Science.gov

Sample records for storage ring devices

  1. Storage Rings

    SciTech Connect

    Fischer, W.

    2011-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10{sup -6} eV to 3.5 x 10{sup 12} eV (LHC, 7 x 10{sup 12} eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or

  2. Dynamical aspects on FEL interaction in single passage and storage ring devices

    SciTech Connect

    Dattoli, G.; Renieri, A.

    1995-12-31

    The dynamical behaviour of the free-electron lasers is investigated using appropriate scaling relations valid for devices operating in the low and high gain regimes, including saturation. The analysis is applied to both single passage and storage ring configurations. In the latter case the interplay between the interaction of the electron bean with the laser field and with the accelerator environment is investigated. In particular we discuss the effect of FEL interaction on the microwave instability.

  3. THE CIRCULAR RFQ STORAGE RING

    SciTech Connect

    RUGGIERO,A.G.

    1998-10-20

    This paper presents a novel idea of storage ring for the accumulation of intense beams of light and heavy ions at low energy. The new concept is a natural development of the combined features used in a conventional storage ring and an ion trap, and is basically a linear RFQ bend on itself. In summary the advantages are: smaller beam dimensions, higher beam intensity, and a more compact storage device.

  4. Inertial energy storage device

    DOEpatents

    Knight, Jr., Charles E.; Kelly, James J.; Pollard, Roy E.

    1978-01-01

    The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

  5. Storage Ring EDM Experiments

    NASA Astrophysics Data System (ADS)

    Semertzidis, Yannis K.

    2016-04-01

    Dedicated storage ring electric dipole moment (EDM) methods show great promise advancing the sensitivity level by a couple orders of magnitude over currently planned hadronic EDM experiments. We describe the present status and recent updates of the field.

  6. Clusters in storage rings

    SciTech Connect

    Hvelplund, P.; Andersen, J. U.; Hansen, K.

    1999-01-15

    Anions of fullerenes and small metal clusters have been stored in the storage rings ASTRID and ELISA. Decays on a millisecond time scale are due to electron emission from metastable excited states. For the fullerenes the decay curves have been interpreted in terms of thermionic emission quenched by radiative cooling. The stored clusters were heated by a Nd:YAG laser resulting in increased emission rates. With an OPO laser this effect was used to study the wavelength dependence of the absorption of light in hot C{sub 60}{sup -} ion molecules.

  7. Reversible Seeding in Storage Rings

    SciTech Connect

    Ratner, Daniel; Chao, Alex; /SLAC

    2011-12-14

    We propose to generate steady-state microbunching in a storage ring with a reversible seeding scheme. High gain harmonic generation (HGHG) and echo-enabled harmonic generation (EEHG) are two promising methods for microbunching linac electron beams. Because both schemes increase the energy spread of the seeded beam, they cannot drive a coherent radiator turn-by-turn in a storage ring. However, reversing the seeding process following the radiator minimizes the impact on the electron beam and may allow coherent radiation at or near the storage ring repetition rate. In this paper we describe the general idea and outline a proof-of-principle experiment. Electron storage rings can drive high average power light sources, and free-electron lasers (FELs) are now producing coherent light sources of unprecedented peak brightness While there is active research towards high repetition rate FELs (for example, using energy recovery linacs), at present there are still no convenient accelerator-based sources of high repetition rate, coherent radiation. As an alternative avenue, we recently proposed to establish steady-state microbunching (SSMB) in a storage ring. By maintaining steady-state coherent microbunching at one point in the storage ring, the beam generates coherent radiation at or close to the repetition rate of the storage ring. In this paper, we propose a method of generating a microbunched beam in a storage ring by using reversible versions of linac seeding schemes.

  8. HESYRL storage ring vacuum system

    SciTech Connect

    Li, G.; Pang, Y.; Wang, Y.; Zhou, H.; Zhang, Z.; Jiang, D.; Xu, B.; Xu, S.

    1988-09-30

    The Storage Ring Vacuum System of the Synchrotron Radiation source project of HESYRL (Hefei Synchrotron Radiation Laboratory) in USTC, Hefei, Anhui, China, will be completed this year. Since the designed beam current of the 800 MeV electron storage ring is 300 mA, synchrotron radiation and hence high photon stimulated degassing will occur in the vacuum chamber. In order to get the stored beam lifetime of several hours, the pressure must be maintained at 10/sup -8/ approx.10/sup -9/ Torr. The gas desorption from synchrotron radiation and thermal outgas has been calculated. The UHV system of the storage ring and vacuum pretreatment methods are described in this paper.

  9. Split ring containment attachment device

    DOEpatents

    Sammel, Alfred G.

    1996-01-01

    A containment attachment device 10 for operatively connecting a glovebag 200 to plastic sheeting 100 covering hazardous material. The device 10 includes an inner split ring member 20 connected on one end 22 to a middle ring member 30 wherein the free end 21 of the split ring member 20 is inserted through a slit 101 in the plastic sheeting 100 to captively engage a generally circular portion of the plastic sheeting 100. A collar potion 41 having an outer ring portion 42 is provided with fastening means 51 for securing the device 10 together wherein the glovebag 200 is operatively connected to the collar portion 41.

  10. MUON STORAGE RINGS - NEUTRINO FACTORIES

    SciTech Connect

    PARSA,Z.

    2000-05-30

    The concept of a muon storage ring based Neutrino Source (Neutrino Factory) has sparked considerable interest in the High Energy Physics community. Besides providing a first phase of a muon collider facility, it would generate more intense and well collimated neutrino beams than currently available. The BNL-AGS or some other proton driver would provide an intense proton beam that hits a target, produces pions that decay into muons. The muons must be cooled, accelerated and injected into a storage ring with a long straight section where they decay. The decays occurring in the straight sections of the ring would generate neutrino beams that could be directed to detectors located thousands of kilometers away, allowing studies of neutrino oscillations with precisions not currently accessible. For example, with the neutrino source at BNL, detectors at Soudan, Minnesota (1,715 km), and Gran Sasso, Italy (6,527 km) become very interesting possibilities. The feasibility of constructing and operating such a muon-storage-ring based Neutrino-Factory, including geotechnical questions related to building non-planar storage rings (e.g. at 8{degree} angle for BNL-Soudan, and 3{degree} angle for BNL-Gran Sasso) along with the design of the muon capture, cooling, acceleration, and storage ring for such a facility is being explored by the growing Neutrino Factory and Muon Collider Collaboration (NFMCC). The authors present overview of Neutrino Factory concept based on a muon storage ring, its components, physics opportunities, possible upgrade to a full muon collider, latest simulations of front-end, and a new bowtie-muon storage ring design.

  11. A New Storage-Ring Light Source

    NASA Astrophysics Data System (ADS)

    Chao, Alex

    2015-07-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  12. A New Storage-Ring Light Source

    NASA Astrophysics Data System (ADS)

    Chao, Alex

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  13. A new storage-ring light source

    SciTech Connect

    Chao, Alex

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  14. Storage ring development at the National Synchrotron Light Source

    SciTech Connect

    Krinsky, S.; Bittner, J.; Fauchet, A.M.; Johnson, E.D.; Keane, J.; Murphy, J.; Nawrocky, R.J.; Rogers, J.; Singh, O.V.; Yu, L.H.

    1991-09-01

    This report contains papers on the following topics: Transverse Beam Profile Monitor; Bunch Length Measurements in the VUV Storage Ring; Photoelectric Effect Photon Beam Position Monitors; RF Receivers for Processing Electron Beam Pick-up Electrode Signals; Real-Time Global Orbit Feedback Systems; Local Orbit Feedback; Active Interlock System for High Power Insertion Devices in the X-ray Ring; Bunch Lengthening Cavity for the VUV Ring; SXLS Storage Ring Design.

  15. Antiproton chain of the FAIR storage rings

    NASA Astrophysics Data System (ADS)

    Katayama, T.; Kamerdzhiev, V.; Lehrach, A.; Maier, R.; Prasuhn, D.; Stassen, R.; Stockhorst, H.; Herfurth, F.; Lestinsky, M.; Litvinov, Yu A.; Steck, M.; Stöhlker, T.

    2015-11-01

    In the Modularized Start Version of the Facility of Antiproton and Ion Research (FAIR) at Darmstadt Germany, the 3 GeV antiprotons are precooled in the collector ring and accumulated in the high energy storage ring (HESR). They are further accelerated to 14 GeV or decelerated to 1 GeV for the experiments with a high-density internal target. The powerful beam cooling devices, stochastic cooling and electron cooling will support the provision of a high-resolution antiproton beam. The other option of FAIR is to prepare the low energy, 300 keV antiproton beam connecting the existing storage rings ESR and CRYRING with HESR. Beam physics issues related with these concepts are described.

  16. Fourth-generation storage rings

    SciTech Connect

    Galayda, J. N.

    1999-11-16

    It seems clear that a linac-driven free-electron laser is the accepted prototype of a fourth-generation facility. This raises two questions: can a storage ring-based light source join the fourth generation? Has the storage ring evolved to its highest level of performance as a synchrotrons light source? The answer to the second question is clearly no. The author thinks the answer to the first question is unimportant. While the concept of generations has been useful in motivating thought and effort towards new light source concepts, the variety of light sources and their performance characteristics can no longer be usefully summed up by assignment of a ''generation'' number.

  17. A New Tomography Beamline at a Wiggler Port at the Center for Advanced Microstructures and Devices (CAMD) Storage Ring

    SciTech Connect

    Ham, Kyungmin; Morris, Kevin J.; Tittsworth, Roland C.; Scott, John D.; Barnett, Heath A.; Butler, Leslie G.; Willson, Clinton S.

    2007-01-19

    A new tomography beamline has been built and commissioned at the 7 T wiggler of the CAMD storage ring. This beamline is equipped with two monochromators that can be used interchangeably for X-ray absorption spectroscopy or high resolution X-ray tomography, at best 2-3 {mu}m pixel size. The high-flux double multilayer-mirror monochromator (W-B4C multilayers) can be used in the energy range from 6 to 35 keV with a resolution ({delta}E/E ) between 0.01-0.03. The second is a channel-cut Si(311)-crystal monochromator with a range of 15 to 36 keV and resolution of ca. 10-4, this is not yet tested. Tomography has the potential for high-throughput materials analysis; however, there are some significant obstacles to be overcome in the areas of data acquisition, reconstruction, visualization and analysis. Data acquisition is facilitated by the multilayer monochromator as this provides high photon flux, thus reducing measurement time. At the beamline, Matlab(c) routines provide simple x,y,z fly-throughs of the sample. Off-beamline processing with Amira(c) can yield more sophisticated inspection of the sample. Standard data acquisition based on fixed angle increments is not optimal, however, new patterns based on Greek golden ratio angle increments offer faster convergence to a high signal-to-noise-ratio image. The image reconstruction has traditionally been done by back-projection reconstruction. In this presentation we will show first results from samples studied at the new beamline.

  18. Lattice design of a quasi-isochronous ring for a storage-ring FEL

    SciTech Connect

    Ohgaki, H.; Robin, D.; Yamazaki, T.

    1995-12-31

    Design work for a Quasi-Isochronous Ring (QI-Ring) dedicated to Storage Ring FELs in Electrotechnical Laboratory has been completed. The motivation for this work is to shorten the electron bunch length in order to get a high peak current in a compact Storage-Ring (SR). By placing an inverted dipole field in a location where the energy dispersion function is relatively large, one can reduce the momentum compaction factor ({alpha}) and shorten a bunch length in a SR. The main requirements for the QI-Ring are: 1.5GeV maximum beam energy; 80m circumference; two 10m-long dispersion free straight sections for insertion devices. A few meters dispersion free straight sections for RF cavities and injection bumpers; and a wide tune ability in betatron functions and momentum compaction factor ({alpha}). As shown in figure 1, the lattice includes two 49 degree, 3 T superconducting bending magnets to reduce the circumference of the ring, a -8 degree normal inverted dipole magnet (ID), 4 families quadrupole magnets (QF, QD, QFA, QDA), and 3 families sextupole magnets. Each quadrupole family has a specific function: QF & QD control the betatron tunes, and QFA & QDA control the {alpha} and suppress the energy dispersion in a straight section. In this type of ring it is important to compensate the second order momentum compaction factor ({alpha}{sub 2}), so at least three families of sextupoles are required.

  19. APS storage ring vacuum system development

    SciTech Connect

    Niemann, R.C.; Benaroya, R.; Choi, M.; Dortwegt, R.J.; Ferry, R.; Goeppner, G.A.; Gonczy, J.D.; Krieger, C.; Howell, J.; Nielsen, R.W.; Roop, B.; Wehrle, R.B.

    1991-01-01

    The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's materials research program. The Storage Ring's 1104 m circumference is divided into 40 sectors which contain vacuum, beam transport, control, rf and insertion device systems. The vacuum system will operate at a pressure of 1 nTorr and is fabricated from aluminum. The system includes distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. An overview of the vacuum system design and details of selected development program results are presented. 5 refs.

  20. Construction of compact electron storage ring JSR

    NASA Astrophysics Data System (ADS)

    Yokomizo, H.; Yanagida, K.; Sasaki, S.; Harami, T.; Konishi, H.; Mashiko, K.; Ashida, K.; Harada, S.; Hashimoto, H.; Iizuka, M.; Kabasawa, M.; Nakayama, K.; Yamada, K.; Suzuki, Y.

    1989-07-01

    A compact electron storage ring (JSR) is under construction in order to study accelerator technologies and to be used as the test ring aiming at a highly brilliant synchrotron radiation facility (6-8 GeV). The JSR lattice is a double-focusing achromatic type. The circumference is 20.5 m. However, even in this small ring, one straight section with a length of ˜1.5 m, where the dispersion is free, is provided for the insertion device study. The electron beam is supplied by the linac with an energy of 150 MeV, and the stored energy is slowly increased up to 300 MeV. Power supplies of all magnets and the rf system are controlled by a real-time computer through optical fiber links, and signals of beam monitors are stored in the same computer so that it is easy to test any type of control procedures.

  1. Storage-Ring Mass Spectrometry in Japan

    NASA Astrophysics Data System (ADS)

    Suzaki, Fumi; Yamaguchi, Takayuki

    Atomic masses are a fundamental ground-state property of nuclei, reflecting a wide variety of structures and dynamics among nucleons. High-precision mass values of short-lived, in particular neutron-rich, nuclei are a key issue toward full understanding of astrophysical nucleosynthesis, as well as nuclear shell evolution far from stability. Beyond the precision mass measurements performed at worldwide ion-trap facilities, a new method of storage-ring mass spectrometry is now being developed at the RIKEN RI Beam Factory in Japan. Combined with the highest intensities of intermediate-energy radioactive ion beams currently available through in-flight separation of uranium fission products, the present method will enable us to measure the masses of extremely neutron-rich, rare species located on the r-process pathway, with a tiny yield (as low as ~1 counts/day).

  2. Longitudinal dynamics in storage rings

    SciTech Connect

    Colton, E.P.

    1986-01-01

    The single-particle equations of motion are derived for charged particles in a storage ring. Longitudinal space charge is included in the potential assuming an infinitely conducting circular beam pipe with a distributed inductance. The framework uses Hamilton's equations with the canonical variables phi and W. The Twiss parameters for longitudinal motion are also defined for the small amplitude synchrotron oscillations. The space-charge Hamiltonian is calculated for both parabolic bunches and ''matched'' bunches. A brief analysis including second-harmonic rf contributions is also given. The final sections supply calculations of dynamical quantities and particle simulations with the space-charge effects neglected.

  3. The cryogenic storage ring CSR

    NASA Astrophysics Data System (ADS)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  4. The cryogenic storage ring CSR.

    PubMed

    von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams. PMID:27370434

  5. Cryogenic storage devices

    SciTech Connect

    Pelloux-gervais, P.

    1982-02-09

    The present invention relates to a device for the cryogenic storing of products. In a tank, canisters are suspended via rods, and these rods rest on the rim of the tank via retaining heads. The invention is applicable to the cryogenic storage of seeds, semen, vegetable substances, etc.

  6. Nuclear physics experiments with ion storage rings

    NASA Astrophysics Data System (ADS)

    Litvinov, Yu. A.; Bishop, S.; Blaum, K.; Bosch, F.; Brandau, C.; Chen, L. X.; Dillmann, I.; Egelhof, P.; Geissel, H.; Grisenti, R. E.; Hagmann, S.; Heil, M.; Heinz, A.; Kalantar-Nayestanaki, N.; Knöbel, R.; Kozhuharov, C.; Lestinsky, M.; Ma, X. W.; Nilsson, T.; Nolden, F.; Ozawa, A.; Raabe, R.; Reed, M. W.; Reifarth, R.; Sanjari, M. S.; Schneider, D.; Simon, H.; Steck, M.; Stöhlker, T.; Sun, B. H.; Tu, X. L.; Uesaka, T.; Walker, P. M.; Wakasugi, M.; Weick, H.; Winckler, N.; Woods, P. J.; Xu, H. S.; Yamaguchi, T.; Yamaguchi, Y.; Zhang, Y. H.

    2013-12-01

    In the last two decades a number of nuclear structure and astrophysics experiments were performed at heavy-ion storage rings employing unique experimental conditions offered by such machines. Furthermore, building on the experience gained at the two facilities presently in operation, several new storage ring projects were launched worldwide. This contribution is intended to provide a brief review of the fast growing field of nuclear structure and astrophysics research at storage rings.

  7. Spectral characteristics and power distribution from insertion devices on a 6 to 7 GeV storage ring

    SciTech Connect

    Shenoy, G.K.; Viccaro, P.J.

    1986-06-01

    Two different types of insertion devices - undulators and wigglers - are described and compared. Each provides a periodic magnetic field that alters polarity, but whereas the spectral distribution from a wiggler is continuous and wide, the radiation of an undulator has spectrally narrow and discrete peaks. The distinction is determined by the deflection parameter. The energy spread in undulator peaks is calculated. Insertion device magnets and gap are discussed. Undulator tunability from gap variation is considered on a 6-GeV lattice and on a 7-GeV lattice. Also discussed is the angular distribution of power and the polarization from various sources. (LEW)

  8. A storage ring for radioactive beams

    SciTech Connect

    Moltz, D.M.

    1994-05-01

    Preliminary ideas are presented for the scientific justification of a storage ring for radioactive beams. This storage ring would be suitable for many nuclear and atomic physics experiments. Ideally, it would be constructed and tested at an existing low-energy heavy-ion facility before relocation to a major radioactive beam facility.

  9. Collective effects in isochronous storage rings

    SciTech Connect

    Chao, A.W.; Kim, K.-J.

    1996-01-01

    We studied the collective instabilities in isochronous storage rings using a linac-type analysis. Simple criteria for avoiding the longitudinal and transverse instabilities are developed by employing a two-particle model. Numerical examples show that these conditions do not impose serious performance restrictions for two of the currently proposed isochronous storage rings.

  10. APS storage ring commissioning and early operational experience

    SciTech Connect

    Decker, G.

    1995-07-01

    The Advanced Photon Source (APS) at Argonne National Laboratory (ANL) uses a 100-mA, 7-GeV positron storage ring to produce high brilliance bending magnet and insertion device x-rays for up to 70 x-ray beamlines. It is 1104 meters in circumference and has a beam liftime designed to exceed 10 hours with 1 nTorr average ring vacuum at 100 mA. The high brilliance required by the synchrotron light users results from the storage ring`s natural emittance of 8.2 nm-rad, together with the requirement that the beam be stable to a level which is less than 5% of its rms size. Real-time closed orbit feedback is employed to achieve the required stability and is discussed elsewhere in these proceedings. Installation of storage ring components was completed early this year, and we report here on the first experiences of commissioning and operation with beam.

  11. Optical storage device

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.

    1991-01-01

    A new holographic image storage device which uses four-wave mixing in two photorefractive crystals is described. Photorefractive crystals promise information storage densities on the order of 10(exp 9) to 10(exp 12) bits per cubic centimeter at real-time rates. Several studies in recent years have investigated the use of photorefractive crystals for storing holographic image information. However, all of the previous studies have focused on techniques for storing information in a single crystal. The disadvantage of using a single crystal is that the read process is destructive. Researchers have developed techniques for fixing the information in a crystal so that it may be read many times. However, when fixed, the information cannot be readily erased and overwritten with new information. It two photorefractive crystals are used, holographic image information may be stored dynamically. That is, the stored image information may be read out more than once, and it may be easily erased and overwritten with new image information.

  12. Cathodochromic storage device

    NASA Technical Reports Server (NTRS)

    Bosomworth, D. R.; Moles, W. H.

    1969-01-01

    A memory and display device has been developed by combing a fast phosphor layer with a cathodochromic layer in a cathode ray tube. Images are stored as patterns of electron beam induced optical density in the cathodo-chromic material. The stored information is recovered by exciting the backing, fast phosphor layer with a constant current electron beam and detecting the emitted radiation which is modulated by absorption in the cathodochromic layer. The storage can be accomplished in one or more TV frames (1/30 sec each). More than 500 TV line resolution and close to 2:1 contrast ratio are possible. The information storage time in a dark environment is approximately 24 hours. A reconstituted (readout) electronic video signal can be generated continuously for times in excess of 10 minutes or periodically for several hours.

  13. INSTABILITY ISSUES AT THE SNS STORAGE RING

    SciTech Connect

    ZHANG,S.Y.

    1999-06-28

    The impedance and beam instability issues of the SNS storage ring is reviewed, and the effort toward solutions at the BNL is reported. Some unsettled issues are raised, indicating the direction of planned works.

  14. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, J.P.; Craft, D.C.

    1995-03-14

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer. 11 figs.

  15. Interferometric ring lasers and optical devices

    DOEpatents

    Hohimer, John P.; Craft, David C.

    1995-01-01

    Two ring diode lasers are optically coupled together to produce tunable, stable output through a Y-junction output coupler which may also be a laser diode or can be an active waveguide. These devices demonstrate a sharp peak in light output with an excellent side-mode-rejection ratio. The rings can also be made of passive or active waveguide material. With additional rings the device is a tunable optical multiplexer/demultiplexer.

  16. APS storage ring vacuum system performance

    SciTech Connect

    Noonan, J.R.; Gagliano, J.; Goeppner, G.A.

    1997-06-01

    The Advanced Photon Source (APS) storage ring was designed to operated with 7-GeV, 100-mA positron beam with lifetimes > 20 hours. The lifetime is limited by residual gas scattering and Touschek scattering at this time. Photon-stimulated desorption and microwave power in the rf cavities are the main gas loads. Comparison of actual system gas loads and design calculations will be given. In addition, several special features of the storage ring vacuum system will be presented.

