Science.gov

Sample records for strain rate effects

  1. Strain rate effects for spallation of concrete

    NASA Astrophysics Data System (ADS)

    Häussler-Combe, Ulrich; Panteki, Evmorfia; Kühn, Tino

    2015-09-01

    Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property - which can be covered by rate dependent stress strain relations - or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  2. Strain rate effects in porous materials

    SciTech Connect

    Lankford, J. Jr.; Dannemann, K.A.

    1998-12-31

    The behavior of metal foams under rapid loading conditions is assessed. Dynamic loading experiments were conducted in their laboratory using a split Hopkinson pressure bar apparatus and a drop weight tester; Strain rates ranged from 45 s{sup {minus}1} to 1200 s{sup {minus}1}. The implications of these experiments on open-cell, porous metals, and closed- and open-cell polymer foams are described. It is shown that there are two possible strain-rate dependent contributors to the impact resistance of cellular metals: (i) elastic-plastic resistance of the cellular metal skeleton, and (ii) the gas pressure generated by gas flow within distorted open cells. A theoretical basis for these implications is presented.

  3. Effects of strain rate on PMMA failure behavior

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Zhou, Zhiwei; Shu, Xuefeng; Wang, Zhihua; Wu, Guiying; Liu, Zhenguo

    2016-01-01

    Quasi-static and dynamic loading tests were conducted on three types of polymethyl methacrylate (PMMA) specimens using a universal material testing machine and a split Hopkinson pressure bar to examine the effects of strain rate on PMMA failure behavior. Three types of PMMA specimens, i.e., a cylinder specimen with no beveled ends, a hat specimen, and cylinder specimens with beveled ends of different angles were applied to obtain the PMMA compression, shear, and combined shear-compression strengths. Results showed that PMMA failure stresses increased with the strain rate. Furthermore, the dynamic failure loci in the shear-normal stress space could be well described by an elliptical macroscopic failure criterion and expansion became nearly isotropic as the strain rate increased. The compression tests applied to the three types of PMMA specimens were effective methods to investigate the yield surface of PMMA experimentally over a wide range of strain rates.

  4. Strain rate effects on soot evolution in turbulent nonpremixed flames

    NASA Astrophysics Data System (ADS)

    Lew, Jeffry K.; Mueller, Michael E.; Mahmoud, Saleh; Alwahabi, Zeyad T.; Dally, Bassam B.; Nathan, Graham J.

    2015-11-01

    Large Eddy Simulations (LES) of turbulent nonpremixed ethylene/hydrogen/nitrogen (2/2/1 by volume) jet flames are conducted to investigate the effects of global strain rate on soot evolution. The exit strain rate is varied by fixing the Reynolds number as the burner diameter and exit velocity are altered. A detailed integrated LES approach is employed that includes a nonpremixed flamelet model that accounts for heat losses from radiation, a transport equation model to account for unsteadiness in polycyclic aromatic hydrocarbon (PAH) evolution, a detailed soot model based on the Hybrid Method of Moments, and a novel presumed subfilter PDF model for soot-turbulence interactions. As the strain rate increases, the maximum soot volume fraction decreases due to the suppression of PAH formation. This trend with increasing strain rate is validated against experimental measurements conducted at The University of Adelaide.

  5. Effects of Applied Strain on Rates of Ageing: Project Overview

    NASA Technical Reports Server (NTRS)

    Campion, R. P.

    1997-01-01

    One of the stated intents of this project has been to make some assessment of effects of strain on rates of ageing of project thermoplastics exposed to project fluids. To this end, certain straining jigs which apply in various modes - tensile, four-point bending and crack growth using compact tension samples - were designed and made for holding samples during fluid exposures. During testing, features of the thermoplastics have been observed which have tended to confuse apparent strain effects on the polymers' aged performance, but recent assessments of the topic and its data have led to considerable progress being made in identifying test procedures necessary for strain and related effects on chemical deterioration to manifest themselves. It is the intent of this report to provide a summary of what has been determined on strain and related effects thus far, and provide recommendations for clarifying them in Phase 2 by means of further test procedures which will increase and focus the severity of the conditions applying. The choice of flexible pipe rather than umbilicals service for assessing service strain conditions reflects the major interest of project members. However, Tefzel data are still provided.

