bose-Einstein condensates (BECs). When the internal energy of the dark fluid mimicking stiff matter is positive, the primordial universe is singular like in the standard big bang theory. It expands from an initial state with a vanishing scale factor and an infinite density. We consider the possibility that the internal energy of the dark fluid is negative (while, of course, its total energy density is positive), so that it mimics anti-stiff matter. This happens, for example, when the BECs have an attractive self-interaction with a negative scattering length. In that case, the primordial universe is nonsingular and bouncing like in loop quantum cosmology. At t =0 , the scale factor is finite and the energy density is equal to zero. The universe first has a phantom behavior where the energy density increases with the scale factor, then a normal behavior where the energy density decreases with the scale factor. For the sake of generality, we consider a cosmological constant of arbitrary sign. When the cosmological constant is positive, the Universe asymptotically reaches a de Sitter regime where the scale factor increases exponentially rapidly with time. This can account for the accelerating expansion of the Universe that we observe at present. When the cosmological constant is negative (anti-de Sitter), the evolution of the Universe is cyclic. Therefore, depending on the sign of the internal energy of the dark fluid and on the sign of the cosmological constant, we obtain analytical solutions of the Friedmann equations describing singular and nonsingular expanding, bouncing, or cyclic universes.

  16. Effects of safflower seed extract on arterial stiffness

    PubMed Central

    Suzuki, Katsuya; Tsubaki, Shigekazu; Fujita, Masami; Koyama, Naoto; Takahashi, Michio; Takazawa, Kenji

    2010-01-01

    Safflower seed extract (SSE) contains characteristic polyphenols and serotonin derivatives (N-( p-coumaroyl) serotonin and N-feruloylserotonin), which are reported to inhibit oxidation of low-density lipoprotein (LDL), formation of atherosclerotic plaques, and improve arterial stiffness as assessed by pulse wave analysis in animal models. The effects of long-term supplementation with SSE on arterial stiffness in human subjects were evaluated. This doubleblind, placebo-controlled study was conducted in 77 males (35–65 years) and 15 postmenopausal females (55–65 years) with high-normal blood pressure or mild hypertension who were not undergoing treatment. Subjects received SSE (70 mg/day as serotonin derivatives) or placebo for 12 weeks, and pulse wave measurements, ie, second derivative of photoplethysmogram (SDPTG), augmentation index, and brachial-ankle pulse wave velocity (baPWV) were conducted at baseline, and at weeks 4, 8, and 12. Vascular age estimated by SDPTG aging index improved in the SSE-supplemented group when compared with the placebo group at four (P = 0.0368) and 12 weeks (P = 0.0927). The trend of augmentation index reduction (P = 0.072 versus baseline) was observed in the SSE-supplemented group, but reduction of baPWV by SSE supplementation was not observed. The SSE-supplemented group also showed a trend towards a lower malondialdehyde-modified-LDL autoantibody titer at 12 weeks from baseline. These results suggest long-term ingestion of SSE in humans could help to improve arterial stiffness. PMID:21127697

  17. The association between in utero hyperinsulinemia and adolescent arterial stiffness.

    TOXLINE Toxicology Bibliographic Information

    Tam WH; Ma RC; Yip GW; Yang X; Li AM; Ko GT; Lao TT; Chan JC

    2012-01-01

    AIM: To determine the relationship between in utero hyperinsulinemia and children's arterial stiffness at adolescence.METHODS: Indices of arterial stiffness were measured using the SphygmoCor apparatus in 129 adolescents (42 offsprings of mother with gestational diabetes and 87 offsprings of mother with normal glucose tolerance during pregnancy) at 15 years of age.RESULTS: Adolescent of mothers with gestational diabetes had similar central aortic blood pressure, augmentation pressure (AP), augmentation index (AI), and carotid-femoral pulse wave velocity (PWV) as that of controls. However, both umbilical cord C-peptide and insulin levels correlated positively AI (R=0.28 and 0.24; p=0.011 and 0.035, respectively), and umbilical insulin level correlated positively with AP (R=0.25; p=0.025). The correlations were significant between umbilical cord C-peptide and AP (R=0.24; p=0.035) and AI (R=0.29; p=0.011) after adjustment for subjects' age, sex, body weight and height. Adolescents who had umbilical cord C-peptide levels at highest quartile (n=25), based on the reference ranges of the original cohort, had a significant greater PWV (5.26±0.12 m/s vs 4.98±0.12 m/s; p=0.0049) than those with C-peptide levels at the lower 3 quartiles (n=57) after adjustment for age, sex, body weight and height.CONCLUSIONS: In utero hyperinsulinemia appears to increase the offspring's arterial stiffness at early adolescence.

  18. Reflex ankle stiffness is inversely correlated with natural body sway.

    PubMed

    Julien, Brianna L; Bendrups, Andrew P

    2016-02-01

    We aimed to determine whether effective ankle stiffness (EAS), measured during slow unperceived perturbations of stance, is related to natural anterior-posterior body sway. Because the perturbations are not perceived, any neural component of the response to perturbation is assumed to be "reflex", in the broad sense of an involuntary response to a stimulus. Subjects stood on a force platform for three 10-min trials. EAS was obtained from the average slope (Δτ/Δα) of the relation between ankle torque (τ) and ankle angle (α), recorded during repeated perturbations delivered at the waist by a weak spring. EAS was normalised using the subject's "load stiffness" (LS), calculated from mass (m) and height (h) above the ankle joint (m·g·h). Sway was obtained from fluctuations in ankle angle prior to perturbation. Variation in EAS and sway between subjects provided spread of data for correlation. There were no significant changes in EAS or sway across trials. All subjects had higher EAS than LS and mean EAS (1124Nm/rad) was significantly greater (p<0.01) than mean LS (531Nm/rad). There was a strong significant inverse correlation between mean sway and mean normalised EAS (r=-0.68, p=0.03). We conclude that the body, in response to slow unperceived perturbations, simulates an inverted pendulum with a stiffness of about twice LS and that EAS is largely generated by neural modulation of postural muscles. The inverse correlation between EAS and body sway suggests that the reflex mechanisms responding to perturbation also influence the extent of natural sway. PMID:27004645

  19. Ethnic Differences in Bending Stiffness of the Ulna and Tibia

    NASA Technical Reports Server (NTRS)

    Arnaud, S. B.; Liang, M. T. C.; Bassin, S.; Braun, W.; Dutto, D.; Plesums, K.; Huvnh, H. T.; Cooper, D.; Wong, N.

    2004-01-01

    There is considerable information about the variations in bone mass associated with different opportunity to compare a mechanical property of bone in young college women of Caucasian, Hispanic and Asian descent who gave informed consent to participate in an exercise study. The subjects were sedentary, in good health, eumenorrheic, non-smokers and had body mass indices (BMI) less than 30. Measurements acquired were body weight, kg, and height, cm, calcaneal and wrist bone density, g/square cm (PIXI, Lunar GE) and bending stiffness (EI, Nm(exp 2)) in the ulna and tibia. E1 was determined non-invasively with an instrument called the Mechanical Response Tissue Analyzer (MRTA) that delivers a vibratory stimulus to the center of the ulna or tibia and analyzes the response curve based on the equation E1 = k(sub b) L(exp 3)/48 where k, is lateral bending stiffness, L is the length of the bone, E is Young's modulus of elasticity and I, the bending moment of inertia. The error of the test (CV) based on measurements of an aluminum rod with a known E1 was 4.8%, of calcaneal BMD, 0.54%, and of wrist bone density, 3.45%.

  20. Tension and instantaneous stiffness of single muscle fibers immersed in Ringer solution of decreased tonicity.

    PubMed Central

    Bressler, B H; Matsuba, K

    1991-01-01

    Isometric tension and instantaneous stiffness were measured in frog semitendinosus single muscle fibers in both isotonic and hypotonic Ringer solution. In 0.7 and 0.5 x normal Ringer tension increased 17 and 20%, respectively. There was no corresponding increase in the measured stiffness. The increase in tension in hypotonic Ringer could be reversed by the addition of an osmotic equivalent of sucrose to the bathing solution. These findings suggest that the potentiated tension observed in hypotonic Ringer is due to an increased tension per cross-bridge and not to an increase in the number of attached cross-bridges. PMID:1868151

  1. Vertical stiffness and muscle strain in professional Australian football.

    PubMed

    Serpell, Benjamin G; Scarvell, Jennie M; Ball, Nick B; Smith, Paul N

    2014-12-01

    Abstract The purpose of this study was to establish if vertical stiffness was greater in professional Australian rules footballers who sustained a lower limb skeletal muscle strain compared to those who did not, and to establish if a relationship between age, or training history, and vertical stiffness existed. Thirty-one participants underwent weekly rebound jump testing on a force platform over two seasons. Vertical stiffness was calculated for injured players and the uninjured cohort 1 and 3 weeks prior to sustaining an injury and at the end of preseason. Eighteen athletes were in the "uninjured" cohort and 13 in the "injured" cohort. No significant difference in vertical stiffness was observed between groups (P = 0.18 for absolute stiffness; P = 0.08 for stiffness relative to body mass), within groups (P = 0.83 and P = 0.88, respectively) or for a time*cohort interaction (P = 0.77 and P = 0.80, respectively). No relationship between age and vertical stiffness existed (r = -0.06 for absolute and relative stiffness), or training history and vertical stiffness (r = -0.01 and 0.00 for absolute and relative stiffness, respectively) existed. These results and others lend to suggest that vertical stiffness is not related to lower limb muscle strain injury. PMID:25058314

  2. The Evolution of Tissue Stiffness at Radiofrequency Ablation Sites During Lesion Formation and in the Peri‐Ablation Period

    PubMed Central

    EYERLY, STEPHANIE A.; VEJDANI‐JAHROMI, MARYAM; DUMONT, DOUGLAS M.; TRAHEY, GREGG E.

    2015-01-01

    Peri‐Ablation Monitoring of RFA Lesion Stiffness Introduction Elastography imaging can provide radiofrequency ablation (RFA) lesion assessment due to tissue stiffening at the ablation site. An important aspect of assessment is the spatial and temporal stability of the region of stiffness increase in the peri‐ablation period. The aim of this study was to use 2 ultrasound‐based elastography techniques, shear wave elasticity imaging (SWEI) and acoustic radiation force impulse (ARFI) imaging, to monitor the evolution of tissue stiffness at ablation sites in the 30 minutes following lesion creation. Methods and Results In 6 canine subjects, SWEI measurements and 2‐D ARFI images were acquired at 6 ventricular endocardial RFA sites before, during, and for 30 minutes postablation. An immediate increase in tissue stiffness was detected during RFA, and the area of the postablation region of stiffness increase (RoSI) as well as the relative stiffness at the RoSI center was stable approximately 2 minutes after ablation. Of note is the observation that relative stiffness in the region adjacent to the RoSI increased slightly during the first 15 minutes, consistent with local fluid displacement or edema. The magnitude of this increase, ∼0.5‐fold from baseline, was significantly less than the magnitude of the stiffness increase directly inside the RoSI, which was greater than 3‐fold from baseline. Conclusions Ultrasound‐based SWEI and ARFI imaging detected an immediate increase in tissue stiffness during RFA, and the stability and magnitude of the stiffness change suggest that consistent elasticity‐based lesion assessment is possible 2 minutes after and for at least 30 minutes following ablation. PMID:25970142

  3. Increased left atrial size is associated with reduced atrial stiffness and preserved reservoir function in athlete's heart.

    PubMed

    D'Ascenzi, Flavio; Pelliccia, Antonio; Natali, Benedetta Maria; Cameli, Matteo; Andrei, Valentina; Incampo, Eufemia; Alvino, Federico; Lisi, Matteo; Padeletti, Margherita; Focardi, Marta; Bonifazi, Marco; Mondillo, Sergio

    2015-04-01

    Left atrial (LA) fibrosis with increased stiffness has been assumed to be the substrates for occurrence of atrial arrhythmias in athletes. However, this hypothesis has not yet been confirmed in humans. Aim of this study was, therefore, to assess LA remodeling and stiffness in competitive athletes. 150 competitive athletes and 90 age and sex-matched sedentary subjects were analyzed by speckle-tracking echocardiography to measure peak atrial longitudinal strain (PALS) and peak atrial contraction strain (PACS). LA stiffness was determined using E/e' ratio in conjunction with PALS. Left ventricular (LV) stiffness was also calculated. LA volume index was greater in athletes as compared with controls (24.6 7.3 vs. 18.4 7.8 mL/m(2), p < .0001). LA PALS, LA PACS, and E/e' ratio were lower in athletes in comparison with controls (p < .05, p ? .001, and p < .0001, respectively). Despite greater LA size, competitive athletes had lower LA stiffness as compared with controls (0.13 0.04 vs. 0.16 0.06, p ? .001). In addition, LV stiffness was lower in athletes (0.84 0.27 vs. 1.07 0.46, p ? .001). The only independent predictor of LA stiffness was LV stiffness (? = 0.46, p < .0001), while the only independent predictor of LA volume index was LV end-systolic volume index (? = 0.25, p = .002). Competitive athletes showed greater LA size associated with lower stiffness as compared with controls. Thus, LA remodeling in the context of the athlete's heart is not associated with increased LA stiffness. These findings support the benign nature of LA remodeling in athletes, occurring as a physiological adaptation to exercise conditioning. PMID:25627780

  4. Multijoint arm stiffness during movements following stroke: implications for robot therapy

    PubMed Central

    Piovesan, D.; Casadio, M.; Mussa-Ivaldi, F. A.; Morasso, P.G

    2015-01-01

    Impaired arm movements in stroke appear as a set of stereotypical kinematic patterns, characterized by abnormal joint coupling, which have a direct consequence on arm mechanics and can be quantified by the net arm stiffness at the hand. The current available measures of arm stiffness during functional tasks have limited clinical use, since they require several repetitions of the same test movement in many directions. Such procedure is difficult to obtain in stroke survivors who have lower fatigue threshold and increased variability compared to unimpaired individuals. The present study proposes a novel, fast quantitative measure of arm stiffness during movements by means of a Time-Frequency technique and the use of a reassigned spectrogram, applied on a trial-by-trial basis with a single perturbation. We tested the technique feasibility during robot mediated therapy, where a robot helped stroke survivors to regain arm mobility by providing assistive forces during a hitting task to 13 targets covering the entire reachable workspace. The endpoint stiffness of the paretic arm was estimated at the end of each hitting movements by suddenly switching of the assistive forces and observing the ensuing recoil movements. In addition, we considered how assistive forces influence stiffness. This method will provide therapists with improved tools to target the treatment to the individual’s specific impairment and to verify the effects of the proposed exercises. PMID:22275576

  5. Variable Stiffness Panel Structural Analyses With Material Nonlinearity and Correlation With Tests

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Gurdal, Zafer

    2006-01-01

    Results from structural analyses of three tow-placed AS4/977-3 composite panels with both geometric and material nonlinearities are presented. Two of the panels have variable stiffness layups where the fiber orientation angle varies as a continuous function of location on the panel planform. One variable stiffness panel has overlapping tow bands of varying thickness, while the other has a theoretically uniform thickness. The third panel has a conventional uniform-thickness [plus or minus 45](sub 5s) layup with straight fibers, providing a baseline for comparing the performance of the variable stiffness panels. Parametric finite element analyses including nonlinear material shear are first compared with material characterization test results for two orthotropic layups. This nonlinear material model is incorporated into structural analysis models of the variable stiffness and baseline panels with applied end shortenings. Measured geometric imperfections and mechanical prestresses, generated by forcing the variable stiffness panels from their cured anticlastic shapes into their flatter test configurations, are also modeled. Results of these structural analyses are then compared to the measured panel structural response. Good correlation is observed between the analysis results and displacement test data throughout deep postbuckling up to global failure, suggesting that nonlinear material behavior is an important component of the actual panel structural response.

  6. Adaptive optics in an optical trapping system for enhanced lateral trap stiffness at depth

    NASA Astrophysics Data System (ADS)

    Müllenbroich, M. C.; McAlinden, N.; Wright, A. J.

    2013-07-01

    In optical trapping systems the trap stiffness, or spring constant, deteriorates dramatically with trap depth due to optical aberrations and system misalignment. This can severely hamper studies that employ optical tweezers to make accurate quantitative measurements. Here, a deformable membrane mirror is used, in conjunction with a random search algorithm, to correct for these aberrations by optimizing on a merit factor that is directly proportional to the trap stiffness. Previous studies have sought to address this issue but none have used a merit factor that is directly proportional to the trap stiffness. We demonstrate that the lateral trap stiffness, measured with and without aberration correction at increasing depths, improves throughout the trapping range of a conventional trap and allows us to extend the maximum depth at which we can trap from 136 to 166 μm. At a depth of 131 μm, trap stiffness improved by factors of 4.37 and 3.31 for the x- and y-axes respectively. The aberration correction resulted in deformable membrane mirror shapes where a single shape could be applied throughout a wide range of trap depths, showing significant improvement, and had the added benefit of making the lateral trapping forces more uniform in x and y.

  7. Arterial stiffness in adult patients after Fontan procedure

    PubMed Central

    2014-01-01

    Objectives Increased arterial stiffness is a risk factor of atherosclerosis and cardio-vascular complications. The aim of the study was to determine whether peripheral vascular function might be an early marker of impaired health status in patients with a single ventricle after Fontan procedure. Methods and results Twenty five consecutive adults (11 women and 14 men) aged 24.7 ± 6.2 years after the Fontan procedure and 25 sex, age and BMI match healthy volunteers underwent physical examination, blood analysis, transthoracic echocardiography and noninvasive assessment of aortic stiffness. Augmented pressure and Augmentation Index (AIx) were both significantly elevated in Fontan when compared to the controls (6,08 ± 0,7 vs. 2,0 ± 3,7; p = 0.002 and 17,01 ± 3,3 vs. 6,05 ± 11; p < 0.001, respectively). There were no differences in pulse wave velocity (PWV), mean blood pressure (BP), brachial pulse pressure (PP), central: systolic BP, diastolic BP and PP. In Fontan group we find negative correlation between PWV and SatO2 (r = −0.68; p = 0.04) and positive correlation with WBC (0.72; p = 0.72; p = 0.013), INR (0.81; p = 0.008), TNFα (r = 0.45; p = 0.04), and postoperative time (r = 0.77; p = 0.02). AIx correlates positively only with age at surgery (r = 0.45; p = 0.04). Bilirubin level correlates positively with brachial PP (r = 0.71; p = 0.02) and central PP (r = 0.68; p = 0.03). The multivariate model showed that SatO2 (β = −0.44, p = 0.04) was the only independent predictor of PWV (R2 = 0.32, p = 0.03). Conclusion Adult Fontan patients have an increased arterial stiffness assessed by a noninvasive technique. Low arterial oxygen saturation postoperative time, age at surgery, white blood cells, TNFα and bilirubin level are associated with arterial stiffening in these patients. The combination of blood parameters of the hepatic function and noninvasive measurements of arterial stiffness could be helpful in comprehensive care of patients with Fontan circulation. PMID:24716671

  8. The Effect of Substrate Stiffness, Thickness, and Cross-Linking Density on Osteogenic Cell Behavior

    PubMed Central

    Mullen, Conleth A.; Vaughan, Ted J.; Billiar, Kristen L.; McNamara, Laoise M.

    2015-01-01

    Osteogenic cells respond to mechanical changes in their environment by altering their spread area, morphology, and gene expression profile. In particular, the bulk modulus of the substrate, as well as its microstructure and thickness, can substantially alter the local stiffness experienced by the cell. Although bone tissue regeneration strategies involve culture of bone cells on various biomaterial scaffolds, which are often cross-linked to enhance their physical integrity, it is difficult to ascertain and compare the local stiffness experienced by cells cultured on different biomaterials. In this study, we seek to characterize the local stiffness at the cellular level for MC3T3-E1 cells plated on biomaterial substrates of varying modulus, thickness, and cross-linking concentration. Cells were cultured on flat and wedge-shaped gels made from polyacrylamide or cross-linked collagen. The cross-linking density of the collagen gels was varied to investigate the effect of fiber cross-linking in conjunction with substrate thickness. Cell spread area was used as a measure of osteogenic differentiation. Finite element simulations were used to examine the effects of fiber cross-linking and substrate thickness on the resistance of the gel to cellular forces, corresponding to the equivalent shear stiffness for the gel structure in the region directly surrounding the cell. The results of this study show that MC3T3 cells cultured on a soft fibrous substrate attain the same spread cell area as those cultured on a much higher modulus, but nonfibrous substrate. Finite element simulations predict that a dramatic increase in the equivalent shear stiffness of fibrous collagen gels occurs as cross-linking density is increased, with equivalent stiffness also increasing as gel thickness is decreased. These results provide an insight into the response of osteogenic cells to individual substrate parameters and have the potential to inform future bone tissue regeneration strategies that can optimize the equivalent stiffness experienced by a cell. PMID:25863052

  9. The effect of substrate stiffness, thickness, and cross-linking density on osteogenic cell behavior.

    PubMed

    Mullen, Conleth A; Vaughan, Ted J; Billiar, Kristen L; McNamara, Laoise M

    2015-04-01

    Osteogenic cells respond to mechanical changes in their environment by altering their spread area, morphology, and gene expression profile. In particular, the bulk modulus of the substrate, as well as its microstructure and thickness, can substantially alter the local stiffness experienced by the cell. Although bone tissue regeneration strategies involve culture of bone cells on various biomaterial scaffolds, which are often cross-linked to enhance their physical integrity, it is difficult to ascertain and compare the local stiffness experienced by cells cultured on different biomaterials. In this study, we seek to characterize the local stiffness at the cellular level for MC3T3-E1 cells plated on biomaterial substrates of varying modulus, thickness, and cross-linking concentration. Cells were cultured on flat and wedge-shaped gels made from polyacrylamide or cross-linked collagen. The cross-linking density of the collagen gels was varied to investigate the effect of fiber cross-linking in conjunction with substrate thickness. Cell spread area was used as a measure of osteogenic differentiation. Finite element simulations were used to examine the effects of fiber cross-linking and substrate thickness on the resistance of the gel to cellular forces, corresponding to the equivalent shear stiffness for the gel structure in the region directly surrounding the cell. The results of this study show that MC3T3 cells cultured on a soft fibrous substrate attain the same spread cell area as those cultured on a much higher modulus, but nonfibrous substrate. Finite element simulations predict that a dramatic increase in the equivalent shear stiffness of fibrous collagen gels occurs as cross-linking density is increased, with equivalent stiffness also increasing as gel thickness is decreased. These results provide an insight into the response of osteogenic cells to individual substrate parameters and have the potential to inform future bone tissue regeneration strategies that can optimize the equivalent stiffness experienced by a cell. PMID:25863052

  10. Impacts of Comorbidities on the Association between Arterial Stiffness and Obstructive Sleep Apnea in the Elderly

    PubMed Central

    Kim, Tae; Lee, Chung Suk; Lee, Sang Don; Kang, Suk-Hoon; Han, Ji Won; Malhotra, Atul; Kim, Ki Woong; Yoon, In-Young

    2016-01-01

    Background Although the impact of obstructive sleep apnea (OSA) on cardiovascular risk is reasonably well established in middle-aged patients, debate persists whether OSA also increases this risk in the elderly. Arterial stiffness has been used as an early independent predictor of cardiovascular risk. Study Objectives We sought to determine whether OSA had significant effects on the arterial stiffness in the elderly population and evaluate the impacts of comorbidities on the association between arterial stiffness and OSA. Methods We performed a cross-sectional study in a university hospital. Elderly participants (≥60 yr) were invited to participate in our study between November 2010 and January 2013. OSA was diagnosed using gold standard polysomnography and arterial stiffness was assessed by brachial-ankle pulse wave velocity (baPWV) and cardio-ankle vascular index (CAVI) as well as by central systolic and diastolic blood pressure (cSBP and cDBP). High-sensitivity C-reactive protein (hs-CRP) level was also measured. Results We found no significant association between the severity of OSA and arterial stiffness-related parameters such as cSBP, cDBP, baPWV, CAVI, and hs-CRP. However, in patients without comorbid medical conditions or use of medications (n=101), we showed a modest association between OSA and arterial stiffness-related parameters and hs-CRP. Conclusion We conclude that OSA is associated with increased arterial stiffness in otherwise healthy elderly population, although the association was obviated by comorbidities and medications perhaps due to ceiling effects. PMID:25790940

  11. Dielectrophoresis-Mediated Electrodeformation as a Means of Determining Individual Platelet Stiffness.

    PubMed

    Leung, Siu Ling; Lu, Yi; Bluestein, Danny; Slepian, Marvin J

    2016-04-01

    Platelets, essential for hemostasis, are easily activated via biochemical and mechanical stimuli. Cell stiffness is a vital parameter modulating the mechano-transduction of exogenous mechanical stimuli. While methods exist to measure cell stiffness, no ready method exists for measuring platelet stiffness that is both minimally-contacting, imparting minimal exogenous force and non-activating. We developed a minimal-contact methodology capable of trapping and measuring the stiffness of individual platelets utilizing dielectrophoresis (DEP)-mediated electrodeformation. Parametric studies demonstrate a non-uniform electric field in the MHz frequency range (0.2-20 MHz) is required for generating effective DEP forces on platelets, suspended in isotonic buffer with conductivity ~100-200 μS/cm. A nano-Newton DEP force (0.125-4.5 nN) was demonstrated to be essential for platelet electrodeformation, which could be generated with an electric field with strength of 1.5-9 V/μm. Young's moduli of platelets were calculated using a Maxwell stress tensor model and stress-deformation relationship. Platelet stiffness was determined to be in the range of 3.5 ± 1.4 and 8.5 ± 1.5 kPa for resting and 0.4% paraformaldehyde-treated cells, respectively. The developed methodology fills a gap in approaches of measuring individual platelet stiffness, free of inadvertent platelet activation, which will facilitate further studies of mechanisms involved in mechanically-mediated platelet activation. PMID:26202677

  12. Substrate Stiffness Affects Human Keratinocyte Colony Formation

    PubMed Central

    Zarkoob, Hoda; Bodduluri, Sandeep; Ponnaluri, Sailahari V.; Selby, John C.; Sander, Edward A.

