Science.gov

Sample records for stochastic switching games

  1. Stochastic games

    PubMed Central

    Solan, Eilon; Vieille, Nicolas

    2015-01-01

    In 1953, Lloyd Shapley contributed his paper “Stochastic games” to PNAS. In this paper, he defined the model of stochastic games, which were the first general dynamic model of a game to be defined, and proved that it admits a stationary equilibrium. In this Perspective, we summarize the historical context and the impact of Shapley’s contribution. PMID:26556883

  2. Stability of stochastic switched SIRS models

    NASA Astrophysics Data System (ADS)

    Meng, Xiaoying; Liu, Xinzhi; Deng, Feiqi

    2011-11-01

    Stochastic stability problems of a stochastic switched SIRS model with or without distributed time delay are considered. By utilizing the Lyapunov methods, sufficient stability conditions of the disease-free equilibrium are established. Stability conditions about the subsystem of the stochastic switched SIRS systems are also obtained.

  3. Digital switching noise as a stochastic process

    NASA Astrophysics Data System (ADS)

    Boselli, Giorgio; Trucco, Gabriella; Liberali, Valentino

    2007-06-01

    Switching activity of logic gates in a digital system is a deterministic process, depending on both circuit parameters and input signals. However, the huge number of logic blocks in a digital system makes digital switching a cognitively stochastic process. Switching activity is the source of the so-called "digital noise", which can be analyzed using a stochastic approach. For an asynchronous digital network, we can model digital switching currents as a shot noise process, deriving both its amplitude distribution and its power spectral density. From spectral distribution of digital currents, we can also calculate the spectral distribution and the power of disturbances injected into the on-chip power supply lines.

  4. Stochastic Differential Games with Asymmetric Information

    SciTech Connect

    Cardaliaguet, Pierre Rainer, Catherine

    2009-02-15

    We investigate a two-player zero-sum stochastic differential game in which the players have an asymmetric information on the random payoff. We prove that the game has a value and characterize this value in terms of dual viscosity solutions of some second order Hamilton-Jacobi equation.

  5. Stochastic Games with Average Payoff Criterion

    SciTech Connect

    Ghosh, M. K.; Bagchi, A.

    1998-11-15

    We study two-person stochastic games on a Polish state and compact action spaces and with average payoff criterion under a certain ergodicity condition. For the zero-sum game we establish the existence of a value and stationary optimal strategies for both players. For the nonzero-sum case the existence of Nash equilibrium in stationary strategies is established under certain separability conditions.

  6. Continous-time stochastic Markov games

    SciTech Connect

    Nowak, A.

    1994-12-31

    We consider zero-sum game in which the players control a continuous-time stochastic jump process. The state space is assumed to be a Borel set. Sufficient conditions for the existence of optimal strategies for the players are to be presented. In the undiscounted case we will consider conditions which are related to geometric ergodicity. Some possible extentions to non-zero-sum games will be mentioned.

  7. Pathwise Strategies for Stochastic Differential Games with an Erratum to 'Stochastic Differential Games with Asymmetric Information'

    SciTech Connect

    Cardaliaguet, P.; Rainer, C.

    2013-08-01

    We introduce a new notion of pathwise strategies for stochastic differential games. This allows us to give a correct meaning to some statement asserted in Cardaliaguet and Rainer (Appl. Math. Optim. 59: 1-36, 2009)

  8. Stochastic game dynamics under demographic fluctuations

    PubMed Central

    Huang, Weini; Hauert, Christoph; Traulsen, Arne

    2015-01-01

    Frequency-dependent selection and demographic fluctuations play important roles in evolutionary and ecological processes. Under frequency-dependent selection, the average fitness of the population may increase or decrease based on interactions between individuals within the population. This should be reflected in fluctuations of the population size even in constant environments. Here, we propose a stochastic model that naturally combines these two evolutionary ingredients by assuming frequency-dependent competition between different types in an individual-based model. In contrast to previous game theoretic models, the carrying capacity of the population, and thus the population size, is determined by pairwise competition of individuals mediated by evolutionary games and demographic stochasticity. In the limit of infinite population size, the averaged stochastic dynamics is captured by deterministic competitive Lotka–Volterra equations. In small populations, demographic stochasticity may instead lead to the extinction of the entire population. Because the population size is driven by fitness in evolutionary games, a population of cooperators is less prone to go extinct than a population of defectors, whereas in the usual systems of fixed size the population would thrive regardless of its average payoff. PMID:26150518

  9. Stochastic game dynamics under demographic fluctuations.

    PubMed

    Huang, Weini; Hauert, Christoph; Traulsen, Arne

    2015-07-21

    Frequency-dependent selection and demographic fluctuations play important roles in evolutionary and ecological processes. Under frequency-dependent selection, the average fitness of the population may increase or decrease based on interactions between individuals within the population. This should be reflected in fluctuations of the population size even in constant environments. Here, we propose a stochastic model that naturally combines these two evolutionary ingredients by assuming frequency-dependent competition between different types in an individual-based model. In contrast to previous game theoretic models, the carrying capacity of the population, and thus the population size, is determined by pairwise competition of individuals mediated by evolutionary games and demographic stochasticity. In the limit of infinite population size, the averaged stochastic dynamics is captured by deterministic competitive Lotka-Volterra equations. In small populations, demographic stochasticity may instead lead to the extinction of the entire population. Because the population size is driven by fitness in evolutionary games, a population of cooperators is less prone to go extinct than a population of defectors, whereas in the usual systems of fixed size the population would thrive regardless of its average payoff. PMID:26150518

  10. Two Different Approaches to Nonzero-Sum Stochastic Differential Games

    SciTech Connect

    Rainer, Catherine

    2007-06-15

    We make the link between two approaches to Nash equilibria for nonzero-sum stochastic differential games: the first one using backward stochastic differential equations and the second one using strategies with delay. We prove that, when both exist, the two notions of Nash equilibria coincide.

  11. Stochastic Frontier Estimation of Efficient Learning in Video Games

    ERIC Educational Resources Information Center

    Hamlen, Karla R.

    2012-01-01

    Stochastic Frontier Regression Analysis was used to investigate strategies and skills that are associated with the minimization of time required to achieve proficiency in video games among students in grades four and five. Students self-reported their video game play habits, including strategies and skills used to become good at the video games…

  12. On Input-to-State Stability of Switched Stochastic Nonlinear Systems Under Extended Asynchronous Switching.

    PubMed

    Kang, Yu; Zhai, Di-Hua; Liu, Guo-Ping; Zhao, Yun-Bo

    2016-05-01

    An extended asynchronous switching model is investigated for a class of switched stochastic nonlinear retarded systems in the presence of both detection delay and false alarm, where the extended asynchronous switching is described by two independent and exponentially distributed stochastic processes, and further simplified as Markovian. Based on the Razumikhin-type theorem incorporated with average dwell-time approach, the sufficient criteria for global asymptotic stability in probability and stochastic input-to-state stability are given, whose importance and effectiveness are finally verified by numerical examples. PMID:26068932

  13. Stochastic switching induced adaptation in a starved Escherichia coli population.

    PubMed

    Shimizu, Yoshihiro; Tsuru, Saburo; Ito, Yoichiro; Ying, Bei-Wen; Yomo, Tetsuya

    2011-01-01

    Population adaptation can be determined by stochastic switching in living cells. To examine how stochastic switching contributes to the fate decision for a population under severe stress, we constructed an Escherichia coli strain crucially dependent on the expression of a rewired gene. The gene essential for tryptophan biosynthesis, trpC, was removed from the native regulatory unit, the Trp operon, and placed under the extraneous control of the lactose utilisation network. Bistability of the network provided the cells two discrete phenotypes: the induced and suppressed level of trpC. The two phenotypes permitted the cells to grow or not, respectively, under conditions of tryptophan depletion. We found that stochastic switching between the two states allowed the initially suppressed cells to form a new population with induced trpC in response to tryptophan starvation. However, the frequency of the transition from suppressed to induced state dropped off dramatically in the starved population, in comparison to that in the nourished population. This reduced switching rate was compensated by increasing the initial population size, which probably provided the cell population more chances to wait for the rarely appearing fit cells from the unfit cells. Taken together, adaptation of a starved bacterial population because of stochasticity in the gene rewired from the ancient regulon was experimentally confirmed, and the nutritional status and the population size played a great role in stochastic adaptation. PMID:21931628

  14. Stochastic Local Search for Core Membership Checking in Hedonic Games

    NASA Astrophysics Data System (ADS)

    Keinänen, Helena

    Hedonic games have emerged as an important tool in economics and show promise as a useful formalism to model multi-agent coalition formation in AI as well as group formation in social networks. We consider a coNP-complete problem of core membership checking in hedonic coalition formation games. No previous algorithms to tackle the problem have been presented. In this work, we overcome this by developing two stochastic local search algorithms for core membership checking in hedonic games. We demonstrate the usefulness of the algorithms by showing experimentally that they find solutions efficiently, particularly for large agent societies.

  15. Stochastic Heterogeneous Interaction Promotes Cooperation in Spatial Prisoner's Dilemma Game

    PubMed Central

    Zhu, Ping; Wei, Guiyi

    2014-01-01

    Previous studies mostly investigate player's cooperative behavior as affected by game time-scale or individual diversity. In this paper, by involving both time-scale and diversity simultaneously, we explore the effect of stochastic heterogeneous interaction. In our model, the occurrence of game interaction between each pair of linked player obeys a random probability, which is further described by certain distributions. Simulations on a 4-neighbor square lattice show that the cooperation level is remarkably promoted when stochastic heterogeneous interaction is considered. The results are then explained by investigating the mean payoffs, the mean boundary payoffs and the transition probabilities between cooperators and defectors. We also show some typical snapshots and evolution time series of the system. Finally, the 8-neighbor square lattice and BA scale-free network results indicate that the stochastic heterogeneous interaction can be robust against different network topologies. Our work may sharpen the understanding of the joint effect of game time-scale and individual diversity on spatial games. PMID:24759921

  16. Stochastic stability of switched genetic regulatory networks with time-varying delays.

    PubMed

    Zhang, Wenbing; Tang, Yang; Wu, Xiaotai; Fang, Jian-An

    2014-09-01

    This paper investigates the exponential stability problem of switched stochastic genetic regulatory networks (GRNs) with time-varying delays. Two types of switched systems are studied respectively: one is the stochastic switched delayed GRNs with only stable subsystems and the other is the stochastic switched delayed GRNs with both stable and unstable subsystems. By using switching analysis techniques and the modified Halanay differential inequality, new criteria are developed for the exponential stability of switched stochastic GRNs with time-varying delays. Finally, an example is given to illustrate the main results. PMID:25265564

  17. Stochastic switching in delay-coupled oscillators.

    PubMed

    D'Huys, Otti; Jüngling, Thomas; Kinzel, Wolfgang

    2014-09-01

    A delay is known to induce multistability in periodic systems. Under influence of noise, coupled oscillators can switch between coexistent orbits with different frequencies and different oscillation patterns. For coupled phase oscillators we reduce the delay system to a nondelayed Langevin equation, which allows us to analytically compute the distribution of frequencies and their corresponding residence times. The number of stable periodic orbits scales with the roundtrip delay time and coupling strength, but the noisy system visits only a fraction of the orbits, which scales with the square root of the delay time and is independent of the coupling strength. In contrast, the residence time in the different orbits is mainly determined by the coupling strength and the number of oscillators, and only weakly dependent on the coupling delay. Finally we investigate the effect of a detuning between the oscillators. We demonstrate the generality of our results with delay-coupled FitzHugh-Nagumo oscillators. PMID:25314515

  18. Partial synchronization in stochastic dynamical networks with switching communication channels

    NASA Astrophysics Data System (ADS)

    Huang, Chi; Ho, Daniel W. C.; Lu, Jianquan; Kurths, Jürgen

    2012-06-01

    In this paper, the partial synchronization problem of stochastic dynamical networks (SDNs) is investigated. Unlike the existing models, the SDN considered in this paper suffers from a class of communication constraint—only part of nodes' states can be transmitted. Thus, less nodes' states can be used to synchronize the SDN, which makes the analysis of the synchronization problem much harder. A set of channel matrices are introduced to reflect such kind of constraint. Furthermore, due to unpredictable environmental changes, the channel matrices can switch among some communication modes. The switching considered here is governed by a Markov process. To overcome the difficulty, a regrouping method is employed to derive our main results. The obtained conditions guarantee that partial synchronization can be achieved for SDNs under switching communication constraint. Finally, numerical examples are given to illustrate the effectiveness of the theoretical results and how the communication constraint influences synchronization result.

  19. Robust synthetic biology design: stochastic game theory approach

    PubMed Central

    Chen, Bor-Sen; Chang, Chia-Hung; Lee, Hsiao-Ching

    2009-01-01

    Motivation: Synthetic biology is to engineer artificial biological systems to investigate natural biological phenomena and for a variety of applications. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to uncertain initial conditions and disturbances of extra-cellular environments on the host cell. At present, how to design a robust synthetic gene network to work properly under these uncertain factors is the most important topic of synthetic biology. Results: A robust regulation design is proposed for a stochastic synthetic gene network to achieve the prescribed steady states under these uncertain factors from the minimax regulation perspective. This minimax regulation design problem can be transformed to an equivalent stochastic game problem. Since it is not easy to solve the robust regulation design problem of synthetic gene networks by non-linear stochastic game method directly, the Takagi–Sugeno (T–S) fuzzy model is proposed to approximate the non-linear synthetic gene network via the linear matrix inequality (LMI) technique through the Robust Control Toolbox in Matlab. Finally, an in silico example is given to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed robust gene design method. Availability: http://www.ee.nthu.edu.tw/bschen/SyntheticBioDesign_supplement.pdf Contact: bschen@ee.nthu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19435742

  20. Stochastic differential game formulation on the reinsurance and investment problem

    NASA Astrophysics Data System (ADS)

    Li, Danping; Rong, Ximin; Zhao, Hui

    2015-09-01

    This paper focuses on a stochastic differential game between two insurance companies, a big one and a small one. The big company has sufficient asset to invest in a risk-free asset and a risky asset and is allowed to purchase proportional reinsurance or acquire new business, and the small company can transfer part of the risk to a reinsurer via proportional reinsurance. The game studied here is zero-sum, where the big company is trying to maximise the expected exponential utility of the difference between two insurance companies' surpluses at the terminal time to keep its advantage on surplus, while simultaneously the small company is trying to minimise the same quantity to reduce its disadvantage. Particularly, the relationships between the surplus processes and the price process of the risky asset are considered. By applying stochastic control theory, we provide and prove the verification theorem and obtain the Nash equilibrium strategy of the game, explicitly. Furthermore, numerical simulations are presented to illustrate the effects of parameters on the equilibrium strategy as well as the economic meanings behind.

  1. Distributed Consensus of Stochastic Delayed Multi-agent Systems Under Asynchronous Switching.

    PubMed

    Wu, Xiaotai; Tang, Yang; Cao, Jinde; Zhang, Wenbing

    2016-08-01

    In this paper, the distributed exponential consensus of stochastic delayed multi-agent systems with nonlinear dynamics is investigated under asynchronous switching. The asynchronous switching considered here is to account for the time of identifying the active modes of multi-agent systems. After receipt of confirmation of mode's switching, the matched controller can be applied, which means that the switching time of the matched controller in each node usually lags behind that of system switching. In order to handle the coexistence of switched signals and stochastic disturbances, a comparison principle of stochastic switched delayed systems is first proved. By means of this extended comparison principle, several easy to verified conditions for the existence of an asynchronously switched distributed controller are derived such that stochastic delayed multi-agent systems with asynchronous switching and nonlinear dynamics can achieve global exponential consensus. Two examples are given to illustrate the effectiveness of the proposed method. PMID:26292354

  2. A stochastic transcriptional switch model for single cell imaging data

    PubMed Central

    Hey, Kirsty L.; Momiji, Hiroshi; Featherstone, Karen; Davis, Julian R.E.; White, Michael R.H.; Rand, David A.; Finkenstädt, Bärbel

    2015-01-01

    Gene expression is made up of inherently stochastic processes within single cells and can be modeled through stochastic reaction networks (SRNs). In particular, SRNs capture the features of intrinsic variability arising from intracellular biochemical processes. We extend current models for gene expression to allow the transcriptional process within an SRN to follow a random step or switch function which may be estimated using reversible jump Markov chain Monte Carlo (MCMC). This stochastic switch model provides a generic framework to capture many different dynamic features observed in single cell gene expression. Inference for such SRNs is challenging due to the intractability of the transition densities. We derive a model-specific birth–death approximation and study its use for inference in comparison with the linear noise approximation where both approximations are considered within the unifying framework of state-space models. The methodology is applied to synthetic as well as experimental single cell imaging data measuring expression of the human prolactin gene in pituitary cells. PMID:25819987

  3. A stochastic transcriptional switch model for single cell imaging data.

    PubMed

    Hey, Kirsty L; Momiji, Hiroshi; Featherstone, Karen; Davis, Julian R E; White, Michael R H; Rand, David A; Finkenstädt, Bärbel

    2015-10-01

    Gene expression is made up of inherently stochastic processes within single cells and can be modeled through stochastic reaction networks (SRNs). In particular, SRNs capture the features of intrinsic variability arising from intracellular biochemical processes. We extend current models for gene expression to allow the transcriptional process within an SRN to follow a random step or switch function which may be estimated using reversible jump Markov chain Monte Carlo (MCMC). This stochastic switch model provides a generic framework to capture many different dynamic features observed in single cell gene expression. Inference for such SRNs is challenging due to the intractability of the transition densities. We derive a model-specific birth-death approximation and study its use for inference in comparison with the linear noise approximation where both approximations are considered within the unifying framework of state-space models. The methodology is applied to synthetic as well as experimental single cell imaging data measuring expression of the human prolactin gene in pituitary cells. PMID:25819987

  4. A Stochastic Maximum Principle for a Stochastic Differential Game of a Mean-Field Type

    SciTech Connect

    Hosking, John Joseph Absalom

    2012-12-15

    We construct a stochastic maximum principle (SMP) which provides necessary conditions for the existence of Nash equilibria in a certain form of N-agent stochastic differential game (SDG) of a mean-field type. The information structure considered for the SDG is of a possible asymmetric and partial type. To prove our SMP we take an approach based on spike-variations and adjoint representation techniques, analogous to that of S. Peng (SIAM J. Control Optim. 28(4):966-979, 1990) in the optimal stochastic control context. In our proof we apply adjoint representation procedures at three points. The first-order adjoint processes are defined as solutions to certain mean-field backward stochastic differential equations, and second-order adjoint processes of a first type are defined as solutions to certain backward stochastic differential equations. Second-order adjoint processes of a second type are defined as solutions of certain backward stochastic equations of a type that we introduce in this paper, and which we term conditional mean-field backward stochastic differential equations. From the resulting representations, we show that the terms relating to these second-order adjoint processes of the second type are of an order such that they do not appear in our final SMP equations. A comparable situation exists in an article by R. Buckdahn, B. Djehiche, and J. Li (Appl. Math. Optim. 64(2):197-216, 2011) that constructs a SMP for a mean-field type optimal stochastic control problem; however, the approach we take of using these second-order adjoint processes of a second type to deal with the type of terms that we refer to as the second form of quadratic-type terms represents an alternative to a development, to our setting, of the approach used in their article for their analogous type of term.

  5. Stability analysis of switched stochastic neural networks with time-varying delays.

    PubMed

    Wu, Xiaotai; Tang, Yang; Zhang, Wenbing

    2014-03-01

    This paper is concerned with the global exponential stability of switched stochastic neural networks with time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable subsystems is investigated by utilizing the mathematical induction method, the piecewise Lyapunov function and the average dwell time approach. Secondly, by utilizing the extended comparison principle from impulsive systems, the stability of stochastic switched delayed neural networks with both stable and unstable subsystems is analyzed and several easy to verify conditions are derived to ensure the exponential mean square stability of switched delayed neural networks with stochastic disturbances. The effectiveness of the proposed results is illustrated by two simulation examples. PMID:24365535

  6. Adaptive role switching promotes fairness in networked ultimatum game

    PubMed Central

    Wu, Te; Fu, Feng; Zhang, Yanling; Wang, Long

    2013-01-01

    In recent years, mechanisms favoring fair split in the ultimatum game have attracted growing interests because of its practical implications for international bargains. In this game, two players are randomly assigned two different roles respectively to split an offer: the proposer suggests how to split and the responder decides whether or not to accept it. Only when both agree is the offer successfully split; otherwise both get nothing. It is of importance and interest to break the symmetry in role assignment especially when the game is repeatedly played in a heterogeneous population. Here we consider an adaptive role assignment: whenever the split fails, the two players switch their roles probabilistically. The results show that this simple feedback mechanism proves much more effective at promoting fairness than other alternatives (where, for example, the role assignment is based on the number of neighbors). PMID:23528986

  7. Infinite horizon linear quadratic stochastic Nash differential games of Markov jump linear systems with its application

    NASA Astrophysics Data System (ADS)

    Zhu, Huai-nian; Zhang, Cheng-ke; Bin, Ning

    2014-05-01

    In this paper, we deal with the problem of stochastic Nash differential games of Markov jump linear systems governed by Itô-type equation. Combining the stochastic stabilizability with the stochastic systems, a necessary and sufficient condition for the existence of the Nash strategy is presented by means of a set of cross-coupled stochastic algebraic Riccati equations. Moreover, the stochastic H2/H∞ control for stochastic Markov jump linear systems is discussed as an immediate application and an illustrative example is presented.

  8. Exact Computation of Probability Landscape of Stochastic Networks of Single Input and Coupled Toggle Switch Modules

    PubMed Central

    Terebus, Anna; Cao, Youfang; Liang, Jie

    2016-01-01

    Gene regulatory networks depict the interactions between genes, proteins, and other components of the cell. These interactions often are stochastic that can influence behavior of the cells. Discrete Chemical Master Equation (dCME) provides a general framework for understanding the stochastic nature of these networks. However solving dCME is challenging due to the enormous state space, one effective approach is to study the behavior of individual modules of the stochastic network. Here we used the finite buffer dCME method and directly calculated the exact steady state probability landscape for the two stochastic networks of Single Input and Coupled Toggle Switch Modules. The first example is a switch network consisting of three genes, and the second example is a double switching network consisting of four coupled genes. Our results show complex switching behavior of these networks can be quantified. PMID:25571172

  9. Stochastic Games for Verification of Probabilistic Timed Automata

    NASA Astrophysics Data System (ADS)

    Kwiatkowska, Marta; Norman, Gethin; Parker, David

    Probabilistic timed automata (PTAs) are used for formal modelling and verification of systems with probabilistic, nondeterministic and real-time behaviour. For non-probabilistic timed automata, forwards reachability is the analysis method of choice, since it can be implemented extremely efficiently. However, for PTAs, such techniques are only able to compute upper bounds on maximum reachability probabilities. In this paper, we propose a new approach to the analysis of PTAs using abstraction and stochastic games. We show how efficient forwards reachability techniques can be extended to yield both lower and upper bounds on maximum (and minimum) reachability probabilities. We also present abstraction-refinement techniques that are guaranteed to improve the precision of these probability bounds, providing a fully automatic method for computing the exact values. We have implemented these techniques and applied them to a set of large case studies. We show that, in comparison to alternative approaches to verifying PTAs, such as backwards reachability and digital clocks, our techniques exhibit superior performance and scalability.

  10. Switching of bound vector solitons for the coupled nonlinear Schroedinger equations with nonhomogenously stochastic perturbations

    SciTech Connect

    Sun Zhiyuan; Yu Xin; Liu Ying; Gao Yitian

    2012-12-15

    We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schroedinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.

  11. Stochastic simulations of switching error in magneto elastic and spin-Hall effect based switching of nanomagnetic devices

    NASA Astrophysics Data System (ADS)

    Al-Rashid, Md Mamun; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2015-03-01

    Switching of single domain multiferroic nanomagnets with electrically generated mechanical strain and with spin torque due to spin current generated via the giant spin Hall effect are two promising energy-efficient methods to switch nanomagnets in magnetic computing devices. However, switching of nanomagnets is always error-prone at room temperature owing to the effect of thermal noise. In this work, we model the strain-based and spin-Hall-effect-based switching of nanomagnetic devices using stochastic Landau-Lifshitz-Gilbert (LLG) equation and present a quantitative comparison in terms of switching time, reliability and energy dissipation. This work is supported by the US National Science Foundation under the SHF-Small Grant CCF-1216614, CAREER Grant CCF-1253370, NEB 2020 Grant ECCS-1124714 and SRC under NRI Task 2203.001.

  12. Stochastic evolutionary dynamics in minimum-effort coordination games

    NASA Astrophysics Data System (ADS)

    Li, Kun; Cong, Rui; Wang, Long

    2016-08-01

    The minimum-effort coordination game draws recently more attention for the fact that human behavior in this social dilemma is often inconsistent with the predictions of classical game theory. Here, we combine evolutionary game theory and coalescence theory to investigate this game in finite populations. Both analytic results and individual-based simulations show that effort costs play a key role in the evolution of contribution levels, which is in good agreement with those observed experimentally. Besides well-mixed populations, set structured populations have also been taken into consideration. Therein we find that large number of sets and moderate migration rate greatly promote effort levels, especially for high effort costs.

  13. Robust stability of stochastic delayed additive neural networks with Markovian switching.

    PubMed

    Huang, He; Ho, Daniel W C; Qu, Yuzhong

    2007-09-01

    This paper is concerned with the problem of robust stability for stochastic interval delayed additive neural networks (SIDANN) with Markovian switching. The time delay is assumed to be time-varying. In such neural networks, the features of stochastic systems, interval systems, time-varying delay systems and Markovian switching are taken into account. The mathematical model of this kind of neural networks is first proposed. Secondly, the global exponential stability in the mean square is studied for the SIDANN with Markovian switching. Based on the Lyapunov method, several stability conditions are presented, which can be expressed in terms of linear matrix inequalities. As a subsequent result, the stochastic interval additive neural networks with time-varying delay are also discussed. A sufficient condition is given to determine its stability. Finally, two simulation examples are provided to illustrate the effectiveness of the results developed. PMID:17714914

  14. The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection

    PubMed Central

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to

  15. Age matters: The effect of onset age of video game play on task-switching abilities.

    PubMed

    Hartanto, Andree; Toh, Wei Xing; Yang, Hwajin

    2016-05-01

    Although prior research suggests that playing video games can improve cognitive abilities, recent empirical studies cast doubt on such findings (Unsworth et al., 2015). To reconcile these inconsistent findings, we focused on the link between video games and task switching. Furthermore, we conceptualized video-game expertise as the onset age of active video-game play rather than the frequency of recent gameplay, as it captures both how long a person has played video games and whether the individual began playing during periods of high cognitive plasticity. We found that the age of active onset better predicted switch and mixing costs than did frequency of recent gameplay; specifically, players who commenced playing video games at an earlier age reaped greater benefits in terms of task switching than did those who started at a later age. Moreover, improving switch costs required a more extensive period of video-game experience than did mixing costs; this finding suggests that certain cognitive abilities benefit from different amounts of video game experience. PMID:26860712

  16. Learning Stationary Correlated Equilibria in Constrained General-Sum Stochastic Games.

    PubMed

    Hakami, Vesal; Dehghan, Mehdi

    2016-07-01

    We study constrained general-sum stochastic games with unknown Markovian dynamics. A distributed constrained no-regret Q -learning scheme (CNR Q ) is presented to guarantee convergence to the set of stationary correlated equilibria of the game. Prior art addresses the unconstrained case only, is structured with nested control loops, and has no convergence result. CNR Q is cast as a single-loop three-timescale asynchronous stochastic approximation algorithm with set-valued update increments. A rigorous convergence analysis with differential inclusion arguments is given which draws on recent extensions of the theory of stochastic approximation to the case of asynchronous recursive inclusions with set-valued mean fields. Numerical results are given for the exemplary application of CNR Q to decentralized resource control in heterogeneous wireless networks. PMID:26259228

  17. Sufficient Stochastic Maximum Principle in a Regime-Switching Diffusion Model

    SciTech Connect

    Donnelly, Catherine

    2011-10-15

    We prove a sufficient stochastic maximum principle for the optimal control of a regime-switching diffusion model. We show the connection to dynamic programming and we apply the result to a quadratic loss minimization problem, which can be used to solve a mean-variance portfolio selection problem.

  18. An optical model for implementing Parrondo's game and designing stochastic game with long-term memory

    NASA Astrophysics Data System (ADS)

    Si, Tieyan

    2012-11-01

    An optical model of classical photons propagating through array of many beam splitters is developed to give a physical analogy of Parrondo's game and Parrondo-Harmer-Abbott game. We showed both the two games are reasonable game without so-called game paradox and they are essentially the same. We designed the games with long-term memory on loop lattice and history-entangled game. The strong correlation between nearest two rounds of game can make the combination of two losing game win, lose or oscillate between win and loss. The periodic potential in Brownian ratchet is analogous to a long chain of beam splitters. The coupling between two neighboring potential wells is equivalent to two coupled beam splitters. This correspondence may help us to understand the anomalous motion of exceptional Brownian particles moving in the opposite direction to the majority. We designed the capital wave for a game by introducing correlations into independent capitals instead of sub-games. Playing entangled quantum states in many coupled classical games obey the same rules for manipulating quantum states in many body physics.

  19. Libor at crossroads: Stochastic switching detection using information theory quantifiers

    NASA Astrophysics Data System (ADS)

    Bariviera, Aurelio F.; Guercio, M. Belén; Martinez, Lisana B.; Rosso, Osvaldo A.

    2016-07-01

    This paper studies the 28 time series of Libor rates, classified in seven maturities and four currencies), during the last 14 years. The analysis was performed using a novel technique in financial economics: the Complexity-Entropy Causality Plane. This planar representation allows the discrimination of different stochastic and chaotic regimes. Using a temporal analysis based on moving windows, this paper unveals an abnormal movement of Libor time series arround the period of the 2007 financial crisis. This alteration in the stochastic dynamics of Libor is contemporary of what press called "Libor scandal", i.e. the manipulation of interest rates carried out by several prime banks. We argue that our methodology is suitable as a market watch mechanism, as it makes visible the temporal redution in informational efficiency of the market.

  20. Impact of deterministic and stochastic updates on network reciprocity in the prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Tanimoto, Jun

    2014-08-01

    In 2 × 2 prisoner's dilemma games, network reciprocity is one mechanism for adding social viscosity, which leads to cooperative equilibrium. This study introduced an intriguing framework for the strategy update rule that allows any combination of a purely deterministic method, imitation max (IM), and a purely probabilistic one, pairwise Fermi (Fermi-PW). A series of simulations covering the whole range from IM to Fermi-PW reveals that, as a general tendency, the larger fractions of stochastic updating reduce network reciprocity, so long as the underlying lattice contains no noise in the degree of distribution. However, a small amount of stochastic flavor added to an otherwise perfectly deterministic update rule was actually found to enhance network reciprocity. This occurs because a subtle stochastic effect in the update rule improves the evolutionary trail in games having more stag-hunt-type dilemmas, although the same stochastic effect degenerates evolutionary trails in games having more chicken-type dilemmas. We explain these effects by dividing evolutionary trails into the enduring and expanding periods defined by Shigaki et al. [Phys. Rev. E 86, 031141 (2012), 10.1103/PhysRevE.86.031141].

  1. Modeling and Computation of Transboundary Industrial Pollution with Emission Permits Trading by Stochastic Differential Game.

    PubMed

    Chang, Shuhua; Wang, Xinyu; Wang, Zheng

    2015-01-01

    Transboundary industrial pollution requires international actions to control its formation and effects. In this paper, we present a stochastic differential game to model the transboundary industrial pollution problems with emission permits trading. More generally, the process of emission permits price is assumed to be stochastic and to follow a geometric Brownian motion (GBM). We make use of stochastic optimal control theory to derive the system of Hamilton-Jacobi-Bellman (HJB) equations satisfied by the value functions for the cooperative and the noncooperative games, respectively, and then propose a so-called fitted finite volume method to solve it. The efficiency and the usefulness of this method are illustrated by the numerical experiments. The two regions' cooperative and noncooperative optimal emission paths, which maximize the regions' discounted streams of the net revenues, together with the value functions, are obtained. Additionally, we can also obtain the threshold conditions for the two regions to decide whether they cooperate or not in different cases. The effects of parameters in the established model on the results have been also examined. All the results demonstrate that the stochastic emission permits prices can motivate the players to make more flexible strategic decisions in the games. PMID:26402322

  2. Modeling and Computation of Transboundary Industrial Pollution with Emission Permits Trading by Stochastic Differential Game

    PubMed Central

    2015-01-01

    Transboundary industrial pollution requires international actions to control its formation and effects. In this paper, we present a stochastic differential game to model the transboundary industrial pollution problems with emission permits trading. More generally, the process of emission permits price is assumed to be stochastic and to follow a geometric Brownian motion (GBM). We make use of stochastic optimal control theory to derive the system of Hamilton-Jacobi-Bellman (HJB) equations satisfied by the value functions for the cooperative and the noncooperative games, respectively, and then propose a so-called fitted finite volume method to solve it. The efficiency and the usefulness of this method are illustrated by the numerical experiments. The two regions’ cooperative and noncooperative optimal emission paths, which maximize the regions’ discounted streams of the net revenues, together with the value functions, are obtained. Additionally, we can also obtain the threshold conditions for the two regions to decide whether they cooperate or not in different cases. The effects of parameters in the established model on the results have been also examined. All the results demonstrate that the stochastic emission permits prices can motivate the players to make more flexible strategic decisions in the games. PMID:26402322

  3. PULSAR STATE SWITCHING FROM MARKOV TRANSITIONS AND STOCHASTIC RESONANCE

    SciTech Connect

    Cordes, J. M.

    2013-09-20

    Markov processes are shown to be consistent with metastable states seen in pulsar phenomena, including intensity nulling, pulse-shape mode changes, subpulse drift rates, spin-down rates, and X-ray emission, based on the typically broad and monotonic distributions of state lifetimes. Markovianity implies a nonlinear magnetospheric system in which state changes occur stochastically, corresponding to transitions between local minima in an effective potential. State durations (though not transition times) are thus largely decoupled from the characteristic timescales of various magnetospheric processes. Dyadic states are common but some objects show at least four states with some transitions forbidden. Another case is the long-term intermittent pulsar B1931+24 that has binary radio-emission and torque states with wide, but non-monotonic duration distributions. It also shows a quasi-period of 38 ± 5 days in a 13 yr time sequence, suggesting stochastic resonance in a Markov system with a forcing function that could be strictly periodic or quasi-periodic. Nonlinear phenomena are associated with time-dependent activity in the acceleration region near each magnetic polar cap. The polar-cap diode is altered by feedback from the outer magnetosphere and by return currents from the equatorial region outside the light cylinder that may also cause the neutron star to episodically charge and discharge. Orbital perturbations of a disk or current sheet provide a natural periodicity for the forcing function in the stochastic-resonance interpretation of B1931+24. Disk dynamics may introduce additional timescales in observed phenomena. Future work can test the Markov interpretation, identify which pulsar types have a propensity for state changes, and clarify the role of selection effects.

  4. Correlated noise-based switches and stochastic resonance in a bistable genetic regulation system

    NASA Astrophysics Data System (ADS)

    Wang, Can-Jun; Yang, Ke-Li

    2016-07-01

    The correlated noise-based switches and stochastic resonance are investigated in a bistable single gene switching system driven by an additive noise (environmental fluctuations), a multiplicative noise (fluctuations of the degradation rate). The correlation between the two noise sources originates from on the lysis-lysogeny pathway system of the λ phage. The steady state probability distribution is obtained by solving the time-independent Fokker-Planck equation, and the effects of noises are analyzed. The effects of noises on the switching time between the two stable states (mean first passage time) is investigated by the numerical simulation. The stochastic resonance phenomenon is analyzed by the power amplification factor. The results show that the multiplicative noise can induce the switching from "on" → "off" of the protein production, while the additive noise and the correlation between the noise sources can induce the inverse switching "off" → "on". A nonmonotonic behaviour of the average switching time versus the multiplicative noise intensity, for different cross-correlation and additive noise intensities, is observed in the genetic system. There exist optimal values of the additive noise, multiplicative noise and cross-correlation intensities for which the weak signal can be optimal amplified.

  5. An Element of Determinism in a Stochastic Flagellar Motor Switch

    PubMed Central

    Xie, Li; Altindal, Tuba; Wu, Xiao-Lun

    2015-01-01

    Marine bacterium Vibrio alginolyticus uses a single polar flagellum to navigate in an aqueous environment. Similar to Escherichia coli cells, the polar flagellar motor has two states; when the motor is counter-clockwise, the cell swims forward and when the motor is clockwise, the cell swims backward. V. alginolyticus also incorporates a direction randomization step at the start of the forward swimming interval by flicking its flagellum. To gain an understanding on how the polar flagellar motor switch is regulated, distributions of the forward Δf and backward Δb intervals are investigated herein. We found that the steady-state probability density functions, P(Δf) and P(Δb), of freely swimming bacteria are strongly peaked at a finite time, suggesting that the motor switch is not Poissonian. The short-time inhibition is sufficiently strong and long lasting, i.e., several hundred milliseconds for both intervals, which is readily observed and characterized. Treating motor reversal dynamics as a first-passage problem, which results from conformation fluctuations of the motor switch, we calculated P(Δf) and P(Δb) and found good agreement with the measurements. PMID:26554590

  6. Confinement and diffusion modulate bistability and stochastic switching in a reaction network with positive feedback

    NASA Astrophysics Data System (ADS)

    Mlynarczyk, Paul J.; Pullen, Robert H.; Abel, Steven M.

    2016-01-01

    Positive feedback is a common feature in signal transduction networks and can lead to phenomena such as bistability and signal propagation by domain growth. Physical features of the cellular environment, such as spatial confinement and the mobility of proteins, play important but inadequately understood roles in shaping the behavior of signaling networks. Here, we use stochastic, spatially resolved kinetic Monte Carlo simulations to explore a positive feedback network as a function of system size, system shape, and mobility of molecules. We show that these physical properties can markedly alter characteristics of bistability and stochastic switching when compared with well-mixed simulations. Notably, systems of equal volume but different shapes can exhibit qualitatively different behaviors under otherwise identical conditions. We show that stochastic switching to a state maintained by positive feedback occurs by cluster formation and growth. Additionally, the frequency at which switching occurs depends nontrivially on the diffusion coefficient, which can promote or suppress switching relative to the well-mixed limit. Taken together, the results provide a framework for understanding how confinement and protein mobility influence emergent features of the positive feedback network by modulating molecular concentrations, diffusion-influenced rate parameters, and spatiotemporal correlations between molecules.