  17. Workshop on compact storage ring technology: applications to lithography

    SciTech Connect

    Not Available

    1986-05-30

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems. (LEW)

  18. The MAX IV storage ring project

    PubMed Central

    Tavares, Pedro F.; Leemann, Simon C.; Sjöström, Magnus; Andersson, Åke

    2014-01-01

    The MAX IV facility, currently under construction in Lund, Sweden, features two electron storage rings operated at 3 GeV and 1.5 GeV and optimized for the hard X-ray and soft X-ray/VUV spectral ranges, respectively. A 3 GeV linear accelerator serves as a full-energy injector into both rings as well as a driver for a short-pulse facility, in which undulators produce X-ray pulses as short as 100 fs. The 3 GeV ring employs a multibend achromat (MBA) lattice to achieve, in a relatively short circumference of 528 m, a bare lattice emittance of 0.33 nm rad, which reduces to 0.2 nm rad as insertion devices are added. The engineering implementation of the MBA lattice raises several technological problems. The large number of strong magnets per achromat calls for a compact design featuring small-gap combined-function magnets grouped into cells and sharing a common iron yoke. The small apertures lead to a low-conductance vacuum chamber design that relies on the chamber itself as a distributed copper absorber for the heat deposited by synchrotron radiation, while non-evaporable getter (NEG) coating provides for reduced photodesorption yields and distributed pumping. Finally, a low main frequency (100 MHz) is chosen for the RF system yielding long bunches, which are further elongated by passively operated third-harmonic Landau cavities, thus alleviating collective effects, both coherent (e.g. resistive wall instabilities) and incoherent (intrabeam scattering). In this paper, we focus on the MAX IV 3 GeV ring and present the lattice design as well as the engineering solutions to the challenges inherent to such a design. As the first realisation of a light source based on the MBA concept, the MAX IV 3 GeV ring offers an opportunity for validation of concepts that are likely to be essential ingredients of future diffraction-limited light sources. PMID:25177978

  19. Storage rings for radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Nolden, F.; Dimopoulou, C.; Dolinskii, A.; Steck, M.

    2008-10-01

    Storage rings for radioactive heavy ions can be applied for a wide range of experiments in atomic and nuclear physics. The rare isotope beams are produced in flight via fragmentation or fission of high-intensity primary ions and they circulate in the storage ring at moderately relativistic energies (typically between 0.1 GeV/u up to 1 GeV/u). Due to their production mechanism they are usually highly charged or even fully stripped. The circulating radioactive heavy ion beams can be used to measure nuclear properties such as masses and decay times, which, in turn, can depend strongly on the ionic charge state. The storage rings must have large acceptances and dynamic apertures. The subsequent application of stochastic precooling of the secondary ions which are injected with large transverse and longitudinal emittances, and electron cooling to reach very high phase space densities has turned out to be a helpful tool for experiments with short-lived ions having lifetimes down to a few seconds. Some of these experiments have already been performed at the experimental storage ring ESR at GSI. The storage ring complex of the FAIR project is intended to enhance significantly the range of experimental possibilities. It is planned to extend the scope of experimental possibilities to collisions with electron or antiproton beams.

  20. Stable CSR in storage rings: A model

    SciTech Connect

    Sannibale, Fernando; Byrd, John M.; Loftsdottir, Agusta; Venturini, Marco; Abo-Bakr, Michael; Feikes, Jorge; Holldack, Karsten; Kuske, Peter; Wustefeld, Godehart; Hubers, Heinz-Willerm; Warnock, Robert

    2005-01-03

    A comprehensive historical view of the work done on coherent synchrotron radiation (CSR) in storage rings is given in reference [1]. Here we want just to point out that even if the issue of CSR in storage rings was already discussed over 50 years ago, it is only recently that a considerable number of observations have been reported. In fact, intense bursts of coherent synchrotron radiation with a stochastic character were measured in the terahertz frequency range, at several synchrotron light source storage rings [2-8]. It has been shown [8-11], that this bursting emission of CSR is associated with a single bunch instability, usually referred as microbunching instability (MBI), driven by the fields of the synchrotron radiation emitted by the bunch itself. Of remarkably different characteristics was the CSR emission observed at BESSY II in Berlin, when the storage ring was tuned into a special low momentum compaction mode [12, 13]. In fact, the emitted radiation was not the quasi-random bursting observed in the other machines, but a powerful and stable flux of broadband CSR in the terahertz range. This was an important result, because it experimentally demonstrated the concrete possibility of constructing a stable broadband source with extremely high power in the terahertz region. Since the publication of the first successful experiment using the ring as a CSR source [14], BESSY II has regular scheduled user s shifts dedicated to CSR experiments. At the present time, several other laboratories are investigating the possibility of a CSR mode of operation [15-17] and a design for a new ring optimized for CSR is at an advanced stage [18]. In what follows, we describe a model that first accounts for the BESSY II observations and then indicates that the special case of BESSY II is actually quite general and typical when relativistic electron storage rings are tuned for short bunches. The model provides a scheme for predicting and optimizing the performance of ring

  1. COSY - a cooler synchrotron and storage ring

    SciTech Connect

    Martin, S.A.; Berg, G.P.A.; Hacker, U.; Hardt, A.; Kohler, M.; Osterfeld, F.; Prasuhn, D.; Riepe, G.; Rogge, M.; Schult, O.W.B.

    1985-10-01

    The storage ring COSY with phase space cooling and RF acceleration is designed to accept protons and light ions injected from the existing cyclotron JULIC or protons from the LINAC of the proposed neutron spallation source (SNQ). The lay-out of COSY was developed in cooperation with the Universities in Nordrhein-Westfalen and meets the experimental requirements of variable and high quality beams which are necessary for future nuclear research under discussion. The three essential properties of the storage ring will be: high luminosities and very efficient use of the beam in the storage ring by thin internal targets; energy variability in the range of 20 MeV to 1.5 GeV by RF acceleration; and very high beam quality through phase space cooling.

  2. Latest on polarization in electron storage rings

    SciTech Connect

    Chao, A.W.

    1983-01-01

    The field of beam polarization in electron storage rings is making rapid progress in recent several years. This report is an attempt to summarize some of these developments concerning how to produce and maintain a high level of beam polarization. Emphasized will be the ideas and current thoughts people have on what should and could be done on electron rings being designed at present such as HERA, LEP and TRISTAN. 23 references.

  3. Pressure Distribution for TPS Storage Ring

    SciTech Connect

    Chan, C. K.; Yang, T. L.; Hsiung, G. Y.; Chen, J. R.

    2007-01-19

    The design of the vacuum system at the 3 GeV Taiwan Photon Source (TPS) is described. A localized pumping configuration of the bending chambers (B-chamber) and the injection section of the storage ring is adopted to confine and evacuate the photon-stimulated desorption from the absorbers induced by synchrotron light. The photon absorbers are carefully designed to reduce the photoelectron yield and to protect the downstream components. Non-evaporable getter (NEG) strips are installed inside the insertion device chambers (ID-chamber) to increase the linear pumping speed to solve the conductance-limit problem. Monte Carlo and iterative simulation programs are utilized to calculate the pressure profiles in both the bending section and the straight section to optimize the location of the vacuum pumps. The simulation results show that the pressure satisfies the requirement (< 1 x 10-9 torr) for a 10-hour beam lifetime at 3 GeV, 400 mA after a conditioning time of 100 Ah.

  4. The MAX III storage ring

    NASA Astrophysics Data System (ADS)

    Sjöström, M.; Wallén, E.; Eriksson, M.; Lindgren, L.-J.

    2009-04-01

    One of the primary goals of the 700 MeV MAX III synchrotron radiation source is to test and gain experience with new magnet and accelerator technology. Each magnet cell is machined out of two solid iron blocks that are then sandwiched together after coil and quadrupole installation. The MAX III ring makes extensive use of combined function magnets to obtain a compact lattice. In order to obtain flexibility in machine tuning pole face current strips are used in the main dipoles, which also contain the horizontally defocusing gradients. Commissioning finished in 2007 and MAX III is now going into user operation. Over the last year, MAX III has been characterized in order to both obtain calibrated models for operation purposes as well as evaluating the magnet technology. The characterization results will be described in this paper.

  5. Electron Storage Ring Development for ICS Sources

    SciTech Connect

    Loewen, Roderick

    2015-09-30

    There is an increasing world-wide interest in compact light sources based on Inverse Compton Scattering. Development of these types of light sources includes leveraging the investment in accelerator technology first developed at DOE National Laboratories. Although these types of light sources cannot replace the larger user-supported synchrotron facilities, they offer attractive alternatives for many x-ray science applications. Fundamental research at the SLAC National Laboratory in the 1990’s led to the idea of using laser-electron storage rings as a mechanism to generate x-rays with many properties of the larger synchrotron light facilities. This research led to a commercial spin-off of this technology. The SBIR project goal is to understand and improve the performance of the electron storage ring system of the commercially available Compact Light Source. The knowledge gained from studying a low-energy electron storage ring may also benefit other Inverse Compton Scattering (ICS) source development. Better electron storage ring performance is one of the key technologies necessary to extend the utility and breadth of applications of the CLS or related ICS sources. This grant includes a subcontract with SLAC for technical personnel and resources for modeling, feedback development, and related accelerator physics studies.

  6. From accelerators to storage rings to

    SciTech Connect

    Panofsky, W.K.H.

    1983-02-01

    This talk gives a general but highly subjective overview of the expectation for accelerators and colliders for high energy physics, but not extended developments of accelerators and storage rings for application to nuclear structure physics, synchrotron radiation, medical applications or industrial use.

  7. Lih thermal energy storage device

    DOEpatents

    Olszewski, Mitchell; Morris, David G.

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  8. Diffraction-limited storage-ring vacuum technology

    PubMed Central

    Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek

    2014-01-01

    Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. PMID:25177979

  9. Nonaqueous electrical storage device

    SciTech Connect

    McEwen, A.B.; Evans, D.A.; Blakley, T.J.; Goldman, J.L.

    1999-10-26

    An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130 C, the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100 C, preferably a polyester or a polyurethane, and having a reflow temperature above 130 C but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.

  10. Nonaqueous Electrical Storage Device

    DOEpatents

    McEwen, Alan B.; Evans, David A.; Blakley, Thomas J.; Goldman, Jay L.

    1999-10-26

    An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130.degree. C., the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100.degree. C., preferably a polyester or a polyurethane, and having a reflow temperature above 130.degree. C. but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.

  11. Nomenclature and name assignment rules for the APS storage ring

    SciTech Connect

    Decker, G.

    1992-03-16

    Because the APS accelerators are moving into the fabrication/assembly/installation stage, it is important for consistent naming conventions to be used throughout the project. The intent of this note is to dictate the rules to be adhered to when naming devices in the storage ring. These rules are generic in nature, and shall be applied in principle to the other machines as well. It is essential that every component have a unique and, hopefully, easily recognizable name. Every ASD and XFD group, except for magnets, must interface with the control system. For this reason all device names were developed keeping in mind their actual function, such as controlling or monitoring some device in the ring. Even though magnets are not directly interfaced to the control system, their power supplies are; therefore, a magnet will have the same name as its associated power supply.

  12. Nuclear physics with unstable ions at storage rings

    NASA Astrophysics Data System (ADS)

    Bosch, Fritz; Litvinov, Yuri A.; Stöhlker, Thomas

    2013-11-01

    During the last two decades, ion storage-cooler rings have been proven as powerful devices for addressing precision experiments in the realm of atomic physics, nuclear physics and nuclear astrophysics. Most important, in particular for stored unstable nuclides, is the unrivalled capability of ion cooler-rings to generate brilliant beams of highest phase-space density owing to sophisticated cooling techniques, and to store them for extended periods of time by preserving their charge state. This report focuses on nuclear physics and nuclear astrophysics experiments with in-flight produced exotic ions that were injected into storage-cooler rings. Those experiments were conducted within the last decade mainly at the only operating facilities that are capable to provide and to store exotic ions, namely the ESR in Darmstadt, Germany and the CSRe-ring in Lanzhou, China. The majority of nuclear physics experiments performed at these equipments concerns ground-state properties of nuclei far from stability, such as masses and lifetimes. The rich harvest of these measurements is presented. In particular it is shown that storage-cooler rings are ideal, if not the only, devices where two-body beta decays of exotic highly-charged ions, such as bound-state beta decay and orbital electron capture, can be studied in every detail, based on “single-ion decay spectroscopy”. Furthermore, experiments at the border between atomic and nuclear physics are discussed which render valuable information on nuclear properties by exploiting one of the most precise tools of atomic spectroscopy on stored ions, the “dielectronic recombination”. Ion storage rings with cooled exotic beams and equipped with thin internal gas targets deliver also unrivalled opportunities for addressing with highest precision key reactions in the fields of nuclear astrophysics and nuclear structure. First very promising experiments exploring the potential of ion cooler-rings in this realm have been already

  13. Feasibility of a ring FEL at low emittance storage rings

    NASA Astrophysics Data System (ADS)

    Agapov, I.

    2015-09-01

    A scheme for generating coherent radiation at latest generation low emittance storage rings such as PETRA III at DESY (Balewski et al., 2004 [1]) is proposed. The scheme is based on focusing and subsequent defocusing of the electron beam in the longitudinal phase space at the undulator location. The expected performance characteristics are estimated for radiation in the wavelength range of 500-1500 eV. It is shown that the average brightness is increased by several orders of magnitude compared to spontaneous undulator radiation, which can open new perspectives for photon-hungry soft X-ray spectroscopy techniques.

  14. Mass and Lifetime Measurements in Storage Rings

    SciTech Connect

    Weick, H.; Beckert, K.; Beller, P.; Bosch, F.; Dimopoulou, C.; Kozhuharov, C.; Kurcewicz, J.; Mazzocco, M.; Nociforo, C.; Nolden, F.; Steck, M.; Sun, B.; Winkler, M.; Brandau, C.; Chen, L.; Geissel, H.; Knoebel, R.; Litvinov, S. A.; Litvinov, Yu. A.; Scheidenberger, C.

    2007-05-22

    Masses of nuclides covering a large area of the chart of nuclides can be measured in storage rings where many ions circulate at the same time. In this paper the recent progress in the analysis of Schottky mass spectrometry data is presented as well as the technical improvements leading to higher accuracy for isochronous mass measurements with a time-of-flight detector. The high sensitivity of the Schottky method down to single ions allows to measure lifetimes of nuclides by observing mother and daughter nucleus simultaneously. In this way we investigated the decay of bare and H-like 140Pr. As we could show the lifetime can be even shortened compared to those of atomic nuclei despite of a lower number of electrons available for internal conversion or electron capture.All these techniques will be implemented with further improvements at the storage rings of the new FAIR facility at GSI in the future.

  15. Storage Ring Optics Measurement, Model, and Correction

    SciTech Connect

    Yan, Yiton T.; /SLAC

    2007-04-04

    To improve the optics of a storage ring, it is very helpful if one has an accurate lattice model. Although the ideal lattice may serve such a purpose to some extent, in most cases, real accelerator optics improvement requires accurate measurement of optics parameters. In this section, we present precision measurements of a complete set of linear orbits from which we can form a linear optics model to match the linear optics of the real machine. We call such a model a virtual machine. We have used a model-independent analysis (MIA) for accurate orbit and phase advance measurement and then used an SVD-enhanced Least Square fitting for building accurate virtual models for PEP-II e+, e- storage rings. The MIA virtual machine matches very well the real-machine linear optics including dispersion. It has successfully improved PEP-II beta beats, linear couplings, half-integer working tunes, and dispersion.

  16. DESIGN OF VISIBLE DIAGNOSTIC BEAMLINE FOR NSLS2 STORAGE RING

    SciTech Connect

    Cheng, W.; Fernandes, H.; Hseuh, H.; Kosciuk, B.; Krinsky, S.; Singh, O.

    2011-03-28

    A visible synchrotron light monitor (SLM) beam line has been designed at the NSLS2 storage ring, using the bending magnet radiation. A retractable thin absorber will be placed in front of the first mirror to block the central x-rays. The first mirror will reflect the visible light through a vacuum window. The light is guided by three 6-inch diameter mirrors into the experiment hutch. In this paper, we will describe design work on various optical components in the beamline. The ultra high brightness NSLS-II storage ring is under construction at Brookhaven National Laboratory. It will have 3GeV, 500mA electron beam circulating in the 792m ring, with very low emittance (0.9nm.rad horizontal and 8pm.rad vertical). The ring is composed of 30 DBA cells with 15 fold symmetry. Three damping wigglers will be installed in long straight sections 8, 18 and 28 to lower the emittance. While electrons pass through the bending magnet, synchrotron radiation will be generated covering a wide spectrum. There are other insertion devices in the storage ring which will generate shorter wavelength radiation as well. Synchrotron radiation has been widely used as diagnostic tool to measure the transverse and longitudinal profile. Three synchrotron light beam lines dedicated for diagnostics are under design and construction for the NSLS-II storage ring: two x-ray beam lines (pinhole and CRL) with the source points from Cell 22 BM{_}A (first bending in the DBA cell) and Cell22 three-pole wiggler; the third beam line is using visible part of radiation from Cell 30 BM{_}B (second bending magnet from the cell). Our paper focuses on the design of the visible beam line - SLM.

  17. Radiation Safety Design for SSRL Storage Ring

    SciTech Connect

    Khater, Hesham; Liu, James; Fasso, Alberto; Prinz, Alyssa; Rokni, Sayed; /SLAC

    2007-02-12

    In 2003, the Stanford Synchrotron Radiation Laboratory (SSRL) has upgraded its storage ring to a 3rd generation storage ring (SPEAR3). SPEAR3 is deigned to operate at 500 mA stored beam current and 3 GeV energy. The 234-meter circumference SPEAR3 ring utilizes 60-cm-thick concrete lateral walls, 30-cm-thick concrete roof, as well as 60-cm or 90-cm-thick concrete ratchet walls. A total of 3.5 x 10{sup 15} e{sup -}/y will be injected into the ring with an injection power of 4 W and an injection efficiency of 75%. Normal beam losses occur due to both injection and stored beam operations in the total of 20 low loss as well as 3 high loss limiting apertures. During the 6-minutes injection period, an instantaneous power loss of 0.05 W occurs at each low loss aperture. When averaged over the operational year, the loss of both the injection and stored beams is equivalent to an average loss of 2 mW at each low loss aperture. On the other hand, the average losses in the high loss apertures are 16 mW for the injection septum, 47 mW for the beam abort dump, and 13 mW for the ring stoppers. The shielding requirements for losses in the new ring were based on a generic approach that used both FLUKA Monte Carlo particle generation and transport code and empirical computer codes and formulae.

  18. USB Mass Storage Device Manager

    SciTech Connect

    Rymer, Bernard; Cowart, Casey

    2004-06-17

    The USB probram is designed to give some level of control over the use of USB mass storage devices (MSDs). This program allows you to disable all USB MSDs from working on a machine or to configure specific devices for the machine as an administrator. For complete control over USB MSDs the user of the machine must belong to the 'User' group. If a MSD has already been configured on the machine it will continue to function after using the 'Activate Administrator Control' function. The only way to disable previously configured devices is to use the 'Block' feature to block all MSDs from being used on the machine.

  19. Experimental determination of storage ring optics using orbit response measurements

    NASA Astrophysics Data System (ADS)

    Safranek, J.

    1997-02-01

    The measured response matrix giving the change in orbit at beam position monitors (BPMs) with changes in steering magnet excitation can be used to accurately calibrate the linear optics in an electron storage ring [1-8]. A computer code called LOCO (Linear Optics from Closed Orbits) was developed to analyze the NSLS X-Ray Ring measured response matrix to determine: the gradients in all 56 quadrupole magnets; the calibration of the steering magnets and BPMs; the roll of the quadrupoles, steering magnets, and BPMs about the electron beam direction; the longitudinal magnetic centers of the orbit steering magnets; the horizontal dispersion at the orbit steering magnets; and the transverse mis-alignment of the electron orbit in each of the sextupoles. Random orbit measurement error from the BPMs propagated to give only 0.04% rms error in the determination of individual quadrupole gradients and 0.4 mrad rms error in the determination of individual quadrupole rolls. Small variations of a few parts in a thousand in the quadrupole gradients within an individual family were resolved. The optics derived by LOCO gave accurate predictions of the horizontal dispersion, the beta functions, and the horizontal and vertical emittances, and it gave good qualitative agreement with the measured vertical dispersion. The improved understanding of the X-Ray Ring has enabled us to increase the synchrotron radiation brightness. The LOCO code can also be used to find the quadrupole family gradients that best correct for gradient errors in quadrupoles, in sextupoles, and from synchrotron radiation insertion devices. In this way the design periodicity of a storage ring's optics can be restored. An example of periodicity restoration will be presented for the NSLS VUV Ring. LOCO has also produced useful results when applied to the ALS storage ring [8].

  20. Orbit stability of the ALS storage ring

    SciTech Connect

    Keller, R.; Nishimura, H.; Biocca, A.

    1997-05-01

    The Advanced Light Source (ALS) storage ring, a synchrotron light source of the third generation, is specified to maintain its electron orbit stable within one tenth of the rms beam size. In the absence of a dedicated orbit feed-back system, several orbit-distorting effects were investigated, aided by a new interactive simulation tool, the code TRACY V. The effort has led to a better understanding of the behavior of a variety of accelerator subsystems and in consequence produced a substantial improvement in day-to-day orbit stability.

  1. The ALS Storage Ring RF System

    SciTech Connect

    Taylor, B.; Lo, C.C.; Baptiste, K.; Guigli, J.; Julian, J.

    1993-05-01

    The ALS Storage Ring RF System is characterized by the use of the following features: (1) High power loading of two single cell cavities. (2) The use of a tubular ceramic input window employing aperture coupling. (3) The use of waveguide filters and matchers designed for HOM absorption. (4) A comprehensive HOM monitoring system. (5) The use of waveguide water-wedge loads for the magic tee and circulator loads. The results of cavity measurements and high power tests are reported together with the performance of the system during the commissioning and operation phases of the ALS project. Plans for future window development are discussed.

  2. Inductive storage pulse circuit device

    DOEpatents

    Parsons, William M.; Honig, Emanuel M.

    1984-01-01

    Inductive storage pulse circuit device which is capable of delivering a series of electrical pulses to a load in a sequential manner. Silicon controlled rectifiers as well as spark gap switches can be utilized in accordance with the present invention. A commutation switching array is utilized to produce a reverse current to turn-off the main opening switch. A commutation capacitor produces the reverse current and is initially charged to a predetermined voltage and subsequently charged in alternating directions by the inductive storage current.

  3. PLZT optical information storage devices

    SciTech Connect

    Land, C.E.; Schwartz, R.W.; Butler, M.A.; Martin, S.J.

    1990-01-01

    The application of ferroelectric thin films to optical information storage devices depends first on their capability to store optical information, i.e., their intrinsic and/or extrinsic photosensitivities, and then upon some means of detecting and reading the stored optical information with a reasonable signal-to-noise ratio. Based on the method of reading the stored information, the latter capability depends either on the magnitude of the longitudinal electrooptic coefficients or the photocurrent generation efficiency of the films. This paper briefly discusses PZT and PLZT thin film longitudinal electrooptic effects, photosensitivities and photocurrent generation characteristics and some proposed optical information storage devices which will use these properties. 18 refs., 5 figs., 1 tab.

  4. Design Considerations for High Energy Electron -- Positron Storage Rings

    DOE R&D Accomplishments Database

    Richter, B.

    1966-11-01

    High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.