    2015-01-01

    Restoration of epidermal organization and function in response to a variety of pathophysiological insults is critically dependent on coordinated keratinocyte migration, proliferation, and stratification during the process of wound healing. These processes are mediated by the reconfiguration of both cell-cell (desmosomes, adherens junctions) and cell-matrix (focal adhesions, hemidesmosomes) junctions and the cytoskeletal filament networks that they serve to interconnect. In this study, we investigated the role of substrate elasticity (stiffness) on keratinocyte colony formation in vitro during the process of nascent epithelial sheet formation as triggered by the calcium switch model of keratinocyte culture. Keratinocytes cultured on pepsin digested type I collagen coated soft (nominal E = 1.2 kPa) polyacrylamide gels embedded with fluorescent microspheres exhibited (i) smaller spread contact areas, (ii) increased migration velocities, and (iii) increased rates of colony formation with more cells per colony than did keratinocytes cultured on stiff (nominal E = 24 kPa) polyacrylamide gels. As assessed by tracking of embedded microsphere displacements, keratinocytes cultured on soft substrates generated large local substrate deformations that appeared to recruit adjacent keratinocytes into joining an evolving colony. Together with the observed differences in keratinocyte kinematics and substrate deformations, we developed two ad hoc analyses, termed distance rank (DR) and radius of cooperativity (RC), that help to objectively ascribe what we perceive as increasingly cooperative behavior of keratinocytes cultured on soft versus stiff gels during the process of colony formation. We hypothesize that the differences in keratinocyte colony formation observed in our experiments could be due to cell-cell mechanical signaling generated via local substrate deformations that appear to be correlated with the increased expression of β4 integrin within keratinocytes positioned along the periphery of an evolving cell colony. PMID:26019727

  13. Discontinuous Galerkin for Stiff Hyperbolic Systems

    SciTech Connect

    Lowrie, R.B.; Morel, J.E.

    1999-06-27

    A Discontinuous Galerkin (DG) method is applied to hyperbolic systems that contain stiff relaxation terms. We demonstrate that when the relaxation time is under-resolved, DG is accurate in the sense that the method accurately represents the system's Chapman-Enskog (or ''diffusion'') approximation. Moreover, we demonstrate that a high-resolution, finite-volume method using the same time-integration method as DG is very inaccurate in the diffusion limit. Results for DG are presented for the hyperbolic heat equation, the Broadwell model of gas kinetics, and coupled radiation-hydrodynamics.

  14. Variable Stiffness Structure for limb attachment.

    PubMed

    Bureau, Maxime; Keller, Thierry; Perry, Joel; Velik, Rosemarie; Veneman, Jan F

    2011-01-01

    In robotic rehabilitation, the way of attaching the robotic device to the users' limb constitutes a crucial element of product quality, particularly for assuring good fitting, comfort, accuracy, usability, and safety. In this article, we present a new technological concept - 'Variable Stiffness Structure' - allowing for an improvement of these aspects in the 'robotic device to limb' - connection by offering a compound of materials that are together able to switch from a flexible textile-like state to a more rigid state by applying negative pressure. The paper describes the concept and the basic behaviour of the material, based on experiments. PMID:22275554

  15. Stiffness and thermoelastic coefficients for composite laminates

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Tenek, Lazarus H.

    1992-01-01

    Simple analytic expressions are presented for the stiffness and thermoelastic coefficients of composite laminates in terms of the material properties of the individual layers. Expressions for the derivatives of the various coefficients with respect to each of the material properties and fiber orientation angles are also included. For typical high-performance composites, numerical values are given showing the effects of the stacking sequence and the fiber orientation angle of quasi-isotropic and angle-ply laminates on the values of the various coefficients and their sensitivity derivatives. The expressions for the thermoelastic coefficients and the sensitivity derivatives are given herein for the first time.

  16. On waveguide modeling of stiff piano strings

    NASA Astrophysics Data System (ADS)

    Ducasse, Éric

    2005-09-01

    Bensa et al. [J. Acoust. Soc. Am. 114, 1095-1107 (2003), Sec. IV] recently proposed a waveguide model for the transverse displacement of a stiff piano string. The study described here is an attempt to cast a complementary light on this topic, based on a common wave approach instead of a modal approach. A pair of weakly attenuated traveling waves and a pair of fast-decaying waves both satisfy the one-dimensional wave equation developed by Bensa et al. These solutions have to be carefully considered, however, for portions of string interacting with the hammer felt, the bridge, or the capo d'astro bar.

  17. POST-TRAUMATIC STIFFNESS OF THE ELBOW

    PubMed Central

    Filh, Geraldo Motta; Galvão, Marcus Vinicius

    2015-01-01

    Elbow stiffness is a common problem after joint trauma, causing functional impairment of the upper limb. The severity of the dysfunction depends on the nature of the initial trauma and the treatment used. Appropriate clinical evaluation and complementary examinations are essential for therapeutic planning. Several surgical techniques are now available and the recommendation must be made in accordance with patient characteristics, degree of joint limitation and the surgeon's skill. Joint incongruence and degeneration have negative effects on the prognosis, but heterotrophic ossification alone has been correlated with a favorable surgical prognosis. PMID:27022563

  18. Targeting Fold Stiffness to Design Enhanced Origami Structures

    NASA Astrophysics Data System (ADS)

    Buskohl, Philip; Bazzan, Giorgio; Abbott, Andrew; Durstock, Michael; Vaia, Richard

    2014-03-01

    Structures with adaptive geometry are increasingly of interest for actuation, sensing and packaging applications. Origami structures, by definition, can ``shape-shift'' between multiple geometric configurations that are predefined by a pattern of folds. Plastic deformation and local failure at the fold lines transform an originally homogenous material into a grid with locally tailored mechanical properties that bias the response of the overall structure to external loading. Typically, origami structures focus on uniformly stiff fold lines with rigid facets. In this study, we discuss how localized variations in stiffness can influence global properties, including energy budget to transition from flat to folded structure, the preferred path through configuration space, and the final mechanical response of the folded architecture. A simple, bi-stable origami fold pattern is laser machined into polypropylene sheets of different compliance and the critical load of the transition is measured. We model the structure as a truss with bar elongation, folding, and facet bending in order to predict ways to enhance or mitigate the critical load. Targeting local folding properties to modify global performance directly extends to the analysis of more complex architectures.

  19. Linking systemic arterial stiffness among adolescents to adverse childhood experiences.

    PubMed

    Klassen, Stephen A; Chirico, Daniele; O'Leary, Deborah D; Cairney, John; Wade, Terrance J

    2016-06-01

    Adverse childhood experiences (ACEs) have been linked with cardiovascular disease and early mortality among adults. Most research examines this relationship retrospectively. Examining the association between ACEs and children's cardiovascular health is required to understand the time course of this association. We examined the relationship between ACEs exposure and ECG-to-toe pulse wave velocity (PWV), a measure of systemic arterial stiffness that is strongly related to cardiovascular mortality among adults. PWV (distance/transit time; m/s) was calculated using transit times from the ECG R-wave to the pulse wave contour at the toe. Transit times were collected over 15 heartbeats and the distance from the sternal notch to the left middle toe was used. A total of 221 children (119 females) aged 10-14 years participated in data collection of PWV, hemodynamic and anthropometric variables. Parents of these children completed a modified inventory of ACEs taken from the Childhood Trust Events Survey. Multivariable regression assessed the relationship between ACEs group (<4 ACEs versus ≥4 ACEs) and PWV. Analyses yielded an ACEs group by sex interaction, with males who experienced four or more ACEs having higher PWV (p<0.01). This association was independent of hemodynamic, anthropometric and sociodemographic variables (R(2)=0.346; p<0.01). Four or more ACEs is associated with greater arterial stiffness in male children aged 10-14 years. Addressing stress and trauma exposure in childhood is an important target for public health interventions to reduce early cardiovascular risk. PMID:27107504

  20. Functional aortic stiffness: role of CD4+ T lymphocytes

    PubMed Central

    Majeed, Beenish A.; Eberson, Lance S.; Tawinwung, Supannikar; Larmonier, Nicolas; Secomb, Timothy W.; Larson, Douglas F.

    2015-01-01

    The immune system is suggested to be essential in vascular remodeling and stiffening. To study the dependence upon lymphocytes in vascular stiffening, we compared an angiotensin II-model of vascular stiffening in normal C57BL/6J mice with lymphocyte-deficient RAG 1−/− mice and additionally characterized the component of vascular stiffness due to vasoconstriction vs. vascular remodeling. Chronic angiotensin II increased aortic pulse wave velocity, effective wall stiffness, and effective Young's modulus in C57BL/6J mice by three-fold but caused no change in the RAG 1−/− mice. These functional measurements were supported by aortic morphometric analysis. Adoptive transfer of CD4+ T helper lymphocytes restored the angiotensin II-mediated aortic stiffening in the RAG 1−/− mice. In order to account for the hydraulic vs. material effects of angiotensin II on pulse wave velocity, subcutaneous osmotic pumps were removed after 21 days of angiotensin II-infusion in the WT mice to achieve normotensive values. The pulse wave velocity (PWV) decreased from three- to two-fold above baseline values up to 7 days following pump removal. This study supports the pivotal role of the CD4+ T-lymphocytes in angiotensin II-mediated vascular stiffening and that angiotensin II-mediated aortic stiffening is due to the additive effect of active vascular smooth muscle vasoconstriction and vascular remodeling. PMID:26379554

  1. The LSM1-7 Complex Differentially Regulates Arabidopsis Tolerance to Abiotic Stress Conditions by Promoting Selective mRNA Decapping.

    PubMed

    Perea-Resa, Carlos; Carrasco-Lpez, Cristian; Catal, Rafael; Ture?kov, Veronika; Novak, Ondrej; Zhang, Weiping; Sieburth, Leslie; Jimnez-Gmez, Jos Manuel; Salinas, Julio

    2016-02-01

    In eukaryotes, the decapping machinery is highly conserved and plays an essential role in controlling mRNA stability, a key step in the regulation of gene expression. Yet, the role of mRNA decapping in shaping gene expression profiles in response to environmental cues and the operating molecular mechanisms are poorly understood. Here, we provide genetic and molecular evidence that a component of the decapping machinery, the LSM1-7 complex, plays a critical role in plant tolerance to abiotic stresses. Our results demonstrate that, depending on the stress, the complex from Arabidopsis thaliana interacts with different selected stress-inducible transcripts targeting them for decapping and subsequent degradation. This interaction ensures the correct turnover of the target transcripts and, consequently, the appropriate patterns of downstream stress-responsive gene expression that are required for plant adaptation. Remarkably, among the selected target transcripts of the LSM1-7 complex are those encoding NCED3 and NCED5, two key enzymes in abscisic acid (ABA) biosynthesis. We demonstrate that the complex modulates ABA levels in Arabidopsis exposed to cold and high salt by differentially controlling NCED3 and NCED5 mRNA turnover, which represents a new layer of regulation in ABA biosynthesis in response to abiotic stress. Our findings uncover an unanticipated functional plasticity of the mRNA decapping machinery to modulate the relationship between plants and their environment. PMID:26764377

  2. Smed-SmB, a member of the LSm protein superfamily, is essential for chromatoid body organization and planarian stem cell proliferation.

    PubMed

    Fernandéz-Taboada, Enrique; Moritz, Sören; Zeuschner, Dagmar; Stehling, Martin; Schöler, Hans R; Saló, Emili; Gentile, Luca

    2010-04-01

    Planarians are an ideal model system to study in vivo the dynamics of adult pluripotent stem cells. However, our knowledge of the factors necessary for regulating the 'stemness' of the neoblasts, the adult stem cells of planarians, is sparse. Here, we report on the characterization of the first planarian member of the LSm protein superfamily, Smed-SmB, which is expressed in stem cells and neurons in Schmidtea mediterranea. LSm proteins are highly conserved key players of the splicing machinery. Our study shows that Smed-SmB protein, which is localized in the nucleus and the chromatoid body of stem cells, is required to safeguard the proliferative ability of the neoblasts. The chromatoid body, a cytoplasmatic ribonucleoprotein complex, is an essential regulator of the RNA metabolism required for the maintenance of metazoan germ cells. However, planarian neoblasts and neurons also rely on its functions. Remarkably, Smed-SmB dsRNA-mediated knockdown results in a rapid loss of organization of the chromatoid body, an impairment of the ability to post-transcriptionally process the transcripts of Smed-CycB, and a severe proliferative failure of the neoblasts. This chain of events leads to a quick depletion of the neoblast pool, resulting in a lethal phenotype for both regenerating and intact animals. In summary, our results suggest that Smed-SmB is an essential component of the chromatoid body, crucial to ensure a proper RNA metabolism and essential for stem cell proliferation. PMID:20215344

  3. Contact stiffness and damping of liquid films in dynamic atomic force microscope

    NASA Astrophysics Data System (ADS)

    Xu, Rong-Guang; Leng, Yongsheng

    2016-04-01

    The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayer distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film.

  4. Serum adiponectin is a negative predictor of central arterial stiffness in kidney transplant patients.

    PubMed

    Ho, Ching-Chun; Hsu, Bang-Gee; Yin, Wen-Yao; Ho, Guan-Jin; Chen, Yen-Cheng; Lee, Ming-Che

    2016-05-01

    Background The role of adiponectin in arterial stiffness and its relationship to cardiovascular disease is not fully demonstrated and needs further elaboration. In this study, the association between adiponectin level and arterial stiffness is studied among kidney transplant patients. Material and methods Anthropometric data and biochemical data including fasting glucose, lipid profile, renal function and serum adiponectin were determined in 55 kidney transplant patients. Central arterial stiffness was measured and presented by carotid-femoral pulse wave velocity. Results Univariate linear analysis showed that body weight, waist circumference, brachial pulse pressure and body mass index were correlated positively with carotid-femoral pulse wave velocity in this patient group. However, logarithmically transformed adiponectin level (log-adiponectin) correlated negatively with carotid-femoral pulse wave velocity. In multivariate regression analysis of factors significantly associated with carotid-femoral pulse wave velocity, it showed that both log-adiponectin (β = -0.427; R(2) = 0.205, p = 0.001) and body weight (β = 0.327; R(2 )=( )0.106, p = 0.007) were independently predictive of central arterial stiffness. Conclusion Our study suggests that fasting serum adiponectin is negatively associated with carotid-femoral pulse wave velocity, hence arterial stiffness, in kidney transplant patients. PMID:26962760

  5. Strength and stiffness of uniaxially tensioned reinforced concrete panels subjected to membrane shear

    SciTech Connect

    Hilmy, S.I.; White, R.N.; Gergely, P.

    1982-06-01

    This report addresses four major topics in the general area of cracking and shear effects in concrete containment structures: (a) extensional stiffness of orthogonally reinforced flat concrete specimens subjected to tension in one direction only, (b) shear strength and shear stiffness of these same specimens when subjected to combined uniaxial tension and shear, (c) development of a preliminary analytical model for the prediction of the initial shear modulus and its degradation with increasing uniaxial tension levels, and (d) a comparative correlation of experimental results with results from earlier studies on similar specimens and on other types of shear specimens tested in many different laboratories. Eleven specimens with two-way orthogonal reinforcement were tested. Test parameters included the applied tension level (0, 0.3f/sub y/, 0.6f/sub y/, and 0.9f/sub y/), type of shear loading (monotonic and reversed cyclic), and level of applied shear stress. Prior to application of shear loading, measurements of extensional stiffness were conducted at reinforcing tension levels up to 0.6f/sub y/, and empirical expressions for crack width and extensional stiffness were derived. Stiffness degradation produced by subsequent shear loadings was also assessed.

  6. Titin stiffness modifies the force-generating region of muscle sarcomeres.

    PubMed

    Li, Yong; Lang, Patrick; Linke, Wolfgang A

    2016-01-01

    The contractile units of striated muscle, the sarcomeres, comprise the thick (myosin) and thin (actin) filaments mediating active contraction and the titin filaments determining "passive" elasticity. We hypothesized that titin may be more active in muscle contraction by directly modulating thick-filament properties. We used single-myofibril mechanical measurements and atomic force microscopy of individual sarcomeres to quantify the effects of sarcomere strain and titin spring length on both the inter-filament lattice spacing and the lateral stiffness of the actin-myosin overlap zone (A-band). We found that strain reduced the lattice spacing similarly in sarcomeres with stiff (rabbit psoas) or compliant titin (rabbit diaphragm), but increased A-band lateral stiffness much more in psoas than in diaphragm. The strain-induced alterations in A-band stiffness that occur independently of lattice spacing effects may be due to titin stiffness-sensing by A-band proteins. This mechanosensitivity could play a role in the physiologically important phenomenon of length-dependent activation of striated muscle. PMID:27079135

  7. Titin stiffness modifies the force-generating region of muscle sarcomeres

    PubMed Central

    Li, Yong; Lang, Patrick; Linke, Wolfgang A.

    2016-01-01

    The contractile units of striated muscle, the sarcomeres, comprise the thick (myosin) and thin (actin) filaments mediating active contraction and the titin filaments determining “passive” elasticity. We hypothesized that titin may be more active in muscle contraction by directly modulating thick-filament properties. We used single-myofibril mechanical measurements and atomic force microscopy of individual sarcomeres to quantify the effects of sarcomere strain and titin spring length on both the inter-filament lattice spacing and the lateral stiffness of the actin-myosin overlap zone (A-band). We found that strain reduced the lattice spacing similarly in sarcomeres with stiff (rabbit psoas) or compliant titin (rabbit diaphragm), but increased A-band lateral stiffness much more in psoas than in diaphragm. The strain-induced alterations in A-band stiffness that occur independently of lattice spacing effects may be due to titin stiffness-sensing by A-band proteins. This mechanosensitivity could play a role in the physiologically important phenomenon of length-dependent activation of striated muscle. PMID:27079135

  8. Effects of implant stiffness, shape, and medialization depth on the acoustic outcomes of medialization laryngoplasty

    PubMed Central

    Zhang, Zhaoyan; Chhetri, Dinesh K.; Bergeron, Jennifer L.

