Science.gov

Sample records for stochastic switching games

  1. Stochastic games.

    PubMed

    Solan, Eilon; Vieille, Nicolas

    2015-11-10

    In 1953, Lloyd Shapley contributed his paper "Stochastic games" to PNAS. In this paper, he defined the model of stochastic games, which were the first general dynamic model of a game to be defined, and proved that it admits a stationary equilibrium. In this Perspective, we summarize the historical context and the impact of Shapley's contribution. PMID:26556883

  2. Stochastic games

    PubMed Central

    Solan, Eilon; Vieille, Nicolas

    2015-01-01

    In 1953, Lloyd Shapley contributed his paper “Stochastic games” to PNAS. In this paper, he defined the model of stochastic games, which were the first general dynamic model of a game to be defined, and proved that it admits a stationary equilibrium. In this Perspective, we summarize the historical context and the impact of Shapley’s contribution. PMID:26556883

  3. Stochastic Differential Games with Asymmetric Information

    SciTech Connect

    Cardaliaguet, Pierre Rainer, Catherine

    2009-02-15

    We investigate a two-player zero-sum stochastic differential game in which the players have an asymmetric information on the random payoff. We prove that the game has a value and characterize this value in terms of dual viscosity solutions of some second order Hamilton-Jacobi equation.

  4. Stochastic Games with Average Payoff Criterion

    SciTech Connect

    Ghosh, M. K.; Bagchi, A.

    1998-11-15

    We study two-person stochastic games on a Polish state and compact action spaces and with average payoff criterion under a certain ergodicity condition. For the zero-sum game we establish the existence of a value and stationary optimal strategies for both players. For the nonzero-sum case the existence of Nash equilibrium in stationary strategies is established under certain separability conditions.

  5. Pathwise Strategies for Stochastic Differential Games with an Erratum to 'Stochastic Differential Games with Asymmetric Information'

    SciTech Connect

    Cardaliaguet, P.; Rainer, C.

    2013-08-01

    We introduce a new notion of pathwise strategies for stochastic differential games. This allows us to give a correct meaning to some statement asserted in Cardaliaguet and Rainer (Appl. Math. Optim. 59: 1-36, 2009)

  6. Parity and ruin in a stochastic game

    NASA Astrophysics Data System (ADS)

    Ben-Naim, E.; Krapivsky, P. L.

    2002-02-01

    We study an elementary two-player card game where in each round players compare cards and the holder of the card with the smaller value wins. Using the rate equations approach, we treat the stochastic version of the game in which cards are drawn randomly. We obtain an exact solution for arbitrary initial conditions. In general, the game approaches a steady state where the card value densities of the two players are proportional to each other. The leading small value behavior of the initial densities determines the corresponding proportionality constant, while the next correction governs the asymptotic time dependence. The relaxation toward the steady state exhibits a rich behavior, e.g., it may be algebraically slow or exponentially fast. Moreover, in ruin situations where one player eventually wins all cards, the game may even end in a finite time.

  7. Stochastic game dynamics under demographic fluctuations.

    PubMed

    Huang, Weini; Hauert, Christoph; Traulsen, Arne

    2015-07-21

    Frequency-dependent selection and demographic fluctuations play important roles in evolutionary and ecological processes. Under frequency-dependent selection, the average fitness of the population may increase or decrease based on interactions between individuals within the population. This should be reflected in fluctuations of the population size even in constant environments. Here, we propose a stochastic model that naturally combines these two evolutionary ingredients by assuming frequency-dependent competition between different types in an individual-based model. In contrast to previous game theoretic models, the carrying capacity of the population, and thus the population size, is determined by pairwise competition of individuals mediated by evolutionary games and demographic stochasticity. In the limit of infinite population size, the averaged stochastic dynamics is captured by deterministic competitive Lotka-Volterra equations. In small populations, demographic stochasticity may instead lead to the extinction of the entire population. Because the population size is driven by fitness in evolutionary games, a population of cooperators is less prone to go extinct than a population of defectors, whereas in the usual systems of fixed size the population would thrive regardless of its average payoff. PMID:26150518

  8. Stochastic game dynamics under demographic fluctuations

    PubMed Central

    Huang, Weini; Hauert, Christoph; Traulsen, Arne

    2015-01-01

    Frequency-dependent selection and demographic fluctuations play important roles in evolutionary and ecological processes. Under frequency-dependent selection, the average fitness of the population may increase or decrease based on interactions between individuals within the population. This should be reflected in fluctuations of the population size even in constant environments. Here, we propose a stochastic model that naturally combines these two evolutionary ingredients by assuming frequency-dependent competition between different types in an individual-based model. In contrast to previous game theoretic models, the carrying capacity of the population, and thus the population size, is determined by pairwise competition of individuals mediated by evolutionary games and demographic stochasticity. In the limit of infinite population size, the averaged stochastic dynamics is captured by deterministic competitive Lotka–Volterra equations. In small populations, demographic stochasticity may instead lead to the extinction of the entire population. Because the population size is driven by fitness in evolutionary games, a population of cooperators is less prone to go extinct than a population of defectors, whereas in the usual systems of fixed size the population would thrive regardless of its average payoff. PMID:26150518

  9. Stochastic Frontier Estimation of Efficient Learning in Video Games

    ERIC Educational Resources Information Center

    Hamlen, Karla R.

    2012-01-01

    Stochastic Frontier Regression Analysis was used to investigate strategies and skills that are associated with the minimization of time required to achieve proficiency in video games among students in grades four and five. Students self-reported their video game play habits, including strategies and skills used to become good at the video games

  10. Stochastic Stability in Internet Router Congestion Games

    NASA Astrophysics Data System (ADS)

    Chung, Christine; Pyrga, Evangelia

    Congestion control at bottleneck routers on the internet is a long standing problem. Many policies have been proposed for effective ways to drop packets from the queues of these routers so that network endpoints will be inclined to share router capacity fairly and minimize the overflow of packets trying to enter the queues. We study just how effective some of these queuing policies are when each network endpoint is a self-interested player with no information about the other players’ actions or preferences. By employing the adaptive learning model of evolutionary game theory, we study policies such as Droptail, RED, and the greedy-flow-punishing policy proposed by Gao et al. [10] to find the stochastically stable states: the states of the system that will be reached in the long run.

  11. Stochastic Frontier Estimation of Efficient Learning in Video Games

    ERIC Educational Resources Information Center

    Hamlen, Karla R.

    2012-01-01

    Stochastic Frontier Regression Analysis was used to investigate strategies and skills that are associated with the minimization of time required to achieve proficiency in video games among students in grades four and five. Students self-reported their video game play habits, including strategies and skills used to become good at the video games…

  12. Two Different Approaches to Nonzero-Sum Stochastic Differential Games

    SciTech Connect

    Rainer, Catherine

    2007-06-15

    We make the link between two approaches to Nash equilibria for nonzero-sum stochastic differential games: the first one using backward stochastic differential equations and the second one using strategies with delay. We prove that, when both exist, the two notions of Nash equilibria coincide.

  13. On Input-to-State Stability of Switched Stochastic Nonlinear Systems Under Extended Asynchronous Switching.

    PubMed

    Kang, Yu; Zhai, Di-Hua; Liu, Guo-Ping; Zhao, Yun-Bo

    2016-05-01

    An extended asynchronous switching model is investigated for a class of switched stochastic nonlinear retarded systems in the presence of both detection delay and false alarm, where the extended asynchronous switching is described by two independent and exponentially distributed stochastic processes, and further simplified as Markovian. Based on the Razumikhin-type theorem incorporated with average dwell-time approach, the sufficient criteria for global asymptotic stability in probability and stochastic input-to-state stability are given, whose importance and effectiveness are finally verified by numerical examples. PMID:26068932

  14. Stochastic switching as a survival strategy in fluctuating environments.

    PubMed

    Acar, Murat; Mettetal, Jerome T; van Oudenaarden, Alexander

    2008-04-01

    A classic problem in population and evolutionary biology is to understand how a population optimizes its fitness in fluctuating environments. A population might enhance its fitness by allowing individual cells to stochastically transition among multiple phenotypes, thus ensuring that some cells are always prepared for an unforeseen environmental fluctuation. Here we experimentally explore how switching affects population growth by using the galactose utilization network of Saccharomyces cerevisiae. We engineered a strain that randomly transitions between two phenotypes as a result of stochastic gene expression. Each phenotype was designed to confer a growth advantage over the other phenotype in a certain environment. When we compared the growth of two populations with different switching rates, we found that fast-switching populations outgrow slow switchers when the environment fluctuates rapidly, whereas slow-switching phenotypes outgrow fast switchers when the environment changes rarely. These results suggest that cells may tune inter-phenotype switching rates to the frequency of environmental changes. PMID:18362885

  15. Is there switching for replicator dynamics and bimatrix games?

    NASA Astrophysics Data System (ADS)

    Aguiar, Manuela A. D.

    2011-09-01

    We consider heteroclinic networks for replicator dynamics and bimatrix games, that is, in a simplex or product of simplices, with equilibria at the vertices and connections at the edges-edge networks. Switching dynamics near a heteroclinic network occurs whenever every (infinite) sequence of connections in the network is shadowed by at least one trajectory in its neighborhood. Aguiar and Castro [M.A.D. Aguiar, S.B.S.D. Castro Chaotic switching in a two-person game, Physica D 239 (16), 1598-1609] prove switching near an edge network for the dynamics of the rock-scissors-paper game. Here we give conditions for switching dynamics in general bimatrix games and show that switching near an edge network can never occur for replicator dynamics.

  16. Stochastic Local Search for Core Membership Checking in Hedonic Games

    NASA Astrophysics Data System (ADS)

    Keinänen, Helena

    Hedonic games have emerged as an important tool in economics and show promise as a useful formalism to model multi-agent coalition formation in AI as well as group formation in social networks. We consider a coNP-complete problem of core membership checking in hedonic coalition formation games. No previous algorithms to tackle the problem have been presented. In this work, we overcome this by developing two stochastic local search algorithms for core membership checking in hedonic games. We demonstrate the usefulness of the algorithms by showing experimentally that they find solutions efficiently, particularly for large agent societies.

  17. Fixation and escape times in stochastic game learning

    NASA Astrophysics Data System (ADS)

    Realpe-Gomez, John; Szczesny, Bartosz; Dall'Asta, Luca; Galla, Tobias

    2012-10-01

    Evolutionary dynamics in finite populations is known to fixate eventually in the absence of mutation. We here show that a similar phenomenon can be found in stochastic game dynamical batch learning, and investigate fixation in learning processes in a simple 2×2 game, for two-player games with cyclic interaction, and in the context of the best-shot network game. The analogues of finite populations in evolution are here finite batches of observations between strategy updates. We study when and how such fixation can occur, and present results on the average time-to-fixation from numerical simulations. Simple cases are also amenable to analytical approaches and we provide estimates of the behaviour of so-called escape times as a function of the batch size. The differences and similarities with escape and fixation in evolutionary dynamics are discussed.

  18. Stochastic switching in delay-coupled oscillators.

    PubMed

    D'Huys, Otti; Jüngling, Thomas; Kinzel, Wolfgang

    2014-09-01

    A delay is known to induce multistability in periodic systems. Under influence of noise, coupled oscillators can switch between coexistent orbits with different frequencies and different oscillation patterns. For coupled phase oscillators we reduce the delay system to a nondelayed Langevin equation, which allows us to analytically compute the distribution of frequencies and their corresponding residence times. The number of stable periodic orbits scales with the roundtrip delay time and coupling strength, but the noisy system visits only a fraction of the orbits, which scales with the square root of the delay time and is independent of the coupling strength. In contrast, the residence time in the different orbits is mainly determined by the coupling strength and the number of oscillators, and only weakly dependent on the coupling delay. Finally we investigate the effect of a detuning between the oscillators. We demonstrate the generality of our results with delay-coupled FitzHugh-Nagumo oscillators. PMID:25314515

  19. Partial synchronization in stochastic dynamical networks with switching communication channels

    NASA Astrophysics Data System (ADS)

    Huang, Chi; Ho, Daniel W. C.; Lu, Jianquan; Kurths, Jürgen

    2012-06-01

    In this paper, the partial synchronization problem of stochastic dynamical networks (SDNs) is investigated. Unlike the existing models, the SDN considered in this paper suffers from a class of communication constraint—only part of nodes' states can be transmitted. Thus, less nodes' states can be used to synchronize the SDN, which makes the analysis of the synchronization problem much harder. A set of channel matrices are introduced to reflect such kind of constraint. Furthermore, due to unpredictable environmental changes, the channel matrices can switch among some communication modes. The switching considered here is governed by a Markov process. To overcome the difficulty, a regrouping method is employed to derive our main results. The obtained conditions guarantee that partial synchronization can be achieved for SDNs under switching communication constraint. Finally, numerical examples are given to illustrate the effectiveness of the theoretical results and how the communication constraint influences synchronization result.

  20. A stochastic transcriptional switch model for single cell imaging data

    PubMed Central

    Hey, Kirsty L.; Momiji, Hiroshi; Featherstone, Karen; Davis, Julian R.E.; White, Michael R.H.; Rand, David A.; Finkenstädt, Bärbel

    2015-01-01

    Gene expression is made up of inherently stochastic processes within single cells and can be modeled through stochastic reaction networks (SRNs). In particular, SRNs capture the features of intrinsic variability arising from intracellular biochemical processes. We extend current models for gene expression to allow the transcriptional process within an SRN to follow a random step or switch function which may be estimated using reversible jump Markov chain Monte Carlo (MCMC). This stochastic switch model provides a generic framework to capture many different dynamic features observed in single cell gene expression. Inference for such SRNs is challenging due to the intractability of the transition densities. We derive a model-specific birth–death approximation and study its use for inference in comparison with the linear noise approximation where both approximations are considered within the unifying framework of state-space models. The methodology is applied to synthetic as well as experimental single cell imaging data measuring expression of the human prolactin gene in pituitary cells. PMID:25819987

  1. A Stochastic Maximum Principle for a Stochastic Differential Game of a Mean-Field Type

    SciTech Connect

    Hosking, John Joseph Absalom

    2012-12-15

    We construct a stochastic maximum principle (SMP) which provides necessary conditions for the existence of Nash equilibria in a certain form of N-agent stochastic differential game (SDG) of a mean-field type. The information structure considered for the SDG is of a possible asymmetric and partial type. To prove our SMP we take an approach based on spike-variations and adjoint representation techniques, analogous to that of S. Peng (SIAM J. Control Optim. 28(4):966-979, 1990) in the optimal stochastic control context. In our proof we apply adjoint representation procedures at three points. The first-order adjoint processes are defined as solutions to certain mean-field backward stochastic differential equations, and second-order adjoint processes of a first type are defined as solutions to certain backward stochastic differential equations. Second-order adjoint processes of a second type are defined as solutions of certain backward stochastic equations of a type that we introduce in this paper, and which we term conditional mean-field backward stochastic differential equations. From the resulting representations, we show that the terms relating to these second-order adjoint processes of the second type are of an order such that they do not appear in our final SMP equations. A comparable situation exists in an article by R. Buckdahn, B. Djehiche, and J. Li (Appl. Math. Optim. 64(2):197-216, 2011) that constructs a SMP for a mean-field type optimal stochastic control problem; however, the approach we take of using these second-order adjoint processes of a second type to deal with the type of terms that we refer to as the second form of quadratic-type terms represents an alternative to a development, to our setting, of the approach used in their article for their analogous type of term.

  2. Stability analysis of switched stochastic neural networks with time-varying delays.

    PubMed

    Wu, Xiaotai; Tang, Yang; Zhang, Wenbing

    2014-03-01

    This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Lyapunov function and the average dwell time approach. Secondly, by utilizing the extended comparison principle from impulsive systems, the stability of stochastic switched delayed neural networks with both stable and unstable subsystems is analyzed and several easy to verify conditions are derived to ensure the exponential mean square stability of switched delayed neural networks with stochastic disturbances. The effectiveness of the proposed results is illustrated by two simulation examples. PMID:24365535

  3. Adaptive role switching promotes fairness in networked ultimatum game

    PubMed Central

    Wu, Te; Fu, Feng; Zhang, Yanling; Wang, Long

    2013-01-01

    In recent years, mechanisms favoring fair split in the ultimatum game have attracted growing interests because of its practical implications for international bargains. In this game, two players are randomly assigned two different roles respectively to split an offer: the proposer suggests how to split and the responder decides whether or not to accept it. Only when both agree is the offer successfully split; otherwise both get nothing. It is of importance and interest to break the symmetry in role assignment especially when the game is repeatedly played in a heterogeneous population. Here we consider an adaptive role assignment: whenever the split fails, the two players switch their roles probabilistically. The results show that this simple feedback mechanism proves much more effective at promoting fairness than other alternatives (where, for example, the role assignment is based on the number of neighbors). PMID:23528986

  4. Development of stochastic dynamic Nash game model for reservoir operation. I. The symmetric stochastic model with perfect information

    NASA Astrophysics Data System (ADS)

    Ganji, Arman; Khalili, Davar; Karamouz, Mohammad

    2007-03-01

    Increasing water demands, higher standards of living, depletion of resources of acceptable quality and excessive water pollution due to agricultural and industrial expansions have caused intense social and political predicaments, and conflicting issues among water consumers. The available techniques commonly used in reservoir optimization/operation do not consider interaction, behavior and preferences of water users, reservoir operator and their associated modeling procedures, within the stochastic modeling framework. In this paper, game theory is used to present the associated conflicts among different consumers due to limited water. Considering the game theory fundamentals, the Stochastic Dynamic Nash Game with perfect information (PSDNG) model is developed, which assumes that the decision maker has sufficient (perfect) information regarding the associated randomness of reservoir operation parameters. The simulated annealing approach (SA) is applied as a part of the proposed stochastic framework, which makes the PSDNG solution conceivable. As a case study, the proposed model is applied to the Zayandeh-Rud river basin in Iran with conflicting demands. The results are compared with alternative reservoir operation models, i.e., Bayesian stochastic dynamic programming (BSDP), sequential genetic algorithm (SGA) and classical dynamic programming regression (DPR). Results show that the proposed model has the ability to generate reservoir operating policies, considering interactions of water users, reservoir operator and their preferences.

  5. A Pumping Algorithm for Ergodic Stochastic Mean Payoff Games with Perfect Information

    NASA Astrophysics Data System (ADS)

    Boros, Endre; Elbassioni, Khaled; Gurvich, Vladimir; Makino, Kazuhisa

    In this paper, we consider two-person zero-sum stochastic mean payoff games with perfect information, or BWR-games, given by a digraph G = (V = V B ∪ V W ∪ V R , E), with local rewards r: E to { R}, and three types of vertices: black V B , white V W , and random V R . The game is played by two players, White and Black: When the play is at a white (black) vertex v, White (Black) selects an outgoing arc (v,u). When the play is at a random vertex v, a vertex u is picked with the given probability p(v,u). In all cases, Black pays White the value r(v,u). The play continues forever, and White aims to maximize (Black aims to minimize) the limiting mean (that is, average) payoff. It was recently shown in [7] that BWR-games are polynomially equivalent with the classical Gillette games, which include many well-known subclasses, such as cyclic games, simple stochastic games (SSG's), stochastic parity games, and Markov decision processes. In this paper, we give a new algorithm for solving BWR-games in the ergodic case, that is when the optimal values do not depend on the initial position. Our algorithm solves a BWR-game by reducing it, using a potential transformation, to a canonical form in which the optimal strategies of both players and the value for every initial position are obvious, since a locally optimal move in it is optimal in the whole game. We show that this algorithm is pseudo-polynomial when the number of random nodes is constant. We also provide an almost matching lower bound on its running time, and show that this bound holds for a wider class of algorithms. Let us add that the general (non-ergodic) case is at least as hard as SSG's, for which no pseudo-polynomial algorithm is known.

  6. Switching of bound vector solitons for the coupled nonlinear Schroedinger equations with nonhomogenously stochastic perturbations

    SciTech Connect

    Sun Zhiyuan; Yu Xin; Liu Ying; Gao Yitian

    2012-12-15

    We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schroedinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.

  7. Stochastic simulations of switching error in magneto elastic and spin-Hall effect based switching of nanomagnetic devices

    NASA Astrophysics Data System (ADS)

    Al-Rashid, Md Mamun; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2015-03-01

    Switching of single domain multiferroic nanomagnets with electrically generated mechanical strain and with spin torque due to spin current generated via the giant spin Hall effect are two promising energy-efficient methods to switch nanomagnets in magnetic computing devices. However, switching of nanomagnets is always error-prone at room temperature owing to the effect of thermal noise. In this work, we model the strain-based and spin-Hall-effect-based switching of nanomagnetic devices using stochastic Landau-Lifshitz-Gilbert (LLG) equation and present a quantitative comparison in terms of switching time, reliability and energy dissipation. This work is supported by the US National Science Foundation under the SHF-Small Grant CCF-1216614, CAREER Grant CCF-1253370, NEB 2020 Grant ECCS-1124714 and SRC under NRI Task 2203.001.

  8. The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection

    PubMed Central

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to an n-tuple evolutionary game of stochastic biological networks with m players (competitive populations) and k environmental dynamics. PMID:24558296

  9. The stochastic evolutionary game for a population of biological networks under natural selection.

    PubMed

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to an n-tuple evolutionary game of stochastic biological networks with m players (competitive populations) and k environmental dynamics. PMID:24558296

  10. Robust stability of stochastic delayed additive neural networks with Markovian switching.

    PubMed

    Huang, He; Ho, Daniel W C; Qu, Yuzhong

    2007-09-01

    This paper is concerned with the problem of robust stability for stochastic interval delayed additive neural networks (SIDANN) with Markovian switching. The time delay is assumed to be time-varying. In such neural networks, the features of stochastic systems, interval systems, time-varying delay systems and Markovian switching are taken into account. The mathematical model of this kind of neural networks is first proposed. Secondly, the global exponential stability in the mean square is studied for the SIDANN with Markovian switching. Based on the Lyapunov method, several stability conditions are presented, which can be expressed in terms of linear matrix inequalities. As a subsequent result, the stochastic interval additive neural networks with time-varying delay are also discussed. A sufficient condition is given to determine its stability. Finally, two simulation examples are provided to illustrate the effectiveness of the results developed. PMID:17714914

  11. Age matters: The effect of onset age of video game play on task-switching abilities.

    PubMed

    Hartanto, Andree; Toh, Wei Xing; Yang, Hwajin

    2016-05-01

    Although prior research suggests that playing video games can improve cognitive abilities, recent empirical studies cast doubt on such findings (Unsworth et al., 2015). To reconcile these inconsistent findings, we focused on the link between video games and task switching. Furthermore, we conceptualized video-game expertise as the onset age of active video-game play rather than the frequency of recent gameplay, as it captures both how long a person has played video games and whether the individual began playing during periods of high cognitive plasticity. We found that the age of active onset better predicted switch and mixing costs than did frequency of recent gameplay; specifically, players who commenced playing video games at an earlier age reaped greater benefits in terms of task switching than did those who started at a later age. Moreover, improving switch costs required a more extensive period of video-game experience than did mixing costs; this finding suggests that certain cognitive abilities benefit from different amounts of video game experience. PMID:26860712

  12. An optical model for implementing Parrondo's game and designing stochastic game with long-term memory

    NASA Astrophysics Data System (ADS)

    Si, Tieyan

    2012-11-01

    An optical model of classical photons propagating through array of many beam splitters is developed to give a physical analogy of Parrondo's game and Parrondo-Harmer-Abbott game. We showed both the two games are reasonable game without so-called game paradox and they are essentially the same. We designed the games with long-term memory on loop lattice and history-entangled game. The strong correlation between nearest two rounds of game can make the combination of two losing game win, lose or oscillate between win and loss. The periodic potential in Brownian ratchet is analogous to a long chain of beam splitters. The coupling between two neighboring potential wells is equivalent to two coupled beam splitters. This correspondence may help us to understand the anomalous motion of exceptional Brownian particles moving in the opposite direction to the majority. We designed the capital wave for a game by introducing correlations into independent capitals instead of sub-games. Playing entangled quantum states in many coupled classical games obey the same rules for manipulating quantum states in many body physics.

  13. Sufficient Stochastic Maximum Principle in a Regime-Switching Diffusion Model

    SciTech Connect

    Donnelly, Catherine

    2011-10-15

    We prove a sufficient stochastic maximum principle for the optimal control of a regime-switching diffusion model. We show the connection to dynamic programming and we apply the result to a quadratic loss minimization problem, which can be used to solve a mean-variance portfolio selection problem.

  14. Impact of deterministic and stochastic updates on network reciprocity in the prisoner's dilemma game.

    PubMed

    Tanimoto, Jun

    2014-08-01

    In 2 × 2 prisoner's dilemma games, network reciprocity is one mechanism for adding social viscosity, which leads to cooperative equilibrium. This study introduced an intriguing framework for the strategy update rule that allows any combination of a purely deterministic method, imitation max (IM), and a purely probabilistic one, pairwise Fermi (Fermi-PW). A series of simulations covering the whole range from IM to Fermi-PW reveals that, as a general tendency, the larger fractions of stochastic updating reduce network reciprocity, so long as the underlying lattice contains no noise in the degree of distribution. However, a small amount of stochastic flavor added to an otherwise perfectly deterministic update rule was actually found to enhance network reciprocity. This occurs because a subtle stochastic effect in the update rule improves the evolutionary trail in games having more stag-hunt-type dilemmas, although the same stochastic effect degenerates evolutionary trails in games having more chicken-type dilemmas. We explain these effects by dividing evolutionary trails into the enduring and expanding periods defined by Shigaki et al. [Phys. Rev. E 86, 031141 (2012)]. PMID:25215687

  15. Impact of deterministic and stochastic updates on network reciprocity in the prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Tanimoto, Jun

    2014-08-01

    In 2 × 2 prisoner's dilemma games, network reciprocity is one mechanism for adding social viscosity, which leads to cooperative equilibrium. This study introduced an intriguing framework for the strategy update rule that allows any combination of a purely deterministic method, imitation max (IM), and a purely probabilistic one, pairwise Fermi (Fermi-PW). A series of simulations covering the whole range from IM to Fermi-PW reveals that, as a general tendency, the larger fractions of stochastic updating reduce network reciprocity, so long as the underlying lattice contains no noise in the degree of distribution. However, a small amount of stochastic flavor added to an otherwise perfectly deterministic update rule was actually found to enhance network reciprocity. This occurs because a subtle stochastic effect in the update rule improves the evolutionary trail in games having more stag-hunt-type dilemmas, although the same stochastic effect degenerates evolutionary trails in games having more chicken-type dilemmas. We explain these effects by dividing evolutionary trails into the enduring and expanding periods defined by Shigaki et al. [Phys. Rev. E 86, 031141 (2012), 10.1103/PhysRevE.86.031141].

  16. Modeling and Computation of Transboundary Industrial Pollution with Emission Permits Trading by Stochastic Differential Game

    PubMed Central

    2015-01-01

    Transboundary industrial pollution requires international actions to control its formation and effects. In this paper, we present a stochastic differential game to model the transboundary industrial pollution problems with emission permits trading. More generally, the process of emission permits price is assumed to be stochastic and to follow a geometric Brownian motion (GBM). We make use of stochastic optimal control theory to derive the system of Hamilton-Jacobi-Bellman (HJB) equations satisfied by the value functions for the cooperative and the noncooperative games, respectively, and then propose a so-called fitted finite volume method to solve it. The efficiency and the usefulness of this method are illustrated by the numerical experiments. The two regions’ cooperative and noncooperative optimal emission paths, which maximize the regions’ discounted streams of the net revenues, together with the value functions, are obtained. Additionally, we can also obtain the threshold conditions for the two regions to decide whether they cooperate or not in different cases. The effects of parameters in the established model on the results have been also examined. All the results demonstrate that the stochastic emission permits prices can motivate the players to make more flexible strategic decisions in the games. PMID:26402322

  17. PULSAR STATE SWITCHING FROM MARKOV TRANSITIONS AND STOCHASTIC RESONANCE

    SciTech Connect

    Cordes, J. M.

    2013-09-20

    Markov processes are shown to be consistent with metastable states seen in pulsar phenomena, including intensity nulling, pulse-shape mode changes, subpulse drift rates, spin-down rates, and X-ray emission, based on the typically broad and monotonic distributions of state lifetimes. Markovianity implies a nonlinear magnetospheric system in which state changes occur stochastically, corresponding to transitions between local minima in an effective potential. State durations (though not transition times) are thus largely decoupled from the characteristic timescales of various magnetospheric processes. Dyadic states are common but some objects show at least four states with some transitions forbidden. Another case is the long-term intermittent pulsar B1931+24 that has binary radio-emission and torque states with wide, but non-monotonic duration distributions. It also shows a quasi-period of 38 ± 5 days in a 13 yr time sequence, suggesting stochastic resonance in a Markov system with a forcing function that could be strictly periodic or quasi-periodic. Nonlinear phenomena are associated with time-dependent activity in the acceleration region near each magnetic polar cap. The polar-cap diode is altered by feedback from the outer magnetosphere and by return currents from the equatorial region outside the light cylinder that may also cause the neutron star to episodically charge and discharge. Orbital perturbations of a disk or current sheet provide a natural periodicity for the forcing function in the stochastic-resonance interpretation of B1931+24. Disk dynamics may introduce additional timescales in observed phenomena. Future work can test the Markov interpretation, identify which pulsar types have a propensity for state changes, and clarify the role of selection effects.

  18. Theory of superconductive-resistive switching in nanowires due to heating by stochastic phase slips

    NASA Astrophysics Data System (ADS)

    Shah, Nayana; Pekker, David; Goldbart, Paul

    2008-03-01

    We study the stochastic dynamics of superconductive-to-resistive switching in hysteretic current-biased superconducting nanowires undergoing phase-slip fluctuations. We assume that the hysteresis is thermal in nature, and postulate that the mechanism for the switching is thermal runaway, i.e. rare sequences of stochastic phase slips, closely spaced in time, that heat the nanowire. Thus, via the master-equation formalism, we obtain the distribution of currents at which switching occurs. If switching were caused by single, thermally-activated phase-slip events then this distribution would narrow as the temperature is reduced. However, at higher temperatures we find that several phase-slip events are typically necessary for inducing switching, and this results in an initial broadening of the distribution upon cooling. Quite generally, we predict that at low temperatures thermal runaway is caused by a single phase-slip event. Thus, measurements of switching-current distributions in this regime are a direct probe of this basic collective process. In particular, this regime could yield observations of individual quantum phase slips in nanowires.

  19. An Element of Determinism in a Stochastic Flagellar Motor Switch

    PubMed Central

    Xie, Li; Altindal, Tuba; Wu, Xiao-Lun

    2015-01-01

    Marine bacterium Vibrio alginolyticus uses a single polar flagellum to navigate in an aqueous environment. Similar to Escherichia coli cells, the polar flagellar motor has two states; when the motor is counter-clockwise, the cell swims forward and when the motor is clockwise, the cell swims backward. V. alginolyticus also incorporates a direction randomization step at the start of the forward swimming interval by flicking its flagellum. To gain an understanding on how the polar flagellar motor switch is regulated, distributions of the forward Δf and backward Δb intervals are investigated herein. We found that the steady-state probability density functions, P(Δf) and P(Δb), of freely swimming bacteria are strongly peaked at a finite time, suggesting that the motor switch is not Poissonian. The short-time inhibition is sufficiently strong and long lasting, i.e., several hundred milliseconds for both intervals, which is readily observed and characterized. Treating motor reversal dynamics as a first-passage problem, which results from conformation fluctuations of the motor switch, we calculated P(Δf) and P(Δb) and found good agreement with the measurements. PMID:26554590

  20. Confinement and diffusion modulate bistability and stochastic switching in a reaction network with positive feedback.

    PubMed

    Mlynarczyk, Paul J; Pullen, Robert H; Abel, Steven M

    2016-01-01

    Positive feedback is a common feature in signal transduction networks and can lead to phenomena such as bistability and signal propagation by domain growth. Physical features of the cellular environment, such as spatial confinement and the mobility of proteins, play important but inadequately understood roles in shaping the behavior of signaling networks. Here, we use stochastic, spatially resolved kinetic Monte Carlo simulations to explore a positive feedback network as a function of system size, system shape, and mobility of molecules. We show that these physical properties can markedly alter characteristics of bistability and stochastic switching when compared with well-mixed simulations. Notably, systems of equal volume but different shapes can exhibit qualitatively different behaviors under otherwise identical conditions. We show that stochastic switching to a state maintained by positive feedback occurs by cluster formation and growth. Additionally, the frequency at which switching occurs depends nontrivially on the diffusion coefficient, which can promote or suppress switching relative to the well-mixed limit. Taken together, the results provide a framework for understanding how confinement and protein mobility influence emergent features of the positive feedback network by modulating molecular concentrations, diffusion-influenced rate parameters, and spatiotemporal correlations between molecules. PMID:26747820

  1. Confinement and diffusion modulate bistability and stochastic switching in a reaction network with positive feedback

    NASA Astrophysics Data System (ADS)

    Mlynarczyk, Paul J.; Pullen, Robert H.; Abel, Steven M.

    2016-01-01

    Positive feedback is a common feature in signal transduction networks and can lead to phenomena such as bistability and signal propagation by domain growth. Physical features of the cellular environment, such as spatial confinement and the mobility of proteins, play important but inadequately understood roles in shaping the behavior of signaling networks. Here, we use stochastic, spatially resolved kinetic Monte Carlo simulations to explore a positive feedback network as a function of system size, system shape, and mobility of molecules. We show that these physical properties can markedly alter characteristics of bistability and stochastic switching when compared with well-mixed simulations. Notably, systems of equal volume but different shapes can exhibit qualitatively different behaviors under otherwise identical conditions. We show that stochastic switching to a state maintained by positive feedback occurs by cluster formation and growth. Additionally, the frequency at which switching occurs depends nontrivially on the diffusion coefficient, which can promote or suppress switching relative to the well-mixed limit. Taken together, the results provide a framework for understanding how confinement and protein mobility influence emergent features of the positive feedback network by modulating molecular concentrations, diffusion-influenced rate parameters, and spatiotemporal correlations between molecules.

  2. DOOM'd to Switch: Superior Cognitive Flexibility in Players of First Person Shooter Games

    PubMed Central

    Colzato, Lorenza S.; van Leeuwen, Pieter J.A.; van den Wildenberg, Wery P.M.; Hommel, Bernhard

    2010-01-01

    The interest in the influence of videogame experience on our daily life is constantly growing. “First Person Shooter” (FPS) games require players to develop a flexible mindset to rapidly react to fast moving visual and auditory stimuli, and to switch back and forth between different subtasks. This study investigated whether and to which degree experience with such videogames generalizes to other cognitive-control tasks. Video-game players (VGPs) and individuals with little to no videogame experience (NVGPs) performed on a task switching paradigm that provides a relatively well-established diagnostic measure of cognitive flexibility. As predicted, VGPs showed smaller switching costs (i.e., greater cognitive flexibility) than NVGPs. Our findings support the idea that playing FPS games promotes cognitive flexibility. PMID:21833191

  3. Control of Stochastic and Induced Switching in Biophysical Networks

    NASA Astrophysics Data System (ADS)

    Wells, Daniel K.; Kath, William L.; Motter, Adilson E.

    2015-07-01

    Noise caused by fluctuations at the molecular level is a fundamental part of intracellular processes. While the response of biological systems to noise has been studied extensively, there has been limited understanding of how to exploit it to induce a desired cell state. Here we present a scalable, quantitative method based on the Freidlin-Wentzell action to predict and control noise-induced switching between different states in genetic networks that, conveniently, can also control transitions between stable states in the absence of noise. We apply this methodology to models of cell differentiation and show how predicted manipulations of tunable factors can induce lineage changes, and further utilize it to identify new candidate strategies for cancer therapy in a cell death pathway model. This framework offers a systems approach to identifying the key factors for rationally manipulating biophysical dynamics, and should also find use in controlling other classes of noisy complex networks.

  4. Control of Stochastic and Induced Switching in Biophysical Networks

    PubMed Central

    Wells, Daniel K.; Kath, William L.; Motter, Adilson E.

    2015-01-01

    Noise caused by fluctuations at the molecular level is a fundamental part of intracellular processes. While the response of biological systems to noise has been studied extensively, there has been limited understanding of how to exploit it to induce a desired cell state. Here we present a scalable, quantitative method based on the Freidlin-Wentzell action to predict and control noise-induced switching between different states in genetic networks that, conveniently, can also control transitions between stable states in the absence of noise. We apply this methodology to models of cell differentiation and show how predicted manipulations of tunable factors can induce lineage changes, and further utilize it to identify new candidate strategies for cancer therapy in a cell death pathway model. This framework offers a systems approach to identifying the key factors for rationally manipulating biophysical dynamics, and should also find use in controlling other classes of noisy complex networks. PMID:26451275

  5. Designing a stochastic genetic switch by coupling chaos and bistability

    NASA Astrophysics Data System (ADS)

    Zhao, Xiang; Ouyang, Qi; Wang, Hongli

    2015-11-01

    In stem cell differentiation, a pluripotent stem cell becomes progressively specialized and generates specific cell types through a series of epigenetic processes. How cells can precisely determine their fate in a fluctuating environment is a currently unsolved problem. In this paper, we suggest an abstract gene regulatory network to describe mathematically the differentiation phenomenon featuring stochasticity, divergent cell fates, and robustness. The network consists of three functional motifs: an upstream chaotic motif, a buffering motif of incoherent feed forward loop capable of generating a pulse, and a downstream motif which is bistable. The dynamic behavior is typically a transient chaos with fractal basin boundaries. The trajectories take transiently chaotic journeys before divergently settling down to the bistable states. The ratio of the probability that the high state is achieved to the probability that the low state is reached can maintain a constant in a population of cells with varied molecular fluctuations. The ratio can be turned up or down when proper parameters are adjusted. The model suggests a possible mechanism for the robustness against fluctuations that is prominently featured in pluripotent cell differentiations and developmental phenomena.