  7. DOOM'd to Switch: Superior Cognitive Flexibility in Players of First Person Shooter Games

    PubMed Central

    Colzato, Lorenza S.; van Leeuwen, Pieter J.A.; van den Wildenberg, Wery P.M.; Hommel, Bernhard

    2010-01-01

    The interest in the influence of videogame experience on our daily life is constantly growing. “First Person Shooter” (FPS) games require players to develop a flexible mindset to rapidly react to fast moving visual and auditory stimuli, and to switch back and forth between different subtasks. This study investigated whether and to which degree experience with such videogames generalizes to other cognitive-control tasks. Video-game players (VGPs) and individuals with little to no videogame experience (NVGPs) performed on a task switching paradigm that provides a relatively well-established diagnostic measure of cognitive flexibility. As predicted, VGPs showed smaller switching costs (i.e., greater cognitive flexibility) than NVGPs. Our findings support the idea that playing FPS games promotes cognitive flexibility. PMID:21833191

  8. Relationship between maximum principle and dynamic programming for stochastic differential games of jump diffusions

    NASA Astrophysics Data System (ADS)

    Shi, Jingtao

    2014-04-01

    This paper is concerned with the relationship between maximum principle and dynamic programming for zero-sum stochastic differential games of jump diffusions. Under the assumption that the value function is smooth enough, relations among the adjoint processes, the generalised Hamiltonian function and the value function are given. A portfolio optimisation problem under model uncertainty in an incomplete financial market is discussed to show the applications of our result.

  9. Evolutionary dynamics on stochastic evolving networks for multiple-strategy games

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Zhou, Da; Wang, Long

    2011-10-01

    Evolutionary game theory on dynamical networks has received much attention. Most of the work has been focused on 2×2 games such as prisoner's dilemma and snowdrift, with general n×n games seldom addressed. In particular, analytical methods are still lacking. Here we generalize the stochastic linking dynamics proposed by Wu, Zhou, Fu, Luo, Wang, and Traulsen [PLoS ONEBSYMBO1932-620310.1371/journal.pone.0011187 5, e11187 (2010)] to n×n games. We analytically obtain that the fast linking dynamics results in the replicator dynamics with a rescaled payoff matrix. In the rescaled matrix, intuitively, each entry is the product of the original entry and the average duration time of the corresponding link. This result is shown to be robust to a wide class of imitation processes. As applications, we show both analytically and numerically that the biodiversity, modeled as the stability of a zero-sum rock-paper-scissors game, cannot be altered by the fast linking dynamics. In addition, we show that the fast linking dynamics can stabilize tit-for-tat as an evolutionary stable strategy in the repeated prisoner's dilemma game provided the interaction between the identical strategies happens sufficiently often. Our method paves the way for an analytical study of the multiple-strategy coevolutionary dynamics.

  10. Control of Stochastic and Induced Switching in Biophysical Networks

    PubMed Central

    Wells, Daniel K.; Kath, William L.; Motter, Adilson E.

    2015-01-01

    Noise caused by fluctuations at the molecular level is a fundamental part of intracellular processes. While the response of biological systems to noise has been studied extensively, there has been limited understanding of how to exploit it to induce a desired cell state. Here we present a scalable, quantitative method based on the Freidlin-Wentzell action to predict and control noise-induced switching between different states in genetic networks that, conveniently, can also control transitions between stable states in the absence of noise. We apply this methodology to models of cell differentiation and show how predicted manipulations of tunable factors can induce lineage changes, and further utilize it to identify new candidate strategies for cancer therapy in a cell death pathway model. This framework offers a systems approach to identifying the key factors for rationally manipulating biophysical dynamics, and should also find use in controlling other classes of noisy complex networks. PMID:26451275

  11. Control of Stochastic and Induced Switching in Biophysical Networks

    NASA Astrophysics Data System (ADS)

    Wells, Daniel K.; Kath, William L.; Motter, Adilson E.

    2015-07-01

    Noise caused by fluctuations at the molecular level is a fundamental part of intracellular processes. While the response of biological systems to noise has been studied extensively, there has been limited understanding of how to exploit it to induce a desired cell state. Here we present a scalable, quantitative method based on the Freidlin-Wentzell action to predict and control noise-induced switching between different states in genetic networks that, conveniently, can also control transitions between stable states in the absence of noise. We apply this methodology to models of cell differentiation and show how predicted manipulations of tunable factors can induce lineage changes, and further utilize it to identify new candidate strategies for cancer therapy in a cell death pathway model. This framework offers a systems approach to identifying the key factors for rationally manipulating biophysical dynamics, and should also find use in controlling other classes of noisy complex networks.

  12. Task switching in video game players: Benefits of selective attention but not resistance to proactive interference.

    PubMed

    Karle, James W; Watter, Scott; Shedden, Judith M

    2010-05-01

    Research into the perceptual and cognitive effects of playing video games is an area of increasing interest for many investigators. Over the past decade, expert video game players (VGPs) have been shown to display superior performance compared to non-video game players (nVGPs) on a range of visuospatial and attentional tasks. A benefit of video game expertise has recently been shown for task switching, suggesting that VGPs also have superior cognitive control abilities compared to nVGPs. In two experiments, we examined which aspects of task switching performance this VGP benefit may be localized to. With minimal trial-to-trial interference from minimally overlapping task set rules, VGPs demonstrated a task switching benefit compared to nVGPs. However, this benefit disappeared when proactive interference between tasks was increased, with substantial stimulus and response overlap in task set rules. We suggest that VGPs have no generalized benefit in task switching-related cognitive control processes compared to nVGPs, with switch cost reductions due instead to a specific benefit in controlling selective attention. PMID:20064634

  13. Designing a stochastic genetic switch by coupling chaos and bistability

    SciTech Connect

    Zhao, Xiang; Ouyang, Qi; Wang, Hongli

    2015-11-15

    In stem cell differentiation, a pluripotent stem cell becomes progressively specialized and generates specific cell types through a series of epigenetic processes. How cells can precisely determine their fate in a fluctuating environment is a currently unsolved problem. In this paper, we suggest an abstract gene regulatory network to describe mathematically the differentiation phenomenon featuring stochasticity, divergent cell fates, and robustness. The network consists of three functional motifs: an upstream chaotic motif, a buffering motif of incoherent feed forward loop capable of generating a pulse, and a downstream motif which is bistable. The dynamic behavior is typically a transient chaos with fractal basin boundaries. The trajectories take transiently chaotic journeys before divergently settling down to the bistable states. The ratio of the probability that the high state is achieved to the probability that the low state is reached can maintain a constant in a population of cells with varied molecular fluctuations. The ratio can be turned up or down when proper parameters are adjusted. The model suggests a possible mechanism for the robustness against fluctuations that is prominently featured in pluripotent cell differentiations and developmental phenomena.

  14. Designing a stochastic genetic switch by coupling chaos and bistability

    NASA Astrophysics Data System (ADS)

    Zhao, Xiang; Ouyang, Qi; Wang, Hongli

    2015-11-01

    In stem cell differentiation, a pluripotent stem cell becomes progressively specialized and generates specific cell types through a series of epigenetic processes. How cells can precisely determine their fate in a fluctuating environment is a currently unsolved problem. In this paper, we suggest an abstract gene regulatory network to describe mathematically the differentiation phenomenon featuring stochasticity, divergent cell fates, and robustness. The network consists of three functional motifs: an upstream chaotic motif, a buffering motif of incoherent feed forward loop capable of generating a pulse, and a downstream motif which is bistable. The dynamic behavior is typically a transient chaos with fractal basin boundaries. The trajectories take transiently chaotic journeys before divergently settling down to the bistable states. The ratio of the probability that the high state is achieved to the probability that the low state is reached can maintain a constant in a population of cells with varied molecular fluctuations. The ratio can be turned up or down when proper parameters are adjusted. The model suggests a possible mechanism for the robustness against fluctuations that is prominently featured in pluripotent cell differentiations and developmental phenomena.

  15. Video game practice optimizes executive control skills in dual-task and task switching situations.

    PubMed

    Strobach, Tilo; Frensch, Peter A; Schubert, Torsten

    2012-05-01

    We examined the relation of action video game practice and the optimization of executive control skills that are needed to coordinate two different tasks. As action video games are similar to real life situations and complex in nature, and include numerous concurrent actions, they may generate an ideal environment for practicing these skills (Green & Bavelier, 2008). For two types of experimental paradigms, dual-task and task switching respectively; we obtained performance advantages for experienced video gamers compared to non-gamers in situations in which two different tasks were processed simultaneously or sequentially. This advantage was absent in single-task situations. These findings indicate optimized executive control skills in video gamers. Similar findings in non-gamers after 15 h of action video game practice when compared to non-gamers with practice on a puzzle game clarified the causal relation between video game practice and the optimization of executive control skills. PMID:22426427

  16. DNA looping increases the range of bistability in a stochastic model of the lac genetic switch.

    PubMed

    Earnest, Tyler M; Roberts, Elijah; Assaf, Michael; Dahmen, Karin; Luthey-Schulten, Zaida

    2013-04-01

    Conditions and parameters affecting the range of bistability of the lac genetic switch in Escherichia coli are examined for a model which includes DNA looping interactions with the lac repressor and a lactose analogue. This stochastic gene-mRNA-protein model of the lac switch describes DNA looping using a third transcriptional state. We exploit the fast bursting dynamics of mRNA by combining a novel geometric burst extension with the finite state projection method. This limits the number of protein/mRNA states, allowing for an accelerated search of the model's parameter space. We evaluate how the addition of the third state changes the bistability properties of the model and find a critical region of parameter space where the phenotypic switching occurs in a range seen in single molecule fluorescence studies. Stochastic simulations show induction in the looping model is preceded by a rare complete dissociation of the loop followed by an immediate burst of mRNA rather than a slower build up of mRNA as in the two-state model. The overall effect of the looped state is to allow for faster switching times while at the same time further differentiating the uninduced and induced phenotypes. Furthermore, the kinetic parameters are consistent with free energies derived from thermodynamic studies suggesting that this minimal model of DNA looping could have a broader range of application. PMID:23406725

  17. DNA looping increases the range of bistability in a stochastic model of the lac genetic switch

    NASA Astrophysics Data System (ADS)

    Earnest, Tyler M.; Roberts, Elijah; Assaf, Michael; Dahmen, Karin; Luthey-Schulten, Zaida

    2013-04-01

    Conditions and parameters affecting the range of bistability of the lac genetic switch in Escherichia coli are examined for a model which includes DNA looping interactions with the lac repressor and a lactose analogue. This stochastic gene-mRNA-protein model of the lac switch describes DNA looping using a third transcriptional state. We exploit the fast bursting dynamics of mRNA by combining a novel geometric burst extension with the finite state projection method. This limits the number of protein/mRNA states, allowing for an accelerated search of the model's parameter space. We evaluate how the addition of the third state changes the bistability properties of the model and find a critical region of parameter space where the phenotypic switching occurs in a range seen in single molecule fluorescence studies. Stochastic simulations show induction in the looping model is preceded by a rare complete dissociation of the loop followed by an immediate burst of mRNA rather than a slower build up of mRNA as in the two-state model. The overall effect of the looped state is to allow for faster switching times while at the same time further differentiating the uninduced and induced phenotypes. Furthermore, the kinetic parameters are consistent with free energies derived from thermodynamic studies suggesting that this minimal model of DNA looping could have a broader range of application.

  18. A role of stochastic phenotype switching in generating mosaic endothelial cell heterogeneity.

    PubMed

    Yuan, Lei; Chan, Gary C; Beeler, David; Janes, Lauren; Spokes, Katherine C; Dharaneeswaran, Harita; Mojiri, Anahita; Adams, William J; Sciuto, Tracey; Garcia-Cardeña, Guillermo; Molema, Grietje; Kang, Peter M; Jahroudi, Nadia; Marsden, Philip A; Dvorak, Ann; Regan, Erzsébet Ravasz; Aird, William C

    2016-01-01

    Previous studies have shown that biological noise may drive dynamic phenotypic mosaicism in isogenic unicellular organisms. However, there is no evidence for a similar mechanism operating in metazoans. Here we show that the endothelial-restricted gene, von Willebrand factor (VWF), is expressed in a mosaic pattern in the capillaries of many vascular beds and in the aorta. In capillaries, the mosaicism is dynamically regulated, with VWF switching between ON and OFF states during the lifetime of the animal. Clonal analysis of cultured endothelial cells reveals that dynamic mosaic heterogeneity is controlled by a low-barrier, noise-sensitive bistable switch that involves random transitions in the DNA methylation status of the VWF promoter. Finally, the hearts of VWF-null mice demonstrate an abnormal endothelial phenotype as well as cardiac dysfunction. Together, these findings suggest a novel stochastic phenotype switching strategy for adaptive homoeostasis in the adult vasculature. PMID:26744078

  19. A novel adaptive switching function on fault tolerable sliding mode control for uncertain stochastic systems.

    PubMed

    Zahiripour, Seyed Ali; Jalali, Ali Akbar

    2014-09-01

    A novel switching function based on an optimization strategy for the sliding mode control (SMC) method has been provided for uncertain stochastic systems subject to actuator degradation such that the closed-loop system is globally asymptotically stable with probability one. In the previous researches the focus on sliding surface has been on proportional or proportional-integral function of states. In this research, from a degree of freedom that depends on designer choice is used to meet certain objectives. In the design of the switching function, there is a parameter which the designer can regulate for specified objectives. A sliding-mode controller is synthesized to ensure the reachability of the specified switching surface, despite actuator degradation and uncertainties. Finally, the simulation results demonstrate the effectiveness of the proposed method. PMID:24954808

  20. The effect of action video game experience on task-switching

    PubMed Central

    Green, C.Shawn; Sugarman, Michael A.; Medford, Katherine; Klobusicky, Elizabeth; Daphne Bavelier

    2012-01-01

    There is now a substantial body of work demonstrating that action video game experience results in enhancements in a wide variety of perceptual skills. More recently, several groups have also demonstrated improvements in abilities that are more cognitive in nature, in particular, the ability to efficiently switch between tasks. In a series of four experiments, we add to this body of work, demonstrating that the action video game player advantage is not exclusively due to an ability to map manual responses onto arbitrary buttons, but rather generalizes to vocal responses, is not restricted to tasks that are perceptual in nature (e.g. respond to a physical dimension of the stimulus such as its color), but generalizes to more cognitive tasks (e.g. is a number odd or even), and is present whether the switch requires a goal-switch or only a motor switch. Finally, a training study establishes that the relationship between the reduction in switch cost and action game playing is causal. PMID:22393270

  1. The role of stochastic gene switching in determining the pharmacodynamics of certain drugs: basic mechanisms.

    PubMed

    Puszynski, Krzysztof; Gandolfi, Alberto; d'Onofrio, Alberto

    2016-08-01

    In this paper we analyze the impact of the stochastic fluctuation of genes between their ON and OFF states on the pharmacodynamics of a potentially large class of drugs. We focus on basic mechanisms underlying the onset of in vitro experimental dose-response curves, by investigating two elementary molecular circuits. Both circuits consist in the transcription of a gene and in the successive translation into the corresponding protein. Whereas in the first the activation/deactivation rates of the single gene copy are constant, in the second the protein, now a transcription factor, amplifies the deactivation rate, so introducing a negative feedback. The drug is assumed to enhance the elimination of the protein, and in both cases the success of therapy is assured by keeping the level of the given protein under a threshold for a fixed time. Our numerical simulations suggests that the gene switching plays a primary role in determining the sigmoidal shape of dose-response curves. Moreover, the simulations show interesting phenomena related to the magnitude of the average gene switching time and to the drug concentration. In particular, for slow gene switching a significant fraction of cells can respond also in the absence of drug or with drug concentrations insufficient for the response in a deterministic setting. For higher drug concentrations, the non-responding fraction exhibits a maximum at intermediate values of the gene switching rates. For fast gene switching, instead, the stochastic prediction follows the prediction of the deterministic approximation, with all the cells responding or non-responding according to the drug dose. PMID:27352096

  2. Deterministic and Stochastic Modeling of an Artificial Bistable Switch in E. coli

    NASA Astrophysics Data System (ADS)

    Finkelstein, Daniel; Buchler, Nicolas; Karapetyan, Sargis

    Networks of mutually interacting genes are common in natural regulatory networks. To better understand these interactions, scientists have recently been constructing artificial genetic networks. Much of the effort is focused on creating genetic oscillators and bistable switches. In this project, we analyzed the possibility to create a bistable switch in E. coli. In this realization of the switch, the Repressor (basic leucine zipper CEBP/alpha) represses the transcription of the Inhibitor (artificial dominant negative 3HF). The Inhibitor, in turn, sequesters the Repressor by binding to it. Using deterministic modeling we identified a range of parameters suitable for bistability. We then analyzed the resulting solutions with the full model taking the reaction rates corresponding to E. coli and the including stochastic nature of gene expression. We have shown that the bistability in not destroyed by stochastic fluctuations if several copies of genes are present. Specifically, taking a realistic number of plasmids (10) we show that the number of proteins in the systems undergoes sizable fluctuations; however, the two states with low and high concentrations of inhibitor stay distinct in the relevant range of parameters.

  3. Stochastic switching in gene networks can occur by a single-molecule event or many molecular steps.

    PubMed

    Choi, Paul J; Xie, X Sunney; Shakhnovich, Eugene I

    2010-02-12

    Due to regulatory feedback, biological networks can exist stably in multiple states, leading to heterogeneous phenotypes among genetically identical cells. Random fluctuations in protein numbers, tuned by specific molecular mechanisms, have been hypothesized to drive transitions between these different states. We develop a minimal theoretical framework to analyze the limits of switching in terms of simple experimental parameters. Our model identifies and distinguishes between two distinct molecular mechanisms for generating stochastic switches. In one class of switches, the stochasticity of a single-molecule event, a specific and rare molecular reaction, directly controls the macroscopic change in a cell's state. In the second class, no individual molecular event is significant, and stochasticity arises from the propagation of biochemical noise through many molecular pathways and steps. As an example, we explore switches based on protein-DNA binding fluctuations and predict relations between transcription factor kinetics, absolute switching rate, robustness, and efficiency that differentiate between switching by single-molecule events or many molecular steps. Finally, we apply our methods to recent experimental data on switching in Escherichia coli lactose metabolism, providing quantitative interpretations of a single-molecule switching mechanism. PMID:19931280

  4. The coevolution of partner switching and strategy updating in non-excludable public goods game

    NASA Astrophysics Data System (ADS)

    Li, Yixiao; Shen, Bin

    2013-10-01

    Spatial public goods game is a popular metaphor to model the dilemma of collective cooperation on graphs, yet the non-excludable property of public goods has seldom been considered in previous models. Based upon a coevolutionary model where agents play public goods games and adjust their partnerships, the present model incorporates the non-excludable property of public goods: agents are able to adjust their participation in the games hosted by others, whereas they cannot exclude others from their own games. In the coevolution, a directed and dynamical network which represents partnerships among autonomous agents is evolved. We find that non-excludable property counteracts the positive effect of partner switching, i.e., the equilibrium level of cooperation is lower than that in the situation of excludable public goods game. Therefore, we study the effect of individual punishment that cooperative agents pay a personal cost to decrease benefits of those defective neighbors who participate in their hosted games. It is found that the cooperation level in the whole population is heightened in the presence of such a costly behavior.

  5. Stochastic Evolution Dynamic of the Rock–Scissors–Paper Game Based on a Quasi Birth and Death Process

    PubMed Central

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-01-01

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor. PMID:27346701

  6. Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process.

    PubMed

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-01-01

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor. PMID:27346701

  7. Stochastic Evolution Dynamic of the Rock–Scissors–Paper Game Based on a Quasi Birth and Death Process

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu

    2016-06-01

    Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.

  8. Disorder, Promiscuous Interactions, and Stochasticity Regulate State Switching in the Unstable Prostate.

    PubMed

    Kulkarni, Prakash; Getzenberg, Robert H

    2016-10-01

    A causal link between benign prostatic hyperplasia (BPH) and prostate cancer has long been suspected but not widely accepted. A new model is proposed that supports such a connection. In contrast to the prevailing wisdom, our model, that draws on dynamical systems theory, suggests that in response to stress, epithelial cells in the unstable gland can give rise to both types of diseases via a phenotypic switching mechanism. The central idea is that phenotypic switching is a stochastic process which exploits the plasticity of the epithelial cell. It is driven by 'noise' contributed by the conformational dynamics of proteins that are intrinsically disordered. In a system that is noisy when stressed, disorder promotes promiscuity, unmasks latent information, and rewires the network to cause phenotypic switching. Cells with newly acquired phenotypes can transcend the traditional zonal boundaries to give rise to BPH or prostate cancer depending on the microenvironment. Establishing causality between the two diseases may provide us with an opportunity to better understand their etiology and guide prevention and treatment strategies. J. Cell. Biochem. 117: 2235-2240, 2016. © 2016 Wiley Periodicals, Inc. PMID:27152744

  9. Some Classes of Imperfect Information Finite State-Space Stochastic Games with Finite-Dimensional Solutions

    SciTech Connect

    McEneaney, William M.

    2004-08-15

    Stochastic games under imperfect information are typically computationally intractable even in the discrete-time/discrete-state case considered here. We consider a problem where one player has perfect information.A function of a conditional probability distribution is proposed as an information state.In the problem form here, the payoff is only a function of the terminal state of the system,and the initial information state is either linear ora sum of max-plus delta functions.When the initial information state belongs to these classes, its propagation is finite-dimensional.The state feedback value function is also finite-dimensional,and obtained via dynamic programming,but has a nonstandard form due to the necessity of an expanded state variable.Under a saddle point assumption,Certainty Equivalence is obtained and the proposed function is indeed an information state.

  10. A stochastic single-molecule event triggers phenotype switching of a bacterial cell.

    PubMed

    Choi, Paul J; Cai, Long; Frieda, Kirsten; Xie, X Sunney

    2008-10-17

    By monitoring fluorescently labeled lactose permease with single-molecule sensitivity, we investigated the molecular mechanism of how an Escherichia coli cell with the lac operon switches from one phenotype to another. At intermediate inducer concentrations, a population of genetically identical cells exhibits two phenotypes: induced cells with highly fluorescent membranes and uninduced cells with a small number of membrane-bound permeases. We found that this basal-level expression results from partial dissociation of the tetrameric lactose repressor from one of its operators on looped DNA. In contrast, infrequent events of complete dissociation of the repressor from DNA result in large bursts of permease expression that trigger induction of the lac operon. Hence, a stochastic single-molecule event determines a cell's phenotype. PMID:18927393

  11. A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell

    NASA Astrophysics Data System (ADS)

    Xie, Sunney; Choi, Paul; Cai, Long

    2009-03-01

    By monitoring fluorescently labeled lactose permease with single-molecule sensitivity, we investigated the molecular mechanism of how an Escherichia coli cell with the lac operon switches from one phenotype to another. At intermediate inducer concentrations, a population of genetically identical cells exhibits two phenotypes: induced cells with highly fluorescent membranes and uninduced cells with a small number of membrane-bound permeases. We found that this basal-level expression results from partial dissociation of the tetrameric lactose repressor from one of its operators on looped DNA. In contrast, infrequent events of complete dissociation of the repressor from DNA result in large bursts of permease expression that trigger induction of the lac operon. Hence, a stochastic single-molecule event determines a cell's phenotype.

  12. Cortical Contractility Triggers a Stochastic Switch to Fast Amoeboid Cell Motility

    PubMed Central

    Ruprecht, Verena; Wieser, Stefan; Callan-Jones, Andrew; Smutny, Michael; Morita, Hitoshi; Sako, Keisuke; Barone, Vanessa; Ritsch-Marte, Monika; Sixt, Michael; Voituriez, Raphaël; Heisenberg, Carl-Philipp

    2015-01-01

    Summary 3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence. Progenitor cells can be reversibly transformed into stable-bleb cells irrespective of their primary fate and motile characteristics by increasing myosin II activity through biochemical or mechanical stimuli. Using a combination of theory and experiments, we show that, in stable-bleb cells, cortical contractility fluctuations trigger a stochastic switch into amoeboid motility, and a positive feedback between cortical flows and gradients in contractility maintains stable-bleb cell polarization. We further show that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoeboid migration phenotype. PMID:25679761

  13. Directed percolation criticality due to stochastic switching between attractive and repulsive coupling in coupled circle maps.

    PubMed

    Sonawane, Abhijeet R

    2010-05-01

    We study a lattice model where the coupling stochastically switches between repulsive (subtractive) and attractive (additive) at each site with probability p at every time instant. We observe that such a kind of coupling stabilizes the local fixed point of a circle map, with the resultant globally stable attractor providing a unique absorbing state. Interestingly, a continuous phase transition is observed from the absorbing state to spatiotemporal chaos via spatiotemporal intermittency for a range of values of p . It is interesting to note that the transition falls in class of directed percolation. Static and spreading exponents along with relevant scaling laws are found to be obeyed confirming the directed percolation universality class in spatiotemporal intermittency regime. PMID:20866306

  14. Beyond the random coil: stochastic conformational switching in intrinsically disordered proteins.

    PubMed

    Choi, Ucheor B; McCann, James J; Weninger, Keith R; Bowen, Mark E

    2011-04-13

    Intrinsically disordered proteins (IDPs) participate in critical cellular functions that exploit the flexibility and rapid conformational fluctuations of their native state. Limited information about the native state of IDPs can be gained by the averaging over many heterogeneous molecules that is unavoidable in ensemble approaches. We used single molecule fluorescence to characterize native state conformational dynamics in five synaptic proteins confirmed to be disordered by other techniques. For three of the proteins, SNAP-25, synaptobrevin and complexin, their conformational dynamics could be described with a simple semiflexible polymer model. Surprisingly, two proteins, neuroligin and the NMDAR-2B glutamate receptor, were observed to stochastically switch among distinct conformational states despite the fact that they appeared intrinsically disordered by other measures. The hop-like intramolecular diffusion found in these proteins is suggested to define a class of functionality previously unrecognized for IDPs. PMID:21481779

  15. Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm.

    PubMed

    Chang, Joshua; Paydarfar, David

    2014-12-01

    Inducing a switch in neuronal state using energy optimal stimuli is relevant to a variety of problems in neuroscience. Analytical techniques from optimal control theory can identify such stimuli; however, solutions to the optimization problem using indirect variational approaches can be elusive in models that describe neuronal behavior. Here we develop and apply a direct gradient-based optimization algorithm to find stimulus waveforms that elicit a change in neuronal state while minimizing energy usage. We analyze standard models of neuronal behavior, the Hodgkin-Huxley and FitzHugh-Nagumo models, to show that the gradient-based algorithm: (1) enables automated exploration of a wide solution space, using stochastically generated initial waveforms that converge to multiple locally optimal solutions; and (2) finds optimal stimulus waveforms that achieve a physiological outcome condition, without a priori knowledge of the optimal terminal condition of all state variables. Analysis of biological systems using stochastically-seeded gradient methods can reveal salient dynamical mechanisms underlying the optimal control of system behavior. The gradient algorithm may also have practical applications in future work, for example, finding energy optimal waveforms for therapeutic neural stimulation that minimizes power usage and diminishes off-target effects and damage to neighboring tissue. PMID:25145955

  16. Fixation, transient landscape, and diffusion dilemma in stochastic evolutionary game dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Da; Qian, Hong

    2011-09-01

    Agent-based stochastic models for finite populations have recently received much attention in the game theory of evolutionary dynamics. Both the ultimate fixation and the pre-fixation transient behavior are important to a full understanding of the dynamics. In this paper, we study the transient dynamics of the well-mixed Moran process through constructing a landscape function. It is shown that the landscape playing a central theoretical “device” that integrates several lines of inquiries: the stable behavior of the replicator dynamics, the long-time fixation, and continuous diffusion approximation associated with asymptotically large population. Several issues relating to the transient dynamics are discussed: (i) multiple time scales phenomenon associated with intra- and inter-attractoral dynamics; (ii) discontinuous transition in stochastically stationary process akin to Maxwell construction in equilibrium statistical physics; and (iii) the dilemma diffusion approximation facing as a continuous approximation of the discrete evolutionary dynamics. It is found that rare events with exponentially small probabilities, corresponding to the uphill movements and barrier crossing in the landscape with multiple wells that are made possible by strong nonlinear dynamics, plays an important role in understanding the origin of the complexity in evolutionary, nonlinear biological systems.

  17. Effect of reaction-step-size noise on the switching dynamics of stochastic populations.

    PubMed

    Be'er, Shay; Heller-Algazi, Metar; Assaf, Michael

    2016-05-01

    In genetic circuits, when the messenger RNA lifetime is short compared to the cell cycle, proteins are produced in geometrically distributed bursts, which greatly affects the cellular switching dynamics between different metastable phenotypic states. Motivated by this scenario, we study a general problem of switching or escape in stochastic populations, where influx of particles occurs in groups or bursts, sampled from an arbitrary distribution. The fact that the step size of the influx reaction is a priori unknown and, in general, may fluctuate in time with a given correlation time and statistics, introduces an additional nondemographic reaction-step-size noise into the system. Employing the probability-generating function technique in conjunction with Hamiltonian formulation, we are able to map the problem in the leading order onto solving a stationary Hamilton-Jacobi equation. We show that compared to the "usual case" of single-step influx, bursty influx exponentially decreases the population's mean escape time from its long-lived metastable state. In particular, close to bifurcation we find a simple analytical expression for the mean escape time which solely depends on the mean and variance of the burst-size distribution. Our results are demonstrated on several realistic distributions and compare well with numerical Monte Carlo simulations. PMID:27300840

  18. Effect of reaction-step-size noise on the switching dynamics of stochastic populations

    NASA Astrophysics Data System (ADS)

    Be'er, Shay; Heller-Algazi, Metar; Assaf, Michael

    2016-05-01

    In genetic circuits, when the messenger RNA lifetime is short compared to the cell cycle, proteins are produced in geometrically distributed bursts, which greatly affects the cellular switching dynamics between different metastable phenotypic states. Motivated by this scenario, we study a general problem of switching or escape in stochastic populations, where influx of particles occurs in groups or bursts, sampled from an arbitrary distribution. The fact that the step size of the influx reaction is a priori unknown and, in general, may fluctuate in time with a given correlation time and statistics, introduces an additional nondemographic reaction-step-size noise into the system. Employing the probability-generating function technique in conjunction with Hamiltonian formulation, we are able to map the problem in the leading order onto solving a stationary Hamilton-Jacobi equation. We show that compared to the "usual case" of single-step influx, bursty influx exponentially decreases the population's mean escape time from its long-lived metastable state. In particular, close to bifurcation we find a simple analytical expression for the mean escape time which solely depends on the mean and variance of the burst-size distribution. Our results are demonstrated on several realistic distributions and compare well with numerical Monte Carlo simulations.

  19. Development of Simulator Based on Stochastic Switched ARX Model for Refrigeration System with Ice Thermal Storage System

    NASA Astrophysics Data System (ADS)

    Shioya, Tsubasa; Fujimoto, Yasutaka

    In this paper, we introduce a simulator for ice thermal storage systems. Basically, the refrigeration system is modeled as a linear discrete-time system. For system identifications, the least square method is used. However, it is difficult to identify the switching time of the electromagnetic valve of brine pipes attached at showcases accurately by this method. In order to overcome this difficulty, a simulator based on the stochastic switched ARX model is developed. The data obtained from the simulator are compared with actual data. We verify the effectiveness of the proposed simulator.

  20. Stochastic modeling and experimental analysis of phenotypic switching and survival of cancer cells under stress

    NASA Astrophysics Data System (ADS)

    Zamani Dahaj, Seyed Alireza; Kumar, Niraj; Sundaram, Bala; Celli, Jonathan; Kulkarni, Rahul

    The phenotypic heterogeneity of cancer cells is critical to their survival under stress. A significant contribution to heterogeneity of cancer calls derives from the epithelial-mesenchymal transition (EMT), a conserved cellular program that is crucial for embryonic development. Several studies have investigated the role of EMT in growth of early stage tumors into invasive malignancies. Also, EMT has been closely associated with the acquisition of chemoresistance properties in cancer cells. Motivated by these studies, we analyze multi-phenotype stochastic models of the evolution of cancers cell populations under stress. We derive analytical results for time-dependent probability distributions that provide insights into the competing rates underlying phenotypic switching (e.g. during EMT) and the corresponding survival of cancer cells. Experimentally, we evaluate these model-based predictions by imaging human pancreatic cancer cell lines grown with and without cytotoxic agents and measure growth kinetics, survival, morphological changes and (terminal evaluation of) biomarkers with associated epithelial and mesenchymal phenotypes. The results derived suggest approaches for distinguishing between adaptation and selection scenarios for survival in the presence of external stresses.

  1. A framework for learning and planning against switching strategies in repeated games

    NASA Astrophysics Data System (ADS)

    Hernandez-Leal, Pablo; Munoz de Cote, Enrique; Sucar, L. Enrique

    2014-04-01

    Intelligent agents, human or artificial, often change their behaviour as they interact with other agents. For an agent to optimise its performance when interacting with such agents, it must be capable of detecting and adapting according to such changes. This work presents an approach on how to effectively deal with non-stationary switching opponents in a repeated game context. Our main contribution is a framework for online learning and planning against opponents that switch strategies. We present how two opponent modelling techniques work within the framework and prove the usefulness of the approach experimentally in the iterated prisoner's dilemma, when the opponent is modelled as an agent that switches between different strategies (e.g. TFT, Pavlov and Bully). The results of both models were compared against each other and against a state-of-the-art non-stationary reinforcement learning technique. Results reflect that our approach obtains competitive results without needing an offline training phase, as opposed to the state-of-the-art techniques.

  2. Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood.

    PubMed

    Dörrenbächer, Sandra; Müller, Philipp M; Tröger, Johannes; Kray, Jutta

    2014-01-01

    Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8-11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions. PMID:25431564

  3. Dissociable effects of game elements on motivation and cognition in a task-switching training in middle childhood

    PubMed Central

    Dörrenbächer, Sandra; Müller, Philipp M.; Tröger, Johannes; Kray, Jutta

    2014-01-01

    Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8–11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions. PMID:25431564

  4. Differential games.

    NASA Technical Reports Server (NTRS)

    Varaiya, P. P.

    1972-01-01

    General discussion of the theory of differential games with two players and zero sum. Games starting at a fixed initial state and ending at a fixed final time are analyzed. Strategies for the games are defined. The existence of saddle values and saddle points is considered. A stochastic version of a differential game is used to examine the synthesis problem.

  5. Viscosity Solutions for a System of Integro-PDEs and Connections to Optimal Switching and Control of Jump-Diffusion Processes

    SciTech Connect

    Biswas, Imran H.; Jakobsen, Espen R.; Karlsen, Kenneth H.

    2010-08-15

    We develop a viscosity solution theory for a system of nonlinear degenerate parabolic integro-partial differential equations (IPDEs) related to stochastic optimal switching and control problems or stochastic games. In the case of stochastic optimal switching and control, we prove via dynamic programming methods that the value function is a viscosity solution of the IPDEs. In our setting the value functions or the solutions of the IPDEs are not smooth, so classical verification theorems do not apply.

  6. The stationary distribution and ergodicity of a stochastic phytoplankton allelopathy model under regime switching

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Yuan, Sanling; Zhang, Tonghua

    2016-08-01

    The effect of toxin-producing phytoplankton and environmental stochasticity are interesting problems in marine plankton ecology. In this paper, we develop and analyze a stochastic phytoplankton allelopathy model, which takes both white and colored noises into account. We first prove the existence of the global positive solution of the model. And then by using the stochastic Lyapunov functions, we investigate the positive recurrence and ergodic property of the model, which implies the existence of a stationary distribution of the solution. Moreover, we obtain the mean and variance of the stationary distribution. Our results show that both the two kinds of environmental noises and toxic substances have great impacts on the evolution of the phytoplankton populations. Finally, numerical simulations are carried out to illustrate our theoretical results.

  7. Towards Stability Analysis of Jump Linear Systems with State-Dependent and Stochastic Switching

    NASA Technical Reports Server (NTRS)

    Tejada, Arturo; Gonzalez, Oscar R.; Gray, W. Steven

    2004-01-01

    This paper analyzes the stability of hierarchical jump linear systems where the supervisor is driven by a Markovian stochastic process and by the values of the supervised jump linear system s states. The stability framework for this class of systems is developed over infinite and finite time horizons. The framework is then used to derive sufficient stability conditions for a specific class of hybrid jump linear systems with performance supervision. New sufficient stochastic stability conditions for discrete-time jump linear systems are also presented.

  8. Delays-based protein switches in a stochastic single-gene network

    NASA Astrophysics Data System (ADS)

    Zhang, Chun; Zeng, Jiakui; Tian, Dong; Luo, Hongchun; Yang, Tao; Han, Qinglin; Xiang, Chao; Zeng, Chunhua; Wang, Canjun

    2015-09-01

    In this paper, the protein switch in a single-gene network with time delays is investigated, where the gene expression is assumed to be disturbed by multiplicative and additive noises. The impacts of time delays τd and τs in degradation and synthesis processes, time delay τg in global process and cross-correlation between two noises (λi, and i = d , s , g) on the probability distribution and switch time (ST) from low protein level (OFF state) to high one (ON state) are discussed, respectively. Our results show that (1) the increase of the cross-correlation between two noises (λi) can induce protein switches from ON state to OFF one; (2) for λi ⩾ 0, the increase of τd can induce protein switches from OFF state to ON one, while τs (or τg) can induce protein switches from the ON state to the OFF one, but for λi < 0, the τd (or τs) can induce protein switches from the OFF state to the ON one, while τg can induce protein switches from the ON state to the OFF one; (3) the ST as functions of the noise intensities exhibits a maximum, which is the signature of the noise enhanced stability (NES) of the OFF state, while the increase of τd can cause the NES phenomenon to disappear; and (4) τd and τs play opposing roles in the ST, i.e., the impacts of the time delays τd and τs on ST can be canceled each other out.

  9. Stochastic switching of TiO2-based memristive devices with identical initial memory states

    PubMed Central

    2014-01-01

    In this work, we show that identical TiO2-based memristive devices that possess the same initial resistive states are only phenomenologically similar as their internal structures may vary significantly, which could render quite dissimilar switching dynamics. We experimentally demonstrated that the resistive switching of practical devices with similar initial states could occur at different programming stimuli cycles. We argue that similar memory states can be transcribed via numerous distinct active core states through the dissimilar reduced TiO2-x filamentary distributions. Our hypothesis was finally verified via simulated results of the memory state evolution, by taking into account dissimilar initial filamentary distribution. PMID:24994953

  10. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme

    PubMed Central

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer

  11. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme.