    2014-01-01

    Objective Medialization laryngoplasty is commonly used to treat glottic insufficiency. In this study, we investigated the effects of implant stiffness (Young’s modulus), medialization depth, and implant medial surface shape on acoustic outcomes. Study Design Basic science study using ex vivo laryngeal phonation model. Methods In an ex vivo human larynx phonation model, bilateral medialization laryngoplasties were performed with implants of varying stiffness, medial surface shape (rectangular, divergent and convergent), and varying depths of medialization. The subglottal pressure, the flow rate, and the outside sound were measured as the implant parameters were varied. Results Medialization through the use of implants generally improved the harmonic-to-noise ratio (HNR) and the number of harmonics excited in the outside sound spectra. The degree of acoustic improvement depended on the implant insertion depth, stiffness, and to a lesser degree implant shape. Varying implant insertion depth led to large variations in phonation for stiff implants, but had much smaller effects for soft implants. Conclusions Implants with stiffness comparable to vocal folds provided more consistent improvement in acoustic outcomes across different implant conditions. Further investigations are required to better understand the underlying mechanisms. PMID:25499519

  9. Dominant role of interface over knee angle for cushioning impact loading and regulating initial leg stiffness.

    PubMed

    Lafortune, M A; Hennig, E M; Lake, M J

    1996-12-01

    For in vivo impact loadings administered under controlled initial conditions, it was hypothesized that larger initial knee angles (IKA) and softer impacting interfaces would reduce impact loading and initial leg stiffness. A human pendulum was used to deliver controlled impacts to the right foot of 21 subjects for three IKA (0, 20 and 40 degrees) and three interfaces (barefoot, soft and hard EVA foams). The external impact force and the shock experienced by the subjects' shank were measured simultaneously with a wall mounted force platform and a skin mounted accelerometer, respectively. Stiffness of the leg was derived using impact velocity and wall reaction force data. The results disproved the role of the knee joint in regulating initial leg stiffness and provided only partial support for the hypothesized improved cushioning. Larger knee flexion at contact reduced impact force but increased the shock travelling throughout the shank. Conversely, softer interfaces produced sizable reductions in both initial leg stiffness and severity of the impact experienced by the lower limb. Force rate of loading was found to be highly correlated (r = 0.95) to limb stiffness that was defined by the heel fat pad and interface deformations. These results would suggest that interface interventions are more likely to protect the locomotor system against impact loading than knee angle strategies. PMID:8945650

  10. Massage induces an immediate, albeit short-term, reduction in muscle stiffness.

    PubMed

    Eriksson Crommert, M; Lacourpaille, L; Heales, L J; Tucker, K; Hug, F

    2015-10-01

    Using ultrasound shear wave elastography, the aims of this study were: (a) to evaluate the effect of massage on stiffness of the medial gastrocnemius (MG) muscle and (b) to determine whether this effect (if any) persists over a short period of rest. A 7-min massage protocol was performed unilaterally on MG in 18 healthy volunteers. Measurements of muscle shear elastic modulus (stiffness) were performed bilaterally (control and massaged leg) in a moderately stretched position at three time points: before massage (baseline), directly after massage (follow-up 1), and following 3 min of rest (follow-up 2). Directly after massage, participants rated pain experienced during the massage. MG shear elastic modulus of the massaged leg decreased significantly at follow-up 1 (-5.2 ± 8.8%, P = 0.019, d = -0.66). There was no difference between follow-up 2 and baseline for the massaged leg (P = 0.83) indicating that muscle stiffness returned to baseline values. Shear elastic modulus was not different between time points in the control leg. There was no association between perceived pain during the massage and stiffness reduction (r = 0.035; P = 0.89). This is the first study to provide evidence that massage reduces muscle stiffness. However, this effect is short lived and returns to baseline values quickly after cessation of the massage. PMID:25487283

  11. Matrix stiffness determines the fate of nucleus pulposus-derived stem cells.

    PubMed

    Navaro, Yosi; Bleich-Kimelman, Nadav; Hazanov, Lena; Mironi-Harpaz, Iris; Shachaf, Yonatan; Garty, Shai; Smith, Yoav; Pelled, Gadi; Gazit, Dan; Seliktar, Dror; Gazit, Zulma

    2015-05-01

    Intervertebral disc (IVD) degeneration and consequent low-back pain present a major medical challenge. Nucleus pulposus-derived stem cells (NP-SCs) may lead to a novel therapy for this severe disease. It was recently shown that survival and function of mature NP cells are regulated in part by tissue stiffness. We hypothesized that modification of matrix stiffness will influence the ability of cultured NP-SCs to proliferate, survive, and differentiate into mature NP cells. NP-SCs were subcultured in three-dimensional matrices of varying degrees of stiffness as measured by the material's shear storage modulus. Cell survival, activity, and rate of differentiation toward the chondrogenic or osteogenic lineage were analyzed. NP-SCs were found to proliferate and differentiate in all matrices, irrespective of matrix stiffness. However, matrices with a low shear storage modulus (G' = 1 kPa) promoted significantly more proliferation and chondrogenic differentiation, whereas matrices with a high modulus (G' = 2 kPa) promoted osteogenic differentiation. Imaging performed via confocal and scanning electron microscopes validated cell survival and highlighted stiffness-dependent cell-matrix interactions. These results underscore the effect of the matrix modulus on the fate of NP-SCs. This research may facilitate elucidation of the complex cross-talk between NP-SCs and their surrounding matrix in healthy as well as pathological conditions. PMID:25725556

  12. A comparative study of piezoelectric unimorph and multilayer actuators as stiffness sensors via contact resonance

    NASA Astrophysics Data System (ADS)

    Fu, Ji; Li, Fa-Xin

    2015-12-01

    Piezoelectric bar-shaped resonators were proposed to act as hardness sensors in the 1960s and stiffness sensors in the 1990s based on the contact impedance method. In this work, we point out that both multilayer and unimorph (or bimorph) piezoelectric actuators could act as stiffness/modulus sensors based on the principle of mechanical contact resonance. First, the practical design and the performance of a piezoelectric unimorph actuator-based stiffness sensor were presented. Then the working principle of piezoelectric multilayer actuator-based stiffness sensors was given and verified by numerical investigation. It was found that for these two types of resonance-based sensors, the shift of the resonance frequency due to contact is always positive, which is different from that of the contact impedance method. Further comparative sensitivity study indicated that the unimorph actuator-based stiffness sensor is very suitable for measurement on soft materials, whereas the multilayer actuator-based sensor is more suitable for hard materials.

  13. Quantitative characterization of adhesion and stiffness of corneal lens of Drosophila melanogaster using atomic force microscopy.

    PubMed

    Lavanya Devi, A L; Nongthomba, Upendra; Bobji, M S

    2016-01-01

    Atomic force Microscopy (AFM) has become a versatile tool in biology due to its advantage of high-resolution imaging of biological samples close to their native condition. Apart from imaging, AFM can also measure the local mechanical properties of the surfaces. In this study, we explore the possibility of using AFM to quantify the rough eye phenotype of Drosophila melanogaster through mechanical properties. We have measured adhesion force, stiffness and elastic modulus of the corneal lens using AFM. Various parameters affecting these measurements like cantilever stiffness and tip geometry are systematically studied and the measurement procedures are standardized. Results show that the mean adhesion force of the ommatidial surface varies from 36 nN to 16 nN based on the location. The mean stiffness is 483 5 N/m, and the elastic modulus is 3.4 0.05 GPa (95% confidence level) at the center of ommatidia. These properties are found to be different in corneal lens of eye expressing human mutant tau gene (mutant). The adhesion force, stiffness and elastic modulus are decreased in the mutant. We conclude that the measurement of surface and mechanical properties of D. melanogaster using AFM can be used for quantitative evaluation of 'rough eye' surface. PMID:26327451

  14. STIFF: Converting Scientific FITS Images to TIFF

    NASA Astrophysics Data System (ADS)

    Bertin, Emmanuel

    2011-10-01

    STIFF is a program that converts scientific FITS1 images to the more popular TIFF2 format for illustration purposes. Most FITS readers and converters do not do a proper job at converting FITS image data to 8 bits. 8-bit images stored in JPEG, PNG or TIFF files have the intensities implicitely stored in a non-linear way. Most current FITS image viewers and converters provide the user an incorrect translation of the FITS image content by simply rescaling linearly input pixel values. A first consequence is that the people working on astronomical images usually have to apply narrow intensity cuts or square-root or logarithmic intensity transformations to actually see something on their deep-sky images. A less obvious consequence is that colors obtained by combining images processed this way are not consistent across such a large range of surface brightnesses. Though with other software the user is generally afforded a choice of nonlinear transformations to apply in order to make the faint stuff stand out more clearly in the images, with the limited selection of choices provides, colors will not be accurately rendered, and some manual tweaking will be necessary. The purpose of STIFF is to produce beautiful pictures in an automatic and consistent way.

  15. Clinical appraisal of arterial stiffness: the Argonauts in front of the Golden Fleece

    PubMed Central

    Vlachopoulos, C; Aznaouridis, K; Stefanadis, C

    2006-01-01

    Interest in evaluating arterial elastic properties has grown in parallel with the widespread availability of non‐invasive methods for assessing arterial stiffness. A clinically useful diagnostic index must be pathophysiologically relevant, must be readily measurable, and must indicate the severity of the disease and predict the corresponding risk. Interventional modification of this index must parallel disease regression and benefit prognosis. The current evidence for the clinical value of estimating arterial stiffness (mainly of large, elastic‐type arteries, such as the aorta and the carotids) in the contemporary era of cardiovascular medicine is reviewed. PMID:16339817

  16. Clinical appraisal of arterial stiffness: the Argonauts in front of the Golden Fleece.

    PubMed

    Vlachopoulos, C; Aznaouridis, K; Stefanadis, C

    2006-11-01

    Interest in evaluating arterial elastic properties has grown in parallel with the widespread availability of non-invasive methods for assessing arterial stiffness. A clinically useful diagnostic index must be pathophysiologically relevant, must be readily measurable, and must indicate the severity of the disease and predict the corresponding risk. Interventional modification of this index must parallel disease regression and benefit prognosis. The current evidence for the clinical value of estimating arterial stiffness (mainly of large, elastic-type arteries, such as the aorta and the carotids) in the contemporary era of cardiovascular medicine is reviewed. PMID:16339817

  17. Position and Velocity Estimation for Two-Inertia System with Nonlinear Stiffness Based on Acceleration Sensor

    PubMed Central

    Nam, Kyung-Tae; Lee, Seung-Joon; Kuc, Tae-Yong; Kim, Hyungjong

    2015-01-01

    In this paper, we consider the state estimation problem for flexible joint manipulators that involve nonlinear characteristics in their stiffness. The two key ideas of our design are that (a) an accelerometer is used in order that the estimation error dynamics do not depend on nonlinearities at the link part of the manipulators and (b) the model of the nonlinear stiffness is indeed a Lipschitz function. Based on the measured acceleration, we propose a nonlinear observer under the Lipschitz condition of the nonlinear stiffness. In addition, in order to effectively compensate for the estimation error, the gain of the proposed observer is chosen from the ARE (algebraic Riccati equations) which depend on the Lipschitz constant. Comparative experimental results verify the effectiveness of the proposed method. PMID:26729125

  18. Position and Velocity Estimation for Two-Inertia System with Nonlinear Stiffness Based on Acceleration Sensor.

    PubMed

    Nam, Kyung-Tae; Lee, Seung-Joon; Kuc, Tae-Yong; Kim, Hyungjong

    2015-01-01

    In this paper, we consider the state estimation problem for flexible joint manipulators that involve nonlinear characteristics in their stiffness. The two key ideas of our design are that (a) an accelerometer is used in order that the estimation error dynamics do not depend on nonlinearities at the link part of the manipulators and (b) the model of the nonlinear stiffness is indeed a Lipschitz function. Based on the measured acceleration, we propose a nonlinear observer under the Lipschitz condition of the nonlinear stiffness. In addition, in order to effectively compensate for the estimation error, the gain of the proposed observer is chosen from the ARE (algebraic Riccati equations) which depend on the Lipschitz constant. Comparative experimental results verify the effectiveness of the proposed method. PMID:26729125

  19. Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.; Prahl, Joseph M.; Heshmat, Hooshang

    2001-01-01

    Using a high-temperature optically based displacement measurement system, a foil air bearing's stiffness and damping characteristics were experimentally determined. Results were obtained over a range of modified Sommerfeld Number from 1.5E6 to 1.5E7, and at temperatures from 25 to 538 C. An Experimental procedure was developed comparing the error in two curve fitting functions to reveal different modes of physical behavior throughout the operating domain. The maximum change in dimensionless stiffness was 3.0E-2 to 6.5E-2 over the Sommerfeld Number range tested. Stiffness decreased with temperature by as much as a factor of two from 25 to 538 C. Dimensionless damping was a stronger function of Sommerfeld Number ranging from 20 to 300. The temperature effect on damping being more qualitative, showed the damping mechanism shifted from viscous type damping to frictional type as temperature increased.

  20. Ambient Vibration Testing for Story Stiffness Estimation of a Heritage Timber Building

    PubMed Central

    Min, Kyung-Won; Kim, Junhee; Park, Sung-Ah; Park, Chan-Soo

    2013-01-01

    This paper investigates dynamic characteristics of a historic wooden structure by ambient vibration testing, presenting a novel estimation methodology of story stiffness for the purpose of vibration-based structural health monitoring. As for the ambient vibration testing, measured structural responses are analyzed by two output-only system identification methods (i.e., frequency domain decomposition and stochastic subspace identification) to estimate modal parameters. The proposed methodology of story stiffness is estimation based on an eigenvalue problem derived from a vibratory rigid body model. Using the identified natural frequencies, the eigenvalue problem is efficiently solved and uniquely yields story stiffness. It is noteworthy that application of the proposed methodology is not necessarily confined to the wooden structure exampled in the paper. PMID:24227999

  1. Ambient vibration testing for story stiffness estimation of a heritage timber building.

    PubMed

    Min, Kyung-Won; Kim, Junhee; Park, Sung-Ah; Park, Chan-Soo

    2013-01-01

    This paper investigates dynamic characteristics of a historic wooden structure by ambient vibration testing, presenting a novel estimation methodology of story stiffness for the purpose of vibration-based structural health monitoring. As for the ambient vibration testing, measured structural responses are analyzed by two output-only system identification methods (i.e., frequency domain decomposition and stochastic subspace identification) to estimate modal parameters. The proposed methodology of story stiffness is estimation based on an eigenvalue problem derived from a vibratory rigid body model. Using the identified natural frequencies, the eigenvalue problem is efficiently solved and uniquely yields story stiffness. It is noteworthy that application of the proposed methodology is not necessarily confined to the wooden structure exampled in the paper. PMID:24227999

  2. Somatic stiffness of cochlear outer hair cells is voltage-dependent

    PubMed Central

    He, David Z. Z.; Dallos, Peter

    1999-01-01

    The mammalian cochlea depends on an amplification process for its sensitivity and frequency-resolving capability. Outer hair cells are responsible for providing this amplification. It is usually assumed that the membranepotential-driven somatic shape changes of these cells are the basis of the amplifying process. It is of interest to see whether mechanical reactance changes of the cells might accompany their changes in cell shape. We now show that the cylindrical outer hair cells change their axial stiffness as their membrane potential is altered. Cell stiffness was determined by optoelectronically measuring the amplitude of motion of a flexible vibrating fiber as it was loaded by the isolated cell. Voltage commands to the cell were delivered in a tightseal wholecell configuration. Cell stiffness was decreased by depolarization and increased by hyperpolarization. PMID:10393976

  3. Harmonic amplitude dependent dynamic stiffness of hydraulic bushings: Alternate nonlinear models and experimental validation

    NASA Astrophysics Data System (ADS)

    Fredette, Luke; Dreyer, Jason T.; Rook, Todd E.; Singh, Rajendra

    2016-06-01

    The dynamic stiffness properties of automotive hydraulic bushings exhibit significant amplitude sensitivity which cannot be captured by linear time-invariant models. Quasi-linear and nonlinear models are therefore proposed with focus on the amplitude sensitivity in magnitude and loss angle spectra (up to 50 Hz). Since production bushing model parameters are unknown, dynamic stiffness tests and laboratory experiments are utilized to extract model parameters. Nonlinear compliance and resistance elements are incorporated, including their interactions in order to improve amplitude sensitive predictions. New solution approximations for the new nonlinear system equations refine the multi-term harmonic balance term method. Quasi-linear models yield excellent accuracy but cannot predict trends in amplitude sensitivity since they rely on available dynamic stiffness measurements. Nonlinear models containing both nonlinear resistance and compliance elements yield superior predictions to those of prior models (with a single nonlinearity) while also providing more physical insight. Suggestion for further work is briefly mentioned.

  4. EFFECT OF PASSIVE HEAT STRESS ON ARTERIAL STIFFNESS

    PubMed Central

    Ganio, Matthew S.; Brothers, R. Matthew; Shibata, Shigeki; Hastings, Jeffrey L.; Crandall, Craig G.

    2011-01-01

    Arterial compliance, the inverse of arterial stiffness, is a prognostic indicator of arterial health. Central and peripheral arterial compliance decrease with acute cold stress and may increase post exercise when exercise-induced elevations in core temperature are likely still present. Increased blood flow through the conduit arteries associated with elevated core temperature increases shear stress which in turn releases nitric oxide and other endothelial derived factors. These changes, in conjunction with supportive in vitro data, suggest that elevated core temperature may indirectly increase central and peripheral arterial compliance (i.e., decrease arterial stiffness). The purpose of this study was to test the hypothesis that increased core temperature decreases central and peripheral arterial stiffness, as measured with pulse wave velocity (PWV). Using Doppler ultrasound, carotid-femoral (central) and carotid-radial (peripheral) arterial PWVs were measured from eight subjects (age 37 ± 11 years; mass 68.8 ± 11.1 kg; height 171 ± 3 cm) before and during passive heat-stress induced increases in core temperature of 0.47 ± 0.05, 1.03 ± 0.12, and 1.52 ± 0.07°C (i.e., baseline, 0.5, 1.0, and 1.5°C, respectively). Changes in PWV were evaluated with a one-way repeated measures ANOVA. When analyzed as group means, neither central (677 ± 161, 617 ± 72, 659 ± 74, and 766 ± 207 cm/s; P=0.12) nor peripheral (855 ± 192, 772 ± 95, 759 ± 49, and 858 ± 247 cm/s; P=0.56) PWV changed as core temperature increased from baseline to 0.5, 1.0, and 1.5°C, respectively. However, individual changes in central (average r = −0.89, P < 0.05) and peripheral (average r = −0.93, P < 0.05) PWV with heat stress were significantly correlated with normothermic baseline PWV. In conclusion, these data suggest that the magnitude by which heat stress reduced PWV was predicated upon normothermic PWV, with the individuals having the highest normothermic PWV being most responsive to the heat stress-induced reductions in PWV. PMID:21685446

  5. The Role of a Novel Arterial Stiffness Parameter, Cardio-Ankle Vascular Index (CAVI), as a Surrogate Marker for Cardiovascular Diseases.

    PubMed

    Saiki, Atsuhito; Sato, Yuta; Watanabe, Rena; Watanabe, Yasuhiro; Imamura, Haruki; Yamaguchi, Takashi; Ban, Noriko; Kawana, Hidetoshi; Nagumo, Ayako; Nagayama, Daiji; Ohira, Masahiro; Endo, Kei; Tatsuno, Ichiro

    2016-02-01

    Measurement of arterial stiffness in routine medical practice is important to assess the progression of arteriosclerosis. So far, many parameters have been proposed to quantitatively represent arterial stiffness. Among these, pulse wave velocity (PWV) has been most frequently applied to clinical medicine because those could be measured simply and non-invasively. PWV had established the usefulness of measuring arterial wall stiffness. However, PWV essentially depends on blood pressure at the time of measurement. Therefore, PWV is not appropriate as a parameter for the evaluation of arterial stiffness, particularly for the studies involving blood pressure changes.On the other hand, stiffness parameter ? is an index reflecting arterial stiffness without the influence of blood pressure. Recently, this parameter has been applied to develop a new arterial stiffness index called cardio-ankle vascular index (CAVI). Therefore, CAVI does not depend on blood pressure changes during the measurements; CAVI could represent the stiffness of the arterial tree from the origin of the aorta to the ankle.Many clinical studies obtained from CAVI are being accumulated. CAVI showed high value in arteriosclerotic diseases, such as coronary artery diseases, cerebral infarction, and chronic kidney diseases, and also in majority of people with various coronary risk factors. The improvement of those risk factors decreased CAVI. Furthermore, the role of CAVI as a predictor of cardio-vascular events was reported recently.We review the clinical studies on CAVI and discuss the clinical usefulness of CAVI as a candidate surrogate end-point marker for cardiovascular disease. PMID:26607350

  6. An improved spinning lens test to determine the stiffness of the human lens

    PubMed Central

    Burd, H.J.; Wilde, G.S.; Judge, S.J.

    2011-01-01

    It is widely accepted that age-related changes in lens stiffness are significant for the development of presbyopia. However, precise details on the relative importance of age-related changes in the stiffness of the lens, in comparison with other potential mechanisms for the development of presbyopia, have not yet been established. One contributing factor to this uncertainty is the paucity and variability of experimental data on lens stiffness. The available published data generally indicate that stiffness varies spatially within the lens and that stiffness parameters tend to increase with age. However, considerable differences exist between these published data sets, both qualitatively and quantitatively. The current paper describes new and improved methods, based on the spinning lens approach pioneered by Fisher, R.F. (1971) The elastic constants of the human lens, Journal of Physiology, 212, 147180, to make measurements on the stiffness of the human lens. These new procedures have been developed in an attempt to eliminate, or at least substantially reduce, various systematic errors in Fishers original experiment. An improved test rig has been constructed and a new modelling procedure for determining lens stiffness parameters from observations made during the test has been devised. The experiment involves mounting a human lens on a vertical rotor so that the lens spins on its optical axis (typically at 1000rpm). An automatic imaging system is used to capture the outline of the lens, while it is rotating, at pre-determined angular orientations. These images are used to quantify the deformations developed in the lens as a consequence of the centripetal forces induced by the rotation. Lens stiffness is inferred using axisymmetric finite element inverse analysis in which a nearly-incompressible neo-Hookean constitutive model is used to represent the mechanics of the lens. A numerical optimisation procedure is used to determine the stiffness parameters that provide a best fit between the finite element model and the experimental data. Sample results are presented for a human lens of age 33 years. PMID:21040722

  7. Vascular endothelium-derived factors and arterial stiffness in strength- and endurance-trained men.

    PubMed

    Otsuki, Takeshi; Maeda, Seiji; Iemitsu, Motoyuki; Saito, Yoko; Tanimura, Yuko; Ajisaka, Ryuichi; Miyauchi, Takashi

    2007-02-01

    Arterial stiffness is higher in strength-trained humans and lower in endurance-trained humans. However, the mechanisms underlying these different adaptations are unclear. Vascular endothelium-derived factors, such as endothelin-1 (ET-1) and nitric oxide (NO), play an important role in the regulation of vascular tonus. We hypothesized that endogenous ET-1 and NO participate in the adaptation of arterial stiffness in different types of exercise training. The purpose of this study was to investigate plasma ET-1 and NO concentrations and arterial stiffness in strength- and endurance-trained men. Young strength-trained athletes (SA; n = 11), endurance-trained athletes (EA; n = 12), and sedentary control men (C; n = 12) participated in this study. Maximal handgrip strength in SA and maximal oxygen uptake in EA were markedly greater than in C. Aortic pulse-wave velocity, which is an established index of arterial stiffness, was higher in SA and lower in EA than in C. Additionally, we measured systemic arterial compliance (SAC) using carotid artery applanation tonometry and Doppler echocardiography, because arterial stiffness is a primary determinant of the compliance. SAC was lower in SA and higher in EA compared with that in C. Plasma ET-1 concentrations were higher in SA compared with C and EA. We did not find significant differences in plasma NO concentrations (measured as the stable end product of NO, i.e., nitrite/nitrate). The relationships of plasma ET-1 concentrations to aortic pulse-wave velocity and SAC were linear. These results suggest that differences in endogenous ET-1 may partly participate in the mechanism underlying different adaptations of arterial stiffness in strength- and endurance-trained men. PMID:16997889

  8. Acetabular shell deformation as a function of shell stiffness and bone strength.

    PubMed

    Dold, Philipp; Pandorf, Thomas; Flohr, Markus; Preuss, Roman; Bone, Martin C; Joyce, Tom J; Holland, James; Deehan, David

    2016-04-01

    Press-fit acetabular shells used for hip replacement rely upon an interference fit with the bone to provide initial stability. This process may result in deformation of the shell. This study aimed to model shell deformation as a process of shell stiffness and bone strength. A cohort of 32 shells with two different wall thicknesses (3 and 4 mm) and 10 different shell sizes (44- to 62-mm outer diameter) were implanted into eight cadavers. Shell deformation was then measured in the cadavers using a previously validated ATOS Triple Scan III optical system. The shell-bone interface was then considered as a spring system according to Hooke's law and from this the force exerted on the shell by the bone was calculated using a combined stiffness consisting of the measured shell stiffness and a calculated bone stiffness. The median radial stiffness for the 3-mm wall thickness was 4192 N/mm (range, 2920-6257 N/mm), while for the 4-mm wall thickness the median was 9633 N/mm (range, 6875-14,341 N/mm). The median deformation was 48 µm (range, 3-187 µm), while the median force was 256 N (range, 26-916 N). No statistically significant correlation was found between shell stiffness and deformation. Deformation was also found to be not fully symmetric (centres 180° apart), with a median angle discrepancy of 11.5° between the two maximum positive points of deformation. Further work is still required to understand how the bone influences acetabular shell deformation. PMID:26888887

  9. Effect of end-ring stiffness on buckling of pressure-loaded stiffened conical shells

    NASA Technical Reports Server (NTRS)

    Davis, R. C.; Williams, J. G.