  5. USB Mass Storage Device Manager

    Energy Science and Technology Software Center (ESTSC)

    2004-06-17

    The USB probram is designed to give some level of control over the use of USB mass storage devices (MSDs). This program allows you to disable all USB MSDs from working on a machine or to configure specific devices for the machine as an administrator. For complete control over USB MSDs the user of the machine must belong to the 'User' group. If a MSD has already been configured on the machine it will continuemore » to function after using the 'Activate Administrator Control' function. The only way to disable previously configured devices is to use the 'Block' feature to block all MSDs from being used on the machine.« less

  6. Characterization of a new electrostatic storage ring for photofragmentation experiments

    SciTech Connect

    Pedersen, H. B. Svendsen, A.; Harbo, L. S.; Kiefer, H. V.; Kjeldsen, H.; Lammich, L.; Andersen, L. H.; Toker, Y.

    2015-06-15

    We describe the design of and the first commissioning experiments with a newly constructed electrostatic storage ring named SAPHIRA (Storage Ring in Aarhus for PHoton-Ion Reaction Analysis). With an intense beam of Cu{sup −} at 4 keV, the storage ring is characterized in terms of the stored ion beam decay rate, the longitudinal spreading of an injected ion bunch, as well as the direct measurements of the transverse spatial distributions under different conditions of storage. The ion storage stability in SAPHIRA was investigated systematically in a selected region of its electrical configuration space.

  7. Summary of Working Group on Storage Ring Collective Effects

    SciTech Connect

    Zisman, M.S.

    1987-06-01

    The purposes of this Workshop were to investigate the techniques available for the production of very low emittance electron beams, to explore the limitations of these techniques, and to consider new possibilities that might improve the present situation. Two uses for these low emittance beams are of interest here: to serve for a high energy linear collider, which requires very small beam sizes to achieve a suitable value for the luminosity; and to serve for a free-electron laser (FEL) in the short wavelength - say 40 A - regime, which requires both small transverse beam dimensions and a very low longitudinal emittance. This paper contains a brief summary of the main topics discussed by the Working Group on Storage Ring Collective Effects. In the case of the linear collider application, the use of a damping ring (DR) to reduce, by radiation damping, the emittance of an intermediate energy linac beam prior to its subsequent injection into the remaining high energy linac is considered. For FEL use, a high-gain device with a storage ring to damp the beam periodically between passages through a bypass section containing the long FEL undulator is considered. Such designs - at a longer wavelength of 400 A - are already available, but the shorter wavelength of interest here is much more of a challenge.

  8. Introductory statistical mechanics for electron storage rings

    SciTech Connect

    Jowett, J.M.

    1986-07-01

    These lectures introduce the beam dynamics of electron-positron storage rings with particular emphasis on the effects due to synchrotron radiation. They differ from most other introductions in their systematic use of the physical principles and mathematical techniques of the non-equilibrium statistical mechanics of fluctuating dynamical systems. A self-contained exposition of the necessary topics from this field is included. Throughout the development, a Hamiltonian description of the effects of the externally applied fields is maintained in order to preserve the links with other lectures on beam dynamics and to show clearly the extent to which electron dynamics in non-Hamiltonian. The statistical mechanical framework is extended to a discussion of the conceptual foundations of the treatment of collective effects through the Vlasov equation.

  9. Design study of the storage ring EUTERPE

    NASA Astrophysics Data System (ADS)

    Xi, Boling; Botman, J. I. M.; Timmermans, C. J.; Hagedoorn, H. L.

    1992-05-01

    At present the 400 MeV electron storage ring EUTERPE is being constructed at the Eindhoven University of Technology. It is a university project set up for studies of charged particle beam dynamics and applications of synchroton radiation, and for the education of students in these fields. The design of the ring is described in this paper. Considering the requirements of users in different fields, a lattice based on a so-called triple bend achromat structure with a high flexibility has been chosen. With this lattice, different optical options, including the HBSB (high brightness, small beam), the SBL (short bunch length) and the HLF (high light flux) modes can be realized. A small emittance of 7 nm rad and a short bunch length of the order of several mm can be achieved. In the first phase the synchrotron radiation in the UV and XUV region (the critical wavelength is 8.3 nm) will be provided from the regular dipole magnets. Later on, a 10 T wiggler magnet and other special inserters will be added, and other applications and beam dynamics studies will be feasible. Bending magnets are of the parallel faced C configuration. The effective aperture of the vacuum chamber is 2.3 cm (vertical) in the bending magnets and 4.7 cm elsewhere with a working vacuum condition of 10-9 Torr. Collective effects have been studied initially. First calculations indicate that a lifetime of several hours, influenced by the Touschek effect and residual gas scattering will be achievable for a 200 mA beam in the HLF mode for the standard rf parameters. A 70 MeV racetrack microtron will serve as injector for the ring.

  10. Recombination device for storage batteries

    DOEpatents

    Kraft, H.; Ledjeff, K.

    1984-01-01

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  11. Recombination device for storage batteries

    DOEpatents

    Kraft, Helmut; Ledjeff, Konstantin

    1985-01-01

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  12. Measurement of storage ring motion at the advanced light source

    SciTech Connect

    Krebs, G.F.

    1997-05-01

    The mechanical stability of the Advanced Light Source storage ring is examined over a period of 1.5 years from the point of view of floor motion. The storage ring beam position monitor stability is examined under various operating conditions.

  13. Energy storage device with large charge separation

    DOEpatents

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  14. VUV optical ring resonator for Duke storage ring free electron laser

    SciTech Connect

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J.

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  15. MAGNETS FOR A MUON STORAGE RING.

    SciTech Connect

    PARKER, B.; ANERELLA, M.; GHOSH, A.; GUPTA, R.; HARRISON, M.; SCHMALZLE, J.; SONDERICKER, J.; WILLEN, E.

    2002-06-18

    We present a new racetrack coil magnet design, with an open midplane gap, that keeps decay particles in a neutrino factory muon storage ring from directly hitting superconducting coils. The structure is very compact because coil ends overlap middle sections top and bottom for skew focusing optics. A large racetrack coil bend radius allows ''react and wind'' magnet technology to be used for brittle Nb{sub 3}Sn superconductors. We describe two versions: Design-A, a magnet presently under construction and Design-B, a further iterated concept that achieves the higher magnetic field quality specified in the neutrino factory feasibility Study-II report. For Design-B reverse polarity and identical end design of consecutive long and short coils offers theoretically perfect magnet end field error cancellation. These designs avoid the dead space penalty from coil ends and interconnect regions (a large fraction in machines with short length but large aperture magnets) and provide continuous bending or focusing without interruption. The coil support structure and cryostat are carefully optimized.

  16. The proton storage ring: Problems and solutions

    SciTech Connect

    Macek, R.J.

    1988-01-01

    The Los Alamos Proton Storage Ring (PSR) now operates with 35..mu..A at 20-Hz pulse repetition rate. Beam availability during 1988 suffered because of a number of problems with hardware reliability and from narrow operating margins for beam spill in the extraction line. A strong effort is underway to improve reliability with an eventual goal of obtaining beam availability in excess of 75%. Beam losses and the resulting component activation have limited operating currents to their present values. In detailed studies of the problem, loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two-step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. It is now apparent that the key to reducing losses is in reducing the number of foil traversals. A program of upgrades to reduce losses and improve the operating current is being planned. 8 refs., 17 figs., 2 tabs.

  17. Beam-based modeling and control of storage rings

    NASA Astrophysics Data System (ADS)

    Safranek, J.

    1997-05-01

    Analysis of the measured orbit response matrix is a powerful technique for debugging the linear optics of storage rings. The orbit response matrix is the change in orbit at the beam position monitors (BPMs) with changes in steering magnet excitation. Results will be presented from a computer code called LOCO (Linear Optics from Closed Orbits) that has been used to analyze the response matrices from several synchrotron light sources including the ALS, APS, NSLS VUV, NSLS X-Ray, and SRRC storage rings. The analysis accurately determines the individual quadrupole magnet gradients as well as the gains of BPMs and the calibrations of the steering magnets. The coupling terms of the response matrix such as the shift in vertical orbit from horizontal steering magnets can be included in the analysis to give the role of the quadrupoles, BPMs and steering magnets. The LOCO code can also be used to find the changes in quadrupole gradient that best compensate for gradient errors from insertion devices and sextupoles. In this way the design periodicity of the linear optics can be restored.

  18. Prospects for Next-Generation Storage Ring Light Sources

    NASA Astrophysics Data System (ADS)

    Borland, Michael

    2015-04-01

    Storage ring light sources are among the most productive large-scale scientific user facilities in existence, owing to a combination of broad tunability, mature technology, high capacity, remarkable reliability, and high performance. The most commonly-used performance measure is the photon beam brightness, which is proportional to the flux per unit volume in six-dimensional phase space. The brightness is generally maximized by minimizing the transverse phase space area, or emittance, of the electron beam that generates the photons. Since the 1990's, most storage ring light sources have used a variant of the Chasman-Green, or double-bend-achromat (DBA), lattice, which produces transverse emittances of several nanometers. Presently, several light sources are under construction based on more challenging multi-bend-achromat (MBA) concepts, which promise an order of magnitude reduction in the emittance. Somewhat larger reductions are contemplated for upgrades of the largest facilities. This talk briefly surveys the relevant concepts in light source design, then explains both the mechanism and challenge of achieving next-generation emittances. Other factors, such as improved radiation-emitting devices, are also described. Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.

  19. Online optimization of storage ring nonlinear beam dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Xiaobiao; Safranek, James

    2015-08-01

    We propose to optimize the nonlinear beam dynamics of existing and future storage rings with direct online optimization techniques. This approach may have crucial importance for the implementation of diffraction limited storage rings. In this paper considerations and algorithms for the online optimization approach are discussed. We have applied this approach to experimentally improve the dynamic aperture of the SPEAR3 storage ring with the robust conjugate direction search method and the particle swarm optimization method. The dynamic aperture was improved by more than 5 mm within a short period of time. Experimental setup and results are presented.

  20. Operational performance of the NIJI-III superconducting storage ring.

    PubMed

    Emura, K; Shinzato, T; Tsutsui, Y; Takada, H; Noda, N

    1998-05-01

    The operational performance of the NIJI-III superconducting storage ring has been studied with particular attention focused on the vacuum performance of the cold-bore chamber. Photon-stimulated gas desorption in the cold-bore chamber was examined after commissioning the storage ring. It was confirmed that the photon-stimulated gas desorption due to diffuse reflection of synchrotron radiation at the absorber was not dominant in the gas desorption when the electron beam was accumulated in the storage ring. PMID:15263507

  1. Common operation metrics for storage ring light sources

    NASA Astrophysics Data System (ADS)

    Lüdeke, A.; Bieler, M.; Farias, R. H. A.; Krecic, S.; Müller, R.; Pont, M.; Takao, M.

    2016-08-01

    Storage ring light sources aim for high operational reliability. Very often beam availability is used as an operation metric to measure the reliability. A survey of several light sources reveals that the calculation of availability varies significantly between facilities. This complicates useful comparisons of reliability. Furthermore the beam availability does not provide insight regarding reliability of beam characteristics such as orbit and beam size stability. The authors propose specific metrics to evaluate the reliability of storage ring light sources; these metrics allow a detailed and meaningful comparison across facilities. Such comparisons are useful to further optimize the reliability of storage ring light source facilities.

  2. Storage ring mass spectrometry for nuclear structure and astrophysics research

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Litvinov, Yu A.; Uesaka, T.; Xu, H. S.

    2016-07-01

    In the last two and a half decades ion storage rings have proven to be powerful tools for precision experiments with unstable nuclides in the realm of nuclear structure and astrophysics. There are presently three storage ring facilities in the world at which experiments with stored radioactive ions are possible. These are the ESR in GSI, Darmstadt/Germany, the CSRe in IMP, Lanzhou/China, and the R3 storage ring in RIKEN, Saitama/Japan. In this work, an introduction to the facilities is given. Selected characteristic experimental results and their impact in nuclear physics and astrophysics are presented. Planned technical developments and the envisioned future experiments are outlined.

  3. Vacuum Chamber Design of NSLS-II Storage Ring

    SciTech Connect

    Doom,L.; Ferreira, M.; Hseuh, H. C.; Lincoln, F.; Longo, C.; Ravindranath, V.; Sharma, S.

    2008-06-11

    National Synchrotron Light Source II (NSLS II) will be a 3-GeV, 792-meter circumference, 3rd generation synchrotron radiation facility, with ultra low emittance and extremely high brightness. the storage ring has 30 Double-Bend-Achromatic (DBA) cells. in each cell, there are five magnets and chamber girders, and one straight section for insertion devices or Radio Frequency (RF) cavities or injection. Most vacuum chambers are made from extruded aluminum with two different cross sections: one fitted in the dipole magnets, and the other surrounded by multipole magnets. They discuss the layout of the DBA cells, the detailed design of the cell's vacuum chambers, the mounting of the Beam-Position-Monitor (BPM) buttons, discrete absorbers, lumped pumps and the distributed Non-Evaporable Getter (NEG) strips, and describe the fabrication and testing of these prototype cell chambers. The account also details the development of the chamber bakeout process, the NEG stri's supports, and the RF shielded bellows.

  4. Commissioning results of the APS storage ring diagnostics systems

    SciTech Connect

    Lumpkin, A.H.

    1996-12-31

    Initial commissionings of the Advanced Photon Source (APS) 7-GeV storage ring and its diagnostics systems have been done. Early studies involved single-bunch measurements for beam transverse size ({sigma}{sub x} {approx} 150 {mu}m, {sigma}{sub y} {approx} 50 {mu}m), current, injection losses, and bunch length. The diagnostics have been used in studies related to the detection of an extra contribution to beam jitter at {approximately} 6.5 Hz frequency; observation of bunch lengthening ({sigma} {approx} 30 to 60 ps) with single-bunch current; observation of an induced vertical, head-tail instability; and detection of a small orbit change with insertion device gap position. More recently, operations at 100-mA stored-beam current, the baseline design goal, have been achieved with the support of beam characterizations.

  5. Physics issues in diffraction limited storage ring design

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Bai, ZhengHe; Gao, WeiWei; Feng, GuangYao; Li, WeiMin; Wang, Lin; He, DuoHui

    2012-05-01

    Diffraction limited electron storage ring is considered a promising candidate for future light sources, whose main characteristics are higher brilliance, better transverse coherence and better stability. The challenge of diffraction limited storage ring design is how to achieve the ultra low beam emittance with acceptable nonlinear performance. Effective linear and nonlinear parameter optimization methods based on Artificial Intelligence were developed for the storage ring physical design. As an example of application, partial physical design of HALS (Hefei Advanced Light Source), which is a diffraction limited VUV and soft X-ray light source, was introduced. Severe emittance growth due to the Intra Beam Scattering effect, which is the main obstacle to achieve ultra low emittance, was estimated quantitatively and possible cures were discussed. It is inspiring that better performance of diffraction limited storage ring can be achieved in principle with careful parameter optimization.

  6. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  7. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  8. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  9. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  10. 21 CFR 892.2010 - Medical image storage device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image storage device. 892.2010 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2010 Medical image storage device. (a) Identification. A medical image storage device is a device that provides electronic storage and...

  11. Beam dynamics in a storage ring for neutral (polar) molecules

    SciTech Connect

    Lambertson, Glen R.

    2003-05-01

    The force from a non-uniform electric field on the electric dipole moment of a molecule may be used to circulate and focus molecules in a storage ring. The nature of the forces from multipole electrodes for bending and focusing are described for strong-field-seeking and for weak-field-seeking molecules. Fringe-field forces are analyzed. Examples of storage ring designs are presented; these include long straight sections and provide bunching and acceleration.

  12. Coupled beam motion in a storage ring with crab cavities

    NASA Astrophysics Data System (ADS)

    Huang, Xiaobiao

    2016-02-01

    We studied the coupled beam motion in a storage ring between the transverse and longitudinal directions introduced by crab cavities. The analytic form of the linear decoupling transformation is derived. The equilibrium bunch distribution in an electron storage ring with a crab cavity is given, including contribution to the eigenemittance induced by the crab cavity. Application to the short pulse generation scheme using crab cavities is considered.

  13. The performance of the Duke FEL storage ring

    SciTech Connect

    Wu, Y.; Burnham, B.; Litvinenko, V.N.

    1995-12-31

    The commissioning of the Duke FEL storage ring has been completed. During commissioning, we have conducted a series of performance measurements on the storage ring lattice and the electron beam parameters. In this paper, we will discuss the techniques used in the measurements, present measurement results, and compare the measured parameters with the design specifications. In addition, we will present the expected OK-4 FEL performance based on the measured beam parameters.

  14. Coupled beam motion in a storage ring with crab cavities

    SciTech Connect

    Huang, Xiaobiao

    2015-11-16

    We studied the coupled beam motion in a storage ring between the transverse and longitudinal directions introduced by crab cavities. Analytic form of the linear decoupling transformation is derived. Also, the equilibrium bunch distribution in an electron storage ring with a crab cavity is given, including contribution to the eigen-emittance induced by the crab cavity. Application to the short pulse generation scheme using crab cavities [1] is considered.

  15. 20-keV undulators for a 6-GeV storage ring

    SciTech Connect

    Kim, S.H.; Cho, Y.

    1985-10-01

    The main goal of the future 6-GeV electron storage ring is to provide 20-keV fundamental harmonic radiations from insertion devices. Parameter restrictions of REC-vanadium permendur hybrid undulators have been examined. The critical factor is the achieveable minimum gap of the undulator. Variations of the spectral brilliance for different beam parameters are also shown.

  16. The 20 keV undulators for a 6-GeV storage ring

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Cho, Y.

    The main goal of the future 6-GeV electron storage ring is to provide 20-keV fundamental harmonic radiations from insertion devices. Parameter restrictions of REC-Vanadium permendur hybrid undulators were examined. The critical factor is the achievable minimum gap of the undulator. Variations of the spectral brilliance for different beam parameters are also shown.

  17. Beam dynamics of CANDLE storage ring low alpha operation

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Amatuni, G.; Sahakyan, V.; Tsakanov, V.; Zanyan, G.

    2015-10-01

    The generation of the coherent THz radiation and short pulse synchrotron radiation in dedicated electron storage rings requires the study of non-standard magnetic lattices which provide low momentum compaction factor (alpha) of the ring. In the present paper two low alpha operation lattices based on modification of the original beam optics and implementation of inverse bend magnets are studied for CANDLE storage ring. For considered cases an analysis of transverse and longitudinal beam dynamics is given and the feasibility of lattices is discussed.

  18. Interplay of Touschek scattering, intrabeam scattering, and rf cavities in ultralow-emittance storage rings

    NASA Astrophysics Data System (ADS)

    Leemann, S. C.

    2014-05-01

    The latest generation of storage ring-based light sources employs multibend achromat lattices to achieve ultralow emittance. These lattices make use of a large number of weak bending magnets which considerably reduces the amount of power radiated in the dipoles in comparison to power radiated from insertion devices. Therefore, in such storage rings, parameters such as emittance, energy spread, and radiated power are—unlike 3rd generation storage rings—no longer constant during a typical user shift. Instead, they depend on several varying parameters such as insertion device gap settings, bunch charge, bunch length, etc. Since the charge per bunch is usually high, intrabeam scattering in medium-energy storage rings with ultralow emittance becomes very strong. This creates a dependence of emittance on stored current. Furthermore, since the bunch length is adjusted with rf cavities but is also varied as insertion device gaps change, the emittance blowup from intrabeam scattering is not constant either. Therefore, the emittance, bunch length, and hence the resulting Touschek lifetime have to be calculated in a self-consistent fashion with 6D tracking taking into account not only the bare lattice and rf cavity settings, but also momentary bunch charge and gap settings. Using the MAX IV 3 GeV storage ring as an example, this paper demonstrates the intricate interplay between transverse emittance (insertion devices, emittance coupling), longitudinal emittance (tuning of main cavities as well as harmonic cavities), and choice of stored current in an ultralow-emittance storage ring as well as some implications for brightness optimization.

  19. Status of the Mini-Ring project: a compact electrostatic storage ring

    SciTech Connect

    Bernard, J.; Montagne, G.; Ales, J.; Bredy, R.; Chen, L.; Martin, S.; Cederquist, H.; Schmidt, H.

    2008-12-08

    The idea of building a small, cheap and transportable electrostatic storage ring emerged in the Lyon and Stockholm groups as a collaborative work in the framework of the ITS-LEIF European network. Such a ring could be devoted to experiments where the ring needs to be transported to different facilities that can deliver exotic particles or means of excitation (e.-g. highly charged ions, X--ray synchrotron...). The design of the so-called Mini-Ring and ion trajectory simulations will be presented. First preliminary results have demonstrated the storage of stable Ar{sup +} ion beams in the millisecond time range. The storage time is presently limited by the poor vacuum conditions (P = 2x10{sup -7} mbar) in the chamber, a feature that is going to be improved in the future.

  20. Optimal placement of magnets in Indus-2 storage ring

    NASA Astrophysics Data System (ADS)

    Riyasat, Husain; A, D. Ghodke; Singh, Gurnam

    2015-03-01

    In Indus-2, by optimizing the position of the magnetic elements, using the simulated annealing algorithm, at different locations in the ring with their field errors, the effects on beam parameters have been minimized. Closed orbit distortion and beta beat are considerably reduced by optimizing the dipole and quadrupole magnets positions in the ring. For the Indus-2 storage ring, sextupole optimization gives insignificant improvement in dynamic aperture with chromaticity-correcting sextupoles. The magnets have been placed in the ring with the optimized sequence and storage of the beam has been achieved at injection energy without energizing any corrector magnets. Magnet sorting has led to the easy beam current accumulation and the measurement of parameters such as closed orbit distortion, beta function, dispersion, dynamic aperture etc.

  1. SPARC collaboration: new strategy for storage ring physics at FAIR

    NASA Astrophysics Data System (ADS)

    Stöhlker, Thomas; Litvinov, Yuri A.; Bräuning-Demian, Angela; Lestinsky, Michael; Herfurth, Frank; Maier, Rudolf; Prasuhn, Dieter; Schuch, Reinhold; Steck, Markus

    2014-06-01

    SPARC collaboration at FAIR pursues the worldwide unique research program by utilizing storage ring and trapping facilities for highly-charged heavy ions. The main focus is laid on the exploration of the physics at strong, ultra-short electromagnetic fields including the fundamental interactions between electrons and heavy nuclei as well as on the experiments at the border between nuclear and atomic physics. Very recently SPARC worked out a realization scheme for experiments with highly-charged heavy-ions at relativistic energies in the High-Energy Storage Ring HESR and at very low-energies at the CRYRING coupled to the present ESR. Both facilities provide unprecedented physics opportunities already at the very early stage of FAIR operation. The installation of CRYRING, dedicated Low-energy Storage Ring (LSR) for FLAIR, may even enable a much earlier realisation of the physics program of FLAIR with slow anti-protons.

