Science.gov

Sample records for storage project accomplishment

  1. FY005 Accomplishments for Colony Project

    SciTech Connect

    Jones, T; Kale, L; Moreira, J; Mendes, C; Chakravorty, S; Inglett, T; Tauferner, A

    2005-07-05

    The Colony Project is developing operating system and runtime system technology to enable efficient general purpose environments on tens of thousands of processors. To accomplish this, we are investigating memory management techniques, fault management strategies, and parallel resource management schemes. Recent results show promising findings for scalable strategies based on processor virtualization, in-memory checkpointing, and parallel aware modifications to full featured operating systems.

  2. Probe Project Status and Accomplishments - Year Two

    SciTech Connect

    Burris, R.D.

    2002-04-11

    The Probe project has established a facility for storage- and network-related research, development and testing. With sites at the Oak Ridge National Laboratory (ORNL) and the National Energy Research Scientific Computing Center (NERSC), Probe is investigating local-area or wide-area distributed storage issues ranging from data mining to optimizing retrieval operations from tape devices. Probe has completed its second full year of operation. In this document we will describe the status of the project as of December 31, 2001. This year we will structure this document by category of work, rather than by project status. We will present sections describing Scientific Discovery through Advanced Computation (SciDAC) projects, network research and research on data mining and distributed cluster analysis. Another section will describe data-transfer application development and testing and other types of hardware- and software-related testing and development activities. We will then describe the work undertaken for presentation at the SC2001 conference. The final section will summarize this year's publications. Individual projects described in this document have used some Probe resource--equipment, software, staff or funding. By describing these projects we do not imply that the work should be entirely credited to Probe, although we do assert that Probe's existence and assistance provided benefit to the work. The Probe project is funded by the Mathematical, Information, and Computer Sciences (MICS) department of the Advanced Scientific Computing Research office, Office of Science, Department of Energy.

  3. High Speed Research: Propulsion Project Accomplishments

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.

    1998-01-01

    This past year has been one of great accomplishment for the propulsion element of NASA's High Speed Research (HSR) Program. The HSR Program is a NASA/industry partnership to develop the high-risk/high-payoff airframe and propulsion technologies applicable to a second-generation supersonic commercial transport, or High Speed Civil Transport (HSCT). The propulsion element, which also involves industry partners, is managed by the NASA Lewis Research Center. These technologies will contribute greatly to U.S. industry's ability to make an informed product launch decision for an HSCT vehicle. Specific NASA Lewis accomplishments in 1997 include: 1. Small-scale combustor sector tests conducted in Lewis' Engine Research Building contributed to the evolution of approaches to developing a combustor with ultralow NOx emissions. 2. Components were tested in Lewis' CE-9 facility (in Lewis' Engine Research Building) to assess the performance of candidate ceramic matrix composite (CMC) materials in this realistic combustion environment. Test results were promising, and acceptable levels of structural durability were demonstrated for the ceramic matrix composite material tested. Ceramic matrix composites continue to show great promise for use in HSCT combustor liners. 3. Engine emissions tests in Lewis' Propulsion Systems Laboratory provided insight into other classes of emissions (e.g., particulates and aerosols) which will be important to control in HSCT propulsion system designs. 4. Small-scale nozzle tests conducted in Lewis' Aero-Acoustic Propulsion Laboratory are contributing to the design of a low-noise, high-performance mixer/ejector nozzle configuration for HSCT engines. Over 18,000 hours of durability testing were completed in Lewis' materials laboratories to evaluate superalloy and g-titanium aluminide performance for HSCT nozzle applications. A two-dimensional supersonic inlet concept was tested in Lewis' 10- by 10-Foot Supersonic Wind Tunnel. The extensive database and

  4. Energy Storage Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  5. Abstract and research accomplishments of University Coal Research Projects

    SciTech Connect

    1995-06-01

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their respective projects in time for distribution at a conference on June 13--14, 1995 at Tennessee State University in Nashville, Tennessee. This book is a compilation of the material received in response to that request. For convenience, the 70 grants reported in this book are stored into eight technical areas, Coal Science, Coal Surface Science, Reaction Chemistry, Advanced Process Concepts, Engineering Fundamentals and Thermodynamics, Environmental Science, high Temperature Phenomena, and Special topics. Indexes are provided for locating projects by subject, principal investigators, and contracting organizations. Each extended abstract describes project objectives, work accomplished, significance to the Fossil Energy Program, and plans for the next year.

  6. Chemical Research Projects Office: Functions, accomplishments, and programs

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1972-01-01

    The purpose, technical accomplishments, and related activities of the Chemical Research Project Group are outlined. Data cover efforts made to: (1) identify chemical research and technology required for solutions to problems of national urgency, synchronous with aeronautics and space effort; (2) conduct basic and applied interdisciplinary research on chemical problems in the areas of macromolecular science and fire research, and (3) provide productive liason with the engineering community and effective transfer of technology to other agencies and industry.

  7. Abstracts and research accomplishments of university coal research projects

    SciTech Connect

    Not Available

    1991-06-01

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.

  8. National Climate Change and Wildlife Science Center project accomplishments: highlights

    USGS Publications Warehouse

    Holl, Sally

    2011-01-01

    The National Climate Change and Wildlife Science Center (NCCWSC) has invested more than $20M since 2008 to put cutting-edge climate science research in the hands of resource managers across the Nation. With NCCWSC support, more than 25 cooperative research initiatives led by U.S. Geological Survey (USGS) researchers and technical staff are advancing our understanding of habitats and species to provide guidance to managers in the face of a changing climate. Projects focus on quantifying and predicting interactions between climate, habitats, species, and other natural resources such as water. Spatial scales of the projects range from the continent of North America, to a regional scale such as the Pacific Northwest United States, to a landscape scale such as the Florida Everglades. Time scales range from the outset of the 20th century to the end of the 21st century. Projects often lead to workshops, presentations, publications and the creation of new websites, computer models, and data visualization tools. Partnership-building is also a key focus of the NCCWSC-supported projects. New and on-going cooperative partnerships have been forged and strengthened with resource managers and scientists at Federal, tribal, state, local, academic, and non-governmental organizations. USGS scientists work closely with resource managers to produce timely and relevant results that can assist managers and policy makers in current resource management decisions. This fact sheet highlights accomplishments of five NCCWSC projects.

  9. The Vasimr Engine: Project Status and Recent Accomplishments

    NASA Technical Reports Server (NTRS)

    ChangDiaz, Franklin R.; Squire, Jared P.; Bering, Edgar A., III; Baitty, F. Wally; Goulding, Richard H.; Bengtson, Roger D.

    2004-01-01

    The development of the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) was initiated in the late 1970s to address a critical requirement for fast, high-power interplanetary space transportation. While not being a fusion rocket, it nevertheless borrows heavily from that technology and takes advantage of the natural topology of open-ended magnetic systems. In addition to its high power density and high exhaust velocity, VASIMR is capable of "constant power throttling" a feature, which allows in-flight mission-optimization of thrust and specific impulse to enhance performance and reduce trip time. A NASA-led, research team, involving industry, academia and government facilities is pursuing the development of this concept in the United States. The technology can be validated, in the near term, in venues such as the International Space Station, where it can also serve as both a drag compensation device and a plasma contactor for the orbital facility. Other near-Earth applications in the commercial and scientific satellite sectors are also envisioned. This presentation covers the evolution of the VASIMR concept to its present status, as well as recent accomplishments in our understanding of the physics. Approaches and collaborative programs addressing the major technical challenges will also be presented.

  10. Integrated monitoring and surveillance system demonstration project: Phase I accomplishments

    SciTech Connect

    Aumeier, S.E.; Walters, B.G.; Crawford, D.C.

    1997-01-15

    The authors present the results of the Integrated Monitoring and Surveillance System (IMSS) demonstration project Phase I efforts. The rationale behind IMSS development is reviewed and progress in each of the 5 basic tasks is detailed. Significant results include decisions to use Echelon LonWorks networking protocol and Microsoft Access for the data system needs, a preliminary design for the plutonium canning system glovebox, identification of facilities and materials available for the demonstration, determination of possibly affected facility documentation, and a preliminary list of available sensor technologies. Recently imposed changes in the overall project schedule and scope are also discussed and budgetary requirements for competition of Phase II presented. The results show that the IMSS demonstration project team has met and in many cases exceeded the commitments made for Phase I deliverables.

  11. Technical Report of Accomplishments of the Weatherization Leveraging Partnership Project

    SciTech Connect

    Economic Opportunity Studies

    2007-09-30

    The Weatherization Leveraging Partnership Project was established to provide three types of technical assistance support to W.A.P. network organizations seeking to achieve the Weatherization Plus goal of expanding their non-federal resources. It provided: (1) Analysis that profiled W.A.P.-eligible household energy characteristics and finances for all in determining efficiency investment targets and goals; (2) Detailed information on leveraged partnerships linked from many sources and created a website with finding aids to meet the needs the network identified. There are five major market segments with related, but different, technical assistance needs; (3) Direct, sustained assistance in preparing strategies, analyses, and communications for a limited set of local network initiatives that were in early stages of initiating or changing their resource expansion strategies. The Project identified trends in the challenges that weatherizers initiatives encountered; it designed materials and tools, including the dynamic www.weatherizationplus.org website, to meet the continuing and the emerging needs.

  12. Accomplishments '70.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. Stanford Center for Research and Development in Teaching.

    This annual report examines the accomplishments during 1970 of three programs. The first program was to improve the organizational and administrative environment for teaching. Its subsidiary projects were 1) the organizational context of teaching; 2) professional socialization of the teacher; 3) attitudes of teachers toward their occupation; 4)…

  13. Overview and Accomplishments of Advanced Mirror Technology Development Phase 2 (AMTD-2) Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2015-01-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD Phase 1 completed all of its goals and accomplished all of its milestones. AMTD Phase 2 started in 2014. Key accomplishments include deriving primary mirror engineering specifications from science requirements; developing integrated modeling tools and using those tools to perform parametric design trades; and demonstrating new mirror technologies via sub-scale fabrication and test. AMTD-1 demonstrated the stacked core technique by making a 43-cm diameter 400 mm thick 'biscuit-cut' of a 4-m class mirror. AMTD-2 is demonstrating lateral scalability of the stacked core method by making a 1.5 meter 1/3rd scale model of a 4-m class mirror.

  14. Overview and accomplishments of advanced mirror technology development phase 2 (AMTD-2) project

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2015-09-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD Phase 1 completed all of its goals and accomplished all of its milestones. AMTD Phase 2 started in 2014. Key accomplishments include deriving primary mirror engineering specifications from science requirements; developing integrated modeling tools and using those tools to perform parametric design trades; and demonstrating new mirror technologies via sub-scale fabrication and test. AMTD-1 demonstrated the stacked core technique by making a 43-cm diameter 400 mm thick `biscuit-cut' of a 4-m class mirror. AMTD-2 is demonstrating lateral scalability of the stacked core method by making a 1.5 meter 1/3rd scale model of a 4-m class mirror

  15. NASA's In-Situ Resource Utilization Project: Current Accomplishments and Exciting Future Plans

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Sanders, Gerald B.; Sacksteder, Kurt R.

    2010-01-01

    The utilization of Space resources has been identified in publications for over 40 years for its potential as a "game changing" technology for the human exploration of Space. It is called "game changing" because of the mass leverage possible when local resources at the exploration destination arc used to reduce or even eliminate resources that are brought from the Earth. NASA, under the Exploration Technology Development Program has made significant investments in the development of Space resource utilization technologies as a part of the In-Situ Resource Utilization (ISRU) project. Over the last four years, the ISRU project has taken what was essentially an academic topic with lots of experimentation but little engineering and produced near-full-scale systems that have been demonstrated. In 2008 & again in early 2010, systems that could produce oxygen from lunar soils (or their terrestrial analogs) were tested at a lunar analog site on a volcano in Hawaii. These demonstrations included collaborations with International Partners that made significant contributions to the tests. The proposed federal budget for Fiscal Year 2011 encourages the continued development and demonstration of ISRU. However it goes beyond what the project is currently doing and directs that the scope of the project be expanded to cover destinations throughout the inner solar system with the potential for night demonstrations. This paper will briefly cover the past accomplishments of the ISRU project then move to a di scussion of the plans for the project's future as NASA moves to explore a new paradigm for Space Exploration that includes orbital fuel depots and even refueling on other planetary bodies in the solar system.

  16. Advanced Mirror Technology Development (AMTD) Project: Overview and Year 4 Accomplishments

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2016-01-01

    The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature toward the next Technology Readiness Level (TRL) critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets. Key hardware accomplishments of 2015/16 are the successful low-temperature fusion of a 1.5-meter diameter ULE mirror that is a 1/3rd scale model of a 4-meter mirror and the initiation of polishing of a 1.2-meter Extreme-Lightweight Zerodur mirror. Critical to AMTD's success is an integrated team of scientists, systems engineers, and technologists; and a science-driven systems engineering approach.

  17. Advanced Industrial Materials (AIM) program. Compilation of project summaries and significant accomplishments FY 1996

    SciTech Connect

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven {open_quotes}Vision Industries{close_quotes} that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: (1) Aluminum; (2) Chemical; (3) Forest Products; (4) Glass; (5) Metal Casting; (6) Refineries; and (7) Steel. This report is a compilation of project summaries and significant accomplishments on materials.

  18. Manufacturing technology education development project. Project accomplishment summary for 91-Y12P-050-A1

    SciTech Connect

    Douglass, S.; Smith, R.

    1996-09-25

    The purpose of the project was to provide a set of supplemental instructional equipment and materials to Tennessee high school students to raise their level of knowledge about manufacturing technologies with the hope that some of the best and brightest would choose manufacturing as a career path. The role of the Y-12 Plant was primarily technical: renovate the portable classroom; select and purchase appropriate equipment; install and test the equipment; assist in the development of the curriculum; train the initial group of teachers; and provide technical assistance where needed after the laboratory was deployed. The role of the Department of Education was to provide the mobile facility; assist in the design of the laboratory; lead the development of the curriculum; deploy the trailer; and develop the structure for administering the selection of schools, training teachers, and movement of the laboratory. The Department of Education as subcontracted with Middle Tennessee State University to handle the details of laboratory deployment.

  19. Accomplishments of the Advanced Reusable Technologies (ART) RBCC Project at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    and parametrics were performed at NASA / Glenn Research Center (GRC) and NASA / Langley Research Center (LaRC) for both the Aerojet and Rocketdyne concepts. LaRC conducted an Air-Breathing Launch Vehicle (ABLV) study for several vehicle concepts with RBCC propulsion systems. LaRC is also performing a CFD analysis of the ramjet mode for both flowpaths based on GASL test conditions. A study was performed in 1999 to investigate the feasibility of performing an RBCC flight test on the NASA / Dryden Flight Research Center (DFRC) SR-71 aircraft. Academia involvement in the ART project includes parametric RBCC flowpath testing by Pennsylvania State University (PSU). In addition to thrust and wall static pressure measurements, PSU is also using laser diagnostics to analyze the flowfield in the test rig. MSFC is performing CFD analysis of the PSU rig at select test conditions for model baseline and validation. Also, Georgia Institute of Technology (GT) conducted a vision vehicle study using the Aerojet RBCC concept. Overall, the ART project has been very successful in advancing RBCC technology. Along the way, several major milestones were achieved and "firsts" accomplished. For example, under the ART project, the first dynamic trajectory simulation testing was performed and the Rocketdyne engine A5 logged over one hour of accumulated test time. The next logical step is to develop and demonstrate a flight-weight RBCC engine system.

  20. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    2012-11-30

    This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

  1. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  2. Project ALERT Accomplishments by Objectives. Final Performance Report. Three-Year Results.

    ERIC Educational Resources Information Center

    Wayne State Univ., Detroit, MI. Coll. of Education.

    Project ALERT (Adult Literacy Enhanced & Redefined through Training) was a 3-year effort to develop and deploy a number of innovative approaches to delivering workplace literacy programs to business partners, including manufacturers and unions. The project designed, developed, and implemented workplace literacy programs tailored to the…

  3. University of Arkansas Pine Bluff. Final report/project accomplishments summary, CRADA Number 95-KCPP-004

    SciTech Connect

    Lane, M.A.

    1997-03-01

    The purpose of this project was to help develop and transfer technologies to improve the production of the catfish segment of American aquaculture. This project was organized to leverage two DOE programs, DOE Historical Black Colleges and Universities (HBCU) funds and Defense Program Technology Transfer Initiative. The emphasis was to be directed toward utilizing engineering and manufacturing capabilities to develop solutions to the industry problems through the technology transfer program. The project scope included the following: (1) review the technical needs of the aquaculture industry in the state of Arkansas; (2) match the technical capabilities of FM and T with the needs of the industry; (3) form joint projects between FM and T and UAPB. Four areas of immediate interest were identified: (1) dissolved oxygen sensor system improvements; (2) alternatives to seining; (3) fish inventory and sizing; (4) improved off-flavor detection. In the first project a technical literature search was conducted by UAPB with consultation from FM and T. It was determined that commercial dissolved oxygen sensor equipment is available that could be used to upgrade the monitoring for aquaculture use. Initial results of the Alternatives to Seining project concluded that either acoustic or electric field technology can be used to herd the fish as the traditional seine does. The balance of the project was canceled when project funding at UAPB was canceled.

  4. Hydrogen Storage and Production Project

    SciTech Connect

    Bhattacharyya, Abhijit; Biris, A. S.; Mazumder, M. K.; Karabacak, T.; Kannarpady, Ganesh; Sharma, R.

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  5. MODIS Validation, Data Merger and Other Activities Accomplished by the SIMBIOS Project: 2002-2003

    NASA Technical Reports Server (NTRS)

    Fargion, Giulietta S.; McClain, Charles R.

    2003-01-01

    The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, satellite data processing, and data product validation. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report focuses on the SIMBIOS Project s efforts in support of the Moderate-Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra platform (similar evaluations of MODIS/Aqua are underway). This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.

  6. Objectives, accomplishments, and future plans of IGCP project 143, remote sensing and mineral exploration

    USGS Publications Warehouse

    Carter, W.D.; Rowan, L.C.

    1981-01-01

    The International Geological Correlation Programme (IGCP) is a worldwide cooperative research programme that began in 1974 under the auspices of the International Union of Geological Sciences. Because of the global availability of Earth resources data collected by satellites and the great interest among geologists in taking advantage of these new sources of information, a project was begun in 1976 to improve the rate of technology transfer in the field of remote-sensing exploration for energy and mineral resources. Conducting joint workshops in cooperation with COSPAR has been an important part of this project. It is to be hoped the project will improve our capability to explore, identify, and develop new resources to meet the burgeoning demands of society. ?? 1981.

  7. AN OVERVIEW OF THE LAKE MICHIGAN MASS BALANCE MODELING PROJECT: BACKGROUND, ACCOMPLISHMENTS, AND FUTURE WORK

    EPA Science Inventory

    Modeling associated with the Lake Michigan Mass Balance Project (LMMBP) is being conducted using WASP-type water quality models to gain a better understanding of the ecosystem transport and fate of polychlorinated biphenyls (PCBs), atrazine, mercury, and trans-nonachlor in Lake M...

  8. The McREL Rural Education Project: A Summary Report of Its History and Accomplishments.

    ERIC Educational Resources Information Center

    Mid-Continent Regional Educational Lab., Aurora, CO.

    This report summarizes activities of the 5-year Rural Education Project of the Mid-continent Regional Educational Laboratory (McREL) and reviews the current state of rural education. Deteriorating agricultural economy and mandated school reforms were found to have exacerbated rural school problems of maintaining quality programs in situations of…

  9. Product formulations using recycled tire crumb rubber. Final report/project accomplishments summary

    SciTech Connect

    Lula, J.W.; Bohnert, G.W.