    1977-01-01

    Buckling studies were conducted on truncated 120 deg conical shells having large end rings and many interior reinforcing rings that are typical of aeroshells used as spacecraft decelerators. Changes in base-end-ring stiffness were accomplished by simply machining away a portion of the base ring between successive buckling tests. Initial imperfection measurements from the test cones were included in the analytical model.

  10. Applicability and accuracy improvement of transient elastography using the M and XL probes by experienced operators.

    PubMed

    Carrión, J A; Puigvehí, M; Coll, S; Garcia-Retortillo, M; Cañete, N; Fernández, R; Márquez, C; Giménez, M D; Garcia, M; Bory, F; Solà, R

    2015-03-01

    Transient elastography (TE) is the reference method to obtain liver stiffness measurements (LSM), but no results are obtained in 3.1% and unreliable in 15.8%. We assessed the applicability and diagnostic accuracy of TE re-evaluation using M and XL probes. From March 2011 to April 2012 868 LSM were performed with the M probe by trained operators (50-500 studies) (LSM1). Measurements were categorized as inadequate (no values or ratio <60% and/or IQR/LSM >30%) or adequate. Inadequate LSM1 were re-evaluated by experienced operators (>500 explorations) (LSM2) and inadequate LSM2 using XL probe (LSMXL). Inadequate LSM1 were obtained in 187 (21.5%) patients, IQR/LSM >30% in 97 (51%), ratio <60% in 24 (13%) and TE failed to obtain a measurement in 67 (36%). LSM2 achieved adequate registers in 123 (70%) of 175 registers previously considered as inadequate. Independent variables (OR, 95%CI) related to inadequate LSM1 were body mass index (1.11, 1.04-1.18), abdominal circumference (1.03, 1.01-1.06) and age (1.03, 1.01-1.04) and to inadequate LSM2 were skin-capsule distance (1.21, 1.09-1.34) and abdominal circumference (1.05, 1.01-1.10). The diagnostic accuracy (AUROC) to identify significant fibrosis improved from 0.89 (LSM1) to 0.91 (LSM2) (P = 0.046) in 334 patients with liver biopsy or clinically significant portal hypertension. A third evaluation (LSMXL) obtained adequate registers in 41 (93%) of 44 patients with inadequate LSM2. Operator experience increases the applicability and diagnostic accuracy of TE. The XL probe may be recommended for patients with inadequate values obtained by experienced operators using the M probe. http://clinicaltrials.gov (NCT01900808). PMID:25164560

  11. Stiffness calculation and application of spline-ball bearing

    NASA Astrophysics Data System (ADS)

    Gu, Bo-Zhong; Zhou, Yu-Ming; Yang, De-Hua

    2006-12-01

    Spline-ball bearing is widely adopted in large precision instruments because of its distinctive performance. For the sake of carrying out detail investigation of a full instrument system, practical stiffness formulae of such bearing are introduced with elastic contact mechanics, which are successfully applied for calculating the stiffness of the bearing used in astronomical telescope. Appropriate treatment of the stiffness of such bearing in the finite element analysis is also discussed and illustrated.

  12. Scaling of the flow-stiffness relationship in weakly correlated single fractures

    NASA Astrophysics Data System (ADS)

    Petrovitch, Christopher L.

    The remote characterization of the hydraulic properties of fractures in rocks is important in many subsurface projects. Fractures create uncertainty in the hydraulic properties of the subsurface in that their topology controls the amount of flow that can occur in addition to that from the matrix. In turn, the fracture topology is also affected by stress which alters the topology as the stress changes directly. This alteration of fracture topology with stress is captured by fracture specific stiffness. The specific stiffness of a single fracture can be remotely probed from the attenuation and velocity of seismic waves. The hydromechanical coupling of single fractures, i.e. the relationship between flow and stiffness, holds the key to finding a method to remotely characterize a fractures hydraulic properties. This thesis is separated into two parts: (1) a description of the hydromechanical coupling of fractures based on numerical models used to generate synthetic fractures, compute the flow through a fracture, and deform fracture topologies to unravel the scaling function that is fundamental to the hydromechanical coupling of single fractures; (2) a Discontinuous Galerkin (DG) method was developed to accurately simulate the scattered seismic waves from realistic fracture topologies. The scaling regimes of fluid flow and specific stiffness in weakly correlated fractures are identified by using techniques from Percolation Theory and initially treating the two processes separately. The fixed points associated with fluid flow were found to display critical scaling while the fixed points for specific stiffness were trivial. The two processes could be indirectly related because the trivial scaling of the mechanical properties allowed the specific stiffness to be used as surrogate to the void area fraction. The dynamic transport exponent was extracted at threshold by deforming fracture geometries within the effective medium regime (near the ``cubic law'' regime) to the critical regime. From this, a scaling function was defined for the hydromechanical coupling. This scaling function provides the link between fluid flow and fracture specific stiffness so that seismic waves may be used to remotely probe the hydraulic properties of fractures. Then, the DG method is shown to be capable of measuring such fracture specific stiffnesses by numerically measuring the velocity of interface waves when propagated across laboratory measured fracture geometries of Austin Chalk.

  13. Mapping stiffness perception in the brain with an fMRI-compatible particle-jamming haptic interface.

    PubMed

    Menon, Samir; Stanley, Andrew A; Zhu, Jack; Okamura, Allison M; Khatib, Oussama

    2014-01-01

    We demonstrate reliable neural responses to changes in haptic stiffness perception using a functional magnetic resonance imaging (fMRI) compatible particle-jamming haptic interface. Our haptic interface consists of a silicone tactile surface whose stiffness we can control by modulating air-pressure in a sub-surface pouch of coarsely ground particles. The particles jam together as the pressure decreases, which stiffens the surface. During fMRI acquisition, subjects performed a constant probing task, which involved continuous contact between the index fingertip and the interface and rhythmic increases and decreases in fingertip force (1.6 Hz) to probe stiffness. Without notifying subjects, we randomly switched the interface's stiffness (switch time, 300-500 ms) from soft (200 N/m) to hard (1400 N/m). Our experiment design's constant motor activity and cutaneous tactile sensation helped disassociate neural activation for both from stiffness perception, which helped localized it to a narrow region in somatosensory cortex near the supra-marginal gyrus. Testing different models of neural activation, we found that assuming indepedent stiffness-change responses at both soft-hard and hard-soft transitions provides the best explanation for observed fMRI measurements (three subjects; nine four-minute scan runs each). Furthermore, we found that neural activation related to stiffness-change and absolute stiffness can be localized to adjacent but disparate anatomical locations. We also show that classical finger-tapping experiments activate a swath of cortex and are not suitable for localizing stiffness perception. Our results demonstrate that decorrelating motor and sensory neural activation is essential for characterizing somatosensory cortex, and establish particle-jamming haptics as an attractive low-cost method for fMRI experiments. PMID:25570387

  14. Evaluation of Liver Stiffness After Radioembolization by Real-Time ShearWave™ Elastography: Preliminary Study

    SciTech Connect

    Bas, Ahmet; Samanci, Cesur; Gulsen, Fatih Cantasdemir, Murat; Kabasakal, Levent; Kantarci, Fatih; Numan, Furuzan

    2015-08-15

    PurposeTo evaluate the effect of ShearWave™ elastography (SWE) for the assessment of liver fibrosis after radioembolization (RE) in patients with liver malignancies.Materials and MethodsWe prospectively examined the effects of SWE before and after RE in 17 adult patients, from June 2012 to September 2013. All patients underwent SWE within 1 month before and 3 months (96.3 ± 22.9 days) after RE. Measurements were taken in segments III, IV, V, and VI (lateral/medial left lobe and anterior/posterior right lobe, respectively). Liver stiffness was studied in the 39 treated segments.ResultsThe mean stiffness of liver tissue according to the pre-RE SWE measurements was not different from the post-RE SWE measurements in the segments that did not undergo RE. Conversely, segments treated with RE were significantly stiffer according to the post-RE SWE measurements (mean SWE 17.4 kPa) than according to the baseline measurements (7.0 kPa) (p < 0.001). Patients with hepatocellular carcinoma and preexisting infection with hepatitis B and C viruses had higher pre-embolization stiffness, and the post-embolization stiffness of the treated segments in these patients was higher than that in the remainder of the study population.ConclusionThese data suggest that SWE measurements of liver stiffness increase as early as the third month after RE. SWE could be used as a noninvasive complementary imaging method for preliminary assessment of liver fibrosis before and after RE.

  15. Towards ultra-stiff materials: Surface effects on nanoporous materials

    SciTech Connect

    Lu, Dingjie; Xie, Yi Min; Huang, Xiaodong; Zhou, Shiwei; Li, Qing

    2014-09-08

    The significant rise in the strength and stiffness of porous materials at nanoscale cannot be described by conventional scaling laws. This letter investigates the effective Young's modulus of such materials by taking into account surface effect in a microcellular architecture designed for an ultralight material whose stiffness is an order of magnitude higher than most porous materials. We find that by considering the surface effects the predicted stiffness using Euler-Bernoulli beam theory compares well to experimental data for spongelike nanoporous gold with random microstructures. Analytical results show that, of the two factors influencing the effective Young's modulus, the residual stress is more important than the surface stiffness.

  16. Synthesis of stiffness and mass matrices from experimental vibration modes.

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1971-01-01

    With highly complex structures, it is sometimes desirable to derive a dynamic model of the system from experimental vibration data. This paper presents algorithms for synthesizing the mass and stiffness matrices from experimentally derived modal data in a way which preserves the physical significance of the individual mass and stiffness elements. The synthesizing procedures allow for the incorporation of other mass and stiffness data, whether empirical or based on the analyst's insight. The mass and stiffness matrices are derived for a cantilever beam example and are compared with those obtained using earlier techniques.

  17. Vitamin E reduces liver stiffness in nonalcoholic fatty liver disease

    PubMed Central

    Fukui, Aiko; Kawabe, Naoto; Hashimoto, Senju; Murao, Michihito; Nakano, Takuji; Shimazaki, Hiroaki; Kan, Toshiki; Nakaoka, Kazunori; Ohki, Masashi; Takagawa, Yuka; Takamura, Tomoki; Kamei, Hiroyuki; Yoshioka, Kentaro

    2015-01-01

    AIM: To evaluate the efficacy of vitamin E treatment on liver stiffness in nonalcoholic fatty liver disease (NAFLD). METHODS: Thirty-eight NAFLD patients were administered vitamin E for > 1 year. The doses of vitamin E were 150, 300, or 600 mg; three times per day after each meal. Responses were assessed by liver enzyme levels [aspartate aminotransferase (AST), alanine aminotranferease (ALT), and γ-glutamyl transpeptidase (γ-GTP)], noninvasive scoring systems of hepatic fibrosis-4 [FIB-4 index and aspartate aminotransferase-to-platelet index (APRI)], and liver stiffness [velocity of shear wave (Vs)] measured by acoustic radiation force impulse elastography. Vs measurements were performed at baseline and 12 mo after baseline. The patients were genotyped for the patatin-like phospholipase domain containing 3 (PNPLA3) polymorphisms and then divided into either the CC/CG or GG group to examine each group’s responses to vitamin E treatment. RESULTS: We found marked differences in the platelet count, serum albumin levels, alkaline phosphatase levels, FIB-4 index, APRI, and Vs at baseline depending on the PNPLA3 polymorphism. AST, ALT, and γ-GTP levels (all P < 0.001); FIB-4 index (P = 0.035); APRI (P < 0.001); and Vs (P < 0.001) significantly decreased from baseline to 12 mo in the analysis of all patients. In the subset analyses of PNPLA3 genotypes, AST levels (P = 0.011), ALT levels (P < 0.001), γ-GTP levels (P = 0.005), APRI (P = 0.036), and Vs (P = 0.029) in genotype GG patients significantly improved, and AST and ALT levels (both P < 0.001), γ-GTP levels (P = 0.003), FIB-4 index (P = 0.017), and APRI (P < 0.001) in genotype CC/CG patients. CONCLUSION: One year of vitamin E treatment improved noninvasive fibrosis scores and liver stiffness in NAFLD patients. The responses were similar between different PNPLA3 genotypes. PMID:26644818

  18. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging

    PubMed Central

    Lee, Hyuk; Oh, Joo Hwan; Seung, Hong Min; Cho, Seung Hyun; Kim, Yoon Young

    2016-01-01

    Subwavelength imaging by metamaterials and extended work to pursue total transmission has been successfully demonstrated with electromagnetic and acoustic waves very recently. However, no elastic counterpart has been reported because earlier attempts suffer from considerable loss. Here, for the first time, we realize an elastic hyperbolic metamaterial lens and experimentally show total transmission subwavelength imaging with measured wave field inside the metamaterial lens. The main idea is to compensate for the decreased impedance in the perforated elastic metamaterial by utilizing extreme stiffness, which has not been independently actualized in a continuum elastic medium so far. The fabricated elastic lens is capable of directly transferring subwavelength information from the input to the output boundary. In the experiment, this intriguing phenomenon is confirmed by scanning the elastic structures inside the lens with laser scanning vibrometer. The proposed elastic metamaterial lens will bring forth significant guidelines for ultrasonic imaging techniques. PMID:27040762

  19. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging.

    PubMed

    Lee, Hyuk; Oh, Joo Hwan; Seung, Hong Min; Cho, Seung Hyun; Kim, Yoon Young

    2016-01-01

    Subwavelength imaging by metamaterials and extended work to pursue total transmission has been successfully demonstrated with electromagnetic and acoustic waves very recently. However, no elastic counterpart has been reported because earlier attempts suffer from considerable loss. Here, for the first time, we realize an elastic hyperbolic metamaterial lens and experimentally show total transmission subwavelength imaging with measured wave field inside the metamaterial lens. The main idea is to compensate for the decreased impedance in the perforated elastic metamaterial by utilizing extreme stiffness, which has not been independently actualized in a continuum elastic medium so far. The fabricated elastic lens is capable of directly transferring subwavelength information from the input to the output boundary. In the experiment, this intriguing phenomenon is confirmed by scanning the elastic structures inside the lens with laser scanning vibrometer. The proposed elastic metamaterial lens will bring forth significant guidelines for ultrasonic imaging techniques. PMID:27040762

  20. The two faces of hypertension: role of aortic stiffness.

    PubMed

    Smulyan, Harold; Mookherjee, Saktipada; Safar, Michel E

    2016-02-01

    Adult hypertension can be divided into two relatively distinct forms-systolic/diastolic hypertension in midlife and systolic hypertension of the aged. The two types differ in prevalence, pathophysiology, and therapy. The prevalence of systolic hypertension in the elderly is twice that of midlife hypertension. The systolic pressure is elevated in both forms, but the high diastolic pressure in midlife is due to a raised total peripheral resistance, whereas the normal or low diastolic pressure in the elderly is due to aortic stiffening. Aortic stiffness, as measured by the carotid/femoral pulse wave velocity, has been found to be a cardiovascular risk marker independent of traditional risk factors for atherosclerosis. Instead, it is related to microcirculatory disease of the brain and kidney and to disorders of inflammation. Loss of aortic distensibility is an inevitable consequence of aging, but a review of its causes suggests that it may be amenable to future pharmacologic therapy. PMID:26725014

  1. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hyuk; Oh, Joo Hwan; Seung, Hong Min; Cho, Seung Hyun; Kim, Yoon Young

    2016-04-01

    Subwavelength imaging by metamaterials and extended work to pursue total transmission has been successfully demonstrated with electromagnetic and acoustic waves very recently. However, no elastic counterpart has been reported because earlier attempts suffer from considerable loss. Here, for the first time, we realize an elastic hyperbolic metamaterial lens and experimentally show total transmission subwavelength imaging with measured wave field inside the metamaterial lens. The main idea is to compensate for the decreased impedance in the perforated elastic metamaterial by utilizing extreme stiffness, which has not been independently actualized in a continuum elastic medium so far. The fabricated elastic lens is capable of directly transferring subwavelength information from the input to the output boundary. In the experiment, this intriguing phenomenon is confirmed by scanning the elastic structures inside the lens with laser scanning vibrometer. The proposed elastic metamaterial lens will bring forth significant guidelines for ultrasonic imaging techniques.

  2. Comparison of plantar flexor musculotendinous stiffness, geometry, and architecture in male runners with and without a history of tibial stress fracture.

    PubMed

    Pamukoff, Derek N; Blackburn, J Troy

    2015-02-01

    Greater lower extremity joint stiffness may be related to the development of tibial stress fractures in runners. Musculotendinous stiffness is the largest contributor to joint stiffness, but it is unclear what factors contribute to musculotendinous stiffness. The purpose of this study was to compare plantar flexor musculotendinous stiffness, architecture, geometry, and Achilles tendon stiffness between male runners with and without a history of tibial stress fracture. Nineteen healthy runners (age = 21 ± 2.7 years; mass = 68.2 ± 9.3 kg; height = 177.3 ± 6.0 cm) and 19 runners with a history of tibial stress fracture (age = 21 ± 2.9 years; mass = 65.3 ± 6.0 kg; height = 177.2 ± 5.2 cm) were recruited from community running groups and the university's varsity and club cross-country teams. Plantar flexor musculotendinous stiffness was estimated from the damped frequency of oscillatory motion about the ankle follow perturbation. Ultrasound imaging was used to measure architecture and geometry of the medial gastrocnemius. Dependent variables were compared between groups via one-way ANOVAs. Previously injured runners had greater plantar flexor musculotendinous stiffness (P < .001), greater Achilles tendon stiffness (P = .004), and lesser Achilles tendon elongation (P = .003) during maximal isometric contraction compared with healthy runners. No differences were found in muscle thickness, pennation angle, or fascicle length. PMID:25320911

  3. Transverse shear stiffness of laminated anisotropic shells

    NASA Technical Reports Server (NTRS)

    Cohen, G. A.

    1978-01-01

    Equations are derived for the transverse shear stiffness of laminated anisotropic shells. Without making assumptions for thickness distribution for either transverse shear stresses or strains, constitutive equations for the transverse shear deformation theory of anisotropic heterogeneous shells are found. The equations are based on Taylor series expansions about a generic point for stress resultants and couples, identically satisfying plate equilibrium equations. These equations are used to find statically correct expressions for in-surface stresses, transverse shear stresses, and the area density of transverse shear strain energy, in terms of transverse shear stress resultants and redundants. The application of Castigliano's theorem of least work minimizes shear strain energy with respect to the redundants. Examples are presented for several laminated walls. Good agreement is found between the results and those of exact three-dimensional elasticity solutions for the cylindrical bending of a plate.

  4. Determining cantilever stiffness from thermal noise

    PubMed Central

    Lübbe, Jannis; Temmen, Matthias; Rahe, Philipp; Kühnle, Angelika

    2013-01-01

    Summary We critically discuss the extraction of intrinsic cantilever properties, namely eigenfrequency f n, quality factor Q n and specifically the stiffness k n of the nth cantilever oscillation mode from thermal noise by an analysis of the power spectral density of displacement fluctuations of the cantilever in contact with a thermal bath. The practical applicability of this approach is demonstrated for several cantilevers with eigenfrequencies ranging from 50 kHz to 2 MHz. As such an analysis requires a sophisticated spectral analysis, we introduce a new method to determine k n from a spectral analysis of the demodulated oscillation signal of the excited cantilever that can be performed in the frequency range of 10 Hz to 1 kHz regardless of the eigenfrequency of the cantilever. We demonstrate that the latter method is in particular useful for noncontact atomic force microscopy (NC-AFM) where the required simple instrumentation for spectral analysis is available in most experimental systems. PMID:23616942

  5. Tachocline dynamics: convective overshoot at stiff interfaces

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin; Lecoanet, Daniel; Oishi, Jeffrey S.; Burns, Keaton; Vasil, Geoffrey M.

    2016-05-01

    The solar tachocline lies at the base of the solar convection zone. At this internal interface, motions from the unstable convection zone above overshoot and penetrate downward into the stiffly stable radiative zone below, driving gravity waves, mixing, and possibly pumping and storing magnetic fields. Here we study the dynamics of convective overshoot across very stiff interfaces with some properties similar to the internal boundary layer within the Sun. We use the Dedalus pseudospectral framework and study fully compressible dynamics at moderate to high Peclet number and low Mach number, probing a regime where turbulent transport is important. In this preliminary work, we find that the depth of convective overshoot is well described by a simple buoyancy equilibration model, and we consider implications for dynamics at the solar tachocline.

  6. Determining cantilever stiffness from thermal noise.

    PubMed

    Lübbe, Jannis; Temmen, Matthias; Rahe, Philipp; Kühnle, Angelika; Reichling, Michael

    2013-01-01

    We critically discuss the extraction of intrinsic cantilever properties, namely eigenfrequency f n , quality factor Q n and specifically the stiffness k n of the nth cantilever oscillation mode from thermal noise by an analysis of the power spectral density of displacement fluctuations of the cantilever in contact with a thermal bath. The practical applicability of this approach is demonstrated for several cantilevers with eigenfrequencies ranging from 50 kHz to 2 MHz. As such an analysis requires a sophisticated spectral analysis, we introduce a new method to determine k n from a spectral analysis of the demodulated oscillation signal of the excited cantilever that can be performed in the frequency range of 10 Hz to 1 kHz regardless of the eigenfrequency of the cantilever. We demonstrate that the latter method is in particular useful for noncontact atomic force microscopy (NC-AFM) where the required simple instrumentation for spectral analysis is available in most experimental systems. PMID:23616942

  7. Parametric Stiffness Control of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Moon, F. C.; Rand, R. H.

    1985-01-01

    An unconventional method for control of flexible space structures using feedback control of certain elements of the stiffness matrix is discussed. The advantage of using this method of configuration control is that it can be accomplished in practical structures by changing the initial stress state in the structure. The initial stress state can be controlled hydraulically or by cables. The method leads, however, to nonlinear control equations. In particular, a long slender truss structure under cable induced initial compression is examined. both analytical and numerical analyses are presented. Nonlinear analysis using center manifold theory and normal form theory is used to determine criteria on the nonlinear control gains for stable or unstable operation. The analysis is made possible by the use of the exact computer algebra system MACSYMA.