  6. Effect of strain rate on the compressive deformation behaviors of lotus-type porous copper

    NASA Astrophysics Data System (ADS)

    Liu, Xin-hua; Huang, Hai-you; Xie, Jian-xin

    2014-07-01

    Lotus-type porous copper was fabricated by unidirectional solidification, and compressive experiments were subsequently conducted in the strain rate range of 10-3-2400 s-1 with the compressive direction parallel to the pores. A GLEEBLE-1500 thermal-mechanical simulation system and a split Hopkinson pressure bar (SHPB) were used to investigate the effect of strain rate on the compressive deformation behaviors of lotus-type porous copper. The influence mechanism of strain rate was also analyzed by the strain-controlling method and by high-speed photography. The results indicated that the stress-strain curves of lotus-typed porous copper consist of a linear elastic stage, a plateau stage, and a densification stage at various strain rates. At low strain rate (< 1.0 s-1), the strain rate had little influence on the stress-strain curves; but when the strain rate exceeded 1.0 s-1, it was observed to strongly affect the plateau stage, showing obvious strain-rate-hardening characteristics. Strain rate also influenced the densification initial strain. The densification initial strain at high strain rate was less than that at low strain rate. No visible inhomogeneous deformation caused by shockwaves was observed in lotus-type porous copper during high-strain-rate deformation. However, at high strain rate, the bending deformation characteristics of the pore walls obviously differed from those at low strain rate, which was the main mechanism by which the plateau stress exhibited strain-rate sensitivity when the strain rate exceeded a certain value and exhibited less densification initial strain at high strain rate.

  7. Strain rate effects on reinforcing steels in tension

    NASA Astrophysics Data System (ADS)

    Cadoni, Ezio; Forni, Daniele

    2015-09-01

    It is unquestionable the fact that a structural system should be able to fulfil the function for which it was created, without being damaged to an extent disproportionate to the cause of damage. In addition, it is an undeniable fact that in reinforced concrete structures under severe dynamic loadings, both concrete and reinforcing bars are subjected to high strain-rates. Although the behavior of the reinforcing steel under high strain rates is of capital importance in the structural assessment under the abovementioned conditions, only the behaviour of concrete has been widely studied. Due to this lack of data on the reinforcing steel under high strain rates, an experimental program on rebar reinforcing steels under high strain rates in tension is running at the DynaMat Laboratory. In this paper a comparison of the behaviour in a wide range of strain-rates of several types of reinforcing steel in tension is presented. Three reinforcing steels, commonly proposed by the European Standards, are compared: B500A, B500B and B500C. Lastly, an evaluation of the most common constitutive laws is performed.

  8. Shock Compression and Strain Rate Effect in Composites and Polymers

    SciTech Connect

    Brown, Eric

    2012-06-20

    Polymers are increasingly being utilized as monolithic materials and composite matrices for structural applications historically reserved for metals. High strain and high strain-rate applications in aerospace, defense, and automotive industries have lead to interest in utilizing the ability of many polymers to withstand extensions to failure of several hundred percent, often without localization or necking and their strong rate dependence. A broad range of characterization techniques will be presented for semi-crystalline polymers and composites including elastic-plastic fracture, split Hopkinson pressure bar (SHPB), plate impact including soft-recovery and lateral gage measurements and Taylor Impact. Gas-launched, plate impact experiments have been performed on pedigreed PTFE 7C, mounted in momentum-trapped, shock assemblies, with impact pressures above and below the phase II to phase III crystalline transition to probe subtle changes in the crystallinity, microstructure, and mechanical response of PTFE. Observed strong anisotropy on the hugoniot and spall behavior of fiber-reinforced composites will be discussed. Polymers are known to exhibit a strong dependence of the yield stress on temperature and strain-rate that are often observed to be linear for temperature and logarithmic for strain-rate. Temperature and strain-rate dependence will be reviewed in terms of classic time-temperature superposition and an empirical mapping function for superposition between temperature and strain-rate. The recent extension of the new Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) technique to probe the dynamic tensile responses of polymers will be discussed, where more irregular deformation and stochastic-based damage and failure mechanisms than the stable plastic elongation and shear instabilities observed that in metals. The opportunity to use of Dyn-Ten-Ext to probe incipient damage at very high strain-rate by linking in situ and post mortem experimental observations with high