    1998-02-01

    The objective of this project was to combine crumb rubber and synthetic fiber obtained from scrap tires with thermoplastic polymers and convert these materials into commercially useful, high-value products. A specific goal was to use these materials for roofing, while remaining cognizance of other potential applications.

  10. NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions

    NASA Technical Reports Server (NTRS)

    Coughlan, Joseph C.

    2005-01-01

    The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle. Human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future Nasa missions.

  11. PV Manufacturing R&D Project Status & Accomplishments Under ''In-Line Diagnostics & Intelligent Processing''

    SciTech Connect

    Brown, K. E.; Mitchell, R. L.; Bower, W. I.; King, R.

    2005-02-01

    In 1991, the U.S. Department of Energy (DOE), National Renewable Energy Laboratory, and Sandia National Laboratories embarked on a research partnership with the U.S. photovoltaic (PV) industry by cost-sharing industry-based R&D efforts. The PV Manufacturing R&D (PVMR&D) Project, an extension of the earlier PV Manufacturing Technology (PVMaT) Project, aims at streamlining and improving the current PV manufacturing technology to enable U.S. manufacturers to compete in the global marketplace. Currently, PVMR&D has ten active subcontracts with manufacturers working in several facets of the U.S. PV industry; four subcontracts were completed within the past year.

  12. Reduced dust emission industrial vacuum system. Final report/project accomplishments summary, CRADA Number KCP941001

    SciTech Connect

    Yerganian, S.; Wilson, S.

    1997-02-01

    The purpose of this project was to modify the design of a Billy Goat Industries VQ series industrial litter vacuum cleaner currently in production to allow it to be effective in a dusty environment. Other desired results were that the new design be easily and economically manufacturable, safe and easy for the operator to use and maintain, and easily adaptable to the rest of the Billy Goat Industries product line. To meet these objectives, the project plan was divided into four main phases. The first phase consisted of design overview and concept development. The second phase consisted of developing a detailed design based on the lessons learned from the prototype built in the first phase. The third phase consisted of refinement of the detailed design based on testing and marketing review. The fourth phase consisted of final reporting on the activities of the CRADA. The project has been terminated due to technical difficulties and a lack of confidence that practical, marketable solutions to these problems could be found.

  13. Summary Report for Capsule Dry Storage Project

    SciTech Connect

    JOSEPHSON, W S

    2003-09-04

    There are 1.936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project (CDSP) is conducted under the assumption the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event vitrification of the capsule contents is pursued. A cut away drawing of a typical cesium chloride (CsCI) capsule and the capsule property and geometry information are provided in Figure 1.1. Strontium fluoride (SrF{sub 2}) capsules are similar in design to CsCl capsules. Further details of capsule design, current state, and reference information are given later in this report and its references. Capsule production and life history is covered in WMP-16938, Capsule Characterization Report for Capsule Dry Storage Project, and is briefly summarized in Section 5.2 of this report.

  14. Telemedicine. Final report/project accomplishments summary CRADA number 95-KCP-1014

    SciTech Connect

    VanDeusen, A.L.

    1997-04-01

    This project was initiated to fill existing voids in the telemedicine equipment market. Currently, when a medical facility adds telemedicine capability to their video conference system, they must purchase expensive and bulky encoders and decoders in order to send information over the available data channel. Even with this expensive equipment, only one data type (stethoscope or ECG) can be sent at a time. In addition, since existing encoders and decoders are not designed specifically for telemedicine, special cables must be built to connect with this equipment. This project resulted in the design and construction of an encoder/decoder system that resolved these issues. The unit (referred to as the Telecoder) is designed specifically for the telemedicine market. The Telecoder is compact, handles two types of data (stethoscope and ECG) simultaneously, integrates with existing medical equipment, and is less expensive. In addition to the Telecoder module, a prototype was built that adds all the necessary logic and interfaces necessary to integrate the basic encoder design into additional Cardionics products. Although a complete integration into other Cardionics products was not in the scope of this CRADA, all the basic design work has been done to allow Cardionics to complete the work.

  15. Cyber Security Indications and Warning System (SV): CRADA 1573.94 Project Accomplishments Summary

    SciTech Connect

    Hu, Tan Chang; Robinson, David G.

    2011-09-08

    As the national focus on cyber security increases, there is an evolving need for a capability to provide for high-speed sensing of events, correlation of events, and decision-making based on the adverse events seen across multiple independent large-scale network environments. The purpose of this Shared Vision project, Cyber Security Indications and Warning System, was to combine both Sandia's and LMC's expertise to discover new solutions to the challenge of protecting our nation's infrastructure assets. The objectives and scope of the proposal was limited to algorithm and High Performance Computing (HPC) model assessment in the unclassified environment within funding and schedule constraints. The interest is the identification, scalability assessment, and applicability of current utilized cyber security algorithms as applied in an HPC environment.

  16. NASA Environmentally Responsible Aviation Projects Propulsion Technology Phase I Overview and Highlights of Accomplishments

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.; Delaat, John C.

    2012-01-01

    The NASA Environmentally Responsible Aviation (ERA) Project is focused on developing and demonstrating integrated systems technologies to TRL 4-6 by 2020 that enable reduced fuel burn, emissions, and noise for futuristic air vehicles. The specific goals aim to simultaneously reduce fuel burn by 50%, reduce Landing and Take-off Nitrous Oxides emissions by 75% relative to the CAEP 6 guidelines, and reduce cumulative noise by 42 Decibels relative to the Stage 4 guidelines. These goals apply to the integrated vehicle and propulsion system and are based on a reference mission of 3000nm flight of a Boeing 777-200 with GE90 engines. This paper will focus primarily on the ERA propulsion technology portfolio, which consists of advanced combustion, propulsor, and core technologies to enable these integrated air vehicle systems goals. An overview of the ERA propulsion technologies will be described and highlights of the results obtained during the first phase of ERA will be presented.

  17. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1995

    SciTech Connect

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This report contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Subject areas covered are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  18. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1997

    SciTech Connect

    1998-05-01

    The mission of the Advanced Industrial Materials (AIM) Program is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. A fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrates on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support. Assessments of materials needs and opportunities in the process industries are an on-going effort within the program. These assessments are being used for program planning and priority setting, followed by support of work to satisfy those needs. All the industries have identified materials as critical, particularly for high-temperature strength, corrosion resistance, and wear resistance. Also important from the energy efficiency viewpoint are membranes, catalytic membranes, and reactors for separations, both for processing and waste reduction. AIM focuses, therefore, on high-temperature materials, corrosion resistant materials, wear resistant materials, strong polymers, coatings, and membrane materials for industrial applications.

  19. The Aviation System Monitoring and Modeling (ASMM) Project: A Documentation of its History and Accomplishments: 1999-2005

    NASA Technical Reports Server (NTRS)

    Statler, Irving C. (Editor)

    2007-01-01

    The Aviation System Monitoring and Modeling (ASMM) Project was one of the projects within NASA s Aviation Safety Program from 1999 through 2005. The objective of the ASMM Project was to develop the technologies to enable the aviation industry to undertake a proactive approach to the management of its system-wide safety risks. The ASMM Project entailed four interdependent elements: (1) Data Analysis Tools Development - develop tools to convert numerical and textual data into information; (2) Intramural Monitoring - test and evaluate the data analysis tools in operational environments; (3) Extramural Monitoring - gain insight into the aviation system performance by surveying its front-line operators; and (4) Modeling and Simulations - provide reliable predictions of the system-wide hazards, their causal factors, and their operational risks that may result from the introduction of new technologies, new procedures, or new operational concepts. This report is a documentation of the history of this highly successful project and of its many accomplishments and contributions to improved safety of the aviation system.

  20. French gas-storage project nearing completion

    SciTech Connect

    Laguerie, P. de ); Durup, J.G. )

    1994-12-12

    Geomethane, jointly formed by Gaz de France and Geostock, is currently converting 7 of 36 solution-mined salt cavities at Manosque in southeast France from liquid hydrocarbon storage to natural-gas storage. In view of the large diameter (13 3/8 in.) of the original production wells and safety requirements, a unique high-capacity well completion has been developed for this project. It will have two fail-safe valves and a flow crossover 30 m below ground to isolate the production well in the event of problems at the surface. The project lies in the wooded Luberon Nature Reserve and due consideration has been given to locating the surface plant and blending it with the surroundings. The production wellheads are extra-low designs, the main plant was located outside the sensitive area, and the pipeline routes were landscaped. The paper discusses the history of salt cavern storage of natural gas; site characteristics; Manosque salt geology; salt mining and early storage; siting; engineering and construction; completion and monitoring; nature reserve protection; and fire and earthquake hazard mitigation.

  1. Development of a cryogenic EOS capability for the Z Pulsed Radiation Source: Goals and accomplishments of FY97 LDRD project

    SciTech Connect

    Hanson, D.L.; Johnston, R.R.; Asay, J.R.

    1998-03-01

    Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. This report describes progress during the period 2/97-11/97 on the FY97 LDRD project ``Cryogenic EOS Capabilities on Pulsed Radiation Sources (Z Pinch)``. The goal of this project is the development of a general purpose cryogenic target system for precision EOS and shock physics measurements at liquid helium temperatures on the Z accelerator Z-pinch pulsed radiation source. Activity during the FY97 LDRD phase of this project has focused on development of a conceptual design for the cryogenic target system based on consideration of physics, operational, and safety issues, design and fabrication of principal system components, construction and instrumentation of a cryogenic test facility for off-line thermal and optical testing at liquid helium temperatures, initial thermal testing of a cryogenic target assembly, and the design of a cryogenic system interface to the Z pulsed radiation source facility. The authors discuss these accomplishments as well as elements of the project that require further work.

  2. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    None, None

    2012-11-30

    Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any

  3. NASA space biology accomplishments, 1982

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Pleasant, L. G.

    1983-01-01

    Summaries of NASA's Space Biology Program projects are provided. The goals, objectives, accomplishments, and future plans of each project are described in this publication as individual technical summaries.

  4. Overview and recent accomplishments of the advanced mirror technology development (AMTD) for large aperture UVOIR space telescopes project

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Postman, Marc; Abplanalp, Laura; Arnold, William; Eng, Ron; Sivaramakrishnan, Anand

    2013-09-01

    The Advance Mirror Technology Development (AMTD) project is a three year effort initiated in FY12 to mature by at least a half TRL step six critical technologies required to enable 4 to 8 meter UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. Thus far, AMTD has achieved all of its goals and accomplished all of its milestones. We did this by assembling an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes; by deriving engineering specifications for advanced normal-incidence mirror systems needed to make the required science measurements; and by defining and prioritizing the most important technical problems to be solved.

  5. Survey of sensible and latent heat thermal energy storage projects

    NASA Astrophysics Data System (ADS)

    Baylin, F.; Merino, M.

    1981-05-01

    Ongoing and completed research projects on sensible and latent heat thermal enegy storage for low, intermediate, and high temperature applications are reviewed. Projects in the United States and abroad are included. Several research efforts are in the index although the project descriptions are absent. Project lists are organized into four sections: short term sensible heat storage; seasonal sensible heat storage; latent heat storage; and models, economic analysis, and support studies. The organization of the Department of Energy programs managing many of these projects is also outlined. Projects are presented in a standard format that includes laboratory; funding level and period; status; project description; technical and economic parameters; and applications.

  6. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  7. Overview and Recent Accomplishments of the Advanced Mirror Technology Development (AMTD) for Large Aperture UVOIR Space Telescopes Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Per Astro2010, a new, larger UVO telescope is needed to answer fundamental scientific questions, such as: is there life on Earth-like exoplanets; how galaxies assemble stellar populations; how baryonic matter interacts with intergalactic medium; and how solar systems form and evolve. And, present technology is not mature enough to affordably build and launch any potential UVO concept. Advanced Mirror Technology Development (AMTD) is a funded SAT project. Our objective is to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. We defined and initiated a program to mature 6 key technologies required to fabricate monolithic and segmented space mirrors.

  8. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect

    2012-11-30

    This report provides a review and an analysis of potential environmental justice areas that could be affected by the New York State Electric & Gas (NYSEG) compress air energy storage (CAES) project and identifies existing environmental burden conditions on the area and evaluates additional burden of any significant adverse environmental impact. The review assesses the socioeconomic and demographic conditions of the area surrounding the proposed CAES facility in Schuyler County, New York. Schuyler County is one of 62 counties in New York. Schuyler County’s 2010 population of 18,343 makes it one of the least populated counties in the State (U.S. Census Bureau, 2010). This report was prepared for WorleyParsons by ERM and describes the study area investigated, methods and criteria used to evaluate this area, and the findings and conclusions from the evaluation.

  9. NASA Redox Storage System Development Project

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.

    1984-01-01

    The Redox Storage System Technology Project was jointly supported by the U.S. Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to probe its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25 C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh preprototype system. A subsequent change was made in operating mode, going to 65 C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/sq cm with energy efficiencies greater than 80 percent. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office.

  10. Naturally fractured reservoirs: Optimized E and P strategies using a reaction-transport-mechanical simulator in an integrated approach. Summary of project accomplishments; Final report, September 30, 1998

    SciTech Connect

    Ortoleva, P.J.; Sundberg, K.R.; Hoak, T.E.

    1998-12-01

    Major accomplishments of this project occurred in three primary categories: (1) fractured reservoir location and characteristics prediction for exploration and production planning; (2) implications of geologic data analysis and synthesis for exploration and development programs; and (3) fractured reservoir production modeling. The results in each category will be discussed in turn. Seven detailed reports have been processed separately.

  11. Renewable generation and storage project industry and laboratory recommendations

    SciTech Connect

    Clark, N.H.; Butler, P.C.; Cameron, C.P.

    1998-03-01

    The US Department of Energy Office of Utility Technologies is planning a series of related projects that will seek to improve the integration of renewable energy generation with energy storage in modular systems. The Energy Storage Systems Program and the Photovoltaics Program at Sandia National Laboratories conducted meetings to solicit industry guidance and to create a set of recommendations for the proposed projects. Five possible projects were identified and a three pronged approach was recommended. The recommended approach includes preparing a storage technology handbook, analyzing data from currently fielded systems, and defining future user needs and application requirements.

  12. 78 FR 66695 - Loveland Area Projects, Colorado River Storage Project, Pacific Northwest-Pacific Southwest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... Area Power Administration Loveland Area Projects, Colorado River Storage Project, Pacific Northwest-Pacific Southwest Intertie Project, Central Arizona Project, and Parker-Davis Project--Rate Order No. WAPA... Western Area Power Administration (Western) Transmission Projects to Enter into WestConnect's...

  13. Technology Base Research Project for electrochemical energy storage

    SciTech Connect

    Kinoshita, K.

    1991-06-01

    This report is an executive summary of major project goals and descriptions for electrochemical energy storage. Exploratory research, applied science research, air systems research, milestones, and management activities are a few of the topics discussed. (JL)

  14. Technology Base Research Project for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kim

    1989-05-01

    This report summarizes the progress made by the Technology Base Research (TBR) Project for Electrochemical Energy Storage during calendar year 1988. The primary objective of the TBR Project, which is sponsored by the Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance and economic requirements for electric vehicles and stationary energy storage applications. The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE project (e.g., SNL's ETD Project) for further development and scale-up.

  15. The Canoe Ridge Natural Gas Storage Project

    SciTech Connect

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2003-06-18

    In 1999 the Pacific Gas and Electric Gas Transmission Northwest (GTN) drilled a borehole to investigate the feasibility of developing a natural gas-storage facility in a structural dome formed in Columbia River basalts in the Columbia Basin of south-central Washington State. The proposed aquifer storage facility will be an unconventional one where natural gas will be initially injected (and later retrieved) in one or multiple previous horizons (interflow zones) that are confined between deep (>700 meters) basalt flows of the Columbia River Basalt Group. This report summarizes the results of joint investigations on that feasibility study by GTN and the US Department of Energy.

  16. Analyzing the Impact of the 2012 Ford Focus Target Hunt: Can Student Managed Projects Accomplish Both Academic and Corporate Objectives?

    ERIC Educational Resources Information Center

    Aurand, Timothy W.; St. Clair, Jordan; Sullivan, Ursula

    2012-01-01

    Student-managed business projects offer students the opportunity to garner valuable real world experience while businesses can fulfill corporate responsibilities utilizing relatively inexpensive manpower. This paper describes an event marketing/social media marketing project completed in conjunction with Jackson-Dawson Communications, representing…

  17. Cost projections for Redox Energy storage systems

    NASA Technical Reports Server (NTRS)

    Michaels, K.; Hall, G.

    1980-01-01

    A preliminary design and system cost analysis was performed for the redox energy storage system. A conceptual design and cost estimate was prepared for each of two energy applications: (1) electric utility 100-MWh requirement (10-MW for ten hours) for energy storage for utility load leveling application, and (2) a 500-kWh requirement (10-kW for 50 hours) for use with a variety of residential or commercial applications, including stand alone solar photovoltaic systems. The conceptual designs were based on cell performance levels, system design parameters, and special material costs. These data were combined with estimated thermodynamic and hydraulic analysis to provide preliminary system designs. Results indicate that the redox cell stack to be amenable to mass production techniques with a relatively low material cost.

  18. NREL Energy Storage Projects: FY2013 Annual Report

    SciTech Connect

    Pesaran, A.; Ban, C.; Brooker, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Long, D.; Neubauer, J.; Santhanagopalan, S.; Smith, K.; Tenent, R.; Wood, E.; Han, T.; Hartridge, S.; Shaffer, C. E.

    2014-07-01

    In FY13, DOE funded NREL to make technical contributions to various R&D activities. This report summarizes NREL's R&D projects in FY13 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY13 projects under NREL's Energy Storage R&D program are discussed in depth in this report.

  19. Digital imaging technology assessment: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes.

  20. Technology base research project for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kim

    1988-07-01

    The progress made by the technology base research (TBR) project for electrochemical energy storage during calendar year 1987 was summarized. The primary objective of the TBR Project, which is sponsored by the Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance and economic requirements for electric vehicles and stationary energy storage applications. The ultimate goal is to transfer the most promising electrochemical technologies to the private sector or to another DOE project (e.g., Sandia National Laboratories' Exploratory Technology Development and Testing Project) for further development and scale-up. Besides LBL, which has overall responsibility for the TBR Project, Los Alamos National Laboratory (LANL), Brookhaven National Laboratory (BNL) and Argonne National Laboratory (ANL) participate in the TBR Project by providing key research support in several of the project elements. The TBR Project consists of three major project elements: exploratory research; applied science research; and air systems research. The objectives and the specific battery and electrochemical systems addressed by each project element are discussed in the following sections, which also include technical summaries that relate to the individual projects. Financial information that relates to the various projects and a description of the management activities for the TBR Project are described in the Executive Summary.

  1. Riparian Planting Projects Completed within Asotin Creek Watershed : 2000-2002 Asotin Creek Riparian Final Report of Accomplishments.

    SciTech Connect

    Johnson, B. J.

    2002-01-01

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in Water Resource Inventory Area (WRIA) 35. According to Washington Department of Fish and Wildlife's (WDFW) Priority WRIA's by ''At-Risk Stock Significance Map'', it is the highest priority WRIA in southeastern Washington. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve; no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe, Washington Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps members from the Nez Perce Tribe have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred and seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for threatened and endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, the ACCD has been securing and administering funding for threatened salmonids since 1994. The Asotin Creek Riparian Planting 2000-053-00 and Asotin Creek Riparian Fencing 2000-054-00 teamed BPA and the Governor's Salmon Recovery Funding to plant

  2. Technology Base Research Project for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, K.

    1985-06-01

    The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.