  8. [Assessment of bone healing during callus distraction by an automatic torsional stiffness metering system].

    PubMed

    Thorey, F; Windhagen, H; Linnenberg, D; Nölle, O; Maciejewski, O; Spies, C

    2000-12-01

    The present article describes a newly developed device for the quantitative assessment of torsional in vivo stiffness of regenerating bone under callus distraction. Both the design and function of this device, and its use during bony consolidation are discussed. The device exhibited an accuracy of +/- 18% for stiffness under 0.1 Nm/degree, and +/- 5% stiffness above 0.1 Nm/degree. The average accuracy was +/- 14%. The data scatter for the stiffness measurement ranged between +/- 1.43% and +/- 7.68% (average: +/- 3.99%). The precision of a test machine was between +/- 0.01% and +/- 11.3% (average: +/- 3.65%). The method has the following advantages over existing methods for investigating healing: 1. no need to dismantle the external fixation for measurement; 2. preservation of the bone axis with minimal risk of misalignment during the bone healing process; 3. minimal technical requirements, with easy, noninvasive measurement; 4. no exposure to X-radiation. PMID:11194640

  9. Arterial stiffness is not associated with bone parameters in an elderly hyperhomocysteinemic population.

    PubMed

    van Dijk, S C; de Jongh, R T; Enneman, A W; Ham, A C; Swart, K M A; van Wijngaarden, J P; van der Zwaluw, N L; Brouwer-Brolsma, E M; van Schoor, N M; Dhonukshe-Rutten, R A M; Lips, P; de Groot, C P G M; Smulders, Y M; Blom, H J; Feskens, E J; Geleijnse, J M; van den Meiracker, A H; Mattace Raso, F U S; Uitterlinden, A G; Zillikens, M C; van der Velde, N

    2016-01-01

    Several studies have observed positive associations between bone disease and cardiovascular disease. A potential common pathway is hyperhomocysteinemia; however, to date, there is a lack of data regarding hyperhomocysteinemic populations. Therefore, we examined both cross-sectionally and longitudinally, whether there is an association between bone parameters and arterial stiffness in a hyperhomocysteinemic population, and investigated the potential common role of homocysteine (hcy) level on these associations. Cross-sectional and longitudinal data of the B-PROOF study were used (n = 519). At both baseline and 2-year follow-up we determined bone measures-incident fractures and history of fractures, bone-mineral density (BMD) and quantitative ultrasound (QUS) measurement. We also measured arterial stiffness parameters at baseline-pulse wave velocity, augmentation index and aortic pulse pressure levels with applanation tonometry. Linear regression analysis was used to examine these associations and we tested for potential interaction of hcy level. The mean age of the study population was 72.3 years and 44.3 % were female. Both cross-sectionally and longitudinally there was no association between arterial stiffness measures and BMD or QUS measurements or with incident fractures (n = 16) within the 2-3 years of follow-up. Hcy level did not modify the associations and adjustment for hcy did not change the results. Arterial stiffness was not associated with bone parameters and fractures, and hcy neither acted as a pleiotropic factor nor as a mediator. The potential association between bone and arterial stiffness is therefore not likely to be driven by hyperhomocysteinemia. PMID:25804313

  10. Fear of Movement Is Related to Trunk Stiffness in Low Back Pain

    PubMed Central

    Karayannis, Nicholas V.; Smeets, Rob J. E. M.; van den Hoorn, Wolbert; Hodges, Paul W.

    2013-01-01

    Background Psychological features have been related to trunk muscle activation patterns in low back pain (LBP). We hypothesised higher pain-related fear would relate to changes in trunk mechanical properties, such as higher trunk stiffness. Objectives To evaluate the relationship between trunk mechanical properties and psychological features in people with recurrent LBP. Methods The relationship between pain-related fear (Tampa Scale for Kinesiophobia, TSK; Photograph Series of Daily Activities, PHODA-SeV; Fear Avoidance Beliefs Questionnaire, FABQ; Pain Catastrophizing Scale, PCS) and trunk mechanical properties (estimated from the response of the trunk to a sudden sagittal plane forwards or backwards perturbation by unpredictable release of a load) was explored in a case-controlled study of 14 LBP participants. Regression analysis (r2) tested the linear relationships between pain-related fear and trunk mechanical properties (trunk stiffness and damping). Mechanical properties were also compared with t-tests between groups based on stratification according to high/low scores based on median values for each psychological measure. Results Fear of movement (TSK) was positively associated with trunk stiffness (but not damping) in response to a forward perturbation (r2 = 0.33, P = 0.03), but not backward perturbation (r2 = 0.22, P = 0.09). Other pain-related fear constructs (PHODA-SeV, FABQ, PCS) were not associated with trunk stiffness or damping. Trunk stiffness was greater for individuals with high kinesiophobia (TSK) for forward (P = 0.03) perturbations, and greater with forward perturbation for those with high fear avoidance scores (FABQ-W, P = 0.01). Conclusions Fear of movement is positively (but weakly) associated with trunk stiffness. This provides preliminary support an interaction between biological and psychological features of LBP, suggesting this condition may be best understood if these domains are not considered in isolation. PMID:23826339

  11. Three-dimensional stiffness of the carpal arch.

    PubMed

    Gabra, Joseph N; Li, Zong-Ming

    2016-01-01

    The carpal arch of the wrist is formed by irregularly shaped carpal bones interconnected by numerous ligaments, resulting in complex structural mechanics. The purpose of this study was to determine the three-dimensional stiffness characteristics of the carpal arch using displacement perturbations. It was hypothesized that the carpal arch would exhibit an anisotropic stiffness behavior with principal directions that are oblique to the conventional anatomical axes. Eight (n=8) cadavers were used in this study. For each specimen, the hamate was fixed to a custom stationary apparatus. An instrumented robot arm applied three-dimensional displacement perturbations to the ridge of trapezium and corresponding reaction forces were collected. The displacement-force data were used to determine a three-dimensional stiffness matrix using least squares fitting. Eigendecomposition of the stiffness matrix was used to identify the magnitudes and directions of the principal stiffness components. The carpal arch structure exhibited anisotropic stiffness behaviors with a maximum principal stiffness of 16.4±4.6N/mm that was significantly larger than the other principal components of 3.1±0.9 and 2.6±0.5N/mm (p<0.001). The principal direction of the maximum stiffness was pronated within the cross section of the carpal tunnel which is accounted for by the stiff transverse ligaments that tightly bind distal carpal arch. The minimal principal stiffness is attributed to the less constraining articulation between the trapezium and scaphoid. This study provides advanced characterization of the wrist׳s three-dimensional structural stiffness for improved insight into wrist biomechanics, stability, and function. PMID:26617368

  12. On-machine ultrasonic sensors for paper stiffness. Final report

    SciTech Connect

    Hall, Maclin S.; Jackson, Theodore G.; Brown, Ernest

    2000-04-01

    This final report presents the results of a 5-year effort by the Institute of Paper Science and Technology (IPST) and its participating partners. The objective of this work was to develop and demonstrate sensors capable of measuring the velocity of ultrasound in the out-of-plane (ZD) and in-plane directions of paper as it is being produced on a commercial paper machine. On-machine ultrasonic measurements can be used to determine various mechanical properties of paper and to monitor process status and product quality. This report first presents a review of the background and potential benefits of on-machine ultrasonic measurements, then summarizes the results of previous work. The ZD measurement system involving the use of ultrasonic transducers in fluid-filled wheels is described in detail, including the method of measurement, the wheel mounting hardware, the on-machine operation, and an overview of the system software. Mill-trial results from two bump tests when producing 69{number_sign} and 55{number_sign} linearboard are presented. For the 69{number_sign} trial the correlation of ZD transit time with plybond and with ZDT (Z-direction tensile or internal bond strength) was greater than 0.8 (R squared). Also observed were ZD stiffness responses to refining and to calendering. ABB Industrial Systems Inc. was responsible for the in-plane sensor. A paper describing ABB's sensor and mill experience is appended.

  13. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation

    PubMed Central

    Hwang, Jun-Ha; Byun, Mi Ran; Kim, A. Rum; Kim, Kyung Min; Cho, Hang Jun; Lee, Yo Han; Kim, Juwon; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2015-01-01

    Mesenchymal stem cell (MSC) differentiation is regulated by the extracellular matrix (ECM) through activation of intracellular signaling mediators. The stiffness of the ECM was shown to be an important regulatory factor for MSC differentiation, and transcriptional coactivator with PDZ-binding motif (TAZ) was identified as an effector protein for MSC differentiation. However, the detailed underlying mechanism regarding the role of ECM stiffness and TAZ in MSC differentiation is not yet fully understood. In this report, we showed that ECM stiffness regulates MSC fate through ERK or JNK activation. Specifically, a stiff hydrogel matrix stimulates osteogenic differentiation concomitant with increased nuclear localization of TAZ, but inhibits adipogenic differentiation. ERK and JNK activity was significantly increased in cells cultured on a stiff hydrogel. TAZ activation was induced by ERK or JNK activation on a stiff hydrogel because exposure to an ERK or JNK inhibitor significantly decreased the nuclear localization of TAZ, indicating that ECM stiffness-induced ERK or JNK activation is important for TAZ-driven osteogenic differentiation. Taken together, these results suggest that ECM stiffness regulates MSC differentiation through ERK or JNK activation. PMID:26262877

  14. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    SciTech Connect

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  15. The intrinsic stiffness of human trabecular meshwork cells increases with senescence

    PubMed Central

    Chang, Yow-Ren; Murphy, Christopher J.; Russell, Paul

    2015-01-01

    Dysfunction of the human trabecular meshwork (HTM) plays a central role in the age-associated disease glaucoma, a leading cause of irreversible blindness. The etiology remains poorly understood but cellular senescence, increased stiffness of the tissue, and the expression of Wnt antagonists such as secreted frizzled related protein-1 (SFRP1) have been implicated. However, it is not known if senescence is causally linked to either stiffness or SFRP1 expression. In this study, we utilized in vitro HTM senescence to determine the effect on cellular stiffening and SFRP1 expression. Stiffness of cultured cells was measured using atomic force microscopy and the morphology of the cytoskeleton was determined using immunofluorescent analysis. SFRP1 expression was measured using qPCR and immunofluorescent analysis. Senescent cell stiffness increased 1.88±0.14 or 2.57±0.14 fold in the presence or absence of serum, respectively. This was accompanied by increased vimentin expression, stress fiber formation, and SFRP1 expression. In aggregate, these data demonstrate that senescence may be a causal factor in HTM stiffening and elevated SFRP1 expression, and contribute towards disease progression. These findings provide insight into the etiology of glaucoma and, more broadly, suggest a causal link between senescence and altered tissue biomechanics in aging-associated diseases. PMID:25915531

  16. Study of flexible fin and compliant joint stiffness on propulsive performance: theory and experiments.

    PubMed

    Kancharala, A K; Philen, M K

    2014-09-01

    The caudal fin is a major source of thrust generation in fish locomotion. Along with the fin stiffness, the stiffness of the joint connecting the fish body to the tail plays a major role in the generation of thrust. This paper investigates the combined effect of fin and joint flexibility on propulsive performance using theoretical and experimental studies. For this study, fluid-structure interaction of the fin has been modeled using the 2D unsteady panel method coupled with nonlinear Euler-Bernoulli beam theory. The compliant joint has been modeled as a torsional spring at the leading edge of the fin. A comparison of self-propelled speed and efficiency with parameters such as heaving and pitching amplitude, oscillation frequency, flexibility of the fin and the compliant joint is reported. The model also predicts the optimized stiffnesses of the compliant joint and the fin for maximum efficiency. Experiments have been carried out to determine the effect of fin and joint stiffness on propulsive performance. Digital image correlation has been used to measure the deformation of the fins and the measured deformation is coupled with the hydrodynamic model to predict the performance. The predicted theoretical performance behavior closely matches the experimental values. PMID:24737004

  17. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Tolic-Norrelykke, Iva Marija; Chen, Jianxin; Mijailovich, Srboljub M.; Butler, James P.; Fredberg, Jeffrey J.; Stamenovic, Dimitrije; Ingber, D. E. (Principal Investigator)

    2002-01-01

    The tensegrity hypothesis holds that the cytoskeleton is a structure whose shape is stabilized predominantly by the tensile stresses borne by filamentous structures. Accordingly, cell stiffness must increase in proportion with the level of the tensile stress, which is called the prestress. Here we have tested that prediction in adherent human airway smooth muscle (HASM) cells. Traction microscopy was used to measure the distribution of contractile stresses arising at the interface between each cell and its substrate; this distribution is called the traction field. Because the traction field must be balanced by tensile stresses within the cell body, the prestress could be computed. Cell stiffness (G) was measured by oscillatory magnetic twisting cytometry. As the contractile state of the cell was modulated with graded concentrations of relaxing or contracting agonists (isoproterenol or histamine, respectively), the mean prestress ((t)) ranged from 350 to 1,900 Pa. Over that range, cell stiffness increased linearly with the prestress: G (Pa) = 0.18(t) + 92. While this association does not necessarily preclude other interpretations, it is the hallmark of systems that secure shape stability mainly through the prestress. Regardless of mechanism, these data establish a strong association between stiffness of HASM cells and the level of tensile stress within the cytoskeleton.

  18. On eigenmodes, stiffness, and sensitivity of atomic force microscope cantilevers in air versus liquids

    SciTech Connect

    Kiracofe, Daniel; Raman, Arvind

    2010-02-15

    The effect of hydrodynamic loading on the eigenmode shapes, modal stiffnesses, and optical lever sensitivities of atomic force microscope (AFM) microcantilevers is investigated by measuring the vibrations of such microcantilevers in air and water using a scanning laser Doppler vibrometer. It is found that for rectangular tipless microcantilevers, the measured fundamental and higher eigenmodes and their equivalent stiffnesses are nearly identical in air and in water. However, for microcantilevers with a tip mass or for picket shaped cantilevers, there is a marked difference in the second (and higher) eigenmode shapes between air and water that leads to a large decrease in their modal stiffness in water as compared to air as well as a decrease in their optical lever sensitivity. These results are explained in terms of hydrodynamic interactions of microcantilevers with nonuniform mass distribution. The results clearly demonstrate that tip mass and hydrodynamic loading must be taken into account in stiffness calibration and optical lever sensitivity calibration while using higher-order eigenmodes in dynamic AFM.

  19. Evaluation of compressive strength and stiffness of grouted soils by using elastic waves.

    PubMed

    Lee, In-Mo; Kim, Jong-Sun; Yoon, Hyung-Koo; Lee, Jong-Sub

    2014-01-01

    Cement grouted soils, which consist of particulate soil media and cementation agents, have been widely used for the improvement of the strength and stiffness of weak ground and for the prevention of the leakage of ground water. The strength, elastic modulus, and Poisson's ratio of grouted soils have been determined by classical destructive methods. However, the performance of grouted soils depends on several parameters such as the distribution of particle size of the particulate soil media, grouting pressure, curing time, curing method, and ground water flow. In this study, elastic wave velocities are used to estimate the strength and elastic modulus, which are generally obtained by classical strength tests. Nondestructive tests by using elastic waves at small strain are conducted before and during classical strength tests at large strain. The test results are compared to identify correlations between the elastic wave velocity measured at small strain and strength and stiffness measured at large strain. The test results show that the strength and stiffness have exponential relationship with elastic wave velocities. This study demonstrates that nondestructive methods by using elastic waves may significantly improve the strength and stiffness evaluation processes of grouted soils. PMID:25025082

  20. Evaluation of Compressive Strength and Stiffness of Grouted Soils by Using Elastic Waves

    PubMed Central

    Lee, In-Mo; Kim, Jong-Sun; Yoon, Hyung-Koo; Lee, Jong-Sub

    2014-01-01

    Cement grouted soils, which consist of particulate soil media and cementation agents, have been widely used for the improvement of the strength and stiffness of weak ground and for the prevention of the leakage of ground water. The strength, elastic modulus, and Poisson's ratio of grouted soils have been determined by classical destructive methods. However, the performance of grouted soils depends on several parameters such as the distribution of particle size of the particulate soil media, grouting pressure, curing time, curing method, and ground water flow. In this study, elastic wave velocities are used to estimate the strength and elastic modulus, which are generally obtained by classical strength tests. Nondestructive tests by using elastic waves at small strain are conducted before and during classical strength tests at large strain. The test results are compared to identify correlations between the elastic wave velocity measured at small strain and strength and stiffness measured at large strain. The test results show that the strength and stiffness have exponential relationship with elastic wave velocities. This study demonstrates that nondestructive methods by using elastic waves may significantly improve the strength and stiffness evaluation processes of grouted soils. PMID:25025082

  1. VAGINAL DEGENERATION FOLLOWING IMPLANTATION OF SYNTHETIC MESH WITH INCREASED STIFFNESS

    PubMed Central

    Liang, Rui; Abramowitch, Steven; Knight, Katrina; Palcsey, Stacy; Nolfi, Alexis; Feola, Andrew; Stein, Susan; Moalli, Pamela A.

    2012-01-01

    Objective To compare the impact of the prototype prolapse mesh Gynemesh PS to that of two new generation lower stiffness meshes, UltraPro and SmartMesh, on vaginal morphology and structural composition. Design A mechanistic study employing a non-human primate (NHP) model. Setting Magee-Womens Research Institute at the University of Pittsburgh. Population Parous rhesus macaques, with similar age, weight, parity and POP-Q scores. Methods Following IACUC approval, 50 rhesus macaques were implanted with Gynemesh PS (n=12), UltraPro with its blue line perpendicular to the longitudinal axis of vagina (n=10), UltraPro with its blue line parallel to the longitudinal axis of vagina (n=8) and SmartMesh (n=8) via sacrocolpopexy following hysterectomy. Sham operated animals (n=12) served as controls. Main Outcome Measures The mesh-vagina complex (MVC) was removed after 12 weeks and analyzed for histomorphology, in situ cell apoptosis, total collagen, elastin, glycosaminoglycan content and total collagenase activity. Appropriate statistics and correlation analyses were performed accordingly. Results Relative to sham and the two lower stiffness meshes, Gynemesh PS had the greatest negative impact on vaginal histomorphology and composition. Compared to sham, implantation with Gynemesh PS caused substantial thinning of the smooth muscle layer (1557 ± 499μm vs 866 ± 210 μm, P=0.02), increased apoptosis particularly in the area of the mesh fibers (P=0.01), decreased collagen and elastin content (20% (P=0.03) and 43% (P=0.02), respectively) and increased total collagenase activity (135% (P=0.01)). GAG (glycosaminoglycan), a marker of tissue injury, was the highest with Gynemesh PS compared to sham and other meshes (P=0.01). Conclusion Mesh implantation with the stiffer mesh Gynemesh PS induced a maladaptive remodeling response consistent with vaginal degeneration. PMID:23240802

  2. Stiffness coupling application to modal synthesis program, users guide

    NASA Technical Reports Server (NTRS)

    Kuhar, E. J.

    1976-01-01

    A FORTRAN IV computer program used to perform modal synthesis of structures by stiffness coupling, using the dynamic transformation method is described. The program was named SCAMP (Stiffness Coupling Approach Modal-Synthesis Program). The program begins with the entry of a substructure's physical mode shapes and eigenvalues or a substructure's mass and stiffness matrix. If the mass and stiffness matrices are entered, the eigen problem for the individual substructure is solved. Provisions are included for a maximum of 20 substructures which are coupled by stiffness matrix springs. Each substructure has a number degrees of freedom (DOF), except that for DOF greater than 100; vector sets having maximum row and column size of 100 were generated prior to entering SCAMP. The substructures are then coupled together via coupling springs, and the dynamic transformation is used to reduce the size of the eigen problem.

  3. Relationship between left ventricular diastolic function and arterial stiffness in asymptomatic patients with diabetes mellitus.

    PubMed

    Roos, Cornelis J; Auger, Dominique; Djaberi, Roxana; de Koning, Eelco J; Rabelink, Ton J; Pereira, Alberto M; Bax, Jeroen J; Delgado, Victoria; Jukema, J Wouter; Scholte, Arthur J

    2013-03-01

    Left ventricular (LV) diastolic dysfunction and increased arterial stiffness are common in patients with diabetes mellitus (DM). However, the relation between these two pathophysiological factors remains unclear. The aim of this study was to investigate the relationship between LV diastolic function and arterial stiffness as assessed with applanation tonometry. In 142 asymptomatic patients with DM (mean age 48 years, 75 (53 %) men, 72 (51 %) patients with type 2 DM) LV diastolic function was assessed with echocardiography. Arterial stiffness was evaluated measuring the aortic pulse wave velocity (PWV) whereas wave reflection was assessed measuring central systolic blood pressure (cSBP), central pulse pressure (cPP), and augmentation index (AIx) with applanation tonometry. Mean E/A ratio, E' and E/E' ratio were 1.1 0.3, 8.1 2.3 and 9.2 3.3 cm/s, respectively. Mean PWV, mean cSBP, median cPP and mean AIx were 7.9 2.4 m/s, 122 17 mmHg, 40 [35-51] mmHg and 17.9 12.1 %, respectively. PWV was independently associated with LV diastolic dysfunction grade (? = 0.76, p = 0.03). In contrast, measures of wave reflection, cPP, cSBP and AIx were independently related with E/A ratio, but not with the LV diastolic dysfunction grade. Parameters of arterial stiffness and wave reflection are associated with echocardiographic indices of LV diastolic function in asymptomatic patients with DM. Therapies that prevent progression of arterial stiffness and reduce late-systolic pressure overload may help to reduce the prevalence of LV diastolic dysfunction in this population. PMID:23053856

  4. Assessment of passive knee stiffness and viscosity in individuals with spinal cord injury using pendulum test

    PubMed Central

    Joghtaei, Mahmoud; Arab, Amir Massoud; Hashemi-Nasl, Hamed; Joghataei, Mohammad Taghi; Tokhi, Mohammad Osman

    2015-01-01

    Objective Stiffness and viscosity represent passive resistances to joint motion related with the structural properties of the joint tissue and of the musculotendinous complex. Both parameters can be affected in patients with spinal cord injury (SCI). The purpose of this study was to measure passive knee stiffness and viscosity in patients with SCI with paraplegia and healthy subjects using Wartenberg pendulum test. Design Non-experimental, cross-sectional, case–control design. Setting An outpatient physical therapy clinic, University of social welfare and Rehabilitation Science, Iran. Patients A sample of convenience sample of 30 subjects participated in the study. Subjects were categorized into two groups: individuals with paraplegic SCI (n = 15, age: 34.60 ± 9.18 years) and 15 able-bodied individuals as control group (n = 15, age: 30.66 ± 11.13 years). Interventions Not applicable. Main measures Passive pendulum test of Wartenberg was used to measure passive viscous-elastic parameters of the knee (stiffness, viscosity) in all subjects. Results Statistical analysis (independent t-test) revealed significant difference in the joint stiffness between healthy subjects and those with paraplegic SCI (P = 0.01). However, no significant difference was found in the viscosity between two groups (P = 0.17). Except for first peak flexion angle, all other displacement kinematic parameters exhibited no statistically significant difference between normal subjects and subjects with SCI. Conclusions Patients with SCI have significantly greater joint stiffness compared to able-bodied subjects. PMID:25437824

  5. The Focal Adhesion: A Regulated Component of Aortic Stiffness

    PubMed Central

    Saphirstein, Robert J.; Gao, Yuan Z.; Jensen, Mikkel H.; Gallant, Cynthia M.; Vetterkind, Susanne; Moore, Jeffrey R.; Morgan, Kathleen G.