  6. Designing a stochastic genetic switch by coupling chaos and bistability

    SciTech Connect

    Zhao, Xiang; Ouyang, Qi; Wang, Hongli

    2015-11-15

    In stem cell differentiation, a pluripotent stem cell becomes progressively specialized and generates specific cell types through a series of epigenetic processes. How cells can precisely determine their fate in a fluctuating environment is a currently unsolved problem. In this paper, we suggest an abstract gene regulatory network to describe mathematically the differentiation phenomenon featuring stochasticity, divergent cell fates, and robustness. The network consists of three functional motifs: an upstream chaotic motif, a buffering motif of incoherent feed forward loop capable of generating a pulse, and a downstream motif which is bistable. The dynamic behavior is typically a transient chaos with fractal basin boundaries. The trajectories take transiently chaotic journeys before divergently settling down to the bistable states. The ratio of the probability that the high state is achieved to the probability that the low state is reached can maintain a constant in a population of cells with varied molecular fluctuations. The ratio can be turned up or down when proper parameters are adjusted. The model suggests a possible mechanism for the robustness against fluctuations that is prominently featured in pluripotent cell differentiations and developmental phenomena.

  7. DNA looping increases the range of bistability in a stochastic model of the lac genetic switch

    NASA Astrophysics Data System (ADS)

    Earnest, Tyler M.; Roberts, Elijah; Assaf, Michael; Dahmen, Karin; Luthey-Schulten, Zaida

    2013-04-01

    Conditions and parameters affecting the range of bistability of the lac genetic switch in Escherichia coli are examined for a model which includes DNA looping interactions with the lac repressor and a lactose analogue. This stochastic gene-mRNA-protein model of the lac switch describes DNA looping using a third transcriptional state. We exploit the fast bursting dynamics of mRNA by combining a novel geometric burst extension with the finite state projection method. This limits the number of protein/mRNA states, allowing for an accelerated search of the model's parameter space. We evaluate how the addition of the third state changes the bistability properties of the model and find a critical region of parameter space where the phenotypic switching occurs in a range seen in single molecule fluorescence studies. Stochastic simulations show induction in the looping model is preceded by a rare complete dissociation of the loop followed by an immediate burst of mRNA rather than a slower build up of mRNA as in the two-state model. The overall effect of the looped state is to allow for faster switching times while at the same time further differentiating the uninduced and induced phenotypes. Furthermore, the kinetic parameters are consistent with free energies derived from thermodynamic studies suggesting that this minimal model of DNA looping could have a broader range of application.

  8. Stochastic or systematic? Seemingly random perceptual switching in bistable events triggered by transient unconscious cues.

    PubMed

    Ward, Emily J; Scholl, Brian J

    2015-08-01

    What we see is a function not only of incoming stimulation, but of unconscious inferences in visual processing. Among the most powerful demonstrations of this are bistable events, but what causes the percepts of such events to switch? Beyond voluntary effort and stochastic processing, we explore the ways in which ongoing dynamic percepts may switch as a function of the content of brief, unconscious, independent cues. We introduced transient disambiguating occlusion cues into the Spinning Dancer silhouette animation. The dancer is bistable in terms of depth and rotation direction, but many observers see extended rotation in the same direction, interrupted only rarely by involuntary switches. Observers failed to notice these occasional disambiguating cues, but their impact was strong and systematic: Cues typically led to seemingly stochastic perceptual switches shortly thereafter, especially when conflicting with the current percept. These results show how the content of incoming information determines and constrains online conscious perception-even when neither the content nor the brute existence of that information ever reaches awareness. Thus, just as phenomenological ease does not imply a corresponding lack of underlying effortful computation, phenomenological randomness should not be taken to imply a corresponding lack of underlying systematicity. PMID:25915074

  9. Gains from switching and evolutionary stability in multi-player matrix games.

    PubMed

    Peña, Jorge; Lehmann, Laurent; Nöldeke, Georg

    2014-04-01

    In this paper we unify, simplify, and extend previous work on the evolutionary dynamics of symmetric N-player matrix games with two pure strategies. In such games, gains from switching strategies depend, in general, on how many other individuals in the group play a given strategy. As a consequence, the gain function determining the gradient of selection can be a polynomial of degree N-1. In order to deal with the intricacy of the resulting evolutionary dynamics, we make use of the theory of polynomials in Bernstein form. This theory implies a tight link between the sign pattern of the gains from switching on the one hand and the number and stability of the rest points of the replicator dynamics on the other hand. While this relationship is a general one, it is most informative if gains from switching have at most two sign changes, as is the case for most multi-player matrix games considered in the literature. We demonstrate that previous results for public goods games are easily recovered and extended using this observation. Further examples illustrate how focusing on the sign pattern of the gains from switching obviates the need for a more involved analysis. PMID:24380778

  10. A novel adaptive switching function on fault tolerable sliding mode control for uncertain stochastic systems.

    PubMed

    Zahiripour, Seyed Ali; Jalali, Ali Akbar

    2014-09-01

    A novel switching function based on an optimization strategy for the sliding mode control (SMC) method has been provided for uncertain stochastic systems subject to actuator degradation such that the closed-loop system is globally asymptotically stable with probability one. In the previous researches the focus on sliding surface has been on proportional or proportional-integral function of states. In this research, from a degree of freedom that depends on designer choice is used to meet certain objectives. In the design of the switching function, there is a parameter which the designer can regulate for specified objectives. A sliding-mode controller is synthesized to ensure the reachability of the specified switching surface, despite actuator degradation and uncertainties. Finally, the simulation results demonstrate the effectiveness of the proposed method. PMID:24954808

  11. The effect of action video game experience on task-switching

    PubMed Central

    Green, C.Shawn; Sugarman, Michael A.; Medford, Katherine; Klobusicky, Elizabeth; Daphne Bavelier

    2012-01-01

    There is now a substantial body of work demonstrating that action video game experience results in enhancements in a wide variety of perceptual skills. More recently, several groups have also demonstrated improvements in abilities that are more cognitive in nature, in particular, the ability to efficiently switch between tasks. In a series of four experiments, we add to this body of work, demonstrating that the action video game player advantage is not exclusively due to an ability to map manual responses onto arbitrary buttons, but rather generalizes to vocal responses, is not restricted to tasks that are perceptual in nature (e.g. respond to a physical dimension of the stimulus such as its color), but generalizes to more cognitive tasks (e.g. is a number odd or even), and is present whether the switch requires a goal-switch or only a motor switch. Finally, a training study establishes that the relationship between the reduction in switch cost and action game playing is causal. PMID:22393270

  12. Stochastic game theory: For playing games, not just for doing theory

    PubMed Central

    Goeree, Jacob K.; Holt, Charles A.

    1999-01-01

    Recent theoretical advances have dramatically increased the relevance of game theory for predicting human behavior in interactive situations. By relaxing the classical assumptions of perfect rationality and perfect foresight, we obtain much improved explanations of initial decisions, dynamic patterns of learning and adjustment, and equilibrium steady-state distributions. PMID:10485862

  13. Stochastic switching in slow-fast systems: a large-fluctuation approach.

    PubMed

    Heckman, Christoffer R; Schwartz, Ira B

    2014-02-01

    In this paper we develop a perturbation method to predict the rate of occurrence of rare events for singularly perturbed stochastic systems using a probability density function approach. In contrast to a stochastic normal form approach, we model rare event occurrences due to large fluctuations probabilistically and employ a WKB ansatz to approximate their rate of occurrence. This results in the generation of a two-point boundary value problem that models the interaction of the state variables and the most likely noise force required to induce a rare event. The resulting equations of motion of describing the phenomenon are shown to be singularly perturbed. Vastly different time scales among the variables are leveraged to reduce the dimension and predict the dynamics on the slow manifold in a deterministic setting. The resulting constrained equations of motion may be used to directly compute an exponent that determines the probability of rare events. To verify the theory, a stochastic damped Duffing oscillator with three equilibrium points (two sinks separated by a saddle) is analyzed. The predicted switching time between states is computed using the optimal path that resides in an expanded phase space. We show that the exponential scaling of the switching rate as a function of system parameters agrees well with numerical simulations. Moreover, the dynamics of the original system and the reduced system via center manifolds are shown to agree in an exponentially scaling sense. PMID:25353557

  14. Deterministic and Stochastic Modeling of an Artificial Bistable Switch in E. coli

    NASA Astrophysics Data System (ADS)

    Finkelstein, Daniel; Buchler, Nicolas; Karapetyan, Sargis

    Networks of mutually interacting genes are common in natural regulatory networks. To better understand these interactions, scientists have recently been constructing artificial genetic networks. Much of the effort is focused on creating genetic oscillators and bistable switches. In this project, we analyzed the possibility to create a bistable switch in E. coli. In this realization of the switch, the Repressor (basic leucine zipper CEBP/alpha) represses the transcription of the Inhibitor (artificial dominant negative 3HF). The Inhibitor, in turn, sequesters the Repressor by binding to it. Using deterministic modeling we identified a range of parameters suitable for bistability. We then analyzed the resulting solutions with the full model taking the reaction rates corresponding to E. coli and the including stochastic nature of gene expression. We have shown that the bistability in not destroyed by stochastic fluctuations if several copies of genes are present. Specifically, taking a realistic number of plasmids (10) we show that the number of proteins in the systems undergoes sizable fluctuations; however, the two states with low and high concentrations of inhibitor stay distinct in the relevant range of parameters.

  15. The coevolution of partner switching and strategy updating in non-excludable public goods game

    NASA Astrophysics Data System (ADS)

    Li, Yixiao; Shen, Bin

    2013-10-01

    Spatial public goods game is a popular metaphor to model the dilemma of collective cooperation on graphs, yet the non-excludable property of public goods has seldom been considered in previous models. Based upon a coevolutionary model where agents play public goods games and adjust their partnerships, the present model incorporates the non-excludable property of public goods: agents are able to adjust their participation in the games hosted by others, whereas they cannot exclude others from their own games. In the coevolution, a directed and dynamical network which represents partnerships among autonomous agents is evolved. We find that non-excludable property counteracts the positive effect of partner switching, i.e., the equilibrium level of cooperation is lower than that in the situation of excludable public goods game. Therefore, we study the effect of individual punishment that cooperative agents pay a personal cost to decrease benefits of those defective neighbors who participate in their hosted games. It is found that the cooperation level in the whole population is heightened in the presence of such a costly behavior.

  16. Learning dynamics in public goods games

    NASA Astrophysics Data System (ADS)

    Bladon, Alex J.; Galla, Tobias

    2011-10-01

    We extend recent analyses of stochastic effects in game dynamical learning to cases of multiplayer games and to games defined on networked structures. By means of an expansion in the noise strength we consider the weak-noise limit and present an analytical computation of spectral properties of fluctuations in multiplayer public goods games. This extends existing work on two-player games. In particular we show that coherent cycles may emerge driven by noise in the adaptation dynamics. These phenomena are not too dissimilar from cyclic strategy switching observed in experiments of behavioral game theory.

  17. Learning dynamics in public goods games.

    PubMed

    Bladon, Alex J; Galla, Tobias

    2011-10-01

    We extend recent analyses of stochastic effects in game dynamical learning to cases of multiplayer games and to games defined on networked structures. By means of an expansion in the noise strength we consider the weak-noise limit and present an analytical computation of spectral properties of fluctuations in multiplayer public goods games. This extends existing work on two-player games. In particular we show that coherent cycles may emerge driven by noise in the adaptation dynamics. These phenomena are not too dissimilar from cyclic strategy switching observed in experiments of behavioral game theory. PMID:22181112

  18. Some Classes of Imperfect Information Finite State-Space Stochastic Games with Finite-Dimensional Solutions

    SciTech Connect

    McEneaney, William M.

    2004-08-15

    Stochastic games under imperfect information are typically computationally intractable even in the discrete-time/discrete-state case considered here. We consider a problem where one player has perfect information.A function of a conditional probability distribution is proposed as an information state.In the problem form here, the payoff is only a function of the terminal state of the system,and the initial information state is either linear ora sum of max-plus delta functions.When the initial information state belongs to these classes, its propagation is finite-dimensional.The state feedback value function is also finite-dimensional,and obtained via dynamic programming,but has a nonstandard form due to the necessity of an expanded state variable.Under a saddle point assumption,Certainty Equivalence is obtained and the proposed function is indeed an information state.

  19. A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell

    NASA Astrophysics Data System (ADS)

    Xie, Sunney; Choi, Paul; Cai, Long

    2009-03-01

    By monitoring fluorescently labeled lactose permease with single-molecule sensitivity, we investigated the molecular mechanism of how an Escherichia coli cell with the lac operon switches from one phenotype to another. At intermediate inducer concentrations, a population of genetically identical cells exhibits two phenotypes: induced cells with highly fluorescent membranes and uninduced cells with a small number of membrane-bound permeases. We found that this basal-level expression results from partial dissociation of the tetrameric lactose repressor from one of its operators on looped DNA. In contrast, infrequent events of complete dissociation of the repressor from DNA result in large bursts of permease expression that trigger induction of the lac operon. Hence, a stochastic single-molecule event determines a cell's phenotype.

  20. Cortical Contractility Triggers a Stochastic Switch to Fast Amoeboid Cell Motility

    PubMed Central

    Ruprecht, Verena; Wieser, Stefan; Callan-Jones, Andrew; Smutny, Michael; Morita, Hitoshi; Sako, Keisuke; Barone, Vanessa; Ritsch-Marte, Monika; Sixt, Michael; Voituriez, Raphaël; Heisenberg, Carl-Philipp

    2015-01-01

    Summary 3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence. Progenitor cells can be reversibly transformed into stable-bleb cells irrespective of their primary fate and motile characteristics by increasing myosin II activity through biochemical or mechanical stimuli. Using a combination of theory and experiments, we show that, in stable-bleb cells, cortical contractility fluctuations trigger a stochastic switch into amoeboid motility, and a positive feedback between cortical flows and gradients in contractility maintains stable-bleb cell polarization. We further show that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoeboid migration phenotype. PMID:25679761

  1. Stochastic Phenotype Transition of a Single Cell in an Intermediate Region of Gene State Switching

    NASA Astrophysics Data System (ADS)

    Ge, Hao; Qian, Hong; Xie, X. Sunney

    2015-02-01

    Multiple phenotypic states often arise in a single cell with different gene-expression states that undergo transcription regulation with positive feedback. Recent experiments show that, at least in E. coli, the gene state switching can be neither extremely slow nor exceedingly rapid as many previous theoretical treatments assumed. Rather, it is in the intermediate region which is difficult to handle mathematically. Under this condition, from a full chemical-master-equation description we derive a model in which the protein copy number, for a given gene state, follows a deterministic mean-field description while the protein-synthesis rates fluctuate due to stochastic gene state switching. The simplified kinetics yields a nonequilibrium landscape function, which, similar to the energy function for equilibrium fluctuation, provides the leading orders of fluctuations around each phenotypic state, as well as the transition rates between the two phenotypic states. This rate formula is analogous to Kramers' theory for chemical reactions. The resulting behaviors are significantly different from the two limiting cases studied previously.

  2. Effect of reaction-step-size noise on the switching dynamics of stochastic populations

    NASA Astrophysics Data System (ADS)

    Be'er, Shay; Heller-Algazi, Metar; Assaf, Michael

    2016-05-01

    In genetic circuits, when the messenger RNA lifetime is short compared to the cell cycle, proteins are produced in geometrically distributed bursts, which greatly affects the cellular switching dynamics between different metastable phenotypic states. Motivated by this scenario, we study a general problem of switching or escape in stochastic populations, where influx of particles occurs in groups or bursts, sampled from an arbitrary distribution. The fact that the step size of the influx reaction is a priori unknown and, in general, may fluctuate in time with a given correlation time and statistics, introduces an additional nondemographic reaction-step-size noise into the system. Employing the probability-generating function technique in conjunction with Hamiltonian formulation, we are able to map the problem in the leading order onto solving a stationary Hamilton-Jacobi equation. We show that compared to the "usual case" of single-step influx, bursty influx exponentially decreases the population's mean escape time from its long-lived metastable state. In particular, close to bifurcation we find a simple analytical expression for the mean escape time which solely depends on the mean and variance of the burst-size distribution. Our results are demonstrated on several realistic distributions and compare well with numerical Monte Carlo simulations.

  3. Stochastic modeling and experimental analysis of phenotypic switching and survival of cancer cells under stress

    NASA Astrophysics Data System (ADS)

    Zamani Dahaj, Seyed Alireza; Kumar, Niraj; Sundaram, Bala; Celli, Jonathan; Kulkarni, Rahul

    The phenotypic heterogeneity of cancer cells is critical to their survival under stress. A significant contribution to heterogeneity of cancer calls derives from the epithelial-mesenchymal transition (EMT), a conserved cellular program that is crucial for embryonic development. Several studies have investigated the role of EMT in growth of early stage tumors into invasive malignancies. Also, EMT has been closely associated with the acquisition of chemoresistance properties in cancer cells. Motivated by these studies, we analyze multi-phenotype stochastic models of the evolution of cancers cell populations under stress. We derive analytical results for time-dependent probability distributions that provide insights into the competing rates underlying phenotypic switching (e.g. during EMT) and the corresponding survival of cancer cells. Experimentally, we evaluate these model-based predictions by imaging human pancreatic cancer cell lines grown with and without cytotoxic agents and measure growth kinetics, survival, morphological changes and (terminal evaluation of) biomarkers with associated epithelial and mesenchymal phenotypes. The results derived suggest approaches for distinguishing between adaptation and selection scenarios for survival in the presence of external stresses.

  4. Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood.

    PubMed

    Dörrenbächer, Sandra; Müller, Philipp M; Tröger, Johannes; Kray, Jutta

    2014-01-01

    Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8-11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions. PMID:25431564

  5. Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood

    PubMed Central

    Dörrenbächer, Sandra; Müller, Philipp M.; Tröger, Johannes; Kray, Jutta

    2014-01-01

    Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8–11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions. PMID:25431564

  6. Dynamics of the quorum sensing switch: stochastic and non-stationary effects

    PubMed Central

    2013-01-01

    Background A wide range of bacteria species are known to communicate through the so called quorum sensing (QS) mechanism by means of which they produce a small molecule that can freely diffuse in the environment and in the cells. Upon reaching a threshold concentration, the signalling molecule activates the QS-controlled genes that promote phenotypic changes. This mechanism, for its simplicity, has become the model system for studying the emergence of a global response in prokaryotic cells. Yet, how cells precisely measure the signal concentration and act coordinately, despite the presence of fluctuations that unavoidably affects cell regulation and signalling, remains unclear. Results We propose a model for the QS signalling mechanism in Vibrio fischeri based on the synthetic strains lux01 and lux02. Our approach takes into account the key regulatory interactions between LuxR and LuxI, the autoinducer transport, the cellular growth and the division dynamics. By using both deterministic and stochastic models, we analyze the response and dynamics at the single-cell level and compare them to the global response at the population level. Our results show how fluctuations interfere with the synchronization of the cell activation and lead to a bimodal phenotypic distribution. In this context, we introduce the concept of precision in order to characterize the reliability of the QS communication process in the colony. We show that increasing the noise in the expression of LuxR helps cells to get activated at lower autoinducer concentrations but, at the same time, slows down the global response. The precision of the QS switch under non-stationary conditions decreases with noise, while at steady-state it is independent of the noise value. Conclusions Our in silico experiments show that the response of the LuxR/LuxI system depends on the interplay between non-stationary and stochastic effects and that the burst size of the transcription/translation noise at the level of LuxR controls the phenotypic variability of the population. These results, together with recent experimental evidences on LuxR regulation in wild-type species, suggest that bacteria have evolved mechanisms to regulate the intensity of those fluctuations. PMID:23324134

  7. Stochastic dynamics of phase-slip trains and superconductive-resistive switching in current-biased nanowires

    NASA Astrophysics Data System (ADS)

    Pekker, David; Shah, Nayana; Sahu, Mitrabhanu; Bezryadin, Alexey; Goldbart, Paul M.

    2009-12-01

    Superconducting nanowires fabricated via carbon-nanotube templating can be used to realize and study quasi-one-dimensional superconductors. However, measurement of the linear resistance of these nanowires have been inconclusive in determining the low-temperature behavior of phase-slip fluctuations, both quantal and thermal. Thus, we are motivated to study the nonlinear current-voltage characteristics in current-biased nanowires and the stochastic dynamics of superconductive-resistive switching, as a way of probing phase-slip events. In particular, we address the question: can a single phase-slip event occurring somewhere along the wire—during which the order-parameter fluctuates to zero—induce switching, via the local heating it causes? We explore this and related issues by constructing a stochastic model for the time evolution of the temperature in a nanowire whose ends are maintained at a fixed temperature. We derive the corresponding master equation as a tool for evaluating and analyzing the mean switching time at a given value of current (smaller than the depairing critical current). The model indicates that although, in general, several phase-slip events are necessary to induce switching via a thermal runaway, there is indeed a regime of temperatures and currents in which a single event is sufficient. We carry out a detailed comparison of the results of the model with experimental measurements of the distribution of switching currents, and provide an explanation for the rather counterintuitive broadening of the distribution width that is observed upon lowering the temperature. Moreover, we identify a regime in which the experiments are probing individual phase-slip events, and thus offer a way of unearthing and exploring the physics of nanoscale quantum tunneling of the one-dimensional collective quantum field associated with the superconducting order parameter.

  8. Differential games.

    NASA Technical Reports Server (NTRS)

    Varaiya, P. P.

    1972-01-01

    General discussion of the theory of differential games with two players and zero sum. Games starting at a fixed initial state and ending at a fixed final time are analyzed. Strategies for the games are defined. The existence of saddle values and saddle points is considered. A stochastic version of a differential game is used to examine the synthesis problem.

  9. Viscosity Solutions for a System of Integro-PDEs and Connections to Optimal Switching and Control of Jump-Diffusion Processes

    SciTech Connect

    Biswas, Imran H.; Jakobsen, Espen R.; Karlsen, Kenneth H.

    2010-08-15

    We develop a viscosity solution theory for a system of nonlinear degenerate parabolic integro-partial differential equations (IPDEs) related to stochastic optimal switching and control problems or stochastic games. In the case of stochastic optimal switching and control, we prove via dynamic programming methods that the value function is a viscosity solution of the IPDEs. In our setting the value functions or the solutions of the IPDEs are not smooth, so classical verification theorems do not apply.

  10. Strategy switches and co-action equilibria in a minority game

    NASA Astrophysics Data System (ADS)

    Sasidevan, V.; Dhar, Deepak

    2014-05-01

    We propose an analytically tractable variation of the minority game in which rational agents use probabilistic strategies. In our model, N agents choose between two alternatives repeatedly, and those who are in the minority get a pay-off 1, others zero. The agents optimize the expectation value of their discounted future pay-off, the discount parameter being λ. We propose an alternative to the standard Nash equilibrium, called co-action equilibrium, which gives higher expected pay-off for all agents. The optimal choice of probabilities of different actions are determined exactly in terms of simple self-consistent equations. The optimal strategy is characterized by N real parameters, which are non-analytic functions of λ, even for a finite number of agents. The solution for N≤7 is worked out explicitly indicating the structure of the solution for larger N. For large enough future time horizon, the optimal strategy switches from random choice to a win-stay lose-shift strategy, with the shift probability depending on the current state and λ.

  11. Towards Stability Analysis of Jump Linear Systems with State-Dependent and Stochastic Switching

    NASA Technical Reports Server (NTRS)

    Tejada, Arturo; Gonzalez, Oscar R.; Gray, W. Steven

    2004-01-01

    This paper analyzes the stability of hierarchical jump linear systems where the supervisor is driven by a Markovian stochastic process and by the values of the supervised jump linear system s states. The stability framework for this class of systems is developed over infinite and finite time horizons. The framework is then used to derive sufficient stability conditions for a specific class of hybrid jump linear systems with performance supervision. New sufficient stochastic stability conditions for discrete-time jump linear systems are also presented.

  12. Delays-based protein switches in a stochastic single-gene network

    NASA Astrophysics Data System (ADS)

    Zhang, Chun; Zeng, Jiakui; Tian, Dong; Luo, Hongchun; Yang, Tao; Han, Qinglin; Xiang, Chao; Zeng, Chunhua; Wang, Canjun

    2015-09-01

    In this paper, the protein switch in a single-gene network with time delays is investigated, where the gene expression is assumed to be disturbed by multiplicative and additive noises. The impacts of time delays τd and τs in degradation and synthesis processes, time delay τg in global process and cross-correlation between two noises (λi, and i = d , s , g) on the probability distribution and switch time (ST) from low protein level (OFF state) to high one (ON state) are discussed, respectively. Our results show that (1) the increase of the cross-correlation between two noises (λi) can induce protein switches from ON state to OFF one; (2) for λi ⩾ 0, the increase of τd can induce protein switches from OFF state to ON one, while τs (or τg) can induce protein switches from the ON state to the OFF one, but for λi < 0, the τd (or τs) can induce protein switches from the OFF state to the ON one, while τg can induce protein switches from the ON state to the OFF one; (3) the ST as functions of the noise intensities exhibits a maximum, which is the signature of the noise enhanced stability (NES) of the OFF state, while the increase of τd can cause the NES phenomenon to disappear; and (4) τd and τs play opposing roles in the ST, i.e., the impacts of the time delays τd and τs on ST can be canceled each other out.

  13. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme

    PubMed Central

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer-associated cell network takes 54.5 years from a normal state to stage I cancer, 1.5 years from stage I to stage II cancer, and 2.5 years from stage II to stage III cancer, with a reasonable match for the statistical result of the average age of lung cancer. These results suggest that a robust negative feedback scheme, based on a stochastic evolutionary game strategy, plays a critical role in an evolutionary biological network of carcinogenesis under a natural selection scheme. PMID:26244004

  14. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme.

    PubMed

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton-Jacobi inequality - constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer-associated cell network takes 54.5 years from a normal state to stage I cancer, 1.5 years from stage I to stage II cancer, and 2.5 years from stage II to stage III cancer, with a reasonable match for the statistical result of the average age of lung cancer. These results suggest that a robust negative feedback scheme, based on a stochastic evolutionary game strategy, plays a critical role in an evolutionary biological network of carcinogenesis under a natural selection scheme. PMID:26244004

  15. Stochastic switching of TiO2-based memristive devices with identical initial memory states

    PubMed Central

    2014-01-01

    In this work, we show that identical TiO2-based memristive devices that possess the same initial resistive states are only phenomenologically similar as their internal structures may vary significantly, which could render quite dissimilar switching dynamics. We experimentally demonstrated that the resistive switching of practical devices with similar initial states could occur at different programming stimuli cycles. We argue that similar memory states can be transcribed via numerous distinct active core states through the dissimilar reduced TiO2-x filamentary distributions. Our hypothesis was finally verified via simulated results of the memory state evolution, by taking into account dissimilar initial filamentary distribution. PMID:24994953

  16. Control systems with stochastic feedback

    NASA Astrophysics Data System (ADS)

    Allison, Andrew; Abbott, Derek

    2001-09-01

    In this paper we use the analogy of Parrondo's games to design a second order switched mode circuit which is unstable in either mode but is stable when switched. We do not require any sophisticated control law. The circuit is stable, even if it is switched at random. We use a stochastic form of Lyapunov's second method to prove that the randomly switched system is stable with probability of one. Simulations show that the solution to the randomly switched system is very similar to the analytic solution for the time-averaged system. This is consistent with the standard techniques for switched state-space systems with periodic switching. We perform state-space simulations of our system, with a randomized discrete-time switching policy. We also examine the case where the control variable, the loop gain, is a continuous Gaussian random variable. This gives rise to a matrix stochastic differential equation (SDE). We know that, for a one-dimensional SDE, the difference between solution for the time averaged system and any given sample path for the SDE will be an appropriately scaled and conditioned version of Brownian motion. The simulations show that this is approximately true for the matrix SDE. We examine some numerical solutions to the matrix SDE in the time and frequency domains, for the case where the noise power is very small. We also perform some simulations, without analysis, for the same system with large amounts of noise. In this case, the solution is significantly shifted away from the solution for the time-averaged system. The Brownian motion terms dominate all other aspects of the solution. This gives rise to very erratic and "bursty" behavior. The stored energy in the system takes the form a logarithmic random walk. The simulations of our curious circuit suggest that it is possible to implement a control algorithm that actively uses noise, although too much noise eventually makes the system unusable.

  17. Asymptotic properties of a stochastic n-species Gilpin-Ayala competitive model with Lévy jumps and Markovian switching

    NASA Astrophysics Data System (ADS)

    Liu, Qun

    2015-09-01

    In this paper, a stochastic n-species Gilpin-Ayala competitive model with Lévy jumps and Markovian switching is proposed and studied. Some asymptotic properties are investigated and sufficient conditions for extinction, non-persistence in the mean and weak persistence are established. The threshold between extinction and weak persistence is obtained. The results illustrate that the asymptotic properties of the considered system have close relationships with Lévy jumps and the stationary distribution of the Markovian chain. Moreover, some simulation figures are presented to confirm our main results.

  18. Ssn6 Defines a New Level of Regulation of White-Opaque Switching in Candida albicans and Is Required For the Stochasticity of the Switch

    PubMed Central

    Lohse, Matthew B.; Nobile, Clarissa J.; Noiman, Liron; Laksana, Clement N.

    2016-01-01

    ABSTRACT The human commensal and opportunistic pathogen Candida albicans can switch between two distinct, heritable cell types, named “white” and “opaque,” which differ in morphology, mating abilities, and metabolic preferences and in their interactions with the host immune system. Previous studies revealed a highly interconnected group of transcriptional regulators that control switching between the two cell types. Here, we identify Ssn6, the C. albicans functional homolog of the Saccharomyces cerevisiae transcriptional corepressor Cyc8, as a new regulator of white-opaque switching. In a or α mating type strains, deletion of SSN6 results in mass switching from the white to the opaque cell type. Transcriptional profiling of ssn6 deletion mutant strains reveals that Ssn6 represses part of the opaque cell transcriptional program in white cells and the majority of the white cell transcriptional program in opaque cells. Genome-wide chromatin immunoprecipitation experiments demonstrate that Ssn6 is tightly integrated into the opaque cell regulatory circuit and that the positions to which it is bound across the genome strongly overlap those bound by Wor1 and Wor2, previously identified regulators of white-opaque switching. This work reveals the next layer in the white-opaque transcriptional circuitry by integrating a transcriptional regulator that does not bind DNA directly but instead associates with specific combinations of DNA-bound transcriptional regulators. PMID:26814177

  19. Polymorphic Evolutionary Games.

    PubMed

    Fishman, Michael A

    2016-06-01

    In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. PMID:27016340

  20. Stochastic resonance and computation

    NASA Astrophysics Data System (ADS)

    Torres, José-Leonel; Trainor, Lynn

    1997-09-01

    Stochastic resonance (SR) occurs in bistable nonlinear systems subject to noise, as the entrainment of their output by a weak periodic modulation added to the input. Electronic computation involves switching of memory elements between two states that correspond to 1 and 0, respectively. The possibility of switching errors due to SR in memory elements is considered, showing that it represents a negligible danger to reliable computation.

  1. Active Learning with Monty Hall in a Game Theory Class

    ERIC Educational Resources Information Center

    Brokaw, Alan J.; Merz, Thomas E.

    2004-01-01

    The authors describe a game that students can play on the first day of a game theory class. The game introduces the 4 essential elements of any game and is designed so that its sequel, also played on the first day of class, has students playing the well-known Monty Hall game, which raises the question: Should you switch doors? By implementing a…

  2. A Monetary Policy Simulation Game

    ERIC Educational Resources Information Center

    Lengwiler, Yvan

    2004-01-01

    The author presents a computer game that puts the player in the role of a central bank governor. The game is a stochastic simulation of a standard reduced form macro model, and the user interacts with this simulation by manipulating the interest rate. The problem the player faces is in many ways quite realistic--just as a real monetary authority,…

  3. Bacterial Games

    NASA Astrophysics Data System (ADS)

    Frey, Erwin; Reichenbach, Tobias

    Microbial laboratory communities have become model systems for studying the complex interplay between nonlinear dynamics of evolutionary selection forces, stochastic fluctuations arising from the probabilistic nature of interactions, and spatial organization. Major research goals are to identify and understand mechanisms that ensure viability of microbial colonies by allowing for species diversity, cooperative behavior and other kinds of "social" behavior. A synthesis of evolutionary game theory, nonlinear dynamics, and the theory of stochastic processes provides the mathematical tools and conceptual framework for a deeper understanding of these ecological systems. We give an introduction to the modern formulation of these theories and illustrate their effectiveness, focusing on selected examples of microbial systems. Intrinsic fluctuations, stemming from the discreteness of individuals, are ubiquitous, and can have important impact on the stability of ecosystems. In the absence of speciation, extinction of species is unavoidable, may, however, take very long times. We provide a general concept for defining survival and extinction on ecological time scales. Spatial degrees of freedom come with a certain mobility of individuals. When the latter is sufficiently high, bacterial community structures can be understood through mapping individual-based models, in a continuum approach, onto stochastic partial differential equations. These allow progress using methods of nonlinear dynamics such as bifurcation analysis and invariant manifolds. We conclude with a perspective on the current challenges in quantifying bacterial pattern formation, and how this might have an impact on fundamental research in nonequilibrium physics .

  4. The local minority game

    NASA Astrophysics Data System (ADS)

    Moelbert, S.; De Los Rios, P.

    2002-01-01

    Ecologists and economists try to explain collective behavior in terms of competitive systems of selfish individuals with the ability to learn from the past. Statistical physicists have been investigating models which might contribute to the understanding of the underlying mechanisms of these systems. During the last 3 yr one intuitive model, commonly referred to as the minority game (MG), has attracted considerable attention. Powerful yet simple, the minority game has produced encouraging results which can explain the temporal behavior of competitive systems. Here we switch the interest to the phenomena due to a distribution of the individuals in space. For analyzing these effects we modify the minority game and the local minority game (LMG) is introduced. We study the system both numerically and analytically, using the customary techniques already developed for the ordinary Minority Game.

  5. Backward Stochastic Differential Equations in Infinite Dimensions with Continuous Driver and Applications

    SciTech Connect

    Fuhrman, Marco Hu, Ying

    2007-09-15

    In this paper we prove the existence of a solution to backward stochastic differential equations in infinite dimensions with continuous driver under various assumptions. We apply our results to a stochastic game problem with infinitely many players.

  6. Navajo Games.

    ERIC Educational Resources Information Center

    Cliff, Janet M.

    1990-01-01

    Reviews 163 sources on Navajo games, play, and toys. Includes an annotated bibliography of those materials. Examines relationships between games and religion, origin myths, and ceremonies. Discusses attitudes toward games, gambling, and cheating; and the dichotomy between children's and adults' games. Describes specific toys, games, and play…

  7. Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models

    PubMed Central

    Smith, Jason F.; Chen, Kewei; Pillai, Ajay S.; Horwitz, Barry

    2013-01-01

    The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons. PMID:23717258

  8. Number Games.

    ERIC Educational Resources Information Center

    Crawford, David

    1997-01-01

    Presents three number games for mathematics classrooms designed to improve the learning of number concepts. Game topics include determining products, arranging mathematical signs, and factoring. (ASK)

  9. Stochastic resonance

    NASA Astrophysics Data System (ADS)

    Gammaitoni, Luca; Hänggi, Peter; Jung, Peter; Marchesoni, Fabio

    1998-01-01

    Over the last two decades, stochastic resonance has continuously attracted considerable attention. The term is given to a phenomenon that is manifest in nonlinear systems whereby generally feeble input information (such as a weak signal) can be be amplified and optimized by the assistance of noise. The effect requires three basic ingredients: (i) an energetic activation barrier or, more generally, a form of threshold; (ii) a weak coherent input (such as a periodic signal); (iii) a source of noise that is inherent in the system, or that adds to the coherent input. Given these features, the response of the system undergoes resonance-like behavior as a function of the noise level; hence the name stochastic resonance. The underlying mechanism is fairly simple and robust. As a consequence, stochastic resonance has been observed in a large variety of systems, including bistable ring lasers, semiconductor devices, chemical reactions, and mechanoreceptor cells in the tail fan of a crayfish. In this paper, the authors report, interpret, and extend much of the current understanding of the theory and physics of stochastic resonance. They introduce the readers to the basic features of stochastic resonance and its recent history. Definitions of the characteristic quantities that are important to quantify stochastic resonance, together with the most important tools necessary to actually compute those quantities, are presented. The essence of classical stochastic resonance theory is presented, and important applications of stochastic resonance in nonlinear optics, solid state devices, and neurophysiology are described and put into context with stochastic resonance theory. More elaborate and recent developments of stochastic resonance theory are discussed, ranging from fundamental quantum properties-being important at low temperatures-over spatiotemporal aspects in spatially distributed systems, to realizations in chaotic maps. In conclusion the authors summarize the achievements and attempt to indicate the most promising areas for future research in theory and experiment.

  10. 25 CFR 547.8 - What are the minimum technical software standards applicable to Class II gaming systems?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... game recall. The last game recall function shall: (1) Be retrievable at all times, other than when the recall component is involved in the play of a game, upon the operation of an external key-switch, entry... system component providing game recall, upon return to normal game play mode, to restore any...

  11. QB1 - Stochastic Gene Regulation

    SciTech Connect

    Munsky, Brian

    2012-07-23

    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  12. Synchronization of noisy systems by stochastic signals

    SciTech Connect

    Neiman, A.; Schimansky-Geier, L.; Moss, F.; Schimansky-Geier, L.; Shulgin, B.; Collins, J.J.