  3. An environmentally conscious approach to clothes maintenance. Final report/project accomplishments summary CRADA Number KCP-94-1006

    SciTech Connect

    Hand, T.E.

    1997-03-01

    The introduction of the automatic home washer and dryer in the 1950s, coupled with the introduction of wash and wear fabrics in the 1960s, drastically decreased the demand for the commercial laundry and dry cleaning industry. Further, dry cleaners now must contend with higher operational costs due to chemicals such as perchloroethylene being deemed environmentally unsound. The Kansas City Plant, managed by AlliedSignal FM and T, has been successful in drastically reducing the use of chlorinated and fluorinated solvents in the manufacture of weapon components. That expertise was coupled with Garment Care`s knowledge of commercial cleaning processes and materials in this project to develop a new system to clean and process clothing and linens at low cost.

  4. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    SciTech Connect

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  5. The MAX IV storage ring project

    PubMed Central

    Tavares, Pedro F.; Leemann, Simon C.; Sjöström, Magnus; Andersson, Åke

    2014-01-01

    The MAX IV facility, currently under construction in Lund, Sweden, features two electron storage rings operated at 3 GeV and 1.5 GeV and optimized for the hard X-ray and soft X-ray/VUV spectral ranges, respectively. A 3 GeV linear accelerator serves as a full-energy injector into both rings as well as a driver for a short-pulse facility, in which undulators produce X-ray pulses as short as 100 fs. The 3 GeV ring employs a multibend achromat (MBA) lattice to achieve, in a relatively short circumference of 528 m, a bare lattice emittance of 0.33 nm rad, which reduces to 0.2 nm rad as insertion devices are added. The engineering implementation of the MBA lattice raises several technological problems. The large number of strong magnets per achromat calls for a compact design featuring small-gap combined-function magnets grouped into cells and sharing a common iron yoke. The small apertures lead to a low-conductance vacuum chamber design that relies on the chamber itself as a distributed copper absorber for the heat deposited by synchrotron radiation, while non-evaporable getter (NEG) coating provides for reduced photodesorption yields and distributed pumping. Finally, a low main frequency (100 MHz) is chosen for the RF system yielding long bunches, which are further elongated by passively operated third-harmonic Landau cavities, thus alleviating collective effects, both coherent (e.g. resistive wall instabilities) and incoherent (intrabeam scattering). In this paper, we focus on the MAX IV 3 GeV ring and present the lattice design as well as the engineering solutions to the challenges inherent to such a design. As the first realisation of a light source based on the MBA concept, the MAX IV 3 GeV ring offers an opportunity for validation of concepts that are likely to be essential ingredients of future diffraction-limited light sources. PMID:25177978

  6. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    SciTech Connect

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  7. Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements

    SciTech Connect

    KLEM, M.J.

    2000-10-18

    In 1998, a major change in the technical strategy for managing Multi Canister Overpacks (MCO) while stored within the Canister Storage Building (CSB) occurred. The technical strategy is documented in Baseline Change Request (BCR) No. SNF-98-006, Simplified SNF Project Baseline (MCO Sealing) (FDH 1998). This BCR deleted the hot conditioning process initially adopted for the Spent Nuclear Fuel Project (SNF Project) as documented in WHC-SD-SNF-SP-005, Integrated Process Strategy for K Basins Spent Nuclear Fuel (WHC 199.5). In summary, MCOs containing Spent Nuclear Fuel (SNF) from K Basins would be placed in interim storage following processing through the Cold Vacuum Drying (CVD) facility. With this change, the needs for the Hot Conditioning System (HCS) and inerting/pressure retaining capabilities of the CSB storage tubes and the MCO Handling Machine (MHM) were eliminated. Mechanical seals will be used on the MCOs prior to transport to the CSB. Covers will be welded on the MCOs for the final seal at the CSB. Approval of BCR No. SNF-98-006, imposed the need to review and update the CSB functions and requirements baseline documented herein including changing the document title to ''Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements.'' This revision aligns the functions and requirements baseline with the CSB Simplified SNF Project Baseline (MCO Sealing). This document represents the Canister Storage Building (CSB) Subproject technical baseline. It establishes the functions and requirements baseline for the implementation of the CSB Subproject. The document is organized in eight sections. Sections 1.0 Introduction and 2.0 Overview provide brief introductions to the document and the CSB Subproject. Sections 3.0 Functions, 4.0 Requirements, 5.0 Architecture, and 6.0 Interfaces provide the data described by their titles. Section 7.0 Glossary lists the acronyms and defines the terms used in this document. Section 8.0 References lists the

  8. Current trends in seasonal ice storage. [Compilation of projects

    SciTech Connect

    Gorski, A.J.

    1986-05-01

    This document is a compilation of modern research projects focused upon the use of naturally grown winter ice for summer cooling applications. Unlike older methods of ice-based cooling, in which ice was cut from rivers and lakes and transported to insulated icehouses, modern techniques grow ice directly in storage containers - by means of heat pipes, snow machines, and water sprays - at the site of application. This modern adaptation of an old idea was reinvented independently at several laboratories in the United States and Canada. Applications range from air conditioning and food storage to desalinization.

  9. Performance assessment of the PNM Prosperity electricity storage project :

    SciTech Connect

    Roberson, Dakota; Ellison, James F.; Bhatnagar, Dhruv; Schoenwald, David A.

    2014-05-01

    The purpose of this study is to characterize the technical performance of the PNM Prosperity electricity storage project, and to identify lessons learned that can be used to improve similar projects in the future. The PNM Prosperity electricity storage project consists of a 500 kW/350 kWh advanced lead-acid battery with integrated supercapacitor (for energy smoothing) and a 250 kW/1 MWh advanced lead-acid battery (for energy shifting), and is co-located with a 500 kW solar photovoltaic (PV) resource. The project received American Reinvestment and Recovery Act (ARRA) funding. The smoothing system is e ective in smoothing intermittent PV output. The shifting system exhibits good round-trip efficiencies, though the AC-to-AC annual average efficiency is lower than one might hope. Given the current utilization of the smoothing system, there is an opportunity to incorporate additional control algorithms in order to increase the value of the energy storage system.

  10. The NASA Redox Storage System Development project, 1980

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The technical accomplishments pertaining to the development of Redox systems and related technology are outlined in terms of the task elements: prototype systems development, application analyses, and supporting technology. Prototype systems development provides for a major procurement to develop an industrial capability to take the current NASA Lewis technology and go on to the design, development, and commercialization of iron-chromium Redox storage systems. Application analyses provides for the definition of application concepts and technology requirements, specific definition studies, and the identification of market sectors and their penetration potential. Supporting technology includes both in house and contractual efforts that encompass implementation of technology improvements in membranes, electrodes, reactant processing, and system design. The status of all elements is discussed.

  11. FY2011 Annual Report for NREL Energy Storage Projects

    SciTech Connect

    Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M.; Kim, G. H.; Lee, K. J.; Long, D.; Neubauer, J.; Santhangopalan, S.; Smith, K.

    2012-04-01

    This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.

  12. Guide to monitoring carbon storage in forestry and agroforestry projects

    SciTech Connect

    MacDicken, K.G.

    1997-10-01

    As the international Joint Implementation (JI) program develops a system for trading carbon credits to offset greenhouse gas emissions, project managers need a reliable basis for measuring the carbon storage benefits of carbon offset projects. Monitoring and verifying carbon storage can be expensive, depending on the level of scientific validity needed. This guide describes a system of cost-effective methods for monitoring and verification on a commercial basis, for three types of land use; forest plantations, managed natural forests and agroforestry. Winrock International`s Forest Carbon Monitoring Program developed this system with its partners as a way to provide reliable results using accepted principles and practices of forest inventory, soil science and ecological surveys. Perhaps most important, the system brings field research methods to bear on commercial-scale inventories, at levels of precision specified by funding agencies.

  13. 76 FR 22393 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Cancellation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy... and Wildlife Service for the proposed Eagle Mountain Pumped Storage Hydroelectric Project....

  14. 78 FR 26358 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy...), on the Eagle Mountain Pumped Storage Hydroelectric Project. e. All local, state, and federal...

  15. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  16. Environmental Projects. Volume 9: Construction of hazardous materials storage facilities

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Activities at the Goldstone Deep Space Communications Complex (GDSCC) are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards. This report is one in a series of reports describing environmental projects at GDSCC. The construction of two hazardous materials and wastes storage facilities and an acid-wash facility is described. An overview of the Goldstone complex is also presented along with a description of the environmental aspects of the GDSCC site.

  17. Thermal Analysis of a Dry Storage Concept for Capsule Dry Storage Project

    SciTech Connect

    JOSEPHSON, W S

    2003-09-04

    There are 1,936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project is conducted under the assumption that the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event that vitrification of the capsule contents is pursued. The Capsule Advisory Panel (CAP) was created by the Project Manager for the Hanford Site Capsule Dry Storage Project (CDSP). The purpose of the CAP is to provide specific technical input to the CDSP; to identify design requirements; to ensure design requirements for the project are conservative and defensible; to identify and resolve emerging, critical technical issues, as requested; and to support technical reviews performed by regulatory organizations, as requested. The CAP will develop supporting and summary documents that can be used as part of the technical and safety bases for the CDSP. The purpose of capsule dry storage thermal analysis is to: (1) Summarize the pertinent thermal design requirements sent to vendors, (2) Summarize and address the assumptions that underlie those design requirements, (3) Demonstrate that an acceptable design exists that satisfies the requirements, (4) Identify key design features and phenomena that promote or impede design success, (5) Support other CAP analyses such as corrosion and integrity evaluations, and (6) Support the assessment of proposed designs. It is not the purpose of this report to optimize or fully analyze variations of postulated acceptable designs. The present evaluation will indicate the impact of various possible design features, but not systematically pursue design improvements obtainable through analysis

  18. Technology Base Research Project for electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kim

    1991-06-01

    The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R&D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R&D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area.

  19. Technology Base Research Project for electrochemical energy storage

    SciTech Connect

    Kinoshita, Kim

    1991-06-01

    The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

  20. Wind Program Accomplishments

    SciTech Connect

    Wind Program

    2012-05-24

    This fact sheet describes some of the accomplishments of DOE's Wind Program through its investments in technology development and market barrier reduction, and how those accomplishments are supporting the advancement of renewable energy generated using the United States' abundant wind resources.

  1. NREL Energy Storage Projects. FY2014 Annual Report

    SciTech Connect

    Pesaran, Ahmad; Ban, Chunmei; Burton, Evan; Gonder, Jeff; Grad, Peter; Jun, Myungsoo; Keyser, Matt; Kim, Gi-Heon; Neubauer, Jeremy; Santhanagopalan, Shriram; Saxon, Aron; Shi, Ying; Smith, Kandler; Sprague, Michael; Tenent, Robert; Wood, Eric; Yang, Chuanbo; Zhang, Chao; Han, Taeyoung; Hartridge, Steve; Shaffer, Christian E.

    2015-03-01

    The National Renewable Energy Laboratory supports energy storage R&D under the Office of Vehicle Technologies at the U.S. Department of Energy. The DOE Energy Storage Program’s charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation’s goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are; Advanced Battery Development through the United States Advanced Battery Consortium (USABC); Battery Testing, Analysis, and Design; Applied Battery Research (ABR); and Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT) In FY14, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL’s R&D projects in FY14 in support of the USABC; Battery Testing, Analysis, and Design; ABR; and BATT program elements. The FY14 projects under NREL’s Energy Storage R&D program are briefly described below. Each of these is discussed in depth in this report.

  2. 76 FR 80926 - Cortez Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... Federal Energy Regulatory Commission Cortez Pumped Storage Project; Notice of Preliminary Permit... Pumped Storage Project to be located on Plateau Creek, near the town of Dolores, Montezuma County... a total storage capacity of 8,000 acre-feet and a water surface area of 275 acres at full...

  3. 77 FR 47628 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy... Management Act and the Federal Power Act), on the Eagle Mountain Pumped Storage Hydroelectric...

  4. Hazards associated with retrieval and storage of legacy waste at the Transuranic Waste Inspectable Storage Project

    SciTech Connect

    Pannell, M.A.; Grogin, P.W.; Langford, R.R.

    1998-03-01

    Approximately 17,000 containers of solid transuranic and hazardous waste have been stored beneath earthen cover for nearly twenty years at Technical Area 4 of the Los Alamos National Laboratory. The mission of the Transuranic Waste Inspectable Storage Project (TWISP) is to retrieve, vent, and place these containers into an inspectable storage configuration in compliance with the Resource Conservation and Recovery Act, prior to final disposition at the Waste Isolation Pilot Plant. Significant hazards currently identified with TWISP activities include: (1) the pressurization of drums; (2) volatilization of organic compounds (VOCs) within the drums; and (3) the generation of elevated hydrogen levels by certain waste streams. Based on the retrieval of 15% of the waste containers, the following preliminary conclusions are presented to better protect personnel and the environment: (1) the likelihood of unvented drums becoming pressurized increases when environmental conditions change; (2) pressurized drums must be vented before they become bulging drums; (3) vented drums present the potential for VOC emissions and personnel exposure; (4) the vapor pressure and boiling points of waste stream constituents may be an indication of the likelihood of VOC emissions from stored hazardous waste containers; (5) large numbers of co-located vented drums may present the potential of increased hydrogen and VOC concentrations within unventilated storage domes; (6) monitoring and sampling vented drum storage domes is necessary to ensure that the levels of risk to drum handlers and inspection personnel are acceptable; (7) identifying, tagging, and segregating special case drums is necessary to prevent personnel overexposures and preclude environmental contamination; (8) applying rust inhibitor prolongs the useful life of waste containers stored under earthen cover; (9) acoustic drum pressure detection may be a viable tool in assessing elevated drum pressures.

  5. 77 FR 19279 - Long Canyon Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Energy Regulatory Commission Long Canyon Pumped Storage Project; Notice of Preliminary Permit Application... section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the Long Canyon Pumped Storage Project to be located near the town of Moab, Grand County, Utah. The ] project would...

  6. Gravity Monitoring of the Weber River Aquifer Storage Project

    NASA Astrophysics Data System (ADS)

    Gettings, P.; Hurlow, H.; Chapman, D. S.; Harris, R. N.

    2004-12-01

    Repeated precision gravity measurements provide an economical way to track aquifer storage changes through time. In early 2004, the Weber River Water Conservancy District in northern Utah began an aquifer storage and recovery pilot project by infiltrating river water into a depleted aquifer. We are tracking the infiltrated water by measuring gravity changes over the aquifer through time. A network of 28 stations around the infiltration location was established, with an additional station in the nearby mountains for a stable reference. Gravity surveys are conducted at approximately two week intervals; monthly rapid-static GPS campaigns monitor ground deformation across the network. Gravity monitoring commenced in Feburary 2004, to establish a baseline before infiltration and investigate the magnitudes of natural signals and measurment noise. Infiltration commenced six weeks after the start of monitoring and by early July 2004, nearly 750 000 m3 of water were infiltrated; gravity changes at the infiltration site reached a peak of ˜100 μ Gal. Gaussian integration of the peak gravity signal is consistent with the total volume of infiltrated water. Continued monitoring during infiltration tracked the horizontal migration of infiltration water south and west of the site, consistent with known hydraulic gradients. Infiltration ended in July 2004 and gravity measurements show a declining recharge mound, with the peak decreasing to ˜60 μ Gal one month later. The spatial and temporal changes in gravity will be used to refine and enhance reservoir modeling around the infiltration site.

  7. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect

    Bigelow, Erik

    2013-01-01

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries

  8. The Spacelab Accomplishments Forum

    NASA Technical Reports Server (NTRS)

    Emond, J. (Editor); Bennett, N. (Compiler); McCauley, D. (Compiler); Murphy, K. (Compiler)

    2000-01-01

    This document is a record of the Spacelab Accomplishments Forum held in March 1999. Presentations made at the Forum covered the design, engineering, utilization, and science associated with Spacelab, as well as the international associations and impact of Spacelab and its use in the design and utilization of the International Space Station. Topics included Earth observations, space science, life science, commercial uses, microgravity science, and international participation.

  9. Accomplishments of Science by the Year 2000

    NASA Technical Reports Server (NTRS)

    Bergman, J.

    1985-01-01

    Current and projected accomplishments in science and technology are examined from a social and political perspective. It is observed that the present level of research and development in the United States is inadequate for many possible advancements to occur.

  10. Report on interim storage of spent nuclear fuel. Midwestern high-level radioactive waste transportation project

    SciTech Connect

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  11. 78 FR 25263 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy... Power Act), on the Eagle Mountain Pumped Storage Hydroelectric Project. e. All local, state, and...

  12. Moomba Lower Daralingie Beds (LDB) gas storage project: Reservoir management using a novel numerical simulation technique

    SciTech Connect

    Jamal, F.G.

    1994-12-31

    Engineers managing underground gas storage projects are often faced with challenges involving gas migration, inventory variance, gas quality and inventory-pressures. This paper discusses a unique underground gas storage project where sales gas and ethane are stored in two different but communicating regions of the same reservoir. A commercially available reservoir simulator was used to model the fluid flow behavior in this reservoir, hence, providing a tool for better management and use of the existing gas storage facilities.

  13. Life sciences accomplishments

    NASA Technical Reports Server (NTRS)

    1985-01-01

    From its inception, the main charter of Life Sciences has been to define biomedical requirements for the design and development of spacecraft systems and to participate in NASA's scientific exploration of the universe. The role of the Life Sciences Division is to: (1) assure the health, well being and productivity of all individuals who fly in space; (2) study the origin, evolution, and distribution of life in the universe; and (3) to utilize the space environment as a tool for research in biology and medicine. The activities, programs, and accomplishments to date in the efforts to achieve these goals are detailed and the future challenges that face the division as it moves forward from the shuttle era to a permanent manned presence in space space station's are examined.

  14. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage

    SciTech Connect

    Tuffner, Francis K.; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

  15. Life Sciences Accomplishments 1994

    NASA Technical Reports Server (NTRS)

    Burnell, Mary Lou (Editor)

    1993-01-01

    proposals for ground-based and flight research for all programs. Areas of particular interest to NASA were defined Proposals due April 29, 1994, will be peer reviewed - externally for scientific merit. This annual NRA process is now the mechanism for recruiting both extramural and intramural investigations. As an overview of LBSAD activities in 1993, this accomplishments document covers each of the major organizational components of the Division and the accomplishments of each. The second section is a review of the Space Life Sciences Research programs Space Biology, Space Physiology and Countermeasures, Radiation Health, Environmental Health, Space Human Factors, Advanced Life Support, and Global Monitoring and Disease Prediction, The third section, Research in Space Flight, describes the substantial contributions of the Spacelab Life Sciences 2 (SLS-2) mission to life sciences research and the significant contributions of the other missions flown in 1993, along with plans for future missions. The Division has greatly expanded and given high priority to its Education and Outreach Programs, which are presented in the fourth section. The fifth and final section, Partners for Space, shows the Divisions Cooperative efforts with other national and international agencies to achieve common goals, along with the accomplishments of joint research and analysis programs.