    PubMed

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton-Jacobi inequality - constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer

  12. Ssn6 Defines a New Level of Regulation of White-Opaque Switching in Candida albicans and Is Required For the Stochasticity of the Switch

    PubMed Central

    Lohse, Matthew B.; Nobile, Clarissa J.; Noiman, Liron; Laksana, Clement N.

    2016-01-01

    ABSTRACT The human commensal and opportunistic pathogen Candida albicans can switch between two distinct, heritable cell types, named “white” and “opaque,” which differ in morphology, mating abilities, and metabolic preferences and in their interactions with the host immune system. Previous studies revealed a highly interconnected group of transcriptional regulators that control switching between the two cell types. Here, we identify Ssn6, the C. albicans functional homolog of the Saccharomyces cerevisiae transcriptional corepressor Cyc8, as a new regulator of white-opaque switching. In a or α mating type strains, deletion of SSN6 results in mass switching from the white to the opaque cell type. Transcriptional profiling of ssn6 deletion mutant strains reveals that Ssn6 represses part of the opaque cell transcriptional program in white cells and the majority of the white cell transcriptional program in opaque cells. Genome-wide chromatin immunoprecipitation experiments demonstrate that Ssn6 is tightly integrated into the opaque cell regulatory circuit and that the positions to which it is bound across the genome strongly overlap those bound by Wor1 and Wor2, previously identified regulators of white-opaque switching. This work reveals the next layer in the white-opaque transcriptional circuitry by integrating a transcriptional regulator that does not bind DNA directly but instead associates with specific combinations of DNA-bound transcriptional regulators. PMID:26814177

  13. Stability and multiattractor dynamics of a toggle switch based on a two-stage model of stochastic gene expression.

    PubMed

    Strasser, Michael; Theis, Fabian J; Marr, Carsten

    2012-01-01

    A toggle switch consists of two genes that mutually repress each other. This regulatory motif is active during cell differentiation and is thought to act as a memory device, being able to choose and maintain cell fate decisions. Commonly, this switch has been modeled in a deterministic framework where transcription and translation are lumped together. In this description, bistability occurs for transcription factor cooperativity, whereas autoactivation leads to a tristable system with an additional undecided state. In this contribution, we study the stability and dynamics of a two-stage gene expression switch within a probabilistic framework inspired by the properties of the Pu/Gata toggle switch in myeloid progenitor cells. We focus on low mRNA numbers, high protein abundance, and monomeric transcription-factor binding. Contrary to the expectation from a deterministic description, this switch shows complex multiattractor dynamics without autoactivation and cooperativity. Most importantly, the four attractors of the system, which only emerge in a probabilistic two-stage description, can be identified with committed and primed states in cell differentiation. To begin, we study the dynamics of the system and infer the mechanisms that move the system between attractors using both the quasipotential and the probability flux of the system. Next, we show that the residence times of the system in one of the committed attractors are geometrically distributed. We derive an analytical expression for the parameter of the geometric distribution, therefore completely describing the statistics of the switching process and elucidate the influence of the system parameters on the residence time. Moreover, we find that the mean residence time increases linearly with the mean protein level. This scaling also holds for a one-stage scenario and for autoactivation. Finally, we study the implications of this distribution for the stability of a switch and discuss the influence of the

  14. Self-organizing patterns in an evolutionary rock-paper-scissors game for stochastic synchronized strategy updates

    NASA Astrophysics Data System (ADS)

    Varga, Levente; Vukov, Jeromos; Szabó, György

    2014-10-01

    We study a spatial evolutionary rock-paper-scissors game with synchronized strategy updating. Players gain their payoff from games with their four neighbors on a square lattice and can update their strategies simultaneously according to the logit rule, which is the noisy version of the best-response dynamics. For the synchronized strategy update two types of global oscillations (with an ordered strategy arrangement and periods of three and six generations) can occur in this system in the zero noise limit. At low noise values, all nine oscillating phases are present in the system by forming a self-organizing spatial pattern due to the comprising invasion and speciation processes along the interfaces separating the different domains.

  15. Polymorphic Evolutionary Games.

    PubMed

    Fishman, Michael A

    2016-06-01

    In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. PMID:27016340

  16. Active Learning with Monty Hall in a Game Theory Class

    ERIC Educational Resources Information Center

    Brokaw, Alan J.; Merz, Thomas E.

    2004-01-01

    The authors describe a game that students can play on the first day of a game theory class. The game introduces the 4 essential elements of any game and is designed so that its sequel, also played on the first day of class, has students playing the well-known Monty Hall game, which raises the question: Should you switch doors? By implementing a…

  17. A Monetary Policy Simulation Game

    ERIC Educational Resources Information Center

    Lengwiler, Yvan

    2004-01-01

    The author presents a computer game that puts the player in the role of a central bank governor. The game is a stochastic simulation of a standard reduced form macro model, and the user interacts with this simulation by manipulating the interest rate. The problem the player faces is in many ways quite realistic--just as a real monetary authority,…

  18. Statistical equilibrium in simple exchange games II. The redistribution game

    NASA Astrophysics Data System (ADS)

    Garibaldi, U.; Scalas, E.; Viarengo, P.

    2007-11-01

    We propose a simple stochastic exchange game mimicking taxation and redistribution. There are g agents and n coins; taxation is modeled by randomly extracting some coins; then, these coins are redistributed to agents following Polya's scheme. The individual wealth equilibrium distribution for the resulting Markov chain is the multivariate symmetric Polya distribution. In the continuum limit, the wealth distribution converges to a Gamma distribution, whose form factor is just the initial redistribution weight. The relationship between this taxation-and-redistribution scheme and other simple conservative stochastic exchange games (such as the BDY game) is discussed.

  19. Bacterial Games

    NASA Astrophysics Data System (ADS)

    Frey, Erwin; Reichenbach, Tobias

    Microbial laboratory communities have become model systems for studying the complex interplay between nonlinear dynamics of evolutionary selection forces, stochastic fluctuations arising from the probabilistic nature of interactions, and spatial organization. Major research goals are to identify and understand mechanisms that ensure viability of microbial colonies by allowing for species diversity, cooperative behavior and other kinds of "social" behavior. A synthesis of evolutionary game theory, nonlinear dynamics, and the theory of stochastic processes provides the mathematical tools and conceptual framework for a deeper understanding of these ecological systems. We give an introduction to the modern formulation of these theories and illustrate their effectiveness, focusing on selected examples of microbial systems. Intrinsic fluctuations, stemming from the discreteness of individuals, are ubiquitous, and can have important impact on the stability of ecosystems. In the absence of speciation, extinction of species is unavoidable, may, however, take very long times. We provide a general concept for defining survival and extinction on ecological time scales. Spatial degrees of freedom come with a certain mobility of individuals. When the latter is sufficiently high, bacterial community structures can be understood through mapping individual-based models, in a continuum approach, onto stochastic partial differential equations. These allow progress using methods of nonlinear dynamics such as bifurcation analysis and invariant manifolds. We conclude with a perspective on the current challenges in quantifying bacterial pattern formation, and how this might have an impact on fundamental research in nonequilibrium physics .

  20. Seasonality as a Parrondian game

    NASA Astrophysics Data System (ADS)

    Peacock-López, Enrique

    2011-08-01

    Switching strategies can be related to the so-called Parrondian games, where the alternation of two losing games yields a winning game. We consider two dynamics that by themselves yield undesirable behaviors, but when alternated, yield a desirable oscillatory behavior. In the analysis of the alternate-logistic map, we prove that alternating parameter values yielding extinction with parameter values associated with chaotic dynamics results in periodic trajectories. Ultimately, we consider a four season logistic model with either migration or immigration.

  1. The local minority game

    NASA Astrophysics Data System (ADS)

    Moelbert, S.; De Los Rios, P.

    2002-01-01

    Ecologists and economists try to explain collective behavior in terms of competitive systems of selfish individuals with the ability to learn from the past. Statistical physicists have been investigating models which might contribute to the understanding of the underlying mechanisms of these systems. During the last 3 yr one intuitive model, commonly referred to as the minority game (MG), has attracted considerable attention. Powerful yet simple, the minority game has produced encouraging results which can explain the temporal behavior of competitive systems. Here we switch the interest to the phenomena due to a distribution of the individuals in space. For analyzing these effects we modify the minority game and the local minority game (LMG) is introduced. We study the system both numerically and analytically, using the customary techniques already developed for the ordinary Minority Game.

  2. Passivity of switched recurrent neural networks with time-varying delays.

    PubMed

    Lian, Jie; Wang, Jun

    2015-02-01

    This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hysteresis switching law involving both the current state and the previous value of the switching signal are presented to avoid chattering resulted from the state-dependent switching. Third, based on the average dwell-time approach, a class of switching signals is determined to guarantee the switched neural network stochastically passive. Finally, three numerical examples are provided to illustrate the characteristics of three proposed switching laws. PMID:25576577

  3. Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models

    PubMed Central

    Smith, Jason F.; Chen, Kewei; Pillai, Ajay S.; Horwitz, Barry

    2013-01-01

    The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons. PMID:23717258

  4. Playful Gaming.

    ERIC Educational Resources Information Center

    Makedon, Alexander

    A philosophical analysis of play and games is undertaken in this paper. Playful gaming, which is shown to be a synthesis of play and games, is utilized as a category for undertaking the examination of play and games. The significance of playful gaming to education is demonstrated through analyses of Plato's, Dewey's, Sartre's, and Marcuse's…

  5. QB1 - Stochastic Gene Regulation

    SciTech Connect

    Munsky, Brian

    2012-07-23

    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  6. Games of multicellularity.

    PubMed

    Kaveh, Kamran; Veller, Carl; Nowak, Martin A

    2016-08-21

    Evolutionary game dynamics are often studied in the context of different population structures. Here we propose a new population structure that is inspired by simple multicellular life forms. In our model, cells reproduce but can stay together after reproduction. They reach complexes of a certain size, n, before producing single cells again. The cells within a complex derive payoff from an evolutionary game by interacting with each other. The reproductive rate of cells is proportional to their payoff. We consider all two-strategy games. We study deterministic evolutionary dynamics with mutations, and derive exact conditions for selection to favor one strategy over another. Our main result has the same symmetry as the well-known sigma condition, which has been proven for stochastic game dynamics and weak selection. For a maximum complex size of n=2 our result holds for any intensity of selection. For n≥3 it holds for weak selection. As specific examples we study the prisoner's dilemma and hawk-dove games. Our model advances theoretical work on multicellularity by allowing for frequency-dependent interactions within groups. PMID:27179461

  7. Synchronization of noisy systems by stochastic signals

    SciTech Connect

    Neiman, A.; Schimansky-Geier, L.; Moss, F.; Schimansky-Geier, L.; Shulgin, B.; Collins, J.J.

    1999-07-01

    We study, in terms of synchronization, the {ital nonlinear response} of noisy bistable systems to a stochastic external signal, represented by Markovian dichotomic noise. We propose a general kinetic model which allows us to conduct a full analytical study of the nonlinear response, including the calculation of cross-correlation measures, the mean switching frequency, and synchronization regions. Theoretical results are compared with numerical simulations of a noisy overdamped bistable oscillator. We show that dichotomic noise can instantaneously synchronize the switching process of the system. We also show that synchronization is most pronounced at an optimal noise level{emdash}this effect connects this phenomenon with aperiodic stochastic resonance. Similar synchronization effects are observed for a stochastic neuron model stimulated by a stochastic spike train. {copyright} {ital 1999} {ital The American Physical Society}

  8. Games in Geography.

    ERIC Educational Resources Information Center

    Walford, Rex

    Six games designed for classroom use are described in this book: 1) Shopping Game; 2) Bus Service Game; 3) North Sea Gas Game; 4) Railway Pioneers Game; 5) Development Game; and 6) Export Drive Game. The description of each game comprises a separate chapter, and includes information about the general aims of the game, how the various game elements…

  9. Symmetry and Stochastic Gene Regulation

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre F.; Hornos, José E. M.

    2007-09-01

    Lorentz-like noncompact Lie symmetry SO(2,1) is found in a spin-boson stochastic model for gene expression. The invariant of the algebra characterizes the switch decay to equilibrium. The azimuthal eigenvalue describes the affinity between the regulatory protein and the gene operator site. Raising and lowering operators are constructed and their actions increase or decrease the affinity parameter. The classification of the noise regime of the gene arises from the group theoretical numbers.

  10. Combat games

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Heymann, M.; Rajan, N.

    1985-01-01

    A mathematical formulation is proposed of a combat game between two opponents with offensive capabilities and offensive objective is proposed. Resolution of the combat involves solving two differential games with state constraints. Depending on the game dynamics and parameters, the combat can terminate in one of four ways: the first player wins; the second player wins; a draw (neither wins); or joint capture. In the first two cases, the optimal strategies of the two players are determined from suitable zero-sum games, whereas in the latter two the relevant games are nonzero-sum. Further, to avoid certain technical difficulties, the concept of a delta-combat game is introduced.

  11. Stability of Zero-Sum Games in Evolutionary Game Theory

    NASA Astrophysics Data System (ADS)

    Knebel, Johannes; Krueger, Torben; Weber, Markus F.; Frey, Erwin

    2014-03-01

    Evolutionary game theory has evolved into a successful theoretical concept to study mechanisms that govern the evolution of ecological communities. On a mathematical level, this theory was formalized in the framework of the celebrated replicator equations (REs) and its stochastic generalizations. In our work, we analyze the long-time behavior of the REs for zero-sum games with arbitrarily many strategies, which are generalized versions of the children's game Rock-Paper-Scissors.[1] We demonstrate how to determine the strategies that survive and those that become extinct in the long run. Our results show that extinction of strategies is exponentially fast in generic setups, and that conditions for the survival can be formulated in terms of the Pfaffian of the REs' antisymmetric payoff matrix. Consequences for the stochastic dynamics, which arise in finite populations, are reflected by a generalized scaling law for the extinction time in the vicinity of critical reaction rates. Our findings underline the relevance of zero-sum games as a reference for the analysis of other models in evolutionary game theory.

  12. Stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  13. Stochastic cooling

    SciTech Connect

    Bisognano, J.; Leemann, C.

    1982-03-01

    Stochastic cooling is the damping of betatron oscillations and momentum spread of a particle beam by a feedback system. In its simplest form, a pickup electrode detects the transverse positions or momenta of particles in a storage ring, and the signal produced is amplified and applied downstream to a kicker. The time delay of the cable and electronics is designed to match the transit time of particles along the arc of the storage ring between the pickup and kicker so that an individual particle receives the amplified version of the signal it produced at the pick-up. If there were only a single particle in the ring, it is obvious that betatron oscillations and momentum offset could be damped. However, in addition to its own signal, a particle receives signals from other beam particles. In the limit of an infinite number of particles, no damping could be achieved; we have Liouville's theorem with constant density of the phase space fluid. For a finite, albeit large number of particles, there remains a residue of the single particle damping which is of practical use in accumulating low phase space density beams of particles such as antiprotons. It was the realization of this fact that led to the invention of stochastic cooling by S. van der Meer in 1968. Since its conception, stochastic cooling has been the subject of much theoretical and experimental work. The earliest experiments were performed at the ISR in 1974, with the subsequent ICE studies firmly establishing the stochastic cooling technique. This work directly led to the design and construction of the Antiproton Accumulator at CERN and the beginnings of p anti p colliding beam physics at the SPS. Experiments in stochastic cooling have been performed at Fermilab in collaboration with LBL, and a design is currently under development for a anti p accumulator for the Tevatron.

  14. Analysis of Genetic Toggle Switch Systems Encoded on Plasmids

    NASA Astrophysics Data System (ADS)

    Loinger, Adiel; Biham, Ofer

    2009-08-01

    Genetic switch systems with mutual repression of two transcription factors, encoded on plasmids, are studied using stochastic methods. The plasmid copy number is found to strongly affect the behavior of these systems. More specifically, the average time between spontaneous switching events quickly increases with the number of plasmids. It was shown before that for a single copy encoded on the chromosome, the exclusive switch is more stable than the general switch. Here we show that when the switch is encoded on a sufficiently large number of plasmids, the situation is reversed and the general switch is more stable than the exclusive switch. These predictions can be tested experimentally using methods of synthetic biology.

  15. Shorthand Games

    ERIC Educational Resources Information Center

    Dostal, June

    1973-01-01

    Games can be used to stimulate interest and to make learning shorthand fun. Suggested games include these: geographic shorthand rummy, shorthand concentration, shorthand baseball geography, shorthand geography spelldown, shorthand password, and shorthand hangman's bluff. (SC)

  16. [Game addiction].

    PubMed

    Mori, Akio; Iwadate, Masako; Minakawa, Nahoko T; Kawashima, Satoshi

    2015-09-01

    The purpose of this article is to analyze the South Korea and China of computer game research, and the current state of research in Japan. Excessive game actions were analyzed by PET-MRI, MRI, fMRI, NIRS, EEG. These results showed that the prefrontal cortical activity decreased during game play. Also, game addiction causes damage to the prefrontal cortex. The NIRS-EEG and simultaneous recording, during game play correspond well with the decrease of β band and oxygen-hemoglobin. The α band did not change with game play. However, oxygen-hemoglobin decreased during game play. South Korea, game addiction measures have been analyzed since 2002, but in Japan the research is recent. PMID:26394522

  17. Stochastic fate selection in HIV-infected patients.

    PubMed

    Weinberger, Ariel D; Weinberger, Leor S

    2013-10-24

    Classic studies proposed that stochastic variability ("noise") can drive biological fate switching, enhancing evolutionary success. Now, Ho et al. report that HIV's reactivation from dormant (latently infected) patient cells-the major barrier to an HIV cure-is inherently stochastic. Eradicating an incompletely inducible (probabilistic) viral phenotype will require inventive approaches. PMID:24243007

  18. N-player stochastic differential games

    NASA Technical Reports Server (NTRS)

    Varaiya, P.

    1976-01-01

    The paper presents conditions which guarantee that the control strategies adopted by N players constitute an efficient solution, an equilibrium, or a core solution. The system dynamics are described by an Ito equation, and all players have perfect information. When the set of instantaneous joint costs and velocity vectors is convex, the conditions are necessary.

  19. Winter Games.

    ERIC Educational Resources Information Center

    Tarbuth, Lawson, Comp.

    Educators may find activities for indoor and outdoor winter programs in the games of the traditional Eskimo. These games are dominated by few-step operations and low level structural organization. For the most part they are quickly organized, begun, terminated, and ready to be recommenced. All types of games can be found, including quiet ones,…

  20. Game Face

    ERIC Educational Resources Information Center

    Weiner, Jill

    2005-01-01

    In this article, the author discusses "Game Face: Life Lessons Across the Curriculum", a teaching kit that challenges assumptions and builds confidence. Game Face, which is derived from a book and art exhibition, "Game Face: What Does a Female Athlete Look Like?", uses layered and powerful images of women and girls participating in sports to teach…

  1. Video games.

    PubMed

    Funk, Jeanne B

    2005-06-01

    The video game industry insists that it is doing everything possible to provide information about the content of games so that parents can make informed choices; however, surveys indicate that ratings may not reflect consumer views of the nature of the content. This article describes some of the currently popular video games, as well as developments that are on the horizon, and discusses the status of research on the positive and negative impacts of playing video games. Recommendations are made to help parents ensure that children play games that are consistent with their values. PMID:16111624

  2. A Probabilistic-Numerical Approximation for an Obstacle Problem Arising in Game Theory

    SciTech Connect

    Gruen, Christine

    2012-12-15

    We investigate a two-player zero-sum stochastic differential game in which one of the players has more information on the game than his opponent. We show how to construct numerical schemes for the value function of this game, which is given by the solution of a quasilinear partial differential equation with obstacle.

  3. Constrained Stochastic Extended Redundancy Analysis.

    PubMed

    DeSarbo, Wayne S; Hwang, Heungsun; Stadler Blank, Ashley; Kappe, Eelco

    2015-06-01

    We devise a new statistical methodology called constrained stochastic extended redundancy analysis (CSERA) to examine the comparative impact of various conceptual factors, or drivers, as well as the specific predictor variables that contribute to each driver on designated dependent variable(s). The technical details of the proposed methodology, the maximum likelihood estimation algorithm, and model selection heuristics are discussed. A sports marketing consumer psychology application is provided in a Major League Baseball (MLB) context where the effects of six conceptual drivers of game attendance and their defining predictor variables are estimated. Results compare favorably to those obtained using traditional extended redundancy analysis (ERA). PMID:24327066

  4. Switch wear leveling

    SciTech Connect

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2015-09-01

    An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.

  5. Opportunistic migration in spatial evolutionary games

    NASA Astrophysics Data System (ADS)

    Buesser, Pierre; Tomassini, Marco; Antonioni, Alberto

    2013-10-01

    We study evolutionary games in a spatial diluted grid environment in which agents strategically interact locally but can also opportunistically move to other positions within a given migration radius. Using the imitation of the best rule for strategy revision, it is shown that cooperation may evolve and be stable in the Prisoner's Dilemma game space for several migration distances but only for small game interaction radius while the Stag Hunt class of games become fully cooperative. We also show that only a few trials are needed for cooperation to evolve, i.e., searching costs are not an issue. When the stochastic Fermi strategy update protocol is used cooperation cannot evolve in the Prisoner's Dilemma if the selection intensity is high in spite of opportunistic migration. However, when imitation becomes more random, fully or partially cooperative states are reached in all games for all migration distances tested and for short to intermediate interaction radii.

  6. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  7. Game Time!

    ERIC Educational Resources Information Center

    Marek, Edmund; Howell, Beverly

    2006-01-01

    In this article, the authors present a classic playground game called "Sharks and Fishes" to introduce second- to fourth-grade students to the concept of "predation," or the relationships between a predator and its prey. By incorporating the game in a learning cycle on predation, students not only learn about predation in a memorable way, but they…

  8. Inuit Games.

    ERIC Educational Resources Information Center

    Keewatin Regional Education Authority, Rankin Inlet (Northwest Territories).

    The purpose of this publication is to record the traditional games played by the Inuit and to preserve a unique form of sports and recreation found in northern Canada. Written in English and Inupiaq, this manual contains descriptions of games played throughout the Arctic with special emphasis on the Keewatin Region, suggestions for teaching Inuit…

  9. Epistemic Games

    ERIC Educational Resources Information Center

    Shaffer, David Williamson

    2005-01-01

    In an article in this issue of "Innovate", Jim Gee asks the question "What would a state of the art instructional video game look like?" Based on the game "Full Spectrum Warrior", he concludes that one model is "to pick [a] domain of authentic professionalism well, intelligently select the skills and knowledge to be distributed, build in a related…

  10. Fun & Games

    ERIC Educational Resources Information Center

    Jacobs, Amy; Kohl, Julie

    2007-01-01

    This article discusses how math skills, teamwork and higher-level thinking come together when students create strategic board games. In this article, the authors provide a glimpse of what it was like to be part of "To the Sun!," a game designed by students in the fifth-grade class at Olive Martin School in Lake Villa, IL. Students combined a math…

  11. Game On!

    ERIC Educational Resources Information Center

    Deubel, Patricia

    2006-01-01

    This article describes digital game-based learning (DGBL), the uniting of educational content with computer or online games, that holds the potential for a wealth of educational applications, if managed properly. DGBL motivates by virtue of being fun. It is versatile, can be used to teach almost any subject or skill, and, when used correctly, is…

  12. Optical switches and switching methods

    DOEpatents

    Doty, Michael

    2008-03-04

    A device and method for collecting subject responses, particularly during magnetic imaging experiments and testing using a method such as functional MRI. The device comprises a non-metallic input device which is coupled via fiber optic cables to a computer or other data collection device. One or more optical switches transmit the subject's responses. The input device keeps the subject's fingers comfortably aligned with the switches by partially immobilizing the forearm, wrist, and/or hand of the subject. Also a robust nonmetallic switch, particularly for use with the input device and methods for optical switching.

  13. Learning in multilevel games with incomplete information. II.

    PubMed

    Zhou, J; Billard, E; Lakshmivarahan, S

    1999-01-01

    Multilevel games are abstractions of situations where decision makers are distributed in a network environment. In Part I of this paper, the authors present several of the challenging problems that arise in the analysis of multilevel games. In this paper a specific set up is considered where the two games being played are zero-sum games and where the decision makers use the linear reward-inaction algorithm of stochastic learning automata. It is shown that the effective game matrix is decided by the willingness and the ability to cooperate and is a convex combination of two zero-sum game matrices. Analysis of the properties of this effective game matrix and the convergence of the decision process shows that players tend toward noncooperation in these specific environments. Simulation results illustrate this noncooperative behavior. PMID:18252309

  14. Game Over?

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    This level marks the ending of the book. After comparing the game design process to a children's book about designing a butterfly, it goes into how a balance is found when designing a game. To explain this, an analogy is made with the concept of Yin and Yang. This level further deals with the “so what” and “who cares” question of the Triadic Game Design (TGD) approach. It is concluded that it can be used as an “analytical lens,” “application tool,” or “puzzle frame” in the field of games. But to have a real impact on the actual practice, it is needed that people are familiar with the idea of TGD. Since game design is (generally) collaborative, it would be beneficial that more than one person knows about it. For this reason, a game-based workshop has been developed that can be employed at the beginning of a project. Besides making sure that a project runs smoothly during the design, considerations should also be made about what happens if the game is finished. From the observations of the “life after the design” it becomes clear that this is certainly an issue that should not be neglected. The main message of this level concerns, however, that although this book is “game over,” it is everything but “over” for the design and research of games. To bring the field to “the next level,” structural approaches are needed and TGD is one of them. With the insights of this approach in mind, people can start to “dance.” Because it takes two to tango, but it takes three to design a game with a meaningful purpose.

  15. Stochastic effects in a seasonally forced epidemic model

    NASA Astrophysics Data System (ADS)

    Rozhnova, G.; Nunes, A.

    2010-10-01

    The interplay of seasonality, the system’s nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.

  16. ION SWITCH

    DOEpatents

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  17. Acceleration switch

    DOEpatents

    Abbin, J.P. Jr.; Devaney, H.F.; Hake, L.W.

    1979-08-29

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  18. Acceleration switch

    DOEpatents

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  19. Night Games.

    ERIC Educational Resources Information Center

    Steinbach, Paul

    2001-01-01

    Discusses how to control sports facility outdoor lighting during night games. Different lighting techniques are explored for keeping lighting inside the stadium and not disturb the surrounding community. (GR)

  20. Game Proof.

    ERIC Educational Resources Information Center

    Mitchell, John

    1980-01-01

    The author argues that adult society prohibits adolescents from attaining maturity and that, in response to such constraints, adolescents turn to games, rituals, and charades. This state of affairs is viewed as an implicit adult conspiracy against adolescents. (DB)

  1. Models of Games Education.

    ERIC Educational Resources Information Center

    Werner, Peter; Almond, Len

    1990-01-01

    Physical educators should be selective in deciding what games to include in the games curriculum. Several theoretical frameworks for selecting and teaching games are discussed, and a framework for developing a well-balanced games program is suggested. (IAH)

  2. Game playing.

    PubMed

    Rosin, Christopher D

    2014-03-01

    Game playing has been a core domain of artificial intelligence research since the beginnings of the field. Game playing provides clearly defined arenas within which computational approaches can be readily compared to human expertise through head-to-head competition and other benchmarks. Game playing research has identified several simple core algorithms that provide successful foundations, with development focused on the challenges of defeating human experts in specific games. Key developments include minimax search in chess, machine learning from self-play in backgammon, and Monte Carlo tree search in Go. These approaches have generalized successfully to additional games. While computers have surpassed human expertise in a wide variety of games, open challenges remain and research focuses on identifying and developing new successful algorithmic foundations. WIREs Cogn Sci 2014, 5:193-205. doi: 10.1002/wcs.1278 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:26304308

  3. Stochastic learning in oxide binary synaptic device for neuromorphic computing

    PubMed Central

    Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H.-S. Philip

    2013-01-01

    Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design. PMID:24198752

  4. Stochastic learning in oxide binary synaptic device for neuromorphic computing.

    PubMed

    Yu, Shimeng; Gao, Bin; Fang, Zheng; Yu, Hongyu; Kang, Jinfeng; Wong, H-S Philip

    2013-01-01

    Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on) transition of metal oxide resistive switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design. PMID:24198752

  5. Hamilton's principle in stochastic mechanics

    NASA Astrophysics Data System (ADS)

    Pavon, Michele

    1995-12-01

    In this paper we establish three variational principles that provide new foundations for Nelson's stochastic mechanics in the case of nonrelativistic particles without spin. The resulting variational picture is much richer and of a different nature with respect to the one previously considered in the literature. We first develop two stochastic variational principles whose Hamilton-Jacobi-like equations are precisely the two coupled partial differential equations that are obtained from the Schrödinger equation (Madelung equations). The two problems are zero-sum, noncooperative, stochastic differential games that are familiar in the control theory literature. They are solved here by means of a new, absolutely elementary method based on Lagrange functionals. For both games the saddle-point equilibrium solution is given by the Nelson's process and the optimal controls for the two competing players are precisely Nelson's current velocity v and osmotic velocity u, respectively. The first variational principle includes as special cases both the Guerra-Morato variational principle [Phys. Rev. D 27, 1774 (1983)] and Schrödinger original variational derivation of the time-independent equation. It also reduces to the classical least action principle when the intensity of the underlying noise tends to zero. It appears as a saddle-point action principle. In the second variational principle the action is simply the difference between the initial and final configurational entropy. It is therefore a saddle-point entropy production principle. From the variational principles it follows, in particular, that both v(x,t) and u(x,t) are gradients of appropriate principal functions. In the variational principles, the role of the background noise has the intuitive meaning of attempting to contrast the more classical mechanical features of the system by trying to maximize the action in the first principle and by trying to increase the entropy in the second. Combining the two variational

  6. Life-Game, with Glass Beads and Molecules, on the Principles of the Origin of Life

    ERIC Educational Resources Information Center

    Eigen, Manfred; Haglund, Herman

    1976-01-01

    Discusses a theoretical model that uses a game as a base for studying processes of a stochastic nature, which involve chemical reactions, molecular systems, biological processes, cells, or people in a population. (MLH)

  7. The Switch Task for Children: Measuring Mental Flexibility in Young Children

    ERIC Educational Resources Information Center

    Dibbets, Pauline; Jolles, Jellemer

    2006-01-01

    Age-related changes in mental flexibility, in the form of task switching, were assessed in 292 children (58-156 months old). Task switching was examined with a new task for young children, the Switch Task for Children (STC). The STC consists of two easy, comparable games and does not require reading skills, which makes it suitable for children…

  8. Nanoscale resistive switching devices: mechanisms and modeling

    NASA Astrophysics Data System (ADS)

    Yang, Yuchao; Lu, Wei

    2013-10-01

    Resistive switching devices (also termed memristive devices or memristors) are two-terminal nonlinear dynamic electronic devices that can have broad applications in the fields of nonvolatile memory, reconfigurable logic, analog circuits, and neuromorphic computing. Current rapid advances in memristive devices in turn demand better understanding of the switching mechanism and the development of physics-based as well as simplified device models to guide future device designs and circuit-level applications. In this article, we review the physical processes behind resistive switching (memristive) phenomena and discuss the experimental and modeling efforts to explain these effects. In this article three categories of devices, in which the resistive switching effects are driven by cation migration, anion migration, and electronic effects, will be discussed. The fundamental driving forces and the stochastic nature of resistive switching will also be discussed.

  9. Nanoscale resistive switching devices: mechanisms and modeling.

    PubMed

    Yang, Yuchao; Lu, Wei

    2013-11-01

    Resistive switching devices (also termed memristive devices or memristors) are two-terminal nonlinear dynamic electronic devices that can have broad applications in the fields of nonvolatile memory, reconfigurable logic, analog circuits, and neuromorphic computing. Current rapid advances in memristive devices in turn demand better understanding of the switching mechanism and the development of physics-based as well as simplified device models to guide future device designs and circuit-level applications. In this article, we review the physical processes behind resistive switching (memristive) phenomena and discuss the experimental and modeling efforts to explain these effects. In this article three categories of devices, in which the resistive switching effects are driven by cation migration, anion migration, and electronic effects, will be discussed. The fundamental driving forces and the stochastic nature of resistive switching will also be discussed. PMID:24057010

  10. Linear System Control Using Stochastic Learning Automata

    NASA Technical Reports Server (NTRS)

    Ziyad, Nigel; Cox, E. Lucien; Chouikha, Mohamed F.

    1998-01-01

    This paper explains the use of a Stochastic Learning Automata (SLA) to control switching between three systems to produce the desired output response. The SLA learns the optimal choice of the damping ratio for each system to achieve a desired result. We show that the SLA can learn these states for the control of an unknown system with the proper choice of the error criteria. The results of using a single automaton are compared to using multiple automata.

  11. Common and Unique Network Dynamics in Football Games

    PubMed Central

    Yamamoto, Yuji; Yokoyama, Keiko

    2011-01-01

    The sport of football is played between two teams of eleven players each using a spherical ball. Each team strives to score by driving the ball into the opposing goal as the result of skillful interactions among players. Football can be regarded from the network perspective as a competitive relationship between two cooperative networks with a dynamic network topology and dynamic network node. Many complex large-scale networks have been shown to have topological properties in common, based on a small-world network and scale-free network models. However, the human dynamic movement pattern of this network has never been investigated in a real-world setting. Here, we show that the power law in degree distribution emerged in the passing behavior in the 2006 FIFA World Cup Final and an international “A” match in Japan, by describing players as vertices connected by links representing passes. The exponent values are similar to the typical values that occur in many real-world networks, which are in the range of , and are larger than that of a gene transcription network, . Furthermore, we reveal the stochastically switched dynamics of the hub player throughout the game as a unique feature in football games. It suggests that this feature could result not only in securing vulnerability against intentional attack, but also in a power law for self-organization. Our results suggest common and unique network dynamics of two competitive networks, compared with the large-scale networks that have previously been investigated in numerous works. Our findings may lead to improved resilience and survivability not only in biological networks, but also in communication networks. PMID:22216336

  12. Stochastic memristive nature in Co-doped CeO{sub 2} nanorod arrays

    SciTech Connect

    Younis, Adnan; Chu, Dewei Li, Sean

    2013-12-16

    In this Letter, bipolar resistive switching characteristics of electrochemically deposited pure and Cobalt doped CeO{sub 2} nanorods architectures were reported. A conducting filament based model to address resistive switching process in these devices was proposed. Furthermore, the randomness in individual switching events and the prediction of switching probabilities were studied by imposing weak programming conditions. The present study offers insights into scrutinize the inherent stochastic nature in resistive switching characteristics within these devices rather than stressfully achieve high switching probabilities using excess voltage or time.

  13. Stochastic cooling in RHIC

    SciTech Connect

    Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

    2009-05-04

    After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

  14. Optical switch

    DOEpatents

    Reedy, Robert P.

    1987-01-01

    An optical switching device (10) is provided whereby light from a first glass fiber (16) or a second glass fiber (14) may be selectively transmitted into a third glass fiber (18). Each glass fiber is provided with a focusing and collimating lens system (26, 28, 30). In one mode of operation, light from the first glass fiber (16) is reflected by a planar mirror (36) into the third glass fiber (18). In another mode of operation, light from the second glass fiber (14) passes directly into the third glass fiber (18). The planar mirror (36) is attached to a rotatable table (32) which is rotated to provide the optical switching.

  15. The role of noise in the spatial public goods game

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto; Battiston, Federico

    2016-07-01

    In this work we aim to analyze the role of noise in the spatial public goods game, one of the most famous games in evolutionary game theory. The dynamics of this game is affected by a number of parameters and processes, namely the topology of interactions among the agents, the synergy factor, and the strategy revision phase. The latter is a process that allows agents to change their strategy. Notably, rational agents tend to imitate richer neighbors, in order to increase the probability to maximize their payoff. By implementing a stochastic revision process, it is possible to control the level of noise in the system, so that even irrational updates may occur. In particular, in this work we study the effect of noise on the macroscopic behavior of a finite structured population playing the public goods game. We consider both the case of a homogeneous population, where the noise in the system is controlled by tuning a parameter representing the level of stochasticity in the strategy revision phase, and a heterogeneous population composed of a variable proportion of rational and irrational agents. In both cases numerical investigations show that the public goods game has a very rich behavior which strongly depends on the amount of noise in the system and on the value of the synergy factor. To conclude, our study sheds a new light on the relations between the microscopic dynamics of the public goods game and its macroscopic behavior, strengthening the link between the field of evolutionary game theory and statistical physics.

  16. Serious Games: Video Games for Good?

    ERIC Educational Resources Information Center

    Sanford, Kathy; Starr, Lisa J.; Merkel, Liz; Bonsor Kurki, Sarah

    2015-01-01

    As video games become a ubiquitous part of today's culture internationally, as educators and parents we need to turn our attention to how video games are being understood and used in informal and formal settings. Serious games have developed as a genre of video games marketed for educating youth about a range of world issues. At face value this…

  17. Switching Transistor

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Westinghouse Electric Corporation's D60T transistors are used primarily as switching devices for controlling high power in electrical circuits. It enables reduction in the number and size of circuit components and promotes more efficient use of energy. Wide range of application from a popcorn popper to a radio frequency generator for solar cell production.

  18. Comparison of approaches for parameter estimation on stochastic models: Generic least squares versus specialized approaches.

    PubMed

    Zimmer, Christoph; Sahle, Sven

    2016-04-01

    Parameter estimation for models with intrinsic stochasticity poses specific challenges that do not exist for deterministic models. Therefore, specialized numerical methods for parameter estimation in stochastic models have been developed. Here, we study whether dedicated algorithms for stochastic models are indeed superior to the naive approach of applying the readily available least squares algorithm designed for deterministic models. We compare the performance of the recently developed multiple shooting for stochastic systems (MSS) method designed for parameter estimation in stochastic models, a stochastic differential equations based Bayesian approach and a chemical master equation based techniques with the least squares approach for parameter estimation in models of ordinary differential equations (ODE). As test data, 1000 realizations of the stochastic models are simulated. For each realization an estimation is performed with each method, resulting in 1000 estimates for each approach. These are compared with respect to their deviation to the true parameter and, for the genetic toggle switch, also their ability to reproduce the symmetry of the switching behavior. Results are shown for different set of parameter values of a genetic toggle switch leading to symmetric and asymmetric switching behavior as well as an immigration-death and a susceptible-infected-recovered model. This comparison shows that it is important to choose a parameter estimation technique that can treat intrinsic stochasticity and that the specific choice of this algorithm shows only minor performance differences. PMID:26826353

  19. Deterministic dynamics in the minority game

    NASA Astrophysics Data System (ADS)

    Jefferies, P.; Hart, M. L.; Johnson, N. F.