    2013-01-01

    Increased aortic stiffness is an acknowledged predictor and cause of cardiovascular disease. The sources and mechanisms of vascular stiffness are not well understood, although the extracellular matrix (ECM) has been assumed to be a major component. We tested here the hypothesis that the focal adhesions (FAs) connecting the cortical cytoskeleton of vascular smooth muscle cells (VSMCs) to the matrix in the aortic wall are a component of aortic stiffness and that this component is dynamically regulated. First, we examined a model system in which magnetic tweezers could be used to monitor cellular cortical stiffness, serum-starved A7r5 aortic smooth muscle cells. Lysophosphatidic acid (LPA), an activator of myosin that increases cell contractility, increased cortical stiffness. A small molecule inhibitor of Src-dependent FA recycling, PP2, was found to significantly inhibit LPA-induced increases in cortical stiffness, as well as tension-induced increases in FA size. To directly test the applicability of these results to force and stiffness development at the level of vascular tissue, we monitored mouse aorta ring stiffness with small sinusoidal length oscillations during agonist-induced contraction. The alpha-agonist phenylephrine, which also increases myosin activation and contractility, increased tissue stress and stiffness in a PP2- and FAK inhibitor 14-attenuated manner. Subsequent phosphotyrosine screening and follow-up with phosphosite-specific antibodies confirmed that the effects of PP2 and FAK inhibitor 14 in vascular tissue involve FA proteins, including FAK, CAS, and paxillin. Thus, in the present study we identify, for the first time, the FA of the VSMC, in particular the FAK-Src signaling complex, as a significant subcellular regulator of aortic stiffness and stress. PMID:23626821

  6. Leg stiffness adjustment during hopping at different intensities and frequencies.

    PubMed

    Mrdakovic, Vladimir; Ilic, Dusko; Vulovic, Radun; Matic, Milan; Jankovic, Nenad; Filipovic, Nenad

    2014-01-01

    Understanding leg and joint stiffness adjustment during maximum hopping may provide important information for developing more effective training methods. It has been reported that ankle stiffness has major influence on stable spring-mass dynamics during submaximal hopping, and that knee stiffness is a major determinant for hopping performance during maximal hopping task. Furthermore, there are no reports on how the height of the previous hop could affect overall stiffness modulation of the subsequent maximum one. The purpose of the present study was to determine whether and how the jump height of the previous hop affects leg and joint stiffness for subsequent maximum hop. Ten participants completed trials in which they repeatedly hopped as high as possible (MX task) and trials in which they were instructed to perform several maximum hops with 3 preferred (optimal) height hops between each of them (P3MX task). Both hopping tasks were performed at 2.2 Hz hopping frequency and at the participant's preferred (freely chosen) frequency as well. By comparing results of those hopping tasks, we found that ankle stiffness at 2.2 Hz ( p = 0.041) and knee stiffness at preferred frequency ( p = 0.045) was significantly greater for MX versus P3MX tasks. Leg stiffness for 2.2 Hz hopping is greater than for the preferred frequency. Ankle stiffness is greater for 2.2 Hz than for preferred frequencies; opposite stands for knee stiffness. The results of this study suggest that preparatory hop height can be considered as an important factor for modulation of maximum hop. PMID:25308379

  7. Hepatic and Splenic Stiffness Augmentation Assessed with MR Elastography in an in vivo Porcine Portal Hypertension Model

    PubMed Central

    Yin, Meng; Kolipaka, Arunark; Woodrum, David A.; Glaser, Kevin J.; Romano, Anthony J; Manduca, Armando; Talwalkar, Jayant A.; Araoz, Philip A.; McGee, Kiaran P.; Anavekar, Nandan S.; Ehman, Richard L.

    2013-01-01

    Purpose To investigate the influence of portal pressure on the shear stiffness of the liver and spleen in a well-controlled in vivo porcine model with MR Elastography (MRE). A significant correlation between portal pressure and tissue stiffness could be used to noninvasively assess increased portal venous pressure (portal hypertension), which is a frequent clinical condition caused by cirrhosis of the liver and is responsible for the development of many lethal complications. Materials and Methods During multiple intra-arterial infusions of Dextran-40 in three adult domestic pigs in vivo, 3-D abdominal MRE was performed with left ventricle and portal catheters measuring blood pressure simultaneously. Least-squares linear regressions were used to analyze the relationship between tissue stiffness and portal pressure. Results Liver and spleen stiffness have a dynamic component that increases significantly following an increase in portal or left ventricular pressure. Correlation coefficients with the linear regressions between stiffness and pressure exceeded 0.8 in most cases. Conclusion The observed stiffness-pressure relationship of the liver and spleen could provide a promising noninvasive method for assessing portal pressure. Using MRE to study the tissue mechanics associated with portal pressure may provide new insights into the natural history and pathophysiology of hepatic diseases and may have significant diagnostic value in the future. PMID:23418135

  8. Piezoelectric resonance shifting using tunable nonlinear stiffness

    NASA Astrophysics Data System (ADS)

    Reissman, Timothy; Wolff, Eric M.; Garcia, Ephrahim

    2009-03-01

    Piezoelectric cantilever devices for energy harvesting purposes have typically been tuned by manipulating beam dimensions or by placement of a tip mass. While these techniques do lend themselves well to designing a highly tuned resonance, the design is fixed and causes each system to be unique to a specific driving frequency. In this work, we demonstrate the design of a nonlinear tuning technique via a variable external, attractive magnetic force. With this design, the resonance of the piezoelectric energy harvester is able to be tuned with the adjustment of a slider mechanism. The magnetic design uses the well of attraction principle in order to create a varying nonlinear stiffness, which shifts the resonance of the coupled piezoelectric beam. The significance of this work is the design of a piezoelectric energy harvesting system with a variable resonance frequency that can be adjusted for changes in the driving frequencies over a wide range without the replacement of any system components; thus, extending the usefulness of these vibration energy harvesting devices over a larger frequency span.

  9. Controlled Unusual Stiffness of Mechanical Metamaterials

    PubMed Central

    Lee, Wooju; Kang, Da-Young; Song, Jihwan; Moon, Jun Hyuk; Kim, Dongchoul

    2016-01-01

    Mechanical metamaterials that are engineered with sub-unit structures present unusual mechanical properties depending on the loading direction. Although they show promise, their practical utility has so far been somewhat limited because, to the best of our knowledge, no study about the potential of mechanical metamaterials made from sophisticatedly tailored sub-unit structures has been made. Here, we present a mechanical metamaterial whose mechanical properties can be systematically designed without changing its chemical composition or weight. We study the mechanical properties of triply periodic bicontinuous structures whose detailed sub-unit structure can be precisely fabricated using various sub-micron fabrication methods. Simulation results show that the effective wave velocity of the structures along with different directions can be designed to introduce the anisotropy of stiffness by changing a volume fraction and aspect ratio. The ratio of Young’s modulus to shear modulus can be increased by up to at least 100, which is a 3500% increase over that of isotropic material (2.8, acrylonitrile butadiene styrene). Furthermore, Poisson’s ratio of the constituent material changes the ratio while Young’s modulus does not influence it. This study presents the promising potential of mechanical metamaterials for versatile industrial and biomedical applications. PMID:26837466

  10. Controlled Unusual Stiffness of Mechanical Metamaterials.

    PubMed

    Lee, Wooju; Kang, Da-Young; Song, Jihwan; Moon, Jun Hyuk; Kim, Dongchoul

    2016-01-01

    Mechanical metamaterials that are engineered with sub-unit structures present unusual mechanical properties depending on the loading direction. Although they show promise, their practical utility has so far been somewhat limited because, to the best of our knowledge, no study about the potential of mechanical metamaterials made from sophisticatedly tailored sub-unit structures has been made. Here, we present a mechanical metamaterial whose mechanical properties can be systematically designed without changing its chemical composition or weight. We study the mechanical properties of triply periodic bicontinuous structures whose detailed sub-unit structure can be precisely fabricated using various sub-micron fabrication methods. Simulation results show that the effective wave velocity of the structures along with different directions can be designed to introduce the anisotropy of stiffness by changing a volume fraction and aspect ratio. The ratio of Young's modulus to shear modulus can be increased by up to at least 100, which is a 3500% increase over that of isotropic material (2.8, acrylonitrile butadiene styrene). Furthermore, Poisson's ratio of the constituent material changes the ratio while Young's modulus does not influence it. This study presents the promising potential of mechanical metamaterials for versatile industrial and biomedical applications. PMID:26837466

  11. Effect of ATP on actin filament stiffness.

    PubMed

    Janmey, P A; Hvidt, S; Oster, G F; Lamb, J; Stossel, T P; Hartwig, J H

    1990-09-01

    Actin is an adenine nucleotide-binding protein and an ATPase. The bound adenine nucleotide stabilizes the protein against denaturation and the ATPase activity, although not required for actin polymerization, affects the kinetics of this assembly Here we provide evidence for another effect of adenine nucleotides. We find that actin filaments made from ATP-containing monomers, the ATPase activity of which hydrolyses ATP to ADP following polymerization, are stiff rods, whereas filaments prepared from ADP-monomers are flexible. ATP exchanges with ADP in such filaments and stiffens them. Because both kinds of actin filaments contain mainly ADP, we suggest the alignment of actin monomers in filaments that have bound and hydrolysed ATP traps them conformationally and stores elastic energy. This energy would be available for release by actin-binding proteins that transduce force or sever actin filaments. These data support earlier proposals that actin is not merely a passive cable, but has an active mechanochemical role in cell function. PMID:2168523

  12. Controlled Unusual Stiffness of Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Lee, Wooju; Kang, Da-Young; Song, Jihwan; Moon, Jun Hyuk; Kim, Dongchoul

    2016-02-01

    Mechanical metamaterials that are engineered with sub-unit structures present unusual mechanical properties depending on the loading direction. Although they show promise, their practical utility has so far been somewhat limited because, to the best of our knowledge, no study about the potential of mechanical metamaterials made from sophisticatedly tailored sub-unit structures has been made. Here, we present a mechanical metamaterial whose mechanical properties can be systematically designed without changing its chemical composition or weight. We study the mechanical properties of triply periodic bicontinuous structures whose detailed sub-unit structure can be precisely fabricated using various sub-micron fabrication methods. Simulation results show that the effective wave velocity of the structures along with different directions can be designed to introduce the anisotropy of stiffness by changing a volume fraction and aspect ratio. The ratio of Young’s modulus to shear modulus can be increased by up to at least 100, which is a 3500% increase over that of isotropic material (2.8, acrylonitrile butadiene styrene). Furthermore, Poisson’s ratio of the constituent material changes the ratio while Young’s modulus does not influence it. This study presents the promising potential of mechanical metamaterials for versatile industrial and biomedical applications.

  13. Leg stiffness decreases during a run to exhaustion at the speed at VO2max.

    PubMed

    Hayes, Philip R; Caplan, Nicholas

    2014-01-01

    Vertical and leg stiffness are related to running speed. In endurance running, the ability to maintain stiffness might be more important than the absolute stiffness magnitude. The purpose of this study was to examine changes in vertical and leg stiffness during an exhaustive. Six sub-elite runners (24.2, s = 4.2 years; 1.81, s = 0.03 m; 73.4, s = 4.4 kg) participated in this study. They performed preliminary tests to determine lactate threshold, lactate turnpoint, [Formula: see text]O2max, s[Formula: see text]O2max and a series of isokinetic endurance tests. During the run to exhaustion runners were videoed (50 Hz) to determine contact and flight times, from which leg (Kleg) and vertical (Kvert) stiffness were calculated. During the run Kleg showed a significant decrease [P = 0.030, effect size statistics (ES) = 0.74], however, the decrease in Kvert was non-significant and of a small magnitude (P = 0.051, ES = 0.32). The distance covered during the run was correlated with ΔKleg (r = -0.868) but not ΔKvert (r = 0.684). ΔKleg was very strongly related to Δ ground contact time (r = -0.937) and Δ step length (r = -0.957). The Δ ground contact time had a near perfect relationship with Δ step length (r = 0.995). Isokinetic measures were not significantly correlated with either ΔKleg. The ability to maintain a short ground contact time appears to be a key determinant of maintaining performance during a run to exhaustion. Minimising this is important for maintaining Kleg. Kleg was not significantly related to isokinetic measures. PMID:24410623

  14. DETERIORATION IN BIOMECHANICAL PROPERTIES OF THE VAGINA FOLLOWING IMPLANTATION OF A HIGH STIFFNESS PROLAPSE MESH

    PubMed Central

    Feola, Andrew; Abramowitch, Steven; Jallah, Zegbeh; Stein, Suzan; Barone, William; Palcsey, Stacy; Moalli, Pamela

    2012-01-01

    Objective Define the impact of prolapse mesh on the biomechanical properties of the vagina by comparing the prototype Gynemesh PS (Ethicon, Somerville, NJ) to 2 new generation lower stiffness meshes, SmartMesh (Coloplast, Minneapolis, MN) and UltraPro (Ethicon). Design A study employing a non-human primate model Setting University of Pittsburgh Population 45 parous rhesus macaques Methods Meshes were implanted via sacrocolpexy after hysterectomy and compared to Sham. Because its stiffness is highly directional UltraPro was implanted in two directions: UltraPro Perpendicular (less stiff) and UltraPro Parallel (more stiff), with the indicated direction referring to the blue orientation lines. The mesh-vaginal complex (MVC) was excised en toto after 3 months. Main Outcome Measures Active mechanical properties were quantified as contractile force generated in the presence of 120 mM KCl. Passive mechanical properties (a tissues ability to resist an applied force) were measured using a multi-axial protocol. Results Vaginal contractility decreased 80% following implantation with the Gynemesh PS (p=0.001), 48% after SmartMesh (p=0.001), 68% after UltraPro parallel (p=0.001) and was highly variable after UltraPro perpendicular (p =0.16). The tissue contribution to the passive mechanical behavior of the MVC was drastically reduced for Gynemesh PS (p=0.003) but not SmartMesh (p=0.9) or UltraPro independent of the direction of implantation (p=0.68 and p=0.66, respectively). Conclusions Deterioration of the mechanical properties of the vagina was highest following implantation with the stiffest mesh, Gynemesh PS. Such a decrease associated with implantation of a device of increased stiffness is consistent with findings from other systems employing prostheses for support. PMID:23240801

  15. Effect of Lysyl Oxidase Inhibition on Angiotensin II-Induced Arterial Hypertension, Remodeling, and Stiffness

    PubMed Central

    Eberson, Lance S.; Sanchez, Pablo A.; Majeed, Beenish A.; Tawinwung, Supannikar; Secomb, Timothy W.; Larson, Douglas F.

    2015-01-01

    It is well accepted that angiotensin II (Ang II) induces altered vascular stiffness through responses including both structural and material remodeling. Concurrent with remodeling is the induction of the enzyme lysyl oxidase (LOX) through which ECM proteins are cross-linked. The study objective was to determine the effect of LOX mediated cross-linking on vascular mechanical properties. Three-month old mice were chronically treated with Ang II with or without the LOX blocker, β -aminopropionitrile (BAPN), for 14 days. Pulse wave velocity (PWV) from Doppler measurements of the aortic flow wave was used to quantify in vivo vascular stiffness in terms of an effective Young’s modulus. The increase in effective Young’s modulus with Ang II administration was abolished with the addition of BAPN, suggesting that the material properties are a major controlling element in vascular stiffness. BAPN inhibited the Ang II induced collagen cross-link formation by 2-fold and PWV by 44% (P<0.05). Consistent with this observation, morphometric analysis showed that BAPN did not affect the Ang II mediated increase in medial thickness but significantly reduced the adventitial thickness. Since the hypertensive state contributes to the measured in vivo PWV stiffness, we removed the Ang II infusion pumps on Day 14 and achieved normal arterial blood pressures. With pump removal we observed a decrease of the PWV in the Ang II group to 25% above that of the control values (P=0.002), with a complete return to control values in the Ang II plus BAPN group. In conclusion, we have shown that the increase in vascular stiffness with 14 day Ang II administration results from a combination of hypertension-induced wall strain, adventitial wall thickening and Ang II mediated LOX ECM cross-linking, which is a major material source of vascular stiffening, and that the increased PWV was significantly inhibited with co-administration of BAPN. PMID:25875748

  16. Effects of Allopurinol on Arterial Stiffness: A Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Deng, Gang; Qiu, Zhandong; Li, Dayong; Fang, Yu; Zhang, Suming

    2016-01-01

    BACKGROUND Several studies have tested the effects of allopurinol on arterial stiffness, but the results have been inconclusive. We aimed to conduct a meta-analysis to investigate the impacts of allopurinol treatment on arterial stiffness, as measured by pulse wave velocity (PWV) and augmentation index (AIx). MATERIAL AND METHODS Randomized controlled trials (RCTs) assessing the effects of allopurinol on arterial stiffness were identified through searching PubMed, Web of Science, EMBASE, the Cochrane Library for Central Register of Clinical Trials, and China National Knowledge Infrastructure up to December 2015. The primary endpoints were the change of PWV and AIx after allopurinol treatment. The weighted mean difference (WMD) or standardized mean difference (SMD) and the 95% confidence interval (CI) of each study were pooled for meta-analysis. RESULTS A total of 11 RCTs met the inclusion criteria and were included in the final meta-analysis. Eight RCTs with 1,111 patients were pooled for PWV; eight RCTs with 397 patients were pooled for PWV. Allopurinol administration did not significantly change PWV (WMD=-0.19 m/s, 95% CI: -0.49 to 0.12, Z=1.21, p=0.23), but significantly reduced AIx (SMD=-0.34, 95% CI: -0.54 to -0.14, Z=3.35, p=0.0008). CONCLUSIONS Although our meta-analysis showed some favorable effects of allopurinol treatment on improving AIx, its impact on arterial stiffness must be tested in more large-scale RCTs. PMID:27110924

  17. A comparison of methods to determine bilateral asymmetries in vertical leg stiffness.

    PubMed

    Maloney, Sean J; Fletcher, Iain M; Richards, Joanna

    2016-05-01

    Whilst the measurement and quantification of vertical leg stiffness (Kvert) asymmetry is of important practical relevance to athletic performance, literature investigating bilateral asymmetry in Kvert is limited. Moreover, how the type of task used to assess Kvert may affect the expression of asymmetry has not been properly determined. Twelve healthy males performed three types of performance tasks on a dual force plate system to determine Kvert asymmetries; the tasks were (a) bilateral hopping, (b) bilateral drop jumping and (c) unilateral drop jumping. Across all the three methods, Kvert was significantly different between compliant and stiff limbs (P < 0.001) with a significant interaction effect between limb and method (P = 0.005). Differences in Kvert between compliant and stiff limbs were -5.3% (P < 0.001), -21.8% (P = 0.007) and -15.1% (P < 0.001) for the bilateral hopping, bilateral drop jumping and unilateral drop jumping methods, respectively. All the three methods were able to detect significant differences between compliant and stiff limbs, and could be used as a diagnostic tool to assess Kvert asymmetry. Drop jumping tasks detected larger Kvert asymmetries than hopping, suggesting that asymmetries may be expressed to a greater extent in acyclic, maximal performance tasks. PMID:26230224

  18. Acute Effect on Arterial Stiffness after Performing Resistance Exercise by Using the Valsalva Manoeuvre during Exertion

    PubMed Central

    Mak, Wai Yip Vincent; Lai, Wai Keung Christopher

    2015-01-01

    Background. Performing resistance exercise could lead to an increase in arterial stiffness. Objective. We investigate the acute effect on arterial stiffness by performing Valsalva manoeuvre during resistance exercise. Materials and Methods. Eighteen healthy young men were assigned to perform bicep curls by using two breathing techniques (exhalation and Valsalva manoeuvre during muscle contraction) on two separate study days. Carotid pulsed wave velocity (cPWV) was measured as an indicator to reflect the body central arterial stiffness using a high-resolution ultrasound system, and its value was monitored repeatedly at three predefined time intervals: before resistance exercise, immediately after exercise, and 15 minutes after exercise. Results. At the 0th minute after resistance exercise was performed using the Valsalva manoeuvre during exertion, a significant increase in cPWV (4.91 m/s ± 0.52) compared with the baseline value (4.67 m/s ± 0.32, P = 0.008) was observed, and then it nearly returned to its baseline value at the 15th minute after exercise (4.66 m/s ± 0.44, P = 0.010). These findings persisted after adjusting for age, body mass index, and systolic blood pressure. Conclusion. Our result suggests short duration of resistance exercise may provoke a transient increase in central arterial stiffness in healthy young men. PMID:26539481

  19. Lymphangiogenesis in Breast Cancer Correlates with Matrix Stiffness on Shear-Wave Elastography

    PubMed Central

    Cha, Yoon Jin; Youk, Ji Hyun; Kim, Baek Gil; Jung, Woo Hee

    2016-01-01

    Purpose To correlate tumor stiffness and lymphangiogenesis in breast cancer and to find its clinical implications. Materials and Methods A total of 140 breast cancer patients were evaluated. Tumor stiffness was quantitatively measured by shear-wave elastography in preoperative ultrasound examination, calculated as mean elasticity value (kPa). Slides of resected breast cancer specimens were reviewed for most fibrotic area associated with tumor. D2-40 immunohistochemical staining was applied for fibrotic areas to detect the lymphatic spaces. Microlymphatic density, tumor stiffness, and clinicopathologic data were analyzed. Results Higher elasticity value was associated with invasive size of tumor, microlymphatic density, histologic grade 3, absence of extensive intraductal component, presence of axillary lymph node metastasis, and Ki-67 labeling index (LI) in univariate regression analysis, and associated with Ki-67 LI and axillary lymph node metastasis in multivariate regression analysis. Microlymphatic density was associated histologic grade 3, mean elasticity value, and Ki-67 LI in univariate regression analysis. In multivariate regression analysis, microlymphatic density was correlated with mean elasticity value. Conclusion In breast cancer, tumor stiffness correlates with lymphangiogenesis and poor prognostic factors. PMID:26996557

  20. Preperitoneal fat tissue may be associated with arterial stiffness in obese adolescents.

    PubMed

    Hacıhamdioğlu, Bülent; Öçal, Gönül; Berberoğlu, Merih; Sıklar, Zeynep; Fitöz, Suat; Tutar, Ercan; Nergisoğlu, Gökhan; Savaş Erdeve, Senay; Çamtosun, Emine

    2014-05-01

    Vascular aging is a chronic process, and many negative effects of obesity in this process have been well defined. We assessed arterial stiffness in obese adolescents and evaluated the relationship between intra-abdominal fat distribution and arterial stiffness. Arterial stiffness parameters and pulse wave velocity (PWV) were evaluated in 61 obese adolescents and 58 healthy controls. Carotid-femoral PWV was calculated by arterial tonometry. Additionally, all obese children were evaluated for metabolic syndrome and insulin resistance. Intra-abdominal fat distribution, including subcutaneous, preperitoneal and visceral fat thicknesses, was assessed by ultrasonography. PWVs of obese children were significantly higher than those of healthy controls (5.0 ± 0.7 m/s vs. 4.7 ± 0.5 m/s). Parameters affecting PWV were evaluated by regression analysis. The independent variable in the regression analysis model was PWV, and the dependent variables were age, metabolic syndrome, body mass index and Homeostasis Model Assessment--Insulin Resistance, as well as subcutaneous, preperitoneal and visceral fat tissue thicknesses measured by ultrasonography. The only parameter associated with PWV was preperitoneal fat tissue thickness. Vascular changes related to obesity may begin in adolescence, as illustrated by the increased PWV. Preperitoneal fat tissue may be related to arterial stiffness. Intra-abdominal fat distributions obtained by ultrasonography may provide clinicians with valuable information needed to determine cardiovascular disease risk factors in obese adolescents. PMID:24462148

  1. Damage Detection on Sudden Stiffness Reduction Based on Discrete Wavelet Transform

    PubMed Central

    Chen, Bo; Chen, Zhi-wei; Wang, Gan-jun; Xie, Wei-ping

    2014-01-01

    The sudden stiffness reduction in a structure may cause the signal discontinuity in the acceleration responses close to the damage location at the damage time instant. To this end, the damage detection on sudden stiffness reduction of building structures has been actively investigated in this study. The signal discontinuity of the structural acceleration responses of an example building is extracted based on the discrete wavelet transform. It is proved that the variation of the first level detail coefficients of the wavelet transform at damage instant is linearly proportional to the magnitude of the stiffness reduction. A new damage index is proposed and implemented to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. Numerical simulation using a five-story shear building under different types of excitation is carried out to assess the effectiveness and reliability of the proposed damage index for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also investigated. The made observations demonstrate that the proposed damage index can accurately identify the sudden damage events if the noise intensity is limited. PMID:24991647

  2. Modeling and analysis of a negative stiffness magnetic suspension vibration isolator with experimental investigations.