  16. The accomplishment of the Engineering Design Activities of IFMIF/EVEDA: The European-Japanese project towards a Li(d,xn) fusion relevant neutron source

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Ibarra, A.; Abal, J.; Abou-Sena, A.; Arbeiter, F.; Arranz, F.; Arroyo, J. M.; Bargallo, E.; Beauvais, P.-Y.; Bernardi, D.; Casal, N.; Carmona, J. M.; Chauvin, N.; Comunian, M.; Delferriere, O.; Delgado, A.; Diaz-Arocas, P.; Fischer, U.; Frisoni, M.; Garcia, A.; Garin, P.; Gobin, R.; Gouat, P.; Groeschel, F.; Heidinger, R.; Ida, M.; Kondo, K.; Kikuchi, T.; Kubo, T.; Le Tonqueze, Y.; Leysen, W.; Mas, A.; Massaut, V.; Matsumoto, H.; Micciche, G.; Mittwollen, M.; Mora, J. C.; Mota, F.; Nghiem, P. A. P.; Nitti, F.; Nishiyama, K.; Ogando, F.; O'hira, S.; Oliver, C.; Orsini, F.; Perez, D.; Perez, M.; Pinna, T.; Pisent, A.; Podadera, I.; Porfiri, M.; Pruneri, G.; Queral, V.; Rapisarda, D.; Roman, R.; Shingala, M.; Soldaini, M.; Sugimoto, M.; Theile, J.; Tian, K.; Umeno, H.; Uriot, D.; Wakai, E.; Watanabe, K.; Weber, M.; Yamamoto, M.; Yokomine, T.

    2015-08-01

    The International Fusion Materials Irradiation Facility (IFMIF), presently in its Engineering Validation and Engineering Design Activities (EVEDA) phase under the frame of the Broader Approach Agreement between Europe and Japan, accomplished in summer 2013, on schedule, its EDA phase with the release of the engineering design report of the IFMIF plant, which is here described. Many improvements of the design from former phases are implemented, particularly a reduction of beam losses and operational costs thanks to the superconducting accelerator concept, the re-location of the quench tank outside the test cell (TC) with a reduction of tritium inventory and a simplification on its replacement in case of failure, the separation of the irradiation modules from the shielding block gaining irradiation flexibility and enhancement of the remote handling equipment reliability and cost reduction, and the water cooling of the liner and biological shielding of the TC, enhancing the efficiency and economy of the related sub-systems. In addition, the maintenance strategy has been modified to allow a shorter yearly stop of the irradiation operations and a more careful management of the irradiated samples. The design of the IFMIF plant is intimately linked with the EVA phase carried out since the entry into force of IFMIF/EVEDA in June 2007. These last activities and their on-going accomplishment have been thoroughly described elsewhere (Knaster J et al [19]), which, combined with the present paper, allows a clear understanding of the maturity of the European-Japanese international efforts. This released IFMIF Intermediate Engineering Design Report (IIEDR), which could be complemented if required concurrently with the outcome of the on-going EVA, will allow decision making on its construction and/or serve as the basis for the definition of the next step, aligned with the evolving needs of our fusion community.

  17. EFRC CMSNF Major Accomplishments

    SciTech Connect

    D. Hurley; Todd R. Allen

    2014-09-01

    The mission of the Center for Material Science of Nuclear Fuels (CMSNF) has been to develop a first-principles-based understanding of thermal transport in the most widely used nuclear fuel, UO2, in the presence of defect microstructure associated with radiation environments. The overarching goal within this mission was to develop an experimentally validated multiscale modeling capability directed toward a predictive understanding of the impact of radiation and fission-product induced defects and microstructure on thermal transport in nuclear fuel. Implementation of the mission was accomplished by integrating the physics of thermal transport in crystalline solids with microstructure science under irradiation through multi institutional experimental and computational materials theory teams from Idaho National Laboratory, Oak Ridge National Laboratory, Purdue University, the University of Florida, the University of Wisconsin, and the Colorado School of Mines. The Center’s research focused on five major areas: (i) The fundamental aspects of anharmonicity in UO2 crystals and its impact on thermal transport; (ii) The effects of radiation microstructure on thermal transport in UO2; (iii) The mechanisms of defect clustering in UO2 under irradiation; (iv) The effect of temperature and oxygen environment on the stoichiometry of UO2; and (v) The mechanisms of growth of dislocation loops and voids under irradiation. The Center has made important progress in each of these areas, as summarized below.

  18. 105-H Reactor Interim Safe Storage Project Final Report

    SciTech Connect

    E.G. Ison

    2008-11-08

    The following information documents the decontamination and decommissioning of the 105-H Reactor facility, and placement of the reactor core into interim safe storage. The D&D of the facility included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, decontamination, demolition of the structure, and restoration of the site. The ISS work also included construction of the safe storage enclosure, which required the installation of a new roofing system, power and lighting, a remote monitoring system, and ventilation components.

  19. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., excluding pumped storage projects. 11.3 Section 11.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES... Government Lands, and Use of Government Dams § 11.3 Use of government dams, excluding pumped storage...

  20. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., excluding pumped storage projects. 11.3 Section 11.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES... Government Lands, and Use of Government Dams § 11.3 Use of government dams, excluding pumped storage...

  1. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., excluding pumped storage projects. 11.3 Section 11.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES... Government Lands, and Use of Government Dams § 11.3 Use of government dams, excluding pumped storage...

  2. DQO Summary Report for 105-N/109-N Interim Safe Storage Project Waste Characterization

    SciTech Connect

    T. A. Lee

    2005-09-15

    The DQO summary report provides the results of the DQO process completed for waste characterization activities for the 105-N/109-N Reactor Interim Safe Storage Project including decommission, deactivate, decontaminate, and demolish activities for six associated buildings.

  3. 7. Photocopy of engineering drawing. PROJECT WS315A HELIUM STORAGE AREA: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of engineering drawing. PROJECT WS-315A HELIUM STORAGE AREA: PLAN AND DETAILS-MECHANICAL, APRIL 1956. - Cape Canaveral Air Station, Launch Complex 17, Facility 28419, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  4. Environmental permits and approvals plan for high-level waste interim storage, Project W-464

    SciTech Connect

    Deffenbaugh, M.L.

    1998-05-28

    This report discusses the Permitting Plan regarding NEPA, SEPA, RCRA, and other regulatory standards and alternatives, for planning the environmental permitting of the Canister Storage Building, Project W-464.

  5. Engineering Accomplishments in the Construction of NCSX

    SciTech Connect

    G. H. Neilson; P.J. Heitzenroeder; B.E. Nelson; W.T. Reiersen; A. Brooks; T.G. Brown; J.H. Chrzanowski; M.J. Cole; F. Dahlgren; T. Dodson; L.E. Dudek; R.A. Ellis; H.M. Fan; P.J. Fogarty; K.D. Freudenberg; P.L. Goranson; J.H. Harris; M.R. Kalish; G. Labik; J.F. Lyon; N. Pomphrey; C.D. Priniski; S. Raftopoulos; D.J. Rej; W.R. Sands; R.T. Simmons; B.E. Stratton; R.L. Strykowsky; M.E. Viola; D.E. Williamson; M.C. Zarnstorff

    2008-09-01

    The National Compact Stellarator Experiment (NCSX) was designed to test a compact, quasiaxisymmetric stellarator configuration. Flexibility and accurate realization of its complex 3D geometry were key requirements affecting the design and construction. While the project was terminated before completing construction, there were significant engineering accomplishments in design, fabrication, and assembly. The design of the stellarator core device was completed. All of the modular coils, toroidal field coils, and vacuum vessel sectors were fabricated. Critical assembly steps were demonstrated. Engineering advances were made in the application of CAD modeling, structural analysis, and accurate fabrication of complex-shaped components and subassemblies. The engineering accomplishments of the project are summarized

  6. HybridPlan: A Capacity Planning Technique for Projecting Storage Requirements in Hybrid Storage Systems

    SciTech Connect

    Kim, Youngjae; Gupta, Aayush; Urgaonkar, Bhuvan; Piotr, Berman; Sivasubramaniam, Anand

    2014-01-01

    Economic forces, driven by the desire to introduce flash into the high-end storage market without changing existing software-base, have resulted in the emergence of solid-state drives (SSDs), flash packaged in HDD form factors and capable of working with device drivers and I/O buses designed for HDDs. Unlike the use of DRAM for caching or buffering, however, certain idiosyncrasies of NAND Flash-based solid-state drives (SSDs) make their integration into hard disk drive (HDD)-based storage systems nontrivial. Flash memory suffers from limits on its reliability, is an order of magnitude more expensive than the magnetic hard disk drives (HDDs), and can sometimes be as slow as the HDD (due to excessive garbage collection (GC) induced by high intensity of random writes). Given the complementary properties of HDDs and SSDs in terms of cost, performance, and lifetime, the current consensus among several storage experts is to view SSDs not as a replacement for HDD, but rather as a complementary device within the high-performance storage hierarchy. Thus, we design and evaluate such a hybrid storage system with HybridPlan that is an improved capacity planning technique to administrators with the overall goal of operating within cost-budgets. HybridPlan is able to find the most cost-effective hybrid storage configuration with different types of SSDs and HDDs

  7. Full-scale system impact analysis: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Digital Document Storage Full Scale System can provide cost effective electronic document storage, retrieval, hard copy reproduction, and remote access for users of NASA Technical Reports. The desired functionality of the DDS system is highly dependent on the assumed requirements for remote access used in this Impact Analysis. It is highly recommended that NASA proceed with a phased, communications requirement analysis to ensure that adequate communications service can be supplied at a reasonable cost in order to validate recent working assumptions upon which the success of the DDS Full Scale System is dependent.

  8. BPA Riparian Fencing and Alternative Water Development Projects Completed within Asotin Creek Watershed, 2000 and 2001 Asotin Creek Fencing Final Report of Accomplishments.

    SciTech Connect

    Johnson, B.J.

    2002-01-01

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in Water Resource Inventory Area (WRIA) 35. According to Washington Department of Fish and Wildlife's (WDFW) Priority WRIA's by ''At-Risk Stock Significance Map'', it is the highest priority WRIA in southeastern Washington. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve; no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe, Washington Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps members from the Nez Perce Tribe have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred and seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, the ACCD has been securing and administering funding for endangered salmonids since 1994. The ''Asotin Creek Riparian Planting 2000-053-00 and Asotin Creek Riparian Fencing 2000-054-00'' teamed BPA and the Governor's Salmon Recovery Funding to plant approximately 84

  9. PV Manufacturing R&D Project Status and Accomplishments under 'In-Line Diagnostics and Intelligent Processing' and 'Yield, Durability and Reliability': Preprint

    SciTech Connect

    Friedman, D. J.; Mitchell, R. L.; Keyes, B. M.; Bower, W. I.; King, R.; Mazer, J.

    2006-05-01

    The PV Manufacturing R&D (PVMR&D) Project conducts cost-shared research and development programs with U.S. PV industry partners. There are currently two active industry partnership activities. ''In-line Diagnostics and Intelligent Processing'', launched in 2002, supports development of new in-line diagnostics and monitoring with real-time feedback for optimal process control and increased yield in the fabrication of PV modules, systems, and other system components. ''Yield, Durability and Reliability'', launched in late 2004, supports enhancement of PV module, system component, and complete system reliability in high-volume manufacturing. A second key undertaking of the PVMR&D Project is the collection and analysis of module production cost-capacity metrics for the U.S. PV industry. In the period from 1992 through 2005, the average module manufacturing cost in 2005 dollars fell 54% (5.7% annualized) to $2.74/Wp, and the capacity increased 18.6-fold (25% annualized) to 253 MW/yr. An experience curve analysis gives progress ratios of 87% and 81%, respectively, for U.S. silicon and thin-film module production.

  10. 78 FR 56692 - Colorado River Storage Project-Rate Order No. WAPA-161

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... Projects (SLCA/IP) Firm Power Rate and the Colorado River Storage Project (CRSP) Transmission and Ancillary Services Rates through September 30, 2015. The existing SLCA/IP Firm Power Rate and CRSP Transmission and...) is proposing to temporarily extend the existing SLCA/IP Firm Power Rate and CRSP Transmission...

  11. Environmental projects. Volume 2: Underground storage tanks compliance program

    NASA Technical Reports Server (NTRS)

    Kushner, L.

    1987-01-01

    Six large parabolic dish antennas are located at the Goldstone Deep Space Communications Complex north of Barstow, California. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel and hydraulic oil. These essential fluids are stored in underground storage tanks (USTs). Because USTs may develop leaks with the resultant seepage of their hazardous contents into the surrounding soil, local, State and Federal authorities have adopted stringent regulations for the testing and maintenance of USTs. Under the supervision of JPL's Office of Telecommunications and Data Acquisition, a year-long program has brought 27 USTs at the Goldstone Complex into compliance with Federal, State of California and County of San Bernadino regulations. Of these 27 USTs, 15 are operating today, 11 have been temporary closed down, and 1 abandoned in place. In 1989, the 15 USTs now operating at the Goldstone DSCC will be replaced either by modern, double-walled USTs equipped with automatic sensors for leak detection, or by above ground storage tanks. The 11 inactivated USTs are to be excavated, removed and disposed of according to regulation.

  12. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    SciTech Connect

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  13. Accomplishments of the MUSICA project to provide accurate, long-term, global and high-resolution observations of tropospheric {H2O,δD} pairs - a review

    NASA Astrophysics Data System (ADS)

    Schneider, Matthias; Wiegele, Andreas; Barthlott, Sabine; González, Yenny; Christner, Emanuel; Dyroff, Christoph; García, Omaira E.; Hase, Frank; Blumenstock, Thomas; Sepúlveda, Eliezer; Mengistu Tsidu, Gizaw; Takele Kenea, Samuel; Rodríguez, Sergio; Andrey, Javier

    2016-07-01

    In the lower/middle troposphere, {H2O,δD} pairs are good proxies for moisture pathways; however, their observation, in particular when using remote sensing techniques, is challenging. The project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) addresses this challenge by integrating the remote sensing with in situ measurement techniques. The aim is to retrieve calibrated tropospheric {H2O,δD} pairs from the middle infrared spectra measured from ground by FTIR (Fourier transform infrared) spectrometers of the NDACC (Network for the Detection of Atmospheric Composition Change) and the thermal nadir spectra measured by IASI (Infrared Atmospheric Sounding Interferometer) aboard the MetOp satellites. In this paper, we present the final MUSICA products, and discuss the characteristics and potential of the NDACC/FTIR and MetOp/IASI {H2O,δD} data pairs. First, we briefly resume the particularities of an {H2O,δD} pair retrieval. Second, we show that the remote sensing data of the final product version are absolutely calibrated with respect to H2O and δD in situ profile references measured in the subtropics, between 0 and 7 km. Third, we reveal that the {H2O,δD} pair distributions obtained from the different remote sensors are consistent and allow distinct lower/middle tropospheric moisture pathways to be identified in agreement with multi-year in situ references. Fourth, we document the possibilities of the NDACC/FTIR instruments for climatological studies (due to long-term monitoring) and of the MetOp/IASI sensors for observing diurnal signals on a quasi-global scale and with high horizontal resolution. Fifth, we discuss the risk of misinterpreting {H2O,δD} pair distributions due to incomplete processing of the remote sensing products.

  14. TRC (Texas Railroad Commission) rejects gas storage project financing plans

    SciTech Connect

    Not Available

    1980-08-11

    TRC has rejected Valero Transmission Co.'s plan to finance a 5 billion cu ft underground storage facility already under construction in Wharton County, TX. The fee application, dismissed without prejudice to Valero's filing another application, would have added $0.015/1000 cu ft for the first nine years of operation before dropping to $0.014/1000 cu ft in the tenth year. The TRC commissioners decided that the costs underlying this proposed fee schedule were too speculative to be passed on to pipeline customers.

  15. International Energy Agency (IEA) Greenhouse Gas (GHG) Weyburn-Midale CO₂ Monitoring and Storage Project

    SciTech Connect

    Sacuta, Norm; Young, Aleana; Worth, Kyle

    2015-12-22

    The IEAGHG Weyburn-Midale CO₂ Monitoring and Storage Project (WMP) began in 2000 with the first four years of research that confirmed the suitability of the containment complex of the Weyburn oil field in southeastern Saskatchewan as a storage location for CO₂ injected as part of enhanced oil recovery (EOR) operations. The first half of this report covers research conducted from 2010 to 2012, under the funding of the United States Department of Energy (contract DEFE0002697), the Government of Canada, and various other governmental and industry sponsors. The work includes more in-depth analysis of various components of a measurement, monitoring and verification (MMV) program through investigation of data on site characterization and geological integrity, wellbore integrity, storage monitoring (geophysical and geochemical), and performance/risk assessment. These results then led to the development of a Best Practices Manual (BPM) providing oilfield and project operators with guidance on CO₂ storage and CO₂-EOR. In 2013, the USDOE and Government of Saskatchewan exercised an optional phase of the same project to further develop and deploy applied research tools, technologies, and methodologies to the data and research at Weyburn with the aim of assisting regulators and operators in transitioning CO₂-EOR operations into permanent storage. This work, detailed in the second half of this report, involves seven targeted research projects – evaluating the minimum dataset for confirming secure storage; additional overburden monitoring; passive seismic monitoring; history-matched modelling; developing proper wellbore design; casing corrosion evaluation; and assessment of post CO₂-injected core samples. The results from the final and optional phases of the Weyburn-Midale Project confirm the suitability of CO₂-EOR fields for the injection of CO₂, and further, highlight the necessary MMV and follow-up monitoring required for these operations to be considered

  16. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    SciTech Connect

    Not Available

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  17. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    SciTech Connect

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  18. Methodologies for Improving Flight Project Information Capture, Storage, and Dissemination

    NASA Technical Reports Server (NTRS)

    Equils, Douglas J.

    2011-01-01

    This paper will discuss the drawbacks and risks of the current documentation paradigm, how Document QuickStart improves on that process and ultimately how this stream-lined approach will reduce risk and costs to the next generation of Flight Projects at JPL

  19. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    SciTech Connect

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  20. Project X with Rapid Cycling and Dual Storage Superconducting

    SciTech Connect

    Piekarz, H.; /Fermilab

    2012-05-01

    Investigation of neutrino oscillations and rare meson decays are the main physics goals of Project X. The successful physics outcome relies on the feasibility of high-intensity neutrino and meson (K{sup +} and {mu}) beams. In order to meet this goal we propose a synchrotron-based accelerator system (Option A) as technologically easier and cost-effective alternative to the accelerator system dominated by the linear accelerators (Option B). The synchrotron-based accelerator system is outlined and the expected proton beam power for the neutrino and meson beams production is presented and discussed. Further conceptual and technical details of the synchrotron-based accelerator system for Project X are outlined.

  1. Projection of Climate Change Impacts on Watershed Storage and Hydropower Generation

    NASA Astrophysics Data System (ADS)

    Kao, S. C.; Naz, B. S.; Gangrade, S.; Ashfaq, M.; Mei, R.; Rastogi, D.

    2014-12-01

    Under future climate change projections, earlier snowmelt is expected in many regions of the United States. The change in seasonal patterns of streamflow, combined with an increasing frequency of extreme precipitation, could further influence future reservoir management decisions regarding irrigation, water supply, flood protection, and hydropower generation. To evaluate the sensitivity of seasonal reservoir storage and hydropower generation due to future climate change, a storage-based water balance model is developed for over 100 reservoirs that are used for U.S. federal hydropower generation. Historic hydropower generation, hydrologic observations, and unregulated streamflow simulated by a 4-km resolution Variable Infiltration Capacity (VIC) hydrologic model, are used to estimate the likely monthly reservoir release, as well as the maximum and minimum water storage for various watersheds. The storage-based model is then forced with multiple dynamically-downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections to simulate the change of watershed storage and hydropower generation under different future scenarios. The proposed methodology could help water managers evaluate the vulnerability of existing energy-water systems and the need to adjust water management objectives in the future.