  2. Pixel detectors for diffraction-limited storage rings

    PubMed Central

    Denes, Peter; Schmitt, Bernd

    2014-01-01

    Dramatic advances in synchrotron radiation sources produce ever-brighter beams of X-rays, but those advances can only be used if there is a corresponding improvement in X-ray detectors. With the advent of storage ring sources capable of being diffraction-limited (down to a certain wavelength), advances in detector speed, dynamic range and functionality is required. While many of these improvements in detector capabilities are being pursued now, the orders-of-magnitude increases in brightness of diffraction-limited storage ring sources will require challenging non-incremental advances in detectors. This article summarizes the current state of the art, developments underway worldwide, and challenges that diffraction-limited storage ring sources present for detectors. PMID:25177989

  3. Laser Assisted Emittance Transfer for Storage Ring Lasing

    SciTech Connect

    Xiang, Dao; /SLAC

    2011-06-01

    In modern storage rings the transverse emittance of electron beams can be comparable to that from state-of-art photoinjectors, but the intrinsic low peak current and large energy spread pre-cludes the possibility of realizing short-wavelength high-gain free electron lasers (FELs) in storage rings. In this note I propose a technique to significantly increase beam peak current without greatly increasing beam energy spread, which is achieved by transferring part of the longitudinal emittance to transverse plane. It is shown that by properly repartitioning the emittance in 6-D phase space, the beam from a large storage ring may be used to drive a single-pass high-gain FEL in soft x-ray wavelength range.

  4. Beam diagnostics at high-intensity storage rings

    SciTech Connect

    Plum, M.

    1993-11-01

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics. Issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. The author discusses in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of the discussion is inspired by the problems that were encountered and the useful things learned while commissioning and developing the PSR. Another inspiration is the work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  5. Beam diagnostics at high-intensity storage rings

    SciTech Connect

    Plum, M. )

    1994-10-10

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  6. Mechanical energy storage device for hip disarticulation

    NASA Technical Reports Server (NTRS)

    Vallotton, W. C. (Inventor)

    1977-01-01

    An artificial leg including a trunk socket, a thigh section hingedly coupled to the trunk socket, a leg section hingedly coupled to the thigh section and a foot section hingedly coupled to the leg section is outlined. A mechanical energy storage device is operatively associated with the artificial leg for storage and release of energy during the normal walking stride of the user. Energy is stored in the mechanical energy storage device during a weight-bearing phase of the walking stride when the user's weight is on the artificial leg. Energy is released during a phase of the normal walking stride, when the user's weight is removed from the artificial leg. The stored energy is released from the energy storage device to pivot the thigh section forwardly about the hinged coupling to the trunk socket.

  7. Longitudinal stabilisation of bunched beams in a FEL storage ring

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Palumbo, L.; Dattoli, G.; Mezi, L.; Renieri, A.; Voykov, G. K.

    1997-02-01

    Experimental observations on FEL Storage Rings (Aco, Super-Aco, VEPP3, TERAS) have shown that in a storage ring with an operating FEL there is a mutual effect between the FEL operational mode and the beam longitudinal distribution. The main effects are the birth of a macro-temporal structure of the FEL radiation and a suppression of the synchrotron sidebands, evidence of beam stabilisation against the microwave instabilities. In this paper we discuss the main features of the beam dynamics analysed with a simulation code recently developed, which includes the FEL-beam interaction. Furtherly, we propose an heuristic model which enable to describe in a simple way the overall system.

  8. Genetic algorithm for chromaticity correction in diffraction limited storage rings

    NASA Astrophysics Data System (ADS)

    Ehrlichman, M. P.

    2016-04-01

    A multiobjective genetic algorithm is developed for optimizing nonlinearities in diffraction limited storage rings. This algorithm determines sextupole and octupole strengths for chromaticity correction that deliver optimized dynamic aperture and beam lifetime. The algorithm makes use of dominance constraints to breed desirable properties into the early generations. The momentum aperture is optimized indirectly by constraining the chromatic tune footprint and optimizing the off-energy dynamic aperture. The result is an effective and computationally efficient technique for correcting chromaticity in a storage ring while maintaining optimal dynamic aperture and beam lifetime.

  9. Quasi-isochronous storage ring for enhanced FEL performance

    SciTech Connect

    Ohgaki, H.; Robin, D.; Yamazaki, Y.

    1995-08-01

    A compact storage ring is designed to be used as a driver for an FEL. This ring can be operated very close to zero momentum compaction factor ({alpha}) to increase the electron density and thus the gain of the FEL. In order to control {alpha} with zero dispersion in the straight sections the authors use an inverted dipole located between the bending magnets and 4-families of quadrupoles. By using 3-families of sextupoles they can control the 2 transverse chromaticities and 2nd order momentum compaction. They find that the ring has sufficient dynamic aperture for good performance.

  10. Feasibility Study of Compact Gas-Filled Storage Ring for 6D Cooling of Muon Beams

    SciTech Connect

    A. Garren, J. Kolonlo

    2005-10-31

    The future of elementary particle physics in the USA depends in part on the development of new machines such as the International Linear Collider, Muon Collider and Neutrino Factories which can produce particle beams of higher energy, intensity, or particle type than now exists. These beams will enable the continued exploration of the world of elementary particles and interactions. In addition, the associated development of new technologies and machines such as a Muon Ring Cooler is essential. This project was to undertake a feasibility study of a compact gas-filled storage ring for 6D cooling of muon beams. The ultimate goal, in Phase III, was to build, test, and operate a demonstration storage ring. The preferred lattice for the storage ring was determined and dynamic simulations of particles through the lattice were performed. A conceptual design and drawing of the magnets were made and a study of the RF cavity and possible injection/ejection scheme made. Commercial applications for the device were investigated and the writing of the Phase II proposal completed. The research findings conclude that a compact gas-filled storage ring for 6D cooling of muon beams is possible with further research and development.

  11. Test report : Milspray Scorpion energy storage device.

    SciTech Connect

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

  12. Local beam position feedback experiments on the ESRF storage ring

    SciTech Connect

    Chung, Y.; Kahana, E.; Kirchman, J.

    1995-06-01

    This paper describes the results of local beam position feedback experiments conducted on the ESRF storage ring using digital signal processing (DSP) under the trilateral agreement of collaboration among ESRF, APS, and SPring-8. Two rf beam position monitors (BPMS) in the, upstream and downstream of the insertion device (ID) and two x-ray BPMs in the sixth cell were used to monitor the electron beam and the x-ray beam emitted from the ID, respectively. The local bump coefficients were obtained using the technique of singular value decomposition (SVD) on the global response matrix for the bump magnets and all the available BPMs outside the local bump. The local response matrix was then obtained between the two three-magnet bumps and the position monitors. The data sampling frequency was 4 kHz and a proportional, integral, and derivative (PID) controller was used. The result indicates the closed-loop feedback bandwidth close to 100 Hz and clear attenuation ({approx} {minus}40 dB) of the 7-Hz beam motion due to girder vibration resonance. Comparison of the results using the rf BPMs and x-ray BPMs will be also discussed.

  13. Performance of high-resolution position-sensitive detectors developed for storage-ring decay experiments

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Suzaki, F.; Izumikawa, T.; Miyazawa, S.; Morimoto, K.; Suzuki, T.; Tokanai, F.; Furuki, H.; Ichihashi, N.; Ichikawa, C.; Kitagawa, A.; Kuboki, T.; Momota, S.; Nagae, D.; Nagashima, M.; Nakamura, Y.; Nishikiori, R.; Niwa, T.; Ohtsubo, T.; Ozawa, A.; Sato, K.; Sato, S.; Suzuki, S.

    2013-12-01

    As next generation spectroscopic tools, heavy-ion cooler storage rings will be a unique application of highly charged RI beam experiments. Decay spectroscopy of highly charged rare isotopes provides us important information relevant to the stellar conditions, such as for the s- and r-process nucleosynthesis. In-ring decay products of highly charged RI will be momentum-analyzed and reach a position-sensitive detector set-up located outside of the storage orbit. To realize such in-ring decay experiments, we have developed and tested two types of high-resolution position-sensitive detectors: silicon strips and scintillating fibers. The beam test experiments resulted in excellent position resolutions for both detectors, which will be available for future storage-ring experiments.

  14. APS storage ring vacuum chamber: Section 1, Evaluation

    SciTech Connect

    Benaroya, R.; Roop, B.

    1995-07-01

    The vacuum characteristics of the APS storage ring vacuum chamber prototype, Section One (S1), is presented. The base pressure achieved was 4 {times} 10{sup {minus}11}, the welds contained no virtual or real leaks, the NeG strip mounting design and activation procedures have been determined, and S1 was found contaminated with hydrocarbons.

  15. Experimental atomic physics in heavy-ion storage rings

    SciTech Connect

    Datz, S.; Andersen, L.H.; Briand, J.P.; Liesen, D.

    1987-01-01

    This paper outlines the discussion which took place at the ''round table'' on experimental atomic physics in heavy-ion storage rings. Areas of discussion are: electron-ion interactions, ion-ion collisions, precision spectroscopy of highly charged ions, beta decay into bound final states, and atomic binding energies from spectroscopy of conversion elections. 18 refs., 1 tab. (LSP)

  16. Fabrication of the APS Storage Ring radio frequency accelerating cavities

    SciTech Connect

    Primdahl, K.; Bridges, J.; DePaola, F.; Kustom, R.; Snee, D.

    1993-07-01

    Specification, heat treatment, strength, and fatigue life of the Advanced Photon Source (APS) Storage Ring 352-MHz radio frequency (RF) accelerating cavity copper is discussed. Heat transfer studies, including finite element analysis, and configuration of water cooling is described. Requirements for and techniques of machining are considered. Braze and electron beam joint designs are compared. Vacuum considerations during fabrication are discussed.

  17. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-11-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will have a maximum bending power of 2.0 Tm and will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac.

  18. Space charge and coherent effects in the NSNS storage ring

    SciTech Connect

    Ruggiero, A.G.; Weng, W.T.; Zhang, S.Y.

    1996-07-01

    The goal of the proposed National Spallation Neutron Source (NSNS) is to provide a short pulse proton beam of about 0.5 {mu}s with average beam power of 1-2 MW. To achieve such a purpose, a proton storage ring operate at 60 Hz with 1-2 x 10 {sup 14} protons per pulse at 1 GeV is required. The proton storage ring is one of the major systems in the design of the NSNS. The function of the storage ring is to take the 1.0 GeV proton beam from the Linac and convert the long Linac beam of about 1 ms into a 0.5 {mu}s beam in about one thousand turns. The final beam has 1 x 10 {sup 14} proton per pulse, resulting in 1 MW average beam power at 60 Hz repetition rate. Provision has been reserved for a future upgrade to 2 MW by doubling the storage beam to 2 x 10{sup 14} proton per pulse. The lattice of the storage ring is a simple FODO lattice with three-fold symmetry and the dispersion function is reduced to zero at straight sections by the missing magnet scheme. The total circumference of the ring is 208.6 m and the transition energy is 3.43, higher than the operating energy of 1 GeV to avoid the difficult instability problem that are expected above transition. Other salient design parameters are shown in Table 1.

  19. LiH thermal energy storage device

    DOEpatents

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  20. A biometric access personal optical storage device

    NASA Astrophysics Data System (ADS)

    Davies, David H.; Ray, Steve; Gurkowski, Mark; Lee, Lane

    2007-01-01

    A portable USB2.0 personal storage device that uses built-in encryption and allows data access through biometric scanning of a finger print is described. Biometric image derived templates are stored on the removable 32 mm write once (WO) media. The encrypted templates travel with the disc and allow access to the data providing the biometric feature (e.g. the finger itself) is present. The device also allows for export and import of the templates under secure key exchange protocols. The storage system is built around the small form factor optical engine that uses a tilt arm rotary actuator and front surface media.

  1. Solar energy thermalization and storage device

    DOEpatents

    McClelland, John F.

    1981-09-01

    A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  2. Solar energy thermalization and storage device

    DOEpatents

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

  3. 20 keV undulators for a 6-GeV storage ring

    SciTech Connect

    Kim, S.H.; Cho, Y.

    1985-01-01

    The main goal of the future 6-GeV electron storage ring is to provide 20-keV fundamental harmonic radiations from insertion devices. Parameter restrictions of REC-vanadium permendur hybrid undulators have been examined. The critical factor is the achievable minimum gap of the undulator. Variations of the spectral brilliance for different beam parameters are also shown. 6 refs., 5 figs.

  4. Engineered nanomembranes for smart energy storage devices.

    PubMed

    Wang, Xianfu; Chen, Yu; Schmidt, Oliver G; Yan, Chenglin

    2016-03-01

    Engineered nanomembranes are of great interest not only for large-scale energy storage devices, but also for on-chip energy storage integrated microdevices (such as microbatteries, microsupercapacitors, on-chip capacitors, etc.) because of their large active surfaces for electrochemical reactions, shortened paths for fast ion diffusion, and easy engineering for microdevice applications. In addition, engineered nanomembranes provide a lab-on-chip electrochemical device platform for probing the correlations of electrode structure, electrical/ionic conductivity, and electrochemical kinetics with device performance. This review focuses on the recent progress in engineered nanomembranes including tubular nanomembranes and planar nanomembranes, with the aim to provide a systematic summary of their fabrication, modification, and energy storage applications in lithium-ion batteries, lithium-oxygen batteries, on-chip electrostatic capacitors and micro-supercapacitors. A comprehensive understanding of the relationship between engineered nanomembranes and electrochemical properties of lithium ion storage with engineered single-tube microbatteries is given, and the flexibility and transparency of micro-supercapacitors is also discussed. Remarks on challenges and perspectives related to engineered nanomembranes for the further development of energy storage applications conclude this review. PMID:26691394

  5. Magnet design for an ultralow emittance storage ring

    NASA Astrophysics Data System (ADS)

    Saeidi, F.; Razazian, M.; Rahighi, J.; Pourimani, R.

    2016-03-01

    The Iranian Light Source Facility (ILSF) is a new 3 GeV synchrotron radiation laboratory which is in the design stage. The ILSF storage ring (SR) is based on a Five-Bend Achromat (5BA) lattice providing an ultra-low beam emittance of 0.48 nm rad. The ring is comprised of 100 pure dipole magnets, 320 quadrupoles, and 320 sextupoles with additional coils for dipole and skew quadrupole correctors. In this paper, we present some design features of the SR magnets and discuss the detailed physical design of these electromagnets. The related electrical and cooling calculations and mechanical design issues have been investigated as well.

  6. The KACST Heavy-Ion Electrostatic Storage Ring

    SciTech Connect

    Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.; Papash, A. I.; Welsch, C. P.

    2011-10-27

    A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The development of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.

  7. The KACST Heavy-Ion Electrostatic Storage Ring

    NASA Astrophysics Data System (ADS)

    Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.; Papash, A. I.; Welsch, C. P.

    2011-10-01

    A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The development of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.

  8. Progress of the commissioning of the DELTA storage ring FEL facility

    SciTech Connect

    Noelle, D.; Geisler, A.; Ridder, M.

    1995-12-31

    This paper will present the status of the ongoing commissioning of the DELTA storage-ring FEL facility. The commissioning of the LINAC started in autumn `94. The operation of the booster started in spring `95, the first stored beam was achieved end of march `95. During the summer of `95 the commissioning of the main storage ring will be started. Simultaneously, the first FEL FELICTA I was built. All FEL hardware is in house, the undulator is already mounted in the storage-ring. Thus first operation of the undulator with electron beam, will take place immediately after the first stored beam in DELTA. Therefore, first spontanous photons are to be expected in late summer `95. As soon as DELTA provides stable and rather reliable operation the experiments on FELICITA I will start. 16 mA total average current in DELTA at 500 MeV should be sufficient to reach the laser threshold in the FEL mode of FELICITA I. Operating the device as an optical klystron should result in lasing at substantial less currents.

  9. Study of Storage Ring Free-Electron Laser Using Experimental and Simulation Approaches

    NASA Astrophysics Data System (ADS)

    Jia, Botao

    2011-12-01

    The Duke electron storage ring, first commissioned in November of 1994, has been developed as a dedicated driver for storage ring free-electron lasers (SRFELs) operating in a wide wavelength range from infrared, to visible, to ultraviolet (UV) and vacuum ultraviolet (VUV). The storage ring has a long straight section for various insertion devices and can be operated in a wide energy range (0.25 GeV to 1.15 GeV). Commissioned in 1995, the first free-electron laser (FEL) on the Duke storage ring was the OK-4 FEL, an optical klystron with two planar undulators sandwiching a buncher magnet. In 2005, the OK-5 FEL with two helical undulators was commissioned. Operating four undulators---two OK-4 and two OK-5 undulators, the world's first distributed optical klystron FEL was brought to operation in 2005. Via Compton scattering of FEL photons and electrons in the storage ring, the Duke FEL drives the world's most powerful, nearly monochromatic, and polarized Compton gamma-ray source, the High Intensity Gamma-ray Source (HIgammaS). Today, a variety of configurations of the storage ring FELs at Duke have been used in a wide range of research areas from nuclear physics to biophysics, from chemical and medical research to industrial applications. The capability of accurately measuring the storage ring electron beam energy spread is crucial for understanding the longitudinal beam dynamics and the dynamics of the storage ring FEL. In this dissertation, we have successfully developed a noninvasive, versatile, and accurate method to measure the energy spread using optical klystron radiation. Novel numerical methods based upon the Gauss-Hermite expansion have been developed to treat both spectral broadening and modulation on an equal footing. Through properly configuring the optical klystron, this energy spread measurement method has a large dynamic range. In addition, a model-based scheme has been developed for correcting the electron beam emittance related inhomogeneous spectral

  10. Global coupling and decoupling of the APS storage ring

    SciTech Connect

    Chae, Y.C.; Liu, J.; Teng, L.C.

    1993-07-01

    This paper describes a study of controlling the coupling between the horizontal and the vertical betatron oscillations in the 7-GeV Advanced Photon Source (APS) storage ring. First, we investigate the strengthening of coupling using two families of skew quadrupoles. Twenty skew quadrupoles are arranged in the 40 sectors of the storage ring and powered in such a way so as to generate both quadrature components of the required 21st harmonic. The numerical results from tracking a single particle are presented for the various configurations of skew quadrupoles. Second, we describe the global decoupling procedure to minimize the unwanted coupling effects. These are mainly due to the random roll errors of normal quadruples. It is shown that even with the rather large rms roll error of 2 mrad, the coupling effects can be compensated for with 20 skew quadrupoles each having maximum strength one order of magnitude lower than the typical normal quadrupole strength.

  11. Atomic physics experiments at the high energy storage ring

    NASA Astrophysics Data System (ADS)

    Stöhlker, Thomas; Litvinov, Yuri A.; the SPARC Collaboration

    2015-11-01

    Facility for Antiproton and Ion Research (FAIR), will offer unprecedented experimental opportunities. The Stored Particles Atomic Research Collaboration (SPARC) at FAIR aims at creating a worldwide unique research program with highly charged ions by utilizing storage ring and trapping facilities. The foreseen experiments will address physics at strong, ultra-short electromagnetic fields including the fundamental interactions between electrons and heavy nuclei as well as the experiments at the border between nuclear and atomic physics. In view of the staged construction of the FAIR facility, SPARC worked out an early realization scheme for experiments with highly-charged heavy-ions at relativistic energies to be conducted in the High-Energy Storage Ring.

  12. Normal conducting superbend in an ultralow emittance storage ring

    NASA Astrophysics Data System (ADS)

    Saeidi, F.; Pourimani, R.; Rahighi, J.; Ghasem, H.; Rachti, M. Lamehi

    2015-08-01

    The Iranian Light Source Facility (ILSF) is a new 3 GeV synchrotron radiation laboratory in the Middle East. As the main radiation source, the ILSF storage ring is based on a five-bend achromat lattice providing an ultralow horizontal beam emittance of 0.48 nm rad. In order to produce very bright high energy radiation from the bending magnet, a superbend electromagnet is designed to replace the central low-field dipole of the bare lattice. In this paper, we present some design features of the ILSF storage ring bending magnet radiation source and discuss the detailed physical and mechanical design of the normal conducting superbend electromagnet. The related beam dynamics issues have been investigated as well.

  13. A free-electron laser at the Orsay storage ring

    NASA Astrophysics Data System (ADS)

    Elleaume, P.

    1984-12-01

    The design and operation of the free-electron-laser (FEL) apparatus installed at the Orsay storage-ring particle accelerator are characterized and illustrated with diagrams, graphs, and oscilloscope trades of the output. The history and fundamental physics of FELs are reviewed; the electron beam of the Orsay ring, the optical klystron (used instead of a wiggler due to the low gain klystron available), and the optical cavity (using a high-reflectance mirror) of the Orsay FEL are described; and experimental data on the spectrum, microtemporal and macrotemporal structure, and mean power of the FEL output are presented. The performance of the Orsay FEL is found to be in good agreement with the predictions of a classical theory based on the Lorentz force and the Maxwell equations.

  14. 40- angstrom FEL designs for the PEP storage ring

    SciTech Connect

    Fisher, A.S.; Gallardo, J.C. ); Nuhn, H.D.; Tatchyn, R.; Winick, H. . Stanford Synchrotron Radiation Lab.); Pellegrini, C. . Dept. of Physics)

    1991-01-01

    We explore the use of the 2.2-km PEP storage ring at SLAC to drive a 40-{Angstrom} free-electron laser in the self-amplified spontaneous emission configuration. Various combinations for electron-beam and undulator parameters, as well as special undulator designs, are discussed. Saturation and high peak, in-band, coherent power (460 MW) are possible with a 67-m, hybrid permanent-magnet undulator in a ring bypass. A 100-m, cusp-field undulator can achieve high average, in-band, coherent power (0.25 W) in the main ring. The existing, 25.6-m, Paladin undulator at LLNL, with the addition of optical-klystron dispersive sections, is considered for both peak and average power. 35 refs., 4 figs., 1 tab.

  15. 40-{angstrom} FEL designs for the PEP storage ring

    SciTech Connect

    Fisher, A.S.; Gallardo, J.C.; Nuhn, H.D.; Tatchyn, R.; Winick, H.; Pellegrini, C.

    1991-12-31

    We explore the use of the 2.2-km PEP storage ring at SLAC to drive a 40-{Angstrom} free-electron laser in the self-amplified spontaneous emission configuration. Various combinations for electron-beam and undulator parameters, as well as special undulator designs, are discussed. Saturation and high peak, in-band, coherent power (460 MW) are possible with a 67-m, hybrid permanent-magnet undulator in a ring bypass. A 100-m, cusp-field undulator can achieve high average, in-band, coherent power (0.25 W) in the main ring. The existing, 25.6-m, Paladin undulator at LLNL, with the addition of optical-klystron dispersive sections, is considered for both peak and average power. 35 refs., 4 figs., 1 tab.

  16. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-01-01

    HISTRAP is a proposed synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac. The ring will have a maximum bending power of 2.0 T.m and have a circumference of 46.8 m.

  17. A new method for beam stacking in storage rings

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2008-06-01

    Recently, I developed a new beam stacking scheme for synchrotron storage rings called 'longitudinal phase-space coating' (LPSC). This scheme has been convincingly validated by multi-particle beam dynamics simulations and has been demonstrated with beam experiments at the Fermilab Recycler. Here, I present the results from both simulations and experiments. The beam stacking scheme presented here is the first of its kind.

  18. Kinetics of electron cooling of positrons in a storage ring

    SciTech Connect

    Men'shikov, L. I.

    2008-06-15

    Kinetic equations are derived for the positron velocity distribution in storage rings with electron cooling. Both drag force and components of the velocity diffusion tensor are calculated. The mechanism of approach to a steady-state positron velocity distribution via electron cooling is discussed. It is shown that the resulting steady-state positron distribution is very close to the electron distribution when the magnetic field is sufficiently strong.