    1999-07-01

    We study, in terms of synchronization, the {ital nonlinear response} of noisy bistable systems to a stochastic external signal, represented by Markovian dichotomic noise. We propose a general kinetic model which allows us to conduct a full analytical study of the nonlinear response, including the calculation of cross-correlation measures, the mean switching frequency, and synchronization regions. Theoretical results are compared with numerical simulations of a noisy overdamped bistable oscillator. We show that dichotomic noise can instantaneously synchronize the switching process of the system. We also show that synchronization is most pronounced at an optimal noise level{emdash}this effect connects this phenomenon with aperiodic stochastic resonance. Similar synchronization effects are observed for a stochastic neuron model stimulated by a stochastic spike train. {copyright} {ital 1999} {ital The American Physical Society}

  13. Synchronization of noisy systems by stochastic signals.

    PubMed

    Neiman, A; Schimansky-Geier, L; Moss, F; Shulgin, B; Collins, J J

    1999-07-01

    We study, in terms of synchronization, the nonlinear response of noisy bistable systems to a stochastic external signal, represented by Markovian dichotomic noise. We propose a general kinetic model which allows us to conduct a full analytical study of the nonlinear response, including the calculation of cross-correlation measures, the mean switching frequency, and synchronization regions. Theoretical results are compared with numerical simulations of a noisy overdamped bistable oscillator. We show that dichotomic noise can instantaneously synchronize the switching process of the system. We also show that synchronization is most pronounced at an optimal noise level-this effect connects this phenomenon with aperiodic stochastic resonance. Similar synchronization effects are observed for a stochastic neuron model stimulated by a stochastic spike train. PMID:11969761

  14. Combat games

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Heymann, M.; Rajan, N.

    1985-01-01

    A mathematical formulation is proposed of a combat game between two opponents with offensive capabilities and offensive objective is proposed. Resolution of the combat involves solving two differential games with state constraints. Depending on the game dynamics and parameters, the combat can terminate in one of four ways: the first player wins; the second player wins; a draw (neither wins); or joint capture. In the first two cases, the optimal strategies of the two players are determined from suitable zero-sum games, whereas in the latter two the relevant games are nonzero-sum. Further, to avoid certain technical difficulties, the concept of a delta-combat game is introduced.

  15. [Game addiction].

    PubMed

    Mori, Akio; Iwadate, Masako; Minakawa, Nahoko T; Kawashima, Satoshi

    2015-09-01

    The purpose of this article is to analyze the South Korea and China of computer game research, and the current state of research in Japan. Excessive game actions were analyzed by PET-MRI, MRI, fMRI, NIRS, EEG. These results showed that the prefrontal cortical activity decreased during game play. Also, game addiction causes damage to the prefrontal cortex. The NIRS-EEG and simultaneous recording, during game play correspond well with the decrease of β band and oxygen-hemoglobin. The α band did not change with game play. However, oxygen-hemoglobin decreased during game play. South Korea, game addiction measures have been analyzed since 2002, but in Japan the research is recent. PMID:26394522

  16. Winter Games.

    ERIC Educational Resources Information Center

    Tarbuth, Lawson, Comp.

    Educators may find activities for indoor and outdoor winter programs in the games of the traditional Eskimo. These games are dominated by few-step operations and low level structural organization. For the most part they are quickly organized, begun, terminated, and ready to be recommenced. All types of games can be found, including quiet ones,…

  17. Serious Games.

    ERIC Educational Resources Information Center

    Abt, Clark C.

    The author explores the ways in which games can be used to instruct, inform, and educate. The first chapter discusses games in a general manner. The next five chapters present the use of games for improving education, for guidance in occupational choice and training, and for solving problems and decision making in physical and social sciences,…

  18. Winter Games.

    ERIC Educational Resources Information Center

    Tarbuth, Lawson, Comp.

    Educators may find activities for indoor and outdoor winter programs in the games of the traditional Eskimo. These games are dominated by few-step operations and low level structural organization. For the most part they are quickly organized, begun, terminated, and ready to be recommenced. All types of games can be found, including quiet ones,

  19. Stochastic cooling

    SciTech Connect

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron.

  20. N-player stochastic differential games

    NASA Technical Reports Server (NTRS)

    Varaiya, P.

    1976-01-01

    The paper presents conditions which guarantee that the control strategies adopted by N players constitute an efficient solution, an equilibrium, or a core solution. The system dynamics are described by an Ito equation, and all players have perfect information. When the set of instantaneous joint costs and velocity vectors is convex, the conditions are necessary.

  1. Stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response theory for small deviations from equilibrium, in which a general framework is constructed from the analysis of non-equilibrium states close to equilibrium. In a next step, Prigogine and others developed linear irreversible thermodynamics, which establishes relations between transport coefficients and entropy production on a phenomenological level in terms of thermodynamic forces and fluxes. However, beyond the realm of linear response no general theoretical results were available for quite a long time. This situation has changed drastically over the last 20 years with the development of stochastic thermodynamics, revealing that the range of validity of thermodynamic statements can indeed be extended deep into the non-equilibrium regime. Early developments in that direction trace back to the observations of symmetry relations between the probabilities for entropy production and entropy annihilation in non-equilibrium steady states [5-8] (nowadays categorized in the class of so-called detailed fluctuation theorems), and the derivations of the Bochkov-Kuzovlev [9, 10] and Jarzynski relations [11] (which are now classified as so-called integral fluctuation theorems). Apart from its fundamental theoretical interest, the developments in stochastic thermodynamics have experienced an additional boost from the recent experimental progress in fabricating, manipulating, controlling and observing systems on the micro- and nano-scale. These advances are not only of formidable use for probing and monitoring biological processes on the cellular, sub-cellular and molecular level, but even include the realization of a microscopic thermodynamic heat engine [12] or the experimental verification of Landauer's principle in a colloidal system [13]. The scientific program Stochastic Thermodynamics held between 4 and 15 March 2013, and hosted by The Nordic Institute for Theoretical Physics (Nordita), was attended by more than 50 scientists from the Nordic countries and elsewhere, amongst them many leading experts in the field. During the program, the most recent developments, open questions and new ideas in stochastic thermodynamics were presented and discussed. From the talks and debates, the notion of information in stochastic thermodynamics, the fundamental properties of entropy production (rate) in non-equilibrium, the efficiency of small thermodynamic machines and the characteristics of optimal protocols for the applied (cyclic) forces were crystallizing as main themes. Surprisingly, the long-studied adiabatic piston, its peculiarities and its relation to stochastic thermodynamics were also the subject of intense discussions. The comment on the Nordita program Stochastic Thermodynamics published in this issue of Physica Scripta exploits the Jarzynski relation for determining free energy differences in the adiabatic piston. This scientific program and the contribution presented here were made possible by the financial and administrative support of The Nordic Institute for Theoretical Physics.

  2. Stochastic differential equations and numerical simulation for pedestrians

    SciTech Connect

    Garrison, J.C.

    1993-07-27

    The mathematical foundation of the Ito interpretation of stochastic ordinary and partial differential equations is briefly explained. This provides the basis for a review of simple difference approximations to stochastic differential equations. An example arising in the theory of optical switching is discussed.

  3. A Probabilistic-Numerical Approximation for an Obstacle Problem Arising in Game Theory

    SciTech Connect

    Gruen, Christine

    2012-12-15

    We investigate a two-player zero-sum stochastic differential game in which one of the players has more information on the game than his opponent. We show how to construct numerical schemes for the value function of this game, which is given by the solution of a quasilinear partial differential equation with obstacle.

  4. Creating an immersive game world with evolutionary fuzzy cognitive maps.

    PubMed

    Cai, Yundong; Miao, Chunyan; Tan, Ah-Hwee; Shen, Zhiqi; Li, Boyang

    2010-01-01

    The Evolutionary Fuzzy Cognitive Map improves on serious games by modeling both fuzzy and probabilistic causal relationships among the game's variables. It permits asynchronous updates of the variables so that they can evolve dynamically and stochastically. These improvements give players a more engaging, immersive experience. PMID:20650711

  5. Constrained Stochastic Extended Redundancy Analysis.

    PubMed

    DeSarbo, Wayne S; Hwang, Heungsun; Stadler Blank, Ashley; Kappe, Eelco

    2015-06-01

    We devise a new statistical methodology called constrained stochastic extended redundancy analysis (CSERA) to examine the comparative impact of various conceptual factors, or drivers, as well as the specific predictor variables that contribute to each driver on designated dependent variable(s). The technical details of the proposed methodology, the maximum likelihood estimation algorithm, and model selection heuristics are discussed. A sports marketing consumer psychology application is provided in a Major League Baseball (MLB) context where the effects of six conceptual drivers of game attendance and their defining predictor variables are estimated. Results compare favorably to those obtained using traditional extended redundancy analysis (ERA). PMID:24327066

  6. Switch wear leveling

    SciTech Connect

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2015-09-01

    An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.

  7. Multi-player games on the cycle

    PubMed Central

    van Veelen, Matthijs; Nowak, Martin

    2011-01-01

    In multi-player games n individuals interact in any one encounter and derive a payoff from that interaction. We assume that individuals adopt one of two strategies, and we consider symmetric games, which means the payoff depends only on the number of players using either strategy, but not on any particular configuration of the encounter. On the cycle we assume that any string of n neighbouring players interacts. We study fixation probabilities of stochastic evolutionary dynamics. We derive analytical results on the cycle both for linear and exponential fitness for any intensity of selection, and compare those to results for the well-mixed population. As particular examples we study multi-player public goods games, stag hunt games and snowdrift games. PMID:21907215

  8. Fun & Games

    ERIC Educational Resources Information Center

    Jacobs, Amy; Kohl, Julie

    2007-01-01

    This article discusses how math skills, teamwork and higher-level thinking come together when students create strategic board games. In this article, the authors provide a glimpse of what it was like to be part of "To the Sun!," a game designed by students in the fifth-grade class at Olive Martin School in Lake Villa, IL. Students combined a math

  9. Game Time!

    ERIC Educational Resources Information Center

    Marek, Edmund; Howell, Beverly

    2006-01-01

    In this article, the authors present a classic playground game called "Sharks and Fishes" to introduce second- to fourth-grade students to the concept of "predation," or the relationships between a predator and its prey. By incorporating the game in a learning cycle on predation, students not only learn about predation in a memorable way, but they…

  10. Epistemic Games

    ERIC Educational Resources Information Center

    Shaffer, David Williamson

    2005-01-01

    In an article in this issue of "Innovate", Jim Gee asks the question "What would a state of the art instructional video game look like?" Based on the game "Full Spectrum Warrior", he concludes that one model is "to pick [a] domain of authentic professionalism well, intelligently select the skills and knowledge to be distributed, build in a related…

  11. Game Time!

    ERIC Educational Resources Information Center

    Marek, Edmund; Howell, Beverly

    2006-01-01

    In this article, the authors present a classic playground game called "Sharks and Fishes" to introduce second- to fourth-grade students to the concept of "predation," or the relationships between a predator and its prey. By incorporating the game in a learning cycle on predation, students not only learn about predation in a memorable way, but they

  12. Fun & Games

    ERIC Educational Resources Information Center

    Jacobs, Amy; Kohl, Julie

    2007-01-01

    This article discusses how math skills, teamwork and higher-level thinking come together when students create strategic board games. In this article, the authors provide a glimpse of what it was like to be part of "To the Sun!," a game designed by students in the fifth-grade class at Olive Martin School in Lake Villa, IL. Students combined a math…

  13. Game On!

    ERIC Educational Resources Information Center

    Deubel, Patricia

    2006-01-01

    This article describes digital game-based learning (DGBL), the uniting of educational content with computer or online games, that holds the potential for a wealth of educational applications, if managed properly. DGBL motivates by virtue of being fun. It is versatile, can be used to teach almost any subject or skill, and, when used correctly, is…

  14. Game Over?

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    This level marks the ending of the book. After comparing the game design process to a children's book about designing a butterfly, it goes into how a balance is found when designing a game. To explain this, an analogy is made with the concept of Yin and Yang. This level further deals with the “so what” and “who cares” question of the Triadic Game Design (TGD) approach. It is concluded that it can be used as an “analytical lens,” “application tool,” or “puzzle frame” in the field of games. But to have a real impact on the actual practice, it is needed that people are familiar with the idea of TGD. Since game design is (generally) collaborative, it would be beneficial that more than one person knows about it. For this reason, a game-based workshop has been developed that can be employed at the beginning of a project. Besides making sure that a project runs smoothly during the design, considerations should also be made about what happens if the game is finished. From the observations of the “life after the design” it becomes clear that this is certainly an issue that should not be neglected. The main message of this level concerns, however, that although this book is “game over,” it is everything but “over” for the design and research of games. To bring the field to “the next level,” structural approaches are needed and TGD is one of them. With the insights of this approach in mind, people can start to “dance.” Because it takes two to tango, but it takes three to design a game with a meaningful purpose.

  15. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  16. Optical switches and switching methods

    DOEpatents

    Doty, Michael

    2008-03-04

    A device and method for collecting subject responses, particularly during magnetic imaging experiments and testing using a method such as functional MRI. The device comprises a non-metallic input device which is coupled via fiber optic cables to a computer or other data collection device. One or more optical switches transmit the subject's responses. The input device keeps the subject's fingers comfortably aligned with the switches by partially immobilizing the forearm, wrist, and/or hand of the subject. Also a robust nonmetallic switch, particularly for use with the input device and methods for optical switching.

  17. Stochastic effects in a seasonally forced epidemic model

    NASA Astrophysics Data System (ADS)

    Rozhnova, G.; Nunes, A.

    2010-10-01

    The interplay of seasonality, the system’s nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.

  18. Night Games.

    ERIC Educational Resources Information Center

    Steinbach, Paul

    2001-01-01

    Discusses how to control sports facility outdoor lighting during night games. Different lighting techniques are explored for keeping lighting inside the stadium and not disturb the surrounding community. (GR)

  19. Game Proof.

    ERIC Educational Resources Information Center

    Mitchell, John

    1980-01-01

    The author argues that adult society prohibits adolescents from attaining maturity and that, in response to such constraints, adolescents turn to games, rituals, and charades. This state of affairs is viewed as an implicit adult conspiracy against adolescents. (DB)

  20. Computer Game

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Using NASA studies of advanced lunar exploration and colonization, KDT Industries, Inc. and Wesson International have developed MOONBASE, a computer game. The player, or team commander, must build and operate a lunar base using NASA technology. He has 10 years to explore the surface, select a site and assemble structures brought from Earth into an efficient base. The game was introduced in 1991 by Texas Space Grant Consortium.

  1. Models of Games Education.

    ERIC Educational Resources Information Center

    Werner, Peter; Almond, Len

    1990-01-01

    Physical educators should be selective in deciding what games to include in the games curriculum. Several theoretical frameworks for selecting and teaching games are discussed, and a framework for developing a well-balanced games program is suggested. (IAH)

  2. ION SWITCH

    DOEpatents

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  3. Game playing.

    PubMed

    Rosin, Christopher D

    2014-03-01

    Game playing has been a core domain of artificial intelligence research since the beginnings of the field. Game playing provides clearly defined arenas within which computational approaches can be readily compared to human expertise through head-to-head competition and other benchmarks. Game playing research has identified several simple core algorithms that provide successful foundations, with development focused on the challenges of defeating human experts in specific games. Key developments include minimax search in chess, machine learning from self-play in backgammon, and Monte Carlo tree search in Go. These approaches have generalized successfully to additional games. While computers have surpassed human expertise in a wide variety of games, open challenges remain and research focuses on identifying and developing new successful algorithmic foundations. WIREs Cogn Sci 2014, 5:193-205. doi: 10.1002/wcs.1278 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:26304308

  4. Stochastic memristive devices for computing and neuromorphic applications

    NASA Astrophysics Data System (ADS)

    Gaba, Siddharth; Sheridan, Patrick; Zhou, Jiantao; Choi, Shinhyun; Lu, Wei

    2013-06-01

    Nanoscale resistive switching devices (memristive devices or memristors) have been studied for a number of applications ranging from non-volatile memory, logic to neuromorphic systems. However a major challenge is to address the potentially large variations in space and time in these nanoscale devices. Here we show that in metal-filament based memristive devices the switching can be fully stochastic. While individual switching events are random, the distribution and probability of switching can be well predicted and controlled. Rather than trying to force high switching probabilities using excess voltage or time, the inherent stochastic nature of resistive switching allows these binary devices to be used as building blocks for novel error-tolerant computing schemes such as stochastic computing and provides the needed ``analog'' feature for neuromorphic applications. To verify such potential, we demonstrated memristor-based stochastic bitstreams in both time and space domains, and show that an array of binary memristors can act as a multi-level ``analog'' device for neuromorphic applications.

  5. Stochastic memristive devices for computing and neuromorphic applications.

    PubMed

    Gaba, Siddharth; Sheridan, Patrick; Zhou, Jiantao; Choi, Shinhyun; Lu, Wei

    2013-07-01

    Nanoscale resistive switching devices (memristive devices or memristors) have been studied for a number of applications ranging from non-volatile memory, logic to neuromorphic systems. However a major challenge is to address the potentially large variations in space and time in these nanoscale devices. Here we show that in metal-filament based memristive devices the switching can be fully stochastic. While individual switching events are random, the distribution and probability of switching can be well predicted and controlled. Rather than trying to force high switching probabilities using excess voltage or time, the inherent stochastic nature of resistive switching allows these binary devices to be used as building blocks for novel error-tolerant computing schemes such as stochastic computing and provides the needed "analog" feature for neuromorphic applications. To verify such potential, we demonstrated memristor-based stochastic bitstreams in both time and space domains, and show that an array of binary memristors can act as a multi-level "analog" device for neuromorphic applications. PMID:23698627

  6. Life-Game, with Glass Beads and Molecules, on the Principles of the Origin of Life

    ERIC Educational Resources Information Center

    Eigen, Manfred; Haglund, Herman

    1976-01-01

    Discusses a theoretical model that uses a game as a base for studying processes of a stochastic nature, which involve chemical reactions, molecular systems, biological processes, cells, or people in a population. (MLH)

  7. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  8. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  9. Computer Games and Instruction

    ERIC Educational Resources Information Center

    Tobias, Sigmund, Ed.; Fletcher, J. D., Ed.

    2011-01-01

    There is intense interest in computer games. A total of 65 percent of all American households play computer games, and sales of such games increased 22.9 percent last year. The average amount of game playing time was found to be 13.2 hours per week. The popularity and market success of games is evident from both the increased earnings from games,

  10. Stochastic learning in oxide binary synaptic device for neuromorphic computing.

    PubMed

    Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H-S Philip

    2013-01-01

    Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design. PMID:24198752

  11. Stochastic learning in oxide binary synaptic device for neuromorphic computing

    PubMed Central

    Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H.-S. Philip

    2013-01-01

    Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design. PMID:24198752

  12. Steady-state simulation of metastable stochastic chemical systems

    NASA Astrophysics Data System (ADS)

    Milias-Argeitis, Andreas; Lygeros, John

    2013-05-01

    We address the problem of steady-state simulation for metastable continuous-time Markov chains with application to stochastic chemical kinetics. Such systems are characterized by the existence of two or more pseudo-equilibrium states and very slow convergence towards global equilibrium. Approximation of the stationary distribution of these systems by direct application of the Stochastic Simulation Algorithm (SSA) is known to be very inefficient. In this paper, we propose a new method for steady-state simulation of metastable Markov chains that is centered around the concept of stochastic complementation. The use of this mathematical device along with SSA results in an algorithm with much better convergence properties, that facilitates the analysis of rarely switching stochastic biochemical systems. The efficiency of our method is demonstrated by its application to two genetic toggle switch models.

  13. The Switch Task for Children: Measuring Mental Flexibility in Young Children

    ERIC Educational Resources Information Center

    Dibbets, Pauline; Jolles, Jellemer

    2006-01-01

    Age-related changes in mental flexibility, in the form of task switching, were assessed in 292 children (58-156 months old). Task switching was examined with a new task for young children, the Switch Task for Children (STC). The STC consists of two easy, comparable games and does not require reading skills, which makes it suitable for children…

  14. The Switch Task for Children: Measuring Mental Flexibility in Young Children

    ERIC Educational Resources Information Center

    Dibbets, Pauline; Jolles, Jellemer

    2006-01-01

    Age-related changes in mental flexibility, in the form of task switching, were assessed in 292 children (58-156 months old). Task switching was examined with a new task for young children, the Switch Task for Children (STC). The STC consists of two easy, comparable games and does not require reading skills, which makes it suitable for children

  15. Nanoscale resistive switching devices: mechanisms and modeling

    NASA Astrophysics Data System (ADS)

    Yang, Yuchao; Lu, Wei

    2013-10-01

    Resistive switching devices (also termed memristive devices or memristors) are two-terminal nonlinear dynamic electronic devices that can have broad applications in the fields of nonvolatile memory, reconfigurable logic, analog circuits, and neuromorphic computing. Current rapid advances in memristive devices in turn demand better understanding of the switching mechanism and the development of physics-based as well as simplified device models to guide future device designs and circuit-level applications. In this article, we review the physical processes behind resistive switching (memristive) phenomena and discuss the experimental and modeling efforts to explain these effects. In this article three categories of devices, in which the resistive switching effects are driven by cation migration, anion migration, and electronic effects, will be discussed. The fundamental driving forces and the stochastic nature of resistive switching will also be discussed.

  16. Nanoscale resistive switching devices: mechanisms and modeling.

    PubMed

    Yang, Yuchao; Lu, Wei

    2013-11-01

    Resistive switching devices (also termed memristive devices or memristors) are two-terminal nonlinear dynamic electronic devices that can have broad applications in the fields of nonvolatile memory, reconfigurable logic, analog circuits, and neuromorphic computing. Current rapid advances in memristive devices in turn demand better understanding of the switching mechanism and the development of physics-based as well as simplified device models to guide future device designs and circuit-level applications. In this article, we review the physical processes behind resistive switching (memristive) phenomena and discuss the experimental and modeling efforts to explain these effects. In this article three categories of devices, in which the resistive switching effects are driven by cation migration, anion migration, and electronic effects, will be discussed. The fundamental driving forces and the stochastic nature of resistive switching will also be discussed. PMID:24057010

  17. Stochastic cooling in RHIC

    SciTech Connect

    Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

    2009-05-04

    After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

  18. Serious Games: Video Games for Good?

    ERIC Educational Resources Information Center

    Sanford, Kathy; Starr, Lisa J.; Merkel, Liz; Bonsor Kurki, Sarah

    2015-01-01

    As video games become a ubiquitous part of today's culture internationally, as educators and parents we need to turn our attention to how video games are being understood and used in informal and formal settings. Serious games have developed as a genre of video games marketed for educating youth about a range of world issues. At face value this

  19. Serious Games: Video Games for Good?

    ERIC Educational Resources Information Center

    Sanford, Kathy; Starr, Lisa J.; Merkel, Liz; Bonsor Kurki, Sarah

    2015-01-01

    As video games become a ubiquitous part of today's culture internationally, as educators and parents we need to turn our attention to how video games are being understood and used in informal and formal settings. Serious games have developed as a genre of video games marketed for educating youth about a range of world issues. At face value this…

  20. Optical switch

    DOEpatents

    Reedy, R.P.

    1987-11-10

    An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching. 3 figs.

  1. Optical switch

    DOEpatents

    Reedy, R.P.

    1985-01-18

    An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching.

  2. Optical switch

    DOEpatents

    Reedy, Robert P.

    1987-01-01

    An optical switching device (10) is provided whereby light from a first glass fiber (16) or a second glass fiber (14) may be selectively transmitted into a third glass fiber (18). Each glass fiber is provided with a focusing and collimating lens system (26, 28, 30). In one mode of operation, light from the first glass fiber (16) is reflected by a planar mirror (36) into the third glass fiber (18). In another mode of operation, light from the second glass fiber (14) passes directly into the third glass fiber (18). The planar mirror (36) is attached to a rotatable table (32) which is rotated to provide the optical switching.

  3. Games & Icebreakers.

    ERIC Educational Resources Information Center

    National Energy Education Development Project, Reston, VA.

    This booklet contains activities related to energy conservation and sources of energy that are suitable for groups containing people of different ages. The activities promote brainstorming, group sharing, and cooperative learning. Activities include: Energy Name Game; Energy Pantomime; Energy Source Relay Race; Energy Chants; This Week in Energy…

  4. Evil games.

    PubMed

    Chambers, David W

    2010-01-01

    A defining characteristic of humans is our capacity to create a better world through mutual action. Traditional ethics attempts to define and impose the one or several things we should all want. The alternative argued here is that we can retain our individual definitions of what matters and still work together for mutual improvement. Agreeing on common ethical principles is not a precondition for an effective moral life. This approach to morality is based on game theory, which holds that in purposely social interactions: (a) there are basic understandings, (b) individuals pursue their own interests, (c) we can judge others' interests, and (d) the distribution of benefits and burdens depends on the joint action of individuals, not on the action of individuals in isolation. In this view, immorality becomes a matter of cheating in the game of life. The three primary forms of cheating are deception (misleading others into thinking they are playing a game other than the one that is to their advantage to play), coercion (blocking courses of action others would normally be entitled to), and reneging (playing the game and then dodging the payoff if one does not like the outcome). These three evils are illustrated by Shakespeare's plays Othello, Richard III, and Antony and Cleopatra. PMID:20481069

  5. Got Game

    ERIC Educational Resources Information Center

    Lum, Lydia

    2007-01-01

    Around the country, disabled sports are often treated like second-class siblings to their able-bodied counterparts, largely because the latter bring in prestigious tournaments and bowl games, lucrative TV contracts and national exposure for top athletes and coaches. Because disabled people are so sparsely distributed in the general population, it…

  6. Math Games

    ERIC Educational Resources Information Center

    Lorenzi, Natalie

    2012-01-01

    Math games bring out kids' natural love of numbers. Yet in the waning days of school, students can't wait for that final bell to ring. Each summer, most students lose about two months of mathematical computation skills. So how do teachers keep their students focused on math up till the end? Before sending them off for the summer, get them hooked…

  7. Shell Games.

    ERIC Educational Resources Information Center

    Atkinson, Bill

    1982-01-01

    The author critiques the program design and educational aspects of the Shell Games, a program developed by Apple Computer, Inc., which can be used by the teacher to design objective tests for adaptation to specific assessment needs. (For related articles, see EC 142 959-962.) (Author)

  8. Grammar Games

    ERIC Educational Resources Information Center

    Brown, Kim

    2004-01-01

    The mere mention of a grammar lesson can set students' eyes rolling. The fun activities described in this article can turn those blank looks into smiles. Here, the author presents grammar games namely: (1) noun tennis; (2) the minister's cat; (3) kids take action; (4) what's my adverb?; (5) and then I saw...; and (6) grammar sing-along.

  9. Deterministic dynamics in the minority game

    NASA Astrophysics Data System (ADS)

    Jefferies, P.; Hart, M. L.; Johnson, N. F.

    2002-01-01

    The minority game (MG) behaves as a stochastically disturbed deterministic system due to the coin toss invoked to resolve tied strategies. Averaging over this stochasticity yields a description of the MG's deterministic dynamics via mapping equations for the strategy score and global information. The strategy-score map contains both restoring-force and bias terms, whose magnitudes depend on the game's quenched disorder. Approximate analytical expressions are obtained and the effect of ``market impact'' is discussed. The global-information map represents a trajectory on a de Bruijn graph. For small quenched disorder, a Eulerian trail represents a stable attractor. It is shown analytically how antipersistence arises. The response to perturbations and different initial conditions is also discussed.

  10. Stochastic gradient method with accelerated stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masayuki

    2016-03-01

    We implement the simple method to accelerate the convergence speed to the steady state and enhance the mixing rate to the stochastic gradient Langevin method. The ordinary stochastic gradient method is based on mini-batch learning for reducing the computational cost when the amount of data is extraordinary large. The stochasticity of the gradient can be mitigated by the injection of Gaussian noise, which yields the stochastic Langevin gradient method; this method can be used for Bayesian posterior sampling. However, the performance of the stochastic Langevin gradient method depends on the mixing rate of the stochastic dynamics. In this study, we propose violating the detailed balance condition to enhance the mixing rate. Recent studies have revealed that violating the detailed balance condition accelerates the convergence to a stationary state and reduces the correlation time between the samplings. We implement this violation of the detailed balance condition in the stochastic gradient Langevin method and test our method for a simple model to demonstrate its performance.

  11. Switching Transistor

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Westinghouse Electric Corporation's D60T transistors are used primarily as switching devices for controlling high power in electrical circuits. It enables reduction in the number and size of circuit components and promotes more efficient use of energy. Wide range of application from a popcorn popper to a radio frequency generator for solar cell production.

  12. Stochastic symmetries of Wick type stochastic ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Ünal, Gazanfer

    2015-04-01

    We consider Wick type stochastic ordinary differential equations with Gaussian white noise. We define the stochastic symmetry transformations and Lie equations in Kondratiev space (S)-1N. We derive the determining system of Wick type stochastic partial differential equations with Gaussian white noise. Stochastic symmetries for stochastic Bernoulli, Riccati and general stochastic linear equation in (S)-1N are obtained. A stochastic version of canonical variables is also introduced.

  13. Asynchronous switching of flagellar motors on a single bacterial cell.

    PubMed

    Macnab, R M; Han, D P

    1983-01-01

    Salmonella possesses several flagella, each capable of counterclockwise and clockwise rotation. Counterclockwise rotation produces swimming, clockwise rotation produces tumbling. Switching between senses occurs stochastically. The rotational sense of individual flagella on a single cell could be monitored under special conditions (partially de-energized cells of cheC and cheZ mutants). Switching was totally asynchronous, indicating that the stochastic process operates at the level of the individual organelle. Coordinated rotation in the flagellar bundle during swimming may therefore derive simply from a high counterclockwise probability enhanced by mechanical interactions, and not from a synchronizing switch mechanism. Different flagella on a given cell had different switching probabilities, on a time scale (greater than 2 min) spanning many switching events. This heterogeneity may reflect permanent structural differences, or slow fluctuations in some regulatory process. PMID:6297780

  14. Games and Learning

    ERIC Educational Resources Information Center

    Oblinger, Diana G.

    2006-01-01

    From a very early age, people learn from games and play. Parents and preschool teachers use games to teach colors, numbers, names, and shapes; the process is drill and practice. Games engage everyone, capturing their attention. People willingly spend time on task. Although students in high school and college continue to play games, games rarely…

  15. Teaching Using Computer Games

    ERIC Educational Resources Information Center

    Miller, Lee Dee; Shell, Duane; Khandaker, Nobel; Soh, Leen-Kiat

    2011-01-01

    Computer games have long been used for teaching. Current reviews lack categorization and analysis using learning models which would help instructors assess the usefulness of computer games. We divide the use of games into two classes: game playing and game development. We discuss the Input-Process-Outcome (IPO) model for the learning process when…

  16. Teaching Using Computer Games

    ERIC Educational Resources Information Center

    Miller, Lee Dee; Shell, Duane; Khandaker, Nobel; Soh, Leen-Kiat

    2011-01-01

    Computer games have long been used for teaching. Current reviews lack categorization and analysis using learning models which would help instructors assess the usefulness of computer games. We divide the use of games into two classes: game playing and game development. We discuss the Input-Process-Outcome (IPO) model for the learning process when

  17. Games and Learning

    ERIC Educational Resources Information Center

    Oblinger, Diana G.

    2006-01-01

    From a very early age, people learn from games and play. Parents and preschool teachers use games to teach colors, numbers, names, and shapes; the process is drill and practice. Games engage everyone, capturing their attention. People willingly spend time on task. Although students in high school and college continue to play games, games rarely

  18. Comparison of approaches for parameter estimation on stochastic models: Generic least squares versus specialized approaches.

    PubMed

    Zimmer, Christoph; Sahle, Sven

    2016-04-01

    Parameter estimation for models with intrinsic stochasticity poses specific challenges that do not exist for deterministic models. Therefore, specialized numerical methods for parameter estimation in stochastic models have been developed. Here, we study whether dedicated algorithms for stochastic models are indeed superior to the naive approach of applying the readily available least squares algorithm designed for deterministic models. We compare the performance of the recently developed multiple shooting for stochastic systems (MSS) method designed for parameter estimation in stochastic models, a stochastic differential equations based Bayesian approach and a chemical master equation based techniques with the least squares approach for parameter estimation in models of ordinary differential equations (ODE). As test data, 1000 realizations of the stochastic models are simulated. For each realization an estimation is performed with each method, resulting in 1000 estimates for each approach. These are compared with respect to their deviation to the true parameter and, for the genetic toggle switch, also their ability to reproduce the symmetry of the switching behavior. Results are shown for different set of parameter values of a genetic toggle switch leading to symmetric and asymmetric switching behavior as well as an immigration-death and a susceptible-infected-recovered model. This comparison shows that it is important to choose a parameter estimation technique that can treat intrinsic stochasticity and that the specific choice of this algorithm shows only minor performance differences. PMID:26826353

  19. Switched power workshop. [Switched power electron guns

    SciTech Connect

    Palmer, R.B.

    1988-01-01

    This paper discusses the design of a switched power electron gun. Particular topics discussed are: vacuum photodiode switch; laser switched solid state diodes; gun performance; charging supply; and laser requirements. (LSP)

  20. Stochastic stability and the evolution of coordination in spatially structured populations.

    PubMed

    Van Cleve, Jeremy; Lehmann, Laurent

    2013-11-01

    Animals can often coordinate their actions to achieve mutually beneficial outcomes. However, this can result in a social dilemma when uncertainty about the behavior of partners creates multiple fitness peaks. Strategies that minimize risk ("risk dominant") instead of maximizing reward ("payoff dominant") are favored in economic models when individuals learn behaviors that increase their payoffs. Specifically, such strategies are shown to be "stochastically stable" (a refinement of evolutionary stability). Here, we extend the notion of stochastic stability to biological models of continuous phenotypes at a mutation-selection-drift balance. This allows us to make a unique prediction for long-term evolution in games with multiple equilibria. We show how genetic relatedness due to limited dispersal and scaled to account for local competition can crucially affect the stochastically-stable outcome of coordination games. We find that positive relatedness (weak local competition) increases the chance the payoff dominant strategy is stochastically stable, even when it is not risk dominant. Conversely, negative relatedness (strong local competition) increases the chance that strategies evolve that are neither payoff nor risk dominant. Extending our results to large multiplayer coordination games we find that negative relatedness can create competition so extreme that the game effectively changes to a hawk-dove game and a stochastically stable polymorphism between the alternative strategies evolves. These results demonstrate the usefulness of stochastic stability in characterizing long-term evolution of continuous phenotypes: the outcomes of multiplayer games can be reduced to the generic equilibria of two-player games and the effect of spatial structure can be analyzed readily. PMID:23999503

  1. Video game use and cognitive performance: does it vary with the presence of problematic video game use?

    PubMed

    Collins, Emily; Freeman, Jonathan

    2014-03-01

    Action video game players have been found to outperform nonplayers on a variety of cognitive tasks. However, several failures to replicate these video game player advantages have indicated that this relationship may not be straightforward. Moreover, despite the discovery that problematic video game players do not appear to demonstrate the same superior performance as nonproblematic video game players in relation to multiple object tracking paradigms, this has not been investigated for other tasks. Consequently, this study compared gamers and nongamers in task switching ability, visual short-term memory, mental rotation, enumeration, and flanker interference, as well as investigated the influence of self-reported problematic video game use. A total of 66 participants completed the experiment, 26 of whom played action video games, including 20 problematic players. The results revealed no significant effect of playing action video games, nor any influence of problematic video game play. This indicates that the previously reported cognitive advantages in video game players may be restricted to specific task features or samples. Furthermore, problematic video game play may not have a detrimental effect on cognitive performance, although this is difficult to ascertain considering the lack of video game player advantage. More research is therefore sorely needed. PMID:24111600

  2. The Green Revolution Game.

    ERIC Educational Resources Information Center

    Corbridge, Stuart

    1985-01-01

    The Green Revolution game helps college students learn about agrarian change in which people use science to transform nature. The rational and basic objectives of the game are discussed, and the game's strengths and weaknesses are examined. (RM)

  3. Interactive Health Games

    MedlinePlus

    ... Cross) Play the Blood Typing Game (Nobel Foundation) Blood Transfusion and Donation Blood Type Game (American Red Cross) Donor Tag Game ( ... Homeland Security) Drugs and Young People Test Your Knowledge (National Institute on Drug Abuse) E E. Coli ...

  4. Structure-preserving desynchronization of minority games

    NASA Astrophysics Data System (ADS)

    Mosetti, G.; Challet, D.; Solomon, S.

    2009-10-01

    Perfect synchronicity in N-player games is a useful theoretical dream, but communication delays are inevitable and may result in asynchronous interactions. Some systems such as financial markets are asynchronous by design, and yet most theoretical models assume perfectly synchronized actions. We propose a general method to transform standard models of adaptive agents into asynchronous systems while preserving their global structure under some conditions. Using the minority game as an example, we find that the phase and fluctuations structure of the standard game subsists even in maximally asynchronous deterministic case, but that it disappears if too much stochasticity is added to the temporal structure of interaction. Allowing for heterogeneous communication speeds and activity patterns gives rise to a new information ecology that we study in details. in here

  5. Computer Games and Instruction

    ERIC Educational Resources Information Center

    Tobias, Sigmund, Ed.; Fletcher, J. D., Ed.

    2011-01-01

    There is intense interest in computer games. A total of 65 percent of all American households play computer games, and sales of such games increased 22.9 percent last year. The average amount of game playing time was found to be 13.2 hours per week. The popularity and market success of games is evident from both the increased earnings from games,…

  6. Emergence of cooperation in public goods games.

    PubMed

    Kurokawa, Shun; Ihara, Yasuo

    2009-04-01

    Evolution of cooperation has been a major issue in evolutionary biology. Cooperation is observed not only in dyadic interactions, but also in social interactions involving more than two individuals. It has been argued that direct reciprocity cannot explain the emergence of cooperation in large groups because the basin of attraction for the 'cooperative' equilibrium state shrinks rapidly as the group size increases. However, this argument is based on the analysis of models that consider the deterministic process. More recently, stochastic models of two-player games have been developed and the conditions for natural selection to favour the emergence of cooperation in finite populations have been specified. These conditions have been given as a mathematically simple expression, which is called the one-third law. In this paper, we investigate a stochastic model of n-player games and show that natural selection can favour a reciprocator replacing a population of defectors in the n-player repeated Prisoner's Dilemma game. We also derive a generalized version of the one-third law (the {2/[n(n+1)]}1/(n-1) law). Additionally, contrary to previous studies, the model suggests that the evolution of cooperation in public goods game can be facilitated by larger group size under certain conditions. PMID:19141423

  7. Intrinsic noise in systems with switching environments

    NASA Astrophysics Data System (ADS)

    Hufton, Peter G.; Lin, Yen Ting; Galla, Tobias; McKane, Alan J.