  2. 78 FR 62361 - Union Electric Company (dba Ameren Missouri); Missouri; Taum Sauk Pumped Storage Project; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-21

    ... Energy Regulatory Commission Union Electric Company (dba Ameren Missouri); Missouri; Taum Sauk Pumped Storage Project; Notice of Proposed Restricted Service List for a Programmatic Agreement for Managing... service list for a particular phase or issue in a proceeding. The restricted service list should...

  3. 76 FR 15971 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Teleconference a. Date and Time of Meeting: Friday, April 15, 2011 at 9 a.m. (Pacific Time)....

  4. 76 FR 22699 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Teleconference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Teleconference a. Date and Time of Meeting: Friday, May 6, 2011 at 1 p.m. (Pacific Time)....

  5. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Use of government dams, excluding pumped storage projects. 11.3 Section 11.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF THE FEDERAL POWER...

  6. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Use of government dams, excluding pumped storage projects. 11.3 Section 11.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF THE FEDERAL POWER...

  7. 76 FR 70440 - Table Mountain Pumped Storage Project; Notice of Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Mountain Hydro, LLC., 1210 W. Franklin St., Ste. 2, Boise, ID 83702; phone (208) 246-9925. FERC Contact... Energy Regulatory Commission Table Mountain Pumped Storage Project; Notice of Preliminary Permit... September 14, 2011, Table Mountain Hydro, LLC, Arizona, filed an application for a preliminary...

  8. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    SciTech Connect

    PICKETT, W.W.

    2000-09-22

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. Because this sub-project is still in the construction/start-up phase, all verification activities have not yet been performed (e.g., canister cover cap and welding fixture system verification, MCO Internal Gas Sampling equipment verification, and As-built verification.). The verification activities identified in this report that still are to be performed will be added to the start-up punchlist and tracked to closure.

  9. 75 FR 28602 - Bully Camp Gas Storage Project; Notice of Availability of the Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... Energy Regulatory Commission Bully Camp Gas Storage Project; Notice of Availability of the Environmental Assessment for the Proposed Bully Camp Gas Storage Project May 14, 2010. The staff of the Federal Energy Regulatory Commission (FERC or Commission) has prepared an environmental assessment (EA) for the Bully...

  10. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-07-06

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer

  11. Technology-base research project for electrochemical storage report for 1981

    NASA Astrophysics Data System (ADS)

    McLarnon, F.

    1982-06-01

    The technology base research (TBR) project which provides the applied reseach base that supports all electrochemical energy storage applications: electric vehicles, electric load leveling, storage of solar electricity, and energy and resource conservation is described. The TBR identifies electrochemical technologies with the potential to satisfy stringent performance and economic requirements and transfer them to industry for further development and scale up. The TBR project consists of four major elements: electrochemical systems research, supporting research, electrochemical processes, and fuel cells for transportation. Activities in these four project elements during 1981 are summarized. Information is included on: iron-air batteries; aluminum-air batteries; lithium-metal sulfide cells; materials development for various batteries; and the characteristics of an NH3-air alkaline fuel cell in a vehicle.

  12. The Joint Accomplishment of Identity

    ERIC Educational Resources Information Center

    Hand, Victoria; Gresalfi, Melissa

    2015-01-01

    Identity has become a central concept in the analysis of learning from social perspectives. In this article, we draw on a situative perspective to conceptualize identity as a "joint accomplishment" between individuals and their interactions with norms, practices, cultural tools, relationships, and institutional and cultural contexts.…

  13. Advanced Fuels Campaign 2012 Accomplishments

    SciTech Connect

    Not Listed

    2012-11-01

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  14. Infant Mortality: 1989 Research Accomplishments.

    ERIC Educational Resources Information Center

    National Inst. of Child Health and Human Development (NIH), Bethesda, MD.

    Collected in this document are reports of the National Institutes of Health's 1989 accomplishments in research on the problem of infant mortality. Reports are provided by the: (1) National Institute of Child Health and Human Development; (2) National Cancer Institute; (3) National Heart, Lung, and Blood Institute; (4) National Institute of…

  15. CENTRAL STORAGE FACILITY PROJECT IN COLOMBIA TO PROVIDE THE SAFE STORAGE AND PROTECTION OF HIGH-ACTIVITY RADIOACTIVE SOURCES

    SciTech Connect

    Greenberg, Raymond; Wright, Kyle A.; McCaw, Erica E.; Vallejo, Jorge

    2009-10-07

    The Global Threat Reduction Initiative (GTRI) reduces and protects vulnerable nuclear and radiological material located at civilian sites worldwide. Internationally, over 40 countries are cooperating with GTRI to enhance the security of these materials. The GTRI program has worked successfully with foreign countries to remove and protect nuclear and radioactive materials, including orphaned and disused high-activity sources. GTRI began cooperation with the Republic of Colombia in April 2004. This cooperation has been a resounding success by securing forty high-risk sites, consolidating disused/orphan sources at an interim secure national storage facility, and developing a comprehensive approach to security, training, and sustainability. In 2005 the Colombian Ministry of Mines and Energy requested the Department of Energy’s support in the construction of a new Central Storage Facility (CSF). In December 2005, the Ministry selected to construct this facility at the Institute of Geology and Mining (Ingeominas) site in Bogota. This site already served as Colombia’s national repository, where disused sources were housed in various buildings around the complex. The CSF project was placed under contract in May 2006, but environmental issues and public protests, which led to a class action lawsuit against the Colombian Government, forced the Ministry to quickly suspend activities, thereby placing the project in jeopardy. Despite these challenges, however, the Ministry of Mines and Energy worked closely with public and environmental authorities to resolve these issues, and continued to be a strong advocate of the GTRI program. In June 2008, the Ministry of Mines and Energy was granted the construction and environmental licenses. As a result, construction immediately resumed and the CSF was completed by December 2008. A commissioning ceremony was held for the new facility in January 2009, which was attended by representatives from the Department of Energy, U.S. Embassy

  16. Learning through a portfolio of carbon capture and storage demonstration projects

    NASA Astrophysics Data System (ADS)

    Reiner, David M.

    2016-01-01

    Carbon dioxide capture and storage (CCS) technology is considered by many to be an essential route to meet climate mitigation targets in the power and industrial sectors. Deploying CCS technologies globally will first require a portfolio of large-scale demonstration projects. These first projects should assist learning by diversity, learning by replication, de-risking the technologies and developing viable business models. From 2005 to 2009, optimism about the pace of CCS rollout led to mutually independent efforts in the European Union, North America and Australia to assemble portfolios of projects. Since 2009, only a few of these many project proposals remain viable, but the initial rationales for demonstration have not been revisited in the face of changing circumstances. Here I argue that learning is now both more difficult and more important given the slow pace of deployment. Developing a more coordinated global portfolio will facilitate learning across projects and may determine whether CCS ever emerges from the demonstration phase.

  17. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  18. Systematic assessment of wellbore integrity for geologic carbon storage projects using regulatory and industry information

    SciTech Connect

    Moody, Mark; Sminchak, J.R.

    2015-11-01

    Under this three year project, the condition of legacy oil and gas wells in the Midwest United States was evaluated through analysis of well records, well plugging information, CBL evaluation, sustained casing pressure (SCP) field testing, and analysis of hypothetical CO2 test areas to provide a realistic description of wellbore integrity factors. The research included a state-wide review of oil and gas well records for Ohio and Michigan, along with more detailed testing of wells in Ohio. Results concluded that oil and gas wells are clustered along fields in areas. Well records vary in quality, and there may be wells that have not been identified in records, but there are options for surveying unknown wells. Many of the deep saline formations being considered for CO2 storage have few wells that penetrate the storage zone or confining layers. Research suggests that a variety of well construction and plugging approaches have been used over time in the region. The project concluded that wellbore integrity is an important issue for CO2 storage applications in the Midwest United States. Realistic CO2 storage projects may cover an area in the subsurface with several hundred legacy oil and gas wells. However, closer inspection may often establish that most of the wells do not penetrate the confining layers or storage zone. Therefore, addressing well integrity may be manageable. Field monitoring of SCP also indicated that tested wells provided zonal isolation of the reservoirs they were designed to isolate. Most of these wells appeared to exhibit gas pressure originating from intermediate zones. Based on these results, more flexibility in terms of cementing wells to surface, allowing well testing, and monitoring wells may aid operators in completing CO2 storage project. Several useful products were developed under this project for examining wellbore integrity for CO2 storage applications including, a

  19. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    SciTech Connect

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  20. U.S. China Carbon Capture and Storage Development Project at West Virginia University

    SciTech Connect

    Fletcher, Jerald

    2013-12-31

    The original overall objective of this activity was to undertake resource evaluation and planning for CCS projects and to describe and quantify the geologic, environmental, and economic challenges to successful development of large-scale CCS in China’s coal sector. Several project execution barriers were encountered in the course of this project, most notably a project stop/delay due to funds availability/costing restrictions from the US State Department to the US Department of Energy at the end of CY2012, which halted project execution from January 2, 2013 to April 1, 2013. At the resolution of this project delay, it was communicated to the project team that the overall project period would also be reduced, from a completion date of February 28, 2014 to December 31, 2013. The net impact of all these changes was a reduction in the project period from 24 months (3/1/2012-2/28/2014) to 22 months (3/1/2012-12/31/2013), with a 3 month stop from 1/1/2013-3/31/2013. The project team endeavored to overcome these project time impacts, focusing heavily on technoeconomic modeling that would be deliverable under Task 3 (Ordos Basin Feasibility Study), and choosing to abandon the full investigation into the Demonstration Site (Task 4) due to the reduced project time. The ultimate focus of this project changed to work with the Chinese on a carbon atlas/geologic characterization, and on mechanisms for CO2 storage options from high-quality streams within China.

  1. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    SciTech Connect

    BAZINET, G.D.

    2000-11-03

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. The purpose of this revision is to document completion of verification actions that were pending at the time the initial report was prepared. Verification activities for the installed and operational SSCs have been completed. Verification of future additions to the CSB related to the canister cover cap and welding fixture system and MCO Internal Gas Sampling equipment will be completed as appropriate for those components. The open items related to verification of those requirements are noted

  2. The ESTMAP Project (Energy storage Mapping and Planning): focus on the subsurface data collection

    NASA Astrophysics Data System (ADS)

    Gaelle Bader, Anne; Beccaletto, Laurent; Bialkowski, Anne; Jaudin, Florence; Hladík, Vit; Holeček, Jan; Van Gessel, Serge; Meinke-Hubeny, Frank; Wiersma, Frank

    2016-04-01

    There is a strong link between energy security and the "2030 climate and energy framework" of European Commission. Reaching the goals of the "2030 framework" both efficiently and at the lowest possible costs for all is seen as a key step to address the energy security challenge in the long run. This requires elaboration of the framework for investments in renewables and energy efficiency. This planning has to be based on a robust and integrated set of data. As most data relevant to energy storage exists in a fragmented form, the major work in the ESTMAP project consists of compiling existing data in a unified database and exploiting it to optimise energy systems planning. Geologists, engineers and system modellers joined forces to define the format and the content of a database of both subsurface and above surface storage sites (existing, planned and potential). The idea is to ensure that the newly compiled dataset will fit the needs for robust modelling, planning and designing on a coherent basis and comparable among Member States and other European neighbouring countries. One of the project output consists of a geographical database providing information on distribution and expected capacity of existing and future energy storage sites in Europe, including costs and accessibility. Both subsurface storage options (hydrogen, compressed air, natural gas, underground pumped hydro, etc.) and above ground storages (pumped hydro, LNG, liquid air, etc.) are taken into account. In this project, BRGM, assisted by TNO, CGS and VITO, is in charge of data collection of subsurface energy storage. The objective of this task is to gather readily available and public data on existing and future potential storage sites. These data incorporate (1) the geographic location, description, characterization, subsurface properties and feasibility and capacity assessments of the subsurface reservoirs, as well as (2) the identification of known subsurface storage facilities attached to these

  3. 18 CFR 11.4 - Use of government dams for pumped storage projects, and use of tribal lands.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... energy used for pumped storage pumping. (2) A licensee who has filed these data under another section of... for pumped storage projects, and use of tribal lands. 11.4 Section 11.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE...

  4. 18 CFR 11.4 - Use of government dams for pumped storage projects, and use of tribal lands.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... energy used for pumped storage pumping. (2) A licensee who has filed these data under another section of... for pumped storage projects, and use of tribal lands. 11.4 Section 11.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE...

  5. 18 CFR 11.4 - Use of government dams for pumped storage projects, and use of tribal lands.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... energy used for pumped storage pumping. (2) A licensee who has filed these data under another section of... for pumped storage projects, and use of tribal lands. 11.4 Section 11.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE...

  6. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    SciTech Connect

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site

  7. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2007-03-31

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

  8. Stakeholder views on financing carbon capture and storage demonstration projects in China.

    PubMed

    Reiner, David; Liang, Xi

    2012-01-17

    Chinese stakeholders (131) from 68 key institutions in 27 provinces were consulted in spring 2009 in an online survey of their perceptions of the barriers and opportunities in financing large-scale carbon dioxide capture and storage (CCS) demonstration projects in China. The online survey was supplemented by 31 follow-up face-to-face interviews. The National Development and Reform Commission (NDRC) was widely perceived as the most important institution in authorizing the first commercial-scale CCS demonstration project and authorization was viewed as more similar to that for a power project than a chemicals project. There were disagreements, however, on the appropriate size for a demonstration plant, the type of capture, and the type of storage. Most stakeholders believed that the international image of the Chinese Government could benefit from demonstrating commercial CCS and that such a project could also create advantages for Chinese companies investing in CCS technologies. In more detailed interviews with 16 financial officials, we found striking disagreements over the perceived risks of demonstrating CCS. The rate of return seen as appropriate for financing demonstration projects was split between stakeholders from development banks (who supported a rate of 5-8%) and those from commercial banks (12-20%). The divergence on rate alone could result in as much as a 40% difference in the cost of CO(2) abatement and 56% higher levelized cost of electricity based on a hypothetical case study of a typical 600-MW new build ultrasupercritical pulverized coal-fired (USCPC) power plant. To finance the extra operational costs, there were sharp divisions over which institutions should bear the brunt of financing although, overall, more than half of the support was expected to come from foreign and Chinese governments. PMID:22191735

  9. Activities and Accomplishments of ICAM

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.

    1997-01-01

    A brief historical background on establishing the Institute for Computational and Applied Mechanics (ICAM) is presented and basic goals and objectives are discussed. It is emphasized that the goal of the ICAM has been to develop and maintain a self-sustaining center of excellence in computational methods at Old Dominion University (ODU). Information is provided on funding sources and budget disposition, recent activities and accomplishments, list of graduate students supported on the program, and number of students who received graduate degrees (M.S. as well as Ph.D.). Information is also provided on research coordination with various scientists and engineers, and on different reports specifically written for ICAM. ICAM has been supported, in part, by NASA Langley Research Center through Grant NAG-1-363. This report constitutes the final report for ICAM for the period ending December 1996. The grant has been monitored by the University Affairs Officers at NASA Langley.

  10. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly

  11. GAS STORAGE TECHNOLGOY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-23

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  12. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-04-17

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for

  13. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Holst, Kent; Huff, Georgianne; Schulte, Robert H.; Critelli, Nicholas

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  14. Technical Report --Final Work Accomplishment

    SciTech Connect

    Kim, Eun Heui

    2007-11-19

    The main goal of this project was to understand the solution structure of nonlinear boundary value problems arising in self-similar solutions of nonlinear systems of multidimensional conservation laws. This project further extended to study on biocomplex systems including Morphogen gradients systems (reaction-diffusion systems) and tumor growth and its treatment model problems (free boundary, conservation of mass and reaction-diffusion systems). The list of publications and the summary of those publications are listed.

  15. ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS

    SciTech Connect

    Not Listed

    2013-10-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

  16. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-05-10

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

  17. Hydrogen underground storage in siliciclastic reservoirs - intention and topics of the H2STORE project

    NASA Astrophysics Data System (ADS)

    Pudlo, Dieter; Ganzer, Leonhard; Henkel, Steven; Liebscher, Axel; Kühn, Michael; De Lucia, Marco; Panfilov, Michel; Pilz, Peter; Reitenbach, Viktor; Albrecht, Daniel; Würdemann, Hilke; Gaupp, Reinhard

    2013-04-01

    The transfer of energy supply from nuclear and CO2-emitting power generation to renewable energy production sources is strongly reliant to the potential of storing high capacities of energy in a safe and reliable way in time spans of several months. One conceivable option can be the storage of hydrogen and (related) synthetic natural gas (SNG) production in appropriate underground structures, like salt caverns and pore space reservoirs. Successful storage of hydrogen in the form of town gas in salt caverns has been proven in several demonstration projects and can be considered as state of the art technology. However, salt structures have only limited importance for hydrogen storage due to only small cavern volumes and the limited occurrence of salt deposits suitable for flushing of cavern constructions. Thus, regarding potential high-volume storage sites, siliciclastic deposits like saline aquifers and depleted gas reservoirs are of increasing interest. Motivated by a project call and sponsored by the German government the H2STORE ("Hydrogen to Store") collaborative project will investigate the feasibility and the requirements for pore space storage of hydrogen. Thereby depleted gas reservoirs are a major concern of this study. This type of geological structure is chosen because of their well investigated geological settings and proved sealing capacities, which already enable a present (and future) use as natural (and synthetic) reservoir gas storages. Nonetheless hydrogen and hydrocarbon in porous media exhibit major differences in physico-chemical behaviour, essentially due to the high diffusivity and reactivity of hydrogen. The biotic and abiotic reactions of hydrogen with rocks and fluids will be necessary observed in siliciclastic sediments which consist of numerous inorganic and organic compounds and comprise original formation fluids. These features strongly control petrophysical behaviour (e.g. porosity, permeability) and therefore fluid (hydrogen

  18. Leakage Risk Assessment for a Potential CO2 Storage Project in Saskatchewan, Canada

    SciTech Connect

    Houseworth, J.E.; Oldenburg, C.M.; Mazzoldi, A.; Gupta, A.K.; Nicot, J.-P.; Bryant, S.L.

    2011-05-01

    A CO{sub 2} sequestration project is being considered to (1) capture CO{sub 2} emissions from the Consumers Cooperative Refineries Limited at Regina, Saskatchewan and (2) geologically sequester the captured CO{sub 2} locally in a deep saline aquifer. This project is a collaboration of several industrial and governmental organizations, including the Petroleum Technology Research Centre (PTRC), Sustainable Development Technology Canada (SDTC), SaskEnvironment Go Green Fund, SaskPower, CCRL, Schlumberger Carbon Services, and Enbridge. The project objective is to sequester 600 tonnes CO{sub 2}/day. Injection is planned to start in 2012 or 2013 for a period of 25 years for a total storage of approximately 5.5 million tonnes CO{sub 2}. This report presents an assessment of the leakage risk of the proposed project using a methodology known as the Certification Framework (CF). The CF is used for evaluating CO{sub 2} leakage risk associated with geologic carbon sequestration (GCS), as well as brine leakage risk owing to displacement and pressurization of brine by the injected CO{sub 2}. We follow the CF methodology by defining the entities (so-called Compartments) that could be impacted by CO{sub 2} leakage, the CO{sub 2} storage region, the potential for leakage along well and fault pathways, and the consequences of such leakage. An understanding of the likelihood and consequences of leakage forms the basis for understanding CO{sub 2} leakage risk, and forms the basis for recommendations of additional data collection and analysis to increase confidence in the risk assessment.

  19. Learning Through Accomplishment at WPI

    ERIC Educational Resources Information Center

    Zwiebel, Imre; Demetry, James S.