  19. General spin precession and betatron oscillation in storage rings

    NASA Astrophysics Data System (ADS)

    Fukuyama, Takeshi

    2016-07-01

    Spin precession of particles having both anomalous magnetic and electric dipole moments (EDMs) is considered. We give the generalized expression of spin precession of these particles injected with transversal extent in magnetic storage rings. This is the generalization of the Farley’s pitch correction [F. J. N. Farley, Phys. Lett. B 42, 66 (1972)], including radial oscillation as well as vertical one. The transversal betatron oscillation formulae of these particles are also reproduced.

  20. Storage Ring Based EDM Search — Achievements and Goals

    NASA Astrophysics Data System (ADS)

    Lehrach, Andreas

    2016-02-01

    This paper summarizes the experimental achievements of the JEDI (Jülich Electric Dipole moment Investigations) Collaboration to exploit and demonstrate the feasibility of charged particle Electric Dipole Moment searches with storage rings at the Cooler Synchrotron COSY of the Forschungszentrum Jülich. Recent experimental results, design and optimization of critical accelerator elements, progress in beam and spin tracking, and future goals of the R & D program at COSY are presented.

  1. The status of the Storage Ring EDM experiment

    SciTech Connect

    Semertzidis, Yannis K.

    2009-12-17

    The status of the storage ring experiment capable of probing the proton and deuteron EDM at the 10{sup -29} e.cm level is presented here. At this level it will be sensitive to a new physics mass scale of {approx}300 TeV. If there is new physics at the LHC, it will be sensitive to 10{mu}rad CP-violating phase level making it the most sensitive experiment for CP-violation beyond the SM.

  2. Prototype internal target design for storage ring experiments

    NASA Astrophysics Data System (ADS)

    Petridis, N.; Grisenti, R. E.; Litvinov, Yu A.; Stöhlker, Th

    2015-11-01

    The introduction of cryogenically cooled, few micrometer-sized nozzle geometries and an essential modification of the experimental storage ring (ESR) target station allowed for a reliable operation using low-Z gases at target area densities in the range of 1013-1014 cm-2. Therefore, a remarkably versatile target source was established, enabling operation over the whole range of desired target gases (from H2 to Xe) and area densities (˜1010 to ˜1014 cm-2). Moreover, the considerably smaller orifice diameter of the new target source enables a much more compact inlet chamber while, at the same time, maintaining the demanding vacuum requirements of a storage ring. A completely new inlet chamber design is presented here, which, besides the improvements regarding the achievable area densities, will feature a variable beam width down to 1 mm at the ion beam interaction region. This is of paramount importance with respect to the realization of high precision experiments, e.g. by reducing the inaccuracy of the observation angle causing the relativistic Doppler broadening. While being intended for the deployment at the future high energy storage ring within the SPARC collaboration, the new inlet chamber can also replace the current one at the ESR or serve as an internal target for CRYRING.

  3. RF stations of the SPring-8 storage ring

    NASA Astrophysics Data System (ADS)

    Hara, M.; Ego, H.; Kawashima, Y.; Ohashi, Y.; Ohshima, T.; Takashima, T.

    1997-05-01

    Construction of three RF stations in the storage ring of SPring-8 has been completed. Twenty four single-cell cavities of which inside dimensions are trimmed completely systematically were installed in the storage ring. A group of eight single-cell cavities as a component of the storage ring is occupied in an RF station. A series of processes such as installation of couplers, evacuation, baking and connection of waveguides were carried out. Three klystrons and their power equipments were also installed. Low power control system which includes tuner control, feedback such as phase lock loop and keeping voltage in a cavity constant was constructed and tuned. From August to December in 1996, high power test up to 800 kW were carried out in each RF station without serious trouble and particularly it was verified that water cooling system for cavity could keep the water temperature in the range of 29.89 to 30.15 degrees. But some bugs on klystron power equipments were found. We report on the construction processes and the results of high power test.

  4. A transverse electron target for heavy ion storage rings

    SciTech Connect

    Geyer, Sabrina Meusel, Oliver; Kester, Oliver

    2015-01-09

    Electron-ion interaction processes are of fundamental interest for several research fields like atomic and astrophysics as well as plasma applications. To address this topic, a transverse electron target based on the crossed beam technique was designed and constructed for the application in storage rings. Using a sheet beam of free electrons in crossed beam geometry promises a good energy resolution and gives access to the interaction region for spectroscopy. The produced electron beam has a length of 10 cm in ion beam direction and a width in the transverse plane of 5 mm. Therewith, electron densities of up to 10{sup 9} electrons/cm{sup 3} are reachable in the interaction region. The target allows the adjustment of the electron beam current and energy in the region of several 10 eV to a few keV. Simulations have been performed regarding the energy resolution for electron-ion collisions and its influence on spectroscopic measurements. Also, the effect on ion-beam optics due to the space charge of the electron beam was investigated. Presently the electron target is integrated into a test bench to evaluate its performance for its dedicated installation at the storage rings of the FAIR facility. Therefore, optical diagnostics of the interaction region and charge state analysis with a magnetic spectrometer is used. Subsequently, the target will be installed temporarily at the Frankfurt Low-Energy Storage Ring (FLSR) for further test measurements.

  5. Inductive-storage pulse-circuit device

    SciTech Connect

    Parsons, W.M.; Honig, E.M.

    1982-01-21

    Inductive storage pulse circuit device is disclosed which is capable of delivering a series of electrical pulses to a load in a sequential manner. Silicon controlled rectifiers as well as spark gap switches can be utilized in accordance with the present invention. A commutation switching array is utilized to produce a reverse current to turn-off the main opening switch. A commutation capacitor produces the reverse current and is initially charged to a predetermined voltage and subsequently charged in alternating directions by the inductive storage current.

  6. High current operation of a storage-ring free-electron laser

    NASA Astrophysics Data System (ADS)

    Roux, R.; Couprie, M. E.; Bakker, R. J.; Garzella, D.; Nutarelli, D.; Nahon, L.; Billardon, M.

    1998-11-01

    The operation of storage-ring free-electron lasers (SRFEL) at high current still represents a challenge because of the growth of longitudinal beam instabilities. One of these, the quadrupolar coherent synchrotron oscillation, is very harmful for free-electron-laser (FEL) operation. On the Super-ACO storage ring, they either prevent the FEL start-up, or result in a very poor stability of the FEL source. A new feedback system to damp the quadrupolar coherent synchrotron oscillation has been installed on the ring and the stabilized beam parameters have been systematically measured. As a result, the FEL gain is higher and the FEL operates more easily and with a higher average power. Its stability, which is very critical for user applications, has been significantly improved as it has been observed via systematic measurements of FEL dynamics performed with a double sweep streak camera.

  7. Orsay free electron laser activities on the storage rings ACO and super-ACO

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Bazin, C.; Bergher, M.; Billardon, M.; Elleaume, P.; Ortega, J. M.; Petroff, Y.; Prazeres, R.; Velghe, M.

    1989-10-01

    The main results obtained on the free electron laser and on optical harmonic generation with the storage ring ACO at Orsay in France are reviewed. A specific magnetic device, generally called an undulator, allows one to collect coherent light. In the free electron laser case, the undulator radiation is stored and amplified in an optical cavity. Tunable light was obtained in the visible range. For optical harmonic generation, external laser light is emitted in the undulator area, generating coherent harmonic radiation. Experimentally, 350, 177 and 107 nm wavelengths were obtained with a Nd-YAG laser. New experiments are planned with the Super-ACO storage ring, and preliminary experiments with the optical klystron are given.

  8. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    SciTech Connect

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we

  9. Measurements of the electron cloud in the APS storage ring.

    SciTech Connect

    Harkey, K. C.

    1999-04-16

    Synchrotron radiation interacting with the vacuum chamber walls in a storage ring produce photoelectrons that can be accelerated by the beam, acquiring sufficient energy to produce secondary electrons in collisions with the walls. If the secondary-electron yield (SEY) coefficient of the wall material is greater than one, as is the case with the aluminum chambers in the Advanced Photon Source (APS) storage ring, a runaway condition can develop. As the electron cloud builds up along a train of stored positron or electron bunches, the possibility exists that a transverse perturbation of the head bunch will be communicated to trailing bunches due to interaction with the cloud. In order to characterize the electron cloud, a special vacuum chamber was built and inserted into the ring. The chamber contains 10 rudimentary electron-energy analyzers, as well as three targets coated with different materials. Measurements show that the intensity and electron energy distribution are highly dependent on the temporal spacing between adjacent bunches and the amount of current contained in each bunch. Furthermore, measurements using the different targets are consistent with what would be expected based on the SEY of the coatings. Data for both positron and electron beams are presented.

  10. Blood storage device and method for oxygen removal

    DOEpatents

    Bitensky, Mark W.; Yoshida, Tatsuro

    2000-01-01

    The present invention relates to a storage device and method for the long-term storage of blood and, more particularly, to a blood storage device and method capable of removing oxygen from the stored blood and thereby prolonging the storage life of the deoxygenated blood.

  11. Optimization of the permanent magnet optical klystron for the SUPER-ACO storage ring free electron laser

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Bazin, C.; Billardon, M.

    1989-06-01

    A permanent magnet optical klystron has been optimized for free electron laser experiments and optical harmonic generation on the new storage ring SUPER-ACO at Orsay. The conditions of the optimization and the different steps of the field characterization measurements of this insertion device are discussed. Its effects on the stored beam and the undulator radiation measurements are described.

  12. Grazing-incidence monochromator for the 15--800 A wavelength range at the storage ring VEPP-2M

    SciTech Connect

    Gluskin, E. S.; Kuzminykh, V. S.; Trakhtenberg, E. M.; Koscheev, S. V.; Devyatov, V. G.; Cherkashin, A. E.; Blau, W.; Meisel, A.; Ehrhardt, H.

    1989-07-01

    A new Rowland monochromator with a fixed output slit, which operates according to the grazing-incidence scheme, is described. The device is notable for the capability to change the Rowland radius within 1--3 m. The monochromator was tested using synchrotron radiation from the storage ring VEPP-2M.

  13. Beam Loss Monitors for NSLS-II Storage Ring

    SciTech Connect

    Kramer, S.L.; Cameron, P.

    2011-03-28

    The shielding for the NSLS-II storage ring will provide adequate protection for the full injected beam losses in two cells of the ring around the injection point, but the remainder of the ring is shielded for lower losses of <10% top-off injection beam current. This will require a system to insure that beam losses do not exceed levels for a period of time that could cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring system will have beam loss monitors that will measure where the beam charge is lost around the ring, to warn operators if losses approach the design limits. To measure the charge loss quantitatively, we propose measuring the electron component of the shower as beam electrons hit the vacuum chamber (VC) wall. This will be done using the Cerenkov light as electrons transit ultra-pure fused silica rods placed close to the inner edge of the VC. The entire length of the rod will collect light from the electrons of the spread out shower resulting from the small glancing angle of the lost beam particles to the VC wall. The design and measurements results of the prototype Cerenkov BLM will be presented.

  14. Development of nanocomposites for energy storage devices

    NASA Astrophysics Data System (ADS)

    Khan, Md. Ashiqur Rahaman

    With the ever-increasing need in improving the performance and operation life of future mobile devices, developing higher power density energy storage devices has been receiving more attention. Lithium ion battery (LIB) and capacitor are two of the most widely used energy storage devices and have attracted increasing interest from both industrial and academic fields. Batteries have higher power density than capacitor but significantly longer charge/discharge rates. In order to further improve the performance of these energy storage devices, one of the approaches is to use high specific surface area nano-materials. Among all the nano-materials developed so far, one-dimensional nanowires are of special interests because of their high surface-to-volume ratio and aligned pathway for electron diffusion and conduction. Therefore, in this thesis work, zinc oxide nanowires are implemented as an anode along with carbon fiber/graphene to increase the performance of LIB while lead titanate nanowires are used to improve the energy density of capacitors. For batteries, zinc oxide nanowires are grown on carbon cloth by low temperature hydrothermal method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are used to analyze morphology and crystal structures of samples. The performances of LIB using zinc oxide nanowire coated carbon cloth and bare carbon cloth are compared to show the improvement induced by zinc oxide nanowires. For capacitors, lead titanate (PTO) nanowires are used with Polyvinylidene fluoride (PVDF) to make nanocomposites of high dielectric constants. Lead titanate nanowires are synthesized by low temperature hydrothermal method. XRD and SEM are used to analyze as synthesized nanowires. Different volume fraction of PTO nanowires is used with PVDF to make dielectric for capacitor. Dielectric constant and breakdown voltage at variable frequency are determined to calculate energy density and specific energy density. The influence of temperature on

  15. ELASR - An electrostatic storage ring for atomic and molecular physics at KACST

    NASA Astrophysics Data System (ADS)

    El Ghazaly, Mohamed O. A.

    A new ELectrostAtic Storage Ring (ELASR) has been designed and built at the King Abdulaziz City for Science and Technology (KACST), in Riyadh, Saudi Arabia. It was developed to be the core of a new storage ring laboratory for atomic and molecular physics at KACST. ELASR follows the standard design of the pioneering storage ring ELISA and it thereby features a racetrack single-bend shaped ring. Complementary simulation code packages were used to work out the design under the requirements of the projected experiments. This paper reports a short description of the ELASR storage ring through an overview of its design and construction.

  16. Status of NSLS-II Storage Ring Vacuum Systems

    SciTech Connect

    Doom,L.; Hseuh,H.; Ferreira, M.; Longo, C.; Ravindranath, V.; Settepani, P.; Sharma, S.; Wilson, K.

    2009-05-04

    National Synchrotron Light Source II (NSLS-II), being constructed at Brookhaven National Laboratory, is a 3-GeV, high-flux and high- brightness synchrotron radiation facility with a nominal current of 500 mA. The storage ring vacuum system will have extruded aluminium chambers with ante-chamber for photon fans and distributed NEG strip pumping. Discrete photon absorbers will be used to intercept the un-used bending magnet radiation. In-situ bakeout will be implemented to achieve fast conditioning during initial commissioning and after interventions.

  17. Energy spread measurements on the ACO storage ring

    NASA Astrophysics Data System (ADS)

    Ortega, J. M.; Elleaume, P.; Billardon, M.; Deacon, D.; Girard, B.; Lapierre, Y.

    1985-06-01

    Absolute and relative energy spread measurements have been made on the ACO storage ring using two different methods. The first one consists of a spectral analysis of the electron bunch length based on the proportionality of the longitudinal bunch length versus energy spread. The second one constitutes a direct measurement using the on axis synchrotron radiation emitted by an optical klystron. The two measurement techniques present a very high signal/noise ratio allowing time resolved records. Examples are presented of the energy spread time evolution in the FEL oscillator and of harmonic generation experiments.

  18. Optical distortions in electron/positron storage rings

    SciTech Connect

    Brown, K.L.; Donald, M.; Servranckx, R.

    1983-01-01

    We have studied the optical distortions in the PEP electron/positron storage ring for various optical configurations using the computer programs DIMAT, HARMON, PATRICIA, and TURTLE. The results are shown graphically by tracing several thousand trajectories from one interaction region to the next using TURTLE and by tracing a few selected rays several hundred turns using the programs DIMAT and PATRICIA. The results show an interesting correlation between the calculated optical cleanliness of a particular lattice configuration and the observed operating characteristics of the machine.

  19. Measurement of electric dipole moments at storage rings

    NASA Astrophysics Data System (ADS)

    Jörg Pretz JEDI Collaboration

    2015-11-01

    The electric dipole moment (EDM) is a fundamental property of a particle, like mass, charge and magnetic moment. What makes this property in particular interesting is the fact that a fundamental particle can only acquire an EDM via {P} and {T} violating processes. EDM measurements contribute to the understanding of the matter over anti-matter dominance in the universe, a question closely related to the violation of fundamental symmetries. Up to now measurements of EDMs have concentrated on neutral particles. Charged particle EDMs can be measured at storage ring. Plans at Forschungszentrum Jülich and results of first test measurements at the COoler SYnchrotron COSY will be presented.

  20. Analysis ob beam losses at PSR (Proton Storage Ring)

    SciTech Connect

    Macek, R.J.; Fitzgerald, D.H.; Hutson, R.L.; Plum, M.A.; Thiessen, H.A.

    1988-01-01

    Beam losses and the resulting component activation at the Los Alamos Proton Storage Ring (PSR) have limited operating currents to about 30..mu..A average at a repetition rate of 15 Hz. Loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. Calculations and simulations of the losses are in reasonable agreement with measurements.

  1. Status report on the Los Alamos proton storage ring

    SciTech Connect

    Colton, E.; Neuffer, D.; Thiessen, H.A.; Butler, H.; Swain, G.R.; Lombardi, A.; Fitzgerald, D.; Mariam, F.; Plum, M.; Ryder, R.; and others

    1988-11-20

    The proton storage ring currently operates at an average current of 30 ..mu..A corresponding to 1.25 x 10/sup 13/ protons per pulse (ppp) at a repetition rate of 15 Hz. The design operating current for the machine is 100 ..mu..A. We are limited to running at the reduced yield because of beam losses during the accumulation period. These losses are understood and arise mainly from emittance growths during the injection and multiple scattering in the stripping foil during the storage. During beam studies we have succeeded in accumulating in excess of 3.7 x 10/sup 13/ ppp. We have also observed a coherent transverse instability at high charge levels. The signture for the instability is rapid coherent growth of the transverse beam size followed by a loss of beam in the machine. The threshold for the instability depends most strongly upon rf voltage and beam size.

  2. Storage-ring experiments on dielectronic recombination at the interface of atomic and nuclear physics

    NASA Astrophysics Data System (ADS)

    Brandau, Carsten; Kozhuharov, Christophor; Lestinsky, Michael; Müller, Alfred; Schippers, Stefan; Stöhlker, Thomas

    2015-11-01

    A brief review about topical developments in the exploitation of the resonant electron-ion collision process of dielectronic recombination (DR) as a sensitive spectroscopic tool is given. The focus will be on DR storage-ring experiments of few-electron highly charged ions. Among others, the questions addressed in these studies cover diverse topics from the areas of strong-field quantum electrodynamics, of lifetime studies using DR resonances, and of nuclear physics. Examples from the storage rings CRYRING in Stockholm, TSR in Heidelberg, and ESR in Darmstadt are given. In addition, an overview is provided about the ongoing developments and future perspectives of DR collision spectroscopy at the upcoming Facility for Antiproton and Ion Research in Darmstadt, Germany.

  3. Cooling of superconducting devices by liquid storage and refrigeration unit

    SciTech Connect

    Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

    2013-08-20

    A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

  4. 46 CFR 169.741 - Personal flotation devices and ring life buoys.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Personal flotation devices and ring life buoys. 169.741 Section 169.741 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING... devices and ring life buoys. Each personal flotation device and ring life buoy must be marked with...

  5. Magnetically induced pumping and memory storage in quantum rings

    NASA Astrophysics Data System (ADS)

    Cini, Michele; Perfetto, Enrico

    2011-12-01

    Nanoscopic rings pierced by external magnetic fields and asymmetrically connected to wires behave in sharp contrast with classical expectations. By studying the real-time evolution of tight-binding models in different geometries, we show that the creation of a magnetic dipole by a bias-induced current is a process that can be reversed: connected rings excited by an internal ac flux produce ballistic currents in the external wires. In particular we point out that by employing suitable flux protocols, single-parameter nonadiabatic pumping can be achieved, and an arbitrary amount of charge can be transferred from one side to the other. We also propose a setup that could serve a memory device, in which both the operations of writing and erasing can be efficiently performed.

  6. Magnet design for a low-emittance storage ring.

    PubMed

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars Johan

    2014-09-01

    The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3-3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated `magnet block' units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980

  7. Magnet design for a low-emittance storage ring

    PubMed Central

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan

    2014-01-01

    The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980

  8. Upgrade of BPM Electronics for the SPring-8 Storage Ring

    SciTech Connect

    Sasaki, Shigeki; Fujita, Takahiro; Shoji, Masazumi; Takashima, Takeo

    2006-11-20

    SPring-8, a 3rd generation synchrotron light source, has operated since 1997. Improvement of BPM performance is required as a part of upgrading activities of the storage ring as a light source. We have developed new electronics circuits for signal processing of the storage ring BPM, with target performance of sub-{mu}m range resolution with sufficiently fast measurement speed and good long-term stability. A set of the new circuits consists of multiplexers, an RF amplifier, a mixer, an IF amplifier, and a local oscillator for analog signal processing. The IF amplifier outputs are sampled with 16-bit 2-MSPS ADC on ADC boards and the data are sent to a DSP board. The sampled data are processed and converted to position information in the DSP. A multiplexing method was employed to have a better stability of the performance by cancellation of variation common to each channel. Evaluation of the performance by using a prototype shows that position resolution well into the sub-{mu}m range has been achieved with a bandwidth of 1 kHz, and long-term stability of within 1 {mu}m has also been achieved.

  9. STRIPLINE KICKER DESIGN FOR NSLS2 STORAGE RING

    SciTech Connect

    Cheng, W.; Blednykh, A.; Krinsky, S.; Singh, O.

    2011-03-28

    In the NSLS2 storage ring, there are four stripline kickers/pickups. Two long striplines with electrode length of 30cm will be used as bunch-by-bunch transverse feedback actuators. Two short stripline kickers/pickups with 15cm length will mainly used for tune measurement excitation or signal pickup for the beam stability monitor. High shunt impedance of the long stripline kickers is demanded to produce 200 {micro}s damping time. Meanwhile the beam impedance should be minimized. The design work for these two types of stripline is discussed in this paper. NSLS2 is a third-generation light source under construction at Brookhaven National Laboratory. The machine will have < 1nm.rad horizontal emittance by using weak dipoles together with damping wigglers. For the storage ring of 792m circumference, geometric impedance, resistive wall impedance and ion effects are expected to be significant. A transverse bunch-by-bunch feedback system has been designed to suppress the coupled bunch instabilities. More information can be found in previous paper.

  10. CIRCE: A dedicated storage ring for coherent THz synchrotron radiation

    SciTech Connect

    Byrd, J.M.; Martin, Michael C.; McKinney, W.R.; Munson, D.V.; Nishimura, H.; Robin, D.S.; Sannibale, F.; Schlueter, R.D.; Thur, W.G.; Jung, J.Y.; Wan, W.

    2003-08-12

    We present the concepts for an electron storage ring dedicated to and optimized for the production of stable coherent synchrotron radiation (CSR) over the far-infrared terahertz wavelength range from 200 mm to about one cm. CIRCE (Coherent InfraRed CEnter) will be a 66 m circumference ring located on top of the ALS booster synchrotron shielding tunnel and using the existing ALS injector. This location provides enough floor space for both the CIRCE ring, its required shielding, and numerous beamlines. We briefly outline a model for CSR emission in which a static bunch distortion induced by the synchrotron radiation field is used to significantly extend the stable CSR emission towards higher frequencies. This model has been verified with experimental CSR results. We present the calculated CIRCE photon flux where a gain of 6-9 orders of magnitude is shown compared to existing far-IR sources. Additionally, the particular design of the dipole vacuum chamber has been optimized to allow an excellent transmission of these far-infrared wavelengths. We believe that the CIRCE source can be constructed for a modest cost.