    2016-05-01

    We study individual-based dynamics in finite populations, subject to randomly switching environmental conditions. These are inspired by models in which genes transition between on and off states, regulating underlying protein dynamics. Similarly, switches between environmental states are relevant in bacterial populations and in models of epidemic spread. Existing piecewise-deterministic Markov process approaches focus on the deterministic limit of the population dynamics while retaining the randomness of the switching. Here we go beyond this approximation and explicitly include effects of intrinsic stochasticity at the level of the linear-noise approximation. Specifically, we derive the stationary distributions of a number of model systems, in good agreement with simulations. This improves existing approaches which are limited to the regimes of fast and slow switching.

  8. Dynamics in atomic signaling games.

    PubMed

    Fox, Michael J; Touri, Behrouz; Shamma, Jeff S

    2015-07-01

    We study an atomic signaling game under stochastic evolutionary dynamics. There are a finite number of players who repeatedly update from a finite number of available languages/signaling strategies. Players imitate the most fit agents with high probability or mutate with low probability. We analyze the long-run distribution of states and show that, for sufficiently small mutation probability, its support is limited to efficient communication systems. We find that this behavior is insensitive to the particular choice of evolutionary dynamic, a property that is due to the game having a potential structure with a potential function corresponding to average fitness. Consequently, the model supports conclusions similar to those found in the literature on language competition. That is, we show that efficient languages eventually predominate the society while reproducing the empirical phenomenon of linguistic drift. The emergence of efficiency in the atomic case can be contrasted with results for non-atomic signaling games that establish the non-negligible possibility of convergence, under replicator dynamics, to states of unbounded efficiency loss. PMID:25863268

  9. Motivational Correlations of Strategy Choices in the Prisoner's Dilemma Game

    NASA Technical Reports Server (NTRS)

    Williams, Carl D.; Steele, Matthew W.; Tedeschi, James T.

    1969-01-01

    The purpose of the present study was to investigate the relationship between the motivational dimensions assessed by the Motivation Analysis Test and prisoner's dilemma game behavior as measured both by the number of competitive strategy choices and the two-stage stochastic variables labelled trustworthiness, forgiveness, repentance, and trust by Rapoport.

  10. Fluctuations as stochastic deformation.

    PubMed

    Kazinski, P O

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium. PMID:18517590

  11. Fluctuations as stochastic deformation

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  12. Stochastic phase transition operator.

    PubMed

    Yamanobe, Takanobu

    2011-07-01

    In this study a Markov operator is introduced that represents the density evolution of an impulse-driven stochastic biological oscillator. The operator's stochastic kernel is constructed using the asymptotic expansion of stochastic processes instead of solving the Fokker-Planck equation. The Markov operator is shown to successfully approximate the density evolution of the biological oscillator considered. The response of the oscillator to both periodic and time-varying impulses can be analyzed using the operator's transient and stationary properties. Furthermore, an unreported stochastic dynamic bifurcation for the biological oscillator is obtained by using the eigenvalues of the product of the Markov operators. PMID:21867230

  13. Viscosity Solutions of Systems of PDEs with Interconnected Obstacles and Switching Problem

    SciTech Connect

    Hamadene, S. Morlais, M. A.

    2013-04-15

    This paper deals with existence and uniqueness of a solution in viscosity sense, for a system of m variational partial differential inequalities with inter-connected obstacles. A particular case is the Hamilton-Jacobi-Bellmann system of the Markovian stochastic optimal m-states switching problem. The switching cost functions depend on (t,x). The main tool is the notion of systems of reflected backward stochastic differential equations with oblique reflection.

  14. Path sampling with stochastic dynamics: Some new algorithms

    SciTech Connect

    Stoltz, Gabriel . E-mail: stoltz@cermics.enpc.fr

    2007-07-01

    We propose here some new sampling algorithms for path sampling in the case when stochastic dynamics are used. In particular, we present a new proposal function for equilibrium sampling of paths with a Monte-Carlo dynamics (the so-called 'brownian tube' proposal). This proposal is based on the continuity of the dynamics with respect to the random forcing, and generalizes all previous approaches when stochastic dynamics are used. The efficiency of this proposal is demonstrated using some measure of decorrelation in path space. We also discuss a switching strategy that allows to transform ensemble of paths at a finite rate while remaining at equilibrium, in contrast with the usual Jarzynski like switching. This switching is very interesting to sample constrained paths starting from unconstrained paths, or to perform simulated annealing in a rigorous way.

  15. Mobile Game for Learning Bacteriology

    ERIC Educational Resources Information Center

    Sugimura, Ryo; Kawazu, Sotaro; Tamari, Hiroki; Watanabe, Kodai; Nishimura, Yohei; Oguma, Toshiki; Watanabe, Katsushiro; Kaneko, Kosuke; Okada, Yoshihiro; Yoshida, Motofumi; Takano, Shigeru; Inoue, Hitoshi

    2014-01-01

    This paper treats serious games. Recently, one of the game genres called serious game has become popular, which has other purposes besides enjoyments like education, training and so on. Especially, learning games of the serious games seem very attractive for the age of video games so that the authors developed a mobile game for learning…

  16. Stochastic Convection Parameterizations

    NASA Technical Reports Server (NTRS)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  17. A Stochastic Employment Problem

    ERIC Educational Resources Information Center

    Wu, Teng

    2013-01-01

    The Stochastic Employment Problem(SEP) is a variation of the Stochastic Assignment Problem which analyzes the scenario that one assigns balls into boxes. Balls arrive sequentially with each one having a binary vector X = (X[subscript 1], X[subscript 2],...,X[subscript n]) attached, with the interpretation being that if X[subscript i] = 1 the ball…

  18. Game Board Artists.

    ERIC Educational Resources Information Center

    Szekely, George

    2000-01-01

    Explores children's fascination with creating their own unique games as an art form. Focuses on different games, such as chess, checkers, pogs, and monopoly. States that observing children playing games offers a firsthand lesson in how children create. Discusses what it means to be an art teacher who promotes creative play with games. (CMK)

  19. Learning with Calculator Games

    ERIC Educational Resources Information Center

    Frahm, Bruce

    2013-01-01

    Educational games provide a fun introduction to new material and a review of mathematical algorithms. Specifically, games can be designed to assist students in developing mathematical skills as an incidental consequence of the game-playing process. The programs presented in this article are adaptations of board games or television shows that…

  20. Games for Learning

    ERIC Educational Resources Information Center

    Gee, James Paul

    2013-01-01

    Today there is a great deal of interest in and a lot of hype about using video games in schools. Video games are a new silver bullet. Games can create good learning because they teach in powerful ways. The theory behind game-based learning is not really new, but a traditional and well-tested approach to deep and effective learning, often…

  1. Games for Geography Classes.

    ERIC Educational Resources Information Center

    Haas, Mary E.; Laughlin, Margaret A.

    Games are motivating instructional resources that provide opportunities to learn and practice map, group work, and communication skills. Using the designs of popular commercial, folk, or media games, teachers can create games for their classroom that support geographic education. Many games can be used by students on their own before and during…

  2. Games for Learning

    ERIC Educational Resources Information Center

    Gee, James Paul

    2013-01-01

    Today there is a great deal of interest in and a lot of hype about using video games in schools. Video games are a new silver bullet. Games can create good learning because they teach in powerful ways. The theory behind game-based learning is not really new, but a traditional and well-tested approach to deep and effective learning, often

  3. Stabilized multilevel Monte Carlo method for stiff stochastic differential equations

    SciTech Connect

    Abdulle, Assyr Blumenthal, Adrian

    2013-10-15

    A multilevel Monte Carlo (MLMC) method for mean square stable stochastic differential equations with multiple scales is proposed. For such problems, that we call stiff, the performance of MLMC methods based on classical explicit methods deteriorates because of the time step restriction to resolve the fastest scales that prevents to exploit all the levels of the MLMC approach. We show that by switching to explicit stabilized stochastic methods and balancing the stabilization procedure simultaneously with the hierarchical sampling strategy of MLMC methods, the computational cost for stiff systems is significantly reduced, while keeping the computational algorithm fully explicit and easy to implement. Numerical experiments on linear and nonlinear stochastic differential equations and on a stochastic partial differential equation illustrate the performance of the stabilized MLMC method and corroborate our theoretical findings.

  4. The Uses of Teaching Games in Game Theory Classes and Some Experimental Games.

    ERIC Educational Resources Information Center

    Shubik, Martin

    2002-01-01

    Discusses the use of lightly controlled games, primarily in classes in game theory. Considers the value of such games from the viewpoint of both teaching and experimentation and discusses context; control; pros and cons of games in teaching; experimental games; and games in class, including cooperative game theory. (Author/LRW)

  5. Partner switching stabilizes cooperation in coevolutionary prisoner's dilemma

    NASA Astrophysics Data System (ADS)

    Fu, Feng; Wu, Te; Wang, Long

    2009-03-01

    Previous studies suggest that cooperation prevails when individuals can switch their interaction partners quickly. However, it is still unclear how quickly individuals should switch adverse partners to maximize cooperation. To address this issue, we propose a simple model of coevolutionary prisoner’s dilemma in which individuals are allowed to either adjust their strategies or switch their defective partners. Interestingly, we find that, depending on the game parameter, there is an optimal tendency of switching adverse partnerships that maximizes the fraction of cooperators in the population. We confirm that the stabilization of cooperation by partner switching remains effective under some situations, where either normalized or accumulated payoff is used in strategy updating, and where either only cooperators or all individuals are privileged to sever disadvantageous partners. We also provide an extended pair approximation to study the coevolutionary dynamics. Our results may be helpful in understanding the role of partner switching in the stabilization of cooperation in the real world.

  6. Effects of Input Noise on a Simple Biochemical Switch

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Kessler, David A.; Rappel, Wouter-Jan; Levine, Herbert

    2011-09-01

    Many biological processes are controlled by biomolecular switches which themselves are regulated by various upstream chemical molecules (the input). Understanding how input noise affects the output stochastic switching process is of significant interest in various biophysical systems like gene regulation, chemosensing, and cell motility. Here, we propose an exactly solvable model where the noisy input signal arises from a simple birth-death process and directly regulates the transition rates of a downstream switch. We solve the joint master equations to analyze the statistical properties of the output switching process. Our results suggest that the conventional wisdom of an additive input-output noise rule fails to describe signaling systems containing a single molecular switch, and, instead, the most important effect of input noise is to effectively reduce the on rate of the switch.

  7. Phenotypic switching in bacteria

    NASA Astrophysics Data System (ADS)

    Merrin, Jack

    Living matter is a non-equilibrium system in which many components work in parallel to perpetuate themselves through a fluctuating environment. Physiological states or functionalities revealed by a particular environment are called phenotypes. Transitions between phenotypes may occur either spontaneously or via interaction with the environment. Even in the same environment, genetically identical bacteria can exhibit different phenotypes of a continuous or discrete nature. In this thesis, we pursued three lines of investigation into discrete phenotypic heterogeneity in bacterial populations: the quantitative characterization of the so-called bacterial persistence, a theoretical model of phenotypic switching based on those measurements, and the design of artificial genetic networks which implement this model. Persistence is the phenotype of a subpopulation of bacteria with a reduced sensitivity to antibiotics. We developed a microfluidic apparatus, which allowed us to monitor the growth rates of individual cells while applying repeated cycles of antibiotic treatments. We were able to identify distinct phenotypes (normal and persistent) and characterize the stochastic transitions between them. We also found that phenotypic heterogeneity was present prior to any environmental cue such as antibiotic exposure. Motivated by the experiments with persisters, we formulated a theoretical model describing the dynamic behavior of several discrete phenotypes in a periodically varying environment. This theoretical framework allowed us to quantitatively predict the fitness of dynamic populations and to compare survival strategies according to environmental time-symmetries. These calculations suggested that persistence is a strategy used by bacterial populations to adapt to fluctuating environments. Knowledge of the phenotypic transition rates for persistence may provide statistical information about the typical environments of bacteria. We also describe a design of artificial genetic networks that would implement a more general theoretical model of phenotypic switching. We will use a new cloning strategy in order to systematically assemble a large number of genetic features, such as site-specific recombination components from the R64 plasmid, which invert several coexisting DNA segments. The inversion of these segments would lead to discrete phenotypic transitions inside a living cell. These artificial phenotypic switches can be controlled precisely in experiments and may serve as a benchmark for their natural counterparts.

  8. THYRATRON SWITCH

    DOEpatents

    Creveling, R.; Bourgeois, N.A. Jr.

    1959-04-21

    An arrangement for utilizing a thyratron as a noise free switch is described. It has been discovered that the voltage between plate and cathode of a thyratron will oscillate, producing voltage spikes, if the tube carries only a fraction of its maximum rated current. These voltage spikes can produce detrimental effects where the thyratron is used in critical timing circuits. To alleviate this problem the disclosed circuit provides a charged capacitor and a resistor in parallel with the tube and of such value that the maximum current will flow from the capacitor through the thyratron when it is triggered. During this time the signal current is conducted through the tube, before the thyratron voltage starts to oscillate, and the signal current output is free of noise spikes.

  9. Evolutionary Games with Randomly Changing Payoff Matrices

    NASA Astrophysics Data System (ADS)

    Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun

    2015-06-01

    Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.

  10. Emergence of phenotype switching through continuous and discontinuous evolutionary transitions.

    PubMed

    Patra, Pintu; Klumpp, Stefan

    2015-07-01

    Bacterial persistence (phenotypic tolerance to antibiotics) provides a prime example of bet-hedging, where normally growing cells generate slow-growing but antibiotic-tolerant persister cells to survive through periods of exposure to antibiotics. The population dynamics of persistence is explained by a phenotype switching mechanism that allows individual cells to switch between these different cellular states with different environmental sensitivities. Here, we perform a theoretical study based on an exact solution for the case of a periodic variation of the environment to address how phenotype switching emerges and under what conditions switching is or is not beneficial for long-time growth. Specifically we report a bifurcation through which a fitness maximum and minimum emerge above a threshold in the duration of exposure to the antibiotic. Only above this threshold, the optimal phenotype switching rates are adjusted to the time scales of the environment, as emphasized by previous theoretical studies, while below the threshold a non-switching population is fitter than a switching one. The bifurcation can be of different type, depending on how the phenotype switching rates are allowed to vary. If the switching rates for both directions of the switch are coupled, the transition is discontinuous and results in evolutionary hysteresis, which we confirm with a stochastic simulation. If the switching rates vary individually, a continuous transition is obtained and no hysteresis is found. We discuss how both scenarios can be linked to changes in the underlying molecular networks. PMID:26020274

  11. Emergence of phenotype switching through continuous and discontinuous evolutionary transitions

    NASA Astrophysics Data System (ADS)

    Patra, Pintu; Klumpp, Stefan

    2015-07-01

    Bacterial persistence (phenotypic tolerance to antibiotics) provides a prime example of bet-hedging, where normally growing cells generate slow-growing but antibiotic-tolerant persister cells to survive through periods of exposure to antibiotics. The population dynamics of persistence is explained by a phenotype switching mechanism that allows individual cells to switch between these different cellular states with different environmental sensitivities. Here, we perform a theoretical study based on an exact solution for the case of a periodic variation of the environment to address how phenotype switching emerges and under what conditions switching is or is not beneficial for long-time growth. Specifically we report a bifurcation through which a fitness maximum and minimum emerge above a threshold in the duration of exposure to the antibiotic. Only above this threshold, the optimal phenotype switching rates are adjusted to the time scales of the environment, as emphasized by previous theoretical studies, while below the threshold a non-switching population is fitter than a switching one. The bifurcation can be of different type, depending on how the phenotype switching rates are allowed to vary. If the switching rates for both directions of the switch are coupled, the transition is discontinuous and results in evolutionary hysteresis, which we confirm with a stochastic simulation. If the switching rates vary individually, a continuous transition is obtained and no hysteresis is found. We discuss how both scenarios can be linked to changes in the underlying molecular networks.

  12. The $-game

    NASA Astrophysics Data System (ADS)

    Vitting Andersen, J.; Sornette, D.

    2003-01-01

    We propose a payoff function extending Minority Games (MG) that captures the competition between agents to make money. In contrast with previous MG, the best strategies are not always targeting the minority but are shifting opportunistically between the minority and the majority. The emergent properties of the price dynamics and of the wealth of agents are strikingly different from those found in MG. As the memory of agents is increased, we find a phase transition between a self-sustained speculative phase in which a ``stubborn majority'' of agents effectively collaborate to arbitrage a market-maker for their mutual benefit and a phase where the market-maker always arbitrages the agents. A subset of agents exhibit a sustained non-equilibrium risk-return profile.

  13. Stochastic Processes in Electrochemistry.

    PubMed

    Singh, Pradyumna S; Lemay, Serge G

    2016-05-17

    Stochastic behavior becomes an increasingly dominant characteristic of electrochemical systems as we probe them on the smallest scales. Advances in the tools and techniques of nanoelectrochemistry dictate that stochastic phenomena will become more widely manifest in the future. In this Perspective, we outline the conceptual tools that are required to analyze and understand this behavior. We draw on examples from several specific electrochemical systems where important information is encoded in, and can be derived from, apparently random signals. This Perspective attempts to serve as an accessible introduction to understanding stochastic phenomena in electrochemical systems and outlines why they cannot be understood with conventional macroscopic descriptions. PMID:27120701

  14. Beating Cheaters at Their Own Game

    NASA Astrophysics Data System (ADS)

    Rauch, Joseph; Kondev, Jane; Sanchez, Alvaro

    2014-03-01

    Public goods games occur over many different scales in nature, from microbial biofilms to the human commons. On each scale stable populations of cooperators (members who invest into producing some good shared by the entire population) and cheaters (members who make no investment yet still share the common goods) has been observed. This observation raises interesting questions, like how do cooperators maintain their presence in a game that seems to heavily favor cheaters, and what strategies for cooperation could populations employ to increase their success? We propose a model of a public goods game with two different player populations, S and D, which employ two different strategies: the D population always cheats and the S population makes a stochastic decision whether to cooperate or not. We find that stochastic cooperation improves the success of the S population over the competing D population, but at a price. As the probability of cheating by the S players increases they outcompete the D players but the total population becomes more ecologically unstable (i.e., the likelihood of its extinction grows). We investigate this trade off between evolutionary success and ecological stability and propose experiments using populations of yeast cells to test our predictions.

  15. Mathematical Games for Primary Students.

    ERIC Educational Resources Information Center

    Badham, Val

    1997-01-01

    Outlines some ways in which games such as board games, card games, trading games, or match the rule may be used to improve students' mathematical skills while maintaining a positive classroom atmosphere. (ASK)

  16. The Cell Cycle Switch Computes Approximate Majority

    PubMed Central

    Cardelli, Luca; Csikász-Nagy, Attila

    2012-01-01

    Both computational and biological systems have to make decisions about switching from one state to another. The ‘Approximate Majority’ computational algorithm provides the asymptotically fastest way to reach a common decision by all members of a population between two possible outcomes, where the decision approximately matches the initial relative majority. The network that regulates the mitotic entry of the cell-cycle in eukaryotes also makes a decision before it induces early mitotic processes. Here we show that the switch from inactive to active forms of the mitosis promoting Cyclin Dependent Kinases is driven by a system that is related to both the structure and the dynamics of the Approximate Majority computation. We investigate the behavior of these two switches by deterministic, stochastic and probabilistic methods and show that the steady states and temporal dynamics of the two systems are similar and they are exchangeable as components of oscillatory networks. PMID:22977731

  17. The Cell Cycle Switch Computes Approximate Majority

    NASA Astrophysics Data System (ADS)

    Cardelli, Luca; Csikász-Nagy, Attila

    2012-09-01

    Both computational and biological systems have to make decisions about switching from one state to another. The `Approximate Majority' computational algorithm provides the asymptotically fastest way to reach a common decision by all members of a population between two possible outcomes, where the decision approximately matches the initial relative majority. The network that regulates the mitotic entry of the cell-cycle in eukaryotes also makes a decision before it induces early mitotic processes. Here we show that the switch from inactive to active forms of the mitosis promoting Cyclin Dependent Kinases is driven by a system that is related to both the structure and the dynamics of the Approximate Majority computation. We investigate the behavior of these two switches by deterministic, stochastic and probabilistic methods and show that the steady states and temporal dynamics of the two systems are similar and they are exchangeable as components of oscillatory networks.

  18. Information Security Analysis Using Game Theory and Simulation

    SciTech Connect

    Schlicher, Bob G; Abercrombie, Robert K

    2012-01-01

    Information security analysis can be performed using game theory implemented in dynamic simulations of Agent Based Models (ABMs). Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. Our approach addresses imperfect information and scalability that allows us to also address previous limitations of current stochastic game models. Such models only consider perfect information assuming that the defender is always able to detect attacks; assuming that the state transition probabilities are fixed before the game assuming that the players actions are always synchronous; and that most models are not scalable with the size and complexity of systems under consideration. Our use of ABMs yields results of selected experiments that demonstrate our proposed approach and provides a quantitative measure for realistic information systems and their related security scenarios.

  19. Diversity and critical behavior in prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Yun, C. K.; Masuda, N.; Kahng, B.

    2011-05-01

    The prisoner’s dilemma (PD) game is a simple model for understanding cooperative patterns in complex systems. Here, we study a PD game problem in scale-free networks containing hierarchically organized modules and controllable shortcuts connecting separated hubs. We find that cooperator clusters exhibit a percolation transition in the parameter space (p,b), where p is the occupation probability of shortcuts and b is the temptation payoff in the PD game. The cluster size distribution follows a power law at the transition point. Such a critical behavior, resulting from the combined effect of stochastic processes in the PD game and the heterogeneity of complex network structure, illustrates diversities arising in social relationships and in forming cooperator groups in real-world systems.

  20. Quantum Stochastic Processes

    SciTech Connect

    Spring, William Joseph

    2009-04-13

    We consider quantum analogues of n-parameter stochastic processes, associated integrals and martingale properties extending classical results obtained in [1, 2, 3], and quantum results in [4, 5, 6, 7, 8, 9, 10].

  1. Dynamics of Double Stochastic Operators

    NASA Astrophysics Data System (ADS)

    Saburov, Mansoor

    2016-03-01

    A double stochastic operator is a generalization of a double stochastic matrix. In this paper, we study the dynamics of double stochastic operators. We give a criterion for a regularity of a double stochastic operator in terms of absences of its periodic points. We provide some examples to insure that, in general, a trajectory of a double stochastic operator may converge to any interior point of the simplex.

  2. Switch Transcripts in Immunoglobulin Class Switching

    NASA Astrophysics Data System (ADS)

    Lorenz, Matthias; Jung, Steffen; Radbruch, Andreas

    1995-03-01

    B cells can exchange gene segments for the constant region of the immunoglobulin heavy chain, altering the class and effector function of the antibodies that they produce. Class switching is directed to distinct classes by cytokines, which induce transcription of the targeted DNA sequences. These transcripts are processed, resulting in spliced "switch" transcripts. Switch recombination can be directed to immunoglobulin G1 (IgG1) by the heterologous human metallothionein II_A promoter in mutant mice. Induction of the structurally conserved, spliced switch transcripts is sufficient to target switch recombination to IgG1, whereas transcription alone is not.

  3. Simulation Games in Moral Education

    ERIC Educational Resources Information Center

    Boulogne, Jack

    1978-01-01

    Discusses the value of simulation games in moral education in four categories: fun and games; games as simulations of real life; games as motivators; and morality and game theory. Also examines the gaming aspects of morality, as well as the physical, psychological, precedent-setting, and internal consequences of an action. (Author/JK)

  4. Social Studies Games on Parade.

    ERIC Educational Resources Information Center

    Bolger, Charlene

    Elementary school teachers are provided with materials and instructions for using a variety of social studies games. The 15 games described are: charades, checker states, hollywood squares, states guessing game, index relay, jeopardy, the match game, the money game, password, the states game, sequence, stump the students, track meet, famous person…

  5. Social Studies Games on Parade.

    ERIC Educational Resources Information Center

    Bolger, Charlene

    Elementary school teachers are provided with materials and instructions for using a variety of social studies games. The 15 games described are: charades, checker states, hollywood squares, states guessing game, index relay, jeopardy, the match game, the money game, password, the states game, sequence, stump the students, track meet, famous person

  6. The Easiest Lights Out Games

    ERIC Educational Resources Information Center

    Torrence, Bruce

    2011-01-01

    The game "Lights Out" and its mathematical predecessor, the sigma-plus game, has inspired an extensive mathematical literature. In this paper, the original game and a borderless version played on a torus are considered. We define an easy game to be one in which pushing the buttons that are originally lit solves the game. Easy games are classified…

  7. The Easiest Lights Out Games

    ERIC Educational Resources Information Center

    Torrence, Bruce

    2011-01-01

    The game "Lights Out" and its mathematical predecessor, the sigma-plus game, has inspired an extensive mathematical literature. In this paper, the original game and a borderless version played on a torus are considered. We define an easy game to be one in which pushing the buttons that are originally lit solves the game. Easy games are classified

  8. Real-time strategy game training: emergence of a cognitive flexibility trait.

    PubMed

    Glass, Brian D; Maddox, W Todd; Love, Bradley C

    2013-01-01

    Training in action video games can increase the speed of perceptual processing. However, it is unknown whether video-game training can lead to broad-based changes in higher-level competencies such as cognitive flexibility, a core and neurally distributed component of cognition. To determine whether video gaming can enhance cognitive flexibility and, if so, why these changes occur, the current study compares two versions of a real-time strategy (RTS) game. Using a meta-analytic Bayes factor approach, we found that the gaming condition that emphasized maintenance and rapid switching between multiple information and action sources led to a large increase in cognitive flexibility as measured by a wide array of non-video gaming tasks. Theoretically, the results suggest that the distributed brain networks supporting cognitive flexibility can be tuned by engrossing video game experience that stresses maintenance and rapid manipulation of multiple information sources. Practically, these results suggest avenues for increasing cognitive function. PMID:23950921

  9. Real-Time Strategy Game Training: Emergence of a Cognitive Flexibility Trait

    PubMed Central

    Glass, Brian D.; Maddox, W. Todd; Love, Bradley C.

    2013-01-01

    Training in action video games can increase the speed of perceptual processing. However, it is unknown whether video-game training can lead to broad-based changes in higher-level competencies such as cognitive flexibility, a core and neurally distributed component of cognition. To determine whether video gaming can enhance cognitive flexibility and, if so, why these changes occur, the current study compares two versions of a real-time strategy (RTS) game. Using a meta-analytic Bayes factor approach, we found that the gaming condition that emphasized maintenance and rapid switching between multiple information and action sources led to a large increase in cognitive flexibility as measured by a wide array of non-video gaming tasks. Theoretically, the results suggest that the distributed brain networks supporting cognitive flexibility can be tuned by engrossing video game experience that stresses maintenance and rapid manipulation of multiple information sources. Practically, these results suggest avenues for increasing cognitive function. PMID:23950921

  10. Spike-based Decision Learning of Nash Equilibria in Two-Player Games

    PubMed Central

    Friedrich, Johannes; Senn, Walter

    2012-01-01

    Humans and animals face decision tasks in an uncertain multi-agent environment where an agent's strategy may change in time due to the co-adaptation of others strategies. The neuronal substrate and the computational algorithms underlying such adaptive decision making, however, is largely unknown. We propose a population coding model of spiking neurons with a policy gradient procedure that successfully acquires optimal strategies for classical game-theoretical tasks. The suggested population reinforcement learning reproduces data from human behavioral experiments for the blackjack and the inspector game. It performs optimally according to a pure (deterministic) and mixed (stochastic) Nash equilibrium, respectively. In contrast, temporal-difference(TD)-learning, covariance-learning, and basic reinforcement learning fail to perform optimally for the stochastic strategy. Spike-based population reinforcement learning, shown to follow the stochastic reward gradient, is therefore a viable candidate to explain automated decision learning of a Nash equilibrium in two-player games. PMID:23028289

  11. Promotion of cooperation by payoff noise in a 2×2 game

    NASA Astrophysics Data System (ADS)

    Tanimoto, Jun

    2007-10-01

    A series of numerical simulations of a 2×2 symmetric game on a network examined whether payoff matrix noise promotes cooperation, as reported initially by Perc [New J. Phys. 8, 22 (2006)]. Agents have no memory (they offer cooperation, C , or defection, D ). We assume that the network is time invariable. The effect of payoff matrix noise (PMN) is measured by a simulated payoff difference between a normal network game and a network game with PMN. The effect of PMN appears only when a local strategy adaptation is implemented (for example, a network game with imitation dynamics). The influence of PMN becomes more significant with a larger stochastic deviation, and less significant in a larger degree network. One reason for PMN’s effectiveness is the local strategy adaptation mechanism, which helps both the preservation and fixation of C agents, and not that the payoff matrix noise makes a dilemma game into a Trivial (dilemma-free) game.

  12. Miniature intermittent contact switch

    NASA Technical Reports Server (NTRS)

    Sword, A.

    1972-01-01

    Design of electric switch for providing intermittent contact is presented. Switch consists of flexible conductor surrounding, but separated from, fixed conductor. Flexing of outside conductor to contact fixed conductor completes circuit. Advantage is small size of switch compared to standard switches.

  13. Latching relay switch assembly

    DOEpatents

    Duimstra, Frederick A.

    1991-01-01

    A latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes at least one permanent magnet and at least one electromagnet. The respective sections are, generally, arranged in separate locations or cavities in the assembly. The switch is latched by a permanent magnet assembly and selectively switched by an overriding electromagnetic assembly.

  14. Stinging Insect Matching Game

    MedlinePlus

    ... for Kids ▸ Stinging Insect Matching Game Share | Stinging Insect Matching Game Stinging insects can ruin summer fun for those who are ... the difference between the different kinds of stinging insects in order to keep your summer safe and ...

  15. Wolf Trek Game.

    ERIC Educational Resources Information Center

    DeRosa, Bill

    1988-01-01

    Describes a learning center game which is designed to help elementary school students learn about wolves. Includes playing instructions, game board, and questions and answers. Also included is a record of wolf calls narrated by actor Robert Redford. (TW)

  16. Stinging Insect Matching Game

    MedlinePlus

    ... Stinging Insect Matching Game Share | Stinging Insect Matching Game Stinging insects can ruin summer fun for those ... My membership Search your symptoms Shop the AAAAI store Support the AAAAI Foundation Donate American Academy of ...

  17. Mang Kung Dice Game.

    ERIC Educational Resources Information Center

    Chan, Wai-Sum

    1996-01-01

    Describes the Mang Kung Dice Game, popular in China, which uses six special dice. Discusses the probability distribution of possible outcomes. Poses questions about the game to help students understand statistical concepts. (MKR)

  18. Severe Weather Game.

    ERIC Educational Resources Information Center

    Owens, Katharine D.; Sanders, Richard L.

    1998-01-01

    Presents an unconventional assessment in the form of a card game for use in evaluating student understanding of severe weather-related concepts. Discusses the theory behind using educational games for instruction and assessment. (DDR)

  19. Quantum signaling game

    NASA Astrophysics Data System (ADS)

    Frackiewicz, Piotr

    2014-08-01

    We present a quantum approach to a signaling game; a special kind of extensive game of incomplete information. Our model is based on quantum schemes for games in strategic form where players perform unitary operators on their own qubits of some fixed initial state and the payoff function is given by a measurement on the resulting final state. We show that the quantum game induced by our scheme coincides with a signaling game as a special case and outputs nonclassical results in general. As an example, we consider a quantum extension of the signaling game in which the chance move is a three-parameter unitary operator whereas the players' actions are equivalent to classical ones. In this case, we study the game in terms of Nash equilibria and refine the pure Nash equilibria adapting to the quantum game the notion of a weak perfect Bayesian equilibrium.

  20. Use of Business Simulations and Games in Higher Education.

    ERIC Educational Resources Information Center

    Lloyd, John W.

    Simulation and business games can meet the need to teach decision making in that they offer a dynamic context in which the results of a decision has to be lived with. This view was reached after a switch from business to higher education prompted a search for teaching methods more suitable and effective for business education than the lecture…

  1. Dynamic Robust Games in MIMO Systems.

    PubMed

    Tembine, H

    2011-08-01

    In this paper, we study dynamic robust power-allocation games in multiple-input-multiple-output systems under the imperfectness of the channel-state information at the transmitters. Using a robust pseudopotential-game approach, we show the existence of robust solutions in both discrete and continuous action spaces under suitable conditions. Considering the imperfectness in terms of the payoff measurement at the transmitters, we propose a COmbined fully DIstributed Payoff and Strategy Reinforcement Learning (CODIPAS-RL) in which each transmitter learns its payoff function, as well as the associated optimal covariance matrix strategies. Under the heterogeneous CODIPAS-RL, the transmitters can use different learning patterns (heterogeneous learning) and different learning rates. We provide sufficient conditions for the almost-sure convergence of the heterogeneous learning to ordinary differential equations. Extensions of the CODIPAS-RL to It's stochastic differential equations are discussed. PMID:21266314

  2. Intrinsic noise in game dynamical learning.

    PubMed

    Galla, Tobias

    2009-11-01

    Demographic noise has profound effects on evolutionary and population dynamics, as well as on chemical reaction systems and models of epidemiology. Such noise is intrinsic and due to the discreteness of the dynamics in finite populations. We here show that similar noise-sustained trajectories arise in game dynamical learning, where the stochasticity has a different origin: agents sample a finite number of moves of their opponents in between adaptation events. The limit of infinite batches results in deterministic modified replicator equations, whereas finite sampling leads to a stochastic dynamics. The characteristics of these fluctuations can be computed analytically using methods from statistical physics, and such noise can affect the attractors significantly, leading to noise-sustained cycling or removing periodic orbits of the standard replicator dynamics. PMID:20365961

  3. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  4. Scientific Fun and Games.

    ERIC Educational Resources Information Center

    Sewall, Susan B.

    1986-01-01

    Presents criteria for having students make their own games which are used by the class to review material covered in life science. Students are required to use recycled materials in producing the game and its accessories. Samples of some of the games produced are included. (TW)

  5. Playing the Cell Game.

    ERIC Educational Resources Information Center

    Madrazo, Gerry M., Jr.; Wood, Carol A.

    1980-01-01

    Discusses the use of games to facilitate learning scientific concepts and principles. Describes the Cell Game, which simulates plant and animal cells; the Energy Quest, which requires players to buy property that generates largest amounts of electricity; the Blood Flow Game, which illustrates circulation of blood through the human body. (CS)

  6. Inventing Music Education Games

    ERIC Educational Resources Information Center

    Ghere, David; Amram, Fred M. B.

    2007-01-01

    The first British patent describing an educational game designed for musical "amusement and instruction" was granted in 1801 to Ann Young of Edinburgh, Scotland. The authors' discovery of Young's game box has prompted an examination of the nature and purpose of the six games she designed. Ann Young's patent is discussed in the context of

  7. Resource Allocation Games: A Priming Game for a Series of Instructional Games (The POE Game).

    ERIC Educational Resources Information Center

    Allen, Layman E.

    This paper describes in detail the paper-and-pencil POE (Pelham Odd 'R Even) game, in which units of space are the allocated resources. The game is designed to provide an introduction to the rule structure common to the games of EQUATIONS, WFF 'N PROOF, and ON-SENTS & NON-SENTS. Techniques of playing POE, including goals, solutions, moves, scoring…

  8. Inventing Music Education Games

    ERIC Educational Resources Information Center

    Ghere, David; Amram, Fred M. B.

    2007-01-01

    The first British patent describing an educational game designed for musical "amusement and instruction" was granted in 1801 to Ann Young of Edinburgh, Scotland. The authors' discovery of Young's game box has prompted an examination of the nature and purpose of the six games she designed. Ann Young's patent is discussed in the context of…

  9. The Acid Rain Game.

    ERIC Educational Resources Information Center

    Rakow, Steven J.; Glenn, Allen

    1982-01-01

    Provides rationale for and description of an acid rain game (designed for two players), a problem-solving model for elementary students. Although complete instructions are provided, including a copy of the game board, the game is also available for Apple II microcomputers. Information for the computer program is available from the author.

  10. The Validity of Games.

    ERIC Educational Resources Information Center

    Peters, Vincent; Vissers, Geert; Heijne, Gerton

    1998-01-01

    Explores the concept of validity in relation to games and simulations, including four aspects of validity that apply to simulations and games (psychological reality, structural validity, process validity, and predictive validity). Factors that may threaten validity during game design are discussed, and suggestions are made to avert these threats.…

  11. The Acid Rain Game.

    ERIC Educational Resources Information Center

    Rakow, Steven J.; Glenn, Allen

    1982-01-01

    Provides rationale for and description of an acid rain game (designed for two players), a problem-solving model for elementary students. Although complete instructions are provided, including a copy of the game board, the game is also available for Apple II microcomputers. Information for the computer program is available from the author.…

  12. An Extended Duopoly Game.

    ERIC Educational Resources Information Center

    Eckalbar, John C.

    2002-01-01

    Illustrates how principles and intermediate microeconomic students can gain an understanding for strategic price setting by playing a relatively large oligopoly game. Explains that the game extends to a continuous price space and outlines appropriate applications. Offers the Mathematica code to instructors so that the assumptions of the game can…

  13. Being a Game Changer

    ERIC Educational Resources Information Center

    Herrig, Brian; Taranto, Greg

    2012-01-01

    One of the key features that draws many people to play video games is the fact that they are interactive. Video games allow the user to be actively engaged and in control of the action (Prensky, 2006). Seventh grade students at Canonsburg Middle School are actively engaging in the creation of video games. The students are engaged at a much deeper…

  14. Friend Finder (Game)

    MedlinePlus

    ... página en español Video and Media Friend Finder (Game) Email Embed Grab this Game : Stay Teen: Games

    MedlinePlus

    ... by You are here Home » Games and Quizzes Games and Quizzes Facebook Twitter Tumblr Shares · 49 quiz ... Year’s Relationship Resolution Be? Shares · 4 Comments · 0 game Block Party Shares · 30 Comments · 0 quiz Should ...