  9. High-pressure, High-strain-rate Materials Effects

    SciTech Connect

    Kalantar, D; Belak, J; Bringa, E; Budil, K; Colvin, J; Kumar, M; Meyers, M; Rosolankova, K; Rudd, R; Schneider, M; Stolken, J; Wark, J

    2004-03-04

    A 3-year LDRD-ER project to study the response of shocked materials at high pressure and high strain rate has concluded. This project involved a coordinated effort to study single crystal samples that were shock loaded by direct laser irradiation, in-situ and post-recovery measurements, and molecular dynamics and continuum modeling. Laser-based shock experiments have been conducted to study the dynamic response of materials under shock loading materials at a high strain-rate. Experiments were conducted at pressures above the published Hugoniot Elastic Limit (HEL). The residual deformation present in recovered samples was characterized by transmission electron microscopy, and the response of the shocked lattice during shock loading was measured by in-situ x-ray diffraction. Static film and x-ray streak cameras recorded x-rays diffracted from lattice planes of Cu and Si both parallel and perpendicular to the shock direction. Experiments were also conducted using a wide-angle detector to record x-rays diffracted from multiple lattice planes simultaneously. This data showed uniaxial compression of Si (100) along the shock direction and 3-dimensional compression of Cu (100). In the case of the Si diffraction, there was a multiple wave structure observed. We present results of shocked Si and Cu obtained with a new large angle diffraction diagnostic, and discuss the results in the context of detailed molecular dynamics simulations and post-processing.

  10. Strain rate effects on medium carbon steel and its effects on autofrettage

    SciTech Connect

    Song, J.; Xu, B.Y.; Tang, C.Y.; Lee, W.B.

    1994-01-15

    Most metals are rate-sensitive under high loading speeds. In metal forming, the quasi-static analysis is commonly employed since the strain rate is comparably low. Recently, Krempl shows that the difference between the static analysis and the experimental result is insignificant when the strain rate is less than 10{sup {minus}4}s{sup {minus}1}. Under ambient conditions, the constitutive relationship proposed by Marciniak may be applied in low strain rates ranged from 10{sup {minus}4}s{sup {minus}1} to 10{sup {minus}1}s{sup {minus}1}. However, the effects of strain rate on constitutive relationships under cyclic loading should not be neglected in certain cases. In this study, uniaxial tensile and compressive tests have been carried out to determine the material parameters of medium carbon steel. Hysteresis loops have been obtained under different loading speeds. The effects of strain rate on the elastic modulus, the yield stress, the reverse yield stress and the hardening parameters are determined. Autofrettage is a special forming process by which beneficial compressive residual stresses are introduced into thick-walled tubes. The magnitude of the residual stress field induced by autofrettage depends greatly on the reverse hardening characteristics of the tubing material. Based on the experimental results and the assumption that the difference in the magnitude between the tensile and the reverse yield stresses is independent of strain rate, an elasto-visco-plastic model is proposed. Therefore, the influences of two different strain rates on the residual stresses can be predicted. The analysis also shows that the strain rate has a significant effect on the magnitude of the residual stress field of the autofrettage.

  11. Bauschinger effect in haynes 230 alloy: Influence of strain rate and temperature

    NASA Astrophysics Data System (ADS)

    Thakur, Aniruddha; Vecchio, Kenneth S.; Nemat-Nasser, Sia

    1996-07-01

    Quasistatic and dynamic Bauschinger behavior in HAYNES 230 alloy is examined. At low strain rate (10-3/s), the as- received 230 alloy does not show a drop in flow stress, i.e., no Bauschinger effect is displayed. At high strain rate (103/s), a drop in flow stress of 240 MPa was observed upon stress reversal. In contrast, the precipitation- strengthened condition exhibited a Bauschinger effect in both low and high strain rate stress-reversal experiments. The magnitude of the Bauschinger effect was found to increase with increasing strain rate, forward strain, and decreasing temperature. The substructure evolution accompanying the forward loading cycles was investigated by transmission electron microscopy and is related to the back stresses that developed. The increased Bauschinger stress drop observed at high strain rate and/or low temperature was correlated to an increased degree of planar slip under these conditions.