  11. Beam Loss Control for the NSLS-II Storage Ring

    SciTech Connect

    Kramer, S.L.; Choi, J.

    2011-03-28

    The shielding design for the NSLS-II storage ring is designed for the full injected beam losses in two periods of the ring around the injection point, but for the remainder of the ring its shielded for {le} 10% top-off injection beam. This will require a system to insure that beam losses do not exceed these levels for time sufficient to cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring (LCM) system will control the beam losses to the more heavily shielded injection region while monitoring the losses outside this region. To achieve this scrapers are installed in the injection region to intercept beam particles that might be lost outside this region. The scrapers will be thin (< 1Xrad) that will allow low energy electrons to penetrate and the subsequent dipole will separate them from the stored beam. These thin scrapers will reduce the radiation from the scraper compared to thicker scrapers. The dipole will provide significant local shielding for particles that hit inside the gap and a source for the loss monitor system that will measure the amount of beam lost in the injection region.

  12. Safe operating conditions for NSLS-II Storage Ring Frontends commissioning

    SciTech Connect

    Seletskiy, S.; Amundsen, C.; Ha, K.; Hussein, A.

    2015-04-02

    The NSLS-II Storage Ring Frontends are designed to safely accept the synchrotron radiation fan produced by respective insertion device when the electron beam orbit through the ID is locked inside the predefined Active Interlock Envelope. The Active Interlock is getting enabled at a particular beam current known as AI safe current limit. Below such current the beam orbit can be anywhere within the limits of the SR beam acceptance. During the FE commissioning the beam orbit is getting intentionally disturbed in the particular ID. In this paper we explore safe operating conditions for the Frontends commissioning.

  13. Nonaqueous electrolyte for electrical storage devices

    DOEpatents

    McEwen, Alan B.; Yair, Ein-Eli

    1999-01-01

    Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

  14. An electrostatic storage ring for atomic and molecular physics, at KACST - a status report

    NASA Astrophysics Data System (ADS)

    El Ghazaly, Mohamed O. A.

    2015-01-01

    An electrostatic storage ring has been designed following the pioneering storage ring ELISA [1], and it is currently being built as a new core laboratory for atomic and molecular collisions at the King Abdulaziz City for Science and Technology (KACST), in Riyadh, Saudi Arabia. In this paper, the design of the electrostatic storage ring together with an outline on the status of the construction are given.

  15. Hybrid radical energy storage device and method of making

    DOEpatents

    Gennett, Thomas; Ginley, David S; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2015-01-27

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  16. Hybrid radical energy storage device and method of making

    DOEpatents

    Gennett, Thomas; Ginley, David S.; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2016-04-26

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  17. An undulator based soft x-ray source for microscopy on the Duke electron storage ring

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis Elgin

    1998-09-01

    This dissertation describes the design, development, and installation of an undulator-based soft x-ray source on the Duke Free Electron Laser laboratory electron storage ring. Insertion device and soft x-ray beamline physics and technology are all discussed in detail. The Duke/NIST undulator is a 3.64-m long hybrid design constructed by the Brobeck Division of Maxwell Laboratories. Originally built for an FEL project at the National Institute of Standards and Technology, the undulator was acquired by Duke in 1992 for use as a soft x-ray source for the FEL laboratory. Initial Hall probe measurements on the magnetic field distribution of the undulator revealed field errors of more than 0.80%. Initial phase errors for the device were more than 11 degrees. Through a series of in situ and off-line measurements and modifications we have re-tuned the magnet field structure of the device to produce strong spectral characteristics through the 5th harmonic. A low operating K has served to reduce the effects of magnetic field errors on the harmonic spectral content. Although rms field errors remained at 0.75%, we succeeded in reducing phase errors to less than 5 degrees. Using trajectory simulations from magnetic field data, we have computed the spectral output given the interaction of the Duke storage ring electron beam and the NIST undulator. Driven by a series of concerns and constraints over maximum utility, personnel safety and funding, we have also constructed a unique front end beamline for the undulator. The front end has been designed for maximum throughput of the 1st harmonic around 40A in its standard mode of operation. The front end has an alternative mode of operation which transmits the 3rd and 5th harmonics. This compact system also allows for the extraction of some of the bend magnet produced synchrotron and transition radiation from the storage ring. As with any well designed front end system, it also provides excellent protection to personnel and to the

  18. Atomic-phase interference devices based on ring-shaped Bose-Einstein condensates: Two-ring case

    SciTech Connect

    Anderson, B.P.; Dholakia, K.; Wright, E.M.

    2003-03-01

    We theoretically investigate the ground-state properties and quantum dynamics of a pair of adjacent ring-shaped Bose-Einstein condensates that are coupled via tunneling. This device, which is the analog of a symmetric superconducting quantum interference device, is the simplest version of what we term an atomic-phase interference device (APHID). The two-ring APHID is shown to be sensitive to rotation.

  19. A Linear Theory of Microwave Instability in Electron Storage Rings

    SciTech Connect

    Cai, Yunhai; /SLAC

    2011-07-06

    The well-known Haissinski distribution provides a stable equilibrium of longitudinal beam distribution in electron storage rings below a threshold current. Yet, how to accurately determine this threshold, above which the Haissinski distribution becomes unstable, is not firmly established in theory. In this paper, we will show how to apply the Laguerre polynomials in an analysis of this stability that are associated with the potential-well distortion. Our approach provides an alternative to the discretization method proposed by Oide and Yokoya. Moreover, it reestablishes an essential connection to the theory of mode coupling originated by Sacherer. Our new and self-consistent method is applied to study the microwave instability driven by commonly known impedances, including coherent synchrotron radiation in free space.

  20. High gradient quadrupoles for low emittance storage rings

    NASA Astrophysics Data System (ADS)

    Le Bec, G.; Chavanne, J.; Benabderrahmane, C.; Farvacque, L.; Goirand, L.; Liuzzo, S.; Raimondi, P.; Villar, F.

    2016-05-01

    High gradient quadrupoles are key components for the coming generation of storage ring based light sources. The typical specifications of these magnets are: almost 100 T /m gradient, half a meter long, and a vertical aperture for the extraction of the x-ray beam. This paper presents the preparation work done at the European Synchrotron Radiation Facility, from the design to the manufacture and measurements of a prototype. It demonstrates the feasibility of such magnets. Different aspects of magnet engineering are discussed, including the study of the main scale factors and the preliminary design, the pole shaping, the impact of mechanical errors, and the magnetic measurements of a prototype with a stretched-wire system.

  1. Coupling measurement and correction at the SSRF storage ring

    NASA Astrophysics Data System (ADS)

    Zhang, ManZhou; Hou, Jie; Li, HaoHu

    2011-12-01

    Brightness is an important parameter for 3rd generation light source. Correcting the emittance coupling is a realistic way to increase brightness without any additional equipment in a machine under operation. The main sources of emittance coupling are betatron coupling and vertical dispersion. At the SSRF storage ring, tune split and LOCO are used to measure the respective betatron and emittance coupling. Both of these sources can be corrected by skew quadrupoles. By measuring the skew quadrupole-coupling response matrix, betatron coupling can be changed from 0.014% to 2%. But the vertical dispersion changes at the same time. LOCO can find the suitable setting to correct simultaneously the betatron coupling and vertical dispersion. The emittance coupling can be reduced to 0.17% by this method. More simulations show the potential for smaller emittance coupling if more skew quadrupoles are employed.

  2. Storage ring two-color free-electron laser

    NASA Astrophysics Data System (ADS)

    Yan, J.; Hao, H.; Li, J. Y.; Mikhailov, S. F.; Popov, V. G.; Vinokurov, N. A.; Huang, S.; Wu, J.; Günster, S.; Wu, Y. K.

    2016-07-01

    We report a systematic experimental study of a storage ring two-color free-electron laser (FEL) operating simultaneously in the infrared (IR) and ultraviolet (UV) wavelength regions. The two-color FEL lasing has been realized using a pair of dual-band high-reflectivity FEL mirrors with two different undulator configurations. We have demonstrated independent wavelength tuning in a wide range for each lasing color, as well as harmonically locked wavelength tuning when the UV lasing occurs at the second harmonic of the IR lasing. Precise power control of two-color lasing with good power stability has also been achieved. In addition, the impact of the degradation of FEL mirrors on the two-color FEL operation is reported. Furthermore, we have investigated the temporal structures of the two-color FEL beams, showing simultaneous two-color micropulses with their intensity modulations displayed as FEL macropulses.

  3. Temporal dynamics of storage ring free electron lasers

    NASA Astrophysics Data System (ADS)

    Couprie, M. E.; Hara, T.; Gontier, D.; Troussel, P.; Garzella, D.; Delboulbé, A.; Billardon, M.

    1996-02-01

    The growth and saturation of a storage ring free electron laser (SRFEL) is driven by the beam behavior, including bunch lengthening or coherent modes of longitudinal motion (the bunch length being related to the energy spread), detuning effects, and a modification of the bunch distribution by the FEL interaction; all of these phenomena are accumulated for various passes, leading to complex dynamical processes. The knowledge and understanding of the dynamics, together with the stability over time are essential for efficient use of SRFEL sources. This is illustrated with the Super-ACO FEL experiment, analyzed from growth from the positron bunch to laser saturation and induced positron beam modification. Stability analysis (jitter, shape, intensity) is then performed carefully. A longitudinal feedback system can significantly improve it. Information provided with a streak camera reveals the distribution of a single FEL micropulse or synchrotron radiation pulse without any averaging or sampling.

  4. BEAM INDUCED ENERGY DEPOSITION IN MUON STORAGE RINGS.

    SciTech Connect

    MOKHOV,N.V.; JOHNSTONE,C.J.; PARKER,B.L.

    2001-06-18

    Beam-induced radiation effects have been simulated for 20 and 50 GeV muon storage rings designed for a Neutrino Factory. It is shown that by appropriately shielding the superconducting magnets, quench stability, acceptable dynamic heat loads, and low residual dose rates can be achieved. Alternatively, if a specially-designed skew focusing magnet without superconducting coils on the magnet's mid-plane is used, then the energy is deposited preferentially in the warm iron yoke or outer cryostat layers and internal shielding may not be required. In addition to the component irradiation analysis, shielding studies have been performed. Calculations of the external radiation were done for both designs but the internal energy deposition calculations for the 20 GeV Study-2 lattice are still in progress.

  5. Beam-induced energy deposition in muon storage rings

    SciTech Connect

    Nikolai V. Mokhov; Carol J. Johnstone; Brett Parker

    2001-06-22

    Beam-induced radiation effects have been simulated for 20 and 50 GeV muon storage rings designed for a Neutrino Factory. It is shown that by appropriately shielding the superconducting magnets, quench stability, acceptable dynamic heat loads, and low residual dose rates can be achieved. Alternatively, if a specially-designed skew focusing magnet without superconducting coils on the magnet's mid-plane is used, then the energy is deposited preferentially in the warm iron yoke or outer cryostat layers and internal shielding may not be required. In addition to the component irradiation analysis, shielding studies have been performed. Calculations of the external radiation were done for both designs but the internal energy deposition calculations for the 20 GeV Study-2 lattice are still in progress.

  6. Klystron 'efficiency loop' for the ALS storage ring RF system

    SciTech Connect

    Kwiatkowski, Slawomir; Julian, Jim; Baptiste, Kenneth

    2002-05-20

    The recent energy crisis in California has led us to investigate the high power RF systems at the Advanced Light Source (ALS) in order to decrease the energy consumption and power costs. We found the Storage Ring Klystron Power Amplifier system operating as designed but with significant power waste. A simple proportional-integrator (PI) analog loop, which controls the klystron collector beam current, as a function of the output RF power, has been designed and installed. The design considerations, besides efficiency improvement, were to interface to the existing system without major expense. They were to also avoid the klystron cathode power supply filter's resonance in the loop's dynamics, and prevent a conflict with the existing Cavity RF Amplitude Loop dynamics. This efficiency loop will allow us to save up to 700 MW-hours of electrical energy per year and increase the lifetime of the klystron.

  7. A nearly monochromatic cavity for high current storage rings

    NASA Astrophysics Data System (ADS)

    D'Auria, Gerardo; Fabris, Alessandro; Massarotti, Antonio; Pasotti, Cristina; Rossi, Carlo; Svandrlik, Michele

    1993-06-01

    A strong damping of the higher order mode (HOM) spectrum of an RF cavity can be obtained by coupling appropriate waveguides directly to the cavity. This type of HOM suppression has been investigated at S.T. After studies and tests on different shapes of cavities, particularly on bell-shaped cavities, it has been decided to design a pill-box cavity for the ELETTRA Storage Ring. A prototype of this cavity has been produced with two waveguide suppressors coupled to it. The suppression effect on the HOM spectrum is described along with discussions on the vacuum window design and on the shape and the material for the waveguide load. The effects on the accelerating mode are shown as well.

  8. Study of a relaxed'' ALS storage ring lattice

    SciTech Connect

    Keller, R.; Forest, E.; Nishimura, H.; Zisman, M.S.

    1990-06-01

    The lattice of the Advanced Light Source (ALS) 1--1.9 GeV electron storage ring was reexamined, introducing an additional family of focusing quadrupoles and looking for a working point with larger dynamic aperture. In the first part of this study, the ideal lattice was investigated to confirm the anticipated behavior, and indeed conditions with increased dynamic aperture were found. In the second part, realistic magnet errors and an undulator in one of the straight sections were taken into account. Under these conditions the dynamic aperture could not be significantly improved over the nominal configuration. Further studies included investigation of the Touschek momentum acceptance of the lattice. In this case too, no net benefit was obtained from the additional quadrupoles. 6 refs., 5 figs. , 2 tabs.

  9. Elastomeric member for energy storage device

    DOEpatents

    Hoppie, Lyle O.; Chute, Richard

    1985-01-01

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16), disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section, transition end sections, and is attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the member, a substantially uniform diameter assembly results to minimize the required volume of the surrounding housing (14). During manufacture, woven wire mesh sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle. Each sleeve (26, 28) contracts with the contraction of the associated transition section to maintain the bond therebetween.

  10. Proceedings of the workshop on polarized targets in storage rings

    SciTech Connect

    Holt, R.J.

    1984-08-01

    Polarization phenomena have played an increasingly important part in the study of nuclei and nucleons in recent years. Polarization studies have been hampered by the relatively few and rather fragile polarized targets which are presently available. The concept of polarized gas targets in storage rings opens a much wider range of possibilities than is available in the external target geometry. This novel method will represent a considerable advance in nuclear physics and will continue to receive much attention in plans for future facilities. An internal, polarized-target station is being planned for the cooler ring at the Indiana University Cyclotron Facility. Internal targets are compatible with recent designs of electron accelerators proposed by the Massachusetts Institute of Technology and the Southeastern Universities Research Association. The key to nuclear-science programs based on internal targets pivots on recent developments in polarized atomic beam methods, which include the more recent laser-driven polarized targets. The workshop drew together a unique group of physicists in the fields of high-energy, nuclear and atomic physics. The meeting was organized in a manner that stimulated discussion among the 58 participants and focused on developments in polarized target technology and the underlying atomic physics. An impressive array of future possibilities for polarized targets as well as current developments in polarized target technology were discussed at the workshop. Abstracts of individual items from the workshop were prepared separately for the data base.

  11. Electron clearing in the Los Alamos Proton Storage Ring

    SciTech Connect

    Plum, M.A.; Allen, J.; Borden, M.J.; Fitzgerald, D.H.; Macek, R.J.; Wang, T.S.

    1995-05-01

    The instability observed in the Los Alamos Proton Storage Ring (PSR) has been tentatively identified as an electron-proton instability. A source of electrons must exist for this instability to occur. The PSR injection section contains the stripper foil, and therefore provides several strong sources of electrons. An electron clearing system was installed in the injection section to clear out these electrons. The system comprised: (1) a foil biasing system to clear the SEM and thermionic electrons, (2) a pair of low-field bending magnets with a Faraday cup to clear the convoy electrons, and (3) two pairs of clearing electrodes, one upstream and one downstream of the stripper foil, to clear the remaining electrons. This paper discusses the design and performance of the Electron Clearing System, and its effect on the instability. Also presented are some results from other charge-collection experiments that suggest there is also substantial electron production in parts of the ring other than the injection section.

  12. Waveguide Structures for RF Undulators with Applications to FELs and Storage Rings

    SciTech Connect

    Yeddulla, M.; Geng, H.G.; Huang, Z.; Ma, Z.; Tantawi, S.G.; /SLAC

    2011-11-02

    RF undulators, suggested a long time ago, have the advantage of fast dynamic control of polarization, undulator strength and wavelength. However, RF undulators require very strong RF fields in order to produce radiation of the same order as conventional static devices. Very high power RF energy confined inside a waveguide or a cavity can provide the necessary RF fields to undulate the electron beam. However, the wall losses in the waveguide should be low enough to make it practically feasible as a CW or quasi CW undulator and, hence, competitive with static devices for applications to storage rings and FELs. Here we present various waveguide structures such as smooth walled and corrugated walled waveguides and various RF modes. We will show that there are some advantages in operating with higher order modes and also with hybrid modes in the corrugated guide. We will show that the RF power requirement for some of these modes will permit a quasi CW operation of the undulator, thus permitting its operation in a storage ring.

  13. Efficient micromagnetics for magnetic storage devices

    NASA Astrophysics Data System (ADS)

    Escobar Acevedo, Marco Antonio

    Micromagnetics is an important component for advancing the magnetic nanostructures understanding and design. Numerous existing and prospective magnetic devices rely on micromagnetic analysis, these include hard disk drives, magnetic sensors, memories, microwave generators, and magnetic logic. The ability to examine, describe, and predict the magnetic behavior, and macroscopic properties of nanoscale magnetic systems is essential for improving the existing devices, for progressing in their understanding, and for enabling new technologies. This dissertation describes efficient micromagnetic methods as required for magnetic storage analysis. Their performance and accuracy is demonstrated by studying realistic, complex, and relevant micromagnetic system case studies. An efficient methodology for dynamic micromagnetics in large scale simulations is used to study the writing process in a full scale model of a magnetic write head. An efficient scheme, tailored for micromagnetics, to find the minimum energy state on a magnetic system is presented. This scheme can be used to calculate hysteresis loops. An efficient scheme, tailored for micromagnetics, to find the minimum energy path between two stable states on a magnetic system is presented. This minimum energy path is intimately related to the thermal stability.

  14. Compton backscattering of intracavity storage ring free-electron laser radiation

    SciTech Connect

    Dattoli, G.; Giannessi, L.; Torre, A.

    1995-12-31

    We discuss the{gamma}-ray production by Compton backscattering of intracavity storage ring Free-Electron Laser radiation. We use a semi-analytical model which provides the build up of the signal combined with the storage ring damping mechanism and derive simple relations yielding the connection between backscattered. Photons brightness and the intercavity laser equilibrium intensity.

  15. Scientific potential and design considerations for an undulator beam line on Aladdin storage ring

    SciTech Connect

    Arko, A. J.; Bader, S. D.; Dehmer, Joseph L.; Kim, S. H.; Knapp, G. S.; Shenoy, G. K.; Veal, B. W.; Young, C. E.; Brown, F. C.; Weaver, J. W.

    1985-04-08

    The unique features of undulator radiation, i.e., high photon flux and brightness, partial coherence, small beam divergence, spectral tunability, etc., mandate that undulators be included in the future plans for Aladdin. This will make it possible to perform the next generation of experiments in photon-stimulated spectroscopies. A team of scientists (see Appendix) has now been assembled to build an insertion device (ID) and the associated beam line at Aladdin. In considering the specifications for the ID, it was assumed that the ID beamline will be an SRC user facility. Consequently, design parameters were chosen with the intent of maximizing experimental flexibility consistent with a conservative design approach. A tunable ''clamshell'' undulator device was Chosen with a first harmonic tunable from 35 to 110 eV to operate on a 1 GeV storage ring. Higher harmonics will be utilized for experiments needing higher photon energies.

  16. Conceptual design of elliptical cavities for intensity and position sensitive beam measurements in storage rings

    NASA Astrophysics Data System (ADS)

    Sanjari, M. S.; Chen, X.; Hülsmann, P.; Litvinov, Yu A.; Nolden, F.; Piotrowski, J.; Steck, M.; Stöhlker, Th

    2015-11-01

    Position sensitive beam monitors are indispensable for the beam diagnostics in storage rings. Apart from their applications in the measurements of beam parameters, they can be used in non-destructive in-ring decay studies of radioactive ion beams as well as enhancing precision in the isochronous mass measurement technique. In this work, we introduce a novel approach based on cavities with elliptical cross-section, in order to compensate the limitations of known designs for the application in ion storage rings. The design is aimed primarily for future heavy ion storage rings of the FAIR project. The conceptual design is discussed together with simulation results.

  17. Central RF frequency measurement of the HLS-II storage ring

    NASA Astrophysics Data System (ADS)

    Jia-Jun, Zheng; Yong-Liang, Yang; Bao-Gen, Sun; Fang-Fang, Wu; Chao-Cai, Cheng; Kai, Tang; Jun-Hao, Wei

    2016-04-01

    Central RF frequency is a key parameter of storage rings. This paper presents the measurement of central RF frequency of the HLS-II storage ring with the sextupole modulation method. Firstly, the basis of central RF frequency measurement of the electron storage ring is briefly introduced. Then, the error sources and the optimized measurement method for the HLS-II storage ring are discussed. The workflow of a self-compiled Matlab script used in central RF frequency measurement is also described. Finally, the results achieved by using two data processing methods to cross-check each other are shown. The measured value of the central RF frequency demonstrates that the circumference deviation of the HLS-II storage ring is less than 1 mm. Supported by National Natural Science Foundation of China (11105141, 11175173) and the upgrade project of Hefei Light Source

  18. Steady State Analysis of Short-wavelength, High-gainFELs in a Large Storage Ring

    SciTech Connect

    Huang, Z.; Bane, K.; Cai, Y.; Chao, A.; Hettel, R.; Pellegrini, C.; /UCLA

    2007-10-15

    Storage ring FELs have operated successfully in the low-gain regime using optical cavities. Discussions of a high-gain FEL in a storage ring typically involve a special bypass to decouple the FEL interaction from the storage ring dynamics. In this paper, we investigate the coupled dynamics of a high-gain FEL in a large storage ring such as PEP and analyze the equilibrium solution. We show that an FEL in the EUV and soft x-ray regimes can be integrated into a very bright storage ring and potentially provides three orders of magnitude improvement in the average brightness at these radiation wavelengths. We also discuss possibilities of seeding with HHG sources to obtain ultra-short, high-peak power EUV and soft x-ray pulses.

  19. The performance of the Los Alamos Proton Storage Ring

    SciTech Connect

    Lawrence, G.P.