    1974-01-01

    Discusses the Environmental Systems Study Program conducted at the Worcester Polytechnic Institute with the support of the Sloan Foundation. Indicates that the activities are to lend valuable pilot experience to the implementation of broad changes in educational programs. Included is a summary of students' real-problem project titles. (CC)

  20. PRELIMINARY NUCLEAR CRITICALITY NUCLEAR SAFETY EVLAUATION FOR THE CONTAINER SURVEILLANCE AND STORAGE CAPABILITY PROJECT

    SciTech Connect

    Low, M; Matthew02 Miller, M; Thomas Reilly, T

    2007-04-30

    Washington Safety Management Solutions (WSMS) provides criticality safety services to Washington Savannah River Company (WSRC) at the Savannah River Site. One activity at SRS is the Container Surveillance and Storage Capability (CSSC) Project, which will perform surveillances on 3013 containers (hereafter referred to as 3013s) to verify that they meet the Department of Energy (DOE) Standard (STD) 3013 for plutonium storage. The project will handle quantities of material that are greater than ANS/ANSI-8.1 single parameter mass limits, and thus required a Nuclear Criticality Safety Evaluation (NCSE). The WSMS methodology for conducting an NCSE is outlined in the WSMS methods manual. The WSMS methods manual currently follows the requirements of DOE-O-420.1B, DOE-STD-3007-2007, and the Washington Savannah River Company (WSRC) SCD-3 manual. DOE-STD-3007-2007 describes how a NCSE should be performed, while DOE-O-420.1B outlines the requirements for a Criticality Safety Program (CSP). The WSRC SCD-3 manual implements DOE requirements and ANS standards. NCSEs do not address the Nuclear Criticality Safety (NCS) of non-reactor nuclear facilities that may be affected by overt or covert activities of sabotage, espionage, terrorism or other security malevolence. Events which are beyond the Design Basis Accidents (DBAs) are outside the scope of a double contingency analysis.

  1. The Rosetta Resources CO2 Storage Project - A WESTCARB GeologicPilot Test

    SciTech Connect

    Trautz, Robert; Benson, Sally; Myer, Larry; Oldenburg, Curtis; Seeman, Ed; Hadsell, Eric; Funderburk, Ben

    2006-01-30

    WESTCARB, one of seven U.S. Department of Energypartnerships, identified (during its Phase I study) over 600 gigatonnesof CO2 storage capacity in geologic formations located in the Westernregion. The Western region includes the WESTCARB partnership states ofAlaska, Arizona, California, Nevada, Oregon and Washington and theCanadian province of British Columbia. The WESTCARB Phase II study iscurrently under way, featuring three geologic and two terrestrial CO2pilot projects designed to test promising sequestration technologies atsites broadly representative of the region's largest potential carbonsinks. This paper focuses on two of the geologic pilot studies plannedfor Phase II -referred to-collectively as the Rosetta-Calpine CO2 StorageProject. The first pilot test will demonstrate injection of CO2 into asaline formation beneath a depleted gas reservoir. The second test willgather data for assessing CO2 enhanced gas recovery (EGR) as well asstorage in a depleted gas reservoir. The benefit of enhanced oil recovery(EOR) using injected CO2 to drive or sweep oil from the reservoir towarda production well is well known. EaR involves a similar CO2 injectionprocess, but has received far less attention. Depleted natural gasreservoirs still contain methane; therefore, CO2 injection may enhancemethane production by reservoir repressurization or pressure maintenance.CO2 injection into a saline formation, followed by injection into adepleted natural gas reservoir, is currently scheduled to start inOctober 2006.

  2. Space Biophysics: Accomplishments, Trends, Challenges

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey D.

    2015-01-01

    the protective environment of Earth, the biophysical properties underlying these changes must be studied, characterized and understood. This lecture reviews the current state of NASA biophysics research accomplishments and identifies future trends and challenges for biophysics research on the International Space Station and beyond.

  3. Assessing Accomplished Teaching: Good Strides, Great Challenges

    ERIC Educational Resources Information Center

    Norman, Antony D.

    2010-01-01

    This article surveys efforts at the national and international level to define and assess accomplished teaching with particular attention devoted to how assessments of accomplished teaching connect to student learning. The author finds that most assessments are based on aspects of teaching that, presumably, come together as accomplished teaching.…

  4. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-10-18

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period July 1, 2004, through September 30, 2004. During this time period there were three main activities. First was the ongoing

  5. GAS STORAGE TECHNOLOGY CONSORTIUM

    SciTech Connect

    Robert W. Watson

    2004-07-15

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with

  6. CO2 geological storage into a lateral aquifer of an offshore gas field in the South China Sea: storage safety and project design

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Li, Dexiang; Ezekiel, Justin; Zhang, Weidong; Mi, Honggang; Ren, Shaoran

    2015-06-01

    The DF1-1 gas field, located in the western South China Sea, contains a high concentration of CO2, thus there is great concern about the need to reduce the CO2 emissions. Many options have been considered in recent years to dispose of the CO2 separated from the natural gas stream on the Hainan Island. In this study, the feasibility of CO2 storage in the lateral saline aquifer of the DF1-1 gas field is assessed, including aquifer selection and geological assessment, CO2 migration and storage safety, project design, and economic analysis. Six offshore aquifers have been investigated for CO2 geological storage. The lateral aquifer of the DF1-1 gas field has been selected as the best target for CO2 injection and storage because of its proven sealing ability, and the large storage capacity of the combined aquifer and hydrocarbon reservoir geological structure. The separated CO2 will be dehydrated on the Hainan Island and transported by a long-distance subsea pipeline in supercritical or liquid state to the central platform of the DF1-1 gas field for pressure adjustment. The CO2 will then be injected into the lateral aquifer via a subsea well-head through a horizontal well. Reservoir simulations suggest that the injected CO2 will migrate slowly upwards in the aquifer without disturbing the natural gas production. The scoping economic analysis shows that the unit storage cost of the project is approximately US26-31/ton CO2 with the subsea pipeline as the main contributor to capital expenditure (CAPEX), and the dehydration system as the main factor of operating expenditure (OPEX).

  7. The 1989-1990 NASA space biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1991-01-01

    Individual technical summaries of research projects on NASA's Space Biology Program for research conducted during the period May 1989 to April 1990 are presented. This program is concerned with using the unique characteristics of the space environment, particularly microgravity, as a tool to advance the following: (1) knowledge in the biological sciences; (2) understanding of how gravity has shaped and affected life on the Earth; and (3) understanding of how the space environment affects both plants and animals. The summaries for each project include a description of the research, a list of accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  8. The 1986-87 NASA space/gravitational biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1987-01-01

    This report consists of individual technical summaries of research projects of NASA's Space/Gravitational Biology program, for research conducted during the period January 1986 to April 1987. This program utilizes the unique characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on Earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a list of accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  9. The 1988-1989 NASA Space/Gravitational Biology Accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1990-01-01

    This report consists of individual technical summaries of research projects of NASA's space/gravitational biology program, for research conducted during the period May 1988 to April 1989. This program is concerned with using the unique characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on Earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  10. The 1987-1988 NASA space/gravitational biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1988-01-01

    Individual technical summaries of research projects of the NASA Space/Gravitational Biology Program, for research conducted during the period January 1987 to April 1988 are presented. This Program is concerned with using the characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  11. The 1985-86 NASA space/gravitational biology accomplishments

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Individual Technical summaries of research projects of NASA's Space/Gravitational Biology Program are presented. This Program is concerned with using the unique characteristics of the space environment, particularly microgravity, as a tool to advance knowledge in the biological sciences; understanding how gravity has shaped and affected life on Earth; and understanding how the space environment affects both plant and animal species. The summaries for each project include a description of the research, a listing of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  12. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison

    2005-09-14

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

  13. NASA's Exploration Technology Development Program Energy Storage Project Battery Technology Development

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Miller, Thomas B.; Mercer, Carolyn R.; Jankovsky, Amy L.

    2010-01-01

    Technical Interchange Meeting was held at Saft America s Research and Development facility in Cockeysville, Maryland on Sept 28th-29th, 2010. The meeting was attended by Saft, contractors who are developing battery component materials under contracts awarded through a NASA Research Announcement (NRA), and NASA. This briefing presents an overview of the components being developed by the contractor attendees for the NASA s High Energy (HE) and Ultra High Energy (UHE) cells. The transition of the advanced lithium-ion cell development project at NASA from the Exploration Technology Development Program Energy Storage Project to the Enabling Technology Development and Demonstration High Efficiency Space Power Systems Project, changes to deliverable hardware and schedule due to a reduced budget, and our roadmap to develop cells and provide periodic off-ramps for cell technology for demonstrations are discussed. This meeting gave the materials and cell developers the opportunity to discuss the intricacies of their materials and determine strategies to address any particulars of the technology.

  14. Summaries of 1984-85 NASA space-gravitational biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, T. W. (Compiler); Dutcher, F. R. (Compiler); Pleasant, L. G. (Compiler)

    1985-01-01

    Individual technical summaries of research projects of NASA's Space/Gravitational Biology Program are presented. The summaries for each project include a description of the research, a listing of the accomplishments, and an explanation of the significance of the accomplishments. Bibliographies for each project are also included.

  15. Baseline and projected future carbon storage and greenhouse-gas fluxes in ecosystems of Alaska

    USGS Publications Warehouse

    2016-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to contribute to knowledge of the storage, fluxes, and balance of carbon and methane gas in ecosystems of Alaska. The carbon and methane variables were examined for major terrestrial ecosystems (uplands and wetlands) and inland aquatic ecosystems in Alaska in two time periods: baseline (from 1950 through 2009) and future (projections from 2010 through 2099). The assessment used measured and observed data and remote sensing, statistical methods, and simulation models. The national assessment, conducted using the methodology described in SIR 2010-5233, has been completed for the conterminous United States, with results provided in three separate regional reports (PP 1804, PP 1797, and PP 1897).

  16. Reference waste forms and packing material for the Nevada Nuclear Waste Storage Investigations Project

    SciTech Connect

    Oversby, V.M.

    1984-03-30

    The Lawrence Livermore National Laboratory (LLNL), Livermore, Calif., has been given the task of designing and verifying the performance of waste packages for the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. NNWSI is studying the suitability of the tuffaceous rocks at Yucca Mountain, Nevada Test Site, for the potential construction of a high-level nuclear waste repository. This report gives a summary description of the three waste forms for which LLNL is designing waste packages: spent fuel, either as intact assemblies or as consolidated fuel pins, reprocessed commercial high-level waste in the form of borosilicate glass, and reprocessed defense high-level waste from the Defense Waste Processing Facility in Aiken, S.C. Reference packing material for use with the alternative waste package design for spent fuel is also described. 14 references, 8 figures, 20 tables.

  17. Real-time monitoring of CO2 storage sites: Application to Illinois Basin-Decatur Project

    USGS Publications Warehouse

    Picard, G.; Berard, T.; Chabora, E.; Marsteller, S.; Greenberg, S.; Finley, R.J.; Rinck, U.; Greenaway, R.; Champagnon, C.; Davard, J.

    2011-01-01

    Optimization of carbon dioxide (CO2) storage operations for efficiency and safety requires use of monitoring techniques and implementation of control protocols. The monitoring techniques consist of permanent sensors and tools deployed for measurement campaigns. Large amounts of data are thus generated. These data must be managed and integrated for interpretation at different time scales. A fast interpretation loop involves combining continuous measurements from permanent sensors as they are collected to enable a rapid response to detected events; a slower loop requires combining large datasets gathered over longer operational periods from all techniques. The purpose of this paper is twofold. First, it presents an analysis of the monitoring objectives to be performed in the slow and fast interpretation loops. Second, it describes the implementation of the fast interpretation loop with a real-time monitoring system at the Illinois Basin-Decatur Project (IBDP) in Illinois, USA. ?? 2011 Published by Elsevier Ltd.

  18. The Enterprise Zone-Preschool Inclusion Project: A Training and Resource Manual for Inclusion in Childcare. Book 1: Curriculum [and] Book 2: Technical Assistance [and] Book 3: Mentoring Components [and] Book 4: Findings and Accomplishments.

    ERIC Educational Resources Information Center

    Gold, Susan

    The Enterprise Zone-Preschool Inclusion Project (EZ-PIP) was a four-year demonstration project funded by the U.S. Department of Education, Office of Special Education Programs. The purpose of the project was to expand, implement, evaluate and disseminate a model program designed to promote the inclusion of young children with disabilities into…

  19. Summary of Carbon Storage Project Public Information Meeting and Open House, Hawesville, Kentucky, October 28, 2010

    SciTech Connect

    Harris, David; Williams, David; Bowersox, J Richard; Leetaru, Hannes

    2012-06-01

    The Kentucky Geological Survey (KGS) completed a second phase of carbon dioxide (CO{sub 2}) injection and seismic imaging in the Knox Group, a Cambrian Ordovician dolomite and sandstone sequence in September 2010. This work completed 2 years of activity at the KGS No. 1 Marvin Blan well in Hancock County, Kentucky. The well was drilled in 2009 by a consortium of State and industry partners (Kentucky Consortium for Carbon Storage). An initial phase of CO{sub 2} injection occurred immediately after completion of the well in 2009. The second phase of injection and seismic work was completed in September 2010 as part of a U.S. DOE funded project, after which the Blan well was plugged and abandoned. Following completion of research at the Blan well, a final public meeting and open house was held in Hancock County on October 28, 2010. This meeting followed one public meeting held prior to drilling of the well, and two on site visits during drilling (one for news media, and one for school teachers). The goal of the final public meeting was to present the results of the project to the public, answer questions, and address any concerns. Despite diligent efforts to publicize the final meeting, it was poorly attended by the general public. Several local county officials and members of the news media attended, but only one person from the general public showed up. We attribute the lack of interest in the results of the project to several factors. First, the project went as planned, with no problems or incidents that affected the local residents. The fact that KGS fulfilled the promises it made at the beginning of the project satisfied residents, and they felt no need to attend the meeting. Second, Hancock County is largely rural, and the technical details of carbon sequestration were not of interest to many people. The county officials attending were an exception; they clearly realized the importance of the project in future economic development for the county.

  20. Gas Storage Technology Consortium

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-09-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology

  1. Application of PET2OGS to CO2 storage in a saline aquifer of the CO2CRC Otway project

    NASA Astrophysics Data System (ADS)

    Park, Chan-Hee; Shinn, Young Jae

    2014-05-01

    PET2OGS, a set of algorithms that integrate the static model (Petrel) with the dynamic model (OpenGeoSys), is applied to model CO2 storage in a saline aquifer. The Otway Basin is the first demonstration site of the deep geological storage of carbon dioxide as part of carbon capture and storage (CCS) technology in Australia. During Stage 2 of the CO2CRC Otway project, CO2 was injected into a saline aquifer along the injection interval of 1435 - 1450 m in a well. Upon conversion and adaption of the geological model into the dynamic model, the simulation of CO2 injection at 159 tone/day for 5 months is carried out for a hypothetical scenario. CO2 storage in each facies are analyzed for storage capacities. The discrete nature of CO2 plume behaviors known in multiphase flow in heterogeneous media is observed in the numerical simulation of CO2 storage. Sensitivity analysis of the storage capacity with respect to facies, porosity, and permeability is provided.

  2. Stormwater Pollution Prevention Plan (SWPPP) for Coal Storage Area Stabilization Project

    SciTech Connect

    Project and Design Engineering

    2011-03-01

    The scope of this project is to stabilize the abandoned coal storage area and redirect the storm water runoff from sanitary sewer system to the storm drain system. Currently, the existing storm water runoff is directed to a perimeter concrete drainage swale and collected in a containment basin. The collected water is then pumped to a treatment facility and after treatment, is discharged to the Y-12 sanitary sewer system. The existing drainage swale and collection basin along with silt fencing will be used during aggregate placement and grading to provide erosion and sediment control. Inlet protection will also be installed around existing structures during the storm water diversion construction. This project scope will include the installation of a non-woven geotextile fabric and compacted mineral aggregate base (paving optional) to stabilize the site. The geotextile specifications are provided on the vendor cut sheets in Appendix B. The installation of a storm water collection/retention area will also be installed on the southern side of the site in accordance with EPA Technical Guidance on Implementing the Stormwater Runoff Requirements for federal Projects under Section 438 of the Energy Independence and Security Act. The total area to be disturbed is approximately 2.5 acres. The order of activities for this Stormwater Pollution Prevention Plan (SWPPP) will be: (1) post notice of coverage (NOC) in a prominent display near entrance of the site; (2) install rain gauge on site or contact Y-12 Plant Shift Superintendent daily for Met tower rain gauge readings; (3) install stabilized construction exit on site; (4) install silt fencing along perimeter as indicated on the attached site plan; (5) regrade site; (6) install geotextile fabric and compacted mineral aggregate base; (7) install catch basin inlet protection where required; (8) excavate and lower existing catch basin tops, re-grade and asphalt to drain; and (9) when all disturbed areas are re-stabilized, remove

  3. 18 CFR 11.4 - Use of government dams for pumped storage projects, and use of tribal lands.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Use of government dams for pumped storage projects, and use of tribal lands. 11.4 Section 11.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF...

  4. 18 CFR 11.4 - Use of government dams for pumped storage projects, and use of tribal lands.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Use of government dams for pumped storage projects, and use of tribal lands. 11.4 Section 11.4 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF...

  5. Transmutation Fuels Campaign FY-09 Accomplishments Report

    SciTech Connect

    Lori Braase

    2009-09-01

    This report summarizes the fiscal year 2009 (FY-08) accomplishments for the Transmutation Fuels Campaign (TFC). The emphasis is on the accomplishments and relevance of the work. Detailed description of the methods used to achieve the highlighted results and the associated support tasks are not included in this report.

  6. Spent Nuclear Fuel (SNF) Project Acceptance Criteria for Light Water Reactor Spent Fuel Storage System [OCRWM PER REV2

    SciTech Connect

    JOHNSON, D.M.

    2000-12-20

    As part of the decommissioning of the 324 Building Radiochemical Engineering Cells there is a need to remove commercial Light Water Reactor (LWR) spent nuclear fuel (SNF) presently stored in these hot cells. To enable fuel removal from the hot cells, the commercial LWR SNF will be packaged and shipped to the 200 Area Interim Storage Area (ISA) in a manner that satisfies site requirements for SNF interim storage. This document identifies the criteria that the 324 Building Radiochemical Engineering Cell Clean-out Project must satisfy for acceptance of the LWR SNF by the SNF Project at the 200 Area ISA. In addition to the acceptance criteria identified herein, acceptance is contingent on adherence to applicable Project Hanford Management Contract requirements and procedures in place at the time of work execution.

  7. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.

  8. Numerical modeling of gas mixing and bio-chemical transformations during underground hydrogen storage within the project H2STORE

    NASA Astrophysics Data System (ADS)

    Hagemann, B.; Feldmann, F.; Panfilov, M.; Ganzer, L.

    2015-12-01

    The change from fossil to renewable energy sources is demanding an increasing amount of storage capacities for electrical energy. A promising technological solution is the storage of hydrogen in the subsurface. Hydrogen can be produced by electrolysis using excessive electrical energy and subsequently converted back into electricity by fuel cells or engine generators. The development of this technology starts with adding small amounts of hydrogen to the high pressure natural gas grid and continues with the creation of pure underground hydrogen storages. The feasibility of hydrogen storage in depleted gas reservoirs is investigated in the lighthouse project H2STORE financed by the German Ministry for Education and Research. The joint research project has project members from the University of Jena, the Clausthal University of Technology, the GFZ Potsdam and the French National Center for Scientic Research in Nancy. The six sub projects are based on laboratory experiments, numerical simulations and analytical work which cover the investigation of mineralogical, geochemical, physio-chemical, sedimentological, microbiological and gas mixing processes in reservoir and cap rocks. The focus in this presentation is on the numerical modeling of underground hydrogen storage. A mathematical model was developed which describes the involved coupled hydrodynamic and microbiological effects. Thereby, the bio-chemical reaction rates depend on the kinetics of microbial growth which is induced by the injection of hydrogen. The model has been numerically implemented on the basis of the open source code DuMuX. A field case study based on a real German gas reservoir was performed to investigate the mixing of hydrogen with residual gases and to discover the consequences of bio-chemical reactions.