  15. Time for Bed Game

    MedlinePlus

    ... a Friend Who Cuts? Babysitting: Time for Bed Game KidsHealth > For Teens > Babysitting: Time for Bed Game Print A A A Text Size What Kids ... kids to bed can be tough sometimes! This game introduces children to the concept of getting enough ...

  16. Assessing Game Experiences

    ERIC Educational Resources Information Center

    Gaydos, Matthew; Harris, Shannon; Squire, Kurt

    2016-01-01

    Player responses to a brief survey gauging their understanding of content after playing an educational game, "Virulent," are presented. Response accuracy was higher for picture-based questions than text-based questions, despite the presentation of both within the game. Given that games may present educational content in multiple ways…

  17. Getting into the Game

    ERIC Educational Resources Information Center

    Jenkins, Henry

    2005-01-01

    Statistics reveal that students spend more time on electronic games than on any other recreational activity and 32% admit to playing them during class. The gaming revolution contains lessons for teachers, and understanding the pedagogical potential of computer and video games and developing curriculum that supports the educational use of…

  18. First Video Game

    ScienceCinema

    Peter Takacs

    2010-01-08

    Fifty years ago, before either arcades or home video games, visitors waited in line at Brookhaven National Laboratory to play Tennis for Two, an electronic tennis game that is unquestionably a forerunner of the modern video game. Two people played the ele

  19. Gaming Gains Respect

    ERIC Educational Resources Information Center

    Richardson, Will

    2012-01-01

    The idea of learning through games isn't necessarily new. In fact, over the past decade, researchers have been espousing the use of games to help both children and adults learn. But it's only been recently that games have begun to make serious inroads into classrooms. As the world becomes more and more driven by mobile apps and tablet…

    1. Online Strategy Games.

      ERIC Educational Resources Information Center

      Dye, Bryan

      2002-01-01

      A strategy game is an online interactive game that requires thinking in order to be played at its best and whose winning strategy is not obvious. Provides information on strategy games that are written in Java or JavaScript and freely available on the web. (KHR)

    2. First Video Game

      SciTech Connect

      Peter Takacs

      2008-10-21

      Fifty years ago, before either arcades or home video games, visitors waited in line at Brookhaven National Laboratory to play Tennis for Two, an electronic tennis game that is unquestionably a forerunner of the modern video game. Two people played the ele

    3. Games of Rapport.

      ERIC Educational Resources Information Center

      Corbin, Sandra J.

      1980-01-01

      Board games called Games of Rapport are being developed at the University of Alberta. The first, "Angels and Devils," is designed for play by nursing home residents. Results of a study involving "Angels and Devils" show that board games are useful in communicating rehabilitative objectives and sources of conflict. (Author/BEF)

    4. Indian & Metis Trivia Game.

      ERIC Educational Resources Information Center

      Manitoba Dept. of Education and Training, Winnipeg.

      This booklet consists of 220 questions about Native North Americans and Metis people that can be used as learning activities for elementary and secondary school students. Suggestions for using the questions include playing games in pairs or teams, locating resources to find answers to questions, playing trivia games and board games, and using…

    5. Science Signature Game.

      ERIC Educational Resources Information Center

      May, Kathie

      2002-01-01

      Describes an activity called the Science Signature Game which purports students to know something about the other members of their class before they start working together. Discusses the effectiveness of this game and includes a sample of the game cards. (KHR)

    6. The Ultimate Flag Games.

      ERIC Educational Resources Information Center

      Angel, Kenny; Sutton, Nancy

      This paper describes six Ultimate Flag Games which offer a change from traditional games and sports that are usually geared toward athletically inclined students. These new games, aimed at middle school through college students, allow for success from the least-skilled through the most athletically talented students. Players are ability grouped…

    7. National Gaming Council.

      ERIC Educational Resources Information Center

      House, Peter W.; And Others

      This publication describes thirty-three simulation games discussed at the 9th Symposium of the Council in April of 1970. Those articles related to the social sciences are: 1) Teaching Economics with Competitive Games; 2) An Economic Strategy Analysis Game; 3) A Social Simulation Strategy for Researching the Israeli Arab Conflict; 4) The Use of…

    8. Educational Games for Learning

      ERIC Educational Resources Information Center

      Noemí, Peña-Miguel; Máximo, Sedano Hoyuelos

      2014-01-01

      The introduction of new technologies in society has created a need for interactive contents that can make the most of the potential that technological advances offer. Serious games as educational games are such content: they can be defined as video games or interactive applications whose main purpose is to provide not only entertainment but also…

    9. Brain Games for Babies.

      ERIC Educational Resources Information Center

      Silberg, Jackie

      2001-01-01

      Presents games for caregivers to use with infants to enhance brain development. Includes games that develop trust and security, language skills, and fine motor skills, as well as games that are fun or stimulate vision. Includes videotape references for parents and caregivers. (KB)

    10. Dynamics of multi-frequency minority games

      NASA Astrophysics Data System (ADS)

      de Martino, A.

      2003-09-01

      The dynamics of minority games with agents trading on different time scales is studied via dynamical mean-field theory. We analyze the case where the agents’ decision-making process is deterministic and its stochastic generalization with finite heterogeneous learning rates. In each case, we characterize the macroscopic properties of the steady states resulting from different frequency and learning rate distributions and calculate the corresponding phase diagrams. Finally, the different roles played by regular and occasional traders, as well as their impact on the system’s global efficiency, are discussed.

    11. A stochastic model for immunotherapy of cancer.

      PubMed

      Baar, Martina; Coquille, Loren; Mayer, Hannah; Hölzel, Michael; Rogava, Meri; Tüting, Thomas; Bovier, Anton

      2016-01-01

      We propose an extension of a standard stochastic individual-based model in population dynamics which broadens the range of biological applications. Our primary motivation is modelling of immunotherapy of malignant tumours. In this context the different actors, T-cells, cytokines or cancer cells, are modelled as single particles (individuals) in the stochastic system. The main expansions of the model are distinguishing cancer cells by phenotype and genotype, including environment-dependent phenotypic plasticity that does not affect the genotype, taking into account the effects of therapy and introducing a competition term which lowers the reproduction rate of an individual in addition to the usual term that increases its death rate. We illustrate the new setup by using it to model various phenomena arising in immunotherapy. Our aim is twofold: on the one hand, we show that the interplay of genetic mutations and phenotypic switches on different timescales as well as the occurrence of metastability phenomena raise new mathematical challenges. On the other hand, we argue why understanding purely stochastic events (which cannot be obtained with deterministic models) may help to understand the resistance of tumours to therapeutic approaches and may have non-trivial consequences on tumour treatment protocols. This is supported through numerical simulations. PMID:27063839

    12. A stochastic model for immunotherapy of cancer

      PubMed Central

      Baar, Martina; Coquille, Loren; Mayer, Hannah; Hölzel, Michael; Rogava, Meri; Tüting, Thomas; Bovier, Anton

      2016-01-01

      We propose an extension of a standard stochastic individual-based model in population dynamics which broadens the range of biological applications. Our primary motivation is modelling of immunotherapy of malignant tumours. In this context the different actors, T-cells, cytokines or cancer cells, are modelled as single particles (individuals) in the stochastic system. The main expansions of the model are distinguishing cancer cells by phenotype and genotype, including environment-dependent phenotypic plasticity that does not affect the genotype, taking into account the effects of therapy and introducing a competition term which lowers the reproduction rate of an individual in addition to the usual term that increases its death rate. We illustrate the new setup by using it to model various phenomena arising in immunotherapy. Our aim is twofold: on the one hand, we show that the interplay of genetic mutations and phenotypic switches on different timescales as well as the occurrence of metastability phenomena raise new mathematical challenges. On the other hand, we argue why understanding purely stochastic events (which cannot be obtained with deterministic models) may help to understand the resistance of tumours to therapeutic approaches and may have non-trivial consequences on tumour treatment protocols. This is supported through numerical simulations. PMID:27063839

    13. Game Literacy, Gaming Cultures and Media Education

      ERIC Educational Resources Information Center

      Partington, Anthony

      2010-01-01

      This article presents an overview of how the popular "3-Cs" model (creative, critical and cultural) for literacy and media literacy can be applied to the study of computer games in the English and Media classroom. Focusing on the development of an existing computer games course that encompasses many opportunities for critical activity and…

    14. Interplay between stochasticity and negative feedback leads to pulsed dynamics and distinct gene activity patterns

      NASA Astrophysics Data System (ADS)

      Zambrano, Samuel; Bianchi, Marco E.; Agresti, Alessandra; Molina, Nacho

      2015-08-01

      Gene expression is an inherently stochastic process that depends on the structure of the biochemical regulatory network in which the gene is embedded. Here we study the dynamical consequences of the interplay between stochastic gene switching and the widespread negative feedback regulatory loop in a simple model of a biochemical regulatory network. Using a simplified hybrid simulation approach, in which only the gene activation is modeled stochastically, we find that stochasticity in gene switching by itself can induce pulses in the system, providing also analytical insights into their origin. Furthermore, we find that this simple network is able to reproduce both exponential and peaked distributions of gene active and inactive times similar to those that have been observed experimentally. This simplified hybrid simulation approach also allows us to link these patterns to the dynamics of the system for each gene state.

    15. Interplay between stochasticity and negative feedback leads to pulsed dynamics and distinct gene activity patterns.

      PubMed

      Zambrano, Samuel; Bianchi, Marco E; Agresti, Alessandra; Molina, Nacho

      2015-08-01

      Gene expression is an inherently stochastic process that depends on the structure of the biochemical regulatory network in which the gene is embedded. Here we study the dynamical consequences of the interplay between stochastic gene switching and the widespread negative feedback regulatory loop in a simple model of a biochemical regulatory network. Using a simplified hybrid simulation approach, in which only the gene activation is modeled stochastically, we find that stochasticity in gene switching by itself can induce pulses in the system, providing also analytical insights into their origin. Furthermore, we find that this simple network is able to reproduce both exponential and peaked distributions of gene active and inactive times similar to those that have been observed experimentally. This simplified hybrid simulation approach also allows us to link these patterns to the dynamics of the system for each gene state. PMID:26382436

    16. Temporal switching jitter in photoconductive switches

      SciTech Connect

      GAUDET,JOHN A.; SKIPPER,MICHAEL C.; ABDALLA,MICHAEL D.; AHERN,SEAN M.; MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; O'MALLEY,MARTIN W.; HELGESON,WESLEY D.; ROMERO,SAMUEL P.

      2000-04-13

      This paper reports on a recent comparison made between the Air Force Research Laboratory (AFRL) gallium arsenide, optically-triggered switch test configuration and the Sandia National Laboratories (SNL) gallium arsenide, optically-triggered switch test configuration. The purpose of these measurements was to compare the temporal switch jitter times. It is found that the optical trigger laser characteristics are dominant in determining the PCSS jitter.

    17. Stochastic gene expression as a many-body problem

      PubMed Central

      Sasai, Masaki; Wolynes, Peter G.

      2003-01-01

      Gene expression has a stochastic component because of the single-molecule nature of the gene and the small number of copies of individual DNA-binding proteins in the cell. We show how the statistics of such systems can be mapped onto quantum many-body problems. The dynamics of a single gene switch resembles the spin-boson model of a two-site polaron or an electron transfer reaction. Networks of switches can be approximately described as quantum spin systems by using an appropriate variational principle. In this way, the concept of frustration for magnetic systems can be taken over into gene networks. The landscape of stable attractors depends on the degree and style of frustration, much as for neural networks. We show the number of attractors, which may represent cell types, is much smaller for appropriately designed weakly frustrated stochastic networks than for randomly connected networks. PMID:12606710

    18. Multiplayer quantum games

      NASA Astrophysics Data System (ADS)

      Benjamin, Simon C.; Hayden, Patrick M.

      2001-09-01

      Recently the concept of quantum information has been introduced into game theory. Here we present the first study of quantum games with more than two players. We discover that such games can possess an alternative form of equilibrium strategy, one which has no analog either in traditional games or even in two-player quantum games. In these ``coherent'' equilibria, entanglement shared among multiple players enables different kinds of cooperative behavior: indeed it can act as a contract, in the sense that it prevents players from successfully betraying one another.

    19. Stochastic modelling of intermittency.

      PubMed

      Stemler, Thomas; Werner, Johannes P; Benner, Hartmut; Just, Wolfram

      2010-01-13

      Recently, methods have been developed to model low-dimensional chaotic systems in terms of stochastic differential equations. We tested such methods in an electronic circuit experiment. We aimed to obtain reliable drift and diffusion coefficients even without a pronounced time-scale separation of the chaotic dynamics. By comparing the analytical solutions of the corresponding Fokker-Planck equation with experimental data, we show here that crisis-induced intermittency can be described in terms of a stochastic model which is dominated by state-space-dependent diffusion. Further on, we demonstrate and discuss some limits of these modelling approaches using numerical simulations. This enables us to state a criterion that can be used to decide whether a stochastic model will capture the essential features of a given time series. PMID:19948556

    20. Switching between phenotypes and population extinction

      NASA Astrophysics Data System (ADS)

      Lohmar, Ingo; Meerson, Baruch

      2011-11-01

      Many types of bacteria can survive under stress by switching stochastically between two different phenotypes: the “normals” who multiply fast, but are vulnerable to stress, and the “persisters” who hardly multiply, but are resilient to stress. Previous theoretical studies of such bacterial populations have focused on the fitness: the asymptotic rate of unbounded growth of the population. Yet for an isolated population of established (and not very large) size, a more relevant measure may be the population extinction risk due to the interplay of adverse extrinsic variations and intrinsic noise of birth, death and switching processes. Applying a WKB approximation to the pertinent master equation of such a two-population system, we quantify the extinction risk, and find the most likely path to extinction under both favorable and adverse conditions. Analytical results are obtained both in the biologically relevant regime when the switching is rare compared with the birth and death processes, and in the opposite regime of frequent switching. We show that rare switches are most beneficial in reducing the extinction risk.

    1. Extended Parrondo's game and Brownian ratchets: strong and weak Parrondo effect.

      PubMed

      Wu, Degang; Szeto, Kwok Yip

      2014-02-01

      Inspired by the flashing ratchet, Parrondo's game presents an apparently paradoxical situation. Parrondo's game consists of two individual games, game A and game B. Game A is a slightly losing coin-tossing game. Game B has two coins, with an integer parameter M. If the current cumulative capital (in discrete unit) is a multiple of M, an unfavorable coin p(b) is used, otherwise a favorable p(g) coin is used. Paradoxically, a combination of game A and game B could lead to a winning game, which is the Parrondo effect. We extend the original Parrondo's game to include the possibility of M being either M(1) or M(2). Also, we distinguish between strong Parrondo effect, i.e., two losing games combine to form a winning game, and weak Parrondo effect, i.e., two games combine to form a better-performing game. We find that when M(2) is not a multiple of M(1), the combination of B(M(1)) and B(M(2)) has strong and weak Parrondo effect for some subsets in the parameter space (p(b),p(g)), while there is neither strong nor weak effect when M(2) is a multiple of M(1). Furthermore, when M(2) is not a multiple of M(1), a stochastic mixture of game A may cancel the strong and weak Parrondo effect. Following a discretization scheme in the literature of Parrondo's game, we establish a link between our extended Parrondo's game with the analysis of discrete Brownian ratchet. We find a relation between the Parrondo effect of our extended model to the macroscopic bias in a discrete ratchet. The slope of a ratchet potential can be mapped to the fair game condition in the extended model, so that under some conditions, the macroscopic bias in a discrete ratchet can provide a good predictor for the game performance of the extended model. On the other hand, our extended model suggests a design of a ratchet in which the potential is a mixture of two periodic potentials. PMID:25353457

    2. Extended Parrondo's game and Brownian ratchets: Strong and weak Parrondo effect

      NASA Astrophysics Data System (ADS)

      Wu, Degang; Szeto, Kwok Yip

      2014-02-01

      Inspired by the flashing ratchet, Parrondo's game presents an apparently paradoxical situation. Parrondo's game consists of two individual games, game A and game B. Game A is a slightly losing coin-tossing game. Game B has two coins, with an integer parameter M. If the current cumulative capital (in discrete unit) is a multiple of M, an unfavorable coin pb is used, otherwise a favorable pg coin is used. Paradoxically, a combination of game A and game B could lead to a winning game, which is the Parrondo effect. We extend the original Parrondo's game to include the possibility of M being either M1 or M2. Also, we distinguish between strong Parrondo effect, i.e., two losing games combine to form a winning game, and weak Parrondo effect, i.e., two games combine to form a better-performing game. We find that when M2 is not a multiple of M1, the combination of B (M1) and B (M2) has strong and weak Parrondo effect for some subsets in the parameter space (pb,pg), while there is neither strong nor weak effect when M2 is a multiple of M1. Furthermore, when M2 is not a multiple of M1, a stochastic mixture of game A may cancel the strong and weak Parrondo effect. Following a discretization scheme in the literature of Parrondo's game, we establish a link between our extended Parrondo's game with the analysis of discrete Brownian ratchet. We find a relation between the Parrondo effect of our extended model to the macroscopic bias in a discrete ratchet. The slope of a ratchet potential can be mapped to the fair game condition in the extended model, so that under some conditions, the macroscopic bias in a discrete ratchet can provide a good predictor for the game performance of the extended model. On the other hand, our extended model suggests a design of a ratchet in which the potential is a mixture of two periodic potentials.

    3. Stochastic Feedforward Control Technique

      NASA Technical Reports Server (NTRS)

      Halyo, Nesim

      1990-01-01

      Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.

    4. Stochastic Gauss equations

      NASA Astrophysics Data System (ADS)

      Pierret, Frédéric

      2016-02-01

      We derived the equations of Celestial Mechanics governing the variation of the orbital elements under a stochastic perturbation, thereby generalizing the classical Gauss equations. Explicit formulas are given for the semimajor axis, the eccentricity, the inclination, the longitude of the ascending node, the pericenter angle, and the mean anomaly, which are expressed in term of the angular momentum vector H per unit of mass and the energy E per unit of mass. Together, these formulas are called the stochastic Gauss equations, and they are illustrated numerically on an example from satellite dynamics.

    5. Stochastic Completeness of Graphs

      NASA Astrophysics Data System (ADS)

      Wojciechowski, Radoslaw K.

      2007-12-01

      In this thesis, we analyze the stochastic completeness of a heat kernel on graphs which is a function of three variables: a pair of vertices and a continuous time, for infinite, locally finite, connected graphs. For general graphs, a sufficient condition for stochastic completeness is given in terms of the maximum valence on spheres about a fixed vertex. That this result is optimal is shown by studying a particular family of trees. We also prove a lower bound on the bottom of the spectrum for the discrete Laplacian and use this lower bound to show that in certain cases the Laplacian has empty essential spectrum.

    6. Decentralized stochastic control

      NASA Technical Reports Server (NTRS)

      Speyer, J. L.

      1980-01-01

      Decentralized stochastic control is characterized by being decentralized in that the information to one controller is not the same as information to another controller. The system including the information has a stochastic or uncertain component. This complicates the development of decision rules which one determines under the assumption that the system is deterministic. The system is dynamic which means the present decisions affect future system responses and the information in the system. This circumstance presents a complex problem where tools like dynamic programming are no longer applicable. These difficulties are discussed from an intuitive viewpoint. Particular assumptions are introduced which allow a limited theory which produces mechanizable affine decision rules.

    7. STOCHASTIC COOLING FOR BUNCHED BEAMS.

      SciTech Connect

      BLASKIEWICZ, M.

      2005-05-16

      Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

    8. Stochastic entrainment of a stochastic oscillator.

      PubMed

      Wang, Guanyu; Peskin, Charles S

      2015-11-01

      In this work, we consider a stochastic oscillator described by a discrete-state continuous-time Markov chain, in which the states are arranged in a circle, and there is a constant probability per unit time of jumping from one state to the next in a specified direction around the circle. At each of a sequence of equally spaced times, the oscillator has a specified probability of being reset to a particular state. The focus of this work is the entrainment of the oscillator by this periodic but stochastic stimulus. We consider a distinguished limit, in which (i) the number of states of the oscillator approaches infinity, as does the probability per unit time of jumping from one state to the next, so that the natural mean period of the oscillator remains constant, (ii) the resetting probability approaches zero, and (iii) the period of the resetting signal approaches a multiple, by a ratio of small integers, of the natural mean period of the oscillator. In this distinguished limit, we use analytic and numerical methods to study the extent to which entrainment occurs. PMID:26651734

    9. Latching micro optical switch

      DOEpatents

      Garcia, Ernest J; Polosky, Marc A

      2013-05-21

      An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

    10. Hamiltonian mechanics of stochastic acceleration.

      PubMed

      Burby, J W; Zhmoginov, A I; Qin, H

      2013-11-01

      We show how to find the physical Langevin equation describing the trajectories of particles undergoing collisionless stochastic acceleration. These stochastic differential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems. PMID:24266476

    11. Stochastic Models of Human Growth.

      ERIC Educational Resources Information Center

      Goodrich, Robert L.

      Stochastic difference equations of the Box-Jenkins form provide an adequate family of models on which to base the stochastic theory of human growth processes, but conventional time series identification methods do not apply to available data sets. A method to identify structure and parameters of stochastic difference equation models of human…

    12. Sex, Lies and Video Games

      ERIC Educational Resources Information Center

      Kearney, Paul; Pivec, Maja

      2007-01-01

      Sex and violence in video games is a social issue that confronts us all, especially as many commercial games are now being introduced for game-based learning in schools, and as such this paper polls teenage players about the rules their parents and teachers may or may not have, and surveys the gaming community, ie, game developers to parents, to…

    13. Sex, Lies and Video Games

      ERIC Educational Resources Information Center

      Kearney, Paul; Pivec, Maja

      2007-01-01

      Sex and violence in video games is a social issue that confronts us all, especially as many commercial games are now being introduced for game-based learning in schools, and as such this paper polls teenage players about the rules their parents and teachers may or may not have, and surveys the gaming community, ie, game developers to parents, to

    14. Music Learning Grows with Games

      ERIC Educational Resources Information Center

      Hotchkiss, Gwen; Athey, Margaret

      1978-01-01

      Games are a child's way of thinking, and without being instructed in a procedural method a child develops mentally, physically, and emotionally as he works to accomplish the series of tasks required to reach the completion of his game. Defines games, tells how to design a game, when they should be used, and gives some sources for music games.…

    15. Stochastic evolutionary dynamics of direct reciprocity.

      PubMed

      Imhof, Lorens A; Nowak, Martin A

      2010-02-01

      Evolutionary game theory is the study of frequency-dependent selection. The success of an individual depends on the frequencies of strategies that are used in the population. We propose a new model for studying evolutionary dynamics in games with a continuous strategy space. The population size is finite. All members of the population use the same strategy. A mutant strategy is chosen from some distribution over the strategy space. The fixation probability of the mutant strategy in the resident population is calculated. The new mutant takes over the population with this probability. In this case, the mutant becomes the new resident. Otherwise, the existing resident remains. Then, another mutant is generated. These dynamics lead to a stationary distribution over the entire strategy space. Our new approach generalizes classical adaptive dynamics in three ways: (i) the population size is finite; (ii) mutants can be drawn non-locally and (iii) the dynamics are stochastic. We explore reactive strategies in the repeated Prisoner's Dilemma. We perform 'knock-out experiments' to study how various strategies affect the evolution of cooperation. We find that 'tit-for-tat' is a weak catalyst for the emergence of cooperation, while 'always cooperate' is a strong catalyst for the emergence of defection. Our analysis leads to a new understanding of the optimal level of forgiveness that is needed for the evolution of cooperation under direct reciprocity. PMID:19846456

    16. Focus on stochastic thermodynamics

      NASA Astrophysics Data System (ADS)

      Van den Broeck, Christian; Sasa, Shin-ichi; Seifert, Udo

      2016-02-01

      We introduce the thirty papers collected in this ‘focus on’ issue. The contributions explore conceptual issues within and around stochastic thermodynamics, use this framework for the theoretical modeling and experimental investigation of specific systems, and provide further perspectives on and for this active field.

    17. Heat Switches for ADRs

      NASA Technical Reports Server (NTRS)

      DiPirro, M. J.; Shirron, P. J.

      2014-01-01

      Heat switches are key elements in the cyclic operation of Adiabatic Demagnetization Refrigerators (ADRs). Several of the types of heat switches that have been used for ADRs are described in this paper. Key elements in selection and design of these switches include not only ON/OFF switching ratio, but also method of actuation, size, weight, and structural soundness. Some of the trade-off are detailed in this paper.

    18. Remote switch actuator

      SciTech Connect

      Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

      2013-01-29

      The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

    19. Automatic thermal switches

      NASA Technical Reports Server (NTRS)

      Cunningham, J. W.; Wing, L. D.

      1980-01-01

      Two automatic switches control heat flow from one thermally conductive plate to another. One switch permits heat flow to outside; other limits heat flow. In one switch, heat on conductive plate activates piston that forces saddle against plate. Heat carriers then conduct heat to second plate that radiates it away. After temperature is first plate drops, piston contracts and spring breaks thermal contact with plate. In second switch, action is reversed.

    20. Game theoretic sensor management for target tracking

      NASA Astrophysics Data System (ADS)

      Shen, Dan; Chen, Genshe; Blasch, Erik; Pham, Khanh; Douville, Philip; Yang, Chun; Kadar, Ivan

      2010-04-01

      This paper develops and evaluates a game-theoretic approach to distributed sensor-network management for target tracking via sensor-based negotiation. We present a distributed sensor-based negotiation game model for sensor management for multi-sensor multi-target tacking situations. In our negotiation framework, each negotiation agent represents a sensor and each sensor maximizes their utility using a game approach. The greediness of each sensor is limited by the fact that the sensor-to-target assignment efficiency will decrease if too many sensor resources are assigned to a same target. It is similar to the market concept in real world, such as agreements between buyers and sellers in an auction market. Sensors are willing to switch targets so that they can obtain their highest utility and the most efficient way of applying their resources. Our sub-game perfect equilibrium-based negotiation strategies dynamically and distributedly assign sensors to targets. Numerical simulations are performed to demonstrate our sensor-based negotiation approach for distributed sensor management.

    1. Apollo Ring Optical Switch

      SciTech Connect

      Maestas, J.H.

      1987-03-01

      An optical switch was designed, built, and installed at Sandia National Laboratories in Albuquerque, New Mexico, to facilitate the integration of two Apollo computer networks into a single network. This report presents an overview of the optical switch as well as its layout, switch testing procedure and test data, and installation.

    2. Triggered plasma opening switch

      DOEpatents

      Mendel, Clifford W.

      1988-01-01

      A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

    3. Inefficiency of voting in Parrondo games

      NASA Astrophysics Data System (ADS)

      Dinís, Luis; Parrondo, Juan M. R.

      2004-11-01

      We study a modification of the so-called Parrondo's paradox where a large number of individuals choose the game they want to play by voting. We show that it can be better for the players to vote randomly than to vote according to their own benefit in one turn. The former yields a winning tendency while the latter results in steady losses. An explanation of this behaviour is given by noting that selfish voting prevents the switching between games that is essential for the total capital to grow. Results for both finite and infinite number of players are presented. It is shown that the extension of the model to the history-dependent Parrondo's paradox also displays the same effect.

    4. Transition matrix model for evolutionary game dynamics

      NASA Astrophysics Data System (ADS)

      Ermentrout, G. Bard; Griffin, Christopher; Belmonte, Andrew

      2016-03-01

      We study an evolutionary game model based on a transition matrix approach, in which the total change in the proportion of a population playing a given strategy is summed directly over contributions from all other strategies. This general approach combines aspects of the traditional replicator model, such as preserving unpopulated strategies, with mutation-type dynamics, which allow for nonzero switching to unpopulated strategies, in terms of a single transition function. Under certain conditions, this model yields an endemic population playing non-Nash-equilibrium strategies. In addition, a Hopf bifurcation with a limit cycle may occur in the generalized rock-scissors-paper game, unlike the replicator equation. Nonetheless, many of the Folk Theorem results are shown to hold for this model.

    5. Combinatorial optimization games

      SciTech Connect

      Deng, X.; Ibaraki, Toshihide; Nagamochi, Hiroshi

      1997-06-01

      We introduce a general integer programming formulation for a class of combinatorial optimization games, which immediately allows us to improve the algorithmic result for finding amputations in the core (an important solution concept in cooperative game theory) of the network flow game on simple networks by Kalai and Zemel. An interesting result is a general theorem that the core for this class of games is nonempty if and only if a related linear program has an integer optimal solution. We study the properties for this mathematical condition to hold for several interesting problems, and apply them to resolve algorithmic and complexity issues for their cores along the line as put forward in: decide whether the core is empty; if the core is empty, find an imputation in the core; given an imputation x, test whether x is in the core. We also explore the properties of totally balanced games in this succinct formulation of cooperative games.

    6. Educational card games

      NASA Astrophysics Data System (ADS)

      Smith, D. R.; Munro, E.

      2009-09-01

      A number of years have passed since the development of the 'Voyager: Satellites' educational card game reported in Physics Education in 2003. Since then, a large number of copies of the game have been produced and distributed across the UK, to a warm reception from both pupils and teachers. This article reports on some of the feedback received about the game over the five years of the project and gives some examples of how the game has been incorporated into the school curriculum. The recent development of other science-related educational card games that are now available for use in schools is also discussed and it is hoped that this article will give inspiration to others to generate their own educational card games and enjoy some of the positive benefits of 'playing' in the classroom.

    7. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance

      NASA Astrophysics Data System (ADS)

      Badzey, Robert L.; Mohanty, Pritiraj

      2005-10-01

      Stochastic resonance is a counterintuitive concept: the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers, superconducting quantum interference devices (SQUIDs), magnetoelastic ribbons and neurophysiological systems such as the receptors in crickets and crayfish. Although fundamentally important as a mechanism of coherent signal amplification, stochastic resonance has yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators. Our nanomechanical systems consist of beams that are clamped at each end and driven into transverse oscillation with the use of a radiofrequency source. Modulation of the source induces controllable switching of the beams between two stable, distinct states. We observe that the addition of white noise causes a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems could have a function in the realization of controllable high-speed nanomechanical memory cells, and paves the way for exploring macroscopic quantum coherence and tunnelling.

    8. Predictive Game Theory

      NASA Technical Reports Server (NTRS)

      Wolpert, David H.

      2005-01-01

      Probability theory governs the outcome of a game; there is a distribution over mixed strat.'s, not a single "equilibrium". To predict a single mixed strategy must use our loss function (external to the game's players. Provides a quantification of any strategy's rationality. Prove rationality falls as cost of computation rises (for players who have not previously interacted). All extends to games with varying numbers of players.

    9. Game-based telerehabilitation.

      PubMed

      Lange, B; Flynn, Sheryl M; Rizzo, A A

      2009-03-01

      This article summarizes the recent accomplishments and current challenges facing game-based virtual reality (VR) telerehabilitation. Specifically this article addresses accomplishments relative to realistic practice scenarios, part to whole practice, objective measurement of performance and progress, motivation, low cost, interaction devices and game design. Furthermore, a description of the current challenges facing game based telerehabilitation including the packaging, internet capabilities and access, data management, technical support, privacy protection, seizures, distance trials, scientific scrutiny and support from insurance companies. PMID:19282807

    10. The Game of Hex

      ERIC Educational Resources Information Center

      Scott, Paul

      2007-01-01

      In this article, the author discusses the game of Hex, including its history, strategies and problems. Like all good games, the rules are very simple. Hex is played on a diamond shaped board made up of hexagons. It can be of any size, but an 11x11 board makes for a good game. Two opposite sides of the diamond are labelled "red," the other two…

    11. Continuum time limit and stationary states of the minority game.

      PubMed

      Marsili, M; Challet, D

      2001-11-01

      We discuss in detail the derivation of stochastic differential equations for the continuum time limit of the minority game. We show that all properties of the minority game can be understood by a careful theoretical analysis of such equations. In particular, (i) we confirm that the stationary state properties are given by the ground state configurations of a disordered (soft) spin system, (ii) we derive the full stationary state distribution, (iii) we characterize the dependence on initial conditions in the symmetric phase, and (iv) we clarify the behavior of the system as a function of the learning rate. This leaves us with a complete and coherent picture of the collective behavior of the minority game. Strikingly we find that the temperaturelike parameter, which is introduced in the choice behavior of individual agents turns out to play the role, at the collective level, of the inverse of a thermodynamic temperature. PMID:11736045

    12. Healthy Gaming – Video Game Design to promote Health

      PubMed Central

      Brox, E.; Fernandez-Luque, L.; Tøllefsen, T.

      2011-01-01

      Background There is an increasing interest in health games including simulation tools, games for specific conditions, persuasive games to promote a healthy life style or exergames where physical exercise is used to control the game. Objective The objective of the article is to review current literature about available health games and the impact related to game design principles as well as some educational theory aspects. Methods Literature from the big databases and known sites with games for health has been searched to find articles about games for health purposes. The focus has been on educational games, persuasive games and exergames as well as articles describing game design principles. Results The medical objectives can either be a part of the game theme (intrinsic) or be totally dispatched (extrinsic), and particularly persuasive games seem to use extrinsic game design. Peer support is important, but there is only limited research on multiplayer health games. Evaluation of health games can be both medical and technical, and the focus will depend on the game purpose. Conclusion There is still not enough evidence to conclude which design principles work for what purposes since most of the literature in health serious games does not specify design methodologies, but it seems that extrinsic methods work in persuasion. However, when designing health care games it is important to define both the target group and main objective, and then design a game accordingly using sound game design principles, but also utilizing design elements to enhance learning and persuasion. A collaboration with health professionals from an early design stage is necessary both to ensure that the content is valid and to have the game validated from a clinical viewpoint. Patients need to be involved, especially to improve usability. More research should be done on social aspects in health games, both related to learning and persuasion. PMID:23616865

    13. Effects of noise on convergent game-learning dynamics

      NASA Astrophysics Data System (ADS)

      Sanders, James B. T.; Galla, Tobias; Shapiro, Jonathan L.

      2012-03-01

      We study stochastic effects on the lagging anchor dynamics, a reinforcement learning algorithm used to learn successful strategies in iterated games, which is known to converge to Nash points in the absence of noise. The dynamics is stochastic when players only have limited information about their opponents’ strategic propensities. The effects of this noise are studied analytically in the case where it is small but finite, and we show that the statistics and correlation properties of fluctuations can be computed to a high accuracy. We find that the system can exhibit quasicycles, driven by intrinsic noise. If players are asymmetric and use different parameters for their learning, a net payoff advantage can be achieved due to these stochastic oscillations around the deterministic equilibrium.

    14. REMOTE CONTROLLED SWITCHING DEVICE

      DOEpatents

      Hobbs, J.C.

      1959-02-01

      An electrical switching device which can be remotely controlled and in which one or more switches may be accurately operated at predetermined times or with predetermined intervening time intervals is described. The switching device consists essentially of a deck, a post projecting from the deck at right angles thereto, cam means mounted for rotation around said posts and a switch connected to said deck and actuated by said cam means. Means is provided for rotating the cam means at a constant speed and the switching apparatus is enclosed in a sealed container with external adjusting means and electrical connection elements.

    15. Optimal Switching Time

      NASA Astrophysics Data System (ADS)

      Klich, Israel; Levitov, Leonid

      2005-03-01

      We discuss the noise produced in the process of switching mesoscopic conductors between two noiseless states: perfectly connected and disconnected, in the presence of a bias voltage V. We show that there are two main contributions to the noise: a switching noise logarithmic in the time of observation T, and a quantum shot noise accumulated during the process of switching and proportional to V, this leads to a minimization problem for the optimal switching time. Switching noise is expected to be a fundamental parameter in nano-circuits. We also discuss the relation of this result to an estimation of entangelment entropy of a Fermi sea.

    16. Extraversion in Games

      NASA Astrophysics Data System (ADS)

      van Lankveld, Giel; Schreurs, Sonny; Spronck, Pieter; van den Herik, Jaap

      The behavior of a human player in a game expresses the personality of that player. Personality is an important characteristic for modeling the player's profile. In our research we use the five factor model of personality, in which extraversion is a notable factor. Extraversion is the human tendency of being sensitive to rewards. This often results in humans seeking socially rewarding situations. Extraversion plays a prominent part in the in-game behavior of a player. The in-game behavior can be decomposed in 20 different in-game elements.

    17. Stochastic Dynamics Underlying Cognitive Stability and Flexibility

      PubMed Central

      Ueltzhöffer, Kai; Armbruster-Genç, Diana J. N.; Fiebach, Christian J.

      2015-01-01

      Cognitive stability and flexibility are core functions in the successful pursuit of behavioral goals. While there is evidence for a common frontoparietal network underlying both functions and for a key role of dopamine in the modulation of flexible versus stable behavior, the exact neurocomputational mechanisms underlying those executive functions and their adaptation to environmental demands are still unclear. In this work we study the neurocomputational mechanisms underlying cue based task switching (flexibility) and distractor inhibition (stability) in a paradigm specifically designed to probe both functions. We develop a physiologically plausible, explicit model of neural networks that maintain the currently active task rule in working memory and implement the decision process. We simplify the four-choice decision network to a nonlinear drift-diffusion process that we canonically derive from a generic winner-take-all network model. By fitting our model to the behavioral data of individual subjects, we can reproduce their full behavior in terms of decisions and reaction time distributions in baseline as well as distractor inhibition and switch conditions. Furthermore, we predict the individual hemodynamic response timecourse of the rule-representing network and localize it to a frontoparietal network including the inferior frontal junction area and the intraparietal sulcus, using functional magnetic resonance imaging. This refines the understanding of task-switch-related frontoparietal brain activity as reflecting attractor-like working memory representations of task rules. Finally, we estimate the subject-specific stability of the rule-representing attractor states in terms of the minimal action associated with a transition between different rule states in the phase-space of the fitted models. This stability measure correlates with switching-specific thalamocorticostriatal activation, i.e., with a system associated with flexible working memory updating and dopaminergic modulation of cognitive flexibility. These results show that stochastic dynamical systems can implement the basic computations underlying cognitive stability and flexibility and explain neurobiological bases of individual differences. PMID:26068119

    18. On the Switching Control

      NASA Astrophysics Data System (ADS)

      Balas, Valentina E.; Balas, Marius M.