    1987-03-01

    The Proton Storage Ring (PSR) now in operation at Los Alamos is a high-current accumulator that generates intense 800-MeV proton pulses for driving the Los Alamos Neutron Scattering Center (LANSCE) spallation source. The ring compresses up to 1000-..mu..s-long macropulses from the LAMPF linac into 250-ns bunches and ejects them to a neutron-production target, providing an output optimized for thermal-neutron-scattering research. The design pulse rate and peak pulse intensity of PSR are 12 Hz and 5.2 . 10/sup 13/ protons per pulse (ppp), yielding 100 ..mu..A average current when full performance is reached. This paper summarizes commissioning results and operational experience in the two years since first beam. The PSR has operated in production at average currents up to 30 ..mu..A and has reached a peak intensity of 3.4 . 10/sup 13/ ppp. These achievements represents 30% and 65% of the design objectives. Higher current production has been inhibited by beam losses during accumulation and extraction. Therefore, experiments to understand loss mechanisms have occupied a large fraction of the commissioning effort. Correction of an extraction-channel aperture restriction identified late in 1986 should dramatically reduce extraction losses, which will permit higher current production in 1987. Beam tests in the 10/sup 13/-ppp range have indicated the presence of a collective instability tentatively identified as transverse. However, by suitable parameter adjustments, the instability threshold can be pushed above the top charge-level attainable with the existing H /sup -/ source.

  20. Influence of technology on magnetic tape storage device characteristics

    NASA Technical Reports Server (NTRS)

    Gniewek, John J.; Vogel, Stephen M.

    1994-01-01

    There are available today many data storage devices that serve the diverse application requirements of the consumer, professional entertainment, and computer data processing industries. Storage technologies include semiconductors, several varieties of optical disk, optical tape, magnetic disk, and many varieties of magnetic tape. In some cases, devices are developed with specific characteristics to meet specification requirements. In other cases, an existing storage device is modified and adapted to a different application. For magnetic tape storage devices, examples of the former case are 3480/3490 and QIC device types developed for the high end and low end segments of the data processing industry respectively, VHS, Beta, and 8 mm formats developed for consumer video applications, and D-1, D-2, D-3 formats developed for professional video applications. Examples of modified and adapted devices include 4 mm, 8 mm, 12.7 mm and 19 mm computer data storage devices derived from consumer and professional audio and video applications. With the conversion of the consumer and professional entertainment industries from analog to digital storage and signal processing, there have been increasing references to the 'convergence' of the computer data processing and entertainment industry technologies. There has yet to be seen, however, any evidence of convergence of data storage device types. There are several reasons for this. The diversity of application requirements results in varying degrees of importance for each of the tape storage characteristics.

  1. Global coupling and decoupling of the APS storage ring

    SciTech Connect

    Chae, Yong-Chul; Liu, Jianyang; Teng, L.C.

    1995-07-01

    This Paper describes a study of controlling the coupling between the horizontal and the vertical betatron oscillations in the APS storage ring. First, we investigate the strengthening of coupling using two families of skew quadrupoles. Using smooth approximation, we obtained the formulae to estimate the coupling ratio defined as the ratio of the vertical and horizontal emittances or, for a single particle, the ratio of the maximum values of the Courant Snyder invariants. Since we knew that the coupling is mostly enhanced by the 21st harmonic content of skew quadrupole distribution, we carried out the harmonic analysis in order to find the optimum arrangement of the skew quadrupoles. The numerical results from tracking a single particle are presented for the various configurations of skew quadrupoles. Second, we describe the global decoupling procedure to minimize the unwanted coupling effects. These are mainly due to the random roll errors of normal quadrupoles. It is shown that even with the rather large rms roll error of 2 mrad we can reduce the Coupling from 70 percent to 10 percent with a skew quadrupole strength which is one order of magnitude lower than the typical normal quadrupole strength.

  2. Design of the muon collider isochronous storage ring lattice

    SciTech Connect

    Trbojevic, D.; Courant, E.D.; Lee, S.Y.; Gallardo, J.; Palmer, B.; Tepikian, S.; Ng, K.Y.; Johnstone, C.

    1995-12-01

    The muon collider would ex-tend limitations of the e{sup +} e- colliders and provide new physics potentials with a possible discovery of the heavy Higgs bosons. At the maximum energy of 2 TeV the projected luminosity is of the order of 10{sup 35} cm{sup {minus}2}s{sup {minus}1}. The colliding {mu}{sup +} {mu}{sup {minus}} bunches have to be focused to a very small transverse size of few tenths of {mu}m which is accomplished by the betatron functions at the crossing point of {beta}* = 3mm. This requires the longitudinal space of the same length 3 mm. These very short bunches at 2 TeV could circulate only in a quasi-isochronous storage ring where the momentum compaction is very dose to zero. We report on a design of the muon collider isochronous lattice. The momentum compaction is brought to zero by having the average value of the dispersion function through dipoles equal to zero. This has been accomplished by a combination of the FODO cells together with a low beta insertion. The dispersion function oscillates between negative and positive values.

  3. Absolute beam energy measurements in e+e- storage rings

    NASA Astrophysics Data System (ADS)

    Placidi, M.

    1997-01-01

    The CERN Large Electron Positron collider (LEP) was dedicated to the measurement of the mass Mz and the width Γz of the Z0 resonance during the LEP1 phase which terminated in September 1995. The Storage Ring operated in Energy Scan mode during the 1993 and 1995 physics runs by choosing the beam energy Ebeam to correspond to a center-of-mass (CM) energy at the interaction points (IPs) ECMpeak±1762 MeV. After a short review of the techniques usually adopted to set and control the beam energy, this paper describes in more detail two methods adopted at LEP for precise beam energy determination that are essential to reduce the contribution to the systematic error on Mz and Γz. The positron beam momentum was initially determined at the 20-GeV injection energy by measuring the speed of a less relativistic proton beam circulating on the same orbit, taking advantage of the unique opportunity to inject two beams into the LEP at short time intervals. The positron energy at the Z0 peak was in this case derived by extrapolation. Once transverse polarization became reproducible, the Resonant Depolarization (RD) technique was implemented at the Z0 operating energies, providing a ⩽2×10-5 instantaneous accuracy. RD Beam Energy Calibration has been adopted during the LEP Energy Scan campaigns as well as in Accelerator Physics runs for accurate measurement of machine parameters.

  4. A pinger system for the Los Alamos Proton Storage Ring

    SciTech Connect

    Hardek, T.W.; Thiessen, H.A.

    1991-01-01

    Developers at the Proton Storage Ring have long desired a modulator and electrode combination capable of kicking the 800-MeV proton beam enough to conduct tune measurements with full intensity beams. At present this has been accomplished by reducing the voltage on one extraction kicker modulator and turning the other off. This method requires that all of the accumulated beam be lost on the walls of the vacuum chamber. In addition to tune measurements a more recent desire is to sweep out beam that may have leaked into the area between bunches. A four-meter electrode has been designed and constructed for the purpose. The design is flexible in that the electrode may be split in the center and rotated in order to provide vertical and horizontal electrodes each 2 meters long. In addition two solid-state pulse modulators that can provide 10kV in burst mode at up to 700 KHz have been purchased. This hardware and its intended use are described. 3 refs., 2 figs., 1 tab.

  5. Searching for the electron EDM in a storage ring

    NASA Astrophysics Data System (ADS)

    Kawall, D.

    2011-05-01

    Searches for permanent electric dipole moments (EDM) of fundamental particles have been underway for more than 50 years with null results. Still, such searches are of great interest because EDMs arise from radiative corrections involving processes that violate parity and time-reversal symmetries, and through the CPT theorem, are sensitive to CP-violation. New models of physics beyond the standard model predict new sources of CP-violation leading to dramatically enhanced EDMs possibly within the reach of a new generation of experiments. We describe a new approach to electron EDM searches using molecular ions stored in a tabletop electrostatic storage ring. Molecular ions with long-lived paramagnetic states such as tungsten nitride WN+ can be injected and stored in larger numbers and with longer coherence times than competing experiments, leading to high sensitivity to an electron EDM. Systematic effects mimicking an EDM such as those due to motional magnetic fields and geometric phases are found not to limit the approach in the short term, and sensitivities of δ|de| ≈ 10-30 e·cm/day appear possible under conservative conditions.

  6. Initial scientific uses of coherent synchrotron radiation inelectron storage rings

    SciTech Connect

    Basov, D.N.; Feikes, J.; Fried, D.; Holldack, K.; Hubers, H.W.; Kuske, P.; Martin, M.C.; Pavlov, S.G.; Schade, U.; Singley, E.J.; Wustefeld, G.

    2004-11-23

    The production of stable, high power, coherent synchrotron radiation at sub-terahertz frequency at the electron storage ring BESSY opens a new region in the electromagnetic spectrum to explore physical properties of materials. Just as conventional synchrotron radiation has been a boon to x-ray science, coherent synchrotron radiation may lead to many new innovations and discoveries in THz physics. With this new accelerator-based radiation source we have been able to extend traditional infrared measurements down into the experimentally poorly accessible sub-THz frequency range. The feasibility of using the coherent synchrotron radiation in scientific applications was demonstrated in a series of experiments: We investigated shallow single acceptor transitions in stressed and unstressed Ge:Ga by means of photoconductance measurements below 1 THz. We have directly measured the Josephson plasma resonance in optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} for the first time and finally we succeeded to confine the sub-THz radiation for spectral near-field imaging on biological samples such as leaves and human teeth.

  7. Collective Effects in a Diffraction Limited Storage Ring

    DOE PAGESBeta

    Nagaoka, Ryutaro; Bane, Karl L.F.

    2015-10-20

    Our paper gives an overview of collective effects that are likely to appear and possibly limit the performance in a diffraction-limited storage ring (DLSR) that stores a high-intensity ultra-low-emittance beam. Beam instabilities and other intensity-dependent effects that may significantly impact the machine performance are covered. The latter include beam-induced machine heating, Touschek scattering, intra-beam scattering, as well as incoherent tune shifts. The general trend that the efforts to achieve ultra-low emittance result in increasing the machine coupling impedance and the beam sensitivity to instability is reviewed. The nature of coupling impedance in a DLSR is described, followed by a seriesmore » of potentially dangerous beam instabilities driven by the former, such as resistive-wall, TMCI (transverse mode coupling instability), head-tail and microwave instabilities. Additionally, beam-ion and CSR (coherent synchrotron radiation) instabilities are also treated. Means to fight against collective effects such as lengthening of the bunch with passive harmonic cavities and bunch-by-bunch transverse feedback are introduced. Numerical codes developed and used to evaluate the machine coupling impedance, as well as to simulate beam instability using the former as inputs are described.« less

  8. Collective Effects in a Diffraction Limited Storage Ring

    SciTech Connect

    Nagaoka, Ryutaro; Bane, Karl L.F.

    2015-10-20

    Our paper gives an overview of collective effects that are likely to appear and possibly limit the performance in a diffraction-limited storage ring (DLSR) that stores a high-intensity ultra-low-emittance beam. Beam instabilities and other intensity-dependent effects that may significantly impact the machine performance are covered. The latter include beam-induced machine heating, Touschek scattering, intra-beam scattering, as well as incoherent tune shifts. The general trend that the efforts to achieve ultra-low emittance result in increasing the machine coupling impedance and the beam sensitivity to instability is reviewed. The nature of coupling impedance in a DLSR is described, followed by a series of potentially dangerous beam instabilities driven by the former, such as resistive-wall, TMCI (transverse mode coupling instability), head-tail and microwave instabilities. Additionally, beam-ion and CSR (coherent synchrotron radiation) instabilities are also treated. Means to fight against collective effects such as lengthening of the bunch with passive harmonic cavities and bunch-by-bunch transverse feedback are introduced. Numerical codes developed and used to evaluate the machine coupling impedance, as well as to simulate beam instability using the former as inputs are described.

  9. Cure of Coupled Bunch Instabilities in PLS Storage Ring

    SciTech Connect

    Fox, John D

    2003-04-24

    The Pohang Light Source (PLS) storage ring whose design emittance is 12-nm uses four 500 MHz nosecone-structure rf cavities to store beam current up to 400-mA at 2-GeV. The stored beam current was limited to 180-mA at 2-GeV because of the coupled bunch instabilities (CBI) excited by higher order modes (HOMs) of rf cavity. In order to cure the CBIs three measures are incorporated: HOM frequency tuning by cavity temperature adjustment; a longitudinal feedback system (LFS); a transverse feedback system (TFS). Growth rate of longitudinal and transverse HOMs of all rf cavities as a function of cavity temperature was estimated with the low-power measurement data of frequency shift, and confirmed with the BPM amplitude of CBMs. The LFS which uses programmable digital signal processors supplied by SLAC was successfully commissioned at the end of 1999, and a very stable and low emittance electron beam could be stored up to 230-mA over which transverse CBIs grow severely and drive to beam loss. After completion of TFS at the beginning of 2000 we will be able to cure all CBIs by LFS and TFS, and store beam current higher than 300-mA.

  10. Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole Moment

    SciTech Connect

    Talman, Richard

    2015-07-01

    Electron and proton EDM's can be measured in "frozen spin" (with the beam polarization always parallel to the orbit, for example) storage rings. For electrons the "magic" kinetic energy at which the beam can be frozen is 14.5 MeV. For protons the magic kinetic energy is 230 MeV. The currently measured upper limit for the electron EDM is much smaller than the proton EDM upper limit, which is very poorly known. Nevertheless, because the storage ring will be an order of magnitude cheaper, a sensible plan is to first build an all-electric electron storage ring as a prototype. Such an electron ring was successfully built at Brookhaven, in 1954, as a prototype for their AGS ring. This leaves little uncertainty concerning the cost and performance of such a ring. (This is documentedin one of the Physical Review papers mentioned above.)

  11. Comparison of beam transport simulations to measurements at the Los Alamos Proton Storage Ring

    SciTech Connect

    Wilkinson, C.; Neri, F.; Fitzgerald, D.H.; Blind, B.; Macek, R.; Plum, M.; Sander, O.; Thiessen, H.A.

    1997-10-01

    The ability to model and simulate beam behavior in the Proton Storage Ring (PSR) of the Los Alamos Neutron Science Center (LANSCE) is an important diagnostic and predictive tool. This paper gives the results of an effort to model the ring apertures and lattice and use beam simulation programs to track the beam. The results are then compared to measured activation levels from beam loss in the ring. The success of the method determines its usefulness in evaluating the effects of planned upgrades to the Proton Storage Ring.

  12. Electron cloud development in the Proton Storage Ring and in theSpallation Neutron Source

    SciTech Connect

    Pivi, M.T.F.; Furman, M.A.

    2002-10-08

    We have applied our simulation code "POSINST" to evaluatethe contribution to the growth rate of the electron-cloud instability inproton storage rings. Recent simulation results for the main features ofthe electron cloud in the storage ring of the Spallation Neutron Source(SNS) at Oak Ridge, and updated results for the Proton Storage Ring (PSR)at Los Alamos are presented in this paper. A key ingredient in our modelis a detailed description of the secondary emitted-electron energyspectrum. A refined model for the secondary emission process includingthe so-called true secondary, rediffused and backscattered electrons hasrecently been included in the electron-cloud code.

  13. Analytical Approach to Eigen-Emittance Evolution in Storage Rings

    SciTech Connect

    Nash, Boaz; /SLAC

    2006-05-16

    This dissertation develops the subject of beam evolution in storage rings with nearly uncoupled symplectic linear dynamics. Linear coupling and dissipative/diffusive processes are treated perturbatively. The beam distribution is assumed Gaussian and a function of the invariants. The development requires two pieces: the global invariants and the local stochastic processes which change the emittances, or averages of the invariants. A map based perturbation theory is described, providing explicit expressions for the invariants near each linear resonance, where small perturbations can have a large effect. Emittance evolution is determined by the damping and diffusion coefficients. The discussion is divided into the cases of uniform and non-uniform stochasticity, synchrotron radiation an example of the former and intrabeam scattering the latter. For the uniform case, the beam dynamics is captured by a global diffusion coefficient and damping decrement for each eigen-invariant. Explicit expressions for these quantities near coupling resonances are given. In many cases, they are simply related to the uncoupled values. Near a sum resonance, it is found that one of the damping decrements becomes negative, indicating an anti-damping instability. The formalism is applied to a number of examples, including synchrobetatron coupling caused by a crab cavity, a case of current interest where there is concern about operation near half integer {nu}{sub x}. In the non-uniform case, the moment evolution is computed directly, which is illustrated through the example of intrabeam scattering. Our approach to intrabeam scattering damping and diffusion has the advantage of not requiring a loosely-defined Coulomb Logarithm. It is found that in some situations there is a small difference between our results and the standard approaches such as Bjorken-Mtingwa, which is illustrated by comparison of the two approaches and with a measurement of Au evolution in RHIC. Finally, in combining IBS

  14. Users program for storage-ring based FEL and synchrotron sources of the Duke FEL Laboratory

    SciTech Connect

    Straub, K.D.; Barnett, G.; Burnham, B.

    1995-12-31

    The storage ring at the Duke FEL Laboratory was first operated with a stored e-beam in November, 1994. It has now achieved operation energies in excess 1 GeV with more than 100 mA current at 280 MeV. The ring has several ports for FEL and synchrotron light source research. The circulating ring current can be synchronized with the seperate Mark III FEL operating in the 2-9.5 {mu}m IR region. This allows low optical jitter (10-20 ps) between the two sources and thus pump-probe operation. The ring has been configured to drive a number of light sources including the OK-4 FEL system capable of FEL operation between 400 and 65 nm, an inverse Compton scattering source using this undulator which will yield 4-200 MeV gammas, an undulator source at approximately 40 {angstrom} (not an FEL), a mm FEL with inverse compton scattering providing 1-100 keV x-rays and two synchrotron ports from the bend magnets for which the {lambda}{sub c} = 11-12 {angstrom} for 1 GeV. The broadly tunable FEL sources and their associated inverse compton scattering are extremely bright. The initial research proposals, submitted to the Laboratory emphasizes photoelectron spectroscopy, PEEM, high resolution vacuum UV of gases, solid spectroscopy and photochemistry in the UV, X-ray microprobe studies, X-ray microscopy, X-ray holography, X-ray crystallography, Mossbauer spectroscopy, nuclear spectroscopy, neutron production, photon activation therapy and broadband synchrotron as a probe of fast reaction in the IR and near IR.

  15. Exhaust system with emissions storage device and plasma reactor

    DOEpatents

    Hoard, John W.

    1998-01-01

    An exhaust system for a combustion system, comprising a storage device for collecting NO.sub.x, hydrocarbon, or particulate emissions, or mixture of these emissions, and a plasma reactor for destroying the collected emissions is described. After the emission is collected in by the storage device for a period of time, the emission is then destroyed in a non-thermal plasma generated by the plasma reactor. With respect to the direction of flow of the exhaust stream, the storage device must be located before the terminus of the plasma reactor, and it may be located wholly before, overlap with, or be contained within the plasma reactor.

  16. Angular distribution of power from an undulator and a wiggler on a 6-GeV storage ring

    SciTech Connect

    Shenoy, G.K.

    1986-02-01

    There are two fundamental reasons to have a full knowledge of the angular distribution of power from an insertion device: 1. To evaluate the heat-load distribution on the first optical element in a beamline. 2. To estimate the total radiated power which will impinge on the walls of an insertion device. This is important to ensure needed cooling of the insertion device walls. The photodesorption is another closely related phenomenon determined by the exposure of the insertion device walls to the radiated power and of consequence to the successful operation of the storage ring. In this paper, we will primarily focus on undulators, but also consider situations as the value of K increases to the wiggler regime. These calculations are very involved and cumbersome and we shall only present some specific results related to the 6-GeV insertion devices.

  17. Photodissociation of dinucleotide ions in a storage ring

    NASA Astrophysics Data System (ADS)

    Worm, Esben S.; Andersen, Inge Hald; Andersen, Jens Ulrik; Holm, Anne I. S.; Hvelplund, Preben; Kadhane, Umesh; Nielsen, Steen Brøndsted; Poully, Jean-Christophe; Støchkel, Kristian

    2007-04-01

    The decay of protonated DNA dinucleotides, dA2+ , dG2+ , dT2+ , dC2+ and deprotonated ones, dA2- and dT2- , after 260nm photon absorption was measured in an electrostatic ion storage ring (A denotes adenine, G guanine, T thymine, and C cytosine). Fragmentation on the microsecond time scale was observed and assigned to statistical dissociation. Good fits to the decay spectra were obtained with a model based on microcanonical rate constants of the Arrhenius type with activation energies and preexponential factors for the dissociation that agree well with literature values. In accordance with results from other groups, dT2+ was found to have the longest lifetime among the cations. The importance of decay processes faster than the microsecond time scale is elucidated by a comparison between the total ion beam depletion and that due to the observed statistical decay. We find that such processes play a major role for all of the dinucleotides, being more than 25 times more probable than the microsecond statistical dissociation for dA2+ , dG2+ , and dC2+ , about 10 times for dT2+ , and between 2 and 6 times for dA2- and dT2- . For the cations, we ascribe these processes to nonstatistical dissociation prior to randomization of the excitation energy among all degrees of freedom whereas direct photoelectron detachment may play a role for the anions. Thus, our data indicate that the propensity for nonstatistical dissociation increases upon nucleobase protonation. Consistent with this trend, the propensity is less for dT2+ than for the other dinucleotide cations because the phosphoric acid group competes with thymine for the proton.

  18. 46 CFR 169.741 - Personal flotation devices and ring life buoys.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Personal flotation devices and ring life buoys. 169.741 Section 169.741 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.741 Personal flotation devices and ring life buoys....

  19. Theory and analysis of nonlinear dynamics and stability in storage rings: A working group summary

    SciTech Connect

    Chattopadhyay, S.; Audy, P.; Courant, E.D.; Forest, E.; Guignard, G.; Hagel, J.; Heifets, S.; Keil, E.; Kheifets, S.; Mais, H.; Moshammer, H.; Pellegrini, C.; Pilat, F.; Suzuki, T.; Turchetti, G.; Warnock, R.L.

    1988-07-01

    A summary and commentary of the available theoretical and analytical tools and recent advances in the nonlinear dynamics, stability and aperture issues in storage rings are presented. 11 refs., 4 figs.

  20. Performance Modeling of Network-Attached Storage Device Based Hierarchical Mass Storage Systems

    NASA Technical Reports Server (NTRS)

    Menasce, Daniel A.; Pentakalos, Odysseas I.

    1995-01-01

    Network attached storage devices improve I/O performance by separating control and data paths and eliminating host intervention during the data transfer phase. Devices are attached to both a high speed network for data transfer and to a slower network for control messages. Hierarchical mass storage systems use disks to cache the most recently used files and a combination of robotic and manually mounted tapes to store the bulk of the files in the file system. This paper shows how queuing network models can be used to assess the performance of hierarchical mass storage systems that use network attached storage devices as opposed to host attached storage devices. Simulation was used to validate the model. The analytic model presented here can be used, among other things, to evaluate the protocols involved in 1/0 over network attached devices.