    2002-01-01

    The minority game (MG) behaves as a stochastically disturbed deterministic system due to the coin toss invoked to resolve tied strategies. Averaging over this stochasticity yields a description of the MG's deterministic dynamics via mapping equations for the strategy score and global information. The strategy-score map contains both restoring-force and bias terms, whose magnitudes depend on the game's quenched disorder. Approximate analytical expressions are obtained and the effect of ``market impact'' is discussed. The global-information map represents a trajectory on a de Bruijn graph. For small quenched disorder, a Eulerian trail represents a stable attractor. It is shown analytically how antipersistence arises. The response to perturbations and different initial conditions is also discussed.

  20. Grammar Games

    ERIC Educational Resources Information Center

    Brown, Kim

    2004-01-01

    The mere mention of a grammar lesson can set students' eyes rolling. The fun activities described in this article can turn those blank looks into smiles. Here, the author presents grammar games namely: (1) noun tennis; (2) the minister's cat; (3) kids take action; (4) what's my adverb?; (5) and then I saw...; and (6) grammar sing-along.

  1. Night Games.

    ERIC Educational Resources Information Center

    Jefferson, Bob; Hall, Jan D.

    1992-01-01

    Installation of a new metal halide lighting system at an old athletic high school stadium serving the Red Lion School District in Pennsylvania made night games possible. Community members raised funds for the installation. Because of increased attendance, the district made a $10,000 profit. Provides facts and figures on the stadium lighting. (MLF)

  2. Evil games.

    PubMed

    Chambers, David W

    2010-01-01

    A defining characteristic of humans is our capacity to create a better world through mutual action. Traditional ethics attempts to define and impose the one or several things we should all want. The alternative argued here is that we can retain our individual definitions of what matters and still work together for mutual improvement. Agreeing on common ethical principles is not a precondition for an effective moral life. This approach to morality is based on game theory, which holds that in purposely social interactions: (a) there are basic understandings, (b) individuals pursue their own interests, (c) we can judge others' interests, and (d) the distribution of benefits and burdens depends on the joint action of individuals, not on the action of individuals in isolation. In this view, immorality becomes a matter of cheating in the game of life. The three primary forms of cheating are deception (misleading others into thinking they are playing a game other than the one that is to their advantage to play), coercion (blocking courses of action others would normally be entitled to), and reneging (playing the game and then dodging the payoff if one does not like the outcome). These three evils are illustrated by Shakespeare's plays Othello, Richard III, and Antony and Cleopatra. PMID:20481069

  3. Games & Icebreakers.

    ERIC Educational Resources Information Center

    National Energy Education Development Project, Reston, VA.

    This booklet contains activities related to energy conservation and sources of energy that are suitable for groups containing people of different ages. The activities promote brainstorming, group sharing, and cooperative learning. Activities include: Energy Name Game; Energy Pantomime; Energy Source Relay Race; Energy Chants; This Week in Energy…

  4. Math Games

    ERIC Educational Resources Information Center

    Lorenzi, Natalie

    2012-01-01

    Math games bring out kids' natural love of numbers. Yet in the waning days of school, students can't wait for that final bell to ring. Each summer, most students lose about two months of mathematical computation skills. So how do teachers keep their students focused on math up till the end? Before sending them off for the summer, get them hooked…

  5. Shell Games.

    ERIC Educational Resources Information Center

    Atkinson, Bill

    1982-01-01

    The author critiques the program design and educational aspects of the Shell Games, a program developed by Apple Computer, Inc., which can be used by the teacher to design objective tests for adaptation to specific assessment needs. (For related articles, see EC 142 959-962.) (Author)

  6. Teaching Using Computer Games

    ERIC Educational Resources Information Center

    Miller, Lee Dee; Shell, Duane; Khandaker, Nobel; Soh, Leen-Kiat

    2011-01-01

    Computer games have long been used for teaching. Current reviews lack categorization and analysis using learning models which would help instructors assess the usefulness of computer games. We divide the use of games into two classes: game playing and game development. We discuss the Input-Process-Outcome (IPO) model for the learning process when…

  7. Games and Learning

    ERIC Educational Resources Information Center

    Oblinger, Diana G.

    2006-01-01

    From a very early age, people learn from games and play. Parents and preschool teachers use games to teach colors, numbers, names, and shapes; the process is drill and practice. Games engage everyone, capturing their attention. People willingly spend time on task. Although students in high school and college continue to play games, games rarely…

  8. Ontology of Serious Games

    ERIC Educational Resources Information Center

    Prayaga, Lakshmi; Rasmussen, Karen L.

    2008-01-01

    Computer games are no longer just for entertainment; they have also become a useful instructional strategy for acquiring knowledge. When games are used for purposes other than strict entertainment they become serious games. The goal of serious games is to enable the player to learn a task, master a strategy or develop a skill. Serious games can be…

  9. The evolution of mating type switching.

    PubMed

    Hadjivasiliou, Zena; Pomiankowski, Andrew; Kuijper, Bram

    2016-07-01

    Predictions about the evolution of sex determination mechanisms have mainly focused on animals and plants, whereas unicellular eukaryotes such as fungi and ciliates have received little attention. Many taxa within the latter groups can stochastically switch their mating type identity during vegetative growth. Here, we investigate the hypothesis that mating type switching overcomes distortions in the distribution of mating types due to drift during asexual growth. Using a computational model, we show that smaller population size, longer vegetative periods and more mating types lead to greater distortions in the distribution of mating types. However, the impact of these parameters on optimal switching rates is not straightforward. We find that longer vegetative periods cause reductions and considerable fluctuations in the switching rate over time. Smaller population size increases the strength of selection for switching but has little impact on the switching rate itself. The number of mating types decreases switching rates when gametes can freely sample each other, but increases switching rates when there is selection for speedy mating. We discuss our results in light of empirical work and propose new experiments that could further our understanding of sexuality in isogamous eukaryotes. PMID:27271362

  10. Video game use and cognitive performance: does it vary with the presence of problematic video game use?

    PubMed

    Collins, Emily; Freeman, Jonathan

    2014-03-01

    Action video game players have been found to outperform nonplayers on a variety of cognitive tasks. However, several failures to replicate these video game player advantages have indicated that this relationship may not be straightforward. Moreover, despite the discovery that problematic video game players do not appear to demonstrate the same superior performance as nonproblematic video game players in relation to multiple object tracking paradigms, this has not been investigated for other tasks. Consequently, this study compared gamers and nongamers in task switching ability, visual short-term memory, mental rotation, enumeration, and flanker interference, as well as investigated the influence of self-reported problematic video game use. A total of 66 participants completed the experiment, 26 of whom played action video games, including 20 problematic players. The results revealed no significant effect of playing action video games, nor any influence of problematic video game play. This indicates that the previously reported cognitive advantages in video game players may be restricted to specific task features or samples. Furthermore, problematic video game play may not have a detrimental effect on cognitive performance, although this is difficult to ascertain considering the lack of video game player advantage. More research is therefore sorely needed. PMID:24111600

  11. Intrinsic noise in systems with switching environments

    NASA Astrophysics Data System (ADS)

    Hufton, Peter G.; Lin, Yen Ting; Galla, Tobias; McKane, Alan J.

    2016-05-01

    We study individual-based dynamics in finite populations, subject to randomly switching environmental conditions. These are inspired by models in which genes transition between on and off states, regulating underlying protein dynamics. Similarly, switches between environmental states are relevant in bacterial populations and in models of epidemic spread. Existing piecewise-deterministic Markov process approaches focus on the deterministic limit of the population dynamics while retaining the randomness of the switching. Here we go beyond this approximation and explicitly include effects of intrinsic stochasticity at the level of the linear-noise approximation. Specifically, we derive the stationary distributions of a number of model systems, in good agreement with simulations. This improves existing approaches which are limited to the regimes of fast and slow switching.

  12. The Green Revolution Game.

    ERIC Educational Resources Information Center

    Corbridge, Stuart

    1985-01-01

    The Green Revolution game helps college students learn about agrarian change in which people use science to transform nature. The rational and basic objectives of the game are discussed, and the game's strengths and weaknesses are examined. (RM)

  13. Deterministic evolutionary game dynamics in finite populations.

    PubMed

    Altrock, Philipp M; Traulsen, Arne

    2009-07-01

    Evolutionary game dynamics describes the spreading of successful strategies in a population of reproducing individuals. Typically, the microscopic definition of strategy spreading is stochastic such that the dynamics becomes deterministic only in infinitely large populations. Here, we present a microscopic birth-death process that has a fully deterministic strong selection limit in well-mixed populations of any size. Additionally, under weak selection, from this process the frequency-dependent Moran process is recovered. This makes it a natural extension of the usual evolutionary dynamics under weak selection. We find simple expressions for the fixation probabilities and average fixation times of the process in evolutionary games with two players and two strategies. For cyclic games with two players and three strategies, we show that the resulting deterministic dynamics crucially depends on the initial condition in a nontrivial way. PMID:19658731

  14. Computer Games and Instruction

    ERIC Educational Resources Information Center

    Tobias, Sigmund, Ed.; Fletcher, J. D., Ed.

    2011-01-01

    There is intense interest in computer games. A total of 65 percent of all American households play computer games, and sales of such games increased 22.9 percent last year. The average amount of game playing time was found to be 13.2 hours per week. The popularity and market success of games is evident from both the increased earnings from games,…

  15. Fluctuations as stochastic deformation.

    PubMed

    Kazinski, P O

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium. PMID:18517590

  16. Fluctuations as stochastic deformation

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  17. Viscosity Solutions of Systems of PDEs with Interconnected Obstacles and Switching Problem

    SciTech Connect

    Hamadene, S. Morlais, M. A.

    2013-04-15

    This paper deals with existence and uniqueness of a solution in viscosity sense, for a system of m variational partial differential inequalities with inter-connected obstacles. A particular case is the Hamilton-Jacobi-Bellmann system of the Markovian stochastic optimal m-states switching problem. The switching cost functions depend on (t,x). The main tool is the notion of systems of reflected backward stochastic differential equations with oblique reflection.

  18. Motivational Correlations of Strategy Choices in the Prisoner's Dilemma Game

    NASA Technical Reports Server (NTRS)

    Williams, Carl D.; Steele, Matthew W.; Tedeschi, James T.

    1969-01-01

    The purpose of the present study was to investigate the relationship between the motivational dimensions assessed by the Motivation Analysis Test and prisoner's dilemma game behavior as measured both by the number of competitive strategy choices and the two-stage stochastic variables labelled trustworthiness, forgiveness, repentance, and trust by Rapoport.

  19. Path sampling with stochastic dynamics: Some new algorithms

    SciTech Connect

    Stoltz, Gabriel . E-mail: stoltz@cermics.enpc.fr

    2007-07-01

    We propose here some new sampling algorithms for path sampling in the case when stochastic dynamics are used. In particular, we present a new proposal function for equilibrium sampling of paths with a Monte-Carlo dynamics (the so-called 'brownian tube' proposal). This proposal is based on the continuity of the dynamics with respect to the random forcing, and generalizes all previous approaches when stochastic dynamics are used. The efficiency of this proposal is demonstrated using some measure of decorrelation in path space. We also discuss a switching strategy that allows to transform ensemble of paths at a finite rate while remaining at equilibrium, in contrast with the usual Jarzynski like switching. This switching is very interesting to sample constrained paths starting from unconstrained paths, or to perform simulated annealing in a rigorous way.

  20. Stabilized multilevel Monte Carlo method for stiff stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Abdulle, Assyr; Blumenthal, Adrian

    2013-10-01

    A multilevel Monte Carlo (MLMC) method for mean square stable stochastic differential equations with multiple scales is proposed. For such problems, that we call stiff, the performance of MLMC methods based on classical explicit methods deteriorates because of the time step restriction to resolve the fastest scales that prevents to exploit all the levels of the MLMC approach. We show that by switching to explicit stabilized stochastic methods and balancing the stabilization procedure simultaneously with the hierarchical sampling strategy of MLMC methods, the computational cost for stiff systems is significantly reduced, while keeping the computational algorithm fully explicit and easy to implement. Numerical experiments on linear and nonlinear stochastic differential equations and on a stochastic partial differential equation illustrate the performance of the stabilized MLMC method and corroborate our theoretical findings.

  1. Stochastic Convection Parameterizations

    NASA Technical Reports Server (NTRS)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  2. A Stochastic Employment Problem

    ERIC Educational Resources Information Center

    Wu, Teng

    2013-01-01

    The Stochastic Employment Problem(SEP) is a variation of the Stochastic Assignment Problem which analyzes the scenario that one assigns balls into boxes. Balls arrive sequentially with each one having a binary vector X = (X[subscript 1], X[subscript 2],...,X[subscript n]) attached, with the interpretation being that if X[subscript i] = 1 the ball…

  3. Nanoelectromechanical contact switches

    NASA Astrophysics Data System (ADS)

    Loh, Owen Y.; Espinosa, Horacio D.

    2012-05-01

    Nanoelectromechanical (NEM) switches are similar to conventional semiconductor switches in that they can be used as relays, transistors, logic devices and sensors. However, the operating principles of NEM switches and semiconductor switches are fundamentally different. These differences give NEM switches an advantage over semiconductor switches in some applications -- for example, NEM switches perform much better in extreme environments -- but semiconductor switches benefit from a much superior manufacturing infrastructure. Here we review the potential of NEM-switch technologies to complement or selectively replace conventional complementary metal-oxide semiconductor technology, and identify the challenges involved in the large-scale manufacture of a representative set of NEM-based devices.

  4. State-feedback stabilisation for stochastic non-holonomic mobile robots with uncertain visual servoing parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Dongkai; Wang, Chaoli; Wei, Guoliang; Zhang, Hengjun; Chen, Hua

    2014-07-01

    The stabilising problem of stochastic non-holonomic mobile robots with uncertain parameters based on visual servoing is addressed in this paper. The model of non-holonomic mobile robots based on visual servoing is extended to the stochastic case, where their forward velocity and angular velocity are both subject to some stochastic disturbances. Based on backstepping technique, state-feedback stabilising controllers are designed for stochastic non-holonomic mobile robots. A switching control strategy for the original system is presented. The proposed controllers guarantee that the closed-loop system is asymptotically stabilised at the zero equilibrium point in probability.

  5. Dynamic phase transition in the prisoner's dilemma on a lattice with stochastic modifications

    NASA Astrophysics Data System (ADS)

    Saif, M. Ali; Gade, Prashant M.

    2010-03-01

    We present a detailed study of the prisoner's dilemma game with stochastic modifications on a two-dimensional lattice, in the presence of evolutionary dynamics. By very nature of the rules, the cooperators have incentives to cheat and fear being cheated. They may cheat even when this is not dictated by the evolutionary dynamics. We consider two variants here. In each case, the agents mimic the action (cooperation or defection) in the previous time step of the most successful agent in the neighborhood. But over and above this, the fraction p of cooperators spontaneously change their strategy to pure defector at every time step in the first variant. In the second variant, there are no pure cooperators. All cooperators keep defecting with probability p at every time step. In both cases, the system switches from a coexistence state to an all-defector state for higher values of p. We show that the transition between these states unambiguously belongs to the directed percolation universality class in 2 + 1 dimensions. We also study the local persistence. The persistence exponents obtained are higher than the ones obtained in previous studies, underlining their dependence on details of the dynamics.

  6. Controlling statistical moments of stochastic dynamical networks

    NASA Astrophysics Data System (ADS)

    Bielievtsov, Dmytro; Ladenbauer, Josef; Obermayer, Klaus

    2016-07-01

    We consider a general class of stochastic networks and ask which network nodes need to be controlled, and how, to stabilize and switch between desired metastable (target) states in terms of the first and second statistical moments of the system. We first show that it is sufficient to directly interfere with a subset of nodes which can be identified using information about the graph of the network only. Then we develop a suitable method for feedback control which acts on that subset of nodes and preserves the covariance structure of the desired target state. Finally, we demonstrate our theoretical results using a stochastic Hopfield network and a global brain model. Our results are applicable to a variety of (model) networks and further our understanding of the relationship between network structure and collective dynamics for the benefit of effective control.

  7. Controlling statistical moments of stochastic dynamical networks.

    PubMed

    Bielievtsov, Dmytro; Ladenbauer, Josef; Obermayer, Klaus

    2016-07-01

    We consider a general class of stochastic networks and ask which network nodes need to be controlled, and how, to stabilize and switch between desired metastable (target) states in terms of the first and second statistical moments of the system. We first show that it is sufficient to directly interfere with a subset of nodes which can be identified using information about the graph of the network only. Then we develop a suitable method for feedback control which acts on that subset of nodes and preserves the covariance structure of the desired target state. Finally, we demonstrate our theoretical results using a stochastic Hopfield network and a global brain model. Our results are applicable to a variety of (model) networks and further our understanding of the relationship between network structure and collective dynamics for the benefit of effective control. PMID:27575147

  8. Mobile Game for Learning Bacteriology

    ERIC Educational Resources Information Center

    Sugimura, Ryo; Kawazu, Sotaro; Tamari, Hiroki; Watanabe, Kodai; Nishimura, Yohei; Oguma, Toshiki; Watanabe, Katsushiro; Kaneko, Kosuke; Okada, Yoshihiro; Yoshida, Motofumi; Takano, Shigeru; Inoue, Hitoshi

    2014-01-01

    This paper treats serious games. Recently, one of the game genres called serious game has become popular, which has other purposes besides enjoyments like education, training and so on. Especially, learning games of the serious games seem very attractive for the age of video games so that the authors developed a mobile game for learning…

  9. Phenotypic switching in bacteria

    NASA Astrophysics Data System (ADS)

    Merrin, Jack

    Living matter is a non-equilibrium system in which many components work in parallel to perpetuate themselves through a fluctuating environment. Physiological states or functionalities revealed by a particular environment are called phenotypes. Transitions between phenotypes may occur either spontaneously or via interaction with the environment. Even in the same environment, genetically identical bacteria can exhibit different phenotypes of a continuous or discrete nature. In this thesis, we pursued three lines of investigation into discrete phenotypic heterogeneity in bacterial populations: the quantitative characterization of the so-called bacterial persistence, a theoretical model of phenotypic switching based on those measurements, and the design of artificial genetic networks which implement this model. Persistence is the phenotype of a subpopulation of bacteria with a reduced sensitivity to antibiotics. We developed a microfluidic apparatus, which allowed us to monitor the growth rates of individual cells while applying repeated cycles of antibiotic treatments. We were able to identify distinct phenotypes (normal and persistent) and characterize the stochastic transitions between them. We also found that phenotypic heterogeneity was present prior to any environmental cue such as antibiotic exposure. Motivated by the experiments with persisters, we formulated a theoretical model describing the dynamic behavior of several discrete phenotypes in a periodically varying environment. This theoretical framework allowed us to quantitatively predict the fitness of dynamic populations and to compare survival strategies according to environmental time-symmetries. These calculations suggested that persistence is a strategy used by bacterial populations to adapt to fluctuating environments. Knowledge of the phenotypic transition rates for persistence may provide statistical information about the typical environments of bacteria. We also describe a design of artificial

  10. Learning with Calculator Games

    ERIC Educational Resources Information Center

    Frahm, Bruce

    2013-01-01

    Educational games provide a fun introduction to new material and a review of mathematical algorithms. Specifically, games can be designed to assist students in developing mathematical skills as an incidental consequence of the game-playing process. The programs presented in this article are adaptations of board games or television shows that…

  11. Communication Games in Print.

    ERIC Educational Resources Information Center

    Schneiderman, Ellen

    1990-01-01

    This article presents a rationale and ways to use communication games in written form to entice deaf children to try new forms of language. It emphasizes the importance of using communicative teaching methods and considering students' communicative adequacy rather than form. Games include picture/object matching games and bingo/lotto games. (JDD)

  12. Game Board Artists.

    ERIC Educational Resources Information Center

    Szekely, George

    2000-01-01

    Explores children's fascination with creating their own unique games as an art form. Focuses on different games, such as chess, checkers, pogs, and monopoly. States that observing children playing games offers a firsthand lesson in how children create. Discusses what it means to be an art teacher who promotes creative play with games. (CMK)

  13. Games for Learning

    ERIC Educational Resources Information Center

    Gee, James Paul

    2013-01-01

    Today there is a great deal of interest in and a lot of hype about using video games in schools. Video games are a new silver bullet. Games can create good learning because they teach in powerful ways. The theory behind game-based learning is not really new, but a traditional and well-tested approach to deep and effective learning, often…

  14. THYRATRON SWITCH

    DOEpatents

    Creveling, R.; Bourgeois, N.A. Jr.

    1959-04-21

    An arrangement for utilizing a thyratron as a noise free switch is described. It has been discovered that the voltage between plate and cathode of a thyratron will oscillate, producing voltage spikes, if the tube carries only a fraction of its maximum rated current. These voltage spikes can produce detrimental effects where the thyratron is used in critical timing circuits. To alleviate this problem the disclosed circuit provides a charged capacitor and a resistor in parallel with the tube and of such value that the maximum current will flow from the capacitor through the thyratron when it is triggered. During this time the signal current is conducted through the tube, before the thyratron voltage starts to oscillate, and the signal current output is free of noise spikes.

  15. Emergence of phenotype switching through continuous and discontinuous evolutionary transitions.

    PubMed

    Patra, Pintu; Klumpp, Stefan

    2015-07-01

    Bacterial persistence (phenotypic tolerance to antibiotics) provides a prime example of bet-hedging, where normally growing cells generate slow-growing but antibiotic-tolerant persister cells to survive through periods of exposure to antibiotics. The population dynamics of persistence is explained by a phenotype switching mechanism that allows individual cells to switch between these different cellular states with different environmental sensitivities. Here, we perform a theoretical study based on an exact solution for the case of a periodic variation of the environment to address how phenotype switching emerges and under what conditions switching is or is not beneficial for long-time growth. Specifically we report a bifurcation through which a fitness maximum and minimum emerge above a threshold in the duration of exposure to the antibiotic. Only above this threshold, the optimal phenotype switching rates are adjusted to the time scales of the environment, as emphasized by previous theoretical studies, while below the threshold a non-switching population is fitter than a switching one. The bifurcation can be of different type, depending on how the phenotype switching rates are allowed to vary. If the switching rates for both directions of the switch are coupled, the transition is discontinuous and results in evolutionary hysteresis, which we confirm with a stochastic simulation. If the switching rates vary individually, a continuous transition is obtained and no hysteresis is found. We discuss how both scenarios can be linked to changes in the underlying molecular networks. PMID:26020274

  16. Emergence of phenotype switching through continuous and discontinuous evolutionary transitions

    NASA Astrophysics Data System (ADS)

    Patra, Pintu; Klumpp, Stefan

    2015-07-01

    Bacterial persistence (phenotypic tolerance to antibiotics) provides a prime example of bet-hedging, where normally growing cells generate slow-growing but antibiotic-tolerant persister cells to survive through periods of exposure to antibiotics. The population dynamics of persistence is explained by a phenotype switching mechanism that allows individual cells to switch between these different cellular states with different environmental sensitivities. Here, we perform a theoretical study based on an exact solution for the case of a periodic variation of the environment to address how phenotype switching emerges and under what conditions switching is or is not beneficial for long-time growth. Specifically we report a bifurcation through which a fitness maximum and minimum emerge above a threshold in the duration of exposure to the antibiotic. Only above this threshold, the optimal phenotype switching rates are adjusted to the time scales of the environment, as emphasized by previous theoretical studies, while below the threshold a non-switching population is fitter than a switching one. The bifurcation can be of different type, depending on how the phenotype switching rates are allowed to vary. If the switching rates for both directions of the switch are coupled, the transition is discontinuous and results in evolutionary hysteresis, which we confirm with a stochastic simulation. If the switching rates vary individually, a continuous transition is obtained and no hysteresis is found. We discuss how both scenarios can be linked to changes in the underlying molecular networks.

  17. The Uses of Teaching Games in Game Theory Classes and Some Experimental Games.

    ERIC Educational Resources Information Center

    Shubik, Martin

    2002-01-01

    Discusses the use of lightly controlled games, primarily in classes in game theory. Considers the value of such games from the viewpoint of both teaching and experimentation and discusses context; control; pros and cons of games in teaching; experimental games; and games in class, including cooperative game theory. (Author/LRW)

  18. On Equilibria for ADM Minimization Games

    NASA Astrophysics Data System (ADS)

    Epstein, Leah; Levin, Asaf

    In the ADM minimization problem, the input is a set of arcs along a directed ring. The input arcs need to be partitioned into non-overlapping chains and cycles so as to minimize the total number of endpoints, where a k-arc cycle contributes k endpoints and a k-arc chain contains k + 1 endpoints. We study ADM minimization problem both as a non-cooperative and a cooperative games. In these games, each arc corresponds to a player, and the players share the cost of the ADM switches. We consider two cost allocation models, a model which was considered by Flammini et al., and a new cost allocation model, which is inspired by congestion games. We compare the price of anarchy and price of stability in the two cost allocation models, as well as the strong price of anarchy and the strong price of stability.

  19. Evolutionary Games with Randomly Changing Payoff Matrices

    NASA Astrophysics Data System (ADS)

    Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun

    2015-06-01

    Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.

  20. Stochastic Processes in Electrochemistry.

    PubMed

    Singh, Pradyumna S; Lemay, Serge G

    2016-05-17

    Stochastic behavior becomes an increasingly dominant characteristic of electrochemical systems as we probe them on the smallest scales. Advances in the tools and techniques of nanoelectrochemistry dictate that stochastic phenomena will become more widely manifest in the future. In this Perspective, we outline the conceptual tools that are required to analyze and understand this behavior. We draw on examples from several specific electrochemical systems where important information is encoded in, and can be derived from, apparently random signals. This Perspective attempts to serve as an accessible introduction to understanding stochastic phenomena in electrochemical systems and outlines why they cannot be understood with conventional macroscopic descriptions. PMID:27120701

  1. The Cell Cycle Switch Computes Approximate Majority

    NASA Astrophysics Data System (ADS)

    Cardelli, Luca; Csikász-Nagy, Attila

    2012-09-01

    Both computational and biological systems have to make decisions about switching from one state to another. The `Approximate Majority' computational algorithm provides the asymptotically fastest way to reach a common decision by all members of a population between two possible outcomes, where the decision approximately matches the initial relative majority. The network that regulates the mitotic entry of the cell-cycle in eukaryotes also makes a decision before it induces early mitotic processes. Here we show that the switch from inactive to active forms of the mitosis promoting Cyclin Dependent Kinases is driven by a system that is related to both the structure and the dynamics of the Approximate Majority computation. We investigate the behavior of these two switches by deterministic, stochastic and probabilistic methods and show that the steady states and temporal dynamics of the two systems are similar and they are exchangeable as components of oscillatory networks.

  2. The $-game

    NASA Astrophysics Data System (ADS)

    Vitting Andersen, J.; Sornette, D.

    2003-01-01

    We propose a payoff function extending Minority Games (MG) that captures the competition between agents to make money. In contrast with previous MG, the best strategies are not always targeting the minority but are shifting opportunistically between the minority and the majority. The emergent properties of the price dynamics and of the wealth of agents are strikingly different from those found in MG. As the memory of agents is increased, we find a phase transition between a self-sustained speculative phase in which a ``stubborn majority'' of agents effectively collaborate to arbitrage a market-maker for their mutual benefit and a phase where the market-maker always arbitrages the agents. A subset of agents exhibit a sustained non-equilibrium risk-return profile.

  3. Quantum Stochastic Processes

    SciTech Connect

    Spring, William Joseph

    2009-04-13

    We consider quantum analogues of n-parameter stochastic processes, associated integrals and martingale properties extending classical results obtained in [1, 2, 3], and quantum results in [4, 5, 6, 7, 8, 9, 10].

  4. Switch Transcripts in Immunoglobulin Class Switching

    NASA Astrophysics Data System (ADS)

    Lorenz, Matthias; Jung, Steffen; Radbruch, Andreas

    1995-03-01

    B cells can exchange gene segments for the constant region of the immunoglobulin heavy chain, altering the class and effector function of the antibodies that they produce. Class switching is directed to distinct classes by cytokines, which induce transcription of the targeted DNA sequences. These transcripts are processed, resulting in spliced "switch" transcripts. Switch recombination can be directed to immunoglobulin G1 (IgG1) by the heterologous human metallothionein II_A promoter in mutant mice. Induction of the structurally conserved, spliced switch transcripts is sufficient to target switch recombination to IgG1, whereas transcription alone is not.

  5. Beating Cheaters at Their Own Game

    NASA Astrophysics Data System (ADS)

    Rauch, Joseph; Kondev, Jane; Sanchez, Alvaro

    2014-03-01

    Public goods games occur over many different scales in nature, from microbial biofilms to the human commons. On each scale stable populations of cooperators (members who invest into producing some good shared by the entire population) and cheaters (members who make no investment yet still share the common goods) has been observed. This observation raises interesting questions, like how do cooperators maintain their presence in a game that seems to heavily favor cheaters, and what strategies for cooperation could populations employ to increase their success? We propose a model of a public goods game with two different player populations, S and D, which employ two different strategies: the D population always cheats and the S population makes a stochastic decision whether to cooperate or not. We find that stochastic cooperation improves the success of the S population over the competing D population, but at a price. As the probability of cheating by the S players increases they outcompete the D players but the total population becomes more ecologically unstable (i.e., the likelihood of its extinction grows). We investigate this trade off between evolutionary success and ecological stability and propose experiments using populations of yeast cells to test our predictions.

  6. Dynamics of Double Stochastic Operators

    NASA Astrophysics Data System (ADS)

    Saburov, Mansoor

    2016-03-01

    A double stochastic operator is a generalization of a double stochastic matrix. In this paper, we study the dynamics of double stochastic operators. We give a criterion for a regularity of a double stochastic operator in terms of absences of its periodic points. We provide some examples to insure that, in general, a trajectory of a double stochastic operator may converge to any interior point of the simplex.

  7. Information Security Analysis Using Game Theory and Simulation

    SciTech Connect

    Schlicher, Bob G; Abercrombie, Robert K

    2012-01-01

    Information security analysis can be performed using game theory implemented in dynamic simulations of Agent Based Models (ABMs). Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. Our approach addresses imperfect information and scalability that allows us to also address previous limitations of current stochastic game models. Such models only consider perfect information assuming that the defender is always able to detect attacks; assuming that the state transition probabilities are fixed before the game assuming that the players actions are always synchronous; and that most models are not scalable with the size and complexity of systems under consideration. Our use of ABMs yields results of selected experiments that demonstrate our proposed approach and provides a quantitative measure for realistic information systems and their related security scenarios.

  8. Miniature intermittent contact switch

    NASA Technical Reports Server (NTRS)

    Sword, A.

    1972-01-01

    Design of electric switch for providing intermittent contact is presented. Switch consists of flexible conductor surrounding, but separated from, fixed conductor. Flexing of outside conductor to contact fixed conductor completes circuit. Advantage is small size of switch compared to standard switches.

  9. Latching relay switch assembly

    DOEpatents

    Duimstra, Frederick A.

    1991-01-01

    A latching relay switch assembly which includes a coil section and a switch or contact section. The coil section includes at least one permanent magnet and at least one electromagnet. The respective sections are, generally, arranged in separate locations or cavities in the assembly. The switch is latched by a permanent magnet assembly and selectively switched by an overriding electromagnetic assembly.

  10. Quantum repeated games revisited

    NASA Astrophysics Data System (ADS)

    Frąckiewicz, Piotr

    2012-03-01

    We present a scheme for playing quantum repeated 2 × 2 games based on Marinatto and Weber’s approach to quantum games. As a potential application, we study the twice repeated Prisoner’s Dilemma game. We show that results not available in the classical game can be obtained when the game is played in the quantum way. Before we present our idea, we comment on the previous scheme of playing quantum repeated games proposed by Iqbal and Toor. We point out the drawbacks that make their results unacceptable.

  11. Real-Time Strategy Game Training: Emergence of a Cognitive Flexibility Trait

    PubMed Central

    Glass, Brian D.; Maddox, W. Todd; Love, Bradley C.

    2013-01-01

    Training in action video games can increase the speed of perceptual processing. However, it is unknown whether video-game training can lead to broad-based changes in higher-level competencies such as cognitive flexibility, a core and neurally distributed component of cognition. To determine whether video gaming can enhance cognitive flexibility and, if so, why these changes occur, the current study compares two versions of a real-time strategy (RTS) game. Using a meta-analytic Bayes factor approach, we found that the gaming condition that emphasized maintenance and rapid switching between multiple information and action sources led to a large increase in cognitive flexibility as measured by a wide array of non-video gaming tasks. Theoretically, the results suggest that the distributed brain networks supporting cognitive flexibility can be tuned by engrossing video game experience that stresses maintenance and rapid manipulation of multiple information sources. Practically, these results suggest avenues for increasing cognitive function. PMID:23950921

  12. Real-time strategy game training: emergence of a cognitive flexibility trait.

    PubMed

    Glass, Brian D; Maddox, W Todd; Love, Bradley C

    2013-01-01

    Training in action video games can increase the speed of perceptual processing. However, it is unknown whether video-game training can lead to broad-based changes in higher-level competencies such as cognitive flexibility, a core and neurally distributed component of cognition. To determine whether video gaming can enhance cognitive flexibility and, if so, why these changes occur, the current study compares two versions of a real-time strategy (RTS) game. Using a meta-analytic Bayes factor approach, we found that the gaming condition that emphasized maintenance and rapid switching between multiple information and action sources led to a large increase in cognitive flexibility as measured by a wide array of non-video gaming tasks. Theoretically, the results suggest that the distributed brain networks supporting cognitive flexibility can be tuned by engrossing video game experience that stresses maintenance and rapid manipulation of multiple information sources. Practically, these results suggest avenues for increasing cognitive function. PMID:23950921

  13. The Easiest Lights Out Games

    ERIC Educational Resources Information Center

    Torrence, Bruce

    2011-01-01

    The game "Lights Out" and its mathematical predecessor, the sigma-plus game, has inspired an extensive mathematical literature. In this paper, the original game and a borderless version played on a torus are considered. We define an easy game to be one in which pushing the buttons that are originally lit solves the game. Easy games are classified…

  14. Simulation Games in Moral Education

    ERIC Educational Resources Information Center

    Boulogne, Jack

    1978-01-01

    Discusses the value of simulation games in moral education in four categories: fun and games; games as simulations of real life; games as motivators; and morality and game theory. Also examines the gaming aspects of morality, as well as the physical, psychological, precedent-setting, and internal consequences of an action. (Author/JK)

  15. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  16. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  17. Winning in sequential Parrondo games by players with short-term memory

    NASA Astrophysics Data System (ADS)

    Cheung, K. W.; Ma, H. F.; Wu, D.; Lui, G. C.; Szeto, K. Y.

    2016-05-01

    The original Parrondo game, denoted as AB3, contains two independent games: A and B. The winning or losing of games A and B is defined by the change of one unit of capital. Game A is a losing game if played continuously, with winning probability p=0.5-ε , where ε =0.003 . Game B is also losing and has two coins: a good coin with winning probability {{p}\\text{g}}=0.75-ε is used if the player’s capital is not divisible by 3, otherwise a bad coin with winning probability {{p}\\text{b}}=0.1-ε is used. The Parrondo paradox refers to the situation where the mixture of games A and B in a sequence leads to winning in the long run. The paradox can be resolved using Markov chain analysis. We extend this setting of the Parrondo game to involve players with one-step memory. The player can win by switching his choice of A or B game in a Parrondo game sequence. If the player knows the identity of the game he plays and the state of his capital, then the player can win maximally. On the other hand, if the player does not know the nature of the game, then he is playing a (C, D) game, where either (C  =  A, D  =  B), or (C  =  B, D  =  A). For a player with one-step memory playing the AB3 game, he can achieve the highest expected gain with switching probability equal to 3/4 in the (C, D) game sequence. This result has been found first numerically and then proven analytically. Generalization to an AB mod(M) Parrondo game for other integers M has been made for the general domain of parameters {{p}\\text{b}}\\text{A}}<{{p}\\text{g}} . We find that for odd M the Parrondo effect does exist. However, for even M, there is no Parrondo effect for two cases: the initial game is A and the initial capital is even, or the initial game is B and the initial capital is odd. There is still a possibility of the Parrondo effect for the other two cases when M is even: the initial game is A and the initial capital is odd, or the initial game is B and the initial

  18. A stochastic model for immunotherapy of cancer

    PubMed Central

    Baar, Martina; Coquille, Loren; Mayer, Hannah; Hölzel, Michael; Rogava, Meri; Tüting, Thomas; Bovier, Anton

    2016-01-01

    We propose an extension of a standard stochastic individual-based model in population dynamics which broadens the range of biological applications. Our primary motivation is modelling of immunotherapy of malignant tumours. In this context the different actors, T-cells, cytokines or cancer cells, are modelled as single particles (individuals) in the stochastic system. The main expansions of the model are distinguishing cancer cells by phenotype and genotype, including environment-dependent phenotypic plasticity that does not affect the genotype, taking into account the effects of therapy and introducing a competition term which lowers the reproduction rate of an individual in addition to the usual term that increases its death rate. We illustrate the new setup by using it to model various phenomena arising in immunotherapy. Our aim is twofold: on the one hand, we show that the interplay of genetic mutations and phenotypic switches on different timescales as well as the occurrence of metastability phenomena raise new mathematical challenges. On the other hand, we argue why understanding purely stochastic events (which cannot be obtained with deterministic models) may help to understand the resistance of tumours to therapeutic approaches and may have non-trivial consequences on tumour treatment protocols. This is supported through numerical simulations. PMID:27063839

  19. Use of Business Simulations and Games in Higher Education.

    ERIC Educational Resources Information Center

    Lloyd, John W.

    Simulation and business games can meet the need to teach decision making in that they offer a dynamic context in which the results of a decision has to be lived with. This view was reached after a switch from business to higher education prompted a search for teaching methods more suitable and effective for business education than the lecture…

  20. The Manufacturing Game

    ERIC Educational Resources Information Center

    Fenn, Margaret

    1972-01-01

    Article describes management training through playing a game which involves the creation and operation of a business organization devoted to manufacturing and sales. Precise details on setting up the game are given. (Author/PD)

  1. Wolf Trek Game.

    ERIC Educational Resources Information Center

    DeRosa, Bill

    1988-01-01

    Describes a learning center game which is designed to help elementary school students learn about wolves. Includes playing instructions, game board, and questions and answers. Also included is a record of wolf calls narrated by actor Robert Redford. (TW)

  2. Mang Kung Dice Game.

    ERIC Educational Resources Information Center

    Chan, Wai-Sum

    1996-01-01

    Describes the Mang Kung Dice Game, popular in China, which uses six special dice. Discusses the probability distribution of possible outcomes. Poses questions about the game to help students understand statistical concepts. (MKR)

  3. Stochastic gene expression with bursting and positive feedback

    NASA Astrophysics Data System (ADS)

    Platini, Thierry; Pendar, Hodjat; Kulkarni, Rahul

    2012-02-01

    Stochasticity (or noise) in the process of gene expression can play a critical role in cellular circuits that control switching between probabilistic cell-fate decisions in diverse organisms. Such circuits often include positive feedback loops as critical elements. In some cases (e.g. HIV-1 viral infections), switching between different cell fates occurs even in the absence of bistability in the underlying deterministic model. To characterize the role of noise in such systems, we analyze a simple gene expression circuit that includes contributions from both transcriptional and translational bursting and positive feedback effects. Using a combination of analytical approaches and stochastic simulations, we explore how the underlying parameters control the corresponding mean and variance in protein distributions.