    PubMed

    Zhu, Yu; Li, Qiang; Xu, Dengfeng; Hu, Chuxiong; Zhang, Ming

    2012-09-01

    This paper presents a negative stiffness magnetic suspension vibration isolator (NSMSVI) using magnetic spring and rubber ligaments. The positive stiffness is obtained by repulsive magnetic spring while the negative stiffness is gained by rubber ligaments. In order to study the vibration isolation performance of the NSMSVI, an analytical expression of the vertical stretch force of the rubber ligament is constructed. Experiments are carried out, which demonstrates that the analytical expression is effective. Then an analytical expression of the vertical stiffness of the rubber ligament is deduced by the derivative of the stretch force of the rubber ligament with respect to the displacement of the inner magnetic ring. Furthermore, the parametric study of the magnetic spring and rubber ligament are carried out. As a case study, the size dimensions of the magnetic spring and rubber ligament are determined. Finally, an NSMSVI table was built to verify the vibration isolation performance of the NSMSVI. The transmissibility curves of the NSMSVI are subsequently calculated and tested by instruments. The experimental results reveal that there is a good consistency between the measured transmissibility and the calculated ones, which proves that the proposed NSMSVI is effective and can realize low-frequency vibration isolation. PMID:23020420

  3. Modeling and analysis of a negative stiffness magnetic suspension vibration isolator with experimental investigations

    NASA Astrophysics Data System (ADS)

    Zhu, Yu; Li, Qiang; Xu, Dengfeng; Hu, Chuxiong; Zhang, Ming

    2012-09-01

    This paper presents a negative stiffness magnetic suspension vibration isolator (NSMSVI) using magnetic spring and rubber ligaments. The positive stiffness is obtained by repulsive magnetic spring while the negative stiffness is gained by rubber ligaments. In order to study the vibration isolation performance of the NSMSVI, an analytical expression of the vertical stretch force of the rubber ligament is constructed. Experiments are carried out, which demonstrates that the analytical expression is effective. Then an analytical expression of the vertical stiffness of the rubber ligament is deduced by the derivative of the stretch force of the rubber ligament with respect to the displacement of the inner magnetic ring. Furthermore, the parametric study of the magnetic spring and rubber ligament are carried out. As a case study, the size dimensions of the magnetic spring and rubber ligament are determined. Finally, an NSMSVI table was built to verify the vibration isolation performance of the NSMSVI. The transmissibility curves of the NSMSVI are subsequently calculated and tested by instruments. The experimental results reveal that there is a good consistency between the measured transmissibility and the calculated ones, which proves that the proposed NSMSVI is effective and can realize low-frequency vibration isolation.

  4. Age, arterial stiffness, and components of blood pressure in Chinese adults.

    PubMed

    Zheng, Meili; Xu, Xiping; Wang, Xiaobin; Huo, Yong; Xu, Xin; Qin, Xianhui; Tang, Genfu; Xing, Houxun; Fan, Fangfang; Cui, Wei; Yang, Xinchun

    2014-12-01

    Blood pressure (BP) changes with age. We conducted a cross-sectional study in rural Chinese adults to investigate: (1) what is the relationship between age, arterial stiffness, and BP in Chinese men and women; and (2) to what degree can the age-BP relationship be explained by arterial stiffness, controlling for other covariables. These analyses included a total of 1688 subjects (males/females: 623/1065), aged 40 to 88 years. Among them, 353 (20.9%) had hypertension (defined as systolic blood pressure (SBP) ≥ 140 mm Hg or diastolic blood pressure (DBP) ≥ 90 mm Hg). Arterial stiffness was measured by brachial-ankle pulse wave velocity (baPWV). baPWV appeared to be more strongly correlated with BP (including SBP, DBP, mean arterial pressure [MAP], pulse pressure [PP]) than age (P < 0.001 for comparisons between Spearman correlation coefficients). Furthermore, baPWV was associated with BP (including SBP, DBP, MAP, and PP) and risk of hypertension in a dose-response fashion, independent of age; in contrast, the age-BP associations were either attenuated or became negative after adjusting for baPWV. Arterial stiffness appears to be an independent contributor to hypertension, even after adjusting for age and other covariables. In contrast, age-BP associations became attenuated or negative after adjusting for baPWV. The utility of baPWV as a diagnostic, prognostic, and therapeutic indicator for hypertension warrants further investigation. PMID:25546666

  5. Mechanically Stiff Nanocomposite Hydrogels at Ultralow Nanoparticle Content.

    PubMed

    Jaiswal, Manish K; Xavier, Janet R; Carrow, James K; Desai, Prachi; Alge, Daniel; Gaharwar, Akhilesh K

    2016-01-26

    Although hydrogels are able to mimic native tissue microenvironments, their utility for biomedical applications is severely hampered due to limited mechanical stiffness and low toughness. Despite recent progress in designing stiff and tough hydrogels, it is still challenging to achieve a cell-friendly, high modulus construct. Here, we report a highly efficient method to reinforce collagen-based hydrogels using extremely low concentrations of a nanoparticulate-reinforcing agent that acts as a cross-link epicenter. Extraordinarily, the addition of these nanoparticles at a 10 000-fold lower concentration relative to polymer resulted in a more than 10-fold increase in mechanical stiffness and a 20-fold increase in toughness. We attribute the high stiffness of the nanocomposite network to the chemical functionality of the nanoparticles, which enabled the cross-linking of multiple polymeric chains to the nanoparticle surface. The mechanical stiffness of the nanoengineered hydrogel can be tailored between 0.2 and 200 kPa simply by manipulating the size of the nanoparticles (4, 8, and 12 nm), as well as the concentrations of the nanoparticles and polymer. Moreover, cells can be easily encapsulated within the nanoparticulate-reinforced hydrogel network, showing high viability. In addition, encapsulated cells were able to sense and respond to matrix stiffness. Overall, these results demonstrate a facile approach to modulate the mechanical stiffness of collagen-based hydrogels and may have broad utility for various biomedical applications, including use as tissue-engineered scaffolds and cell/protein delivery vehicles. PMID:26670176

  6. Menaquinone-7 supplementation improves arterial stiffness in healthy postmenopausal women. A double-blind randomised clinical trial.

    PubMed

    Knapen, Marjo H J; Braam, Lavienja A J L M; Drummen, Nadja E; Bekers, Otto; Hoeks, Arnold P G; Vermeer, Cees

    2015-05-01

    Observational data suggest a link between menaquinone (MK, vitamin K2) intake and cardiovascular (CV) health. However, MK intervention trials with vascular endpoints are lacking. We investigated long-term effects of MK-7 (180 µg MenaQ7/day) supplementation on arterial stiffness in a double-blind, placebo-controlled trial. Healthy postmenopausal women (n=244) received either placebo (n=124) or MK-7 (n=120) for three years. Indices of local carotid stiffness (intima-media thickness IMT, Diameter end-diastole and Distension) were measured by echotracking. Regional aortic stiffness (carotid-femoral and carotid-radial Pulse Wave Velocity, cfPWV and crPWV, respectively) was measured using mechanotransducers. Circulating desphospho-uncarboxylated matrix Gla-protein (dp-ucMGP) as well as acute phase markers Interleukin-6 (IL-6), high-sensitive C-reactive protein (hsCRP), tumour necrosis factor-α (TNF-α) and markers for endothelial dysfunction Vascular Cell Adhesion Molecule (VCAM), E-selectin, and Advanced Glycation Endproducts (AGEs) were measured. At baseline dp-ucMGP was associated with IMT, Diameter, cfPWV and with the mean z-scores of acute phase markers (APMscore) and of markers for endothelial dysfunction (EDFscore). After three year MK-7 supplementation cfPWV and the Stiffness Index βsignificantly decreased in the total group, whereas distension, compliance, distensibility, Young's Modulus, and the local carotid PWV (cPWV) improved in women having a baseline Stiffness Index β above the median of 10.8. MK-7 decreased dp-ucMGP by 50 % compared to placebo, but did not influence the markers for acute phase and endothelial dysfunction. In conclusion, long-term use of MK-7 supplements improves arterial stiffness in healthy postmenopausal women, especially in women having a high arterial stiffness. PMID:25694037

  7. Parametric signal amplification to create a stiff optical bar

    NASA Astrophysics Data System (ADS)

    Somiya, K.; Kataoka, Y.; Kato, J.; Saito, N.; Yano, K.

    2016-02-01

    An optical cavity consisting of optically trapped mirrors makes a resonant bar that can be stiffer than diamond. A limitation of the stiffness arises in the length of the optical bar as a consequence of the finite light speed. High laser power and light mass mirrors are essential for realization of a long and stiff optical bar that can be useful for example in the gravitational-wave detector aiming at the observation of a signal from neutron-star collisions, supernovae, etc. In this letter, we introduce a parametric signal amplification scheme that realizes the long and stiff optical bar with a non-linear crystal inside the signal-recycling cavity.

  8. Assessment of Placental Stiffness Using Acoustic Radiation Force Impulse Elastography in Pregnant Women with Fetal Anomalies

    PubMed Central

    Göya, Cemil; Tunç, Senem; Teke, Memik; Hattapoğlu, Salih

    2016-01-01

    Objective We aimed to evaluate placental stiffness measured by acoustic radiation force impulse (ARFI) elastography in pregnant women in the second trimester with a normal fetus versus those with structural anomalies and non-structural findings. Materials and Methods Forty pregnant women carrying a fetus with structural anomalies diagnosed sonographically at 18–28 weeks of gestation comprised the study group. The control group consisted of 34 healthy pregnant women with a sonographically normal fetus at a similar gestational age. Placental shear wave velocity (SWV) was measured by ARFI elastography and compared between the two groups. Structural anomalies and non-structural findings were scored based on sonographic markers. Placental stiffness measurements were compared among fetus anomaly categories. Doppler parameters of umbilical and uterine arteries were compared with placental SWV measurements. Results All placental SWV measurements, including minimum SWV, maximum SWV, and mean SWV were significantly higher in the study group than the control group ([0.86 ± 0.2, 0.74 ± 0.1; p < 0.001], [1.89 ± 0.7, 1.59 ± 0.5; p = 0.04], and [1.26 ± 0.4, 1.09 ± 0.2; p = 0.01]), respectively. Conclusion Placental stiffness evaluated by ARFI elastography during the second trimester in pregnant women with fetuses with congenital structural anomalies is higher than that of pregnant women with normal fetuses. PMID:26957906

  9. Nanoscale in vivo evaluation of the stiffness of Drosophila melanogaster integument during development.

    PubMed

    Kohane, M; Daugela, A; Kutomi, H; Charlson, L; Wyrobek, A; Wyrobek, J

    2003-09-01

    A quasistatic nanoindentation technique, enhanced by scanning probe microscopy, was used to measure cuticle stiffness of live Drosophila melanogaster during its larval, pupal, and early adult development in vivo. Stiffness was defined as the reduced elastic modulus (E(r)), which is a material property related to the elastic modulus. E(r) was measured at the local contact while indenting the live sample at a constant loading rate using a spherical tip. E(r) was derived from the resultant force-displacement curves. Insect cuticle exhibits viscoelastic behavior. Constant loading rate quasistatic measurements were used so that the effects of viscosity and contact force adhesion introduced systematic measurement effects. E(r) values were as follows: larvae, mean (SE), 0.39 (0.01) MPa; the puparium without evidence of adult structures 15.43 (1.78) MPa; and the adult, measured in the puparium at the completion of metamorphosis, 4.37 (0.31) MPa. Thus, as expected, the puparium and adult cuticle were very much stiffer than larval cuticle. Results also indicated stiffness variation that related to developmental events. This study has shown that this quasistatic nanoindentation-scanning probe microscopy approach is a suitable method for analyzing live biological samples. PMID:12918047

  10. Effects of varying machine stiffness and contact area in UltraForm Finishing

    NASA Astrophysics Data System (ADS)

    Briggs, Dennis E.; Echaves, Samantha; Pidgeon, Brendan; Travis, Nathan; Ellis, Jonathan D.

    2013-09-01

    UltraForm Finishing (UFF) is a deterministic, subaperture, computer numerically controlled, grinding and polishing platform designed by OptiPro Systems. UFF is used to grind and polish a variety optics from simple spherical to fully freeform, and numerous materials from glasses to optical ceramics. The UFF system consists of an abrasive belt around a compliant wheel that rotates and contacts the part to remove material. This work aims to measure the stiffness variations in the system and how it can affect material removal rates. The stiffness of the entire system is evaluated using a triaxial load cell to measure forces and a capacitance sensor to measure deviations in height. Because the wheel is conformal and elastic, the shapes of contact areas are also of interest. For the scope of this work, the shape of the contact area is estimated via removal spot. The measured forces and removal spot area are directly related to material removal rate through Preston's equation. Using our current testing apparatus, we will demonstrate stiffness measurements and contact areas for a single UFF belt during different states of its lifecycle and assess the material removal function from spot diagrams as a function of wear. This investigation will ultimately allow us to make better estimates of Preston's coefficient and develop spot-morphing models in an effort to more accurately predict instantaneous material removal functions throughout the lifetime of a belt.

  11. Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibres.

    PubMed Central

    Edman, K A; Lou, F

    1990-01-01

    1. Changes in force and stiffness were recorded simultaneously during 1 s isometric (fixed ends) tetani of single fibres isolated from the anterior tibialis muscle of Rana temporaria (temperature 1-3 degrees C; sarcomere length, 2.10 micron). Stiffness was measured as the change in force that occurred in response to a 4 kHz sinusoidal length oscillation of the fibre. Some experiments were performed in which stiffness was determined from a fast (0.2 ms) length step that was applied to a 'tendon-free' segment of the muscle fibre during the tetanus plateau. 2. A moderate degree of fatigue was produced by decreasing the time between tetani from 300 s (control) to 15 s. By this treatment the maximum tetanic force (Ftet) was reversibly reduced to 70-75% of the control value. Maximum tetanic stiffness (Stet) was related to Ftet according to the following regression (both variables expressed as percentage of their control values): Stet = 0.369 Ftet + 62.91 (correlation coefficient, 0.95; P less than 0.001). A 25% decrease in isometric force during fatigue was thus associated with merely 9% reduction of fibre stiffness. 3. Whereas the rate of rise of force during tetanus was markedly reduced by fatiguing stimulation, the rate of rise of stiffness was only slightly affected. 4. Intracellular acidification (produced by raised extracellular CO2 concentration) largely reproduced the contractile changes observed during fatigue. However, for a given decrease in tetanic force there was a smaller reduction in fibre stiffness during acidosis than during fatigue. 5. Caffeine (0.5 mM) added to the fibre after development of fatigue and intracellular acidosis greatly potentiated the isometric twitch but did not affect maximum tetanic force. This finding provides evidence that the contractile system was fully activated during the tetanus plateau both in the fatigued state and during acidosis. 6. The results suggest that the decrease in contractile strength after frequent tetanization (intervals between tetani, 15 s) is attributable to altered kinetics of cross-bridge function leading to reduced number of active cross-bridges and, most significantly, to reduced force output of the individual bridge. The possible role of increased intracellular H+ concentration in the development of muscle fatigue is discussed. PMID:2391650

  12. On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector

    NASA Astrophysics Data System (ADS)

    Liu, Xingtian; Huang, Xiuchang; Hua, Hongxing

    2013-07-01

    The characteristics of a passive nonlinear isolator which is developed by parallelly adding a negative stiffness corrector to a linear spring are studied. The negative stiffness corrector, which is formed by Euler buckled beams can offer negative stiffness to the isolator at the equilibrium position in order to lower the overall dynamic stiffness of the isolator and without sacrificing the support capacity compared to the linear isolator. The static characteristics of the stiffness corrector as well as the nonlinear isolator are presented and the system parameters which can offer zero stiffness at the equilibrium point are derived. The restoring force of the nonlinear isolator after loaded is approximated using the Taylor expansion to pure cubic stiffness. The dynamic equation is established and the frequency response curves (FRCs) are obtained by using the Harmonic Balance Method (HBM) for both force and displacement excitations. The force and displacement transmissibility of the nonlinear isolator are defined and investigated, and the isolation performance is compared with an equivalent linear isolator which can support the same mass with the same static deflection as the nonlinear isolator. The effects of the amplitude of the excitation and damping ratio on the transmissibility performance are considered. The results demonstrate that the proposed zero dynamic stiffness nonlinear isolator can outperform the equivalent linear one for certain frequencies, and the performance is related to the magnitude of the excitation amplitude. Unlike the linear isolator, in the nonlinear isolator for base displacement excitation, unbounded response or transmissibility can occur which is not observed for force excitation case. The performance can also be improved by adjusting the configurations of the beams. Some useful guidelines for choosing system parameters such as the properties of the beams and the stiffness relationship between the beams and the linear spring are given.

  13. Equivalent Dynamic Stiffness Mapping technique for identifying nonlinear structural elements from frequency response functions

    NASA Astrophysics Data System (ADS)

    Wang, X.; Zheng, G. T.

    2016-02-01

    A simple and general Equivalent Dynamic Stiffness Mapping technique is proposed for identifying the parameters or the mathematical model of a nonlinear structural element with steady-state primary harmonic frequency response functions (FRFs). The Equivalent Dynamic Stiffness is defined as the complex ratio between the internal force and the displacement response of unknown element. Obtained with the test data of responses' frequencies and amplitudes, the real and imaginary part of Equivalent Dynamic Stiffness are plotted as discrete points in a three dimensional space over the displacement amplitude and the frequency, which are called the real and the imaginary Equivalent Dynamic Stiffness map, respectively. These points will form a repeatable surface as the Equivalent Dynamic stiffness is only a function of the corresponding data as derived in the paper. The mathematical model of the unknown element can then be obtained by surface-fitting these points with special functions selected by priori knowledge of the nonlinear type or with ordinary polynomials if the type of nonlinearity is not pre-known. An important merit of this technique is its capability of dealing with strong nonlinearities owning complicated frequency response behaviors such as jumps and breaks in resonance curves. In addition, this technique could also greatly simplify the test procedure. Besides there is no need to pre-identify the underlying linear parameters, the method uses the measured data of excitation forces and responses without requiring a strict control of the excitation force during the test. The proposed technique is demonstrated and validated with four classical single-degree-of-freedom (SDOF) numerical examples and one experimental example. An application of this technique for identification of nonlinearity from multiple-degree-of-freedom (MDOF) systems is also illustrated.

  14. Physical Activity Correlates with Arterial Stiffness in Community-dwelling Individuals with Stroke

    PubMed Central

    Tang, Ada; Eng, Janice J.; Brasher, Penelope M.; Madden, Kenneth M.; Mohammadi, Azam; Krassioukov, Andrei V.; Tsang, Teresa S. M.