  1. Crosstalk compensation in analysis of energy storage devices

    DOEpatents

    Christophersen, Jon P; Morrison, John L; Morrison, William H; Motloch, Chester G; Rose, David M

    2014-06-24

    Estimating impedance of energy storage devices includes generating input signals at various frequencies with a frequency step factor therebetween. An excitation time record (ETR) is generated to include a summation of the input signals and a deviation matrix of coefficients is generated relative to the excitation time record to determine crosstalk between the input signals. An energy storage device is stimulated with the ETR and simultaneously a response time record (RTR) is captured that is indicative of a response of the energy storage device to the ETR. The deviation matrix is applied to the RTR to determine an in-phase component and a quadrature component of an impedance of the energy storage device at each of the different frequencies with the crosstalk between the input signals substantially removed. This approach enables rapid impedance spectra measurements that can be completed within one period of the lowest frequency or less.

  2. Theories of statistical equilibrium in electron-positron colliding-beam storage rings

    SciTech Connect

    Schonfeld, J.F.

    1985-01-01

    In this lecture I introduce you to some recent theoretical work that represents a significant and long overdue departure from the mainstream of ideas on the physics of colliding- beam storage rings. The goal of the work in question is to understand analytically - without recourse to computer simulation - the role that dissipation and noise play in the observed colliding-beam behavior of electron-positron storage rings.

  3. Photo Stimulated Desorption Phenomena At The NewSUBARU Storage Ring

    SciTech Connect

    Hashimoto, Satoshi; Shoji, Yoshihiko; Ando, Ainosuke

    2004-05-12

    Since beam commissioning the beam instability due to ion trapping phenomena has been occasionally observed in the 1.0-1.5GeV NewSUBARU electron storage ring. In this paper we summarize the photo stimulated desorption of gas molecular and the measurements of transverse instabilities related to trapped ions in the NewSUBARU ring.

  4. The strain capacitor: A novel energy storage device

    SciTech Connect

    Deb Shuvra, Pranoy; McNamara, Shamus

    2014-12-15

    A novel electromechanical energy storage device is reported that has the potential to have high energy densities. It can efficiently store both mechanical strain energy and electrical energy in the form of an electric field between the electrodes of a strain-mismatched bilayer capacitor. When the charged device is discharged, both the electrical and mechanical energy are extracted in an electrical form. The charge-voltage profile of the device is suitable for energy storage applications since a larger portion of the stored energy can be extracted at higher voltage levels compared to a normal capacitor. Its unique features include the potential for long lifetime, safety, portability, wide operating temperature range, and environment friendliness. The device can be designed to operate over varied operating voltage ranges by selecting appropriate materials and by changing the dimensions of the device. In this paper a finite element model of the device is developed to verify and demonstrate the potential of the device as an energy storage element. This device has the potential to replace conventional energy storage devices.

  5. A practical method to generate brilliant hard x-rays with a tabletop electron storage ring

    SciTech Connect

    Yamada, H.; Amano, D.; Miyade, H.

    1995-12-31

    With electron storage rings not only synchrotron radiation(SR) but also bremsstrahlung(BS) from a thin target placed in the electron orbit are mechanisms to generate brilliant x-ray beams. The calculated brilliance of BS with a 50 MeV storage ring, which is nearly 10{sup 13} photons/s, mrad{sup 2}, mm{sup 2}, 0.1% band width for 100 keV x-rays, exceeds that of SR from a 1 GeV storage ring. This photon energy spectrum is almost constant and extend up to the electron energy. The reasons for this high brilliance with this new radiation scheme is that the electron beams penetrating the thin target are utilized repeatedly, the narrow angular divergence of BS is determined by the kinematics of relativistic electron as same as SR, and the x-ray source size of the order of 1 {mu}m is determined by the size of thin target instead of electron beam sizes. Continuous injection of electron beam to the storage ring at full energy is the way to keep high and constant beam current. Peak current and repetition rate determine x-ray out put power. Note that the power of x-ray beam is also provided from a RF cavity of the storage ring. In this paper we will report some experimental results and discuss further application on a coherent bremsstrahlung generated from a set of stacked foils placed in the electron orbit of the ring. Resulting from these investigations the photon storage ring which is based on a 50 MeV exact circular electron storage ring could provide wide range of coherent and incoherent radiations from far infrared to hard x-ray in a practical amount of radiation power.

  6. Measurement of the longitudinal parameters of an electron beam in a storage ring

    SciTech Connect

    Krinsky, S.

    1989-01-01

    We discuss the determination of the longitudinal parameters of a bunched beam of electrons or positrons circulating in a storage ring. From the analysis of the beam current observed at a fixed azimuthal location, one can learn much about the longitudinal behavior. We present an elementary analysis of the time-dependence of the current. In particular, we discuss the determination of the average current, bunch length, synchrotron oscillation frequency, and the coherent synchrotron oscillation modes associated with longitudinal instabilities. A brief discussion is also given of the incoherent synchrotron oscillations, or Schottky noise. We review the electromagnetic field traveling with a charge in uniform motion, and introduce some of the most common devices used to detect this field: capacitive pick-up, stripline monitor, and DC beam current transformer. Our paper is organized as follows: We discuss the analysis of the time-dependence of the beam current. Then, the measurement of the current is considered. Finally, we describe some measurements of energy spread and bunch lengthening made recently at SLAC on the SLC damping ring. 12 refs., 6 figs.

  7. Total water storage dynamics derived from tree-ring records and terrestrial gravity observations

    NASA Astrophysics Data System (ADS)

    Creutzfeldt, Benjamin; Heinrich, Ingo; Merz, Bruno

    2015-10-01

    For both societal and ecological reasons, it is important to understand past and future subsurface water dynamics but estimating subsurface water storage is notoriously difficult. In this pilot study, we suggest the reconstruction of subsurface water dynamics by a multi-disciplinary approach combining hydrology, dendrochronology and geodesy. In a first step, nine complete years of high-precision gravimeter observations are used to estimate water storage changes in the subsurface at the Geodetic Observatory Wettzell in the Bavarian Forest, Germany. The record is extended to 63 years by calibrating a hydrological model against the 9 years of gravimeter observations. The relationship between tree-ring growth and water storage changes is evaluated as well as that between tree-ring growth and supplementary hydro-meteorological data. Results suggest that tree-ring growth is influenced primarily by subsurface water storage. Other variables related to the overall moisture status (e.g., Standardized Precipitation Index, Palmer Drought Severity Index, streamflow) are also strongly correlated with tree-ring width. While these indices are all indicators of water stored in the landscape, water storage changes of the subsurface estimated by depth-integral measurements give us the unique opportunity to directly reconstruct subsurface water storage dynamics from records of tree-ring width. Such long reconstructions will improve our knowledge of past water storage variations and our ability to predict future developments. Finally, knowing the relationship between subsurface storage dynamics and tree-ring growth improves the understanding of the different signal components contained in tree-ring chronologies.

  8. High bit rate mass data storage device

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The HDDR-II mass data storage system consists of a Leach MTR 7114 recorder reproducer, a wire wrapped, integrated circuit flat plane and necessary power supplies for the flat plane. These units, with interconnecting cables and control panel are enclosed in a common housing mounted on casters. The electronics used in the HDDR-II double density decoding and encoding techniques are described.

  9. Issues and state of the art for short bunches in e{sup +}/e{sup {minus}} storage rings

    SciTech Connect

    Murphy, J.B.

    1996-12-01

    The potential of e{sup +}/e{sup {minus}} storage rings for producing short bunches is reviewed. We begin with a review of existing storage rings and proceed to discuss possible future developments. The effects which limit the production of short bunches in a ring are also discussed. Finally, the emission of coherent synchrotron radiation is examined.

  10. TSR: A storage and cooling ring for HIE-ISOLDE

    NASA Astrophysics Data System (ADS)

    Butler, P. A.; Blaum, K.; Davinson, T.; Flanagan, K.; Freeman, S. J.; Grieser, M.; Lazarus, I. H.; Litvinov, Yu. A.; Lotay, G.; Page, R. D.; Raabe, R.; Siesling, E.; Wenander, F.; Woods, P. J.

    2016-06-01

    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project.

  11. Low Energy Storage Rings: Opening Routes for Beyond State-of-the-art Research

    NASA Astrophysics Data System (ADS)

    Welsch, Carsten P.

    2011-10-01

    Electrostatic storage rings have proven to be invaluable tools for atomic and molecular physics at the ultra-low energy range from 1 to 100 keV/A. Due to the mass independence of the electrostatic rigidity these machines are able to store a wide range of different particles, from light ions to heavy singly charged bio-molecules. Their beam dynamics is, however, fundamentally different to magnetic storage rings and therefore needs to be investigated in detail to optimize storage ring performance and experimental output. This paper first gives an overview of existing electrostatic storage rings and their experimental programs. Second, future machines in Heidelberg, Stockholm and the Facility for Antiproton and Ion Research (FAIR) are described and the main challenges are summarized. Finally, the focus is set on a flexible storage ring facility presently being built up at the King Abdulaziz Center for Science and Technology (KACST) in Riyadh, Saudi Arabia, that addresses a broad user community and will allow for a next-generation experimental program in the low energy regime.

  12. Low Energy Storage Rings: Opening Routes for Beyond State-of-the-art Research

    SciTech Connect

    Welsch, Carsten P.

    2011-10-27

    Electrostatic storage rings have proven to be invaluable tools for atomic and molecular physics at the ultra-low energy range from 1 to 100 keV/A. Due to the mass independence of the electrostatic rigidity these machines are able to store a wide range of different particles, from light ions to heavy singly charged bio-molecules. Their beam dynamics is, however, fundamentally different to magnetic storage rings and therefore needs to be investigated in detail to optimize storage ring performance and experimental output. This paper first gives an overview of existing electrostatic storage rings and their experimental programs. Second, future machines in Heidelberg, Stockholm and the Facility for Antiproton and Ion Research (FAIR) are described and the main challenges are summarized. Finally, the focus is set on a flexible storage ring facility presently being built up at the King Abdulaziz Center for Science and Technology (KACST) in Riyadh, Saudi Arabia, that addresses a broad user community and will allow for a next-generation experimental program in the low energy regime.

  13. Beam storage studies in the Fermilab main ring

    SciTech Connect

    MacLachlan, J.A.

    1982-05-06

    Bunched beams of 100 and 150 GeV have been stored in the Fermilab Main Ring for periods of up to one hour. The observations of beam current and beam profiles are analyzed for the effects of gas scattering, chromaticity and non-linear magnetic field.

  14. Beam-storage studies in the Fermilab main ring

    SciTech Connect

    MacLachlan, J.A.

    1982-05-06

    Bunched beams of 100 and 150 GeV have been stored in the Fermilab Main Ring for periods of up to one hour. The observations of beam current and beam profiles are analyzed for the effects of gas scattering, chromaticity and non-linear magnetic field.

  15. Coherent THz Synchrotron Radiation from a Storage Ring with High-Frequency RF System

    NASA Astrophysics Data System (ADS)

    Wang, F.; Cheever, D.; Farkhondeh, M.; Franklin, W.; Ihloff, E.; van der Laan, J.; McAllister, B.; Milner, R.; Tschalaer, C.; Wang, D.; Wang, D. F.; Zolfaghari, A.; Zwart, T.; Carr, G. L.; Podobedov, B.; Sannibale, F.

    2006-02-01

    The generation of brilliant, stable, and broadband coherent synchrotron radiation (CSR) in electron storage rings depends strongly on ring rf system properties such as frequency and gap voltage. We have observed intense coherent radiation at frequencies approaching the THz regime produced by the MIT-Bates South Hall Ring, which employs a high-frequency S-band rf system. The measured CSR spectral intensity enhancement with 2 mA stored current was up to 10 000 times above background for wave numbers near 3cm-1. The measurements also uncovered strong beam instabilities that must be suppressed if such a very high rf frequency electron storage ring is to become a viable coherent THz source.

  16. Resonant condition for storage ring short wavelength FEL with power exceeding Renieri limit

    SciTech Connect

    Litvinenko, V.N.; Burnham, B.; Wu, Y.

    1995-12-31

    In this paper we discuss the possibility of operating a storage ring FEL with resonant conditions providing for preservation of electron beam structure on an optical wave scale. We suggest tuning the storage ring betatron and synchrotron tunes on one of the high (N-th) order resonances to compensate dynamic diffusion of optical phase. This mode of operation does not require isochronicity of the ring lattice. In these conditions optical phase will be restored after N turns around the ring and stochastic conditions used in the derivation of Renieri limit are no longer applicable. We discuss the influence of high order terms in electron motion, RF frequency stability, and synchrotron radiation effects on preservation of optical phase.

  17. Storage ring cross section measurements for electron impact ionization of Fe8+

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Becker, A.; Bernhardt, D.; Grieser, M.; Krantz, C.; Lestinsky, M.; Müller, A.; Novotný, O.; Pindzola, M. S.; Repnow, R.; Schippers, S.; Spruck, K.; Wolf, A.; Savin, D. W.

    2016-04-01

    We have measured electron impact ionization (EII) for Fe8+ forming Fe9+ from below the ionization threshold to 1200 eV. These measurements were carried out at the TSR heavy ion storage ring. The objective of using a storage ring is to store the ion beam initially so that metastable levels decay, thereby allowing for measurements on a well-defined ground-level ion beam. In this case, however, some metastable levels were too long lived to be removed. We discuss several methods for quantifying the metastable fraction, which we estimate to be ∼30%–40%. Although metastables remain problematic, the present storage ring work improves upon other experimental geometries by limiting the metastable contamination to only a few long-lived excited levels. We discuss some future prospects for obtaining improved measurements of Fe8+ and other ions with long-lived metastable levels.

  18. NEUTRINO FACTORY BASED ON MUON-STORAGE-RINGS TO MUON COLLIDERS: PHYSICS AND FACILITIES.

    SciTech Connect

    PARSA,Z.

    2001-06-18

    Intense muon sources for the purpose of providing intense high energy neutrino beams ({nu} factory) represents very interesting possibilities. If successful, such efforts would significantly advance the state of muon technology and provides intermediate steps in technologies required for a future high energy muon collider complex. High intensity muon: production, capture, cooling, acceleration and multi-turn muon storage rings are some of the key technology issues that needs more studies and developments, and will briefly be discussed here. A muon collider requires basically the same number of muons as for the muon storage ring neutrino factory, but would require more cooling, and simultaneous capture of both {+-} {mu}. We present some physics possibilities, muon storage ring based neutrino facility concept, site specific examples including collaboration feasibility studies, and upgrades to a full collider.

  19. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage

    SciTech Connect

    Durgun, E; Grossman, JC

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  20. How well do we know the circumference of a storage ring?

    NASA Astrophysics Data System (ADS)

    Beckmann, M.; Ziemann, V.

    2015-01-01

    High-precision nuclear physics experiments in storage rings require precise knowledge of the beam energy. In the absence of electron cooling, which provides this information, one can use the frequency of the radio-frequency system in conjunction with knowledge of the circumference of the ring. We investigate to which precision the latter can be determined in the presence of magnet misalignment and orbit correction.

  1. Resonance Method of Electric-Dipole-Moment Measurements in Storage Rings

    SciTech Connect

    Orlov, Yuri F.; Morse, William M.; Semertzidis, Yannis K.

    2006-06-02

    A 'resonance method' of measuring the electric dipole moment (EDM) of nuclei in storage rings is described, based on two new ideas: (1) Oscillating particles' velocities in resonance with spin precession, and (2) alternately producing two sub-beams with different betatron tunes--one sub-beam to amplify and thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the other to make the EDM measurement.

  2. RESONANCE METHOD OF ELECTRIC-DIPOLE-MOMENT MEASUREMENTS IN STORAGE RINGS.

    SciTech Connect

    ORLOV, Y.F.; MORSE, W.M.; SEMERTZIDIS, Y.K.

    2006-05-10

    A ''resonance method'' of measuring the electric dipole moment (EDM) of nuclei in storage rings is described, based on two new ideas: (1) Oscillating particles velocities in resonance with spin precession, and (2) alternately producing two sub-beams with different betatron tunes--one sub-beam to amplify and thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the other to make the EDM measurement.

  3. Steady State Microbunching for High Brilliance and High Repetition Rate Storage Ring-Based Light Sources

    SciTech Connect

    Chao, Alex; Ratner, Daniel; Jiao, Yi; /Beijing, Inst. High Energy Phys.

    2012-09-06

    Electron-based light sources have proven to be effective sources of high brilliance, high frequency radiation. Such sources are typically either linac-Free Electron Laser (FEL) or storage ring types. The linac-FEL type has high brilliance (because the beam is microbunched) but low repetition rate. The storage ring type has high repetition rate (rapid beam circulation) but comparatively low brilliance or coherence. We propose to explore the feasibility of a microbunched beam in a storage ring that promises high repetition rate and high brilliance. The steady-state-micro-bunch (SSMB) beam in storage ring could provide CW sources for THz, EUV, or soft X-rays. Several SSMB mechanisms have been suggested recently, and in this report, we review a number of these SSMB concepts as promising directions for high brilliance, high repetition rate light sources of the future. The trick of SSMB lies in the RF system, together with the associated synchrotron beam dynamics, of the storage ring. Considering various different RF arrangements, there could be considered a number of scenarios of the SSMB. In this report, we arrange these scenarios more or less in order of the envisioned degree of technical challenge to the RF system, and not in the chronological order of their original references. Once the stored beam is steady-state microbunched in a storage ring, it passes through a radiator repeatedly every turn (or few turns). The radiator extracts a small fraction of the beam energy as coherent radiation with a wavelength corresponding to the microbunched period of the beam. In contrast to an FEL, this radiator is not needed to generate the microbunching (as required e.g. by SASE FELs or seeded FELs), so the radiator can be comparatively simple and short.

  4. ACCELERATORS: Preliminary application of turn-by-turn data analysis to the SSRF storage ring

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Hui; Zhao, Zhen-Tang

    2009-07-01

    There is growing interest in utilizing the beam position monitor turn-by-turn (TBT) data to debug accelerators. TBT data can be used to determine the linear optics, coupled optics and nonlinear behaviors of the storage ring lattice. This is not only a useful complement to other methods of determining the linear optics such as LOCO, but also provides a possibility to uncover more hidden phenomena. In this paper, a preliminary application of a β function measurement to the SSRF storage ring is presented.

  5. DEVELOPMENT OF A HYDROGEN AND DEUTERIUM POLARIZED GAS TARGET FOR APPLICATION IN STORAGE RINGS

    SciTech Connect

    Willy Haeberli

    2009-06-18

    The exploration of spin degrees of freedom in nuclear and high-energy interactions requires the use of spin-polarized projectiles and/or spin-polarized targets. During the last two decades, the use of external beams from cyclotrons has to a large extent been supplanted by use of circulating beams stored in storage rings. In these experiments, the circulating particles pass millions of times through targets internal to the ring. Thus the targets need to be very thin to avoid beam loss by scattering out of the acceptance aperture of the ring.

  6. Commissioning results of the narrow-band beam position monitor system upgrade in the APS storage ring.

    SciTech Connect

    Singh, O.

    1999-04-20

    When using a low emittance storage ring as a high brightness synchrotron radiation source, it is critical to maintain a very high degree of orbit stability, both for the short term and for the duration of an operational fill. A fill-to-fill reproducibility is an additional important requirement. Recent developments in orbit correction algorithms have provided tools that are capable of achieving a high degree of orbit stability. However, the performance of these feedback systems can be severely limited if there are errors in the beam position monitors (BPMs). The present orbit measurement and correction system at the APS storage ring utilizes 360 broad-band-type BPMs that provide turn-by-turn diagnostics and an ultra-stable orbit: < 1.8 micron rms vertically and 4.5 microns rms horizontally in a frequency band of 0.017 to 30 Hz. The effects of beam intensity and bunch pattern dependency on these BPMs have been significantly reduced by employing offset compensation correction. Recently, 40 narrow-band switching-type BPMs have been installed in the APS storage ring, two in each of 20 operational insertion device straight sections, bringing the total number of beam position monitors to 400. The use of narrow-band BPM electronics is expected to reduce sensitivity to beam intensity, bunch pattern dependence, and long-term drift. These beam position monitors are used for orbit correction/feedback and machine protection interlocks for the insertion device beamlines. The commissioning results and overall performance for orbit stability are provided.

  7. A novel, high energy-density electrical storage device for electric weapons

    NASA Astrophysics Data System (ADS)

    Schroeder, Jon M.

    1992-08-01

    Three different energy storage variants were developed and tested during Phase 1. Each was based on the close-coupled, thermopile storage principle. First, direct current was stored in a thermopile ring, which was open-switched into a dummy load to measure the energy release. In the second variant, alternating magnetic energy was stored in a split ring. Energy storage was caused by pumping alternating current in the thermopile circuit, connected as an LC oscillator. Both methods were found to store energy and each delivered pulse power, resulting in a twenty-to-one pulse-power advantage between energy released from the store and energy available from the power supply at the input. Power was drawn from these systems in a millisecond, making use of a specially developed, sequentially opening switch that takes full advantage of the MOSFET's nanosecond hyper-operating speed, the intermediate switching speed of a silicon controlled rectifier (SCR), and a slower speed electro-mechanical switch. Further work with modifications of these two storage methods led then to the development of an inductor-to-inductor (L(sup 2)) electromagnetic storage system. This new type storage device seems to out perform the first two methods by roughly two orders of magnitude in storage capacity. During flux pump experiments, we also found that the L(sup 2) prototype system could be tuned to operate efficiently at certain particular frequencies depending on the value of capacitor chosen, placed across the two conductors, to tune in steps between 50 Hz and 50 MHz, possibly operating efficiently in the GHz range.

  8. Bypass apparatus and method for series connected energy storage devices

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik

    2000-01-01

    A bypass apparatus and method for series connected energy storage devices. Each of the energy storage devices coupled to a common series connection has an associated bypass unit connected thereto in parallel. A current bypass unit includes a sensor which is coupled in parallel with an associated energy storage device or cell and senses an energy parameter indicative of an energy state of the cell, such as cell voltage. A bypass switch is coupled in parallel with the energy storage cell and operable between a non-activated state and an activated state. The bypass switch, when in the non-activated state, is substantially non-conductive with respect to current passing through the energy storage cell and, when in the activated state, provides a bypass current path for passing current to the series connection so as to bypass the associated cell. A controller controls activation of the bypass switch in response to the voltage of the cell deviating from a pre-established voltage setpoint. The controller may be included within the bypass unit or be disposed on a control platform external to the bypass unit. The bypass switch may, when activated, establish a permanent or a temporary bypass current path.

  9. Large magnetic storage ring for Bose-Einstein condensates

    SciTech Connect

    Arnold, A. S.; Garvie, C. S.; Riis, E.

    2006-04-15

    Cold atomic clouds and Bose-Einstein condensates have been stored in a 10 cm diameter vertically oriented magnetic ring. An azimuthal magnetic field enables low-loss propagation of atomic clouds over a total distance of 2 m, with a heating rate of less than 50 nK/s. The vertical geometry was used to split an atomic cloud into two counter-rotating clouds which were recombined after one revolution. The system will be ideal for studying condensate collisions and ultimately Sagnac interferometry.

  10. 77 FR 8900 - Certain Vaginal Ring Birth Control Devices; Termination of the Investigation Based on Withdrawal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    .... 76 FR 17444. The complaint alleges violations of section 337 of the Tariff Act of 1930, as amended... COMMISSION Certain Vaginal Ring Birth Control Devices; Termination of the Investigation Based on Withdrawal... within the United States after importation of certain vaginal birth control devices by reason...