  12. Bauschinger effect in Haynes 230 alloy: influence of strain rate and temperature

    SciTech Connect

    Thakur, A.; Vecchio, K.S.; Nemat-Nasser, S.

    1996-07-01

    Quasistatic and dynamic Bauschinger behavior in HAYNES 230 alloy is examined. At low strain rate (10{sup {minus}3}/s), the as-received 230 alloy does not show a drop in flow stress, i.e., no Bauschinger effect is displayed. At high strain rate (10{sup 3}/s), a drop in flow stress of 240 MPa was observed upon stress reversal. In contrast, the precipitation-strengthened condition exhibited a Bauschinger effect in both low and high strain rate stress-reversal experiments. The magnitude of the Bauschinger effect was found to increase with increasing strain rate, forward strain, and decreasing temperature. The substructure evolution accompanying the forward loading cycles was investigated by transmission electron microscopy and is related to the back stresses that developed. The increased Bauschinger stress drop observed at high strain rate and/or low temperature was correlated to an increased degree of planar slip under these conditions.

  13. Effect of Strain Rate on Mechanical Properties of Wrought Sintered Tungsten at Temperatures above 2500 F

    NASA Technical Reports Server (NTRS)

    Sikora, Paul F.; Hall, Robert W.

    1961-01-01

    Specimens of wrought sintered commercially pure tungsten were made from 1/8-inch swaged rods. All the specimens were recrystallized at 4050 F for 1 hour prior to testing at temperatures from 2500 to 4000 F at various strain rates from 0.002 to 20 inches per inch per minute. Results showed that, at a constant temperature, increasing the strain rate increased the ultimate tensile strength significantly. The effects of both strain rate and temperature on the ultimate tensile strength of tungsten may be correlated by the linear parameter method of Manson and Haferd and may be used to predict the ultimate tensile strength at higher temperatures, 4500 and 5000 F. As previously reported, ductility, as measured by reduction of area in a tensile test, decreases with increasing temperature above about 3000 F. Increasing the strain rate at temperatures above 3000 F increases the ductility. Fractures are generally transgranular at the higher strain rates and intergranular at the lower strain rates.

  14. Strain rate effects on compressive behavior of covalently bonded CNT networks

    NASA Astrophysics Data System (ADS)

    Kirkayak, Levent

    2016-06-01

    In this study, strain rate effects on the compressive mechanical properties of randomly structured carbon nanotube (CNT) networks were examined. For this purpose, three-dimensional atomistic models of CNT networks with covalently-bonded junctions were generated. After that, molecular dynamics (MD) simulations of compressive loading were performed at five different strain rates to investigate the basic deformation characteristic mechanisms of CNT networks and determine the effect of strain rate on stress-strain curves. The simulation results showed that the strain rate of compressive loading increases, so that a higher resistance of specimens to deformation is observed. Furthermore, the local deformation characteristics of CNT segments, which are mainly driven by bending and buckling modes, and their prevalence are strongly affected by the deformation rate. It was also observed that CNT networks have superior features to metal foams such as metal matrix syntactic foams (MMSFs) and porous sintered fiber metals (PSFMs) in terms of energy absorbing capabilities.

  15. Temperature and Strain-Rate Effects on Low-Cycle Fatigue Behavior of Alloy 800H

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Schiffers, H.; Schuster, H.; Halford, G. R.

    1996-01-01

    The effects of strain rate (4 x 10(exp -6) to 4 x 10(exp -3)/s) and temperature on the Low-Cycle Fatigue (LCF) behavior of alloy 800H have been evaluated in the range 750 C to 950 C. Total axial strain controlled LCF tests were conducted in air at a strain amplitude of +/- 0.30 pct. LCF life decreased with decreasing strain rate and increasing temperature. The cyclic stress response behavior showed a marked variation with temperature and strain rate. The time- and temperature- dependent processes which influence the cyclic stress response and life have been identified and their relative importance assessed. Dynamic strain aging, time-dependent deformation, precipitation of parallel platelets of M(23)C6 on grain boundaries and incoherent ledges of twins, and oxidation were found to operate depending on the test conditions. The largest effect on life was shown by oxidation processes.