  4. Stochastic gene expression as a many-body problem

    PubMed Central

    Sasai, Masaki; Wolynes, Peter G.

    2003-01-01

    Gene expression has a stochastic component because of the single-molecule nature of the gene and the small number of copies of individual DNA-binding proteins in the cell. We show how the statistics of such systems can be mapped onto quantum many-body problems. The dynamics of a single gene switch resembles the spin-boson model of a two-site polaron or an electron transfer reaction. Networks of switches can be approximately described as quantum spin systems by using an appropriate variational principle. In this way, the concept of frustration for magnetic systems can be taken over into gene networks. The landscape of stable attractors depends on the degree and style of frustration, much as for neural networks. We show the number of attractors, which may represent cell types, is much smaller for appropriately designed weakly frustrated stochastic networks than for randomly connected networks. PMID:12606710

  5. An Extended Duopoly Game.

    ERIC Educational Resources Information Center

    Eckalbar, John C.

    2002-01-01

    Illustrates how principles and intermediate microeconomic students can gain an understanding for strategic price setting by playing a relatively large oligopoly game. Explains that the game extends to a continuous price space and outlines appropriate applications. Offers the Mathematica code to instructors so that the assumptions of the game can…

  6. Gaming Gains Respect

    ERIC Educational Resources Information Center

    Richardson, Will

    2012-01-01

    The idea of learning through games isn't necessarily new. In fact, over the past decade, researchers have been espousing the use of games to help both children and adults learn. But it's only been recently that games have begun to make serious inroads into classrooms. As the world becomes more and more driven by mobile apps and tablet…

  7. Time for Bed Game

    MedlinePlus

    ... a Friend Who Cuts? Babysitting: Time for Bed Game KidsHealth > For Teens > Babysitting: Time for Bed Game Print A A A Text Size What Kids ... kids to bed can be tough sometimes! This game introduces children to the concept of getting enough ...

  8. The Acid Rain Game.

    ERIC Educational Resources Information Center

    Rakow, Steven J.; Glenn, Allen

    1982-01-01

    Provides rationale for and description of an acid rain game (designed for two players), a problem-solving model for elementary students. Although complete instructions are provided, including a copy of the game board, the game is also available for Apple II microcomputers. Information for the computer program is available from the author.…

  9. The Merchandising Game.

    ERIC Educational Resources Information Center

    Koeninger, Jimmy G.

    The decision-making game is built on a model which adheres to the economic principles of supply and demand. Game participants are faced with the task of generating profit in a simulated competitive situation. The game provides the opportunity for participants to gain a greater understanding of: (1) the relationship between income and costs and…

  10. The Ultimate Flag Games.

    ERIC Educational Resources Information Center

    Angel, Kenny; Sutton, Nancy

    This paper describes six Ultimate Flag Games which offer a change from traditional games and sports that are usually geared toward athletically inclined students. These new games, aimed at middle school through college students, allow for success from the least-skilled through the most athletically talented students. Players are ability grouped…

  11. Online Strategy Games.

    ERIC Educational Resources Information Center

    Dye, Bryan

    2002-01-01

    A strategy game is an online interactive game that requires thinking in order to be played at its best and whose winning strategy is not obvious. Provides information on strategy games that are written in Java or JavaScript and freely available on the web. (KHR)

  12. Playing the Cell Game.

    ERIC Educational Resources Information Center

    Madrazo, Gerry M., Jr.; Wood, Carol A.

    1980-01-01

    Discusses the use of games to facilitate learning scientific concepts and principles. Describes the Cell Game, which simulates plant and animal cells; the Energy Quest, which requires players to buy property that generates largest amounts of electricity; the Blood Flow Game, which illustrates circulation of blood through the human body. (CS)

  13. The Librarianship of Games.

    ERIC Educational Resources Information Center

    Law, Gordon

    The need for librarianship of instructional gaming increases as the production of literature and games grows, and as gaming becomes progressively legitimatized as an instructional strategy. This paper presents guidelines for bibliographic control and reference services, collection development, cataloging and classification, circulation and…

  14. The Games Children Play

    ERIC Educational Resources Information Center

    Padak, Nancy; Rasinski, Timothy

    2008-01-01

    The games that children play are not just for fun-they often lead to important skill development. Likewise, word games are fun opportunities for parents and children to spend time together and for children to learn a lot about sounds and words. In this Family Involvement column, the authors describe 12 easy-to-implement word games that parents and…

  15. Games, Logic and Giftedness.

    ERIC Educational Resources Information Center

    Wagner, Paul A.; Penner, Janet

    1982-01-01

    Gaming (the use of formal games for specific academic purposes) is a method for teaching formal thinking processes that is particularly suited to the gifted student. Various games can be used to develop deductive reasoning, the concept of subsets, inductive reasoning, and attention to detail. (Author/SW)

  16. Learning Through Simulation Games.

    ERIC Educational Resources Information Center

    Gillispie, Philip H.

    A broad overview of the educational applications of simulation games is provided. The first section of the book offers an introduction to the major concepts of such games and develops the idea that it is relatively easy for individuals to design and use their own simulation games. The remainder of the book serves as a teacher's guide for…

  17. Inventing Music Education Games

    ERIC Educational Resources Information Center

    Ghere, David; Amram, Fred M. B.

    2007-01-01

    The first British patent describing an educational game designed for musical "amusement and instruction" was granted in 1801 to Ann Young of Edinburgh, Scotland. The authors' discovery of Young's game box has prompted an examination of the nature and purpose of the six games she designed. Ann Young's patent is discussed in the context of…

  18. Games of Rapport.

    ERIC Educational Resources Information Center

    Corbin, Sandra J.

    1980-01-01

    Board games called Games of Rapport are being developed at the University of Alberta. The first, "Angels and Devils," is designed for play by nursing home residents. Results of a study involving "Angels and Devils" show that board games are useful in communicating rehabilitative objectives and sources of conflict. (Author/BEF)

  19. Being a Game Changer

    ERIC Educational Resources Information Center

    Herrig, Brian; Taranto, Greg

    2012-01-01

    One of the key features that draws many people to play video games is the fact that they are interactive. Video games allow the user to be actively engaged and in control of the action (Prensky, 2006). Seventh grade students at Canonsburg Middle School are actively engaging in the creation of video games. The students are engaged at a much deeper…

  20. Assessing Game Experiences

    ERIC Educational Resources Information Center

    Gaydos, Matthew; Harris, Shannon; Squire, Kurt

    2016-01-01

    Player responses to a brief survey gauging their understanding of content after playing an educational game, "Virulent," are presented. Response accuracy was higher for picture-based questions than text-based questions, despite the presentation of both within the game. Given that games may present educational content in multiple ways…

  1. [Dangerous games in schoolchildren].

    PubMed

    Le Heuzey, M-F

    2011-02-01

    Dangerous games inside or outside school are a serious social phenomenon, but unfortunately underrecognized. Aggressive games are a part of school bullying, which is in expansion. Choking games are very dangerous, with many deaths or serious neurologic complications. Pediatricians should be knowledgeable about risky behaviors encountered by their patients, and provide guidance about its dangers. PMID:21146376

  2. Educational Games for Learning

    ERIC Educational Resources Information Center

    Noemí, Peña-Miguel; Máximo, Sedano Hoyuelos

    2014-01-01

    The introduction of new technologies in society has created a need for interactive contents that can make the most of the potential that technological advances offer. Serious games as educational games are such content: they can be defined as video games or interactive applications whose main purpose is to provide not only entertainment but also…

  3. Brain Games for Babies.

    ERIC Educational Resources Information Center

    Silberg, Jackie

    2001-01-01

    Presents games for caregivers to use with infants to enhance brain development. Includes games that develop trust and security, language skills, and fine motor skills, as well as games that are fun or stimulate vision. Includes videotape references for parents and caregivers. (KB)

  4. International Cooperative Games.

    ERIC Educational Resources Information Center

    Hoppe, Christine

    The book "Of Play and Playfulness" (Eastern Cooperative Recreation School, 1990) is recommended as a source of ideas for second language learning games. It describes folk dances, ideas for crafts, puppetry, games, and a variety of other activities from many countries. Several games from the book, easy to teach in a foreign language or…

  5. Getting into the Game

    ERIC Educational Resources Information Center

    Jenkins, Henry

    2005-01-01

    Statistics reveal that students spend more time on electronic games than on any other recreational activity and 32% admit to playing them during class. The gaming revolution contains lessons for teachers, and understanding the pedagogical potential of computer and video games and developing curriculum that supports the educational use of…

  6. Indian & Metis Trivia Game.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education and Training, Winnipeg.

    This booklet consists of 220 questions about Native North Americans and Metis people that can be used as learning activities for elementary and secondary school students. Suggestions for using the questions include playing games in pairs or teams, locating resources to find answers to questions, playing trivia games and board games, and using…

  7. Game Skill Development.

    ERIC Educational Resources Information Center

    Kisabeth, Kathryn L.

    Before discussing the development of skills for playing elementary school physical education games, this document lists basic assumptions about children, movement education, games, and elementary school physical education. Four basic concepts, which are common to all team games, are identified: (1) use of personal and moving space and finding…

  8. Game Literacy, Gaming Cultures and Media Education

    ERIC Educational Resources Information Center

    Partington, Anthony

    2010-01-01

    This article presents an overview of how the popular "3-Cs" model (creative, critical and cultural) for literacy and media literacy can be applied to the study of computer games in the English and Media classroom. Focusing on the development of an existing computer games course that encompasses many opportunities for critical activity and…

  9. Stochastic Thermal Convection

    NASA Astrophysics Data System (ADS)

    Venturi, Daniele

    2005-11-01

    Stochastic bifurcations and stability of natural convective flows in 2d and 3d enclosures are investigated by the multi-element generalized polynomial chaos (ME-gPC) method (Xiu and Karniadakis, SISC, vol. 24, 2002). The Boussinesq approximation for the variation of physical properties is assumed. The stability analysis is first carried out in a deterministic sense, to determine steady state solutions and primary and secondary bifurcations. Stochastic simulations are then conducted around discontinuities and transitional regimes. It is found that these highly non-linear phenomena can be efficiently captured by the ME-gPC method. Finally, the main findings of the stochastic analysis and their implications for heat transfer will be discussed.

  10. Latching micro optical switch

    DOEpatents

    Garcia, Ernest J; Polosky, Marc A

    2013-05-21

    An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

  11. Stochastic Feedforward Control Technique

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim

    1990-01-01

    Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.

  12. Stochastic Gauss equations

    NASA Astrophysics Data System (ADS)

    Pierret, Frédéric

    2016-02-01

    We derived the equations of Celestial Mechanics governing the variation of the orbital elements under a stochastic perturbation, thereby generalizing the classical Gauss equations. Explicit formulas are given for the semimajor axis, the eccentricity, the inclination, the longitude of the ascending node, the pericenter angle, and the mean anomaly, which are expressed in term of the angular momentum vector H per unit of mass and the energy E per unit of mass. Together, these formulas are called the stochastic Gauss equations, and they are illustrated numerically on an example from satellite dynamics.

  13. Stochastic modeling of rainfall

    SciTech Connect

    Guttorp, P.

    1996-12-31

    We review several approaches in the literature for stochastic modeling of rainfall, and discuss some of their advantages and disadvantages. While stochastic precipitation models have been around at least since the 1850`s, the last two decades have seen an increased development of models based (more or less) on the physical processes involved in precipitation. There are interesting questions of scale and measurement that pertain to these modeling efforts. Recent modeling efforts aim at including meteorological variables, and may be useful for regional down-scaling of general circulation models.

  14. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    SciTech Connect

    BLASKIEWICZ, M.

    2005-05-16

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  15. Stochastic entrainment of a stochastic oscillator.

    PubMed

    Wang, Guanyu; Peskin, Charles S

    2015-11-01

    In this work, we consider a stochastic oscillator described by a discrete-state continuous-time Markov chain, in which the states are arranged in a circle, and there is a constant probability per unit time of jumping from one state to the next in a specified direction around the circle. At each of a sequence of equally spaced times, the oscillator has a specified probability of being reset to a particular state. The focus of this work is the entrainment of the oscillator by this periodic but stochastic stimulus. We consider a distinguished limit, in which (i) the number of states of the oscillator approaches infinity, as does the probability per unit time of jumping from one state to the next, so that the natural mean period of the oscillator remains constant, (ii) the resetting probability approaches zero, and (iii) the period of the resetting signal approaches a multiple, by a ratio of small integers, of the natural mean period of the oscillator. In this distinguished limit, we use analytic and numerical methods to study the extent to which entrainment occurs. PMID:26651734

  16. First Video Game

    ScienceCinema

    Takacs, Peter

    2010-01-08

    More than fifty years ago, before either arcades or home video games, visitors waited in line at Brookhaven National Laboratory to play Tennis for Two, an electronic tennis game that is unquestionably a forerunner of the modern video game. Two people played the electronic tennis game with separate controllers that connected to an analog computer and used an oscilloscope for a screen. The game's creator, William Higinbotham, was a physicist who lobbied for nuclear nonproliferation as the first chair of the Federation of American Scientists.

  17. First Video Game

    SciTech Connect

    Takacs, Peter

    2008-10-21

    More than fifty years ago, before either arcades or home video games, visitors waited in line at Brookhaven National Laboratory to play Tennis for Two, an electronic tennis game that is unquestionably a forerunner of the modern video game. Two people played the electronic tennis game with separate controllers that connected to an analog computer and used an oscilloscope for a screen. The game's creator, William Higinbotham, was a physicist who lobbied for nuclear nonproliferation as the first chair of the Federation of American Scientists.

  18. Stochastic Models of Human Growth.

    ERIC Educational Resources Information Center

    Goodrich, Robert L.

    Stochastic difference equations of the Box-Jenkins form provide an adequate family of models on which to base the stochastic theory of human growth processes, but conventional time series identification methods do not apply to available data sets. A method to identify structure and parameters of stochastic difference equation models of human…

  19. Extended Parrondo's game and Brownian ratchets: Strong and weak Parrondo effect

    NASA Astrophysics Data System (ADS)

    Wu, Degang; Szeto, Kwok Yip

    2014-02-01

    Inspired by the flashing ratchet, Parrondo's game presents an apparently paradoxical situation. Parrondo's game consists of two individual games, game A and game B. Game A is a slightly losing coin-tossing game. Game B has two coins, with an integer parameter M. If the current cumulative capital (in discrete unit) is a multiple of M, an unfavorable coin pb is used, otherwise a favorable pg coin is used. Paradoxically, a combination of game A and game B could lead to a winning game, which is the Parrondo effect. We extend the original Parrondo's game to include the possibility of M being either M1 or M2. Also, we distinguish between strong Parrondo effect, i.e., two losing games combine to form a winning game, and weak Parrondo effect, i.e., two games combine to form a better-performing game. We find that when M2 is not a multiple of M1, the combination of B (M1) and B (M2) has strong and weak Parrondo effect for some subsets in the parameter space (pb,pg), while there is neither strong nor weak effect when M2 is a multiple of M1. Furthermore, when M2 is not a multiple of M1, a stochastic mixture of game A may cancel the strong and weak Parrondo effect. Following a discretization scheme in the literature of Parrondo's game, we establish a link between our extended Parrondo's game with the analysis of discrete Brownian ratchet. We find a relation between the Parrondo effect of our extended model to the macroscopic bias in a discrete ratchet. The slope of a ratchet potential can be mapped to the fair game condition in the extended model, so that under some conditions, the macroscopic bias in a discrete ratchet can provide a good predictor for the game performance of the extended model. On the other hand, our extended model suggests a design of a ratchet in which the potential is a mixture of two periodic potentials.

  20. Elementary stochastic cooling

    SciTech Connect

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  1. Focus on stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Van den Broeck, Christian; Sasa, Shin-ichi; Seifert, Udo

    2016-02-01

    We introduce the thirty papers collected in this ‘focus on’ issue. The contributions explore conceptual issues within and around stochastic thermodynamics, use this framework for the theoretical modeling and experimental investigation of specific systems, and provide further perspectives on and for this active field.

  2. Heat Switches for ADRs

    NASA Technical Reports Server (NTRS)

    DiPirro, M. J.; Shirron, P. J.

    2014-01-01

    Heat switches are key elements in the cyclic operation of Adiabatic Demagnetization Refrigerators (ADRs). Several of the types of heat switches that have been used for ADRs are described in this paper. Key elements in selection and design of these switches include not only ON/OFF switching ratio, but also method of actuation, size, weight, and structural soundness. Some of the trade-off are detailed in this paper.

  3. Heat switches for ADRs

    NASA Astrophysics Data System (ADS)

    DiPirro, M. J.; Shirron, P. J.

    2014-07-01

    Heat switches are key elements in the cyclic operation of Adiabatic Demagnetization Refrigerators (ADRs). Several of the types of heat switches that have been used for ADRs are described in this paper. Key elements in selection and design of these switches include not only ON/OFF switching ratio, but also method of actuation, size, weight, and structural soundness. Some of the trade-off are detailed in this paper.

  4. Apollo Ring Optical Switch

    SciTech Connect

    Maestas, J.H.

    1987-03-01

    An optical switch was designed, built, and installed at Sandia National Laboratories in Albuquerque, New Mexico, to facilitate the integration of two Apollo computer networks into a single network. This report presents an overview of the optical switch as well as its layout, switch testing procedure and test data, and installation.

  5. Triggered plasma opening switch

    SciTech Connect

    Mendel, C W

    1988-02-23

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  6. Triggered plasma opening switch

    DOEpatents

    Mendel, Clifford W.

    1988-01-01

    A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

  7. Educational Games in Today's Learning.

    ERIC Educational Resources Information Center

    Smith, Roger A.

    Educational games have received increasing attention as one teaching technique for individualizing instruction. The use of games for education was borrowed from the business community, which in turn had borrowed the idea from the military. Educational games include several distinct types--simulations, role playing, games and simulation games. Two…

  8. Sex, Lies and Video Games

    ERIC Educational Resources Information Center

    Kearney, Paul; Pivec, Maja

    2007-01-01

    Sex and violence in video games is a social issue that confronts us all, especially as many commercial games are now being introduced for game-based learning in schools, and as such this paper polls teenage players about the rules their parents and teachers may or may not have, and surveys the gaming community, ie, game developers to parents, to…

  9. Adaptive stochastic cellular automata: Applications

    NASA Astrophysics Data System (ADS)

    Qian, S.; Lee, Y. C.; Jones, R. D.; Barnes, C. W.; Flake, G. W.; O'Rourke, M. K.; Lee, K.; Chen, H. H.; Sun, G. Z.; Zhang, Y. Q.; Chen, D.; Giles, C. L.

    1990-09-01

    The stochastic learning cellular automata model has been applied to the problem of controlling unstable systems. Two example unstable systems studied are controlled by an adaptive stochastic cellular automata algorithm with an adaptive critic. The reinforcement learning algorithm and the architecture of the stochastic CA controller are presented. Learning to balance a single pole is discussed in detail. Balancing an inverted double pendulum highlights the power of the stochastic CA approach. The stochastic CA model is compared to conventional adaptive control and artificial neural network approaches.

  10. Stochastic computing with biomolecular automata

    NASA Astrophysics Data System (ADS)

    Adar, Rivka; Benenson, Yaakov; Linshiz, Gregory; Rosner, Amit; Tishby, Naftali; Shapiro, Ehud

    2004-07-01

    Stochastic computing has a broad range of applications, yet electronic computers realize its basic step, stochastic choice between alternative computation paths, in a cumbersome way. Biomolecular computers use a different computational paradigm and hence afford novel designs. We constructed a stochastic molecular automaton in which stochastic choice is realized by means of competition between alternative biochemical pathways, and choice probabilities are programmed by the relative molar concentrations of the software molecules coding for the alternatives. Programmable and autonomous stochastic molecular automata have been shown to perform direct analysis of disease-related molecular indicators in vitro and may have the potential to provide in situ medical diagnosis and cure.

  11. Using Commercial Games to Design Teacher-Made Games for the Mathematics Classroom.

    ERIC Educational Resources Information Center

    McBride, John W.; Lamb, Charles E.

    1991-01-01

    The use of commercial games to design and construct games to drill specific mathematics skills is discussed. Game types discussed include card games and board games. Two game boards adapted from "Chutes and Ladders" and "Battleship" are provided. (CW)

  12. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance

    NASA Astrophysics Data System (ADS)

    Badzey, Robert L.; Mohanty, Pritiraj

    2005-10-01

    Stochastic resonance is a counterintuitive concept: the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers, superconducting quantum interference devices (SQUIDs), magnetoelastic ribbons and neurophysiological systems such as the receptors in crickets and crayfish. Although fundamentally important as a mechanism of coherent signal amplification, stochastic resonance has yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators. Our nanomechanical systems consist of beams that are clamped at each end and driven into transverse oscillation with the use of a radiofrequency source. Modulation of the source induces controllable switching of the beams between two stable, distinct states. We observe that the addition of white noise causes a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems could have a function in the realization of controllable high-speed nanomechanical memory cells, and paves the way for exploring macroscopic quantum coherence and tunnelling.

  13. REMOTE CONTROLLED SWITCHING DEVICE

    DOEpatents

    Hobbs, J.C.

    1959-02-01

    An electrical switching device which can be remotely controlled and in which one or more switches may be accurately operated at predetermined times or with predetermined intervening time intervals is described. The switching device consists essentially of a deck, a post projecting from the deck at right angles thereto, cam means mounted for rotation around said posts and a switch connected to said deck and actuated by said cam means. Means is provided for rotating the cam means at a constant speed and the switching apparatus is enclosed in a sealed container with external adjusting means and electrical connection elements.

  14. Stochastic Dynamics Underlying Cognitive Stability and Flexibility

    PubMed Central

    Ueltzhöffer, Kai; Armbruster-Genç, Diana J. N.; Fiebach, Christian J.

    2015-01-01

    Cognitive stability and flexibility are core functions in the successful pursuit of behavioral goals. While there is evidence for a common frontoparietal network underlying both functions and for a key role of dopamine in the modulation of flexible versus stable behavior, the exact neurocomputational mechanisms underlying those executive functions and their adaptation to environmental demands are still unclear. In this work we study the neurocomputational mechanisms underlying cue based task switching (flexibility) and distractor inhibition (stability) in a paradigm specifically designed to probe both functions. We develop a physiologically plausible, explicit model of neural networks that maintain the currently active task rule in working memory and implement the decision process. We simplify the four-choice decision network to a nonlinear drift-diffusion process that we canonically derive from a generic winner-take-all network model. By fitting our model to the behavioral data of individual subjects, we can reproduce their full behavior in terms of decisions and reaction time distributions in baseline as well as distractor inhibition and switch conditions. Furthermore, we predict the individual hemodynamic response timecourse of the rule-representing network and localize it to a frontoparietal network including the inferior frontal junction area and the intraparietal sulcus, using functional magnetic resonance imaging. This refines the understanding of task-switch-related frontoparietal brain activity as reflecting attractor-like working memory representations of task rules. Finally, we estimate the subject-specific stability of the rule-representing attractor states in terms of the minimal action associated with a transition between different rule states in the phase-space of the fitted models. This stability measure correlates with switching-specific thalamocorticostriatal activation, i.e., with a system associated with flexible working memory updating and

  15. Stochastic Dynamics Underlying Cognitive Stability and Flexibility.

    PubMed

    Ueltzhöffer, Kai; Armbruster-Genç, Diana J N; Fiebach, Christian J

    2015-06-01

    Cognitive stability and flexibility are core functions in the successful pursuit of behavioral goals. While there is evidence for a common frontoparietal network underlying both functions and for a key role of dopamine in the modulation of flexible versus stable behavior, the exact neurocomputational mechanisms underlying those executive functions and their adaptation to environmental demands are still unclear. In this work we study the neurocomputational mechanisms underlying cue based task switching (flexibility) and distractor inhibition (stability) in a paradigm specifically designed to probe both functions. We develop a physiologically plausible, explicit model of neural networks that maintain the currently active task rule in working memory and implement the decision process. We simplify the four-choice decision network to a nonlinear drift-diffusion process that we canonically derive from a generic winner-take-all network model. By fitting our model to the behavioral data of individual subjects, we can reproduce their full behavior in terms of decisions and reaction time distributions in baseline as well as distractor inhibition and switch conditions. Furthermore, we predict the individual hemodynamic response timecourse of the rule-representing network and localize it to a frontoparietal network including the inferior frontal junction area and the intraparietal sulcus, using functional magnetic resonance imaging. This refines the understanding of task-switch-related frontoparietal brain activity as reflecting attractor-like working memory representations of task rules. Finally, we estimate the subject-specific stability of the rule-representing attractor states in terms of the minimal action associated with a transition between different rule states in the phase-space of the fitted models. This stability measure correlates with switching-specific thalamocorticostriatal activation, i.e., with a system associated with flexible working memory updating and

  16. Transition matrix model for evolutionary game dynamics.

    PubMed

    Ermentrout, G Bard; Griffin, Christopher; Belmonte, Andrew

    2016-03-01

    We study an evolutionary game model based on a transition matrix approach, in which the total change in the proportion of a population playing a given strategy is summed directly over contributions from all other strategies. This general approach combines aspects of the traditional replicator model, such as preserving unpopulated strategies, with mutation-type dynamics, which allow for nonzero switching to unpopulated strategies, in terms of a single transition function. Under certain conditions, this model yields an endemic population playing non-Nash-equilibrium strategies. In addition, a Hopf bifurcation with a limit cycle may occur in the generalized rock-scissors-paper game, unlike the replicator equation. Nonetheless, many of the Folk Theorem results are shown to hold for this model. PMID:27078323

  17. Transition matrix model for evolutionary game dynamics

    NASA Astrophysics Data System (ADS)

    Ermentrout, G. Bard; Griffin, Christopher; Belmonte, Andrew

    2016-03-01

    We study an evolutionary game model based on a transition matrix approach, in which the total change in the proportion of a population playing a given strategy is summed directly over contributions from all other strategies. This general approach combines aspects of the traditional replicator model, such as preserving unpopulated strategies, with mutation-type dynamics, which allow for nonzero switching to unpopulated strategies, in terms of a single transition function. Under certain conditions, this model yields an endemic population playing non-Nash-equilibrium strategies. In addition, a Hopf bifurcation with a limit cycle may occur in the generalized rock-scissors-paper game, unlike the replicator equation. Nonetheless, many of the Folk Theorem results are shown to hold for this model.

  18. Inefficiency of voting in Parrondo games

    NASA Astrophysics Data System (ADS)

    Dinís, Luis; Parrondo, Juan M. R.

    2004-11-01

    We study a modification of the so-called Parrondo's paradox where a large number of individuals choose the game they want to play by voting. We show that it can be better for the players to vote randomly than to vote according to their own benefit in one turn. The former yields a winning tendency while the latter results in steady losses. An explanation of this behaviour is given by noting that selfish voting prevents the switching between games that is essential for the total capital to grow. Results for both finite and infinite number of players are presented. It is shown that the extension of the model to the history-dependent Parrondo's paradox also displays the same effect.

  19. Combinatorial optimization games

    SciTech Connect

    Deng, X.; Ibaraki, Toshihide; Nagamochi, Hiroshi

    1997-06-01

    We introduce a general integer programming formulation for a class of combinatorial optimization games, which immediately allows us to improve the algorithmic result for finding amputations in the core (an important solution concept in cooperative game theory) of the network flow game on simple networks by Kalai and Zemel. An interesting result is a general theorem that the core for this class of games is nonempty if and only if a related linear program has an integer optimal solution. We study the properties for this mathematical condition to hold for several interesting problems, and apply them to resolve algorithmic and complexity issues for their cores along the line as put forward in: decide whether the core is empty; if the core is empty, find an imputation in the core; given an imputation x, test whether x is in the core. We also explore the properties of totally balanced games in this succinct formulation of cooperative games.

  20. Educational card games

    NASA Astrophysics Data System (ADS)

    Smith, D. R.; Munro, E.

    2009-09-01

    A number of years have passed since the development of the 'Voyager: Satellites' educational card game reported in Physics Education in 2003. Since then, a large number of copies of the game have been produced and distributed across the UK, to a warm reception from both pupils and teachers. This article reports on some of the feedback received about the game over the five years of the project and gives some examples of how the game has been incorporated into the school curriculum. The recent development of other science-related educational card games that are now available for use in schools is also discussed and it is hoped that this article will give inspiration to others to generate their own educational card games and enjoy some of the positive benefits of 'playing' in the classroom.

  1. Stochastic ice stream dynamics

    NASA Astrophysics Data System (ADS)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  2. VAWT stochastic wind simulator

    SciTech Connect

    Strickland, J.H.

    1987-04-01

    A stochastic wind simulation for VAWTs (VSTOC) has been developed which yields turbulent wind-velocity fluctuations for rotationally sampled points. This allows three-component wind-velocity fluctuations to be simulated at specified nodal points on the wind-turbine rotor. A first-order convection scheme is used which accounts for the decrease in streamwise velocity as the flow passes through the wind-turbine rotor. The VSTOC simulation is independent of the particular analytical technique used to predict the aerodynamic and performance characteristics of the turbine. The VSTOC subroutine may be used simply as a subroutine in a particular VAWT prediction code or it may be used as a subroutine in an independent processor. The independent processor is used to interact with a version of the VAWT prediction code which is segmented into deterministic and stochastic modules. Using VSTOC in this fashion is very efficient with regard to decreasing computer time for the overall calculation process.

  3. STOCHASTIC COOLING FOR RHIC.

    SciTech Connect

    BLASKIEWICZ,M.BRENNAN,J.M.CAMERON,P.WEI,J.

    2003-05-12

    Emittance growth due to Intra-Beam Scattering significantly reduces the heavy ion luminosity lifetime in RHIC. Stochastic cooling of the stored beam could improve things considerably by counteracting IBS and preventing particles from escaping the rf bucket [1]. High frequency bunched-beam stochastic cooling is especially challenging but observations of Schottky signals in the 4-8 GHz band indicate that conditions are favorable in RHIC [2]. We report here on measurements of the longitudinal beam transfer function carried out with a pickup kicker pair on loan from FNAL TEVATRON. Results imply that for ions a coasting beam description is applicable and we outline some general features of a viable momentum cooling system for RHIC.

  4. Stochastic speculative price.

    PubMed

    Samuelson, P A

    1971-02-01

    Because a commodity like wheat can be carried forward from one period to the next, speculative arbitrage serves to link its prices at different points of time. Since, however, the size of the harvest depends on complicated probability processes impossible to forecast with certainty, the minimal model for understanding market behavior must involve stochastic processes. The present study, on the basis of the axiom that it is the expected rather than the known-for-certain prices which enter into all arbitrage relations and carryover decisions, determines the behavior of price as the solution to a stochastic-dynamic-programming problem. The resulting stationary time series possesses an ergodic state and normative properties like those often observed for real-world bourses. PMID:16591903

  5. Stochastic ice stream dynamics.

    PubMed

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960

  6. Mutation–selection equilibrium in games with multiple strategies

    PubMed Central

    Antal, Tibor; Traulsen, Arne; Ohtsuki, Hisashi; Tarnita, Corina E.; Nowak, Martin A.

    2009-01-01

    In evolutionary games the fitness of individuals is not constant but depends on the relative abundance of the various strategies in the population. Here we study general games among n strategies in populations of large but finite size. We explore stochastic evolutionary dynamics under weak selection, but for any mutation rate. We analyze the frequency dependent Moran process in well-mixed populations, but almost identical results are found for the Wright-Fisher and Pairwise Comparison processes. Surprisingly simple conditions specify whether a strategy is more abundant on average than 1/n, or than another strategy, in the mutation-selection equilibrium. We find one condition that holds for low mutation rate and another condition that holds for high mutation rate. A linear combination of these two conditions holds for any mutation rate. Our results allow a complete characterization of n × n games in the limit of weak selection. PMID:19248791

  7. Diversity of contribution promotes cooperation in public goods games

    NASA Astrophysics Data System (ADS)

    Gao, Jia; Li, Zhi; Wu, Te; Wang, Long

    2010-08-01

    In most previous studies of public goods game, individuals conventionally donate their contributions equally to the games they participate in. We develop an extended public goods game model, in which individuals distribute their contributions based on the groups’ qualities. Namely, the individuals are allowed to increase their investment to the superior groups at the expense of the nasty ones. The quality of a group is positively correlated with its cooperation level. In numerical simulations, synchronized stochastic strategy updating rule based on pairwise comparison for a fixed noise level is adopted. The results show that the high-quality group preference mechanism can greatly improve cooperation, compared with conventional models. Besides, the system with stronger preference toward high-quality groups performs better. Investigation of wealth distribution at equilibrium reveals that cooperators’ wealth appreciates with the increase of preference degree when cooperators take up the same fraction of the population.

  8. The Game of Hex

    ERIC Educational Resources Information Center

    Scott, Paul

    2007-01-01

    In this article, the author discusses the game of Hex, including its history, strategies and problems. Like all good games, the rules are very simple. Hex is played on a diamond shaped board made up of hexagons. It can be of any size, but an 11x11 board makes for a good game. Two opposite sides of the diamond are labelled "red," the other two…

  9. Predictive Game Theory

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2005-01-01

    Probability theory governs the outcome of a game; there is a distribution over mixed strat.'s, not a single "equilibrium". To predict a single mixed strategy must use our loss function (external to the game's players. Provides a quantification of any strategy's rationality. Prove rationality falls as cost of computation rises (for players who have not previously interacted). All extends to games with varying numbers of players.

  10. Wolbachia spread dynamics in stochastic environments.

    PubMed

    Hu, Linchao; Huang, Mugen; Tang, Moxun; Yu, Jianshe; Zheng, Bo

    2015-12-01

    Dengue fever is a mosquito-borne viral disease with 100 million people infected annually. A novel strategy for dengue control uses the bacterium Wolbachia to invade dengue vector Aedes mosquitoes. As the impact of environmental heterogeneity on Wolbachia spread dynamics in natural areas has been rarely quantified, we develop a model of differential equations for which the environmental conditions switch randomly between two regimes. We find some striking phenomena that random regime transitions could drive Wolbachia to extinction from certain initial states confirmed Wolbachia fixation in homogeneous environments, and mosquito releasing facilitates Wolbachia invasion more effectively when the regimes transit frequently. By superimposing the phase spaces of the ODE systems defined in each regime, we identify the threshold curves below which Wolbachia invades the whole population, which extends the theory of threshold infection frequency to stochastic environments. PMID:26428255

  11. Entropy of stochastic flows

    SciTech Connect

    Dorogovtsev, Andrei A

    2010-06-29

    For sets in a Hilbert space the concept of quadratic entropy is introduced. It is shown that this entropy is finite for the range of a stochastic flow of Brownian particles on R. This implies, in particular, the fact that the total time of the free travel in the Arratia flow of all particles that started from a bounded interval is finite. Bibliography: 10 titles.

  12. Healthy Gaming – Video Game Design to promote Health

    PubMed Central

    Brox, E.; Fernandez-Luque, L.; Tøllefsen, T.

    2011-01-01

    Background There is an increasing interest in health games including simulation tools, games for specific conditions, persuasive games to promote a healthy life style or exergames where physical exercise is used to control the game. Objective The objective of the article is to review current literature about available health games and the impact related to game design principles as well as some educational theory aspects. Methods Literature from the big databases and known sites with games for health has been searched to find articles about games for health purposes. The focus has been on educational games, persuasive games and exergames as well as articles describing game design principles. Results The medical objectives can either be a part of the game theme (intrinsic) or be totally dispatched (extrinsic), and particularly persuasive games seem to use extrinsic game design. Peer support is important, but there is only limited research on multiplayer health games. Evaluation of health games can be both medical and technical, and the focus will depend on the game purpose. Conclusion There is still not enough evidence to conclude which design principles work for what purposes since most of the literature in health serious games does not specify design methodologies, but it seems that extrinsic methods work in persuasion. However, when designing health care games it is important to define both the target group and main objective, and then design a game accordingly using sound game design principles, but also utilizing design elements to enhance learning and persuasion. A collaboration with health professionals from an early design stage is necessary both to ensure that the content is valid and to have the game validated from a clinical viewpoint. Patients need to be involved, especially to improve usability. More research should be done on social aspects in health games, both related to learning and persuasion. PMID:23616865

  13. Ultimate open pit stochastic optimization

    NASA Astrophysics Data System (ADS)

    Marcotte, Denis; Caron, Josiane

    2013-02-01

    Classical open pit optimization (maximum closure problem) is made on block estimates, without directly considering the block grades uncertainty. We propose an alternative approach of stochastic optimization. The stochastic optimization is taken as the optimal pit computed on the block expected profits, rather than expected grades, computed from a series of conditional simulations. The stochastic optimization generates, by construction, larger ore and waste tonnages than the classical optimization. Contrary to the classical approach, the stochastic optimization is conditionally unbiased for the realized profit given the predicted profit. A series of simulated deposits with different variograms are used to compare the stochastic approach, the classical approach and the simulated approach that maximizes expected profit among simulated designs. Profits obtained with the stochastic optimization are generally larger than the classical or simulated pit. The main factor controlling the relative gain of stochastic optimization compared to classical approach and simulated pit is shown to be the information level as measured by the boreholes spacing/range ratio. The relative gains of the stochastic approach over the classical approach increase with the treatment costs but decrease with mining costs. The relative gains of the stochastic approach over the simulated pit approach increase both with the treatment and mining costs. At early stages of an open pit project, when uncertainty is large, the stochastic optimization approach appears preferable to the classical approach or the simulated pit approach for fair comparison of the values of alternative projects and for the initial design and planning of the open pit.