      2009-04-01

      The paper is discussing the measures able to reject the instability that may unexpectedly appear in particular conditions, in switching controllers applications. The switching controllers' effect is explained by the combined effects of the unsuitable choice of the switching moments (in the first or third quadrants of the phase trajectory of the switching error) and of the temporal aliasing that can distort the digital control systems when the sampling rate is close to the frequency of the oscillations that are produced by the commutation. The correct switching moments are located into the second and fourth quadrants of the phase trajectory of the switching error, but an active preparation of the commutation may be simply achieved by using a tracking controller, that is driving the output of open loop controller to follow the output of the close loop controller, permanently minimizing the switching error. Simulations issued from a dc driver speed controller and from an aircraft are provided.

    19. STOCHASTIC COOLING FOR RHIC.

      SciTech Connect

      BLASKIEWICZ,M.BRENNAN,J.M.CAMERON,P.WEI,J.

      2003-05-12

      Emittance growth due to Intra-Beam Scattering significantly reduces the heavy ion luminosity lifetime in RHIC. Stochastic cooling of the stored beam could improve things considerably by counteracting IBS and preventing particles from escaping the rf bucket [1]. High frequency bunched-beam stochastic cooling is especially challenging but observations of Schottky signals in the 4-8 GHz band indicate that conditions are favorable in RHIC [2]. We report here on measurements of the longitudinal beam transfer function carried out with a pickup kicker pair on loan from FNAL TEVATRON. Results imply that for ions a coasting beam description is applicable and we outline some general features of a viable momentum cooling system for RHIC.

    20. STOCHASTIC COOLING POWER REQUIREMENTS.

      SciTech Connect

      WEI,J.BLASKIEWICZ,M.BRENNAN,M.

      2004-07-05

      A practical obstacle for stochastic cooling in high-energy colliders like RHIC is the large amount of power needed for the cooling system. Based on the coasting-beam Fokker-Planck (F-P) equation, we analytically derived the optimum cooling rate and cooling power for a beam of uniform distribution and a cooling system of linear gain function. The results indicate that the usual back-of-envelope formula over-estimated the cooling power by a factor of the mixing factor M. On the other hand, the scaling laws derived from the coasting-beam Fokker-Planck approach agree with those derived from the bunched-beam Fokker-Planck approach if the peak beam intensity is used as the effective coasting-beam intensity. A longitudinal stochastic cooling system of 4-8 GHz bandwidth in RHIC can effectively counteract intrabeam scattering, preventing the beam from escaping the RF bucket becoming debunched around the ring.

    1. Entropy of stochastic flows

      SciTech Connect

      Dorogovtsev, Andrei A

      2010-06-29

      For sets in a Hilbert space the concept of quadratic entropy is introduced. It is shown that this entropy is finite for the range of a stochastic flow of Brownian particles on R. This implies, in particular, the fact that the total time of the free travel in the Arratia flow of all particles that started from a bounded interval is finite. Bibliography: 10 titles.

    2. Linear game non-contextuality and Bell inequalities—a graph-theoretic approach

      NASA Astrophysics Data System (ADS)

      Rosicka, M.; Ramanathan, R.; Gnaciński, P.; Horodecki, K.; Horodecki, M.; Horodecki, P.; Severini, S.

      2016-04-01

      We study the classical and quantum values of a class of one- and two-party unique games, that generalizes the well-known XOR games to the case of non-binary outcomes. In the bipartite case the generalized XOR (XOR-d) games we study are a subclass of the well-known linear games. We introduce a ‘constraint graph’ associated to such a game, with the constraints defining the game represented by an edge-coloring of the graph. We use the graph-theoretic characterization to relate the task of finding equivalent games to the notion of signed graphs and switching equivalence from graph theory. We relate the problem of computing the classical value of single-party anti-correlation XOR games to finding the edge bipartization number of a graph, which is known to be MaxSNP hard, and connect the computation of the classical value of XOR-d games to the identification of specific cycles in the graph. We construct an orthogonality graph of the game from the constraint graph and study its Lovász theta number as a general upper bound on the quantum value even in the case of single-party contextual XOR-d games. XOR-d games possess appealing properties for use in device-independent applications such as randomness of the local correlated outcomes in the optimal quantum strategy. We study the possibility of obtaining quantum algebraic violation of these games, and show that no finite XOR-d game possesses the property of pseudo-telepathy leaving the frequently used chained Bell inequalities as the natural candidates for such applications. We also show this lack of pseudo-telepathy for multi-party XOR-type inequalities involving two-body correlation functions.

    3. Quantum Spontaneous Stochasticity

      NASA Astrophysics Data System (ADS)

      Drivas, Theodore; Eyink, Gregory

      Classical Newtonian dynamics is expected to be deterministic, but recent fluid turbulence theory predicts that a particle advected at high Reynolds-numbers by ''nearly rough'' flows moves nondeterministically. Small stochastic perturbations to the flow velocity or to the initial data lead to persistent randomness, even in the limit where the perturbations vanish! Such ``spontaneous stochasticity'' has profound consequences for astrophysics, geophysics, and our daily lives. We show that a similar effect occurs with a quantum particle in a ''nearly rough'' force, for the semi-classical (large-mass) limit, where spreading of the wave-packet is usually expected to be negligible and dynamics to be deterministic Newtonian. Instead, there are non-zero probabilities to observe multiple, non-unique solutions of the classical equations. Although the quantum wave-function remains split, rapid phase oscillations prevent any coherent superposition of the branches. Classical spontaneous stochasticity has not yet been seen in controlled laboratory experiments of fluid turbulence, but the corresponding quantum effects may be observable by current techniques. We suggest possible experiments with neutral atomic-molecular systems in repulsive electric dipole potentials.

    4. Optoelectronic techniques for broadband switching

      NASA Technical Reports Server (NTRS)

      Su, S. F.; Jou, L.; Lenart, J.

      1988-01-01

      Optoelectronic switching employs a hybrid optical/electronic principle to perform the switching function and is applicable for either analog broadband or high-bit rate digital switching. The major advantages of optoelectronic switching include high isolation, low crosstalk, small physical size, light weight, and low power consumption. These advantages make optoelectronic switching an excellent candidate for on-board satellite switching. This paper describes a number of optoelectronic switching architectures. System components required for implementing these switching architectures are discussed. Performance of these architectures are evaluated by calculating their crosstalk, isolation, insertion loss, matrix size, drive power, throughput, and switching speed. Technologies needed for monolithic optoelectronic switching are also identified.

    5. Cournot and Bertrand Games.

      ERIC Educational Resources Information Center

      Beckman, Steven R.

      2003-01-01

      Describes a series of matrix choice games that illustrate for students the concepts of monopoly, shared monopoly, Cournot, Bertrand, and Stackelberg behavior given either perfect complements or perfect substitutes. Suggests that the use of the games also allows for student dialogue about international trade and price wars. (JEH)

    6. Police Patrol Game Kit.

      ERIC Educational Resources Information Center

      Clark, Todd, Ed.

      A packet of game materials, designed to help young people better understand what the law is, what the police officer's duties are, and what pressures and fears the police officers experience daily, is presented. The game, designed for a group of 20 to 35 students, contains: Teacher's Manual, Attitude Survey Master, Observer Evaluation Master,…

    7. Academic Games and Learning.

      ERIC Educational Resources Information Center

      Coleman, James S.

      The aim of this paper is to give some insight into what academic simulation games are, what their goals are, how they accomplish these goals, and how they differ from other ways of teaching and learning. A game is a way of partitioning off a portion of action from the complex stream of life activities. It partitions off a set of players and…

    8. Environmental Education Games.

      ERIC Educational Resources Information Center

      Pennsylvania State Dept. of Education, Harrisburg. Bureau of General and Academic Education.

      Six environmental education simulation games are presented in this manual, developed by Project SESAME G (Susquehanna ESEA Synergetic Activities for Maximal-involvement via Education Games). The simulations are models of social situations which provide an opportunity for social interaction in the classroom, maximize student involvement, and change…

    9. Games for Teaching Art.

      ERIC Educational Resources Information Center

      Alger, Sandra L. H.

      This teacher's guide gives directions, models, and illustrations for 24 games in art history, criticism, aesthetics, and art production. The games present specific art concepts and vocabulary based on clearly stated objectives and they can be adapted to a variety of lesson types. The goal of each activity is to encourage students to engage in…

    10. Games on Sustainable Development

      ERIC Educational Resources Information Center

      Meadows, Dennis L.; Van der Waals, Barbara

      This booklet contains a collection of educational games that can be used by teachers to convey ideas and create discussion related to environmental protection and sustainable development. The games accommodate participants of all ages and require little preparation by the teacher, up to 30-40 players with only one operator, minimal materials (many…

    11. Gaming in Technology Education

      ERIC Educational Resources Information Center

      Clark, Aaron C.; Ernst, Jeremy V.

      2009-01-01

      The authors have devoted a considerable amount of time evaluating the role that gaming and game development plays in the form of curricula integration and as a future career focus for students interested in this field. From the research conducted through the completed National Science Foundation (NSF) project, VisTE: Visualization in Technology…

    12. The Guppy Game

      ERIC Educational Resources Information Center

      Blattner, Margaret; Hug, Barbara; Watson, Patrick; Korol, Donna

      2012-01-01

      Adaptation, interactions between species and their environments, and change over time are fundamental principles in biology. They represent aspects of two of the big ideas in science: evolution and natural selection. To help students understand these ideas, the authors developed the "Guppy Game." In this article, they describe the game and how…

    13. Games on Sustainable Development

      ERIC Educational Resources Information Center

      Meadows, Dennis L.; Van der Waals, Barbara

      This booklet contains a collection of educational games that can be used by teachers to convey ideas and create discussion related to environmental protection and sustainable development. The games accommodate participants of all ages and require little preparation by the teacher, up to 30-40 players with only one operator, minimal materials (many

    14. Game Theory .net.

      ERIC Educational Resources Information Center

      Shor, Mikhael

      2003-01-01

      States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

    15. Skill Games for Mathematics.

      ERIC Educational Resources Information Center

      Corle, Clyde G.

      This guide is to assist teachers with motivational ideas for teaching elementary school mathematics. The items included are a wide variety of games (paper and pencil, verbal, and physical), jingles, contests, teaching devices, and thought provoking exercises. Suggestions for selection of mathematical games are offered. The devices are used to…

    16. Games People Play

      ERIC Educational Resources Information Center

      VerBruggen, Robert

      2012-01-01

      Today's video games aren't even a little bit like the ones that came out a few decades ago. Not only has the underlying technology dramatically improved, but the medium has matured remarkably in the years since "Pong" and "Space Invaders." ruled the arcades. The artistic promise of video games has yet to be fulfilled. The current state of the…

    17. Games and childhood obesity

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Videogames can be used to help children change their obesity-related diet and physical activity behaviors. A review of the relevant literature in this special issue of the Games for Health Journal indicated that video games did influence children's adiposity, but only among children who were alread...

    18. Great Games That Disappeared

      ERIC Educational Resources Information Center

      Rauschenbach, James; Swartz, Daniel R.

      2016-01-01

      Sometimes through a single person's efforts, a new and innovative game is developed and promoted locally. Occasionally, circumstances cause these games to remain on a local level without being adopted by mainstream physical educators and physical activity professionals. Unfortunately, some educators tend to stick to what they know and teach…

    19. Gaming and Gamification

      ERIC Educational Resources Information Center

      Mallon, Melissa

      2013-01-01

      The New Media Consortium's "Horizon Report" for higher education cites games and gamification with a time-to-adoption of two to three years. The use of digital games is almost ubiquitous in social media and is swiftly gaining popularity in other industries as well. Many in higher education have embraced gamification due to its

    20. The Guppy Game

      ERIC Educational Resources Information Center

      Blattner, Margaret; Hug, Barbara; Watson, Patrick; Korol, Donna

      2012-01-01

      Adaptation, interactions between species and their environments, and change over time are fundamental principles in biology. They represent aspects of two of the big ideas in science: evolution and natural selection. To help students understand these ideas, the authors developed the "Guppy Game." In this article, they describe the game and how

    1. The Clean Air Game.

      ERIC Educational Resources Information Center

      Avalone-King, Deborah

      2000-01-01

      Introduces the Clean Air game which teaches about air quality and its vital importance for life. Introduces students to air pollutants, health of people and environment, and possible actions individuals can take to prevent air pollution. Includes directions for the game. (YDS)

    2. Great Games That Disappeared

      ERIC Educational Resources Information Center

      Rauschenbach, James; Swartz, Daniel R.

      2016-01-01

      Sometimes through a single person's efforts, a new and innovative game is developed and promoted locally. Occasionally, circumstances cause these games to remain on a local level without being adopted by mainstream physical educators and physical activity professionals. Unfortunately, some educators tend to stick to what they know and teach

    3. Educational Card Games

      ERIC Educational Resources Information Center

      Smith, D. R.; Munro, E.

      2009-01-01

      A number of years have passed since the development of the "Voyager: Satellites" educational card game reported in "Physics Education" in 2003. Since then, a large number of copies of the game have been produced and distributed across the UK, to a warm reception from both pupils and teachers. This article reports on some of the feedback received

    4. The Chinese House Game.

      ERIC Educational Resources Information Center

      Lee, James R.

      1989-01-01

      Discussion of the use of simulations to teach international relations (IR) highlights the Chinese House Game, a computer-based decision-making game based on Inter Nation Simulation (INS). Topics discussed include the increasing role of artificial intelligence in IR simulations, multi-disciplinary approaches, and the direction of IR as a…

    5. Games Learners Will Play

      ERIC Educational Resources Information Center

      Boyce, Byrl N.; And Others

      1971-01-01

      Clark Abt's book Serious Games" describes how games can enable children (and adults) to learn the abstract concepts that are required to deal with a world that is becoming increasingly complex. His book is here reviewed by three members of the University of Connecticut's Center for Real Estate and Urban Economics Studies. (Author)

    6. Educational Card Games

      ERIC Educational Resources Information Center

      Smith, D. R.; Munro, E.

      2009-01-01

      A number of years have passed since the development of the "Voyager: Satellites" educational card game reported in "Physics Education" in 2003. Since then, a large number of copies of the game have been produced and distributed across the UK, to a warm reception from both pupils and teachers. This article reports on some of the feedback received…

    7. Social Interactions and Games

      ERIC Educational Resources Information Center

      Uz, Cigdem; Cagiltay, Kursat

      2015-01-01

      Digital games have become popular due to great technological improvements in recent years. They have been increasingly transformed from co-located experiences into multi-played, socially oriented platforms (Herodotou, 2009). Multi-User Online Games provide the opportunity to create a social environment for friendships and strengthen the…

    8. Gaming and Gamification

      ERIC Educational Resources Information Center

      Mallon, Melissa

      2013-01-01

      The New Media Consortium's "Horizon Report" for higher education cites games and gamification with a time-to-adoption of two to three years. The use of digital games is almost ubiquitous in social media and is swiftly gaining popularity in other industries as well. Many in higher education have embraced gamification due to its…

    9. Games and Simulation.

      ERIC Educational Resources Information Center

      Abt, Clark C.

      Educational games present the complex realities of simultaneous interactive processes more accurately and effectively than serial processes such as lecturing and reading. Objectives of educational gaming are to motivate students by presenting relevant and realistic problems and to induce more efficient and active understanding of information.…

    10. A Different Attribute Game.

      ERIC Educational Resources Information Center

      Scott, Thomas L.

      1981-01-01

      The Concept Game, which focuses on the attributes of parity, balance, majority, closure, and skip of seven-digit binary numbers, is described. Originally written as a computer program, the game is modified so that pupils can play with construction paper chips of just paper and pencil. (MP)

    11. Digital Game-Based Learning: Towards an Experiential Gaming Model

      ERIC Educational Resources Information Center

      Kiili, Kristian

      2005-01-01

      Online games satisfy the basic requirements of learning environments and can provide engaging learning experiences for students. However, a model that successfully integrates educational theory and game design aspects do not exist. Thus, in this paper an experiential gaming model that is based on experiential learning theory, flow theory and game

    12. Stochastic dynamics of macromolecular-assembly networks.

      NASA Astrophysics Data System (ADS)

      Saiz, Leonor; Vilar, Jose

      2006-03-01

      The formation and regulation of macromolecular complexes provides the backbone of most cellular processes, including gene regulation and signal transduction. The inherent complexity of assembling macromolecular structures makes current computational methods strongly limited for understanding how the physical interactions between cellular components give rise to systemic properties of cells. Here we present a stochastic approach to study the dynamics of networks formed by macromolecular complexes in terms of the molecular interactions of their components [1]. Exploiting key thermodynamic concepts, this approach makes it possible to both estimate reaction rates and incorporate the resulting assembly dynamics into the stochastic kinetics of cellular networks. As prototype systems, we consider the lac operon and phage λ induction switches, which rely on the formation of DNA loops by proteins [2] and on the integration of these protein-DNA complexes into intracellular networks. This cross-scale approach offers an effective starting point to move forward from network diagrams, such as those of protein-protein and DNA-protein interaction networks, to the actual dynamics of cellular processes. [1] L. Saiz and J.M.G. Vilar, submitted (2005). [2] J.M.G. Vilar and L. Saiz, Current Opinion in Genetics & Development, 15, 136-144 (2005).

    13. Avatars in Analytical Gaming

      SciTech Connect

      Cowell, Andrew J.; Cowell, Amanda K.

      2009-08-29

      This paper discusses the design and use of anthropomorphic computer characters as nonplayer characters (NPC’s) within analytical games. These new environments allow avatars to play a central role in supporting training and education goals instead of planning the supporting cast role. This new ‘science’ of gaming, driven by high-powered but inexpensive computers, dedicated graphics processors and realistic game engines, enables game developers to create learning and training opportunities on par with expensive real-world training scenarios. However, there needs to be care and attention placed on how avatars are represented and thus perceived. A taxonomy of non-verbal behavior is presented and its application to analytical gaming discussed.

    14. A game for space

      NASA Astrophysics Data System (ADS)

      Häuplik-Meusburger, Sandra; Aguzzi, Manuela; Peldszus, Regina

      2010-02-01

      As countermeasure to heavy workloads or monotony, astronauts have drawn on leisure activities imported from Earth or invented in situ. Aside from consumption of media, physical exercise, Earth observation, communication with ground or crew and the practising of instruments, also games play an important role. With a few exceptions, the emphasis, however, lies on virtual games and software applications. A review of play activities in orbit and their benefits to date suggests a need for additional recreational opportunities. In response, an interactive strategy game for use in microgravity is presented that relies on interlocking sphere-shaped game pieces in order to make the most of the kinetic and sensory potential of reduced gravity conditions. Aside from the play value and aesthetics of this reconfigurable modular game structure, the activity may help maintain and enhance manual dexterity, mental alertness and sociability amongst the crew. The design solution and prototype are presented and needs for further research and development are outlined.

    15. A retrodictive stochastic simulation algorithm

      SciTech Connect

      Vaughan, T.G. Drummond, P.D.; Drummond, A.J.

      2010-05-20

      In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.

    16. Analytical description for the critical fixations of evolutionary coordination games on finite complex structured populations

      NASA Astrophysics Data System (ADS)

      Zhang, Liye; Zou, Yong; Guan, Shuguang; Liu, Zonghua

      2015-04-01

      Evolutionary game theory is crucial to capturing the characteristic interaction patterns among selfish individuals. In a population of coordination games of two strategies, one of the central problems is to determine the fixation probability that the system reaches a state of networkwide of only one strategy, and the corresponding expectation times. The deterministic replicator equations predict the critical value of initial density of one strategy, which separates the two absorbing states of the system. However, numerical estimations of this separatrix show large deviations from the theory in finite populations. Here we provide a stochastic treatment of this dynamic process on complex networks of finite sizes as Markov processes, showing the evolutionary time explicitly. We describe analytically the effects of network structures on the intermediate fixations as observed in numerical simulations. Our theoretical predictions are validated by various simulations on both random and scale free networks. Therefore, our stochastic framework can be helpful in dealing with other networked game dynamics.

    17. Analytical description for the critical fixations of evolutionary coordination games on finite complex structured populations.

      PubMed

      Zhang, Liye; Zou, Yong; Guan, Shuguang; Liu, Zonghua

      2015-04-01

      Evolutionary game theory is crucial to capturing the characteristic interaction patterns among selfish individuals. In a population of coordination games of two strategies, one of the central problems is to determine the fixation probability that the system reaches a state of networkwide of only one strategy, and the corresponding expectation times. The deterministic replicator equations predict the critical value of initial density of one strategy, which separates the two absorbing states of the system. However, numerical estimations of this separatrix show large deviations from the theory in finite populations. Here we provide a stochastic treatment of this dynamic process on complex networks of finite sizes as Markov processes, showing the evolutionary time explicitly. We describe analytically the effects of network structures on the intermediate fixations as observed in numerical simulations. Our theoretical predictions are validated by various simulations on both random and scale free networks. Therefore, our stochastic framework can be helpful in dealing with other networked game dynamics. PMID:25974547

    18. Effective switching frequency multiplier inverter

      DOEpatents

      Su, Gui-Jia; Peng, Fang Z.

      2007-08-07

      A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

    19. Nonlinear analysis of the cooperation of strategic alliances through stochastic catastrophe theory

      NASA Astrophysics Data System (ADS)

      Xu, Yan; Hu, Bin; Wu, Jiang; Zhang, Jianhua

      2014-04-01

      The excitation intervention of strategic alliance may change with the changes in the parameters of circumstance (e.g., external alliance tasks). As a result, the stable cooperation between members may suffer a complete unplanned betrayal at last. However, current perspectives on strategic alliances cannot adequately explain this transition mechanism. This study is a first attempt to analyze this nonlinear phenomenon through stochastic catastrophe theory (SCT). A stochastic dynamics model is constructed based on the cooperation of strategic alliance from the perspective of evolutionary game theory. SCT explains the discontinuous changes caused by the changes in environmental parameters. Theoretically, we identify conditions where catastrophe can occur in the cooperation of alliance members.

    20. Solid state switch

      DOEpatents

      Merritt, Bernard T.; Dreifuerst, Gary R.

      1994-01-01

      A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

    1. Harnessing Computer Games in Education

      ERIC Educational Resources Information Center

      Jong, Morris S. Y.; Shang, Junjie; Lee, Fong-Lok; Lee, Jimmy H. M.

      2008-01-01

      Besides the ability of making learning more interesting, educators and researchers have been exploring other pedagogical potentials of computer games. How to employ games for constructivist learning and teaching has become an attention in the field of education and game design in recent years. This article gives an introduction to game-based…

    2. Simple Games . . . or Are They?

      ERIC Educational Resources Information Center

      Arn, Susan Kyle

      2006-01-01

      Students today begin using computers and playing video games as early as two years old. The technology behind these games is more complicated than most people can imagine. In this article, the author presents some simple number games which seem easy at the beginning, but as the games are repeated, mathematical content becomes more of the focus…

    3. Play Chinese Games. 1987, Revised.

      ERIC Educational Resources Information Center

      White, Caryn

      This document, designed to introduce all ages to a selection of popular Chinese games, describes these games and provides instructions and materials for making the items needed to play most of them. Section 1 suggests class activities that can be related to some of the games. Section 2 presents instructions for the physical or outdoor games of:…

    4. Teaching Game Sense in Soccer

      ERIC Educational Resources Information Center

      Pill, Shane

      2012-01-01

      "Game sense" is a sport-specific iteration of the teaching games for understanding model, designed to balance physical development of motor skill and fitness with the development of game understanding. Game sense can foster a shared vision for sport learning that bridges school physical education and community sport. This article explains how to…

    5. Situating Ethics in Games Education

      ERIC Educational Resources Information Center

      Butler, Joy

      2013-01-01

      This paper posits that Inventing Games (IG), an aspect of the games curriculum based on principles of Teaching Games for Understanding (TGfU), opens up important spaces for teaching social and ethical understanding. Games have long been regarded as a site for moral development. For most teachers, however, ethical principles have been seen as…

    6. Stages for Children Inventing Games

      ERIC Educational Resources Information Center

      Butler, Joy

      2013-01-01

      This article offers practical advice for teachers interested in using Inventing Games (IG) as a way to facilitate learning about game structures, rules, and the principles of fair play that they can apply not only to game play, but to everyday life as members of a democratically organized society. Inventing Games gives students the opportunity to…

    7. Play Chinese Games. 1987, Revised.

      ERIC Educational Resources Information Center

      White, Caryn

      This document, designed to introduce all ages to a selection of popular Chinese games, describes these games and provides instructions and materials for making the items needed to play most of them. Section 1 suggests class activities that can be related to some of the games. Section 2 presents instructions for the physical or outdoor games of:

    8. Stages for Children Inventing Games

      ERIC Educational Resources Information Center

      Butler, Joy

      2013-01-01

      This article offers practical advice for teachers interested in using Inventing Games (IG) as a way to facilitate learning about game structures, rules, and the principles of fair play that they can apply not only to game play, but to everyday life as members of a democratically organized society. Inventing Games gives students the opportunity to

    9. Teaching Game Sense in Soccer

      ERIC Educational Resources Information Center

      Pill, Shane

      2012-01-01

      "Game sense" is a sport-specific iteration of the teaching games for understanding model, designed to balance physical development of motor skill and fitness with the development of game understanding. Game sense can foster a shared vision for sport learning that bridges school physical education and community sport. This article explains how to

    10. Simple Games . . . or Are They?

      ERIC Educational Resources Information Center

      Arn, Susan Kyle

      2006-01-01

      Students today begin using computers and playing video games as early as two years old. The technology behind these games is more complicated than most people can imagine. In this article, the author presents some simple number games which seem easy at the beginning, but as the games are repeated, mathematical content becomes more of the focus

    11. Video Games: Competing with Machines.

      ERIC Educational Resources Information Center

      Hanson, Jarice

      This study was designed to compare the attitudinal and lifestyle patterns of video game players with the amount of time they play, the number of games they play, and the types of video games they play, to determine whether their personal use of time and attitude toward leisure is different when playing video games. Subjects were 200 individuals…

    12. Video Games and Civic Engagement

      ERIC Educational Resources Information Center

      Perkins-Gough, Deborah

      2009-01-01

      According to a national telephone survey by the Pew Internet Project, 99 percent of boys and 94 percent of girls ages 12-17 play computer, Web, portable, or console games; and 50 percent play such games daily. The survey report, Teens, Video Games, and Civics, examines the extent and nature of teens' game playing and sheds some light on the

    13. Video Games and Civic Engagement

      ERIC Educational Resources Information Center

      Perkins-Gough, Deborah

      2009-01-01

      According to a national telephone survey by the Pew Internet Project, 99 percent of boys and 94 percent of girls ages 12-17 play computer, Web, portable, or console games; and 50 percent play such games daily. The survey report, Teens, Video Games, and Civics, examines the extent and nature of teens' game playing and sheds some light on the…

    14. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells.

      PubMed Central

      Arkin, A; Ross, J; McAdams, H H

      1998-01-01

      Fluctuations in rates of gene expression can produce highly erratic time patterns of protein production in individual cells and wide diversity in instantaneous protein concentrations across cell populations. When two independently produced regulatory proteins acting at low cellular concentrations competitively control a switch point in a pathway, stochastic variations in their concentrations can produce probabilistic pathway selection, so that an initially homogeneous cell population partitions into distinct phenotypic subpopulations. Many pathogenic organisms, for example, use this mechanism to randomly switch surface features to evade host responses. This coupling between molecular-level fluctuations and macroscopic phenotype selection is analyzed using the phage lambda lysis-lysogeny decision circuit as a model system. The fraction of infected cells selecting the lysogenic pathway at different phage:cell ratios, predicted using a molecular-level stochastic kinetic model of the genetic regulatory circuit, is consistent with experimental observations. The kinetic model of the decision circuit uses the stochastic formulation of chemical kinetics, stochastic mechanisms of gene expression, and a statistical-thermodynamic model of promoter regulation. Conventional deterministic kinetics cannot be used to predict statistics of regulatory systems that produce probabilistic outcomes. Rather, a stochastic kinetic analysis must be used to predict statistics of regulatory outcomes for such stochastically regulated systems. PMID:9691025

    15. Platform switching and bone platform switching.

      PubMed

      Carinci, Francesco; Brunelli, Giorgio; Danza, Matteo

      2009-01-01

      Bone platform switching involves an inward bone ring in the coronal part of the implant that is in continuity with the alveolar bone crest. Bone platform switching is obtained by using a dental fixture with a reverse conical neck. A retrospective study was performed to evaluate the effectiveness of conventional vs reverse conical neck implants. In the period between May 2004 and November 2007, 86 patients (55 females and 31 males; median age, 53 years) were operated and 234 implants were inserted: 40 and 194 were conventional vs reverse conical neck implants, respectively. Kaplan-Meier algorithm and Cox regression were used to detect those variables associated with the clinical outcome. No differences in survival and success rates were detected between conventional vs reverse conical neck implants alone or in combination with any of the studied variables. Although bone platform switching leads to several advantages, no statistical difference in alveolar crest resorption is detected in comparison with reverse conical neck implants. We suppose that the proximity of the implant abutment junction to the alveolar crestal bone gives no protection against the microflora contained in the micrograph. Additional studies on larger series and a combination of platform switching and bone platform switching could lead to improved clinical outcomes. PMID:19882821

    16. Stochastic predation events and population persistence in bighorn sheep.

      PubMed

      Festa-Bianchet, Marco; Coulson, Tim; Gaillard, Jean-Michel; Hogg, John T; Pelletier, Fanie

      2006-06-22

      Many studies have reported temporal changes in the relative importance of density-dependence and environmental stochasticity in affecting population growth rates, but they typically assume that the predominant factor limiting growth remains constant over long periods of time. Stochastic switches in limiting factors that persist for multiple time-steps have received little attention, but most wild populations may periodically experience such switches. Here, we consider the dynamics of three populations of individually marked bighorn sheep (Ovis canadensis) monitored for 24-28 years. Each population experienced one or two distinct cougar (Puma concolor) predation events leading to population declines. The onset and duration of predation events were stochastic and consistent with predation by specialist individuals. A realistic Markov chain model confirms that predation by specialist cougars can cause extinction of isolated populations. We suggest that such processes may be common. In such cases, predator-prey equilibria may only occur at large geographical and temporal scales, and are unlikely with increasing habitat fragmentation. PMID:16777749

    17. Stochastic predation events and population persistence in bighorn sheep

      PubMed Central

      Festa-Bianchet, Marco; Coulson, Tim; Gaillard, Jean-Michel; Hogg, John T; Pelletier, Fanie

      2006-01-01

      Many studies have reported temporal changes in the relative importance of density-dependence and environmental stochasticity in affecting population growth rates, but they typically assume that the predominant factor limiting growth remains constant over long periods of time. Stochastic switches in limiting factors that persist for multiple time-steps have received little attention, but most wild populations may periodically experience such switches. Here, we consider the dynamics of three populations of individually marked bighorn sheep (Ovis canadensis) monitored for 24–28 years. Each population experienced one or two distinct cougar (Puma concolor) predation events leading to population declines. The onset and duration of predation events were stochastic and consistent with predation by specialist individuals. A realistic Markov chain model confirms that predation by specialist cougars can cause extinction of isolated populations. We suggest that such processes may be common. In such cases, predator–prey equilibria may only occur at large geographical and temporal scales, and are unlikely with increasing habitat fragmentation. PMID:16777749

    18. Tuning stochastic transition rates in a bistable genetic network.

      NASA Astrophysics Data System (ADS)

      Chickarmane, Vijay; Peterson, Carsten

      2009-03-01

      We investigate the stochastic dynamics of a simple genetic network, a toggle switch, in which the system makes transitions between the two alternative states. Our interest is in exploring whether such stochastic transitions, which occur due to the intrinsic noise such as transcriptional and degradation events, can be slowed down/speeded up, without changing the mean expression levels of the two genes, which comprise the toggle network. Such tuning is achieved by linking a signaling network to the toggle switch. The signaling network comprises of a protein, which can exist either in an active (phosphorylated) or inactive (dephosphorylated) form, and where its state is determined by one of the genetic network components. The active form of the protein in turn feeds back on the dynamics of the genetic network. We find that the rate of stochastic transitions from one state to the other, is determined essentially by the speed of phosphorylation, and hence the rate can be modulated by varying the phosphatase levels. We hypothesize that such a network architecture can be implemented as a general mechanism for controlling transition rates and discuss applications in population studies of two differentiated cell lineages, ex: the myeloid/erythroid lineage in hematopoiesis.

    19. Reusable fast opening switch

      DOEpatents

      Van Devender, J.P.; Emin, D.

      1983-12-21

      A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

    20. Alarm toe switch

      DOEpatents

      Ganyard, Floyd P.

      1982-01-01

      An alarm toe switch inserted within a shoe for energizing an alarm circuit n a covert manner includes an insole mounting pad into which a miniature reed switch is fixedly molded. An elongated slot perpendicular to the reed switch is formed in the bottom surface of the mounting pad. A permanent cylindrical magnet positioned in the forward portion of the slot with a diameter greater than the pad thickness causes a bump above the pad. A foam rubber block is also positioned in the slot rearwardly of the magnet and holds the magnet in normal inoperative relation. A non-magnetic support plate covers the slot and holds the magnet and foam rubber in the slot. The plate minimizes bending and frictional forces to improve movement of the magnet for reliable switch activation. The bump occupies the knuckle space beneath the big toe. When the big toe is scrunched rearwardly the magnet is moved within the slot relative to the reed switch, thus magnetically activating the switch. When toe pressure is released the foam rubber block forces the magnet back into normal inoperative position to deactivate the reed switch. The reed switch is hermetically sealed with the magnet acting through the wall so the switch assembly S is capable of reliable operation even in wet and corrosive environments.

    1. Reusable fast opening switch

      DOEpatents

      Van Devender, John P. (Albuquerque, NM); Emin, David (Albuquerque, NM)

      1986-01-01

      A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

    2. Leading the Game, Losing the Competition: Identifying Leaders and Followers in a Repeated Game.

      PubMed

      Seip, Knut Lehre; Grøn, Øyvind

      2016-01-01

      We explore a new method for identifying leaders and followers, LF, in repeated games by analyzing an experimental, repeated (50 rounds) game where Row player shifts the payoff between small and large values-a type of "investor" and Column player determines who gets the payoff-a type of "manager". We found that i) the Investor (Row) most often is a leading player and the manager (Column) a follower. The longer the Investor leads the game, the higher is both player's payoff. Surprisingly however, it is always the Manager that achieves the largest payoff. ii) The game has an efficient cooperative strategy where the players alternate in receiving a high payoff, but the players never identify, or accept, that strategy. iii) Under the assumption that the information used by the players is closely associated with the leader- follower sequence, and that information is available before the player's decisions are made, the players switched LF- strategy primarily as a function of information on the Investor's investment and moves and secondly as a function of the Manager's payoff. PMID:26968032

    3. Leading the Game, Losing the Competition: Identifying Leaders and Followers in a Repeated Game

      PubMed Central

      Seip, Knut Lehre; Grøn, Øyvind

      2016-01-01

      We explore a new method for identifying leaders and followers, LF, in repeated games by analyzing an experimental, repeated (50 rounds) game where Row player shifts the payoff between small and large values–a type of “investor” and Column player determines who gets the payoff–a type of “manager”. We found that i) the Investor (Row) most often is a leading player and the manager (Column) a follower. The longer the Investor leads the game, the higher is both player’s payoff. Surprisingly however, it is always the Manager that achieves the largest payoff. ii) The game has an efficient cooperative strategy where the players alternate in receiving a high payoff, but the players never identify, or accept, that strategy. iii) Under the assumption that the information used by the players is closely associated with the leader- follower sequence, and that information is available before the player’s decisions are made, the players switched LF- strategy primarily as a function of information on the Investor’s investment and moves and secondly as a function of the Manager’s payoff. PMID:26968032

    4. Stochastic thermodynamics of resetting

      NASA Astrophysics Data System (ADS)

      Fuchs, Jaco; Goldt, Sebastian; Seifert, Udo

      2016-03-01

      Stochastic dynamics with random resetting leads to a non-equilibrium steady state. Here, we consider the thermodynamics of resetting by deriving the first and second law for resetting processes far from equilibrium. We identify the contributions to the entropy production of the system which arise due to resetting and show that they correspond to the rate with which information is either erased or created. Using Landauer's principle, we derive a bound on the amount of work that is required to maintain a resetting process. We discuss different regimes of resetting, including a Maxwell demon scenario where heat is extracted from a bath at constant temperature.

    5. Stochastic ontogenetic growth model

      NASA Astrophysics Data System (ADS)

      West, B. J.; West, D.

      2012-02-01

      An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.