  9. Project C.R.E.E.P. (Community Rescources in the Education of Exceptional Preschoolers): Program Performance Report. Part II: Accomplishment Reporting. Final Report, July 1, 1979 through July 31, 1980.

    ERIC Educational Resources Information Center

    Smith, Olive V.

    During the 1979-1980 fiscal year Project C.R.E.E.P. (Community Resources in the Education of Exceptional Preschoolers) conducted outreach activities in Camden, New Jersey, in eight areas--direct and supplementary services to severely/multiply handicapped children, parent/family participation, assessment of children's progress, inservice training…

  10. Program definition and assessment overview. [for thermal energy storage project management

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1980-01-01

    The implementation of a program level assessment of thermal energy storage technology thrusts for the near and far term to assure overall coherent energy storage program is considered. The identification and definition of potential thermal energy storage applications, definition of technology requirements, and appropriate market sectors are discussed along with the necessary coordination, planning, and preparation associated with program reviews, workshops, multi-year plans and annual operating plans for the major laboratory tasks.

  11. Wind Energy Program: Top 10 Program Accomplishments

    SciTech Connect

    2009-01-18

    Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

  12. Thermal energy storage

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The planning and implementation of activities associated with lead center management role and the technical accomplishments pertaining to high temperature thermal energy storage subsystems are described. Major elements reported are: (1) program definition and assessment; (2) research and technology development; (3) industrial storage applications; (4) solar thermal power storage applications; and (5) building heating and cooling applications.

  13. The 1992-1993 NASA Space Biology Accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1994-01-01

    This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the calendar years of 1992 and 1993. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and the effects of microgravity on biological processes; determining the effects of the interaction of gravity and other environmental factors on biological systems; and using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  14. The 1990-1991 NASA space biology accomplishments

    NASA Technical Reports Server (NTRS)

    Halstead, Thora W. (Editor)

    1993-01-01

    This report consists of individual technical summaries of research projects of NASA's Space Biology Program, for research conducted during the period May 1990 through May 1991. This program includes both plant and animal research, and is dedicated to understanding the role of gravity and other environmental factors on biological systems and to using the microgravity of the space environment as a tool to advance fundamental scientific knowledge in the biological sciences to improve the quality of life on Earth and contribute to NASA's goal of manned exploration of space. The summaries for each project include a description of the research, a list of the accomplishments, an explanation of the significance of the accomplishments, and a list of publications.

  15. Monitoring Aquifer Storage and Recovery Using Repeat Gravity Measurements: the Weber River Project, Utah

    NASA Astrophysics Data System (ADS)

    Chapman, D. S.; Sahm, E.; Gettings, P.

    2008-05-01

    Repeated high-precision gravity surveys were made over two annual infiltration cycles on an alluvial fan at the mouth of Weber Canyon, Northern Utah, as part of the Weber River Basin Aquifer Storage and Recovery Pilot Project (WRBASR). Gravity data collected before, during and after infiltration events provides dramatic confirmation that a groundwater mound formed during infiltration and that the mound decayed predictably and migrated gradually south-southwest from the infiltration ponds following infiltration. Maximum measured gravity changes associated with the recharge events were 110 μGal during the first event (2004) and an increment of about 130 μGal during the second event (2005) for a total maximum signal of 180 μGal. Gaussian integration of the spatial gravity anomaly predicts an anomalous mass within a factor of two of the 1 Tg (1 Mton) mass of water infiltrated in 2004. The spatial gravity field is consistent with a groundwater mound at the end of infiltration that mimics a cylindrical disc having a height of 12 m and radius of 300-400 m. After infiltration was stopped, the gravity anomalies decayed to about 50% of the original amplitude over characteristic time of two months; the decay is simulated extremely well by an analytical solution for the decay of a groundwater mound by flow through porous media. Modeling the decay places tight bounds on the hydraulic conductivity of the alluvial fan below the recharge site at a length scale of 300 m to a value between 3 and 100 m/day.

  16. Characterization, Monitoring, and Risk Assessment at the IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project, Saskatchewan, Canada.

    NASA Astrophysics Data System (ADS)

    Ben, R.; Chalaturnyk, R.; Gardner, C.; Hawkes, C.; Johnson, J.; White, D.; Whittaker, S.

    2008-12-01

    In July 2000, a major research project was initiated to study the geological storage of CO2 as part of a 5000 tonnes/day EOR project planned for the Weyburn Field in Saskatchewan, Canada. Major objectives of the IEA GHG Weyburn CO2 monitoring and storage project included: assessing the integrity of the geosphere encompassing the Weyburn oil pool for effective long-term storage of CO2; monitoring the movement of the injected CO2, and assessing the risk of migration of CO2 from the injection zone (approximately 1500 metres depth) to the surface. Over the period 2000-2004, a diverse group of 80+ researchers worked on: geological, geophysical, and hydrogeological characterizations at both the regional (100 km beyond the field) and detailed scale (10 km around the field); conducted time-lapse geophysical surveys; carried out surface and subsurface geochemical surveys; and undertook numerical reservoir simulations. Results of the characterization were used for a performance assessment that concluded the risk of CO2 movement to the biosphere was very small. By September 2007, more than 14 Mtonnes of CO2 had been injected into the Weyburn reservoir, including approximately 3 Mtonnes recycled from oil production. A "Final Phase" research project was initiated (2007- 2011) to contribute to a "Best Practices" guide for long-term CO2 storage in EOR settings. Research objectives include: improving the geoscience characterization; further detailed analysis and data collection on the role of wellbores; additional geochemical and geophysical monitoring activities; and an emphasis on quantitative risk assessments using multiple analysis techniques. In this talk a review of results from Phase I will be presented followed by plans and initial results for the Final Phase.

  17. Isotopic Approaches to Evaluate the Fate of Injected CO2 in Two Geological Storage Projects in Mature Oilfields in Canada

    NASA Astrophysics Data System (ADS)

    Mayer, B.; Johnson, G.; Nightingale, M.; Maurice, S.; Raistrick, M.; Taylor, S.; Hutcheon, I.; Perkins, E.

    2008-12-01

    Monitoring and verification of CO2 storage is an essential component of geological storage projects. We present evidence from two enhanced oil recovery projects in Canada that geochemical and isotopic techniques can be successfully used to trace the fate of injected CO2. Geochemical and isotopic data for fluids and gases obtained from multiple wells at the International Energy Agency Greenhouse Gas Weyburn CO2 Monitoring and Storage Project (Saskatchewan, Canada) and from the Penn West Pembina Cardium CO2-Enhanced Oil Recovery Monitoring Pilot (Alberta, Canada) were collected before and throughout the CO2 injection phase. Carbon isotope ratios of injected CO2 in the Weyburn project were significantly lower than those of background CO2 in the reservoir. In contrast, carbon isotope ratios of injected CO2 at Penn West's Pembina Cardium CO2-Enhanced Oil Recovery Monitoring Pilot were markedly higher than those of background CO2. After commencement of CO2 injection, the concentrations and carbon isotope values of CO2 and HCO3- in fluids and gases repeatedly obtained from monitoring wells were determined. Increasing CO2 and HCO3- concentrations in concert with carbon isotope values trending towards those of the injected CO2 revealed effective solubility and ionic trapping of injected CO2 at several monitoring wells at both study sites. In addition, changes in the oxygen isotope values of reservoir fluids provided independent evidence for dissolution of injected CO2 in the produced waters. We conclude that geochemical and isotopic monitoring techniques can play an essential role in verification of CO2 storage provided that the isotopic composition of the injected CO2 is distinct.

  18. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    SciTech Connect

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  19. Activities implemented jointly: First report to the Secretariat of the United Nations Framework Convention on Climate Change. Accomplishments and descriptions of projects accepted under the U.S. Initiative on Joint Implementation

    SciTech Connect

    1996-07-01

    More than 150 countries are now Party to the United Nations Framework Convention on Climate Change (FCCC), which seeks, as its ultimate objective, to stabilize atmospheric concentrations of greenhouse gases at a level that would prevent dangerous human interference with the climate system. As a step toward this goal, all Parties are to take measures to mitigate climate change and to promote and cooperate in the development and diffusion of technologies and practices that control or reduce emissions and enhance sinks of greenhouse gases. In the US view, efforts between countries or entities within them to reduce net greenhouse gas emissions undertaken cooperatively--called joint implementation (JI)--holds significant potential both for combating the threat of global warming and for promoting sustainable development. To develop and operationalize the JI concept, the US launched its Initiative on Joint Implementation (USIJI) in October 1993, and designed the program to attract private sector resources and to encourage the diffusion of innovative technologies to mitigate climate change. The USIJI provides a mechanism for investments by US entities in projects to reduce greenhouse gas emissions worldwide and has developed a set of criteria for evaluating proposed projects for their potential to reduce net GHG emissions.

  20. The DELPHI expert process of the German umbrella project AUGE as basis for recommendations to CO2 storage in Germany

    NASA Astrophysics Data System (ADS)

    Pilz, Peter; Schoebel, Birgit; Liebscher, Axel

    2016-04-01

    Within the GEOTECHNOLOGIEN funding scheme for geological CO2 storage by the Federal Ministry of Education and Research (BMBF) in Germany 33 projects (135 subprojects) have been funded with a total budget of 58 Mio € (excluding industry funds) from 2005 to 2014. In 2012, the German parliament passed the transposition of the EU CCS Directive 2009/31/EG into the national "Carbon Dioxide Storage Law" (KSpG). Annex 1 of the KSpG provides a description of criteria for the characterization and assessment of a potential CO2 storage site. Annex 2 describes the expected monitoring system of a CO2 storage site. The criteria given in the appendices are of general nature, which reflects (1) that the CO2 storage technology is still being developed and (2) that site specific aspects needs to be considered. In 2012 an umbrella project called AUGE has been launched in order to compile and summarize the results of the GEOTECHNOLOGIEN projects to underpin the two Annexes scientifically. By integration of the individual project results AUGE aims at derive recommendations for the review and implementation of the KSpG. The recommendations shall be drafted based on a common ground of science, public authorities and industry. Therefore, the AUGE project includes a Delphi expert process as an essential part. It is realized in cooperation with the company COMPARE Consulting, Göppingen. The implementation of the Delphi-Process is organized in three steps: • After the technical preparation of a standardized questionnaire (2014/2015) it was sent to 129 experts from science, industry and public authorities in Germany. After a few weeks of consideration time, 40 persons (30 %) had decided to participate actively in this inquiry. • Following the results of the first interrogation campaign, the second survey campaign started at the end of 2015. The same list of questions was used, complemented with the results of the first inquiry campaign. The intention is reduce the variance of the

  1. Flexible Graphene-based Energy Storage Devices for Space Application Project

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2014-01-01

    Develop prototype graphene-based reversible energy storage devices that are flexible, thin, lightweight, durable, and that can be easily attached to spacesuits, rovers, landers, and equipment used in space.

  2. Feasibility of a small scale pumped storage demonstration project, Hibbing, Minnesota

    NASA Astrophysics Data System (ADS)

    The economic and technical feasibility of developing a 5 to 15 MW pumped storage power plant was examined. The substitution of power from a pumped storage facility for the purchased peak power is advantageous because: (1) the coal fired cogeneration plant operates with an improved heat rate; (2) numerous open pits from abandoned iron ore mines are available as reservoirs for pumped storage; and (3) the peaking power generated does not depend on petroleum fuel. It is suggested that: eight mine sites are suitable for pumped storage; oil fired peak power units should be avoided to improve the efficiency of the existing cogeneration; this is a nonpolluting form of power generation; and the development of small scale reversible pump/turbine units for commercial operation is desirable.

  3. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    SciTech Connect

    Shank, D.R.

    1995-02-14

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  4. PEGASUS, a European research project on the effects of gas in underground storage facilities for radioactive waste

    SciTech Connect

    Haijtink, B.; McMenamin, T.

    1993-12-31

    Whereas the subject of gas generation and possible gas release from radioactive waste repositories has gained in interest on the international scene, the Commission of the European Communities has increased its research efforts on this issue. In particular in the 4th five year R and D program on Management and Storage of Radioactive Waste (1990--1994), a framework has been set up in which research efforts on the subject of gas generation and migration, supported by the CEC, are brought together and coordinated. In this project, called PEGASUS, Project on the Effects of GAS in Underground Storage facilities for radioactive waste, about 20 organizations and research institutes from 7 European countries are involved. The project covers both experimental and theoretical studies of the processes of gas formation and possible gas release from the different waste types, LLW, ILW and HLW, under typical repository conditions in suitable geological formations as clay, salt and granite. In this paper an overview is given of the various studies undertaken in the project as well as some first results presented.

  5. Acoustics Division recent accomplishments and research plans

    NASA Technical Reports Server (NTRS)

    Clark, L. R.; Morgan, H. G.

    1986-01-01

    The research program currently being implemented by the Acoustics Division of NASA Langley Research Center is described. The scope, focus, and thrusts of the research are discussed and illustrated for each technical area by examples of recent technical accomplishments. Included is a list of publications for the last two calendar years. The organization, staff, and facilities are also briefly described.

  6. Biomass Program 2007 Accomplishments - Report Introduction

    SciTech Connect

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides the introduction to the 2007 Program Accomplishments Report.

  7. Accomplishing Multiple Goals through Community Connections

    ERIC Educational Resources Information Center

    Stone, Jody

    2007-01-01

    With schools being asked to accomplish more and more, it is increasingly important to, whenever possible, address multiple goals in teaching. Educating the whole child dictates that we find ways to ensure our graduates are well-rounded, independent thinkers capable of becoming well-adjusted, contributing adults. Thus community service has become a…

  8. Accomplished Teachers Implementation of Quality Teaching Practices

    ERIC Educational Resources Information Center

    Chen, Weiyun; Hammond-Bennett, Austin; Upton, Ashely; Mason, Steve

    2014-01-01

    The purpose of this study was to describe how accomplished teachers implement the quality of teaching practices in their daily lessons. The participants were four elementary physical education teachers (one male, three female). The data sources consisted of videotape of the teachers teaching 12 lessons, transcription of the taped lessons,…

  9. Unraveling bovin phylogeny: accomplishments and challenges.

    PubMed

    Bibi, Faysal; Vrba, Elisabeth S

    2010-01-01

    The phylogenetic systematics of bovin species forms a common basis for studies at multiple scales, from the level of domestication in populations to major cladogenesis. The main big-picture accomplishments of this productive field, including two recent works, one in BMC Genomics, are reviewed with an eye for some of the limitations and challenges impeding progress. PMID:20525112

  10. Navajo Health Authority: Accomplishments--Future Goals.

    ERIC Educational Resources Information Center

    Navajo Health Authority, Window Rock, AZ.

    Accomplishments of the Navajo Health Authority (NHA) since it began in 1972 are presented in synopsis form in a report of programs underway at Window Rock and Shiprock, along with NHA goals: to promote development of Navajo Health manpower, preventive medicine, health education, and native healing sciences. After a brief review of executive and…

  11. Biomass Program 2007 Accomplishments - Full Report

    SciTech Connect

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides Program accomplishments for 2007.

  12. Predicting College Student Success: A Historical and Predictive Examination of High School Activities and Accomplishments

    ERIC Educational Resources Information Center

    Davey, Carla Mae

    2010-01-01

    According to generational theorists, the interests and experiences of incoming students have fluctuated over time, with Millennial students being more engaged and accomplished than their predecessors. This project explored data from 1974-2007 to determine the actual trends in engagement and accomplishments for three generations of students. Over…

  13. Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project.

    PubMed

    White, Joshua A; Chiaramonte, Laura; Ezzedine, Souheil; Foxall, William; Hao, Yue; Ramirez, Abelardo; McNab, Walt

    2014-06-17

    Almost 4 million metric tons of CO2 were injected at the In Salah CO2 storage site between 2004 and 2011. Storage integrity at the site is provided by a 950-m-thick caprock that sits above the injection interval. This caprock consists of a number of low-permeability units that work together to limit vertical fluid migration. These are grouped into main caprock units, providing the primary seal, and lower caprock units, providing an additional buffer and some secondary storage capacity. Monitoring observations at the site indirectly suggest that pressure, and probably CO2, have migrated upward into the lower portion of the caprock. Although there are no indications that the overall storage integrity has been compromised, these observations raise interesting questions about the geomechanical behavior of the system. Several hypotheses have been put forward to explain the measured pressure, seismic, and surface deformation behavior. These include fault leakage, flow through preexisting fractures, and the possibility that injection pressures induced hydraulic fractures. This work evaluates these hypotheses in light of the available data. We suggest that the simplest and most likely explanation for the observations is that a portion of the lower caprock was hydrofractured, although interaction with preexisting fractures may have played a significant role. There are no indications, however, that the overall storage complex has been compromised, and several independent data sets demonstrate that CO2 is contained in the confinement zone. PMID:24912156

  14. Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project

    PubMed Central

    White, Joshua A.; Chiaramonte, Laura; Ezzedine, Souheil; Foxall, William; Hao, Yue; Ramirez, Abelardo; McNab, Walt

    2014-01-01

    Almost 4 million metric tons of CO2 were injected at the In Salah CO2 storage site between 2004 and 2011. Storage integrity at the site is provided by a 950-m-thick caprock that sits above the injection interval. This caprock consists of a number of low-permeability units that work together to limit vertical fluid migration. These are grouped into main caprock units, providing the primary seal, and lower caprock units, providing an additional buffer and some secondary storage capacity. Monitoring observations at the site indirectly suggest that pressure, and probably CO2, have migrated upward into the lower portion of the caprock. Although there are no indications that the overall storage integrity has been compromised, these observations raise interesting questions about the geomechanical behavior of the system. Several hypotheses have been put forward to explain the measured pressure, seismic, and surface deformation behavior. These include fault leakage, flow through preexisting fractures, and the possibility that injection pressures induced hydraulic fractures. This work evaluates these hypotheses in light of the available data. We suggest that the simplest and most likely explanation for the observations is that a portion of the lower caprock was hydrofractured, although interaction with preexisting fractures may have played a significant role. There are no indications, however, that the overall storage complex has been compromised, and several independent data sets demonstrate that CO2 is contained in the confinement zone. PMID:24912156

  15. Research project on CO2 geological storage and groundwaterresources: Large-scale hydrological evaluation and modeling of impact ongroundwater systems

    SciTech Connect

    Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan,Preston; Zhang,K.; Tsang, Chin-Fu

    2007-10-24

    If carbon dioxide capture and storage (CCS) technologies areimplemented on a large scale, the amounts of CO2 injected and sequesteredunderground could be extremely large. The stored CO2 then replaces largevolumes of native brine, which can cause considerable pressureperturbation and brine migration in the deep saline formations. Ifhydraulically communicating, either directly via updipping formations orthrough interlayer pathways such as faults or imperfect seals, theseperturbations may impact shallow groundwater or even surface waterresources used for domestic or commercial water supply. Possibleenvironmental concerns include changes in pressure and water table,changes in discharge and recharge zones, as well as changes in waterquality. In compartmentalized formations, issues related to large-scalepressure buildup and brine displacement may also cause storage capacityproblems, because significant pressure buildup can be produced. Toaddress these issues, a three-year research project was initiated inOctober 2006, the first part of which is summarized in this annualreport.