  14. Quantum Spontaneous Stochasticity

    NASA Astrophysics Data System (ADS)

    Drivas, Theodore; Eyink, Gregory

    Classical Newtonian dynamics is expected to be deterministic, but recent fluid turbulence theory predicts that a particle advected at high Reynolds-numbers by ''nearly rough'' flows moves nondeterministically. Small stochastic perturbations to the flow velocity or to the initial data lead to persistent randomness, even in the limit where the perturbations vanish! Such ``spontaneous stochasticity'' has profound consequences for astrophysics, geophysics, and our daily lives. We show that a similar effect occurs with a quantum particle in a ''nearly rough'' force, for the semi-classical (large-mass) limit, where spreading of the wave-packet is usually expected to be negligible and dynamics to be deterministic Newtonian. Instead, there are non-zero probabilities to observe multiple, non-unique solutions of the classical equations. Although the quantum wave-function remains split, rapid phase oscillations prevent any coherent superposition of the branches. Classical spontaneous stochasticity has not yet been seen in controlled laboratory experiments of fluid turbulence, but the corresponding quantum effects may be observable by current techniques. We suggest possible experiments with neutral atomic-molecular systems in repulsive electric dipole potentials.

  15. Extraversion in Games

    NASA Astrophysics Data System (ADS)

    van Lankveld, Giel; Schreurs, Sonny; Spronck, Pieter; van den Herik, Jaap

    The behavior of a human player in a game expresses the personality of that player. Personality is an important characteristic for modeling the player's profile. In our research we use the five factor model of personality, in which extraversion is a notable factor. Extraversion is the human tendency of being sensitive to rewards. This often results in humans seeking socially rewarding situations. Extraversion plays a prominent part in the in-game behavior of a player. The in-game behavior can be decomposed in 20 different in-game elements.

  16. Linear game non-contextuality and Bell inequalities—a graph-theoretic approach

    NASA Astrophysics Data System (ADS)

    Rosicka, M.; Ramanathan, R.; Gnaciński, P.; Horodecki, K.; Horodecki, M.; Horodecki, P.; Severini, S.

    2016-04-01

    We study the classical and quantum values of a class of one- and two-party unique games, that generalizes the well-known XOR games to the case of non-binary outcomes. In the bipartite case the generalized XOR (XOR-d) games we study are a subclass of the well-known linear games. We introduce a ‘constraint graph’ associated to such a game, with the constraints defining the game represented by an edge-coloring of the graph. We use the graph-theoretic characterization to relate the task of finding equivalent games to the notion of signed graphs and switching equivalence from graph theory. We relate the problem of computing the classical value of single-party anti-correlation XOR games to finding the edge bipartization number of a graph, which is known to be MaxSNP hard, and connect the computation of the classical value of XOR-d games to the identification of specific cycles in the graph. We construct an orthogonality graph of the game from the constraint graph and study its Lovász theta number as a general upper bound on the quantum value even in the case of single-party contextual XOR-d games. XOR-d games possess appealing properties for use in device-independent applications such as randomness of the local correlated outcomes in the optimal quantum strategy. We study the possibility of obtaining quantum algebraic violation of these games, and show that no finite XOR-d game possesses the property of pseudo-telepathy leaving the frequently used chained Bell inequalities as the natural candidates for such applications. We also show this lack of pseudo-telepathy for multi-party XOR-type inequalities involving two-body correlation functions.

  17. Entanglement Guarantees Emergence of Cooperation in Quantum Prisoner's Dilemma Games on Networks

    PubMed Central

    Li, Angsheng; Yong, Xi

    2014-01-01

    It was known that cooperation of evolutionary prisoner's dilemma games fails to emerge in homogenous networks such as random graphs. Here we proposed a quantum prisoner's dilemma game. The game consists of two players, in which each player has three choices of strategy: cooperator (C), defector (D) and super cooperator (denoted by Q). We found that quantum entanglement guarantees emergence of a new cooperation, the super cooperation of the quantum prisoner's dilemma games, and that entanglement is the mechanism of guaranteed emergence of cooperation of evolutionary prisoner's dilemma games on networks. We showed that for a game with temptation b, there exists a threshold for a measurement of entanglement, beyond which, (super) cooperation of evolutionary quantum prisoner's dilemma games is guaranteed to quickly emerge, giving rise to stochastic convergence of the cooperations, that if the entanglement degree γ is less than the threshold , then the equilibrium frequency of cooperations of the games is positively correlated to the entanglement degree γ, and that if γ is less than and b is beyond some boundary, then the equilibrium frequency of cooperations of the games on random graphs decreases as the average degree of the graphs increases. PMID:25190217

  18. Stochastic dynamics of macromolecular-assembly networks.

    NASA Astrophysics Data System (ADS)

    Saiz, Leonor; Vilar, Jose

    2006-03-01

    The formation and regulation of macromolecular complexes provides the backbone of most cellular processes, including gene regulation and signal transduction. The inherent complexity of assembling macromolecular structures makes current computational methods strongly limited for understanding how the physical interactions between cellular components give rise to systemic properties of cells. Here we present a stochastic approach to study the dynamics of networks formed by macromolecular complexes in terms of the molecular interactions of their components [1]. Exploiting key thermodynamic concepts, this approach makes it possible to both estimate reaction rates and incorporate the resulting assembly dynamics into the stochastic kinetics of cellular networks. As prototype systems, we consider the lac operon and phage λ induction switches, which rely on the formation of DNA loops by proteins [2] and on the integration of these protein-DNA complexes into intracellular networks. This cross-scale approach offers an effective starting point to move forward from network diagrams, such as those of protein-protein and DNA-protein interaction networks, to the actual dynamics of cellular processes. [1] L. Saiz and J.M.G. Vilar, submitted (2005). [2] J.M.G. Vilar and L. Saiz, Current Opinion in Genetics & Development, 15, 136-144 (2005).

  19. Effective switching frequency multiplier inverter

    SciTech Connect

    Su, Gui-Jia; Peng, Fang Z.

    2007-08-07

    A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

  20. A retrodictive stochastic simulation algorithm

    SciTech Connect

    Vaughan, T.G. Drummond, P.D.; Drummond, A.J.

    2010-05-20

    In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.

  1. Behavioral variability through stochastic choice and its gating by anterior cingulate cortex.

    PubMed

    Tervo, Dougal G R; Proskurin, Mikhail; Manakov, Maxim; Kabra, Mayank; Vollmer, Alison; Branson, Kristin; Karpova, Alla Y

    2014-09-25

    Behavioral choices that ignore prior experience promote exploration and unpredictability but are seemingly at odds with the brain's tendency to use experience to optimize behavioral choice. Indeed, when faced with virtual competitors, primates resort to strategic counter prediction rather than to stochastic choice. Here, we show that rats also use history- and model-based strategies when faced with similar competitors but can switch to a "stochastic" mode when challenged with a competitor that they cannot defeat by counter prediction. In this mode, outcomes associated with an animal's actions are ignored, and normal engagement of anterior cingulate cortex (ACC) is suppressed. Using circuit perturbations in transgenic rats, we demonstrate that switching between strategic and stochastic behavioral modes is controlled by locus coeruleus input into ACC. Our findings suggest that, under conditions of uncertainty about environmental rules, changes in noradrenergic input alter ACC output and prevent erroneous beliefs from guiding decisions, thus enabling behavioral variation. PAPERCLIP: PMID:25259917

  2. Pinning distributed synchronization of stochastic dynamical networks: a mixed optimization approach.

    PubMed

    Tang, Yang; Gao, Huijun; Lu, Jianquan; Kurths, Jürgen Kurthsrgen

    2014-10-01

    This paper is concerned with the problem of pinning synchronization of nonlinear dynamical networks with multiple stochastic disturbances. Two kinds of pinning schemes are considered: 1) pinned nodes are fixed along the time evolution and 2) pinned nodes are switched from time to time according to a set of Bernoulli stochastic variables. Using Lyapunov function methods and stochastic analysis techniques, several easily verifiable criteria are derived for the problem of pinning distributed synchronization. For the case of fixed pinned nodes, a novel mixed optimization method is developed to select the pinned nodes and find feasible solutions, which is composed of a traditional convex optimization method and a constraint optimization evolutionary algorithm. For the case of switching pinning scheme, upper bounds of the convergence rate and the mean control gain are obtained theoretically. Simulation examples are provided to show the advantages of our proposed optimization method over previous ones and verify the effectiveness of the obtained results. PMID:25291734

  3. Thermally actuated thermionic switch

    DOEpatents

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  4. Thermally actuated thermionic switch

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  5. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  6. Solid state switch

    DOEpatents

    Merritt, Bernard T.; Dreifuerst, Gary R.

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  7. Reusable fast opening switch

    DOEpatents

    Van Devender, J.P.; Emin, D.

    1983-12-21

    A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

  8. Alarm toe switch

    DOEpatents

    Ganyard, Floyd P.

    1982-01-01

    An alarm toe switch inserted within a shoe for energizing an alarm circuit n a covert manner includes an insole mounting pad into which a miniature reed switch is fixedly molded. An elongated slot perpendicular to the reed switch is formed in the bottom surface of the mounting pad. A permanent cylindrical magnet positioned in the forward portion of the slot with a diameter greater than the pad thickness causes a bump above the pad. A foam rubber block is also positioned in the slot rearwardly of the magnet and holds the magnet in normal inoperative relation. A non-magnetic support plate covers the slot and holds the magnet and foam rubber in the slot. The plate minimizes bending and frictional forces to improve movement of the magnet for reliable switch activation. The bump occupies the knuckle space beneath the big toe. When the big toe is scrunched rearwardly the magnet is moved within the slot relative to the reed switch, thus magnetically activating the switch. When toe pressure is released the foam rubber block forces the magnet back into normal inoperative position to deactivate the reed switch. The reed switch is hermetically sealed with the magnet acting through the wall so the switch assembly S is capable of reliable operation even in wet and corrosive environments.

  9. Stochastic predation events and population persistence in bighorn sheep

    PubMed Central

    Festa-Bianchet, Marco; Coulson, Tim; Gaillard, Jean-Michel; Hogg, John T; Pelletier, Fanie

    2006-01-01

    Many studies have reported temporal changes in the relative importance of density-dependence and environmental stochasticity in affecting population growth rates, but they typically assume that the predominant factor limiting growth remains constant over long periods of time. Stochastic switches in limiting factors that persist for multiple time-steps have received little attention, but most wild populations may periodically experience such switches. Here, we consider the dynamics of three populations of individually marked bighorn sheep (Ovis canadensis) monitored for 24–28 years. Each population experienced one or two distinct cougar (Puma concolor) predation events leading to population declines. The onset and duration of predation events were stochastic and consistent with predation by specialist individuals. A realistic Markov chain model confirms that predation by specialist cougars can cause extinction of isolated populations. We suggest that such processes may be common. In such cases, predator–prey equilibria may only occur at large geographical and temporal scales, and are unlikely with increasing habitat fragmentation. PMID:16777749

  10. Educational Card Games

    ERIC Educational Resources Information Center

    Smith, D. R.; Munro, E.

    2009-01-01

    A number of years have passed since the development of the "Voyager: Satellites" educational card game reported in "Physics Education" in 2003. Since then, a large number of copies of the game have been produced and distributed across the UK, to a warm reception from both pupils and teachers. This article reports on some of the feedback received…

  11. The Frozen Price Game

    ERIC Educational Resources Information Center

    Alden, Lori

    2003-01-01

    In this article, the author discusses the educational frozen price game she developed to teach the basic economic principle of price allocation. In addition to demonstrating the advantages of price allocation, the game also illustrates such concepts as opportunity costs, cost benefit comparisons, and the trade-off between efficiency and equity.…

  12. Game Theory .net.

    ERIC Educational Resources Information Center

    Shor, Mikhael

    2003-01-01

    States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  13. Skill Games for Mathematics.

    ERIC Educational Resources Information Center

    Corle, Clyde G.

    This guide is to assist teachers with motivational ideas for teaching elementary school mathematics. The items included are a wide variety of games (paper and pencil, verbal, and physical), jingles, contests, teaching devices, and thought provoking exercises. Suggestions for selection of mathematical games are offered. The devices are used to…

  14. Police Patrol Game Kit.

    ERIC Educational Resources Information Center

    Clark, Todd, Ed.

    A packet of game materials, designed to help young people better understand what the law is, what the police officer's duties are, and what pressures and fears the police officers experience daily, is presented. The game, designed for a group of 20 to 35 students, contains: Teacher's Manual, Attitude Survey Master, Observer Evaluation Master,…

  15. The Household Energy Game.

    ERIC Educational Resources Information Center

    Smith, Thomas W.; Jenkins, John

    The Household Energy Game has been developed to provide some indication of energy use and individual management. The game is divided into two sections. In the first section, one is to devise one's own energy budget. Energy use is calculated in the areas of transportation, heating, hot water, air conditioning, and appliances. In each of these major…

  16. Cournot and Bertrand Games.

    ERIC Educational Resources Information Center

    Beckman, Steven R.

    2003-01-01

    Describes a series of matrix choice games that illustrate for students the concepts of monopoly, shared monopoly, Cournot, Bertrand, and Stackelberg behavior given either perfect complements or perfect substitutes. Suggests that the use of the games also allows for student dialogue about international trade and price wars. (JEH)

  17. Games and childhood obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Videogames can be used to help children change their obesity-related diet and physical activity behaviors. A review of the relevant literature in this special issue of the Games for Health Journal indicated that video games did influence children's adiposity, but only among children who were alread...

  18. Gaming in Technology Education

    ERIC Educational Resources Information Center

    Clark, Aaron C.; Ernst, Jeremy V.

    2009-01-01

    The authors have devoted a considerable amount of time evaluating the role that gaming and game development plays in the form of curricula integration and as a future career focus for students interested in this field. From the research conducted through the completed National Science Foundation (NSF) project, VisTE: Visualization in Technology…

  19. Functional Business Games.

    ERIC Educational Resources Information Center

    Biggs, William D.

    1987-01-01

    Defines computerized functional business games as those focusing on decision making and integration in the areas of accounting/finance, marketing, personnel/human resources, and production/operations. Nine currently available games are reviewed and evaluated in the context of a learning model. (Author/LRW)

  20. Gaming and "Functional Democracy".

    ERIC Educational Resources Information Center

    Goodman, F. L.

    An example of the way gaming can be used to bring attention to, and improve skills in, making democracy function better is presented. The game is played by seven people seated around two triangular playing boards; it involves making choices among least, intermediate, and most preferred alternatives, keeping the preferences of the majority in…

  1. The Clean Air Game.

    ERIC Educational Resources Information Center

    Avalone-King, Deborah

    2000-01-01

    Introduces the Clean Air game which teaches about air quality and its vital importance for life. Introduces students to air pollutants, health of people and environment, and possible actions individuals can take to prevent air pollution. Includes directions for the game. (YDS)

  2. Stay Teen: Games

    MedlinePlus

    ... here Home » Games and Quizzes Games and Quizzes Facebook Twitter Tumblr Shares · 7 quiz Relationship Checkup! How Healthy is Your Relationship? Shares · 0 Comments · 0 quiz Should You Make it Official? Shares · 0 Comments · 0 quiz Which Celebrity Couple Are You? Shares · 0 Comments · 0 quiz Are ...

  3. The Guppy Game

    ERIC Educational Resources Information Center

    Blattner, Margaret; Hug, Barbara; Watson, Patrick; Korol, Donna

    2012-01-01

    Adaptation, interactions between species and their environments, and change over time are fundamental principles in biology. They represent aspects of two of the big ideas in science: evolution and natural selection. To help students understand these ideas, the authors developed the "Guppy Game." In this article, they describe the game and how…

  4. Games on Sustainable Development

    ERIC Educational Resources Information Center

    Meadows, Dennis L.; Van der Waals, Barbara

    This booklet contains a collection of educational games that can be used by teachers to convey ideas and create discussion related to environmental protection and sustainable development. The games accommodate participants of all ages and require little preparation by the teacher, up to 30-40 players with only one operator, minimal materials (many…

  5. Games People Play

    ERIC Educational Resources Information Center

    VerBruggen, Robert

    2012-01-01

    Today's video games aren't even a little bit like the ones that came out a few decades ago. Not only has the underlying technology dramatically improved, but the medium has matured remarkably in the years since "Pong" and "Space Invaders." ruled the arcades. The artistic promise of video games has yet to be fulfilled. The current state of the…

  6. Great Games That Disappeared

    ERIC Educational Resources Information Center

    Rauschenbach, James; Swartz, Daniel R.

    2016-01-01

    Sometimes through a single person's efforts, a new and innovative game is developed and promoted locally. Occasionally, circumstances cause these games to remain on a local level without being adopted by mainstream physical educators and physical activity professionals. Unfortunately, some educators tend to stick to what they know and teach…

  7. Social Interactions and Games

    ERIC Educational Resources Information Center

    Uz, Cigdem; Cagiltay, Kursat

    2015-01-01

    Digital games have become popular due to great technological improvements in recent years. They have been increasingly transformed from co-located experiences into multi-played, socially oriented platforms (Herodotou, 2009). Multi-User Online Games provide the opportunity to create a social environment for friendships and strengthen the…

  8. Gaming and Gamification

    ERIC Educational Resources Information Center

    Mallon, Melissa

    2013-01-01

    The New Media Consortium's "Horizon Report" for higher education cites games and gamification with a time-to-adoption of two to three years. The use of digital games is almost ubiquitous in social media and is swiftly gaining popularity in other industries as well. Many in higher education have embraced gamification due to its…

  9. ACTIVITIES: Graphs and Games

    ERIC Educational Resources Information Center

    Hirsch, Christian R.

    1975-01-01

    Using a set of worksheets, students will discover and apply Euler's formula regarding connected planar graphs and play and analyze the game of Sprouts. One sheet leads to the discovery of Euler's formula; another concerns traversability of a graph; another gives an example and a game involving these ideas. (Author/KM)

  10. Nonlinear analysis of the cooperation of strategic alliances through stochastic catastrophe theory

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Hu, Bin; Wu, Jiang; Zhang, Jianhua

    2014-04-01

    The excitation intervention of strategic alliance may change with the changes in the parameters of circumstance (e.g., external alliance tasks). As a result, the stable cooperation between members may suffer a complete unplanned betrayal at last. However, current perspectives on strategic alliances cannot adequately explain this transition mechanism. This study is a first attempt to analyze this nonlinear phenomenon through stochastic catastrophe theory (SCT). A stochastic dynamics model is constructed based on the cooperation of strategic alliance from the perspective of evolutionary game theory. SCT explains the discontinuous changes caused by the changes in environmental parameters. Theoretically, we identify conditions where catastrophe can occur in the cooperation of alliance members.

  11. Analytical description for the critical fixations of evolutionary coordination games on finite complex structured populations

    NASA Astrophysics Data System (ADS)

    Zhang, Liye; Zou, Yong; Guan, Shuguang; Liu, Zonghua

    2015-04-01

    Evolutionary game theory is crucial to capturing the characteristic interaction patterns among selfish individuals. In a population of coordination games of two strategies, one of the central problems is to determine the fixation probability that the system reaches a state of networkwide of only one strategy, and the corresponding expectation times. The deterministic replicator equations predict the critical value of initial density of one strategy, which separates the two absorbing states of the system. However, numerical estimations of this separatrix show large deviations from the theory in finite populations. Here we provide a stochastic treatment of this dynamic process on complex networks of finite sizes as Markov processes, showing the evolutionary time explicitly. We describe analytically the effects of network structures on the intermediate fixations as observed in numerical simulations. Our theoretical predictions are validated by various simulations on both random and scale free networks. Therefore, our stochastic framework can be helpful in dealing with other networked game dynamics.

  12. A game for space

    NASA Astrophysics Data System (ADS)

    Häuplik-Meusburger, Sandra; Aguzzi, Manuela; Peldszus, Regina

    2010-02-01

    As countermeasure to heavy workloads or monotony, astronauts have drawn on leisure activities imported from Earth or invented in situ. Aside from consumption of media, physical exercise, Earth observation, communication with ground or crew and the practising of instruments, also games play an important role. With a few exceptions, the emphasis, however, lies on virtual games and software applications. A review of play activities in orbit and their benefits to date suggests a need for additional recreational opportunities. In response, an interactive strategy game for use in microgravity is presented that relies on interlocking sphere-shaped game pieces in order to make the most of the kinetic and sensory potential of reduced gravity conditions. Aside from the play value and aesthetics of this reconfigurable modular game structure, the activity may help maintain and enhance manual dexterity, mental alertness and sociability amongst the crew. The design solution and prototype are presented and needs for further research and development are outlined.

  13. Avatars in Analytical Gaming

    SciTech Connect

    Cowell, Andrew J.; Cowell, Amanda K.

    2009-08-29

    This paper discusses the design and use of anthropomorphic computer characters as nonplayer characters (NPC’s) within analytical games. These new environments allow avatars to play a central role in supporting training and education goals instead of planning the supporting cast role. This new ‘science’ of gaming, driven by high-powered but inexpensive computers, dedicated graphics processors and realistic game engines, enables game developers to create learning and training opportunities on par with expensive real-world training scenarios. However, there needs to be care and attention placed on how avatars are represented and thus perceived. A taxonomy of non-verbal behavior is presented and its application to analytical gaming discussed.

  14. Defining and Leveraging Game Qualities for Serious Games

    NASA Technical Reports Server (NTRS)

    Martin, Michael W.; Shen, Yuzhong

    2011-01-01

    Serious games can and should leverage the unique qualities of video games to effectively deliver educational experiences for the learners. However, leveraging these qualities is incumbent upon understanding what these unique 'game' qualities are , and how they can facilitate the learning process. This paper presents an examination of the meaning of the term 'game' . as it applies to both serious games and digital entertainment games. Through the examination of counter examples, we derive three game characteristics; games are self contained, provide a variety of meaningful choices, and are intrinsically compelling. We also discuss the theoretical educational foundations which support the application of these 'game qualities' to educational endeavors. This paper concludes with a presentation of results achieved through the application of these qualities and the applicable educational theories to teach learners about the periodic table of elements via a serious game developed by the authors.

  15. Stochastic calculus in physics

    SciTech Connect

    Fox, R.F.

    1987-03-01

    The relationship of Ito-Stratonovich stochastic calculus to studies of weakly colored noise is explained. A functional calculus approach is used to obtain an effective Fokker-Planck equation for the weakly colored noise regime. In a smooth limit, this representation produces the Stratonovich version of the Ito-Stratonovich calculus for white noise. It also provides an approach to steady state behavior for strongly colored noise. Numerical simulation algorithms are explored, and a novel suggestion is made for efficient and accurate simulation of white noise equations.

  16. Stochastic ontogenetic growth model

    NASA Astrophysics Data System (ADS)

    West, B. J.; West, D.

    2012-02-01

    An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.

  17. Stochastic thermodynamics of resetting

    NASA Astrophysics Data System (ADS)

    Fuchs, Jaco; Goldt, Sebastian; Seifert, Udo

    2016-03-01

    Stochastic dynamics with random resetting leads to a non-equilibrium steady state. Here, we consider the thermodynamics of resetting by deriving the first and second law for resetting processes far from equilibrium. We identify the contributions to the entropy production of the system which arise due to resetting and show that they correspond to the rate with which information is either erased or created. Using Landauer's principle, we derive a bound on the amount of work that is required to maintain a resetting process. We discuss different regimes of resetting, including a Maxwell demon scenario where heat is extracted from a bath at constant temperature.

  18. Asymmetrical Switch Costs in Children

    ERIC Educational Resources Information Center

    Ellefson, Michelle R.; Shapiron, Laura R.; Chater, Nick

    2006-01-01

    Switching between tasks produces decreases in performance as compared to repeating the same task. Asymmetrical switch costs occur when switching between two tasks of unequal difficulty. This asymmetry occurs because the cost is greater when switching to the less difficult task than when switching to the more difficult task. Various theories about…

  19. Harnessing Computer Games in Education

    ERIC Educational Resources Information Center

    Jong, Morris S. Y.; Shang, Junjie; Lee, Fong-Lok; Lee, Jimmy H. M.

    2008-01-01

    Besides the ability of making learning more interesting, educators and researchers have been exploring other pedagogical potentials of computer games. How to employ games for constructivist learning and teaching has become an attention in the field of education and game design in recent years. This article gives an introduction to game-based…

  20. Play Chinese Games. 1987, Revised.

    ERIC Educational Resources Information Center

    White, Caryn

    This document, designed to introduce all ages to a selection of popular Chinese games, describes these games and provides instructions and materials for making the items needed to play most of them. Section 1 suggests class activities that can be related to some of the games. Section 2 presents instructions for the physical or outdoor games of:…

  1. Video Games and Civic Engagement

    ERIC Educational Resources Information Center

    Perkins-Gough, Deborah

    2009-01-01

    According to a national telephone survey by the Pew Internet Project, 99 percent of boys and 94 percent of girls ages 12-17 play computer, Web, portable, or console games; and 50 percent play such games daily. The survey report, Teens, Video Games, and Civics, examines the extent and nature of teens' game playing and sheds some light on the…

  2. Simple Games . . . or Are They?

    ERIC Educational Resources Information Center

    Arn, Susan Kyle

    2006-01-01

    Students today begin using computers and playing video games as early as two years old. The technology behind these games is more complicated than most people can imagine. In this article, the author presents some simple number games which seem easy at the beginning, but as the games are repeated, mathematical content becomes more of the focus…

  3. 78 FR 11221 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal-State Class III Gaming Compact. SUMMARY: This notice publishes an extension of the gaming..., 2013. FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of...

  4. 78 FR 15738 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal--State Class III Gaming Compact. SUMMARY: This notice publishes an extension of the gaming..., 2013. FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of...

  5. 77 FR 43110 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal--State Class III Gaming Compact. SUMMARY: This notice publishes an extension of Gaming... FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the...

  6. 75 FR 55823 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of approved Tribal-State Class III Gaming Compact. SUMMARY: This notice publishes an extension of Gaming.... FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of...

  7. 75 FR 61511 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal-State Class III Gaming Compact. SUMMARY: This notice publishes an extension of Gaming..., 2010. FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of...

  8. 76 FR 8375 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal-State Class III Gaming Compact. SUMMARY: This notice publishes an extension of the Gaming..., 2011. FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of...

  9. 78 FR 62649 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Tribal-State Class III Gaming Compact taking effect. SUMMARY: This notice publishes the Class III Gaming... Gaming, Office of the Deputy Assistant Secretary--Policy and Economic Development, Washington, DC...

  10. 76 FR 52968 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal--State Class III Gaming Compact. SUMMARY: This notice publishes an extension of Gaming... FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the...

  11. 78 FR 17427 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ] ACTION: Notice of Approved Amended Gaming Compact. SUMMARY: This notice publishes the approval of the Amended Gaming Compact between the Sisseton-Wahpeton Sioux Tribe and the State of North Dakota; the Amended Gaming...

  12. 77 FR 45371 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal--State Class III Gaming Compact. SUMMARY: This notice publishes an extension of Gaming... FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the...

  13. 77 FR 59641 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal-State Class III Gaming Compact. SUMMARY: This notice publishes an extension of Gaming.... FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of...

  14. 76 FR 65208 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal--State Class III Gaming Compact. SUMMARY: This notice publishes an Approval of the Gaming..., Office of Indian Gaming, Office of the Deputy Assistant Secretary--Policy and Economic...

  15. 76 FR 33341 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal--State Class III Gaming Compact. SUMMARY: This notice publishes an extension of Gaming... FURTHER INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the...

  16. Stages for Children Inventing Games

    ERIC Educational Resources Information Center

    Butler, Joy

    2013-01-01

    This article offers practical advice for teachers interested in using Inventing Games (IG) as a way to facilitate learning about game structures, rules, and the principles of fair play that they can apply not only to game play, but to everyday life as members of a democratically organized society. Inventing Games gives students the opportunity to…

  17. Situating Ethics in Games Education

    ERIC Educational Resources Information Center

    Butler, Joy

    2013-01-01

    This paper posits that Inventing Games (IG), an aspect of the games curriculum based on principles of Teaching Games for Understanding (TGfU), opens up important spaces for teaching social and ethical understanding. Games have long been regarded as a site for moral development. For most teachers, however, ethical principles have been seen as…

  18. Teaching Game Sense in Soccer

    ERIC Educational Resources Information Center

    Pill, Shane

    2012-01-01

    "Game sense" is a sport-specific iteration of the teaching games for understanding model, designed to balance physical development of motor skill and fitness with the development of game understanding. Game sense can foster a shared vision for sport learning that bridges school physical education and community sport. This article explains how to…

  19. The Management of Management Games.

    ERIC Educational Resources Information Center

    Bryant, Nigel; Corless, Helen

    1986-01-01

    This discussion of whether management games should be used for managerial performance appraisal addresses definitions, features, and purposes of management games; performance appraisal process; and problems with use of management games for appraisal. It is concluded that using management games in education is not compatible with using them for…

  20. Video Games: Competing with Machines.

    ERIC Educational Resources Information Center

    Hanson, Jarice

    This study was designed to compare the attitudinal and lifestyle patterns of video game players with the amount of time they play, the number of games they play, and the types of video games they play, to determine whether their personal use of time and attitude toward leisure is different when playing video games. Subjects were 200 individuals…

  1. Leading the Game, Losing the Competition: Identifying Leaders and Followers in a Repeated Game.

    PubMed

    Seip, Knut Lehre; Grøn, Øyvind

    2016-01-01

    We explore a new method for identifying leaders and followers, LF, in repeated games by analyzing an experimental, repeated (50 rounds) game where Row player shifts the payoff between small and large values-a type of "investor" and Column player determines who gets the payoff-a type of "manager". We found that i) the Investor (Row) most often is a leading player and the manager (Column) a follower. The longer the Investor leads the game, the higher is both player's payoff. Surprisingly however, it is always the Manager that achieves the largest payoff. ii) The game has an efficient cooperative strategy where the players alternate in receiving a high payoff, but the players never identify, or accept, that strategy. iii) Under the assumption that the information used by the players is closely associated with the leader- follower sequence, and that information is available before the player's decisions are made, the players switched LF- strategy primarily as a function of information on the Investor's investment and moves and secondly as a function of the Manager's payoff. PMID:26968032

  2. Leading the Game, Losing the Competition: Identifying Leaders and Followers in a Repeated Game

    PubMed Central

    Seip, Knut Lehre; Grøn, Øyvind

    2016-01-01

    We explore a new method for identifying leaders and followers, LF, in repeated games by analyzing an experimental, repeated (50 rounds) game where Row player shifts the payoff between small and large values–a type of “investor” and Column player determines who gets the payoff–a type of “manager”. We found that i) the Investor (Row) most often is a leading player and the manager (Column) a follower. The longer the Investor leads the game, the higher is both player’s payoff. Surprisingly however, it is always the Manager that achieves the largest payoff. ii) The game has an efficient cooperative strategy where the players alternate in receiving a high payoff, but the players never identify, or accept, that strategy. iii) Under the assumption that the information used by the players is closely associated with the leader- follower sequence, and that information is available before the player’s decisions are made, the players switched LF- strategy primarily as a function of information on the Investor’s investment and moves and secondly as a function of the Manager’s payoff. PMID:26968032

  3. Manually operated coded switch

    DOEpatents

    Barnette, Jon H.

    1978-01-01

    The disclosure relates to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made.

  4. Multidimensional set switching.

    PubMed

    Hahn, Sowon; Andersen, George J; Kramer, Arthur F

    2003-06-01

    The present study examined the organization of preparatory processes that underlie set switching and, more specifically, switch costs. On each trial, subjects performed one of two perceptual judgment tasks, color or shape discrimination. Subjects also responded with one of two different response sets. The task set and/or the response set switched from one to the other after 2-6 repeated trials. Response set, task set, and double set switches were performed in both blocked and randomized conditions. Subjects performed with short (100-msec) and long (800-msec) preparatory intervals. Task and response set switches had an additive effect on reaction times (RTs) in the blocked condition. Such a pattern of results suggests a serial organization of preparatory processes when the nature of switches is predictable. However, task and response set switches had an underadditive effect on RTs in the random condition when subjects performed with a brief cue-to-target interval. This pattern of results suggests overlapping task and response set preparation. These findings are discussed in terms of strategic control of preparatory processes in set switching. PMID:12921431

  5. Reflective HTS switch

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.

    1994-01-01

    A HTS switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time.

  6. Reflective HTS switch

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Hohenwarter, G.K.G.

    1994-09-27

    A HTS (High Temperature Superconductor) switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time. 6 figs.

  7. Stochastic power flow modeling

    SciTech Connect

    Not Available

    1980-06-01

    The stochastic nature of customer demand and equipment failure on large interconnected electric power networks has produced a keen interest in the accurate modeling and analysis of the effects of probabilistic behavior on steady state power system operation. The principle avenue of approach has been to obtain a solution to the steady state network flow equations which adhere both to Kirchhoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques. Clearly the need of the present is to develop sound techniques for producing meaningful data to serve as input. This research has addressed this end and serves to bridge the gap between electric demand modeling, equipment failure analysis, etc., and the area of algorithm development. Therefore, the scope of this work lies squarely on developing an efficient means of producing sensible input information in the form of probability distributions for the many types of solution algorithms that have been developed. Two major areas of development are described in detail: a decomposition of stochastic processes which gives hope of stationarity, ergodicity, and perhaps even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.

  8. Stochastic blind motion deblurring.

    PubMed

    Xiao, Lei; Gregson, James; Heide, Felix; Heidrich, Wolfgang

    2015-10-01

    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can, therefore, only be obtained with the help of prior information in the form of (often nonconvex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with Peak Signal-to-Noise Ratio (PSNR) values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms. PMID:25974941

  9. Stochastic Quantum Gas Dynamics

    NASA Astrophysics Data System (ADS)

    Proukakis, Nick P.; Cockburn, Stuart P.

    2010-03-01

    We study the dynamics of weakly-interacting finite temperature Bose gases via the Stochastic Gross-Pitaevskii equation (SGPE). As a first step, we demonstrate [jointly with A. Negretti (Ulm, Germany) and C. Henkel (Potsdam, Germany)] that the SGPE provides a significantly better method for generating an equilibrium state than the number-conserving Bogoliubov method (except for low temperatures and small atom numbers). We then study [jointly with H. Nistazakis and D.J. Frantzeskakis (University of Athens, Greece), P.G.Kevrekidis (University of Massachusetts) and T.P. Horikis (University of Ioannina, Greece)] the dynamics of dark solitons in elongated finite temperature condensates. We demonstrate numerical shot-to-shot variations in soliton trajectories (S.P. Cockburn et al., arXiv:0909.1660.), finding individual long-lived trajectories as in experiments. In our simulations, these variations arise from fluctuations in the phase and density of the underlying medium. We provide a detailed statistical analysis, proposing regimes for the controlled experimental demonstration of this effect; we also discuss the extent to which simpler models can be used to mimic the features of ensemble-averaged stochastic trajectories.

  10. Gene regulation and noise reduction by coupling of stochastic processes

    PubMed Central

    Hornos, José Eduardo M.; Reinitz, John

    2015-01-01

    Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447

  11. Gene regulation and noise reduction by coupling of stochastic processes

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  12. Multi-scenario modelling of uncertainty in stochastic chemical systems

    SciTech Connect

    Evans, R. David; Ricardez-Sandoval, Luis A.

    2014-09-15

    Uncertainty analysis has not been well studied at the molecular scale, despite extensive knowledge of uncertainty in macroscale systems. The ability to predict the effect of uncertainty allows for robust control of small scale systems such as nanoreactors, surface reactions, and gene toggle switches. However, it is difficult to model uncertainty in such chemical systems as they are stochastic in nature, and require a large computational cost. To address this issue, a new model of uncertainty propagation in stochastic chemical systems, based on the Chemical Master Equation, is proposed in the present study. The uncertain solution is approximated by a composite state comprised of the averaged effect of samples from the uncertain parameter distributions. This model is then used to study the effect of uncertainty on an isomerization system and a two gene regulation network called a repressilator. The results of this model show that uncertainty in stochastic systems is dependent on both the uncertain distribution, and the system under investigation. -- Highlights: •A method to model uncertainty on stochastic systems was developed. •The method is based on the Chemical Master Equation. •Uncertainty in an isomerization reaction and a gene regulation network was modelled. •Effects were significant and dependent on the uncertain input and reaction system. •The model was computationally more efficient than Kinetic Monte Carlo.

  13. Stochastic transitions in a bistable reaction system on the membrane

    PubMed Central

    Kochańczyk, Marek; Jaruszewicz, Joanna; Lipniacki, Tomasz

    2013-01-01

    Transitions between steady states of a multi-stable stochastic system in the perfectly mixed chemical reactor are possible only because of stochastic switching. In realistic cellular conditions, where diffusion is limited, transitions between steady states can also follow from the propagation of travelling waves. Here, we study the interplay between the two modes of transition for a prototype bistable system of kinase–phosphatase interactions on the plasma membrane. Within microscopic kinetic Monte Carlo simulations on the hexagonal lattice, we observed that for finite diffusion the behaviour of the spatially extended system differs qualitatively from the behaviour of the same system in the well-mixed regime. Even when a small isolated subcompartment remains mostly inactive, the chemical travelling wave may propagate, leading to the activation of a larger compartment. The activating wave can be induced after a small subdomain is activated as a result of a stochastic fluctuation. Such a spontaneous onset of activity is radically more probable in subdomains characterized by slower diffusion. Our results show that a local immobilization of substrates can lead to the global activation of membrane proteins by the mechanism that involves stochastic fluctuations followed by the propagation of a semi-deterministic travelling wave. PMID:23635492

  14. Effects of adaptive dynamical linking in networked games.

    PubMed

    Yang, Zhihu; Li, Zhi; Wu, Te; Wang, Long

    2013-10-01

    The role of dynamical topologies in the evolution of cooperation has received considerable attention, as some studies have demonstrated that dynamical networks are much better than static networks in terms of boosting cooperation. Here we study a dynamical model of evolution of cooperation on stochastic dynamical networks in which there are no permanent partners to each agent. Whenever a new link is created, its duration is randomly assigned without any bias or preference. We allow the agent to adaptively adjust the duration of each link during the evolution in accordance with the feedback from game interactions. By Monte Carlo simulations, we find that cooperation can be remarkably promoted by this adaptive dynamical linking mechanism both for the game of pairwise interactions, such as the Prisoner's Dilemma game (PDG), and for the game of group interactions, illustrated by the public goods game (PGG). And the faster the adjusting rate, the more successful the evolution of cooperation. We also show that in this context weak selection favors cooperation much more than strong selection does. What is particularly meaningful is that the prosperity of cooperation in this study indicates that the rationality and selfishness of a single agent in adjusting social ties can lead to the progress of altruism of the whole population. PMID:24229137

  15. Effects of adaptive dynamical linking in networked games

    NASA Astrophysics Data System (ADS)

    Yang, Zhihu; Li, Zhi; Wu, Te; Wang, Long

    2013-10-01

    The role of dynamical topologies in the evolution of cooperation has received considerable attention, as some studies have demonstrated that dynamical networks are much better than static networks in terms of boosting cooperation. Here we study a dynamical model of evolution of cooperation on stochastic dynamical networks in which there are no permanent partners to each agent. Whenever a new link is created, its duration is randomly assigned without any bias or preference. We allow the agent to adaptively adjust the duration of each link during the evolution in accordance with the feedback from game interactions. By Monte Carlo simulations, we find that cooperation can be remarkably promoted by this adaptive dynamical linking mechanism both for the game of pairwise interactions, such as the Prisoner's Dilemma game (PDG), and for the game of group interactions, illustrated by the public goods game (PGG). And the faster the adjusting rate, the more successful the evolution of cooperation. We also show that in this context weak selection favors cooperation much more than strong selection does. What is particularly meaningful is that the prosperity of cooperation in this study indicates that the rationality and selfishness of a single agent in adjusting social ties can lead to the progress of altruism of the whole population.