    6. Effects of adaptive dynamical linking in networked games.

      PubMed

      Yang, Zhihu; Li, Zhi; Wu, Te; Wang, Long

      2013-10-01

      The role of dynamical topologies in the evolution of cooperation has received considerable attention, as some studies have demonstrated that dynamical networks are much better than static networks in terms of boosting cooperation. Here we study a dynamical model of evolution of cooperation on stochastic dynamical networks in which there are no permanent partners to each agent. Whenever a new link is created, its duration is randomly assigned without any bias or preference. We allow the agent to adaptively adjust the duration of each link during the evolution in accordance with the feedback from game interactions. By Monte Carlo simulations, we find that cooperation can be remarkably promoted by this adaptive dynamical linking mechanism both for the game of pairwise interactions, such as the Prisoner's Dilemma game (PDG), and for the game of group interactions, illustrated by the public goods game (PGG). And the faster the adjusting rate, the more successful the evolution of cooperation. We also show that in this context weak selection favors cooperation much more than strong selection does. What is particularly meaningful is that the prosperity of cooperation in this study indicates that the rationality and selfishness of a single agent in adjusting social ties can lead to the progress of altruism of the whole population. PMID:24229137

    7. Effects of adaptive dynamical linking in networked games

      NASA Astrophysics Data System (ADS)

      Yang, Zhihu; Li, Zhi; Wu, Te; Wang, Long

      2013-10-01

      The role of dynamical topologies in the evolution of cooperation has received considerable attention, as some studies have demonstrated that dynamical networks are much better than static networks in terms of boosting cooperation. Here we study a dynamical model of evolution of cooperation on stochastic dynamical networks in which there are no permanent partners to each agent. Whenever a new link is created, its duration is randomly assigned without any bias or preference. We allow the agent to adaptively adjust the duration of each link during the evolution in accordance with the feedback from game interactions. By Monte Carlo simulations, we find that cooperation can be remarkably promoted by this adaptive dynamical linking mechanism both for the game of pairwise interactions, such as the Prisoner's Dilemma game (PDG), and for the game of group interactions, illustrated by the public goods game (PGG). And the faster the adjusting rate, the more successful the evolution of cooperation. We also show that in this context weak selection favors cooperation much more than strong selection does. What is particularly meaningful is that the prosperity of cooperation in this study indicates that the rationality and selfishness of a single agent in adjusting social ties can lead to the progress of altruism of the whole population.

    8. Transient-Switch-Signal Suppressor

      NASA Technical Reports Server (NTRS)

      Bozeman, Richard J., Jr.

      1995-01-01

      Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.

    9. Asymmetric Evolutionary Games.

      PubMed

      McAvoy, Alex; Hauert, Christoph

      2015-08-01

      Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

    10. Asymmetric Evolutionary Games

      PubMed Central

      McAvoy, Alex; Hauert, Christoph

      2015-01-01

      Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

    11. Exploring Game Experiences and Game Leadership in Massively Multiplayer Online Role-Playing Games

      ERIC Educational Resources Information Center

      Jang, YeiBeech; Ryu, SeoungHo

      2011-01-01

      This study explored the in-game experiences of massively multiplayer online role-playing game (MMORPG) players focusing on game leadership and offline leadership. MMORPGs have enormous potential to provide gameplayers with rich social experiences through various interactions along with social activities such as joining a game community, team play

    12. Exploring Game Experiences and Game Leadership in Massively Multiplayer Online Role-Playing Games

      ERIC Educational Resources Information Center

      Jang, YeiBeech; Ryu, SeoungHo

      2011-01-01

      This study explored the in-game experiences of massively multiplayer online role-playing game (MMORPG) players focusing on game leadership and offline leadership. MMORPGs have enormous potential to provide gameplayers with rich social experiences through various interactions along with social activities such as joining a game community, team play…

    13. Asymmetrical Switch Costs in Children

      ERIC Educational Resources Information Center

      Ellefson, Michelle R.; Shapiron, Laura R.; Chater, Nick

      2006-01-01

      Switching between tasks produces decreases in performance as compared to repeating the same task. Asymmetrical switch costs occur when switching between two tasks of unequal difficulty. This asymmetry occurs because the cost is greater when switching to the less difficult task than when switching to the more difficult task. Various theories about…

    14. Asymmetrical Switch Costs in Children

      ERIC Educational Resources Information Center

      Ellefson, Michelle R.; Shapiron, Laura R.; Chater, Nick

      2006-01-01

      Switching between tasks produces decreases in performance as compared to repeating the same task. Asymmetrical switch costs occur when switching between two tasks of unequal difficulty. This asymmetry occurs because the cost is greater when switching to the less difficult task than when switching to the more difficult task. Various theories about

    15. Stochastic Quantum Gas Dynamics

      NASA Astrophysics Data System (ADS)

      Proukakis, Nick P.; Cockburn, Stuart P.

      2010-03-01

      We study the dynamics of weakly-interacting finite temperature Bose gases via the Stochastic Gross-Pitaevskii equation (SGPE). As a first step, we demonstrate [jointly with A. Negretti (Ulm, Germany) and C. Henkel (Potsdam, Germany)] that the SGPE provides a significantly better method for generating an equilibrium state than the number-conserving Bogoliubov method (except for low temperatures and small atom numbers). We then study [jointly with H. Nistazakis and D.J. Frantzeskakis (University of Athens, Greece), P.G.Kevrekidis (University of Massachusetts) and T.P. Horikis (University of Ioannina, Greece)] the dynamics of dark solitons in elongated finite temperature condensates. We demonstrate numerical shot-to-shot variations in soliton trajectories (S.P. Cockburn et al., arXiv:0909.1660.), finding individual long-lived trajectories as in experiments. In our simulations, these variations arise from fluctuations in the phase and density of the underlying medium. We provide a detailed statistical analysis, proposing regimes for the controlled experimental demonstration of this effect; we also discuss the extent to which simpler models can be used to mimic the features of ensemble-averaged stochastic trajectories.

    16. Stochastic power flow modeling

      SciTech Connect

      Not Available

      1980-06-01

      The stochastic nature of customer demand and equipment failure on large interconnected electric power networks has produced a keen interest in the accurate modeling and analysis of the effects of probabilistic behavior on steady state power system operation. The principle avenue of approach has been to obtain a solution to the steady state network flow equations which adhere both to Kirchhoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques. Clearly the need of the present is to develop sound techniques for producing meaningful data to serve as input. This research has addressed this end and serves to bridge the gap between electric demand modeling, equipment failure analysis, etc., and the area of algorithm development. Therefore, the scope of this work lies squarely on developing an efficient means of producing sensible input information in the form of probability distributions for the many types of solution algorithms that have been developed. Two major areas of development are described in detail: a decomposition of stochastic processes which gives hope of stationarity, ergodicity, and perhaps even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.

    17. Stochastic blind motion deblurring.

      PubMed

      Xiao, Lei; Gregson, James; Heide, Felix; Heidrich, Wolfgang

      2015-10-01

      Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can, therefore, only be obtained with the help of prior information in the form of (often nonconvex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with Peak Signal-to-Noise Ratio (PSNR) values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms. PMID:25974941

    18. Population balancing with species switching

      NASA Astrophysics Data System (ADS)

      Song, Juyong; Jo, Junghyo; Hoang, Danh-Tai; Kim, Jongwook

      2014-07-01

      Biological organisms are composed of cells differentiated from stem cells. Emerging evidence suggests phenotypic switches of differentiated cells, called transdifferentiation, during development and under pathophysiological conditions. To examine the role of transdifferentiation for population balances, we construct a stochastic model mapped into urn problems. When a colored ball is drawn from an urn, one additional ball with the same color is put into the urn in Polya's urn scheme while the drawn ball is replaced by another ball with different color in Ehrenfest's urn scheme. Our population balance model is a mixture of the two classic urn problems corresponding to cell replication and transdifferentiation. Because a dominant population is more likely to be drawn, the preferential replication and transdifferentiation of the dominant population contribute to increasing and decreasing the gap between the two populations, respectively. Therefore, their competition determines population balancing. We analyze the dependence of population dynamics on the replication and the transdifferentiation rates of each population. Finally, experimentally probing the event of transdifferentiation is a challenging problem because it is indistinguishable from death of one cell type and concurrent replication of another cell type. Our analysis suggests that transdifferentiation generates fewer fluctuations in population dynamics than the combined events of cell death and replication do.

    19. Multiobjective optimization in structural design with uncertain parameters and stochastic processes

      NASA Technical Reports Server (NTRS)

      Rao, S. S.

      1984-01-01

      The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.

    20. Reflective HTS switch

      DOEpatents

      Martens, J.S.; Hietala, V.M.; Hohenwarter, G.K.G.

      1994-09-27

      A HTS (High Temperature Superconductor) switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time. 6 figs.

    1. Power-Switching Circuit

      NASA Technical Reports Server (NTRS)

      Praver, Gerald A.; Theisinger, Peter C.; Genofsky, John

      1987-01-01

      Functions of circuit breakers, meters, and switches combined. Circuit that includes power field-effect transistors (PFET's) provides on/off switching, soft starting, current monitoring, current tripping, and protection against overcurrent for 30-Vdc power supply at normal load currents up to 2 A. Has no moving parts.

    2. Manually operated coded switch

      DOEpatents

      Barnette, Jon H.

      1978-01-01

      The disclosure relates to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made.

    3. High energy semiconductor switch

      NASA Astrophysics Data System (ADS)

      Risberg, R. L.

      1989-02-01

      The objective was a controller for electric motors. By operating standard Nema B induction motors at variable speed a great deal of energy is saved. This is especially true in pumping and air conditioning applications. To allow wider use of variable speed AC drives, and to provide improved performance, a better semiconductor switch was sought. This was termed the High Energy Semiconductor Switch.

    4. Automatic channel switching device

      NASA Technical Reports Server (NTRS)

      Ball, M.; Olnowich, H. T.

      1967-01-01

      Automatic channel switching device operates with all three triple modular redundant channels when there are no errors. When a failure occurs, channel and module switching isolate the failure to a specific channel. Since only one must operate correctly, reliability is increased.

    5. Reflective HTS switch

      DOEpatents

      Martens, Jon S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.

      1994-01-01

      A HTS switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time.

    6. Constructionist Gaming: Understanding the Benefits of Making Games for Learning

      PubMed Central

      Kafai, Yasmin B.; Burke, Quinn

      2015-01-01

      There has been considerable interest in examining the educational potential of playing video games. One crucial element, however, has traditionally been left out of these discussions—namely, children's learning through making their own games. In this article, we review and synthesize 55 studies from the last decade on making games and learning. We found that the majority of studies focused on teaching coding and academic content through game making, and that few studies explicitly examined the roles of collaboration and identity in the game making process. We argue that future discussions of serious gaming ought to be more inclusive of constructionist approaches to realize the full potential of serious gaming. Making games, we contend, not only more genuinely introduces children to a range of technical skills but also better connects them to each other, addressing the persistent issues of access and diversity present in traditional digital gaming cultures. PMID:27019536

    7. Gene regulation and noise reduction by coupling of stochastic processes

      PubMed Central

      Hornos, José Eduardo M.; Reinitz, John

      2015-01-01

      Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447

    8. Stochastic transitions in a bistable reaction system on the membrane

      PubMed Central

      Kochańczyk, Marek; Jaruszewicz, Joanna; Lipniacki, Tomasz

      2013-01-01

      Transitions between steady states of a multi-stable stochastic system in the perfectly mixed chemical reactor are possible only because of stochastic switching. In realistic cellular conditions, where diffusion is limited, transitions between steady states can also follow from the propagation of travelling waves. Here, we study the interplay between the two modes of transition for a prototype bistable system of kinase–phosphatase interactions on the plasma membrane. Within microscopic kinetic Monte Carlo simulations on the hexagonal lattice, we observed that for finite diffusion the behaviour of the spatially extended system differs qualitatively from the behaviour of the same system in the well-mixed regime. Even when a small isolated subcompartment remains mostly inactive, the chemical travelling wave may propagate, leading to the activation of a larger compartment. The activating wave can be induced after a small subdomain is activated as a result of a stochastic fluctuation. Such a spontaneous onset of activity is radically more probable in subdomains characterized by slower diffusion. Our results show that a local immobilization of substrates can lead to the global activation of membrane proteins by the mechanism that involves stochastic fluctuations followed by the propagation of a semi-deterministic travelling wave. PMID:23635492

    9. Gene regulation and noise reduction by coupling of stochastic processes

      NASA Astrophysics Data System (ADS)

      Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

      2015-02-01

      Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

    10. Multi-scenario modelling of uncertainty in stochastic chemical systems

      SciTech Connect

      Evans, R. David; Ricardez-Sandoval, Luis A.

      2014-09-15

      Uncertainty analysis has not been well studied at the molecular scale, despite extensive knowledge of uncertainty in macroscale systems. The ability to predict the effect of uncertainty allows for robust control of small scale systems such as nanoreactors, surface reactions, and gene toggle switches. However, it is difficult to model uncertainty in such chemical systems as they are stochastic in nature, and require a large computational cost. To address this issue, a new model of uncertainty propagation in stochastic chemical systems, based on the Chemical Master Equation, is proposed in the present study. The uncertain solution is approximated by a composite state comprised of the averaged effect of samples from the uncertain parameter distributions. This model is then used to study the effect of uncertainty on an isomerization system and a two gene regulation network called a repressilator. The results of this model show that uncertainty in stochastic systems is dependent on both the uncertain distribution, and the system under investigation. -- Highlights: •A method to model uncertainty on stochastic systems was developed. •The method is based on the Chemical Master Equation. •Uncertainty in an isomerization reaction and a gene regulation network was modelled. •Effects were significant and dependent on the uncertain input and reaction system. •The model was computationally more efficient than Kinetic Monte Carlo.

    11. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems

      DOE PAGESBeta

      Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan

      2015-05-19

      The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method.more » Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.« less

    12. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems

      SciTech Connect

      Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan

      2015-05-19

      The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method. Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.

    13. Variance decomposition in stochastic simulators

      NASA Astrophysics Data System (ADS)

      Le Maître, O. P.; Knio, O. M.; Moraes, A.

      2015-06-01

      This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

    14. Nanoscale memristive radiofrequency switches

      NASA Astrophysics Data System (ADS)

      Pi, Shuang; Ghadiri-Sadrabadi, Mohammad; Bardin, Joseph C.; Xia, Qiangfei

      2015-06-01

      Radiofrequency switches are critical components in wireless communication systems and consumer electronics. Emerging devices include switches based on microelectromechanical systems and phase-change materials. However, these devices suffer from disadvantages such as large physical dimensions and high actuation voltages. Here we propose and demonstrate a nanoscale radiofrequency switch based on a memristive device. The device can be programmed with a voltage as low as 0.4 V and has an ON/OFF conductance ratio up to 1012 with long state retention. We measure the radiofrequency performance of the switch up to 110 GHz and demonstrate low insertion loss (0.3 dB at 40 GHz), high isolation (30 dB at 40 GHz), an average cutoff frequency of 35 THz and competitive linearity and power-handling capability. Our results suggest that, in addition to their application in memory and computing, memristive devices are also a leading contender for radiofrequency switch applications.

    15. Erected mirror optical switch

      DOEpatents

      Allen, James J.

      2005-06-07

      A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

    16. On Path Attractors, Stochastic Bifurcation and Dephasing In Genetic Networks

      NASA Astrophysics Data System (ADS)

      Potoyan, Davit

      2015-03-01

      Gene regulatory networks are driven stochastic systems with the noise having two distinct components due to the to birth and death of metabolite molecules and dichotomous nature of gene state switching. Presence of dichotomous gene noise alone has the capacity to significantly perturb the optimal transition paths and steady state probability distributions compared to the macroscopic models and their weak noise approximations. Most importantly dichotomous gene noise can also lead to multimodal distributions due to stochastic bifurcation of the underlying nonlinear dynamical system, which underlies the mechanism of formation of population heterogeneity. In this note we derive approximate path based expression of the time dependent probability of gene circuits which enables deeper exploration of the role of gene noise in formation of epigenetic states and dephasing-like phenomena.

    17. Brains on video games

      PubMed Central

      Bavelier, Daphne; Green, C. Shawn; Han, Doug Hyun; Renshaw, Perry F.; Merzenich, Michael M.; Gentile, Douglas A.

      2015-01-01

      The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games ‘damage the brain’ or ‘boost brain power’ do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affect cognition and behaviour, and explain how this knowledge can be harnessed for educational and rehabilitation purposes. As research in this area is still in its early days, the contributors of this Viewpoint also discuss several issues and challenges that should be addressed to move the field forward. PMID:22095065

    18. Brains on video games.

      PubMed

      Bavelier, Daphne; Green, C Shawn; Han, Doug Hyun; Renshaw, Perry F; Merzenich, Michael M; Gentile, Douglas A

      2011-12-01

      The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games 'damage the brain' or 'boost brain power' do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affect cognition and behaviour, and explain how this knowledge can be harnessed for educational and rehabilitation purposes. As research in this area is still in its early days, the contributors of this Viewpoint also discuss several issues and challenges that should be addressed to move the field forward. PMID:22095065

    19. The Atomic Dating Game.

      ERIC Educational Resources Information Center

      Cummo, Evelyn; Matthews, Catherine E.

      2002-01-01

      Presents an activity designed to provide students with opportunities to practice drawing atomic models and discover the logical pairings of whole families on the periodic table. Follows the format of a television game show. (DDR)

    20. Play the Mosquito Game

      MedlinePlus

      ... of the Cell Cycle Diabetes and Insulin DNA - RNA - Protein DNA - the Double Helix Ear Pages ECG/ ... About the games Malaria is one of the world's most common diseases, caused by a parasite that ...

    1. Phenotypic switching in gene regulatory networks.

      PubMed

      Thomas, Philipp; Popović, Nikola; Grima, Ramon

      2014-05-13

      Noise in gene expression can lead to reversible phenotypic switching. Several experimental studies have shown that the abundance distributions of proteins in a population of isogenic cells may display multiple distinct maxima. Each of these maxima may be associated with a subpopulation of a particular phenotype, the quantification of which is important for understanding cellular decision-making. Here, we devise a methodology which allows us to quantify multimodal gene expression distributions and single-cell power spectra in gene regulatory networks. Extending the commonly used linear noise approximation, we rigorously show that, in the limit of slow promoter dynamics, these distributions can be systematically approximated as a mixture of Gaussian components in a wide class of networks. The resulting closed-form approximation provides a practical tool for studying complex nonlinear gene regulatory networks that have thus far been amenable only to stochastic simulation. We demonstrate the applicability of our approach in a number of genetic networks, uncovering previously unidentified dynamical characteristics associated with phenotypic switching. Specifically, we elucidate how the interplay of transcriptional and translational regulation can be exploited to control the multimodality of gene expression distributions in two-promoter networks. We demonstrate how phenotypic switching leads to birhythmical expression in a genetic oscillator, and to hysteresis in phenotypic induction, thus highlighting the ability of regulatory networks to retain memory. PMID:24782538

    2. Getting into the Game

      ERIC Educational Resources Information Center

      Galuszka, Peter

      2009-01-01

      Malcolm Perdue faces a dilemma as challenging as the computer games he loves to play. The 19-year-old student at Atlanta Metropolitan College wants to learn how to become a game designer. Not only would doing so be a lot of fun, designers can make $80,000 a year early in their careers. But his school has limited options in the field. Nearby…

    3. Multichoice minority game

      SciTech Connect

      Ein-Dor, Liat; Metzler, Richard; Kanter, Ido; Kinzel, Wolfgang

      2001-06-01

      The generalization of the problem of adaptive competition, known as the minority game, to the case of K possible choices for each player, is addressed, and applied to a system of interacting perceptrons with input and output units of a type of K-state Potts spins. An optimal solution of this minority game, as well as the dynamic evolution of the adaptive strategies of the players, are solved analytically for a general K and compared with numerical simulations.

    4. Quantum Games under Decoherence

      NASA Astrophysics Data System (ADS)

      Huang, Zhiming; Qiu, Daowen

      2016-02-01

      Quantum systems are easily influenced by ambient environments. Decoherence is generated by system interaction with external environment. In this paper, we analyse the effects of decoherence on quantum games with Eisert-Wilkens-Lewenstein (EWL) (Eisert et al., Phys. Rev. Lett. 83(15), 3077 1999) and Marinatto-Weber (MW) (Marinatto and Weber, Phys. Lett. A 272, 291 2000) schemes. Firstly, referring to the analytical approach that was introduced by Eisert et al. (Phys. Rev. Lett. 83(15), 3077 1999), we analyse the effects of decoherence on quantum Chicken game by considering different traditional noisy channels. We investigate the Nash equilibria and changes of payoff in specific two-parameter strategy set for maximally entangled initial states. We find that the Nash equilibria are different in different noisy channels. Since Unruh effect produces a decoherence-like effect and can be perceived as a quantum noise channel (Omkar et al., arXiv: 1408.1477v1), with the same two parameter strategy set, we investigate the influences of decoherence generated by the Unruh effect on three-player quantum Prisoners' Dilemma, the non-zero sum symmetric multiplayer quantum game both for unentangled and entangled initial states. We discuss the effect of the acceleration of noninertial frames on the the game's properties such as payoffs, symmetry, Nash equilibrium, Pareto optimal, dominant strategy, etc. Finally, we study the decoherent influences of correlated noise and Unruh effect on quantum Stackelberg duopoly for entangled and unentangled initial states with the depolarizing channel. Our investigations show that under the influence of correlated depolarizing channel and acceleration in noninertial frame, some critical points exist for an unentangled initial state at which firms get equal payoffs and the game becomes a follower advantage game. It is shown that the game is always a leader advantage game for a maximally entangled initial state and there appear some points at which the payoffs become zero.

    5. Serious games for Geophysics

      NASA Astrophysics Data System (ADS)

      Lombardo, Valerio; Rubbia, Giuliana

      2015-04-01

      Childhood stage is indispensable in the education of human beings and especially critical to arise scientific interest in children. We discuss the participatory design of a didactic videogame, i.e. a "serious" game to teach geophysics and Earth sciences to high and low-school students. Geophysics is the application of the laws and techniques of physics to uncover knowledge about the earth's dynamic processes and subsurface structure. It explores phenomena such as earthquakes, volcanoes, tsunamis to improve our understanding of the earth's physical processes and our ability to predict reoccurrences. Effective mitigation of risks from catastrophic geologic hazards requires knowledge and understanding of local geology and geologic processes. Scientific outreach can be defined as discourse activity, whose main objective is to communicate some knowledge previously produced in scientific contexts to a non-expert massive audience. One of the difficulties science educators need to overcome is to explain specific concepts from a given discipline in a language simple and understandable for their audience. Digital games today play a large role in young people's lives. Games are directly connected to the life of today's adolescents. Therefore, digital games should be included and broached as a subject in the classroom. The ardor and enthusiasm that digital games evoke in teenagers has indeed brought many researchers, school leaders and teachers to the question "how video games" can be used to engage young people and support their learning inside the classroom. Additionally, studies have shown that digital games can enhance various skills such as the ability to concentrate, stamina, tactical aptness, anticipatory thinking, orientation in virtual spaces, and deductive reasoning. Thus, videogames become an effective didactic mechanism and should have a place in the classroom. The project aims to explore the potentials of entertainment technologies in educational processes; contribute to innovative pedagogies for scientific learning; create a scientific feedback-loop with students and teachers; implement a multi-level video game for scientific outreach.

    6. The variance of two game tree algorithms

      SciTech Connect

      Zhang, Yanjun

      1997-06-01

      This paper studies the variance of two game tree algorithms {alpha}-{beta} search and SCOUT, in the stochastic i.i.d. model. The problem of determining the variance of the classic {alpha}-{beta} search algorithm in the i.i.d. model has been long open. This paper resolves this problem partially. It is shown, by the martingale method, that the standard deviation of the weaker {alpha}-{beta} search without deep cutoffs is of the same order as the expected number of leaves evaluated. A nearly-optimal upper bound on the variance of the general {alpha}-{beta} search is obtained, and this upper bound yields an optimal bound if the current upper bound on the expected number of leaves evaluated by {alpha}-{beta} search can be improved. A thorough treatment of the two-pass SCOUT algorithm is presented. The variance of the SCOUT algorithm is determined.

    7. Utilizing Video Games

      NASA Astrophysics Data System (ADS)

      Blaize, L.

      Almost from its birth, the computer and video gaming industry has done an admirable job of communicating the vision and attempting to convey the experience of traveling through space to millions of gamers from all cultures and demographics. This paper will propose several approaches the 100 Year Starship Study can take to use the power of interactive media to stir interest in the Starship and related projects among a global population. It will examine successful gaming franchises from the past that are relevant to the mission and consider ways in which the Starship Study could cooperate with game development studios to bring the Starship vision to those franchises and thereby to the public. The paper will examine ways in which video games can be used to crowd-source research aspects for the Study, and how video games are already considering many of the same topics that will be examined by this Study. Finally, the paper will propose some mechanisms by which the 100 Year Starship Study can establish very close ties with the gaming industry and foster cooperation in pursuit of the Study's goals.

    8. Equilibrium games in networks

      NASA Astrophysics Data System (ADS)

      Li, Angsheng; Zhang, Xiaohui; Pan, Yicheng; Peng, Pan

      2014-12-01

      It seems a universal phenomenon of networks that the attacks on a small number of nodes by an adversary player Alice may generate a global cascading failure of the networks. It has been shown (Li et al., 2013) that classic scale-free networks (Barabsi and Albert, 1999, Barabsi, 2009) are insecure against attacks of as small as O(logn) many nodes. This poses a natural and fundamental question: Can we introduce a second player Bob to prevent Alice from global cascading failure of the networks? We proposed a game in networks. We say that a network has an equilibrium game if the second player Bob has a strategy to balance the cascading influence of attacks by the adversary player Alice. It was shown that networks of the preferential attachment model (Barabsi and Albert, 1999) fail to have equilibrium games, that random graphs of the Erds-Rnyi model (Erds and Rnyi, 1959, Erds and Rnyi, 1960) have, for which randomness is the mechanism, and that homophyly networks (Li et al., 2013) have equilibrium games, for which homophyly and preferential attachment are the underlying mechanisms. We found that some real networks have equilibrium games, but most real networks fail to have. We anticipate that our results lead to an interesting new direction of network theory, that is, equilibrium games in networks.

    9. Internet gaming addiction: current perspectives

      PubMed Central

      Kuss, Daria J

      2013-01-01

      In the 2000s, online games became popular, while studies of Internet gaming addiction emerged, outlining the negative consequences of excessive gaming, its prevalence, and associated risk factors. The establishment of specialized treatment centers in South-East Asia, the US, and Europe reflects the growing need for professional help. It is argued that only by understanding the appeal of Internet gaming, its context, and neurobiologic correlates can the phenomenon of Internet gaming addiction be understood comprehensively. The aim of this review is to provide an insight into current perspectives on Internet gaming addiction using a holistic approach, taking into consideration the mass appeal of online games, the context of Internet gaming addiction, and associated neuroimaging findings, as well as the current diagnostic framework adopted by the American Psychiatric Association. The cited research indicates that the individual’s context is a significant factor that marks the dividing line between excessive gaming and gaming addiction, and the game context can gain particular importance for players, depending on their life situation and gaming preferences. Moreover, the cultural context is significant because it embeds the gamer in a community with shared beliefs and practices, endowing their gaming with particular meaning. The cited neuroimaging studies indicate that Internet gaming addiction shares similarities with other addictions, including substance dependence, at the molecular, neurocircuitry, and behavioral levels. The findings provide support for the current perspective of understanding Internet gaming addiction from a disease framework. The benefits of an Internet gaming addiction diagnosis include reliability across research, destigmatization of individuals, development of efficacious treatments, and the creation of an incentive for public health care and insurance providers. The holistic approach adopted here not only highlights empirical research that evidences neurobiologic correlates of Internet gaming addiction and the establishment of a preliminary diagnosis, but also emphasizes the necessity of an indepth understanding of the meaning, context, and practices associated with gaming. PMID:24255603

    10. Internet gaming addiction: current perspectives.

      PubMed

      Kuss, Daria J

      2013-01-01

      In the 2000s, online games became popular, while studies of Internet gaming addiction emerged, outlining the negative consequences of excessive gaming, its prevalence, and associated risk factors. The establishment of specialized treatment centers in South-East Asia, the US, and Europe reflects the growing need for professional help. It is argued that only by understanding the appeal of Internet gaming, its context, and neurobiologic correlates can the phenomenon of Internet gaming addiction be understood comprehensively. The aim of this review is to provide an insight into current perspectives on Internet gaming addiction using a holistic approach, taking into consideration the mass appeal of online games, the context of Internet gaming addiction, and associated neuroimaging findings, as well as the current diagnostic framework adopted by the American Psychiatric Association. The cited research indicates that the individual's context is a significant factor that marks the dividing line between excessive gaming and gaming addiction, and the game context can gain particular importance for players, depending on their life situation and gaming preferences. Moreover, the cultural context is significant because it embeds the gamer in a community with shared beliefs and practices, endowing their gaming with particular meaning. The cited neuroimaging studies indicate that Internet gaming addiction shares similarities with other addictions, including substance dependence, at the molecular, neurocircuitry, and behavioral levels. The findings provide support for the current perspective of understanding Internet gaming addiction from a disease framework. The benefits of an Internet gaming addiction diagnosis include reliability across research, destigmatization of individuals, development of efficacious treatments, and the creation of an incentive for public health care and insurance providers. The holistic approach adopted here not only highlights empirical research that evidences neurobiologic correlates of Internet gaming addiction and the establishment of a preliminary diagnosis, but also emphasizes the necessity of an indepth understanding of the meaning, context, and practices associated with gaming. PMID:24255603

    11. Brain activities associated with gaming urge of online gaming addiction.

      PubMed

      Ko, Chih-Hung; Liu, Gin-Chung; Hsiao, Sigmund; Yen, Ju-Yu; Yang, Ming-Jen; Lin, Wei-Chen; Yen, Cheng-Fang; Chen, Cheng-Sheng

      2009-04-01

      The aim of this study was to identify the neural substrates of online gaming addiction through evaluation of the brain areas associated with the cue-induced gaming urge. Ten participants with online gaming addiction and 10 control subjects without online gaming addiction were tested. They were presented with gaming pictures and the paired mosaic pictures while undergoing functional magnetic resonance imaging (fMRI) scanning. The contrast in blood-oxygen-level dependent (BOLD) signals when viewing gaming pictures and when viewing mosaic pictures was calculated with the SPM2 software to evaluate the brain activations. Right orbitofrontal cortex, right nucleus accumbens, bilateral anterior cingulate and medial frontal cortex, right dorsolateral prefrontal cortex, and right caudate nucleus were activated in the addicted group in contrast to the control group. The activation of the region-of-interest (ROI) defined by the above brain areas was positively correlated with self-reported gaming urge and recalling of gaming experience provoked by the WOW pictures. The results demonstrate that the neural substrate of cue-induced gaming urge/craving in online gaming addiction is similar to that of the cue-induced craving in substance dependence. The above-mentioned brain regions have been reported to contribute to the craving in substance dependence, and here we show that the same areas were involved in online gaming urge/craving. Thus, the results suggest that the gaming urge/craving in online gaming addiction and craving in substance dependence might share the same neurobiological mechanism. PMID:18996542

    12. Stochastic proximity embedding.

      PubMed

      Agrafiotis, Dimitris K

      2003-07-30

      We introduce stochastic proximity embedding (SPE), a novel self-organizing algorithm for producing meaningful underlying dimensions from proximity data. SPE attempts to generate low-dimensional Euclidean embeddings that best preserve the similarities between a set of related observations. The method starts with an initial configuration, and iteratively refines it by repeatedly selecting pairs of objects at random, and adjusting their coordinates so that their distances on the map match more closely their respective proximities. The magnitude of these adjustments is controlled by a learning rate parameter, which decreases during the course of the simulation to avoid oscillatory behavior. Unlike classical multidimensional scaling (MDS) and nonlinear mapping (NLM), SPE scales linearly with respect to sample size, and can be applied to very large data sets that are intractable by conventional embedding procedures. The method is programmatically simple, robust, and convergent, and can be applied to a wide range of scientific problems involving exploratory data analysis and visualization. PMID:12820129

    13. Stochastic reconstruction of sandstones

      PubMed

      Manwart; Torquato; Hilfer

      2000-07-01

      A simulated annealing algorithm is employed to generate a stochastic model for a Berea sandstone and a Fontainebleau sandstone, with each a prescribed two-point probability function, lineal-path function, and "pore size" distribution function, respectively. We find that the temperature decrease of the annealing has to be rather quick to yield isotropic and percolating configurations. A comparison of simple morphological quantities indicates good agreement between the reconstructions and the original sandstones. Also, the mean survival time of a random walker in the pore space is reproduced with good accuracy. However, a more detailed investigation by means of local porosity theory shows that there may be significant differences of the geometrical connectivity between the reconstructed and the experimental samples. PMID:11088546

    14. Stochastic overland flows

      NASA Astrophysics Data System (ADS)

      Govindaraju, R. S.; Kavvas, M. L.

      1991-06-01

      The theory developed in Part I of this paper is now applied to study the probabilistic behavior of the depth at the outlet of an impermeable overland flow section under the diffusion and kinematic wave approximations. This process is excited by stochastic rainfields which are conceptualized from radar observations. The depth at the outflow section is of prime importance and the solution methodology concentrates on obtaining the evolutionary probability distribution function for this physical quantity. This theoretical distribution is then compared with the empirical distribution function obtained from a thousand Monte-Carlo simulations. The simplified theory leading to the Fokker-Planck equation is also investigated. It is observed that the ‘time window’ used for simulation purposes can affect the results. The theoretical methodology performs satisfactorily when compared to simulation results. Some of the notable features of the proposed methodology are presented and further suggestions for improvement and extension of this work are discussed.

    15. Diffusion with stochastic resetting.

      PubMed

      Evans, Martin R; Majumdar, Satya N

      2011-04-22

      We study simple diffusion where a particle stochastically resets to its initial position at a constant rate r. A finite resetting rate leads to a nonequilibrium stationary state with non-Gaussian fluctuations for the particle position. We also show that the mean time to find a stationary target by a diffusive searcher is finite and has a minimum value at an optimal resetting rate r*. Resetting also alters fundamentally the late time decay of the survival probability of a stationary target when there are multiple searchers: while the typical survival probability decays exponentially with time, the average decays as a power law with an exponent depending continuously on the density of searchers. PMID:21599344

    16. Stochastic geometry of turbulence

      NASA Astrophysics Data System (ADS)

      Falkovich, Gregory

      2012-02-01

      Geometric statistics open the window into the most fundamental aspect of turbulence flows, their symmetries, both broken and emerging. On one hand, the study of the stochastic geometry of multi-point configurations reveals the statistical conservation laws which are responsible for the breakdown of scale invariance in direct turbulence cascades. On the other hand, the numerical and experimental studies of inverse cascade reveal that some families of isolines can be mapped to a Brownian walk (i.e. belong to the so-called SLE class) and are thus not only scale invariant but conformally invariant. That means that some aspects of turbulence statistics can be probably described by a conformal field theory. The talk is a review of broken and emerging symmetries in turbulence statistics.

    17. Optical Circuit Switched Protocol

      NASA Technical Reports Server (NTRS)

      Monacos, Steve P. (Inventor)

      2000-01-01

      The present invention is a system and method embodied in an optical circuit switched protocol for the transmission of data through a network. The optical circuit switched protocol is an all-optical circuit switched network and includes novel optical switching nodes for transmitting optical data packets within a network. Each optical switching node comprises a detector for receiving the header, header detection logic for translating the header into routing information and eliminating the header, and a controller for receiving the routing information and configuring an all optical path within the node. The all optical path located within the node is solely an optical path without having electronic storage of the data and without having optical delay of the data. Since electronic storage of the header is not necessary and the initial header is eliminated by the first detector of the first switching node. multiple identical headers are sent throughout the network so that subsequent switching nodes can receive and read the header for setting up an optical data path.

    18. Informal report to National Science Foundation: research on stackelberg games and electricity pricing

      SciTech Connect

      Luh, P.B.

      1981-08-01

      Three papers on Stackelberg games and electricity pricing are presented. In the first paper, a complete solution for the two-person, deterministic Stackelberg game is developed. The problem is separated into three tractable subproblems: an optimization problem with equality constraints, a minimax problem, and an optimization problem with an inequality constraint. Sufficient and necessary conditions for the existence of hierarchical equilibrium strategies are derived. In the second paper, sufficient and necessary conditions for single-stage, partially nested, stochastic games are presented and the effect of more information in the presence of uncertainties is considered. In the third paper, different electricity pricing schemes are analyzed from a game theoretic point of view. A philosophy, termed load adaptive pricing, in which supply and demand respond to each other through prices and consumption, and the utility company sells power at real time rates, is introduced.

    19. ID201202961, DOE S-124,539, Information Security Analysis Using Game Theory and Simulation

      SciTech Connect

      Abercrombie, Robert K; Schlicher, Bob G

      2012-01-01

      Information security analysis can be performed using game theory implemented in dynamic simulations of Agent Based Models (ABMs). Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. Our approach addresses imperfect information and scalability that allows us to also address previous limitations of current stochastic game models. Such models only consider perfect information assuming that the defender is always able to detect attacks; assuming that the state transition probabilities are fixed before the game assuming that the players actions are always synchronous; and that most models are not scalable with the size and complexity of systems under consideration. Our use of ABMs yields results of selected experiments that demonstrate our proposed approach and provides a quantitative measure for realistic information systems and their related security scenarios.

    20. Learning process in public goods games

      NASA Astrophysics Data System (ADS)

      Amado, André; Huang, Weini; Campos, Paulo R. A.; Ferreira, Fernando Fagundes

      2015-07-01

      We propose an individual-based model to describe the effects of memory and learning in the evolution of cooperation in a public goods game (PGG) in a well-mixed population. Individuals are endowed with a set of strategies, and in every round of the game they use one strategy out of this set based on their memory and learning process. The payoff of a player using a given strategy depends on the public goods enhancement factor r and the collective action of all players. We investigate the distribution of used strategies as well as the distribution of information patterns. The outcome depends on the learning process, which can be dynamic or static. In the dynamic learning process, the players can switch their strategies along the whole game, and use the strategy providing the highest payoff at current time step. In the static learning process, there is a training period where the players randomly explore different strategies out of their strategy sets. In the rest of the game, players only use the strategy providing the highest payoff during the training period. In the dynamic learning process, we observe a transition from a non-cooperative regime to a regime where the level of cooperation reaches about 50 %. As in the standard PGG, in the static learning process there is a transition from the non-cooperative regime to a regime where the level of cooperation can be higher than 50% at r = N. In both learning processes the transition becomes smoother as the memory size of individuals increases, which means that the lack of information is a key ingredient causing the defection.