  16. FY 1995 research highlights: PNL accomplishments in OER programs

    SciTech Connect

    1995-10-01

    Pacific Northwest Laboratory (PNL) conducts fundamental and applied research in support of the US Department of Energy`s (DOE) core missions in science and technology, environmental quality, energy resources, and national security. Much of this research is funded by the program offices of DOE`s Office of Energy Research (DOE-ER), primarily the Office of Basic Energy Sciences (BES) and the Office of Health and Environmental Research (OHER), and by PNL`s Laboratory Directed Research and Development (LDRD) Program. This document is a collection of research highlights that describe PNL`s accomplishments in DOE-ER funded programs during Fiscal Year 1995. Included are accomplishments in research funded by OHER`s Analytical Technologies, Environmental Research, Health Effects, General Life Sciences, and Carbon Dioxide Research programs; BES`s Materials Science, Chemical Sciences, Engineering and Geoscience, and Applied Mathematical Sciences programs; and PNL`s LDRD Program. Summaries are given for 70 projects.

  17. Status of the Mini-Ring project: a compact electrostatic storage ring

    SciTech Connect

    Bernard, J.; Montagne, G.; Ales, J.; Bredy, R.; Chen, L.; Martin, S.; Cederquist, H.; Schmidt, H.

    2008-12-08

    The idea of building a small, cheap and transportable electrostatic storage ring emerged in the Lyon and Stockholm groups as a collaborative work in the framework of the ITS-LEIF European network. Such a ring could be devoted to experiments where the ring needs to be transported to different facilities that can deliver exotic particles or means of excitation (e.-g. highly charged ions, X--ray synchrotron...). The design of the so-called Mini-Ring and ion trajectory simulations will be presented. First preliminary results have demonstrated the storage of stable Ar{sup +} ion beams in the millisecond time range. The storage time is presently limited by the poor vacuum conditions (P = 2x10{sup -7} mbar) in the chamber, a feature that is going to be improved in the future.

  18. Damsel: A Data Model Storage Library for Exascale Science

    SciTech Connect

    Koziol, Quincey

    2014-11-26

    The goal of this project is to enable exascale computational science applications to interact conveniently and efficiently with storage through abstractions that match their data models. We will accomplish this through three major activities: (1) identifying major data model motifs in computational science applications and developing representative benchmarks; (2) developing a data model storage library, called Damsel, that supports these motifs, provides efficient storage data layouts, incorporates optimizations to enable exascale operation, and is tolerant to failures; and (3) productizing Damsel and working with computational scientists to encourage adoption of this library by the scientific community.

  19. Damsel - A Data Model Storage Library for Exascale Science

    SciTech Connect

    Samatova, Nagiza F

    2014-07-18

    The goal of this project is to enable exascale computational science applications to interact conveniently and efficiently with storage through abstractions that match their data models. We will accomplish this through three major activities: (1) identifying major data model motifs in computational science applications and developing representative benchmarks; (2) developing a data model storage library, called Damsel, that supports these motifs, provides efficient storage data layouts, incorporates optimizations to enable exascale operation, and is tolerant to failures; and (3) productizing Damsel and working with computational scientists to encourage adoption of this library by the scientific community.

  20. NATURAL GAS HYDRATES STORAGE PROJECT PHASE II. CONCEPTUAL DESIGN AND ECONOMIC STUDY

    SciTech Connect

    R.E. Rogers

    1999-09-27

    DOE Contract DE-AC26-97FT33203 studied feasibility of utilizing the natural-gas storage property of gas hydrates, so abundantly demonstrated in nature, as an economical industrial process to allow expanded use of the clean-burning fuel in power plants. The laboratory work achieved breakthroughs: (1) Gas hydrates were found to form orders of magnitude faster in an unstirred system with surfactant-water micellar solutions. (2) Hydrate particles were found to self-pack by adsorption on cold metal surfaces from the micellar solutions. (3) Interstitial micellar-water of the packed particles were found to continue forming hydrates. (4) Aluminum surfaces were found to most actively collect the hydrate particles. These laboratory developments were the bases of a conceptual design for a large-scale process where simplification enhances economy. In the design, hydrates form, store, and decompose in the same tank in which gas is pressurized to 550 psi above unstirred micellar solution, chilled by a brine circulating through a bank of aluminum tubing in the tank employing gas-fired refrigeration. Hydrates form on aluminum plates suspended in the chilled micellar solution. A low-grade heat source, such as 110 F water of a power plant, circulates through the tubing bank to release stored gas. The design allows a formation/storage/decomposition cycle in a 24-hour period of 2,254,000 scf of natural gas; the capability of multiple cycles is an advantage of the process. The development costs and the user costs of storing natural gas in a scaled hydrate process were estimated to be competitive with conventional storage means if multiple cycles of hydrate storage were used. If more than 54 cycles/year were used, hydrate development costs per Mscf would be better than development costs of depleted reservoir storage; above 125 cycles/year, hydrate user costs would be lower than user costs of depleted reservoir storage.

  1. Dry Cask Storage Characterization Project - Phase 1: CASTOR V/21 Cask Opening and Examination

    SciTech Connect

    Bare, Walter Claude; Ebner, Matthias Anthony; Torgerson, Laurence Dale

    2001-08-01

    This report documents visual examination and testing conducted in 1999 and early 2000 at the Idaho National Engineering and Environmental Laboratory (INEEL) on a Gesellschaft für Nuklear Service (GNS) CASTOR V/21 pressurized water reactor (PWR) spent fuel dry storage cask. The purpose of the examination and testing is to develop a technical basis for renewal of licenses and Certificates of Compliance for dry storage systems for spent nuclear fuel and high-level waste at independent spent fuel storage installation sites. The examination and testing was conducted to assess the condition of the cask internal and external surfaces, cask contents consisting of 21 Westinghouse PWR spent fuel assemblies from Dominion’s (formerly named Virginia Power) Surry Power Station and cask concrete storage pad. The assemblies have been continuously stored in the CASTOR cask since 1985. Cask exterior surface and selected fuel assembly temperatures, and cask surface gamma and neutron dose rates were measured. Cask external/internal surfaces, fuel basket components including accessible weldments, fuel assembly exteriors, and primary lid seals were visually examined. Selected fuel rods were removed from one fuel assembly, visually examined, and then shipped to Argonne National Laboratory for nondestructive, destructive, and mechanical examination. Cask interior crud samples and helium cover gas samples were collected and analyzed. The results of the examination and testing indicate the concrete storage pad, CASTOR V/21 cask, and cask contents exhibited sound structural and seal integrity and that long-term storage has not caused detectable degradation of the spent fuel cladding or the release of gaseous fission products between 1985 and 1999.

  2. Pilot production system cost/benefit analysis: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Digital Document Storage (DDS)/Pilot Production System (PPS) will provide cost effective electronic document storage, retrieval, hard copy reproduction, and remote access for users of NASA Technical Reports. The DDS/PPS will result in major benefits, such as improved document reproduction quality within a shorter time frame than is currently possible. In addition, the DDS/PPS will provide an important strategic value through the construction of a digital document archive. It is highly recommended that NASA proceed with the DDS Prototype System and a rapid prototyping development methodology in order to validate recent working assumptions upon which the success of the DDS/PPS is dependent.

  3. Solar Total Energy Project (STEP) Performance Analysis of High Temperature Energy Storage Subsystem

    NASA Technical Reports Server (NTRS)

    Moore, D. M.

    1984-01-01

    The 1982 milestones and lessons learned; performance in 1983; a typical day's operation; collector field performance and thermal losses; and formal testing are highlighted. An initial test that involves characterizing the high temperature storage (hts) subsystem is emphasized. The primary element is on 11,000 gallon storage tank that provides energy to the steam generator during transient solar conditions or extends operating time. Overnight, thermal losses were analyzed. The length of time the system is operated at various levels of cogeneration using stored energy is reviewed.

  4. Nevada Nuclear Waste Storage Investigations Project interim acceptance specifications for Defense Waste Processing Facility and West Valley Demonstration Project waste forms and canisterized waste

    SciTech Connect

    Oversby, V.M.

    1984-08-01

    The waste acceptance specifications presented in this document represent the first stage of the Nevada Nuclear Waste Storage Investigations Project effort to establish specifications for the acceptance of waste forms for disposal at a nuclear waste repository in Yucca Mountain tuff. The only waste forms that will be dealt with in this document are the reprocessed waste forms resulting from solidification of the Savannah River Plant defense high level waste and the West Valley high level wastes. Specifications for acceptance of spent fuel will be covered in a separate document.

  5. Geologic Sequestration Software Suite (GS3): a collaborative approach to the management of geological GHG storage projects

    SciTech Connect

    Bonneville, Alain; Black, Gary D.; Gorton, Ian; Hui, Peter SY; Murphy, Ellyn M.; Murray, Christopher J.; Rockhold, Mark L.; Schuchardt, Karen L.; Sivaramakrishnan, Chandrika; White, Mark D.; Williams, Mark D.; Wurstner, Signe K.

    2011-01-23

    Geologic storage projects associated with large anthropogenic sources of greenhouse gases (GHG) will have lifecycles that may easily span a century, involve several numerical simulation cycles, and have distinct modeling teams. The process used for numerical simulation of the fate of GHG in the subsurface follows a generally consistent sequence of steps that often are replicated by scientists and engineers around the world. Site data is gathered, assembled, interpreted, and assimilated into conceptualizations of a solid-earth model; assumptions are made about the processes to be modeled; a computational domain is specified and spatially discretized; driving forces and initial conditions are defined; the conceptual models, computational domain, and driving forces are translated into input files; simulations are executed; and results are analyzed. Then, during and after the GHG injection, a continuous monitoring of the reservoir is done and models are updated with the newly collected data. Typically the working files generated during all these steps are maintained on workstations with local backups and archived once the project has concluded along with any modeling notes and records. We are proposing a new concept for supporting the management of full-scale GHG storage projects where collaboration, flexibility, accountability and long-term access will be essential features: the Geologic Sequestration Software Suite, GS3.

  6. Transport of solutes through unsaturated fractured media: Nevada Nuclear Waste Storage Investigations Project

    SciTech Connect

    Dykhuizen, R.C.

    1988-03-01

    A numerical model is presented to represent the transport of solutes through a highly fractured unsaturated, porous medium. To accomplish this, the solute is tracked separately in two flow systems a matrix pore flow system and a fracture network, with interaction terms. Compatible hydraulic equations for such a dual system are also presented to enable solution of the solute trasport. The hydraulic equations chosen use the equivlaent porous media concept. These equations can also be applied to a saturated medium without modification. However, many of the transport terms will be negligible for such an application. A brief sample calculation illustates the method. 11 refs., 4 figs.

  7. Advanced Fuels Campaign FY 2011 Accomplishments Report

    SciTech Connect

    Not Listed

    2011-11-01

    One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).

  8. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    SciTech Connect

    KLEM, M.J.

    2000-05-11

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.

  9. Radioactive air emissions notice of construction for phase 2 Spent Nuclear Fuel Canister Storage Building -- Project W-379

    SciTech Connect

    Kamberg, L.D.

    1998-06-17

    The purpose of this Notice of Construction (NOC) is to provide a rewritten NOC for obtaining regulatory approval for changes to the previous Canister Storage Building (CSB) NOCs (WDOH, 1996 and EPA, 1996) as were approved by the Washington State Department of Health (WDOH, 1996a) and US Environmental Protection Agency (EPA, 1996a). These changes are because of a revised sealing configuration of the multi-canister overpacks (MCOS) that are used to store the SNF. A flow schematic of the SNF Project is provided in Figure 1-1. A separate notification of startup will be provided apart from this NOC.

  10. Unraveling bovin phylogeny: accomplishments and challenges

    PubMed Central

    2010-01-01

    The phylogenetic systematics of bovin species forms a common basis for studies at multiple scales, from the level of domestication in populations to major cladogenesis. The main big-picture accomplishments of this productive field, including two recent works, one in BMC Genomics, are reviewed with an eye for some of the limitations and challenges impeding progress. See Research article http://www.biomedcentral.com/1471-2164/10/177 PMID:20525112

  11. NASA total quality management 1989 accomplishments report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Described here are the accomplishments of NASA as a result of the use of Total Quality Management (TQM). The principles in practice which led to these process refinements are important cultural elements to any organization's productivity and quality efforts. The categories of TQM discussed here are top management leadership and support, strategic planning, focus on the customer, employee training and recognition, employee empowerment and teamwork, measurement and analysis, and quality assurance.

  12. Enhanced surveillance program FY1998 accomplishments

    SciTech Connect

    Kass, J

    1998-10-01

    This report highlights the accomplishments of the Enhanced Surveillance Program (ESP), the highest-priority research and development effort in stockpile management today. This is volume one of eleven, the unclassified summary of selected program highlights. These highlights fall into the following focus areas: pits, high explosives, organics, dynamics, diagnostics, systems, secondaries, materials-aging models, non-nuclear components, and routine surveillance testing system upgrades. Principal investigators from around the DOE complex contributed to this report.

  13. Joint Winter Runway Friction Program Accomplishments

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Wambold, James C.; Henry, John J.; Andresen, Arild; Bastian, Matthew

    2002-01-01

    The major program objectives are: (1) harmonize ground vehicle friction measurements to report consistent friction value or index for similar contaminated runway conditions, for example, compacted snow, and (2) establish reliable correlation between ground vehicle friction measurements and aircraft braking performance. Accomplishing these objectives would give airport operators better procedures for evaluating runway friction and maintaining acceptable operating conditions, providing pilots information to base go/no go decisions, and would contribute to reducing traction-related aircraft accidents.

  14. NASA total quality management 1990 accomplishments report

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA's efforts in Total Quality Management are based on continuous improvement and serve as a foundation for NASA's present and future endeavors. Given here are numerous examples of quality strategies that have proven effective and efficient in a time when cost reduction is critical. These accomplishment benefit our Agency and help to achieve our primary goal, keeping American in the forefront of the aerospace industry.

  15. Significant Accomplishments in Science and Technology

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The proceedings of a symposium on significant accomplishments in science and technology are presented. The symposium was held at the Goddard Space Flight Center in December 1973. The subjects discussed are as follows: (1) cometary physics, (2) X-ray and gamma ray astronomy, (3) solar and terrestrial physics, (4) spacecraft technology, (5) Earth Resources Technology Satellite, (6) earth and ocean physics, (6) communications and navigation, (7) mission operations and data systems, and (8) networks systems and operations.

  16. WISM - A Wideband Instrument for Snow Measurement: Past Accomplishments, Current Status, and Path Forward

    NASA Technical Reports Server (NTRS)

    Bonds, Quenton; Racette, Paul; Durham, Tim (Principal Investigator)

    2016-01-01

    Presented are the prior accomplishments, current status and path forward for GSFC's Wideband Instrument for Snow Measurement (WISM). This work is a high level overview of the project, presented via Webinar to the IEEE young professionals.

  17. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  18. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  19. Historical overview, accomplishments, and value of the FSA project: Industry

    NASA Technical Reports Server (NTRS)

    Little, R.

    1986-01-01

    An historical overview of the progress of photovoltaics (PV) as a function of oil price and DOE PV budgeting levels was presented. The state of the worldwide PV industry, the PV interests and activities of utilities, and the phases of evolution that a technology such a photovoltaics goes through on the way to commercialization were reviewed. Although the length of time it will take photovoltaics to evolve from discovery to commercialization was increased from 50 to 80 years, the outlook is optimistic.

  20. 2008 Accomplishments for CEV Parachute Assembly System (CPAS)

    NASA Technical Reports Server (NTRS)

    Martin, Ricardo

    2009-01-01

    The Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) project is responsible for the design, development, fabrication, qualification and delivery of the CEV parachute system to support the Orion pad/ascent flight tests and the first three orbital flight tests (including the first human mission). This article will discuss the technical and research achievements accomplished in calendar year 2008, broken into three key categories: prototype testing and analysis (also referred to as the Generation 1 design), system requirements definition and design of the flight engineering development unit, and support for the Orion vehicle flight testing (primarily Pad-Abort 1).

  1. Effects of operation of Raccoon Mountain pumped-storage project on Nickajack Reservoir flow conditions

    SciTech Connect

    Garrison, J.; Price, J.T.

    1980-01-01

    The results from a study to determine the effects of Raccoon Mountain Pumped-Storage Plant operations on flow conditions within Nickajack Reservoir are presented. Computer simulations and field studies have shown that flow reversals occur in Nickajack Reservoir as a result of the power peaking operations of the Nickajack and Chickamauga hydroelectric plants, both situated on the Tennessee River. The primary cause of these reversals is attributable to shutdowns of the Chickamauga turbines. The focus of this study is on flow reversals near the Moccasin Bend sewage treatment plant and near the Tennessee American water treatment plant, both of which are located on the Tennessee River near Chattanooga. Results from the study show that, under normal and extreme operating conditions at Chickamauga and Nickajack Dams, operation of the Raccoon Mountain Pumped-Storage Plant has no appreciable influence on flow reversals at the two plant sites.

  2. The Cryogenic Propellant Storage and Transfer Technology Demonstration Mission:. [Progress and Transition

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Taylor, William J.; Ginty, Carol A.; Melis, Matthew E.

    2014-01-01

    This presentation provides an overview of the Cryogenic Propellant Storage and Transfer (CPST) Mission from formulation through Systems Requirements Review and into preparation for Preliminary Design Review. Accomplishments of the technology maturation phase of the project are included. The presentation then summarizes the transition, due to Agency budget constraints, of CPST from a flight project into a ground project titled evolvable Cryogenics (eCryo).

  3. Conceptual design report for the ICPP spent nuclear fuel dry storage project

    SciTech Connect

    1996-07-01

    The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

  4. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report

    SciTech Connect

    Neeraj Gupta

    2008-03-31

    A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The

  5. Gas Storage Technology Consortium

    SciTech Connect

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host

  6. Advanced Fuels Campaign FY 2015 Accomplishments Report

    SciTech Connect

    Braase, Lori Ann; Carmack, William Jonathan

    2015-10-29

    The mission of the Advanced Fuels Campaign (AFC) is to perform research, development, and demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This report is a compilation of technical accomplishment summaries for FY-15. Emphasis is on advanced accident-tolerant LWR fuel systems, advanced transmutation fuels technologies, and capability development.

  7. Sandia technology engineering and science accomplishments

    SciTech Connect

    Not Available

    1993-03-01

    Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computational simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.

  8. Systems engineering management and implementation plan for Project W-464, immobilized high-level waste storage

    SciTech Connect

    Wecks, M.D.

    1998-04-15

    The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-46 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan. (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented.

  9. Advanced Fuels Campaign FY 2010 Accomplishments Report

    SciTech Connect

    Lori Braase

    2010-12-01

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word “fuel” is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

  10. Environmental projects. Volume 13: Underground storage tanks, removal and replacement. Goldstone Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Bengelsdorf, Irv

    1991-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 40 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. Activities at the GDSCC are carried out in support of six large parabolic dish antennas. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel oil, hydraulic oil, and waste oil. These fluids are stored in underground storage tanks (USTs). This present volume describes what happened to the 26 USTs that remained at the GDSCC. Twenty-four of these USTs were constructed of carbon steel without any coating for corrosion protection, and without secondary containment or leak detection. Two remaining USTs were constructed of fiberglass-coated carbon steel but without secondary containment or leak protection. Of the 26 USTs that remained at the GDSCC, 23 were cleaned, removed from the ground, cut up, and hauled away from the GDSCC for environmentally acceptable disposal. Three USTs were permanently closed (abandoned in place).