  16. A Novel Molecular Switch

    PubMed Central

    Daber, Robert; Lewis, Mitchell

    2009-01-01

    Transcriptional regulation is a fundamental process for regulating the flux of all metabolic pathways. For the last several decades, the lac operon has served as a valuable model for studying transcription. More recently, the switch that controls the operon has also been successfully adapted to function in mammalian cells. Here we describe how, using directed evolution, we have created a novel switch that recognizes an asymmetric operator sequence. The new switch has a repressor with altered headpiece domains for operator recognition, and a redesigned dimer interface to create a heterodimeric repressor. Quite unexpectedly, the heterodimeric switch functions better than the natural system. It can repress more tightly than the naturally occurring switch of the lac operon; it is less leaky and can be induced more efficiently. Ultimately these novel repressors could be evolved to recognize eukaryotic promoters and used to regulate gene expression in mammalian systems. PMID:19540845

  17. Nanoscale memristive radiofrequency switches

    NASA Astrophysics Data System (ADS)

    Pi, Shuang; Ghadiri-Sadrabadi, Mohammad; Bardin, Joseph C.; Xia, Qiangfei

    2015-06-01

    Radiofrequency switches are critical components in wireless communication systems and consumer electronics. Emerging devices include switches based on microelectromechanical systems and phase-change materials. However, these devices suffer from disadvantages such as large physical dimensions and high actuation voltages. Here we propose and demonstrate a nanoscale radiofrequency switch based on a memristive device. The device can be programmed with a voltage as low as 0.4 V and has an ON/OFF conductance ratio up to 1012 with long state retention. We measure the radiofrequency performance of the switch up to 110 GHz and demonstrate low insertion loss (0.3 dB at 40 GHz), high isolation (30 dB at 40 GHz), an average cutoff frequency of 35 THz and competitive linearity and power-handling capability. Our results suggest that, in addition to their application in memory and computing, memristive devices are also a leading contender for radiofrequency switch applications.

  18. Erected mirror optical switch

    DOEpatents

    Allen, James J.

    2005-06-07

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

  19. Switch on, switch off: stiction in nanoelectromechanical switches

    NASA Astrophysics Data System (ADS)

    Wagner, Till J. W.; Vella, Dominic

    2013-07-01

    We present a theoretical investigation of stiction in nanoscale electromechanical contact switches. We develop a mathematical model to describe the deflection of a cantilever beam in response to both electrostatic and van der Waals forces. Particular focus is given to the question of whether adhesive van der Waals forces cause the cantilever to remain in the ‘ON’ state even when the electrostatic forces are removed. In contrast to previous studies, our theory accounts for deflections with large slopes (i.e. geometrically nonlinear). We solve the resulting equations numerically to study how a cantilever beam adheres to a rigid electrode: transitions between ‘free’, ‘pinned’ and ‘clamped’ states are shown to be discontinuous and to exhibit significant hysteresis. Our findings are compared to previous results from linearized models and the implications for nanoelectromechanical cantilever switch design are discussed.

  20. Switch on, switch off: stiction in nanoelectromechanical switches.

    PubMed

    Wagner, Till J W; Vella, Dominic

    2013-07-12

    We present a theoretical investigation of stiction in nanoscale electromechanical contact switches. We develop a mathematical model to describe the deflection of a cantilever beam in response to both electrostatic and van der Waals forces. Particular focus is given to the question of whether adhesive van der Waals forces cause the cantilever to remain in the 'ON' state even when the electrostatic forces are removed. In contrast to previous studies, our theory accounts for deflections with large slopes (i.e. geometrically nonlinear). We solve the resulting equations numerically to study how a cantilever beam adheres to a rigid electrode: transitions between 'free', 'pinned' and 'clamped' states are shown to be discontinuous and to exhibit significant hysteresis. Our findings are compared to previous results from linearized models and the implications for nanoelectromechanical cantilever switch design are discussed. PMID:23759938

  1. Multiobjective optimization in structural design with uncertain parameters and stochastic processes

    NASA Technical Reports Server (NTRS)

    Rao, S. S.

    1984-01-01

    The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.

  2. Games and Diabetes

    PubMed Central

    Lazem, Shaimaa; Webster, Mary; Holmes, Wayne; Wolf, Motje

    2015-01-01

    Here we review 18 articles that describe the design and evaluation of 1 or more games for diabetes from technical, methodological, and theoretical perspectives. We undertook searches covering the period 2010 to May 2015 in the ACM, IEEE, Journal of Medical Internet Research, Studies in Health Technology and Informatics, and Google Scholar online databases using the keywords “children,” “computer games,” “diabetes,” “games,” “type 1,” and “type 2” in various Boolean combinations. The review sets out to establish, for future research, an understanding of the current landscape of digital games designed for children with diabetes. We briefly explored the use and impact of well-established learning theories in such games. The most frequently mentioned theoretical frameworks were social cognitive theory and social constructivism. Due to the limitations of the reported evaluation methodologies, little evidence was found to support the strong promise of games for diabetes. Furthermore, we could not establish a relation between design features and the game outcomes. We argue that an in-depth discussion about the extent to which learning theories could and should be manifested in the design decisions is required. PMID:26337753

  3. Asymmetric Evolutionary Games

    PubMed Central

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner’s Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games. PMID:26308326

  4. Towards single molecule switches.

    PubMed

    Zhang, Jia Lin; Zhong, Jian Qiang; Lin, Jia Dan; Hu, Wen Ping; Wu, Kai; Xu, Guo Qin; Wee, Andrew T S; Chen, Wei

    2015-05-21

    The concept of using single molecules as key building blocks for logic gates, diodes and transistors to perform basic functions of digital electronic devices at the molecular scale has been explored over the past decades. However, in addition to mimicking the basic functions of current silicon devices, molecules often possess unique properties that have no parallel in conventional materials and promise new hybrid devices with novel functions that cannot be achieved with equivalent solid-state devices. The most appealing example is the molecular switch. Over the past decade, molecular switches on surfaces have been intensely investigated. A variety of external stimuli such as light, electric field, temperature, tunneling electrons and even chemical stimulus have been used to activate these molecular switches between bistable or even multiple states by manipulating molecular conformations, dipole orientations, spin states, charge states and even chemical bond formation. The switching event can occur either on surfaces or in break junctions. The aim of this review is to highlight recent advances in molecular switches triggered by various external stimuli, as investigated by low-temperature scanning tunneling microscopy (LT-STM) and the break junction technique. We begin by presenting the molecular switches triggered by various external stimuli that do not provide single molecule selectivity, referred to as non-selective switching. Special focus is then given to selective single molecule switching realized using the LT-STM tip on surfaces. Single molecule switches operated by different mechanisms are reviewed and discussed. Finally, molecular switches embedded in self-assembled monolayers (SAMs) and single molecule junctions are addressed. PMID:25757483

  5. Variance decomposition in stochastic simulators

    SciTech Connect

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  6. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems

    DOE PAGESBeta

    Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan

    2015-05-19

    The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method.more » Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.« less

  7. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems

    SciTech Connect

    Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan

    2015-05-19

    The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method. Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.

  8. Variance decomposition in stochastic simulators

    NASA Astrophysics Data System (ADS)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  9. Exploring Game Experiences and Game Leadership in Massively Multiplayer Online Role-Playing Games

    ERIC Educational Resources Information Center

    Jang, YeiBeech; Ryu, SeoungHo

    2011-01-01

    This study explored the in-game experiences of massively multiplayer online role-playing game (MMORPG) players focusing on game leadership and offline leadership. MMORPGs have enormous potential to provide gameplayers with rich social experiences through various interactions along with social activities such as joining a game community, team play…

  10. Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons

    PubMed Central

    Sengupta, Abhronil; Panda, Priyadarshini; Wijesinghe, Parami; Kim, Yusung; Roy, Kaushik

    2016-01-01

    Brain-inspired computing architectures attempt to mimic the computations performed in the neurons and the synapses in the human brain in order to achieve its efficiency in learning and cognitive tasks. In this work, we demonstrate the mapping of the probabilistic spiking nature of pyramidal neurons in the cortex to the stochastic switching behavior of a Magnetic Tunnel Junction in presence of thermal noise. We present results to illustrate the efficiency of neuromorphic systems based on such probabilistic neurons for pattern recognition tasks in presence of lateral inhibition and homeostasis. Such stochastic MTJ neurons can also potentially provide a direct mapping to the probabilistic computing elements in Belief Networks for performing regenerative tasks. PMID:27443913

  11. Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons.

    PubMed

    Sengupta, Abhronil; Panda, Priyadarshini; Wijesinghe, Parami; Kim, Yusung; Roy, Kaushik

    2016-01-01

    Brain-inspired computing architectures attempt to mimic the computations performed in the neurons and the synapses in the human brain in order to achieve its efficiency in learning and cognitive tasks. In this work, we demonstrate the mapping of the probabilistic spiking nature of pyramidal neurons in the cortex to the stochastic switching behavior of a Magnetic Tunnel Junction in presence of thermal noise. We present results to illustrate the efficiency of neuromorphic systems based on such probabilistic neurons for pattern recognition tasks in presence of lateral inhibition and homeostasis. Such stochastic MTJ neurons can also potentially provide a direct mapping to the probabilistic computing elements in Belief Networks for performing regenerative tasks. PMID:27443913

  12. On Path Attractors, Stochastic Bifurcation and Dephasing In Genetic Networks

    NASA Astrophysics Data System (ADS)

    Potoyan, Davit

    2015-03-01

    Gene regulatory networks are driven stochastic systems with the noise having two distinct components due to the to birth and death of metabolite molecules and dichotomous nature of gene state switching. Presence of dichotomous gene noise alone has the capacity to significantly perturb the optimal transition paths and steady state probability distributions compared to the macroscopic models and their weak noise approximations. Most importantly dichotomous gene noise can also lead to multimodal distributions due to stochastic bifurcation of the underlying nonlinear dynamical system, which underlies the mechanism of formation of population heterogeneity. In this note we derive approximate path based expression of the time dependent probability of gene circuits which enables deeper exploration of the role of gene noise in formation of epigenetic states and dephasing-like phenomena.

  13. Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons

    NASA Astrophysics Data System (ADS)

    Sengupta, Abhronil; Panda, Priyadarshini; Wijesinghe, Parami; Kim, Yusung; Roy, Kaushik

    2016-07-01

    Brain-inspired computing architectures attempt to mimic the computations performed in the neurons and the synapses in the human brain in order to achieve its efficiency in learning and cognitive tasks. In this work, we demonstrate the mapping of the probabilistic spiking nature of pyramidal neurons in the cortex to the stochastic switching behavior of a Magnetic Tunnel Junction in presence of thermal noise. We present results to illustrate the efficiency of neuromorphic systems based on such probabilistic neurons for pattern recognition tasks in presence of lateral inhibition and homeostasis. Such stochastic MTJ neurons can also potentially provide a direct mapping to the probabilistic computing elements in Belief Networks for performing regenerative tasks.

  14. Noisy quantum game

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Ling; Kwek, L. C.; Oh, C. H.

    2002-05-01

    In a recent paper [D. A. Meyer, Phys. Rev. Lett. 82, 1052 (1999)], it has been shown that a classical zero-sum strategic game can become a winning quantum game for the player with a quantum device. Nevertheless, it is well known that quantum systems easily decohere in noisy environments. In this paper, we show that if the handicapped player with classical means can delay his action for a sufficiently long time, the quantum version reverts to the classical zero-sum game under decoherence.

  15. The Genomic Medicine Game.

    PubMed

    Tran, Elvis; de Andrés-Galiana, Enrique J; Benitez, Sonia; Martin-Sanchez, Fernando; Lopez-Campos, Guillermo H

    2016-01-01

    With advancements in genomics technology, health care has been improving and new paradigms of medicine such as genomic medicine have evolved. The education of clinicians, researchers and students to face the challenges posed by these new approaches, however, has been often lagging behind. From this the Genomic Medicine Game, an educational tool, was created for the purpose of conceptualizing the key components of Genomic Medicine. A number of phenotype-genotype associations were found through a literature review, which was used to be a base for the concepts the Genomic Medicine Game would focus on. Built in Java, the game was successfully tested with promising results. PMID:27577486

  16. Quantum Game of Life

    NASA Astrophysics Data System (ADS)

    Glick, Aaron; Carr, Lincoln; Calarco, Tommaso; Montangero, Simone

    2014-03-01

    In order to investigate the emergence of complexity in quantum systems, we present a quantum game of life, inspired by Conway's classic game of life. Through Matrix Product State (MPS) calculations, we simulate the evolution of quantum systems, dictated by a Hamiltonian that defines the rules of our quantum game. We analyze the system through a number of measures which elicit the emergence of complexity in terms of spatial organization, system dynamics, and non-local mutual information within the network. Funded by NSF

  17. Constructionist Gaming: Understanding the Benefits of Making Games for Learning

    PubMed Central

    Kafai, Yasmin B.; Burke, Quinn

    2015-01-01

    There has been considerable interest in examining the educational potential of playing video games. One crucial element, however, has traditionally been left out of these discussions—namely, children's learning through making their own games. In this article, we review and synthesize 55 studies from the last decade on making games and learning. We found that the majority of studies focused on teaching coding and academic content through game making, and that few studies explicitly examined the roles of collaboration and identity in the game making process. We argue that future discussions of serious gaming ought to be more inclusive of constructionist approaches to realize the full potential of serious gaming. Making games, we contend, not only more genuinely introduces children to a range of technical skills but also better connects them to each other, addressing the persistent issues of access and diversity present in traditional digital gaming cultures. PMID:27019536

  18. Second-Chance Signal Transduction Explains Cooperative Flagellar Switching

    PubMed Central

    Zot, Henry G.; Hasbun, Javier E.; Van Minh, Nguyen

    2012-01-01

    The reversal of flagellar motion (switching) results from the interaction between a switch complex of the flagellar rotor and a torque-generating stationary unit, or stator (motor unit). To explain the steeply cooperative ligand-induced switching, present models propose allosteric interactions between subunits of the rotor, but do not address the possibility of a reaction that stimulates a bidirectional motor unit to reverse direction of torque. During flagellar motion, the binding of a ligand-bound switch complex at the dwell site could excite a motor unit. The probability that another switch complex of the rotor, moving according to steady-state rotation, will reach the same dwell site before that motor unit returns to ground state will be determined by the independent decay rate of the excited-state motor unit. Here, we derive an analytical expression for the energy coupling between a switch complex and a motor unit of the stator complex of a flagellum, and demonstrate that this model accounts for the cooperative switching response without the need for allosteric interactions. The analytical result can be reproduced by simulation when (1) the motion of the rotor delivers a subsequent ligand-bound switch to the excited motor unit, thereby providing the excited motor unit with a second chance to remain excited, and (2) the outputs from multiple independent motor units are constrained to a single all-or-none event. In this proposed model, a motor unit and switch complex represent the components of a mathematically defined signal transduction mechanism in which energy coupling is driven by steady-state and is regulated by stochastic ligand binding. Mathematical derivation of the model shows the analytical function to be a general form of the Hill equation (Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40: iv–vii). PMID:22844429

  19. Biochemical simulations: stochastic, approximate stochastic and hybrid approaches

    PubMed Central

    2009-01-01

    Computer simulations have become an invaluable tool to study the sometimes counterintuitive temporal dynamics of (bio-)chemical systems. In particular, stochastic simulation methods have attracted increasing interest recently. In contrast to the well-known deterministic approach based on ordinary differential equations, they can capture effects that occur due to the underlying discreteness of the systems and random fluctuations in molecular numbers. Numerous stochastic, approximate stochastic and hybrid simulation methods have been proposed in the literature. In this article, they are systematically reviewed in order to guide the researcher and help her find the appropriate method for a specific problem. PMID:19151097

  20. Optical Circuit Switched Protocol

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor)

    2000-01-01

    The present invention is a system and method embodied in an optical circuit switched protocol for the transmission of data through a network. The optical circuit switched protocol is an all-optical circuit switched network and includes novel optical switching nodes for transmitting optical data packets within a network. Each optical switching node comprises a detector for receiving the header, header detection logic for translating the header into routing information and eliminating the header, and a controller for receiving the routing information and configuring an all optical path within the node. The all optical path located within the node is solely an optical path without having electronic storage of the data and without having optical delay of the data. Since electronic storage of the header is not necessary and the initial header is eliminated by the first detector of the first switching node. multiple identical headers are sent throughout the network so that subsequent switching nodes can receive and read the header for setting up an optical data path.

  1. Optical packet switching

    NASA Astrophysics Data System (ADS)

    Shekel, Eyal; Ruschin, Shlomo; Majer, Daniel; Levy, Jeff; Matmon, Guy; Koenigsberg, Lisa; Vecht, Jacob; Geron, Amir; Harlavan, Rotem; Shfaram, Harel; Arbel, Arnon; McDermott, Tom; Brewer, Tony

    2005-02-01

    We report here a scalable, multichassis, 6.3 terabit core router, which utilizes our proprietary optical switch. The router is commercially available and deployed in several customer sites. Our solution combines optical switching with electronic routing. An internal optical packet switching network interconnects the router"s electronic line cards, where routing and buffering functions take place electronically. The system architecture and performance will be described. The optical switch is based on Optical Phased Array (OPA) technology. It is a 64 x 64, fully non-blocking, optical crossbar switch, capable of switching in a fraction of a nanosecond. The basic principles of operation will be explained. Loss and crosstalk results will be presented, as well as the results of BER measurements of a 160 Gbps transmission through one channel. Basic principles of operation and measured results will be presented for the burst-mode-receivers, arbitration algorithm and synchronization. Finally, we will present some of our current research work on a next-generation optical switch. The technological issues we have solved in our internal optical packet network can have broad applicability to any global optical packet network.

  2. Stochastic reconstruction of sandstones

    PubMed

    Manwart; Torquato; Hilfer

    2000-07-01

    A simulated annealing algorithm is employed to generate a stochastic model for a Berea sandstone and a Fontainebleau sandstone, with each a prescribed two-point probability function, lineal-path function, and "pore size" distribution function, respectively. We find that the temperature decrease of the annealing has to be rather quick to yield isotropic and percolating configurations. A comparison of simple morphological quantities indicates good agreement between the reconstructions and the original sandstones. Also, the mean survival time of a random walker in the pore space is reproduced with good accuracy. However, a more detailed investigation by means of local porosity theory shows that there may be significant differences of the geometrical connectivity between the reconstructed and the experimental samples. PMID:11088546

  3. Solid state switch

    DOEpatents

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  4. SPARK GAP SWITCH

    DOEpatents

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  5. Photoconductive switch package

    DOEpatents

    Ca[rasp, George J

    2013-10-22

    A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the central portion to actuate the switch.

  6. Photoconductive switch package

    SciTech Connect

    Caporaso, George J.

    2015-10-27

    A photoconductive switch is formed of a substrate that has a central portion of SiC or other photoconductive material and an outer portion of cvd-diamond or other suitable material surrounding the central portion. Conducting electrodes are formed on opposed sides of the substrate, with the electrodes extending beyond the central portion and the edges of the electrodes lying over the outer portion. Thus any high electric fields produced at the edges of the electrodes lie outside of and do not affect the central portion, which is the active switching element. Light is transmitted through the outer portion to the central portion to actuate the switch.

  7. Electromechanical magnetization switching

    SciTech Connect

    Chudnovsky, Eugene M.; Jaafar, Reem

    2015-03-14

    We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained.

  8. Brains on video games.

    PubMed

    Bavelier, Daphne; Green, C Shawn; Han, Doug Hyun; Renshaw, Perry F; Merzenich, Michael M; Gentile, Douglas A

    2011-12-01

    The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games 'damage the brain' or 'boost brain power' do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affect cognition and behaviour, and explain how this knowledge can be harnessed for educational and rehabilitation purposes. As research in this area is still in its early days, the contributors of this Viewpoint also discuss several issues and challenges that should be addressed to move the field forward. PMID:22095065

  9. Interactive Health Games

    MedlinePlus

    ... Your Knowledge (National Institute on Drug Abuse) F Fire Safety Sparky the Fire Dog (National Fire Protection ... Diseases Play the Electrocardiogram Game (Nobel Foundation) I Immune System and Disorders Play the Immune System Defender ...

  10. Brains on video games

    PubMed Central

    Bavelier, Daphne; Green, C. Shawn; Han, Doug Hyun; Renshaw, Perry F.; Merzenich, Michael M.; Gentile, Douglas A.

    2015-01-01

    The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games ‘damage the brain’ or ‘boost brain power’ do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affect cognition and behaviour, and explain how this knowledge can be harnessed for educational and rehabilitation purposes. As research in this area is still in its early days, the contributors of this Viewpoint also discuss several issues and challenges that should be addressed to move the field forward. PMID:22095065

  11. Play the Mosquito Game

    MedlinePlus

    ... of the Cell Cycle Diabetes and Insulin DNA - RNA - Protein DNA - the Double Helix Ear Pages ECG/ ... About the games Malaria is one of the world's most common diseases, caused by a parasite that ...

  12. The Game of Writing

    ERIC Educational Resources Information Center

    Perron, John D.

    1972-01-01

    Author describes a series of games that tries to duplicate the natural writing act under group conditions, (which) frees the teacher from the effort of materials' production (and) places the burden of creating raw materials on the student. (Author)

  13. The Atomic Dating Game.

    ERIC Educational Resources Information Center

    Cummo, Evelyn; Matthews, Catherine E.

    2002-01-01

    Presents an activity designed to provide students with opportunities to practice drawing atomic models and discover the logical pairings of whole families on the periodic table. Follows the format of a television game show. (DDR)

  14. Rethinking Fair Games

    ERIC Educational Resources Information Center

    Coffey, David C.; Richardson, Mary G.

    2005-01-01

    This article addresses misconceptions related to what makes an unfair game fair and describes from a personal perspective the process of discovering for oneself when a particular mathematical method works. (Contains 3 figures and 2 tables.)

  15. Robust mean field games for coupled Markov jump linear systems

    NASA Astrophysics Data System (ADS)

    Moon, Jun; Başar, Tamer

    2016-07-01

    We consider robust stochastic large population games for coupled Markov jump linear systems (MJLSs). The N agents' individual MJLSs are governed by different infinitesimal generators, and are affected not only by the control input but also by an individual disturbance (or adversarial) input. The mean field term, representing the average behaviour of N agents, is included in the individual worst-case cost function to capture coupling effects among agents. To circumvent the computational complexity and analyse the worst-case effect of the disturbance, we use robust mean field game theory to design low-complexity robust decentralised controllers and to characterise the associated worst-case disturbance. We show that with the individual robust decentralised controller and the corresponding worst-case disturbance, which constitute a saddle-point solution to a generic stochastic differential game for MJLSs, the actual mean field behaviour can be approximated by a deterministic function which is a fixed-point solution to the constructed mean field system. We further show that the closed-loop system is uniformly stable independent of N, and an approximate optimality can be obtained in the sense of ε-Nash equilibrium, where ε can be taken to be arbitrarily close to zero as N becomes sufficiently large. A numerical example is included to illustrate the results.

  16. Electrical Breakdown Physics in Photoconductive Semiconductor Switches (PCSS).

    SciTech Connect

    Mar, Alan; Zutavern, Fred J.; Vawter, Gregory A.; Hjalmarson, Harold P.; Gallegos, Richard Joseph; Bigman, Verle Howard

    2016-01-01

    Advanced switching devices with long lifetime will be critical components for Linear Transformer Drivers (LTDs) in next-generation accelerators. LTD designs employ high switch counts. With current gas switch technology at %7E10e3 shot life, a potential game-changer would be the development of a reliable low-impedance (%3C35nh) optically-triggered compact solid-state switch capable of switching 200kV and 50kA with 10e5 shotlife or better. Other applications of this technology, are pulse shaping programmable systems for dynamic material studies (Z-next, Genesis), efficient pulsed power systems for biofuel feedstock, short pulse (10 ns) accelerator designs for the Defense Threat Reduction Agency (DTRA), and sprytron replacements in NW firing sets. This LDRD project has succeeded in developing new optically-triggered photoconductive semiconductor switch (PCSS) designs that show great promise for scaling to modules capable of 200kV (DC) and 5kA current that can be stacked in parallel to achieve 100's of kA with 10e5 shot lifetime. . Executive Summary Advanced switching devices with long lifetime will be critical components for Linear Transformer Drivers (LTDs) in next-generation accelerators. LTD designs employ high switch counts. With current gas switch technology at %7E10e3 shot life, a potential game-changer would be the development of a reliable low-impedance (%3C35nh) optically-triggered compact solid-state switch capable of switching 200kV and 50kA with 10e5 shotlife or better. Other applications of this technology, are pulse shaping programmable systems for dynamic material studies (Z-next, Genesis), efficient pulsed power systems for biofuel feedstock, short pulse (10 ns) accelerator designs for the Defense Threat Reduction Agency (DTRA), and sprytron replacements in NW firing sets. This LDRD project has succeeded in developing new optically-triggered photoconductive semiconductor switch (PCSS) designs that show great promise for scaling to modules capable

  17. RES: Regularized Stochastic BFGS Algorithm

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Ribeiro, Alejandro

    2014-12-01

    RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.

  18. Quantum Games under Decoherence

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Qiu, Daowen

    2016-02-01

    Quantum systems are easily influenced by ambient environments. Decoherence is generated by system interaction with external environment. In this paper, we analyse the effects of decoherence on quantum games with Eisert-Wilkens-Lewenstein (EWL) (Eisert et al., Phys. Rev. Lett. 83(15), 3077 1999) and Marinatto-Weber (MW) (Marinatto and Weber, Phys. Lett. A 272, 291 2000) schemes. Firstly, referring to the analytical approach that was introduced by Eisert et al. (Phys. Rev. Lett. 83(15), 3077 1999), we analyse the effects of decoherence on quantum Chicken game by considering different traditional noisy channels. We investigate the Nash equilibria and changes of payoff in specific two-parameter strategy set for maximally entangled initial states. We find that the Nash equilibria are different in different noisy channels. Since Unruh effect produces a decoherence-like effect and can be perceived as a quantum noise channel (Omkar et al., arXiv: 1408.1477v1), with the same two parameter strategy set, we investigate the influences of decoherence generated by the Unruh effect on three-player quantum Prisoners' Dilemma, the non-zero sum symmetric multiplayer quantum game both for unentangled and entangled initial states. We discuss the effect of the acceleration of noninertial frames on the the game's properties such as payoffs, symmetry, Nash equilibrium, Pareto optimal, dominant strategy, etc. Finally, we study the decoherent influences of correlated noise and Unruh effect on quantum Stackelberg duopoly for entangled and unentangled initial states with the depolarizing channel. Our investigations show that under the influence of correlated depolarizing channel and acceleration in noninertial frame, some critical points exist for an unentangled initial state at which firms get equal payoffs and the game becomes a follower advantage game. It is shown that the game is always a leader advantage game for a maximally entangled initial state and there appear some points at which

  19. Serious games for Geophysics

    NASA Astrophysics Data System (ADS)

    Lombardo, Valerio; Rubbia, Giuliana

    2015-04-01

    Childhood stage is indispensable in the education of human beings and especially critical to arise scientific interest in children. We discuss the participatory design of a didactic videogame, i.e. a "serious" game to teach geophysics and Earth sciences to high and low-school students. Geophysics is the application of the laws and techniques of physics to uncover knowledge about the earth's dynamic processes and subsurface structure. It explores phenomena such as earthquakes, volcanoes, tsunamis to improve our understanding of the earth's physical processes and our ability to predict reoccurrences. Effective mitigation of risks from catastrophic geologic hazards requires knowledge and understanding of local geology and geologic processes. Scientific outreach can be defined as discourse activity, whose main objective is to communicate some knowledge previously produced in scientific contexts to a non-expert massive audience. One of the difficulties science educators need to overcome is to explain specific concepts from a given discipline in a language simple and understandable for their audience. Digital games today play a large role in young people's lives. Games are directly connected to the life of today's adolescents. Therefore, digital games should be included and broached as a subject in the classroom. The ardor and enthusiasm that digital games evoke in teenagers has indeed brought many researchers, school leaders and teachers to the question "how video games" can be used to engage young people and support their learning inside the classroom. Additionally, studies have shown that digital games can enhance various skills such as the ability to concentrate, stamina, tactical aptness, anticipatory thinking, orientation in virtual spaces, and deductive reasoning. Thus, videogames become an effective didactic mechanism and should have a place in the classroom. The project aims to explore the potentials of entertainment technologies in educational processes

  20. Getting into the Game

    ERIC Educational Resources Information Center

    Galuszka, Peter

    2009-01-01

    Malcolm Perdue faces a dilemma as challenging as the computer games he loves to play. The 19-year-old student at Atlanta Metropolitan College wants to learn how to become a game designer. Not only would doing so be a lot of fun, designers can make $80,000 a year early in their careers. But his school has limited options in the field. Nearby…

  1. Multichoice minority game

    SciTech Connect

    Ein-Dor, Liat; Metzler, Richard; Kanter, Ido; Kinzel, Wolfgang

    2001-06-01

    The generalization of the problem of adaptive competition, known as the minority game, to the case of K possible choices for each player, is addressed, and applied to a system of interacting perceptrons with input and output units of a type of K-state Potts spins. An optimal solution of this minority game, as well as the dynamic evolution of the adaptive strategies of the players, are solved analytically for a general K and compared with numerical simulations.

  2. Optimal control of switched linear systems based on Migrant Particle Swarm Optimization algorithm

    NASA Astrophysics Data System (ADS)

    Xie, Fuqiang; Wang, Yongji; Zheng, Zongzhun; Li, Chuanfeng

    2009-10-01

    The optimal control problem for switched linear systems with internally forced switching has more constraints than with externally forced switching. Heavy computations and slow convergence in solving this problem is a major obstacle. In this paper we describe a new approach for solving this problem, which is called Migrant Particle Swarm Optimization (Migrant PSO). Imitating the behavior of a flock of migrant birds, the Migrant PSO applies naturally to both continuous and discrete spaces, in which definitive optimization algorithm and stochastic search method are combined. The efficacy of the proposed algorithm is illustrated via a numerical example.

  3. Equilibrium games in networks

    NASA Astrophysics Data System (ADS)

    Li, Angsheng; Zhang, Xiaohui; Pan, Yicheng; Peng, Pan

    2014-12-01

    It seems a universal phenomenon of networks that the attacks on a small number of nodes by an adversary player Alice may generate a global cascading failure of the networks. It has been shown (Li et al., 2013) that classic scale-free networks (Barabási and Albert, 1999, Barabási, 2009) are insecure against attacks of as small as O(logn) many nodes. This poses a natural and fundamental question: Can we introduce a second player Bob to prevent Alice from global cascading failure of the networks? We proposed a game in networks. We say that a network has an equilibrium game if the second player Bob has a strategy to balance the cascading influence of attacks by the adversary player Alice. It was shown that networks of the preferential attachment model (Barabási and Albert, 1999) fail to have equilibrium games, that random graphs of the Erdös-Rényi model (Erdös and Rényi, 1959, Erdös and Rényi, 1960) have, for which randomness is the mechanism, and that homophyly networks (Li et al., 2013) have equilibrium games, for which homophyly and preferential attachment are the underlying mechanisms. We found that some real networks have equilibrium games, but most real networks fail to have. We anticipate that our results lead to an interesting new direction of network theory, that is, equilibrium games in networks.

  4. Utilizing Video Games

    NASA Astrophysics Data System (ADS)

    Blaize, L.

    Almost from its birth, the computer and video gaming industry has done an admirable job of communicating the vision and attempting to convey the experience of traveling through space to millions of gamers from all cultures and demographics. This paper will propose several approaches the 100 Year Starship Study can take to use the power of interactive media to stir interest in the Starship and related projects among a global population. It will examine successful gaming franchises from the past that are relevant to the mission and consider ways in which the Starship Study could cooperate with game development studios to bring the Starship vision to those franchises and thereby to the public. The paper will examine ways in which video games can be used to crowd-source research aspects for the Study, and how video games are already considering many of the same topics that will be examined by this Study. Finally, the paper will propose some mechanisms by which the 100 Year Starship Study can establish very close ties with the gaming industry and foster cooperation in pursuit of the Study's goals.

  5. Internet gaming addiction: current perspectives.

    PubMed

    Kuss, Daria J

    2013-01-01

    In the 2000s, online games became popular, while studies of Internet gaming addiction emerged, outlining the negative consequences of excessive gaming, its prevalence, and associated risk factors. The establishment of specialized treatment centers in South-East Asia, the US, and Europe reflects the growing need for professional help. It is argued that only by understanding the appeal of Internet gaming, its context, and neurobiologic correlates can the phenomenon of Internet gaming addiction be understood comprehensively. The aim of this review is to provide an insight into current perspectives on Internet gaming addiction using a holistic approach, taking into consideration the mass appeal of online games, the context of Internet gaming addiction, and associated neuroimaging findings, as well as the current diagnostic framework adopted by the American Psychiatric Association. The cited research indicates that the individual's context is a significant factor that marks the dividing line between excessive gaming and gaming addiction, and the game context can gain particular importance for players, depending on their life situation and gaming preferences. Moreover, the cultural context is significant because it embeds the gamer in a community with shared beliefs and practices, endowing their gaming with particular meaning. The cited neuroimaging studies indicate that Internet gaming addiction shares similarities with other addictions, including substance dependence, at the molecular, neurocircuitry, and behavioral levels. The findings provide support for the current perspective of understanding Internet gaming addiction from a disease framework. The benefits of an Internet gaming addiction diagnosis include reliability across research, destigmatization of individuals, development of efficacious treatments, and the creation of an incentive for public health care and insurance providers. The holistic approach adopted here not only highlights empirical research that

  6. Internet gaming addiction: current perspectives

    PubMed Central

    Kuss, Daria J

    2013-01-01

    In the 2000s, online games became popular, while studies of Internet gaming addiction emerged, outlining the negative consequences of excessive gaming, its prevalence, and associated risk factors. The establishment of specialized treatment centers in South-East Asia, the US, and Europe reflects the growing need for professional help. It is argued that only by understanding the appeal of Internet gaming, its context, and neurobiologic correlates can the phenomenon of Internet gaming addiction be understood comprehensively. The aim of this review is to provide an insight into current perspectives on Internet gaming addiction using a holistic approach, taking into consideration the mass appeal of online games, the context of Internet gaming addiction, and associated neuroimaging findings, as well as the current diagnostic framework adopted by the American Psychiatric Association. The cited research indicates that the individual’s context is a significant factor that marks the dividing line between excessive gaming and gaming addiction, and the game context can gain particular importance for players, depending on their life situation and gaming preferences. Moreover, the cultural context is significant because it embeds the gamer in a community with shared beliefs and practices, endowing their gaming with particular meaning. The cited neuroimaging studies indicate that Internet gaming addiction shares similarities with other addictions, including substance dependence, at the molecular, neurocircuitry, and behavioral levels. The findings provide support for the current perspective of understanding Internet gaming addiction from a disease framework. The benefits of an Internet gaming addiction diagnosis include reliability across research, destigmatization of individuals, development of efficacious treatments, and the creation of an incentive for public health care and insurance providers. The holistic approach adopted here not only highlights empirical research that

  7. Informal report to National Science Foundation: research on stackelberg games and electricity pricing

    SciTech Connect

    Luh, P.B.

    1981-08-01

    Three papers on Stackelberg games and electricity pricing are presented. In the first paper, a complete solution for the two-person, deterministic Stackelberg game is developed. The problem is separated into three tractable subproblems: an optimization problem with equality constraints, a minimax problem, and an optimization problem with an inequality constraint. Sufficient and necessary conditions for the existence of hierarchical equilibrium strategies are derived. In the second paper, sufficient and necessary conditions for single-stage, partially nested, stochastic games are presented and the effect of more information in the presence of uncertainties is considered. In the third paper, different electricity pricing schemes are analyzed from a game theoretic point of view. A philosophy, termed load adaptive pricing, in which supply and demand respond to each other through prices and consumption, and the utility company sells power at real time rates, is introduced.

  8. ID201202961, DOE S-124,539, Information Security Analysis Using Game Theory and Simulation

    SciTech Connect

    Abercrombie, Robert K; Schlicher, Bob G

    2012-01-01

    Information security analysis can be performed using game theory implemented in dynamic simulations of Agent Based Models (ABMs). Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. Our approach addresses imperfect information and scalability that allows us to also address previous limitations of current stochastic game models. Such models only consider perfect information assuming that the defender is always able to detect attacks; assuming that the state transition probabilities are fixed before the game assuming that the players actions are always synchronous; and that most models are not scalable with the size and complexity of systems under consideration. Our use of ABMs yields results of selected experiments that demonstrate our proposed approach and provides a quantitative measure for realistic information systems and their related security scenarios.

  9. A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise

    SciTech Connect

    Hong, Jialin; Zhang, Liying

    2014-07-01

    In this paper we investigate a stochastic multi-symplectic method for stochastic Maxwell equations with additive noise. Based on the stochastic version of variational principle, we find a way to obtain the stochastic multi-symplectic structure of three-dimensional (3-D) stochastic Maxwell equations with additive noise. We propose a stochastic multi-symplectic scheme and show that it preserves the stochastic multi-symplectic conservation law and the local and global stochastic energy dissipative properties, which the equations themselves possess. Numerical experiments are performed to verify the numerical behaviors of the stochastic multi-symplectic scheme.