    1. Plastic complementary microelectromechanical switches

      NASA Astrophysics Data System (ADS)

      Yokota, Tomoyuki; Nakano, Shintaro; Sekitani, Tsuyoshi; Someya, Takao

      2008-07-01

      We have fabricated plastic complementary microelectromechanical switches by using ink-jet printing technologies. Two vertically stacked regular plastic microelectromechanical switches that are complementary to each other realize the function of an inverter. While rectangular voltage waveforms were periodically applied to the control electrodes in the air, the delay times and durability were examined systematically. The frequency response was 50 Hz for an operation voltage of 60 V. When the number of periodic cycles exceeded 106, the changes in the on resistance of the top and bottom switches were 9% and 43%, respectively.

    2. Solid state switch

      DOEpatents

      Merritt, B.T.; Dreifuerst, G.R.

      1994-07-19

      A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

    3. Photoconductive switch package

      SciTech Connect

      Caporaso, George J.

      2015-10-27

      A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the central portion to actuate the switch.

    4. Photoconductive switch package

      SciTech Connect

      Caporaso, George J

      2015-11-05

      A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the central portion to actuate the switch.

    5. Electromechanical magnetization switching

      SciTech Connect

      Chudnovsky, Eugene M.; Jaafar, Reem

      2015-03-14

      We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained.

    6. Photoconductive switch package

      DOEpatents

      Ca[rasp, George J

      2013-10-22

      A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the central portion to actuate the switch.

    7. SPARK GAP SWITCH

      DOEpatents

      Neal, R.B.

      1957-12-17

      An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

    8. Optimality and adaptation of phenotypically switching cells in fluctuating environments

      NASA Astrophysics Data System (ADS)

      Belete, Merzu Kebede; Balázsi, Gábor

      2015-12-01

      Stochastic switching between alternative phenotypic states is a common cellular survival strategy during unforeseen environmental fluctuations. Cells can switch between different subpopulations that proliferate at different rates in different environments. Optimal population growth is typically assumed to occur when phenotypic switching rates match environmental switching rates. However, it is not well understood how this optimum behaves as a function of the growth rates of phenotypically different cells. In this study, we use mathematical and computational models to test how the actual parameters associated with optimal population growth differ from those assumed to be optimal. We find that the predicted optimum is practically always valid if the environmental durations are long. However, the regime of validity narrows as environmental durations shorten, especially if subpopulation growth rate differences differ from each other (are asymmetric) in two environments. Furthermore, we study the fate of mutants with switching rates previously predicted to be optimal. We find that mutants which match their phenotypic switching rates with the environmental ones can only sweep the population if the assumed optimum is valid, but not otherwise.

    9. Electrical Breakdown Physics in Photoconductive Semiconductor Switches (PCSS).

      SciTech Connect

      Mar, Alan; Zutavern, Fred J.; Vawter, Gregory A.; Hjalmarson, Harold P.; Gallegos, Richard Joseph; Bigman, Verle Howard

      2016-01-01

      Advanced switching devices with long lifetime will be critical components for Linear Transformer Drivers (LTDs) in next-generation accelerators. LTD designs employ high switch counts. With current gas switch technology at %7E10e3 shot life, a potential game-changer would be the development of a reliable low-impedance (%3C35nh) optically-triggered compact solid-state switch capable of switching 200kV and 50kA with 10e5 shotlife or better. Other applications of this technology, are pulse shaping programmable systems for dynamic material studies (Z-next, Genesis), efficient pulsed power systems for biofuel feedstock, short pulse (10 ns) accelerator designs for the Defense Threat Reduction Agency (DTRA), and sprytron replacements in NW firing sets. This LDRD project has succeeded in developing new optically-triggered photoconductive semiconductor switch (PCSS) designs that show great promise for scaling to modules capable of 200kV (DC) and 5kA current that can be stacked in parallel to achieve 100's of kA with 10e5 shot lifetime. . Executive Summary Advanced switching devices with long lifetime will be critical components for Linear Transformer Drivers (LTDs) in next-generation accelerators. LTD designs employ high switch counts. With current gas switch technology at %7E10e3 shot life, a potential game-changer would be the development of a reliable low-impedance (%3C35nh) optically-triggered compact solid-state switch capable of switching 200kV and 50kA with 10e5 shotlife or better. Other applications of this technology, are pulse shaping programmable systems for dynamic material studies (Z-next, Genesis), efficient pulsed power systems for biofuel feedstock, short pulse (10 ns) accelerator designs for the Defense Threat Reduction Agency (DTRA), and sprytron replacements in NW firing sets. This LDRD project has succeeded in developing new optically-triggered photoconductive semiconductor switch (PCSS) designs that show great promise for scaling to modules capable of 200kV (DC) and 5kA current that can be stacked in parallel to achieve 100's of kA with 10e5 shot lifetime. The new vertical switch design configuration generates parallel filaments in the bulk GaAs (as opposed to just beneath the surface as in previous designs) to achieve breakdown fields close to the maximum for the bulk GaAs while operating in air, and with 2-D scalability of the number of current-sharing filaments. This design also may be highly compatible with 2-D VCSEL arrays for optical triggering. The demonstration of this design in this LDRD utilized standard thickness wafers to trigger 0.4kA at 35kV/cm (limited by 0.6mm wafer thickness), tested to 1e5 shots with no detectable degradation of switch performance. Higher fields, total current, and switching voltages would be achievable with thicker GaAs wafers. Another important application pursued in this LDRD is the use of PCSS for trigger generator applications. Conventional in-plane PCSS have achieved triggering of a 100kV sparkgap (Kinetech-type) switch of the type similar to switches being considered for accelerator upgrades. The trigger is also being developed for pulsed power for HPM applications that require miniaturization and robust performance in noisy compact environments. This has spawned new programs for developing this technology, including an STTR for VCSEL trigger laser integration, also pursuing other follow-on applications.

    10. Meta-Games in Information Work

      ERIC Educational Resources Information Center

      Huvila, Isto

      2013-01-01

      Introduction: Meta-games and meta-gaming refer to various second-order conceptions of games and gaming. The present article discusses the applicability of the notions of meta-game and meta-gaming in understanding the patterns of how people use, misuse, work and work-around information and information infrastructures. Method: Twenty-two qualitative…

    11. Application and Evaluation of Analytic Gaming

      SciTech Connect

      Riensche, Roderick M.; Martucci, Louis M.; Scholtz, Jean; Whiting, Mark A.

      2009-08-31

      We describe an "analytic gaming" framework and methodology, and introduce formal methods for evaluation of the analytic gaming process. This process involves conception, development, and playing of games that are informed by predictive models and driven by players. Evaluation of analytic gaming examines both the process of game development and the results of game play exercises.

    12. Games for Learning. Occasional Paper No. 7.

      ERIC Educational Resources Information Center

      Abt, Clark C.

      The author explores the utility of educational games in elementary and secondary social studies classes. Separate sections of the paper discuss types of games, similarities among formal games and social studies topics, educational game design, and examples, advantages, and limitations of educational games. Game playing in society is described as…

    13. Stochastic reinforcement benefits skill acquisition

      PubMed Central

      Dayan, Eran; Averbeck, Bruno B.; Richmond, Barry J.; Cohen, Leonardo G.

      2014-01-01

      Learning complex skills is driven by reinforcement, which facilitates both online within-session gains and retention of the acquired skills. Yet, in ecologically relevant situations, skills are often acquired when mapping between actions and rewarding outcomes is unknown to the learning agent, resulting in reinforcement schedules of a stochastic nature. Here we trained subjects on a visuomotor learning task, comparing reinforcement schedules with higher, lower, or no stochasticity. Training under higher levels of stochastic reinforcement benefited skill acquisition, enhancing both online gains and long-term retention. These findings indicate that the enhancing effects of reinforcement on skill acquisition depend on reinforcement schedules. PMID:24532838

    14. A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise

      SciTech Connect

      Hong, Jialin; Zhang, Liying

      2014-07-01

      In this paper we investigate a stochastic multi-symplectic method for stochastic Maxwell equations with additive noise. Based on the stochastic version of variational principle, we find a way to obtain the stochastic multi-symplectic structure of three-dimensional (3-D) stochastic Maxwell equations with additive noise. We propose a stochastic multi-symplectic scheme and show that it preserves the stochastic multi-symplectic conservation law and the local and global stochastic energy dissipative properties, which the equations themselves possess. Numerical experiments are performed to verify the numerical behaviors of the stochastic multi-symplectic scheme.

    15. Optimal control of switched linear systems based on Migrant Particle Swarm Optimization algorithm

      NASA Astrophysics Data System (ADS)

      Xie, Fuqiang; Wang, Yongji; Zheng, Zongzhun; Li, Chuanfeng

      2009-10-01

      The optimal control problem for switched linear systems with internally forced switching has more constraints than with externally forced switching. Heavy computations and slow convergence in solving this problem is a major obstacle. In this paper we describe a new approach for solving this problem, which is called Migrant Particle Swarm Optimization (Migrant PSO). Imitating the behavior of a flock of migrant birds, the Migrant PSO applies naturally to both continuous and discrete spaces, in which definitive optimization algorithm and stochastic search method are combined. The efficacy of the proposed algorithm is illustrated via a numerical example.

    16. Miniature Intermittent Contact Switch

      NASA Technical Reports Server (NTRS)

      Sword, Antony

      1972-01-01

      This tech brief concerns work to provide a shock-resistant switch capable of being actuated by forces of varying magnitude and direction, primarily for use as a sensor on remote control (tele-operator) and prosthetic devices.

    17. Plasmonic enhanced ultrafast switch.

      SciTech Connect

      Subramania,Ganapathi Subramanian; Reno, John Louis; Passmore, Brandon Scott; Harris, Tom.; Shaner, Eric Arthur; Barrick, Todd A.

      2009-09-01

      Ultrafast electronic switches fabricated from defective material have been used for several decades in order to produce picosecond electrical transients and TeraHertz radiation. Due to the ultrashort recombination time in the photoconductor materials used, these switches are inefficient and are ultimately limited by the amount of optical power that can be applied to the switch before self-destruction. The goal of this work is to create ultrafast (sub-picosecond response) photoconductive switches on GaAs that are enhanced through plasmonic coupling structures. Here, the plasmonic coupler primarily plays the role of being a radiation condenser which will cause carriers to be generated adjacent to metallic electrodes where they can more efficiently be collected.

    18. An optical switch

      DOEpatents

      Christophorou, L.G.; Hunter, S.R.

      1987-04-30

      The invention is a gas mixture for a diffuse discharge switch having an electron attaching gas wherein electron attachment is brought about by indirect excitation of molecules to long live states by exposure to laser light. 3 figs.

    19. Solar array switching unit

      NASA Technical Reports Server (NTRS)

      Craig, Jr., Calvin L. (Inventor)

      2000-01-01

      A solar array switching (SASU) unit (22) according to the present invention includes a control system (24), a solar cell array (26) and switch circuits (28). The SASU unit (22) is associated with a power card (30) for receiving an output from the array (26). The array (26) has a number (0.5Y) of rows (38) each of which includes a pair of cell strings (42) separated by one of the switch circuits (28). Each of the strings (42) includes a number (X) of cells in electrical series. The SASU (22) switches the array (26) between a short string configuration where the array (26) effectively includes Y strings of X length, and a long string configuration where the array (26) effectively includes 0.5Y strings of 2X length. The SASU (22) thereby facilitates the use of solar power for space missions where solar intensity, operating temperature or other factors vary significantly.

    20. Digital Game-Based Learning: Towards an Experiential Gaming Model

      ERIC Educational Resources Information Center

      Kiili, Kristian

      2005-01-01

      Online games satisfy the basic requirements of learning environments and can provide engaging learning experiences for students. However, a model that successfully integrates educational theory and game design aspects do not exist. Thus, in this paper an experiential gaming model that is based on experiential learning theory, flow theory and game…

    1. Games, Gaming, and Gamification: Some Aspects of Motivation

      ERIC Educational Resources Information Center

      Hanson-Smith, Elizabeth

      2016-01-01

      Unsupported claims have been made for the use of games in education and the gamification (game-like aspects, such as scores and point goals) of various learning elements. This brief article examines what may be the motivational basis of gaming and how it can affect students' behavior and ultimate success.

    2. Mapping Learning and Game Mechanics for Serious Games Analysis

      ERIC Educational Resources Information Center

      Arnab, Sylvester; Lim, Theodore; Carvalho, Maira B.; Bellotti, Francesco; de Freitas, Sara; Louchart, Sandy; Suttie, Neil; Berta, Riccardo; De Gloria, Alessandro

      2015-01-01

      Although there is a consensus on the instructional potential of Serious Games (SGs), there is still a lack of methodologies and tools not only for design but also to support analysis and assessment. Filling this gap is one of the main aims of the Games and Learning Alliance (http://www.galanoe.eu) European Network of Excellence on Serious Games,

    3. Computer Games Are Fun? On Professional Games and Players' Motivations

      ERIC Educational Resources Information Center

      Eglesz, Denes; Fekete, Istvan; Kiss, Orhidea Edith; Izso, Lajos

      2005-01-01

      As computer games are becoming more widespread, there is a tendency for young people to spend a growing amount of time playing games. The first part of this paper will deal with various types of computer games and their characteristic features. In the second part we show the results of our recent surveys. We examined the motivations of young

    4. Gaming Personality and Game Dynamics in Online Discussion Instructions

      ERIC Educational Resources Information Center

      Tu, Chih-Hsiung; Yen, Cherng-Jyh; Sujo-Montes, Laura; Roberts, Gayle A.

      2015-01-01

      Gamification is the use of game mechanics to drive game-like engagements and actions. It applies game mechanics, dynamics and frameworks to promote desired learning behaviours. Positive and effective gamification could enhance learning and engage learners in more social and context-rich decision-making for problem-solving in learning tasks.

    5. Constructionist Gaming: Understanding the Benefits of Making Games for Learning

      ERIC Educational Resources Information Center

      Kafai, Yasmin B.; Burke, Quinn

      2015-01-01

      There has been considerable interest in examining the educational potential of playing video games. One crucial element, however, has traditionally been left out of these discussions--namely, children's learning through making their own games. In this article, we review and synthesize 55 studies from the last decade on making games and learning.

    6. Games Children Play: How Games and Sport Help Children Develop.

      ERIC Educational Resources Information Center

      Brooking-Payne, Kim

      This book presents games for children, teenagers, and adults, explaining how each game can help children develop in a holistic way. It begins by discussing tips for teaching games, how to deal with children who break the rules, and what type of equipment to use. The book provides help on how to approach play within each of the different age

    7. Games Children Play: How Games and Sport Help Children Develop.

      ERIC Educational Resources Information Center

      Brooking-Payne, Kim

      This book presents games for children, teenagers, and adults, explaining how each game can help children develop in a holistic way. It begins by discussing tips for teaching games, how to deal with children who break the rules, and what type of equipment to use. The book provides help on how to approach play within each of the different age…

    8. ALTEC Learning Games: Successful Integration of Learning and Gaming

      ERIC Educational Resources Information Center

      Bacon, Melanie A.; Ault, Marilyn M.

      2009-01-01

      Of the 53 million K-12 students in the United States, 93%, or 51 million, of them play video games (Etuk, 2008). ALTEC Learning Games utilize the excitement of video games to engage students and provide teachers authentic online resources that reinforce skills in math and language arts. Our recent work was partially supported by a partnership with…

    9. Gaming Personality and Game Dynamics in Online Discussion Instructions

      ERIC Educational Resources Information Center

      Tu, Chih-Hsiung; Yen, Cherng-Jyh; Sujo-Montes, Laura; Roberts, Gayle A.

      2015-01-01

      Gamification is the use of game mechanics to drive game-like engagements and actions. It applies game mechanics, dynamics and frameworks to promote desired learning behaviours. Positive and effective gamification could enhance learning and engage learners in more social and context-rich decision-making for problem-solving in learning tasks.…

    10. Constructionist Gaming: Understanding the Benefits of Making Games for Learning

      ERIC Educational Resources Information Center

      Kafai, Yasmin B.; Burke, Quinn

      2015-01-01

      There has been considerable interest in examining the educational potential of playing video games. One crucial element, however, has traditionally been left out of these discussions--namely, children's learning through making their own games. In this article, we review and synthesize 55 studies from the last decade on making games and learning.…

    11. Mapping Learning and Game Mechanics for Serious Games Analysis

      ERIC Educational Resources Information Center

      Arnab, Sylvester; Lim, Theodore; Carvalho, Maira B.; Bellotti, Francesco; de Freitas, Sara; Louchart, Sandy; Suttie, Neil; Berta, Riccardo; De Gloria, Alessandro

      2015-01-01

      Although there is a consensus on the instructional potential of Serious Games (SGs), there is still a lack of methodologies and tools not only for design but also to support analysis and assessment. Filling this gap is one of the main aims of the Games and Learning Alliance (http://www.galanoe.eu) European Network of Excellence on Serious Games,…

    12. Switching power supply filter

      NASA Technical Reports Server (NTRS)

      Kumar, Prithvi R. (Inventor); Abare, Wayne (Inventor)

      1989-01-01

      A filter for a switching power supply. The filter includes a common mode inductor with coil configurations allowing differential mode current from a dc source to pass through but attenuating common mode noise from the power supply so that the noise does not reach the dc source. The invention also includes the use of feed through capacitors at the switching power supply input terminals to provide further high-frequency noise attenuation.

    13. Multifunctional photonic switches

      NASA Astrophysics Data System (ADS)

      Demir, Hilmi Volkan

      Traditional optical-electronic-optical (o-e-o) conversion in current optical networks requires cascading separately packaged electronic and optoelectronic chips, and propagating high-speed electrical signals through these discrete modules. This increases the packaging and component costs, size, power consumption, and heat dissipation. For o-e-o conversion without the use of conventional electronics, we introduce a novel, chip-scale, photonic switching architecture that confines high-speed electrical signals in a single, compact, optoelectronic chip. This technology avoids the difficulties of ordinary o-e-o conversion. Its main advantages are low cost fabrication, low optical and electrical power consumption, small installation space, high-speed operation, two-dimensional scalability, and electrical configurability. These photonic switches intimately integrate quantum-well modulators with photodetectors that directly drive the modulators in their vicinity. Such switches simultaneously offer multiple network functions for multiple channels including unconstrained wavelength conversion and multi-wavelength broadcasting (in a wavelength-division-multiplexed system), multi-channel signal restoration (in an optical regenerator), spatial routing (in an optical router), and high-density switching (in an optical backplane). In this thesis, we present different implementations of high-speed, low-power photonic switches along with a theoretical framework of their underlying physics and experimental characterization. We introduce the first wavelength-converting optical crossbar switch that incorporates a two-dimensional array of such photonic switches on a single chip. The experimental demonstrations including a 50 GHz burst logic clock operation in the range of 850 nm, and unlimited wavelength conversion across 45 nm and multi-channel broadcasting over 20 nm spanning the telecommunication center band (1530 nm--1565 nm) are presented. The theoretical investigations that predict optical switching bandwidths exceeding 40 GHz are shown.

    14. Cygnus Water Switch Jitter

      SciTech Connect

      Charles V. Mitton, George D. Corrow, Mark D. Hansen, David J. Henderson, et al.

      2008-03-01

      The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources - Cygnus 1 and Cygnus 2. Each source has the following x-ray output: 1-mm diameter spot size, 4 rad at 1 m, 50-ns Full Width Half Max. The diode pulse has the following electrical specifications: 2.25 MV, 60 kA, 60 ns. This Radiographic Facility is located in an underground tunnel test area at the Nevada Test Site (NTS). The sources were developed to produce high-resolution images on subcritical tests which are performed at NTS. Subcritical tests are single-shot, high-value events. For this application, it is desirable to maintain a high level of reproducibility in source output. The major components of the Cygnus machines are: Marx generator, water-filled pulse–forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. A primary source of fluctuation in Cygnus shot-to-shot performance is jitter in breakdown of the main PFL switch, which is a “self-break” switch. The PFL switch breakdown time determines the peak PFL charging voltage, which ultimately affects the diode pulse. Therefore, PFL switch jitter contributes to shot-to-shot variation in source endpoint energy and dose. In this paper we will present PFL switch jitter analysis for both Cygnus machines and give the correlation with diode performance. For this analysis the PFL switch on each machine was maintained at a single gap setting which has been used for the majority of shots at NTS. In addition to this analysis, PFL switch performance for different switch gap settings taken recently will be examined. Lastly, implications of source jitter for radiographic diagnosis of subcritical shots will be discussed.

    15. Optical shutter switching matrix

      NASA Technical Reports Server (NTRS)

      Grove, Charles H.

      1991-01-01

      The interface switching systems are discussed which are related to those used in the Space Shuttle ground control system, transmission systems, communications systems, and airborne radar electronic countermeasure systems. The main goal is to identify a need that exists throughout the comprehensive information processing and communications disciplines supporting the Space Shuttle and Space Station programs, and introduce one viable approach to satisfy that need. The proposed device, described in NASA patent entitled 'Optical Shutter Switch Matrix', is discussed.

    16. Fractal Patterns and Chaos Games

      ERIC Educational Resources Information Center

      Devaney, Robert L.

      2004-01-01

      Teachers incorporate the chaos game and the concept of a fractal into various areas of the algebra and geometry curriculum. The chaos game approach to fractals provides teachers with an opportunity to help students comprehend the geometry of affine transformations.

    17. Nuclear Power Plant Simulation Game.

      ERIC Educational Resources Information Center

      Weiss, Fran

      1979-01-01

      Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

    18. 78 FR 17428 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2013-03-21

      ... III Tribal- State Gaming Compact between the Pyramid Lake Paiute Tribe and the State of Nevada... engaging in Class III gaming activities on Indian lands. On January 11, 2013, the Pyramid Lake Paiute...

    19. Stochastic superparameterization in quasigeostrophic turbulence

      SciTech Connect

      Grooms, Ian; Majda, Andrew J.

      2014-08-15

      In this article we expand and develop the authors' recent proposed methodology for efficient stochastic superparameterization algorithms for geophysical turbulence. Geophysical turbulence is characterized by significant intermittent cascades of energy from the unresolved to the resolved scales resulting in complex patterns of waves, jets, and vortices. Conventional superparameterization simulates large scale dynamics on a coarse grid in a physical domain, and couples these dynamics to high-resolution simulations on periodic domains embedded in the coarse grid. Stochastic superparameterization replaces the nonlinear, deterministic eddy equations on periodic embedded domains by quasilinear stochastic approximations on formally infinite embedded domains. The result is a seamless algorithm which never uses a small scale grid and is far cheaper than conventional SP, but with significant success in difficult test problems. Various design choices in the algorithm are investigated in detail here, including decoupling the timescale of evolution on the embedded domains from the length of the time step used on the coarse grid, and sensitivity to certain assumed properties of the eddies (e.g. the shape of the assumed eddy energy spectrum). We present four closures based on stochastic superparameterization which elucidate the properties of the underlying framework: a ‘null hypothesis’ stochastic closure that uncouples the eddies from the mean, a stochastic closure with nonlinearly coupled eddies and mean, a nonlinear deterministic closure, and a stochastic closure based on energy conservation. The different algorithms are compared and contrasted on a stringent test suite for quasigeostrophic turbulence involving two-layer dynamics on a β-plane forced by an imposed background shear. The success of the algorithms developed here suggests that they may be fruitfully applied to more realistic situations. They are expected to be particularly useful in providing accurate and efficient stochastic parameterizations for use in ensemble-based state estimation and prediction.

    20. Arts Games for Young Children.

      ERIC Educational Resources Information Center

      Suthers, Louie; Larkin, Veronicah

      This study investigated the use of arts games (structured play activities based on drama, movement, and music) with children age birth to 5 years in a day care setting. A set of 20 games was tested by 2 early childhood teachers; 1 teacher tested 10 games with a group of 2-year-olds and the other tested a different set of 10 games with a group of…

    1. Multiple hydrological attractors under stochastic daily forcing: 2. Can multiple attractors emerge?

      NASA Astrophysics Data System (ADS)

      Peterson, T. J.; Western, A. W.; Argent, R. M.

      2014-04-01

      The companion paper showed that multiple steady state groundwater levels can exist within a hill-slope Boussinesq-vegetation model under daily stochastic forcing. Using a numerical limit-cycle continuation algorithm, the steady states (henceforth attractors) and the threshold between them (henceforth repellor) were quantified at a range of saturated lateral conductivity values, ksmax. This paper investigates if stochastic daily forcing can switch the catchment between both of the attractors. That is, an attractor may exist under average forcing conditions but can stochastic forcing switch the catchment into and out of each of the attractor basins?; i.e., making the attractor emerge. This was undertaken using the model of the companion paper and by completing daily time-integration simulations at six values of the saturated lateral hydraulic conductivity, ksmax; three having two attractors and three having only a deep water table attractor. By graphically analyzing the simulations, and comparing against simulations from a model modified to have only one attractor, multiple attractors were found to emerge under stochastic daily forcing. However, the emergence of attractors was significantly more subtle and complex than that suggested by the companion paper. That is, an attractor may exist but never emerge; both attractors may exist and both may emerge but identifying the switching between attractors was often ambiguous; and only one attractor may exist and but a second temporary attractor may exist and emerge during periods of high precipitation. This subtle and complex emergence of attractors was explained using continuation analysis of the climate forcing rate, and not a model parameter such as ksmax. It showed that the temporary attractor existed over a large range of ksmax values and this suggests that more catchments may have multiple attractors than suggested by the companion paper. By combining this continuation analysis with the time-integration simulations, hydrological signatures indicative of a switch of multiple attractors were proposed. These signatures may provide a means for identifying actual catchments that have switched between multiple attractors.

    2. A numerical scheme for optimal transition paths of stochastic chemical kinetic systems

      SciTech Connect

      Liu Di

      2008-10-01

      We present a new framework for finding the optimal transition paths of metastable stochastic chemical kinetic systems with large system size. The optimal transition paths are identified to be the most probable paths according to the Large Deviation Theory of stochastic processes. Dynamical equations for the optimal transition paths are derived using the variational principle. A modified Minimum Action Method (MAM) is proposed as a numerical scheme to solve the optimal transition paths. Applications to Gene Regulatory Networks such as the toggle switch model and the Lactose Operon Model in Escherichia coli are presented as numerical examples.

    3. Enhancing Cognition with Video Games: A Multiple Game Training Study

      PubMed Central

      Oei, Adam C.; Patterson, Michael D.

      2013-01-01

      Background Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. Methodology/Principal Findings We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Conclusion/Significance Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects. PMID:23516504

    4. Low inductance gas switching.

      SciTech Connect

      Chavez, Ray; Harjes, Henry Charles III; Wallace, Zachariah; Elizondo, Juan E.

      2007-10-01

      The laser trigger switch (LTS) is a key component in ZR-type pulsed power systems. In ZR, the pulse rise time through the LTS is > 200 ns and additional stages of pulse compression are required to achieve the desired <100 ns rise time. The inductance of the LTS ({approx}500nH) in large part determines the energy transfer time through the switch and there is much to be gained in improving system performance and reducing system costs by reducing this inductance. The current path through the cascade section of the ZR LTS is at a diameter of {approx} 6-inches which is certainly not optimal from an inductance point of view. The LTS connects components of much greater diameter (typically 4-5 feet). In this LDRD the viability of switch concepts in which the diameter of cascade section is greatly increased have been investigated. The key technical question to be answered was, will the desired multi-channel behavior be maintained in a cascade section of larger diameter. This LDRD proceeded in 2 distinct phases. The original plan for the LDRD was to develop a promising switch concept and then design, build, and test a moderate scale switch which would demonstrate the key features of the concept. In phase I, a switch concept which meet all electrical design criteria and had a calculated inductance of 150 nH was developed. A 1.5 MV test switch was designed and fabrication was initiated. The LDRD was then redirected due to budgetary concerns. The fabrication of the switch was halted and the focus of the LDRD was shifted to small scale experiments designed to answer the key technical question concerning multi-channel behavior. In phase II, the Multi-channel switch test bed (MCST) was designed and constructed. The purpose of MCST was to provide a versatile, fast turn around facility for the study the multi-channel electrical breakdown behavior of a ZR type cascade switch gap in a parameter space near that of a ZR LTS. Parameter scans on source impedance, gap tilt, gap spacing and electrode diameter were conducted.

    5. Computerized History Games: Narrative Options

      ERIC Educational Resources Information Center

      Kee, Kevin

      2011-01-01

      How may historians best express history through computer games? This article suggests that the answer lies in correctly correlating historians' goals for teaching with the capabilities of different kinds of computer games. During the development of a game prototype for high school students, the author followed best practices as expressed in the

    6. Can Video Games Be Educational?

      ERIC Educational Resources Information Center

      Criswell, Chad

      2009-01-01

      One of the biggest debates among music educators today is about whether or not video games are a valid educational tool. As far back as the early 1990s, teachers were using games such as Sid Meier's Civilization to reinforce history and social studies concepts, but until recently games that dealt with areas of music education have been few and far…

    7. Alliances in "The Hunger Games"

      ERIC Educational Resources Information Center

      Painter, Judith

      2012-01-01

      This lesson plan is based on "The Hunger Games" by Suzanne Collins. Characters in "The Hunger Games" form alliances both inside and outside the arena. Katniss and Gale form alliances within District 12. Katniss, Peeta, and the other tributes form alliances for a variety of reasons during the Games. An alliance means that "someone's got your back"…

    8. 76 FR 52968 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2011-08-24

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the Deputy... INFORMATION: Under section 11 of the Indian Gaming Regulatory Act of 1988 (IGRA), Public Law 100-497, 25...

    9. 78 FR 62649 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2013-10-22

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the Deputy Assistant...: Under section 11 of the Indian Gaming Regulatory Act of 1988 (IGRA) Public Law 100-497, 25 U.S.C....

    10. 78 FR 11221 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2013-02-15

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of..., 2013. FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the.... SUPPLEMENTARY INFORMATION: Under section 11 of the Indian Gaming Regulatory Act of 1988, 25 U.S.C....

    11. 75 FR 38834 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2010-07-06

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the Deputy Assistant...: Under Section 11 of the Indian Gaming Regulatory Act of 1988 (IGRA), Public Law 100-497, 25 U.S.C....

    12. 76 FR 33341 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2011-06-08

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the Deputy... INFORMATION: Under section 11 of the Indian Gaming Regulatory Act of 1988 (IGRA), Public Law 100-497, 25...

    13. 75 FR 68618 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2010-11-08

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the Deputy Assistant Secretary... INFORMATION: Under section 11 of the Indian Gaming Regulatory Act of 1988 (IGRA), Public Law 100-497, 25...

    14. 75 FR 61511 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2010-10-05

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the Deputy Assistant Secretary... section 11 of the Indian Gaming Regulatory Act of 1988 (IGRA), Public Law 100-497, 25 U.S.C. 2710,...

    15. 75 FR 61511 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2010-10-05

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of..., 2010. FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the.... SUPPLEMENTARY INFORMATION: Under section 11 of the Indian Gaming Regulatory Act of 1988 (IGRA), Public Law...

    16. 76 FR 165 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2011-01-03

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... the Menominee Indian Tribe of Wisconsin (``Tribe'') and the State of Wisconsin Gaming Compact of 1992... CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the Deputy Assistant...

    17. 76 FR 49505 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2011-08-10

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of...: August 10, 2011. FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming...) 219-4066. SUPPLEMENTARY INFORMATION: Under section 11 of the Indian Gaming Regulatory Act of...

    18. 78 FR 26801 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2013-05-08

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... to the Class III Tribal-State Gaming Compact between the Menominee Indian Tribe of Wisconsin and the...: Paula L. Hart, Director, Office of Indian ] Gaming, Office of the Deputy Assistant Secretary--Policy...

    19. 75 FR 68823 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2010-11-09

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... to the Class III Gaming Compact (Amendment) between the State of Oregon and the Siletz Indians of..., Office of Indian Gaming, Office of the Deputy Assistant Secretary--Policy and Economic...

    20. 75 FR 55823 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2010-09-14

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of.... FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the.... SUPPLEMENTARY INFORMATION: Under section 11 of the Indian Gaming Regulatory Act of 1988 (IGRA), Public Law...

    1. 77 FR 43110 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2012-07-23

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the Deputy... INFORMATION: Under section 11 of the Indian Gaming Regulatory Act of 1988 (IGRA), Public Law 100-497, 25...

    2. 76 FR 56466 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2011-09-13

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of...: September 13, 2011. FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming...) 219-4066. SUPPLEMENTARY INFORMATION: Under section 11 of the Indian Gaming Regulatory Act of...

    3. 77 FR 45371 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2012-07-31

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the Deputy... INFORMATION: Under section 11 of the Indian Gaming Regulatory Act of 1988 (IGRA), Public Law 100-497, 25...

    4. 78 FR 15738 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2013-03-12

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of..., 2013. FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the.... SUPPLEMENTARY INFORMATION: Under Section 11 of the Indian Gaming Regulatory Act of 1988, 25 U.S.C....

    5. 75 FR 38833 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2010-07-06

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... FURTHER INFORMATION CONTACT: Paula Hart, Director, Office of Indian Gaming, Office of the Deputy Assistant...: Under section 11 of the Indian Gaming Regulatory Act of 1988 (IGRA) Public Law 100-497, 25 U.S.C....

    6. 78 FR 44146 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2013-07-23

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... and Restated Tribal-State Gaming Compact between the Shingle Springs Band of Miwok Indians and the...: Paula L. Hart, Director, Office of Indian Gaming, Office of the Deputy Assistant Secretary--Policy...

    7. 77 FR 59641 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2012-09-28

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of.... FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the.... SUPPLEMENTARY INFORMATION: Under section 11 of the Indian Gaming Regulatory Act of 1988 (IGRA), Public Law...

    8. 77 FR 76513 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2012-12-28

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the Deputy Assistant Secretary... section 11 of the Indian Gaming Regulatory Act of 1988 (IGRA) Public Law 100-497, 25 U.S.C. 2701 et...

    9. 76 FR 8375 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2011-02-14

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of..., 2011. FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the.... SUPPLEMENTARY INFORMATION: Under section 11 of the Indian Gaming Regulatory Act of 1988 (IGRA), Public Law...

    10. 78 FR 33435 - Indian Gaming

      Federal Register 2010, 2011, 2012, 2013, 2014

      2013-06-04

      ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... to Amend the Class III Tribal-State Gaming Compact between the Salt River Pima- Maricopa Indian... CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the Deputy Assistant...

    11. Engaging Students in Quality Games

      ERIC Educational Resources Information Center

      Henninger, Mary L.; Richardson, Karen Pagnano

      2016-01-01

      Promoting student engagement for all students in physical education, and specifically in game play, is a challenge faced by many middle and high school physical education teachers. Often, the games we play in physical education are not "good games" because, as early as middle school, some students are already resistant to playing…

    12. "Voyager": An Educational Card Game

      ERIC Educational Resources Information Center

      Smith, David Ryan

      2003-01-01

      "Voyager" is an educational card game involving scientific satellites, developed for use in schools with children aged 9 to 13 years. The idea of the game is to improve pupils' knowledge about the large number of scientific satellites there are in space in a fun way, while also practising numeracy skills. Several copies of the game were produced…

    13. Gaming and Gamification Part II

      ERIC Educational Resources Information Center

      Mallon, Melissa

      2013-01-01

      Just as academic gaming in general cannot be limited to any one topic or genre, the "Public Services Quarterly" Internet Resources column is not limited to a single entry on gaming and gamification in libraries. Public services librarians interested in designing their own games have many successful examples to draw from. The previous

    14. Game Plan: Save Lives, Winterize!

      ERIC Educational Resources Information Center

      Children & Animals, 1988

      1988-01-01

      Describes a learning center game which deals with the needs of dogs and cats in the winter months. Provides background information on the potential risks to pets during cold weather. Contains the game cards, along with assembly instructions and the rules of the games. (TW)

    15. What About Those Electronic Games?

      ERIC Educational Resources Information Center

      Bitter, Gary

      1979-01-01

      The author looks at the educational merits of some of the new hand-held computer games, such as "The Little Professor,"" Speak and Spell," and "Astrowar." Games are grouped in five categories: mathematics; spelling and words; pattern-logic; strategy sports games; and miscellaneous. Manufacturers and prices are provided. (SJL)

    16. Simulation Games in Architectural Education.

      ERIC Educational Resources Information Center

      Bonta, Juan Pablo

      1979-01-01

      Playing simulation games is seen as having obvious educational value with players learning through personal involvement. Several games are described, including Communication Networks, Heating and Air-Conditioning (HAC), Construction Management Game, Semiotics, Awards, Blocks, Would You Like to Be an Architect?, POLIGRIP, and PASS. (MLW)

    17. Video Games and Digital Literacies

      ERIC Educational Resources Information Center

      Steinkuehler, Constance

      2010-01-01

      Today's youth are situated in a complex information ecology that includes video games and print texts. At the basic level, video game play itself is a form of digital literacy practice. If we widen our focus from the "individual player + technology" to the online communities that play them, we find that video games also lie at the nexus of a…

    18. Games, the Socialization of Conflict.

      ERIC Educational Resources Information Center

      Sutton-Smith, Brian

      The function of games in a society is discussed in this paper. An earlier definition of games as a concretistic way of processing information of cultural antitheses is enlarged to include a more bio-adaptive definition: the game is also a socialization of conflict. This view is compared and contrasted with those of Sigmund Freud and G. H. Mead.…

    19. Brain-Building Math Games.

      ERIC Educational Resources Information Center

      Jung, Loretta Welk

      1983-01-01

      Index cards, masking tape, pizza shells, golf tees, and empty soda bottles can be used to make manipulative objects to be used in children's mathematics games. Twenty-two games that provide practice in number drills and problem solving are described, along with instructions for making objects needed for the games. (PP)

    20. Computerized History Games: Narrative Options

      ERIC Educational Resources Information Center

      Kee, Kevin

      2011-01-01

      How may historians best express history through computer games? This article suggests that the answer lies in correctly correlating historians' goals for teaching with the capabilities of different kinds of computer games. During the development of a game prototype for high school students, the author followed best practices as expressed in the…