    2013-01-01

    Background Physical inactivity contributes to atherosclerotic processes, which manifest as increased arterial stiffness. Arterial stiffness is associated with myocardial demand and coronary perfusion and is a risk factor for stroke and other adverse cardiac outcomes. Poststroke mobility limitations often lead to physical inactivity and sedentary behaviors. This exploratory study aimed to identify functional correlates, reflective of daily physical activity levels, with arterial stiffness in community-dwelling individuals >1 year poststroke. Methods Carotid–femoral pulse wave velocity (cfPWV) was measured in 35 participants (65% men; mean ± SD age 66.9 ± 6.9 years; median time poststroke 3.7 years). Multivariable regression analyses examined the relationships between cfPWV and factors associated with daily physical activity: aerobic capacity (VO2 peak), gait speed, and balance ability (Berg Balance Scale). Age and the use of antihypertensive medications, known to be associated with pulse wave velocity, were also included in the model. Results Mean cfPWV was 11.2 ± 2.4 m/s. VO2 peak and age were correlated with cfPWV (r = −0.45 [P = .006] and r = 0.46 [P = .004], respectively). In the multivariable regression analyses, age and the use of antihypertensive medication accounted for 20.4% of the variance of cfPWV, and the addition of VO2 peak explained an additional 4.5% of the variance (R2 = 0.249). Conclusions We found that arterial stiffness is elevated in community-dwelling, ambulatory individuals with stroke relative to healthy people. Multivariable regression analysis suggests that aerobic capacity (VO2 peak) may contribute to the variance of cfPWV after accounting for the effects of age and medication use. Whether intense risk modification and augmented physical activity will improve arterial stiffness in this population remains to be determined. PMID:23473623

  15. Roles of Arterial Stiffness and Blood Pressure in Hypertension-Associated Cognitive Decline in Healthy Adults.

    PubMed

    Hajjar, Ihab; Goldstein, Felicia C; Martin, Greg S; Quyyumi, Arshed A

    2016-01-01

    Although there is strong evidence that hypertension leads to cognitive decline, especially in the executive domain, the relationship between blood pressure and cognition has been conflicted. Hypertension is characterized by blood pressure elevation and increased arterial stiffness. We aimed at investigating whether arterial stiffness would be superior to blood pressure in predicting cognitive decline and explaining the hypertension-executive decline association. A randomly selected asymptomatic population (n=591, age=49.2 years, 70% women, 27% black, and education=18 years) underwent annual vascular and cognitive assessments. Cognition was assessed using computerized versions commonly used cognitive tests, and principal component analysis was used for deriving cognitive scores for executive function, memory, and working memory. Arterial stiffness was measured by carotid-femoral pulse wave velocity (PWV). Higher PWV, but not blood pressure, was associated with a steeper decline in executive (P=0.0002), memory (P=0.05), and working memory (P=0.02) scores after adjusting for demographics, education, and baseline cognitive performance. This remained true after adjusting for hypertension. Hypertension was associated with greater decline in executive score (P=0.0029) and those with combined hypertension and elevated PWV (>7 m/s) had the greatest decline in executive score (P value hypertension×PWV=0.02). PWV explained the association between hypertension and executive function (P value for hypertension=0.0029 versus 0.24 when adjusting for PWV). In healthy adults, increased arterial stiffness is superior to blood pressure in predicting cognitive decline in all domains and in explaining the hypertension-executive function association. Arterial stiffness, especially in hypertension, may be a target in the prevention of cognitive decline. PMID:26527049

  16. Dehydroepiandrosterone replacement therapy in older adults improves indices of arterial stiffness

    PubMed Central

    Weiss, Edward P.; Villareal, Dennis T.; Ehsani, Ali A.; Fontana, Luigi; Holloszy, John O.

    2012-01-01

    Background Serum dehydroepiandrosterone (DHEA) concentrations decrease ~80% between ages 25 and 75 yr. Aging also results in an increase in arterial stiffness, which is an independent predictor of cardiovascular disease (CVD) risk and mortality. Therefore, it is conceivable that DHEA replacement in older adults could reduce arterial stiffness. We sought to determine if DHEA replacement therapy in older adults reduces carotid augmentation index (AI) and carotid-femoral pulse wave velocity (PWV) as indices of arterial stiffness. Methods A randomized, double-blind trial was conducted to study the effects of 50 mg/d DHEA replacement on AI (n=92) and PWV (n=51) in women and men aged 65–75 yr. Inflammatory cytokines and sex hormones were measured in fasting serum. Results AI decreased in the DHEA group but not in the placebo group (difference between groups, −6±2 AI units, p=0.002). PWV also decreased (difference between groups, −3.5±1.0 m/sec, p=0.001); however, after adjusting for baseline values, the between-group comparison became non-significant (p=0.20). The reductions in AI and PWV were accompanied by decreases in inflammatory cytokines (TNFα and IL-6, p<0.05) and correlated with increases in serum DHEAS (r = −0.31 and −0.37, respectively, p<0.05). The reductions in AI also correlated with free testosterone index (r = −0.23, p=0.03). Conclusion DHEA replacement in elderly men and women improves indices of arterial stiffness. Arterial stiffness increases with age and is an independent risk factor for CVD. Therefore the improvements observed in the present study suggest that DHEA replacement might partly reverse arterial aging and reduce CVD risk. PMID:22712469

  17. The acute effect of maximal exercise on central and peripheral arterial stiffness indices and hemodynamics in children and adults.

    PubMed

    Melo, Xavier; Fernhall, Bo; Santos, Diana A; Pinto, Rita; Pimenta, Nuno M; Sardinha, Luís B; Santa-Clara, Helena

    2016-03-01

    This study compared the effects of a bout of maximal running exercise on arterial stiffness in children and adults. Right carotid blood pressure and artery stiffness indices measured by pulse wave velocity (PWV), compliance and distensibility coefficients, stiffness index α and β (echo-tracking), contralateral carotid blood pressure, and upper and lower limb and central/aortic PWV (applanation tonometry) were taken at rest and 10 min after a bout of maximal treadmill running in 34 children (7.38 ± 0.38 years) and 45 young adults (25.22 ± 0.91 years) having similar aerobic potential. Two-by-two repeated measures analysis of variance and analysis of covariance were used to detect differences with exercise between groups. Carotid pulse pressure (PP; η(2) = 0.394) increased more in adults after exercise (p < 0.05). Compliance (η(2) = 0.385) decreased in particular in adults and in those with high changes in distending pressure, similarly to stiffness index α and β. Carotid PWV increased more in adults and was related to local changes in PP but not mean arterial pressure (MAP). Stiffness in the lower limbs decreased (η(2) = 0.115) but apparently only in those with small MAP changes (η(2) = 0.111). No significant exercise or group interaction effects were found when variables were adjusted to height. An acute bout of maximal exercise can alter arterial stiffness and hemodynamics in the carotid artery and within the active muscle beds. Arterial stiffness and hemodynamic response to metabolic demands during exercise in children simply reflect their smaller body size and may not indicate a particular physiological difference compared with adults. PMID:26842667

  18. Mechanomyogram amplitude correlates with human gastrocnemius medialis muscle and tendon stiffness both before and after acute passive stretching.

    PubMed

    Longo, Stefano; Cè, Emiliano; Rampichini, Susanna; Devoto, Michela; Limonta, Eloisa; Esposito, Fabio

    2014-10-01

    The study aimed to assess the level of correlation between muscle-tendon unit (MTU) stiffness and mechanomyogram (MMG) signal amplitude of the human gastrocnemius medialis muscle, both before and after acute passive stretching. The passive torque (Tpass), electrically evoked peak torque (pT) and myotendinous junction displacement were determined at different angles of dorsiflexion (0, 10 and 20 deg), while maximum voluntary isometric torque (Tmax) was assessed only at 0 deg. Measurements were repeated after a bout of passive stretching. From the MMG signal, the root mean square (RMS) and peak to peak (p-p) were calculated. The MTU, muscle and tendon stiffness were determined by ultrasound and Tpass measurements. Before stretching, correlations between MMG RMS and MTU, muscle and tendon stiffness were found (R(2) = 0.22-0.46). After stretching, Tpass, Tmax, pT and MTU, muscle and tendon stiffness decreased by 25 ± 7, 16 ± 2, 9 ± 2, 22 ± 7, 23 ± 8 and 28 ± 5%, respectively (P < 0.05). During voluntary and electrically evoked contractions, MMG p-p decreased by 9 ± 2 and 5 ± 1%, while MMG RMS increased by 48 ± 7 and 50 ± 8%, respectively (P < 0.05). Correlations between MMG RMS and MTU, muscle and tendon stiffness were still present after stretching (R(2) = 0.44-0.60). In conclusion, correlations between MMG RMS and stiffness exist both before and after stretching, suggesting that a slacker MTU leads to larger muscle fibre oscillations. However, care must be taken in using MMG amplitude as an indirect index to estimate stiffness owing to the relatively small R(2) values of the investigated correlations. PMID:24951499

  19. Particle Numbers of Lipoprotein Subclasses and Arterial Stiffness among Middle-aged men from the ERA JUMP study

    PubMed Central

    Vishnu, Abhishek; Choo, Jina; Masaki, Kamal H.; Mackey, Rachel H.; Barinas-Mitchell, Emma; Shin, Chol; Willcox, Bradley J.; El-Saed, Aiman; Seto, Todd B.; Fujiyoshi, Akira; Miura, Katsuyuki; Lee, Sunghee; Sutton-Tyrrell, Kim; Kuller, Lewis H.; Ueshima, Hirotsugu; Sekikawa, Akira

    2013-01-01

    We examined the association between serum lipoprotein subclasses and the three measures of arterial stiffness i.e. (i) carotid-femoral pulse wave velocity (cfPWV) which is a gold standard measure of central arterial stiffness, (ii) brachial-ankle PWV (baPWV) which is emerging as a combined measure of central and peripheral arterial stiffness, and (iii) femoral-ankle PWV (faPWV) which is a measure of peripheral arterial stiffness. Among a population-based sample of 701 apparently healthy Caucasian, Japanese American and Korean men aged 40–49 years, concentrations of lipoprotein particles were assessed by nuclear magnetic resonance (NMR) spectroscopy, and PWV was assessed with an automated waveform analyzer (VP2000, Omron, Japan). Multiple linear regressions were performed to analyze the association between each NMR lipoprotein subclasses and PWV measures, after adjusting for cardiovascular risk factors and other confounders. A cut-off of p<0.01 was used for determining significance. All PWV measures had significant correlations with total and small low-density lipoprotein particle number (LDL-P) (all p<0.0001) but not LDL-cholesterol (LDL-C) (all p>0.1), independent of race and age. In multivariate regression analysis, no NMR lipoprotein subclass was significantly associated with cfPWV (all p>0.01). However, most NMR lipoprotein subclasses had significant associations with both baPWV and faPWV (p<0.01). In this study of healthy middle-aged men, as compared to cfPWV, both baPWV and faPWV had stronger associations with particle numbers of lipoprotein subclasses. Our results may suggest that both baPWV and faPWV are related to arterial stiffness and atherosclerosis, whereas cfPWV may represent arterial stiffness alone. PMID:23823580

  20. Anterior Glenohumeral Laxity and Stiffness After a Shoulder-Strengthening Program in Collegiate Cheerleaders

    PubMed Central

    Laudner, Kevin G; Metz, Betsy; Thomas, David Q

    2013-01-01

    Context Approximately 62% of all cheerleaders sustain some type of orthopaedic injury during their cheerleading careers. Furthermore, the occurrence of such injuries has led to inquiry regarding optimal prevention techniques. One possible cause of these injuries may be related to inadequate conditioning in cheerleaders. Objective To determine whether a strength and conditioning program produces quantifiable improvements in anterior glenohumeral (GH) laxity and stiffness. Design Descriptive laboratory study. Setting University laboratory. Patients or Other Participants A sample of 41 collegiate cheerleaders (24 experimental and 17 control participants) volunteered. No participants had a recent history (in the past 6 months) of upper extremity injury or any history of upper extremity surgery. Intervention(s) The experimental group completed a 6-week strength and conditioning program between the pretest and posttest measurements; the control group did not perform any strength training between tests. Main Outcome Measure(s) We measured anterior GH laxity and stiffness with an instrumented arthrometer. We conducted a group × time analysis of variance with repeated measures on time (P < .05) to determine differences between groups. Results A significant interaction was demonstrated, with the control group having more anterior GH laxity at the posttest session than the strengthening group (P = .03, partial η2 = 0.11). However, no main effect for time (P = .92) or group (P = .97) was observed. In another significant interaction, the control group had less anterior GH stiffness at the posttest session than the strengthening group (P = .03, partial η2 = 0.12). Main effects for time (P = .02) and group (P = .004) were also significant. Conclusions Cheerleaders who participate in a shoulder-strengthening program developed less anterior GH laxity and more stiffness than cheerleaders in the control group. PMID:23672322

  1. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.

    PubMed

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Seshadri, Suresh

    2014-02-01

    A pilot study was carried out to investigate the performance of ultrasound stiffness imaging methods namely Ultrasound Elastography Imaging (UEI) and Acoustic Radiation Force Impulse (ARFI) Imaging. Specifically their potential for characterizing different classes of solid mass lesions was analyzed using agar based tissue mimicking phantoms. Composite tissue mimicking phantom was prepared with embedded inclusions of varying stiffness from 50 kPa to 450 kPa to represent different stages of cancer. Acoustic properties such as sound speed, attenuation coefficient and acoustic impedance were characterized by pulse echo ultrasound test at 5 MHz frequency and they are ranged from (1564 ± 88 to 1671 ± 124 m/s), (0.6915 ± 0.123 to 0.8268 ± 0.755 db cm(-1)MHz(-1)) and (1.61 × 10(6) ± 0.127 to 1.76 × 10(6) ± 0.045 kg m(-2)s(-1)) respectively. The elastic property Young's Modulus of the prepared samples was measured by conducting quasi static uni axial compression test under a strain rate of 0.5mm/min upto 10 % strain, and the values are from 50 kPa to 450 kPa for a variation of agar concentration from 1.7% to 6.6% by weight. The composite phantoms were imaged by Siemens Acuson S2000 (Siemens, Erlangen, Germany) machine using linear array transducer 9L4 at 8 MHz frequency; strain and displacement images were collected by UEI and ARFI. Shear wave velocity 4.43 ± 0.35 m/s was also measured for high modulus contrast (18 dB) inclusion and X.XX m/s was found for all other inclusions. The images were pre processed and parameters such as Contrast Transfer Efficiency and lateral image profile were computed and reported. The results indicate that both ARFI and UEI represent the abnormalities better than conventional US B mode imaging whereas UEI enhances the underlying modulus contrast into improved strain contrast. The results are corroborated with literature and also with clinical patient images. PMID:24083832

  2. Operator-Based Preconditioning of Stiff Hyperbolic Systems

    SciTech Connect

    Reynolds, Daniel R.; Samtaney, Ravi; Woodward, Carol S.

    2009-02-09

    We introduce an operator-based scheme for preconditioning stiff components encoun- tered in implicit methods for hyperbolic systems of partial differential equations posed on regular grids. The method is based on a directional splitting of the implicit operator, followed by a char- acteristic decomposition of the resulting directional parts. This approach allows for solution to any number of characteristic components, from the entire system to only the fastest, stiffness-inducing waves. We apply the preconditioning method to stiff hyperbolic systems arising in magnetohydro- dynamics and gas dynamics. We then present numerical results showing that this preconditioning scheme works well on problems where the underlying stiffness results from the interaction of fast transient waves with slowly-evolving dynamics, scales well to large problem sizes and numbers of processors, and allows for additional customization based on the specific problems under study.

  3. Improved Equivalent Linearization Implementations Using Nonlinear Stiffness Evaluation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2001-01-01

    This report documents two new implementations of equivalent linearization for solving geometrically nonlinear random vibration problems of complicated structures. The implementations are given the acronym ELSTEP, for "Equivalent Linearization using a STiffness Evaluation Procedure." Both implementations of ELSTEP are fundamentally the same in that they use a novel nonlinear stiffness evaluation procedure to numerically compute otherwise inaccessible nonlinear stiffness terms from commercial finite element programs. The commercial finite element program MSC/NASTRAN (NASTRAN) was chosen as the core of ELSTEP. The FORTRAN implementation calculates the nonlinear stiffness terms and performs the equivalent linearization analysis outside of NASTRAN. The Direct Matrix Abstraction Program (DMAP) implementation performs these operations within NASTRAN. Both provide nearly identical results. Within each implementation, two error minimization approaches for the equivalent linearization procedure are available - force and strain energy error minimization. Sample results for a simply supported rectangular plate are included to illustrate the analysis procedure.

  4. Variational principles for stiffnesses of a non-homogeneous plate

    NASA Astrophysics Data System (ADS)

    Kolpakov, A. G.

    1999-10-01

    Lagrange- and Castigliano-type variational principles for a non-homogeneous plate of periodic structure are derived on the basis of the homogenization method. The obtained principles provide, in particular, Voigt-Reuss-like bounds for the stiffnesses.

  5. Wing/store flutter with nonlinear pylon stiffness

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.; Reed, W. H., III

    1980-01-01

    Recent wind tunnel tests and analytical studies show that a store mounted on a pylon with soft pitch stiffness provides substantial increase in flutter speed of fighter aircraft and reduces dependency of flutter on mass and inertia of the store. This concept, termed the decoupler pylon, utilizes a low frequency control system to maintain pitch alignment of the store during maneuvers and changing flight conditions. Under rapidly changing transient loads, however, the alignment control system may allow the store to momentarily bottom against a relatively stiff backup structure in which case the pylon stiffness acts as a hardening nonlinear spring. Such structural nonlinearities are known to affect not only the flutter speed but also the basic behavior of the instability. The influence of pylon stiffness nonlinearities or the flutter characteristics of wing mounted external stores is examined.

  6. Stiffness of Carpentry Connections - Numerical Modelling vs. Experimental Test

    NASA Astrophysics Data System (ADS)

    Kekeliak, Miloš; Gocál, Jozef; Vičan, Josef

    2015-12-01

    In this paper, numerical modelling of the traditional carpentry connection with mortise and tenon is presented. Numerical modelling is focused on its stiffness and the results are compared to results of experimental tests carried out by (Feio, 2005) [6]. To consider soft behaviour of wood in carpentry connections, which are related to its surface roughness and geometrical accuracy of the contact surfaces, the characteristics of the normal contact stiffness, determined experimentally, are introduced in the numerical model. Parametric study by means of numerical modelling with regard to the sensitivity of connection stiffness to contact stiffness is presented. Based on the study results, in conclusion there are presented relevant differences between the results of numerical modelling and experimental tests (Feio, 2005) [6].

  7. Quantification of Magnetically Induced Changes in ECM Local Apparent Stiffness

    PubMed Central

    Herath, Sahan C.B.; Yue, Du; Hui, Shi; Kim, Min-Cheol; Wang, Dong-an; Wang, Qingguo; Van Vliet, Krystyn J.; Asada, Harry; Chen, Peter C.Y.

    2014-01-01

    The stiffness of the extracellular matrix (ECM) is known to influence cell behavior. The ability to manipulate the stiffness of ECM has important implications in understanding how cells interact mechanically with their microenvironment. This article describes an approach to manipulating the stiffness ECM, whereby magnetic beads are embedded in the ECM through bioconjugation between the streptavidin-coated beads and the collagen fibers and then manipulated by an external magnetic field. It also reports both analytical results (obtained by formal modeling and numerical simulation) and statistically meaningful experimental results (obtained by atomic force microscopy) that demonstrate the effectiveness of this approach. These results clearly suggest the possibility of creating desired stiffness gradients in ECM in vitro to influence cell behavior. PMID:24411265

  8. Improving Spanning-Knee External Fixator Stiffness: A Biomechanical Study.

    PubMed

    Desai, Mihir J; Reisman, William M; Hutton, William C

    2016-02-01

    The purpose of this study was to test and compare external fixator construct stiffness using pin-to-bar clamps or multipin clamps across 2 external fixation systems. Constructs were tested with 8-mm and 11-mm-diameter bar systems and pin-to-bar or multipin clamps. Three construct designs were tested: construct 1 with a single crossbar and pin-to-bar clamps, construct 2 with 2 crossbars and pin-to-bar clamps, and construct 3 with 2 crossbars and multipin clamps. The stiffness of each construct (N = 24) was tested using anterior-posterior bending. Two crossbars and pin-to-bar clamps resulted in the highest mean stiffness. Constructs with a single crossbar and pin-to-bar clamps had a similar average stiffness compared with constructs with 2 crossbars and multipin clamps. Pin-to-bar clamps with 2 crossbars result in stronger spanning-knee external fixators than constructs using multipin clamps. PMID:26866321

  9. Hyperekplexia and stiff-baby syndrome: an identical neurological disorder?

    PubMed

    Cioni, G; Biagioni, E; Bottai, P; Castellacci, A M; Paolicelli, P B

    1993-03-01

    Hyperekplexia (startle disease) is an unusual, familial, neurological disorder characterized by abnormally enhanced startle response, followed in most cases by momentary generalized muscular stiffness. These attacks may cause the patients to fall rigidly, while remaining fully conscious. Startle symptomatology has generally an onset in infancy and is often accompanied, during the first years of life, by rigidity, sleep myoclonus, motor delay, regurgitation and apneic spells, which may cause sudden death. Stiff-baby syndrome is a familial disorder characterized by marked rigidity, with neonatal onset and gradual reduction during infancy, regurgitations, motor delay and attacks of stiffness. We report 4 new cases of hyperekplexia from two different families and another infant with stiff-baby syndrome discussing clinical, electrophysiological and genetic aspects of both neurological disorders in relation to other reported cases. We suggest a continuum between these familial syndromes, which are often misinterpreted as epilepsy or other disorders. PMID:8509269

  10. Sliding stiff diagrams: A sophisticated ground water analytical tool

    SciTech Connect

    Tonjes, D.J.; Heil, J.H.; Black, J.A.

    1995-07-01

    Stiff diagrams are a multivariate method of analysis used to describe the chemical state of ground water. The use of stiff diagrams to describe multiconstituent contamination sites, such as landfills, has distinct advantages over single constituent analyses. Problems associated with traditional Stiff diagram analyses, such as diagram attenuation, can be addressed by allowing the scale of the diagram to vary with the ionic strength of the analyzed sample. The use of these sliding scale Stiff diagrams reveals the chemical state of the ground water over wide ranges of constituent concentrations and thus allows for sensitive and sophisticated depictions of complicated contamination sites in a fashion that is extremely difficult to replicate with single constituent analyses. This approach has possible applications for understanding and tracing the mixing and chemical changes in uncontaminated settings.

  11. Robust time-domain identification of mass stiffness, and damping matrices

    NASA Technical Reports Server (NTRS)

    Roemer, Michael J.; Mook, D. Joseph

    1990-01-01

    Accurate estimates of the mass, stiffness, and damping characteristics of a structure is necessary for determining the control laws best suited for active control methodologies. There are several modal identification techniques available for determining the frequencies, damping ratios, and mode shapes of a structure. However, modal identification methods in both the frequency and time domains have difficulties for certain circumstances. Frequency domain techniques which utilize the steady-state response from various harmonic inputs often encounter difficulties when the frequencies are closely distributed, the structure exhibits a high degree of damping, or the steady-state condition is hard to establish. Time domain techniques have produced successful results, but lack robustness with respect to measurement noise. In this paper, two identification techniques and an estimation method are combined to form a time-domain technique to accurately identify the mass, stiffness, and damping matrices from noisy measurements.

  12. Substrate stiffness-modulated registry phase correlations in cardiomyocytes map structural order to coherent beating

    NASA Astrophysics Data System (ADS)

    Dasbiswas, K.; Majkut, S.; Discher, D. E.; Safran, Samuel A.

    2015-01-01

    Recent experiments show that both striation, an indication of the structural registry in muscle fibres, as well as the contractile strains produced by beating cardiac muscle cells can be optimized by substrate stiffness. Here we show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the strain measurements. We express the elasticity-mediated structural registry as a phase-order parameter using a statistical physics approach that takes the noise and disorder inherent in biological systems into account. By assuming that structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both striation and strain measurements of cardiomyocytes on substrate stiffness in a unified manner. The agreement of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural order of the myofibrils, which in turn is regulated by their elastic environment.

  13. The initial torsional stiffness of shells with interior webs

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul

    1935-01-01

    A method of calculating the stresses and torsional stiffness of thin shells with interior webs is summarized. Comparisons between experimental and calculated results are given for 3 duralumin beams, 5 stainless steel beams and 2 duralumin wings. It is concluded that if the theoretical stiffness is multiplied by a correction factor of 0.9, experimental values may be expected to check calculated values within about 10 percent.