  10. Learning process in public goods games

    NASA Astrophysics Data System (ADS)

    Amado, André; Huang, Weini; Campos, Paulo R. A.; Ferreira, Fernando Fagundes

    2015-07-01

    We propose an individual-based model to describe the effects of memory and learning in the evolution of cooperation in a public goods game (PGG) in a well-mixed population. Individuals are endowed with a set of strategies, and in every round of the game they use one strategy out of this set based on their memory and learning process. The payoff of a player using a given strategy depends on the public goods enhancement factor r and the collective action of all players. We investigate the distribution of used strategies as well as the distribution of information patterns. The outcome depends on the learning process, which can be dynamic or static. In the dynamic learning process, the players can switch their strategies along the whole game, and use the strategy providing the highest payoff at current time step. In the static learning process, there is a training period where the players randomly explore different strategies out of their strategy sets. In the rest of the game, players only use the strategy providing the highest payoff during the training period. In the dynamic learning process, we observe a transition from a non-cooperative regime to a regime where the level of cooperation reaches about 50 %. As in the standard PGG, in the static learning process there is a transition from the non-cooperative regime to a regime where the level of cooperation can be higher than 50% at r = N. In both learning processes the transition becomes smoother as the memory size of individuals increases, which means that the lack of information is a key ingredient causing the defection.

  11. Brain activities associated with gaming urge of online gaming addiction.

    PubMed

    Ko, Chih-Hung; Liu, Gin-Chung; Hsiao, Sigmund; Yen, Ju-Yu; Yang, Ming-Jen; Lin, Wei-Chen; Yen, Cheng-Fang; Chen, Cheng-Sheng

    2009-04-01

    The aim of this study was to identify the neural substrates of online gaming addiction through evaluation of the brain areas associated with the cue-induced gaming urge. Ten participants with online gaming addiction and 10 control subjects without online gaming addiction were tested. They were presented with gaming pictures and the paired mosaic pictures while undergoing functional magnetic resonance imaging (fMRI) scanning. The contrast in blood-oxygen-level dependent (BOLD) signals when viewing gaming pictures and when viewing mosaic pictures was calculated with the SPM2 software to evaluate the brain activations. Right orbitofrontal cortex, right nucleus accumbens, bilateral anterior cingulate and medial frontal cortex, right dorsolateral prefrontal cortex, and right caudate nucleus were activated in the addicted group in contrast to the control group. The activation of the region-of-interest (ROI) defined by the above brain areas was positively correlated with self-reported gaming urge and recalling of gaming experience provoked by the WOW pictures. The results demonstrate that the neural substrate of cue-induced gaming urge/craving in online gaming addiction is similar to that of the cue-induced craving in substance dependence. The above-mentioned brain regions have been reported to contribute to the craving in substance dependence, and here we show that the same areas were involved in online gaming urge/craving. Thus, the results suggest that the gaming urge/craving in online gaming addiction and craving in substance dependence might share the same neurobiological mechanism. PMID:18996542

  12. Unpredictability induced by unfocused games in evolutionary game dynamics.

    PubMed

    Hashimoto, Koh

    2006-08-01

    Evolutionary game theory is a basis of replicator systems and has applications ranging from animal behavior and human language to ecosystems and other hierarchical network systems. Most studies in evolutionary game dynamics have focused on a single game, but, in many situations, we see that many games are played simultaneously. We construct a replicator equation with plural games by assuming that a reward of a player is a simple summation of the reward of each game. Even if the numbers of the strategies of the games are different, its dynamics can be described in one replicator equation. We here show that when players play several games at the same time, the fate of a single game cannot be determined without knowing the structures of the whole other games. The most absorbing fact is that even if a single game has a ESS (evolutionary stable strategy), the relative frequencies of strategies in the game does not always converge to the ESS point when other games are played simultaneously. PMID:16490216

  13. Miniature Intermittent Contact Switch

    NASA Technical Reports Server (NTRS)

    Sword, Antony

    1972-01-01

    This tech brief concerns work to provide a shock-resistant switch capable of being actuated by forces of varying magnitude and direction, primarily for use as a sensor on remote control (tele-operator) and prosthetic devices.

  14. Plasmonic enhanced ultrafast switch.

    SciTech Connect

    Subramania,Ganapathi Subramanian; Reno, John Louis; Passmore, Brandon Scott; Harris, Tom.; Shaner, Eric Arthur; Barrick, Todd A.

    2009-09-01

    Ultrafast electronic switches fabricated from defective material have been used for several decades in order to produce picosecond electrical transients and TeraHertz radiation. Due to the ultrashort recombination time in the photoconductor materials used, these switches are inefficient and are ultimately limited by the amount of optical power that can be applied to the switch before self-destruction. The goal of this work is to create ultrafast (sub-picosecond response) photoconductive switches on GaAs that are enhanced through plasmonic coupling structures. Here, the plasmonic coupler primarily plays the role of being a radiation condenser which will cause carriers to be generated adjacent to metallic electrodes where they can more efficiently be collected.

  15. An optical switch

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1987-04-30

    The invention is a gas mixture for a diffuse discharge switch having an electron attaching gas wherein electron attachment is brought about by indirect excitation of molecules to long live states by exposure to laser light. 3 figs.

  16. Switching and stopping antidepressants

    PubMed Central

    Keks, Nicholas; Hope, Judy; Keogh, Simone

    2016-01-01

    SUMMARY Switching from one antidepressant to another is frequently indicated due to an inadequate treatment response or unacceptable adverse effects. All antidepressant switches must be carried out cautiously and under close observation. Conservative switching strategies involve gradually tapering the first antidepressant followed by an adequate washout period before the new antidepressant is started. This can take a long time and include periods of no treatment with the risk of potentially life-threatening exacerbations of illness. Clinical expertise is needed for more rapid or cross-taper switching as drug toxicity, including serotonin syndrome, may result from inappropriate co-administration of antidepressants. Some antidepressants must not be combined. Antidepressants can cause withdrawal syndromes if discontinued abruptly after prolonged use. Relapse and exacerbation of depression can also occur. Gradual dose reduction over days to weeks reduces the risk and severity of complications. PMID:27346915

  17. Quantum models of Parrondo's games

    NASA Astrophysics Data System (ADS)

    Flitney, Adrian P.; Abbott, Derek

    2002-11-01

    It is possible to have two games that are losing when played in isolation but that, because of some form of feedback, produce a winning game when played alternately or even in a random mixture. This effect is known as Parrondo's paradox. Quantum mechanics provides novel methods of combining two games through interference and entanglement. Two models of quantum Parrondo's games have been published and these are reviewed here. We speculate on a model of a quantum Parrondo's game using entanglement. Such games could find a use in the development of algorithms for quantum computers.

  18. Switching power supply filter

    NASA Technical Reports Server (NTRS)

    Kumar, Prithvi R. (Inventor); Abare, Wayne (Inventor)

    1989-01-01

    A filter for a switching power supply. The filter includes a common mode inductor with coil configurations allowing differential mode current from a dc source to pass through but attenuating common mode noise from the power supply so that the noise does not reach the dc source. The invention also includes the use of feed through capacitors at the switching power supply input terminals to provide further high-frequency noise attenuation.

  19. Cygnus Water Switch Jitter

    SciTech Connect

    Charles V. Mitton, George D. Corrow, Mark D. Hansen, David J. Henderson, et al.

    2008-03-01

    The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources - Cygnus 1 and Cygnus 2. Each source has the following x-ray output: 1-mm diameter spot size, 4 rad at 1 m, 50-ns Full Width Half Max. The diode pulse has the following electrical specifications: 2.25 MV, 60 kA, 60 ns. This Radiographic Facility is located in an underground tunnel test area at the Nevada Test Site (NTS). The sources were developed to produce high-resolution images on subcritical tests which are performed at NTS. Subcritical tests are single-shot, high-value events. For this application, it is desirable to maintain a high level of reproducibility in source output. The major components of the Cygnus machines are: Marx generator, water-filled pulse–forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. A primary source of fluctuation in Cygnus shot-to-shot performance is jitter in breakdown of the main PFL switch, which is a “self-break” switch. The PFL switch breakdown time determines the peak PFL charging voltage, which ultimately affects the diode pulse. Therefore, PFL switch jitter contributes to shot-to-shot variation in source endpoint energy and dose. In this paper we will present PFL switch jitter analysis for both Cygnus machines and give the correlation with diode performance. For this analysis the PFL switch on each machine was maintained at a single gap setting which has been used for the majority of shots at NTS. In addition to this analysis, PFL switch performance for different switch gap settings taken recently will be examined. Lastly, implications of source jitter for radiographic diagnosis of subcritical shots will be discussed.

  20. Irreversible magnetic switch

    SciTech Connect

    Karnowsky, M.M.; Yost, F.G.

    1991-12-31

    This invention is comprised of an irreversible magnetic switch containing a ferromagnetic amorphous metal having a predetermined crystallization temperature in its inductor magnetic path. With the incorporation of such material, the magnetic properties after cooling from a high temperature excursion above its crystallization temperature are only a fraction of the original value. The difference is used to provide a safety feature in the magnetic switch.

  1. Cygnus PFL Switch Jitter

    SciTech Connect

    C. Mitton, G. Corrow, M. Hansen, D. Henderson, et al.

    2007-07-21

    The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources: Cygnus 1 and Cygnus 2. Each source has the following X-ray output: 1-mm diameter spot size, 4 rads at 1 m, 50-ns full-widthhalf-maximum. The diode pulse has the following electrical specifications: 2.25 MV, 60 kA, 60 ns. This Radiographic Facility is located in an underground tunnel test area at the Nevada Test Site (NTS). The sources were developed to produce high-resolution images on subcritical tests performed at NTS. Subcritical tests are single-shot, high-value events. For this application, it is desirable to maintain a high level of reproducibility in source output. The major components of the Cygnus machines are Marx generator, water-filled pulse forming line (PFL), water-filled coaxial transmission line, threecell inductive voltage adder, and rod-pinch diode. A primary source of fluctuation in Cygnus shot-to-shot performance may be jitter in breakdown of the main PFL switch, which is a “self-break” switch. The PFL switch breakdown time determines the peak PFL charging voltage, which ultimately affects the source X-ray spectrum and dose. Therefore, PFL switch jitter may contribute to shot-to-shot variation in these parameters, which are crucial to radiographic quality. In this paper we will present PFL switch jitter analysis for both Cygnus machines and present the correlation with dose. For this analysis, the PFL switch on each machine was maintained at a single gap setting, which has been used for the majority of shots at NTS. In addition the PFL switch performance for one larger switch gap setting will be examined.

  2. uv preilluminated gas switches

    SciTech Connect

    Bradley, L.P.; Orham, E.L.; Stowers, I.F.; Braucht, J.R.

    1980-06-03

    We have designed, built, and characterized uv preilluminated gas switches for a trigger circuit and a low inductance discharge circuit. These switches have been incorporated into a 54 x 76 x 150 cm pulser module to produce a 1 Ma output current rising at 5 x 10/sup 12/ amps/sec with 1 ns jitter. Twenty such modules will be used on the Nova Inertial Confinement Fusion Laser System for plasma retropulse shutters.

  3. Finding a stabilising switching law for switching nonlinear models

    NASA Astrophysics Data System (ADS)

    Lendek, Zs.; Raica, P.; Lauber, J.; Guerra, T. M.

    2016-09-01

    This paper considers the stabilisation of switching nonlinear models by switching between the subsystems. We assume that arbitrary switching between two subsystems is possible once a subsystem has been active for a predefined number of samples. We use a Takagi-Sugeno representation of the models and a switching Lyapunov function is employed to develop sufficient stability conditions. If the conditions are satisfied, we construct a switching law that stabilises the system. The application of the conditions is illustrated in several examples.

  4. Meta-Games in Information Work

    ERIC Educational Resources Information Center

    Huvila, Isto

    2013-01-01

    Introduction: Meta-games and meta-gaming refer to various second-order conceptions of games and gaming. The present article discusses the applicability of the notions of meta-game and meta-gaming in understanding the patterns of how people use, misuse, work and work-around information and information infrastructures. Method: Twenty-two qualitative…

  5. Application and Evaluation of Analytic Gaming

    SciTech Connect

    Riensche, Roderick M.; Martucci, Louis M.; Scholtz, Jean; Whiting, Mark A.

    2009-08-31

    We describe an "analytic gaming" framework and methodology, and introduce formal methods for evaluation of the analytic gaming process. This process involves conception, development, and playing of games that are informed by predictive models and driven by players. Evaluation of analytic gaming examines both the process of game development and the results of game play exercises.

  6. A numerical scheme for optimal transition paths of stochastic chemical kinetic systems

    NASA Astrophysics Data System (ADS)

    Liu, Di

    2008-10-01

    We present a new framework for finding the optimal transition paths of metastable stochastic chemical kinetic systems with large system size. The optimal transition paths are identified to be the most probable paths according to the Large Deviation Theory of stochastic processes. Dynamical equations for the optimal transition paths are derived using the variational principle. A modified Minimum Action Method (MAM) is proposed as a numerical scheme to solve the optimal transition paths. Applications to Gene Regulatory Networks such as the toggle switch model and the Lactose Operon Model in Escherichia coli are presented as numerical examples.

  7. Brownian ratchets and Parrondo's games

    NASA Astrophysics Data System (ADS)

    Harmer, Gregory P.; Abbott, Derek; Taylor, Peter G.; Parrondo, Juan M. R.

    2001-09-01

    Parrondo's games present an apparently paradoxical situation where individually losing games can be combined to win. In this article we analyze the case of two coin tossing games. Game B is played with two biased coins and has state-dependent rules based on the player's current capital. Game B can exhibit detailed balance or even negative drift (i.e., loss), depending on the chosen parameters. Game A is played with a single biased coin that produces a loss or negative drift in capital. However, a winning expectation is achieved by randomly mixing A and B. One possible interpretation pictures game A as a source of "noise" that is rectified by game B to produce overall positive drift—as in a Brownian ratchet. Game B has a state-dependent rule that favors a losing coin, but when this state dependence is broken up by the noise introduced by game A, a winning coin is favored. In this article we find the parameter space in which the paradoxical effect occurs and carry out a winning rate analysis. The significance of Parrondo's games is that they are physically motivated and were originally derived by considering a Brownian ratchet—the combination of the games can be therefore considered as a discrete-time Brownian ratchet. We postulate the use of games of this type as a toy model for a number of physical and biological processes and raise a number of open questions for future research.

  8. Stochastic superparameterization in quasigeostrophic turbulence

    SciTech Connect

    Grooms, Ian; Majda, Andrew J.

    2014-08-15

    In this article we expand and develop the authors' recent proposed methodology for efficient stochastic superparameterization algorithms for geophysical turbulence. Geophysical turbulence is characterized by significant intermittent cascades of energy from the unresolved to the resolved scales resulting in complex patterns of waves, jets, and vortices. Conventional superparameterization simulates large scale dynamics on a coarse grid in a physical domain, and couples these dynamics to high-resolution simulations on periodic domains embedded in the coarse grid. Stochastic superparameterization replaces the nonlinear, deterministic eddy equations on periodic embedded domains by quasilinear stochastic approximations on formally infinite embedded domains. The result is a seamless algorithm which never uses a small scale grid and is far cheaper than conventional SP, but with significant success in difficult test problems. Various design choices in the algorithm are investigated in detail here, including decoupling the timescale of evolution on the embedded domains from the length of the time step used on the coarse grid, and sensitivity to certain assumed properties of the eddies (e.g. the shape of the assumed eddy energy spectrum). We present four closures based on stochastic superparameterization which elucidate the properties of the underlying framework: a ‘null hypothesis’ stochastic closure that uncouples the eddies from the mean, a stochastic closure with nonlinearly coupled eddies and mean, a nonlinear deterministic closure, and a stochastic closure based on energy conservation. The different algorithms are compared and contrasted on a stringent test suite for quasigeostrophic turbulence involving two-layer dynamics on a β-plane forced by an imposed background shear. The success of the algorithms developed here suggests that they may be fruitfully applied to more realistic situations. They are expected to be particularly useful in providing accurate and

  9. Stochastic roots of growth phenomena

    NASA Astrophysics Data System (ADS)

    De Lauro, E.; De Martino, S.; De Siena, S.; Giorno, V.

    2014-05-01

    We show that the Gompertz equation describes the evolution in time of the median of a geometric stochastic process. Therefore, we induce that the process itself generates the growth. This result allows us further to exploit a stochastic variational principle to take account of self-regulation of growth through feedback of relative density variations. The conceptually well defined framework so introduced shows its usefulness by suggesting a form of control of growth by exploiting external actions.

  10. Low inductance gas switching.

    SciTech Connect

    Chavez, Ray; Harjes, Henry Charles III; Wallace, Zachariah; Elizondo, Juan E.

    2007-10-01

    The laser trigger switch (LTS) is a key component in ZR-type pulsed power systems. In ZR, the pulse rise time through the LTS is > 200 ns and additional stages of pulse compression are required to achieve the desired <100 ns rise time. The inductance of the LTS ({approx}500nH) in large part determines the energy transfer time through the switch and there is much to be gained in improving system performance and reducing system costs by reducing this inductance. The current path through the cascade section of the ZR LTS is at a diameter of {approx} 6-inches which is certainly not optimal from an inductance point of view. The LTS connects components of much greater diameter (typically 4-5 feet). In this LDRD the viability of switch concepts in which the diameter of cascade section is greatly increased have been investigated. The key technical question to be answered was, will the desired multi-channel behavior be maintained in a cascade section of larger diameter. This LDRD proceeded in 2 distinct phases. The original plan for the LDRD was to develop a promising switch concept and then design, build, and test a moderate scale switch which would demonstrate the key features of the concept. In phase I, a switch concept which meet all electrical design criteria and had a calculated inductance of 150 nH was developed. A 1.5 MV test switch was designed and fabrication was initiated. The LDRD was then redirected due to budgetary concerns. The fabrication of the switch was halted and the focus of the LDRD was shifted to small scale experiments designed to answer the key technical question concerning multi-channel behavior. In phase II, the Multi-channel switch test bed (MCST) was designed and constructed. The purpose of MCST was to provide a versatile, fast turn around facility for the study the multi-channel electrical breakdown behavior of a ZR type cascade switch gap in a parameter space near that of a ZR LTS. Parameter scans on source impedance, gap tilt, gap spacing and

  11. A radiation hard vacuum switch

    DOEpatents

    Boettcher, G.E.

    1988-07-19

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

  12. Computer Games Are Fun? On Professional Games and Players' Motivations

    ERIC Educational Resources Information Center

    Eglesz, Denes; Fekete, Istvan; Kiss, Orhidea Edith; Izso, Lajos

    2005-01-01

    As computer games are becoming more widespread, there is a tendency for young people to spend a growing amount of time playing games. The first part of this paper will deal with various types of computer games and their characteristic features. In the second part we show the results of our recent surveys. We examined the motivations of young…

  13. Digital Game-Based Learning: Towards an Experiential Gaming Model

    ERIC Educational Resources Information Center

    Kiili, Kristian

    2005-01-01

    Online games satisfy the basic requirements of learning environments and can provide engaging learning experiences for students. However, a model that successfully integrates educational theory and game design aspects do not exist. Thus, in this paper an experiential gaming model that is based on experiential learning theory, flow theory and game…

  14. ALTEC Learning Games: Successful Integration of Learning and Gaming

    ERIC Educational Resources Information Center

    Bacon, Melanie A.; Ault, Marilyn M.

    2009-01-01

    Of the 53 million K-12 students in the United States, 93%, or 51 million, of them play video games (Etuk, 2008). ALTEC Learning Games utilize the excitement of video games to engage students and provide teachers authentic online resources that reinforce skills in math and language arts. Our recent work was partially supported by a partnership with…

  15. Gaming Personality and Game Dynamics in Online Discussion Instructions

    ERIC Educational Resources Information Center

    Tu, Chih-Hsiung; Yen, Cherng-Jyh; Sujo-Montes, Laura; Roberts, Gayle A.

    2015-01-01

    Gamification is the use of game mechanics to drive game-like engagements and actions. It applies game mechanics, dynamics and frameworks to promote desired learning behaviours. Positive and effective gamification could enhance learning and engage learners in more social and context-rich decision-making for problem-solving in learning tasks.…

  16. Games, Gaming, and Gamification: Some Aspects of Motivation

    ERIC Educational Resources Information Center

    Hanson-Smith, Elizabeth

    2016-01-01

    Unsupported claims have been made for the use of games in education and the gamification (game-like aspects, such as scores and point goals) of various learning elements. This brief article examines what may be the motivational basis of gaming and how it can affect students' behavior and ultimate success.

  17. Constructionist Gaming: Understanding the Benefits of Making Games for Learning

    ERIC Educational Resources Information Center

    Kafai, Yasmin B.; Burke, Quinn

    2015-01-01

    There has been considerable interest in examining the educational potential of playing video games. One crucial element, however, has traditionally been left out of these discussions--namely, children's learning through making their own games. In this article, we review and synthesize 55 studies from the last decade on making games and learning.…

  18. Mapping Learning and Game Mechanics for Serious Games Analysis

    ERIC Educational Resources Information Center

    Arnab, Sylvester; Lim, Theodore; Carvalho, Maira B.; Bellotti, Francesco; de Freitas, Sara; Louchart, Sandy; Suttie, Neil; Berta, Riccardo; De Gloria, Alessandro

    2015-01-01

    Although there is a consensus on the instructional potential of Serious Games (SGs), there is still a lack of methodologies and tools not only for design but also to support analysis and assessment. Filling this gap is one of the main aims of the Games and Learning Alliance (http://www.galanoe.eu) European Network of Excellence on Serious Games,…

  19. Stochastic cooling in RHIC

    SciTech Connect

    Brennan J. M.; Blaskiewicz, M.; Mernick, K.

    2012-05-20

    The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

  20. Games with the Pocket Calculator.

    ERIC Educational Resources Information Center

    Thiagarajan, Sivasailam; Stolovitch, Harold D.

    Twenty-four games to be played with a hand-held calculator are described. Information includes the number of players, the approximate time required, the skills involved, the chance factor, and the game sequence. (NR)

  1. Fractal Patterns and Chaos Games

    ERIC Educational Resources Information Center

    Devaney, Robert L.

    2004-01-01

    Teachers incorporate the chaos game and the concept of a fractal into various areas of the algebra and geometry curriculum. The chaos game approach to fractals provides teachers with an opportunity to help students comprehend the geometry of affine transformations.

  2. The Game of "Race To"

    ERIC Educational Resources Information Center

    Kurtz, Barry L.

    1975-01-01

    A game similar to Nim is described. Students in grades three through six have played the game in conjunction with the study of modular arithmetic,and have been able to develop winning strategies. (SD)

  3. Nuclear Power Plant Simulation Game.

    ERIC Educational Resources Information Center

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  4. 76 FR 11258 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... engaging in Class III gaming activities on Indian lands. The compact authorizes up to 2,000 video lottery terminals, up to 70 table games, and establishes the Oregon Benefit Fund to receive payments from...

  5. Energy losses in switches

    SciTech Connect

    Martin, T.H.; Seamen, J.F.; Jobe, D.O.

    1993-07-01

    The authors experiments show energy losses between 2 and 10 times that of the resistive time predictions. The experiments used hydrogen, helium, air, nitrogen, SF{sub 6} polyethylene, and water for the switching dielectric. Previously underestimated switch losses have caused over predicting the accelerator outputs. Accurate estimation of these losses is now necessary for new high-efficiency pulsed power devices where the switching losses constitute the major portion of the total energy loss. They found that the switch energy losses scale as (V{sub peak}I{sub peak}){sup 1.1846}. When using this scaling, the energy losses in any of the tested dielectrics are almost the same. This relationship is valid for several orders of magnitude and suggested a theoretical basis for these results. Currents up to .65 MA, with voltages to 3 MV were applied to various gaps during these experiments. The authors data and the developed theory indicates that the switch power loss continues for a much longer time than the resistive time, with peak power loss generally occurring at peak current in a ranging discharge instead of the early current time. All of the experiments were circuit code modeled after developing a new switch loss version based on the theory. The circuit code predicts switch energy loss and peak currents as a function of time. During analysis of the data they noticed slight constant offsets between the theory and data that depended on the dielectric. They modified the plasma conductivity for each tested dielectric to lessen this offset.

  6. Switching Power Universality in Unipolar Resistive Switching Memories

    PubMed Central

    Kim, Jongmin; Jung, Kyooho; Kim, Yongmin; Jo, Yongcheol; Cho, Sangeun; Woo, Hyeonseok; Lee, Seongwoo; Inamdar, A. I.; Hong, Jinpyo; Lee, Jeon-Kook; Kim, Hyungsang; Im, Hyunsik

    2016-01-01

    We investigate the resistive switching power from unipolar resistive switching current-voltage characteristics in various binary metal oxide films sandwiched by different metal electrodes, and find a universal feature (the so-called universality) in the switching power among these devices. To experimentally derive the switching power universality, systematic measurements of the switching voltage and current are performed, and neither of these correlate with one another. As the switching resistance (R) increases, the switching power (P) decreases following a power law P ∝ R−β, regardless of the device configurations. The observed switching power universality is indicative of the existence of a commonly applicable switching mechanism. The origin of the power universality is discussed based on a metallic filament model and thermo-chemical reaction. PMID:27033695

  7. Switching Power Universality in Unipolar Resistive Switching Memories

    NASA Astrophysics Data System (ADS)

    Kim, Jongmin; Jung, Kyooho; Kim, Yongmin; Jo, Yongcheol; Cho, Sangeun; Woo, Hyeonseok; Lee, Seongwoo; Inamdar, A. I.; Hong, Jinpyo; Lee, Jeon-Kook; Kim, Hyungsang; Im, Hyunsik

    2016-04-01

    We investigate the resistive switching power from unipolar resistive switching current-voltage characteristics in various binary metal oxide films sandwiched by different metal electrodes, and find a universal feature (the so-called universality) in the switching power among these devices. To experimentally derive the switching power universality, systematic measurements of the switching voltage and current are performed, and neither of these correlate with one another. As the switching resistance (R) increases, the switching power (P) decreases following a power law P ∝ R‑β, regardless of the device configurations. The observed switching power universality is indicative of the existence of a commonly applicable switching mechanism. The origin of the power universality is discussed based on a metallic filament model and thermo-chemical reaction.

  8. Switching Power Universality in Unipolar Resistive Switching Memories.

    PubMed

    Kim, Jongmin; Jung, Kyooho; Kim, Yongmin; Jo, Yongcheol; Cho, Sangeun; Woo, Hyeonseok; Lee, Seongwoo; Inamdar, A I; Hong, Jinpyo; Lee, Jeon-Kook; Kim, Hyungsang; Im, Hyunsik

    2016-01-01

    We investigate the resistive switching power from unipolar resistive switching current-voltage characteristics in various binary metal oxide films sandwiched by different metal electrodes, and find a universal feature (the so-called universality) in the switching power among these devices. To experimentally derive the switching power universality, systematic measurements of the switching voltage and current are performed, and neither of these correlate with one another. As the switching resistance (R) increases, the switching power (P) decreases following a power law P ∝ R(-β), regardless of the device configurations. The observed switching power universality is indicative of the existence of a commonly applicable switching mechanism. The origin of the power universality is discussed based on a metallic filament model and thermo-chemical reaction. PMID:27033695

  9. Pairwise comparison and selection temperature in evolutionary game dynamics

    PubMed Central

    Traulsen, Arne; Pacheco, Jorge M.; Nowak, Martin A.

    2007-01-01

    Recently, the frequency dependent Moran process has been introduced in order to describe evolutionary game dynamics in finite populations. Here, an alternative to this process is investigated that is based on pairwise comparison between two individuals. We follow a long tradition in the physics community and introduce a temperature (of selection) to account for stochastic effects. We calculate the fixation probabilities and fixation times for any symmetric 2 × 2 game, for any intensity of selection and any initial number of mutants. The temperature can be used to gauge continuously from neutral drift to the extreme selection intensity known as imitation dynamics. For some payoff matrices the distribution of fixation times can become so broad that the average value is no longer very meaningful. PMID:17292423

  10. Arts Games for Young Children.

    ERIC Educational Resources Information Center

    Suthers, Louie; Larkin, Veronicah

    This study investigated the use of arts games (structured play activities based on drama, movement, and music) with children age birth to 5 years in a day care setting. A set of 20 games was tested by 2 early childhood teachers; 1 teacher tested 10 games with a group of 2-year-olds and the other tested a different set of 10 games with a group of…

  11. Enhancing Cognition with Video Games: A Multiple Game Training Study

    PubMed Central

    Oei, Adam C.; Patterson, Michael D.

    2013-01-01

    Background Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. Methodology/Principal Findings We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Conclusion/Significance Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be

  12. Mutation-selection equilibrium in games with mixed strategies

    PubMed Central

    Tarnita, Corina E.; Antal, Tibor; Nowak, Martin A.

    2009-01-01

    We develop a new method for studying stochastic evolutionary game dynamics of mixed strategies. We consider the general situation: there are n pure strategies whose interactions are described by an n × n payoff matrix. Players can use mixed strategies, which are given by the vector (p1, …, pn). Each entry specifies the probability to use the corresponding pure strategy. The sum over all entries is one. Therefore, a mixed strategy is a point in the simplex Sn. We study evolutionary dynamics in a well-mixed population of finite size. Individuals reproduce proportional to payoff. We consider the case of weak selection, which means the payoff from the game is only a small contribution to overall fitness. Reproduction can be subject to mutation; a mutant adopts a randomly chosen mixed strategy. We calculate the average abundance of every mixed strategy in the stationary distribution of the mutation-selection process. We find the crucial conditions that specify if a strategy is favored or opposed by selection. One condition holds for low mutation rate, another for high mutation rate. The result for any mutation rate is a linear combination of those two. As a specific example we study the Hawk-Dove game. We prove general statements about the relationship between games with pure and with mixed strategies. PMID:19646453

  13. Atomic Scale Plasmonic Switch.

    PubMed

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2016-01-13

    The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level. PMID:26670551

  14. Thermionic gas switch

    DOEpatents

    Hatch, G.L.; Brummond, W.A.; Barrus, D.M.

    1984-04-05

    The present invention is directed to an improved temperature responsive thermionic gas switch utilizing a hollow cathode and a folded emitter surface area. The folded emitter surface area of the thermionic switch substantially increases the on/off ratio by changing the conduction surface area involved in the two modes thereof. The improved switch of this invention provides an on/off ratio of 450:1 compared to the 10:1 ratio of the prior known thermionic switch, while providing for adjusting the on current. In the improved switch of this invention the conduction area is made small in the off mode, while in the on mode the conduction area is made large. This is achieved by utilizing a folded hollow cathode configuration and utilizing a folded emitter surface area, and by making the dimensions of the folds small enough so that a space charge will develop in the convolutions of the folds and suppress unignited current, thus limiting the current carrying surface in the off mode.

  15. Switching power pulse system

    DOEpatents

    Aaland, K.

    1983-08-09

    A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

  16. Nanoscale memristive radiofrequency switches.

    PubMed

    Pi, Shuang; Ghadiri-Sadrabadi, Mohammad; Bardin, Joseph C; Xia, Qiangfei

    2015-01-01

    Radiofrequency switches are critical components in wireless communication systems and consumer electronics. Emerging devices include switches based on microelectromechanical systems and phase-change materials. However, these devices suffer from disadvantages such as large physical dimensions and high actuation voltages. Here we propose and demonstrate a nanoscale radiofrequency switch based on a memristive device. The device can be programmed with a voltage as low as 0.4 V and has an ON/OFF conductance ratio up to 10(12) with long state retention. We measure the radiofrequency performance of the switch up to 110 GHz and demonstrate low insertion loss (0.3 dB at 40 GHz), high isolation (30 dB at 40 GHz), an average cutoff frequency of 35 THz and competitive linearity and power-handling capability. Our results suggest that, in addition to their application in memory and computing, memristive devices are also a leading contender for radiofrequency switch applications. PMID:26108890

  17. Multiple switch actuator

    DOEpatents

    Beyer, Edward T.

    1976-01-06

    The present invention relates to switches and switch actuating devices to be operated for purposes of arming a bomb or other missile as it is dropped or released from an aircraft. The particular bomb or missile in which this invention is applied is one in which there is a plurality of circuits which are to be armed by the closing of switches upon dropping or releasing of the bomb. The operation of the switches to closed position is normally accomplished by means of a pull-out wire; that is, a wire which is withdrawn from the bomb or missile at the time of release of the bomb, one end of the wire being attached to the aircraft. The conditions to be met are that the arming switches must be positively and surely maintained in open position until the bomb is released and the arming action is effected. The action of the pull-out wire in achieving the arming action must be sure and positive with minimum danger of malfunctioning, jamming or binding.

  18. Gaming and Gamification Part II

    ERIC Educational Resources Information Center

    Mallon, Melissa

    2013-01-01

    Just as academic gaming in general cannot be limited to any one topic or genre, the "Public Services Quarterly" Internet Resources column is not limited to a single entry on gaming and gamification in libraries. Public services librarians interested in designing their own games have many successful examples to draw from. The previous…

  19. Simulation Gaming: A Critical Review.

    ERIC Educational Resources Information Center

    Roberts, Nancy

    The review of the empirical literature on simulation gaming categorizes positive, negative, and contradictory aspects of gaming as an educational tool as revealed by the research. The review, which concentrates on simulation games for elementary and secondary school students, is presented in seven sections. Section I presents a brief history of…

  20. Brain-Building Math Games.

    ERIC Educational Resources Information Center

    Jung, Loretta Welk

    1983-01-01

    Index cards, masking tape, pizza shells, golf tees, and empty soda bottles can be used to make manipulative objects to be used in children's mathematics games. Twenty-two games that provide practice in number drills and problem solving are described, along with instructions for making objects needed for the games. (PP)

  1. Computerized History Games: Narrative Options

    ERIC Educational Resources Information Center

    Kee, Kevin

    2011-01-01

    How may historians best express history through computer games? This article suggests that the answer lies in correctly correlating historians' goals for teaching with the capabilities of different kinds of computer games. During the development of a game prototype for high school students, the author followed best practices as expressed in the…

  2. Video Games and Digital Literacies

    ERIC Educational Resources Information Center

    Steinkuehler, Constance

    2010-01-01

    Today's youth are situated in a complex information ecology that includes video games and print texts. At the basic level, video game play itself is a form of digital literacy practice. If we widen our focus from the "individual player + technology" to the online communities that play them, we find that video games also lie at the nexus of a…

  3. Can Video Games Be Educational?

    ERIC Educational Resources Information Center

    Criswell, Chad

    2009-01-01

    One of the biggest debates among music educators today is about whether or not video games are a valid educational tool. As far back as the early 1990s, teachers were using games such as Sid Meier's Civilization to reinforce history and social studies concepts, but until recently games that dealt with areas of music education have been few and far…

  4. Gaming Simulation: A General Classification.

    ERIC Educational Resources Information Center

    Cecchini, Arnaldo; Frisenna, Adriana

    1987-01-01

    Reviews the problems of classifying gaming techniques and suggests a heuristic approach as one solution. Definitions of simulation, models, role, and game and play are discussed to help develop a classification based on a technique called gaming simulation. (Author/LRW)

  5. "Voyager": An Educational Card Game

    ERIC Educational Resources Information Center

    Smith, David Ryan

    2003-01-01

    "Voyager" is an educational card game involving scientific satellites, developed for use in schools with children aged 9 to 13 years. The idea of the game is to improve pupils' knowledge about the large number of scientific satellites there are in space in a fun way, while also practising numeracy skills. Several copies of the game were produced…

  6. Gaming Frequency and Academic Performance

    ERIC Educational Resources Information Center

    Ip, Barry; Jacobs, Gabriel; Watkins, Alan

    2008-01-01

    There are numerous claims that playing computer and video games may be educationally beneficial, but there has been little formal investigation into whether or not the frequency of exposure to such games actually affects academic performance. This paper explores the issue by analysing the relationships between gaming frequency--measured as the…

  7. 78 FR 33435 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal-State Class III Gaming Amendments. SUMMARY: This notice publishes approval of an Agreement to Amend the Class III Tribal-State Gaming Compact between the Salt River Pima- Maricopa...

  8. 75 FR 68823 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal-State Class III Gaming Amendment. SUMMARY: This notice publishes approval of the Amendments to the Class III Gaming Compact (Amendment) between the State of Oregon and the Siletz Indians...

  9. 78 FR 54670 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of extension of Tribal--State Class III Gaming Compact. SUMMARY: This publishes notice of the Extension of the Class III gaming compact between the Yankton Sioux Tribe and the State of South Dakota. DATES:...

  10. 78 FR 17427 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal-State Class III Gaming Compact. SUMMARY: This notice publishes approval of the agreement between the Northern Cheyenne Tribe and the State of Montana concerning Class III Gaming (Compact)....

  11. 77 FR 76513 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Amended Tribal-State Class III Gaming Compact taking effect. SUMMARY: This notice publishes the... CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the Deputy Assistant...

  12. 76 FR 49505 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal-State Class III Gaming Compact. SUMMARY: This notice publishes an extension of the Tribal-State gaming compact between the Oglala Sioux Tribe and the State of South Dakota. DATES: Effective...

  13. 75 FR 38833 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal-State Class III Gaming Compact. SUMMARY: This notice publishes the Approved Compact between... FURTHER INFORMATION CONTACT: Paula Hart, Director, Office of Indian Gaming, Office of the Deputy...

  14. 76 FR 49505 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Tribal-State Class III Gaming Compact taking effect. SUMMARY: This publishes notice of the Tribal-State... Gaming, Office of the Deputy Assistant Secretary--Policy and Economic Development, Washington, DC...

  15. 77 FR 41200 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal--State Class III Gaming Compact. SUMMARY: This notice publishes approval by the Department of an extension to the Class III Gaming Compact between the State of California and the...

  16. 78 FR 54908 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of approved Tribal-State Class III Gaming Compact. SUMMARY: This notice publishes the approval of the Class III Tribal- State Gaming Compact between the Wiyot Tribe and the State of California. DATES:...

  17. 77 FR 5566 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Tribal--State Class III Gaming Compact Taking Effect. SUMMARY: This publishes notice of the Tribal-State... Gaming, Office of the Deputy Assistant Secretary--Policy and Economic Development, Washington, DC...

  18. 78 FR 17428 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Approved Tribal-State Class III Gaming Compact. SUMMARY: This notice publishes the approval of the Class III Tribal- State Gaming Compact between the Pyramid Lake Paiute Tribe and the State of...

  19. 75 FR 38834 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... INFORMATION CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the Deputy Assistant...: Under Section 11 of the Indian Gaming Regulatory Act of 1988 (IGRA), Public Law 100-497, 25 U.S.C....

  20. 75 FR 68618 - Indian Gaming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... Bureau of Indian Affairs Indian Gaming AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... the Red Cliff Band of Lake Superior Chippewas (``Tribe'') and the State of Wisconsin Gaming Compact of... CONTACT: Paula L. Hart, Director, Office of Indian Gaming, Office of the Deputy Assistant...