  16. Biaxial load effects on the crack border elastic strain energy and strain energy rate

    NASA Technical Reports Server (NTRS)

    Eftis, J.; Subramonian, N.; Liebowitz, H.

    1977-01-01

    The validity of the singular solution (first term of a series representation) is investigated for the crack tip stress and displacement field in an infinite sheet with a flat line crack with biaxial loads applied to the outer boundaries. It is shown that if one retains the second contribution to the series approximations for stress and displacement in the calculation of the local elastic strain energy density and elastic strain energy rate in the crack border region, both these quantities have significant biaxial load dependency. The value of the J-integral does not depend on the presence of the second term of the series expansion for stress and displacement. Thus J(I) is insensitive to the presence of loads applied parallel to the plane of the crack.

  17. The effect of strain rate on fracture toughness of human cortical bone: a finite element study.

    PubMed

    Ural, Ani; Zioupos, Peter; Buchanan, Drew; Vashishth, Deepak

    2011-10-01

    Evaluating the mechanical response of bone under high loading rates is crucial to understanding fractures in traumatic accidents or falls. In the current study, a computational approach based on cohesive finite element modeling was employed to evaluate the effect of strain rate on fracture toughness of human cortical bone. Two-dimensional compact tension specimen models were simulated to evaluate the change in initiation and propagation fracture toughness with increasing strain rate (range: 0.08-18 s(-1)). In addition, the effect of porosity in combination with strain rate was assessed using three-dimensional models of micro-computed tomography-based compact tension specimens. The simulation results showed that bone's resistance against the propagation of a crack decreased sharply with increase in strain rates up to 1 s(-1) and attained an almost constant value for strain rates larger than 1 s(-1). On the other hand, initiation fracture toughness exhibited a more gradual decrease throughout the strain rates. There was a significant positive correlation between the experimentally measured number of microcracks and the fracture toughness found in the simulations. Furthermore, the simulation results showed that the amount of porosity did not affect the way initiation fracture toughness decreased with increasing strain rates, whereas it exacerbated the same strain rate effect when propagation fracture toughness was considered. These results suggest that strain rates associated with falls lead to a dramatic reduction in bone's resistance against crack propagation. The compromised fracture resistance of bone at loads exceeding normal activities indicates a sharp reduction and/or absence of toughening mechanisms in bone during high strain conditions associated with traumatic fracture. PMID:21783112

  18. THE EFFECT OF STRAIN RATE ON FRACTURE TOUGHNESS OF HUMAN CORTICAL BONE: A FINITE ELEMENT STUDY

    PubMed Central

    Ural, Ani; Zioupos, Peter; Buchanan, Drew; Vashishth, Deepak

    2011-01-01

    Evaluating the mechanical response of bone under high loading rates is crucial to understanding fractures in traumatic accidents or falls. In the current study, a computational approach based on cohesive finite element modeling was employed to evaluate the effect of strain rate on fracture toughness of human cortical bone. Two-dimensional compact tension specimen models were simulated to evaluate the change in initiation and propagation fracture toughness with increasing strain rate (range: 0.08 to 18 s−1). In addition, the effect of porosity in combination with strain rate was assessed using three-dimensional models of microcomputed tomography-based compact tension specimens. The simulation results showed that bone’s resistance against the propagation of fracture decreased sharply with increase in strain rates up to 1 s−1 and attained an almost constant value for strain rates larger than 1 s−1. On the other hand, initiation fracture toughness exhibited a more gradual decrease throughout the strain rates. There was a significant positive correlation between the experimentally measured number of microcracks and the fracture toughness found in the simulations. Furthermore, the simulation results showed that the amount of porosity did not affect the way initiation fracture toughness decreased with increasing strain rates, whereas it exacerbated the same strain rate effect when propagation fracture toughness was considered. These results suggest that strain rates associated with falls lead to a dramatic reduction in bone’s resistance against crack propagation. The compromised fracture resistance of bone at loads exceeding normal activities indicates a sharp reduction and/or absence of toughening mechanisms in bone during high strain conditions associated with traumatic fracture. PMID:21783112

  19. Effects of Strain Rate Dependency of Material Properties in Low Velocity Impact

    NASA Astrophysics Data System (ADS)

    Minamoto, Hirofumi; Seifried, Robert; Eberhard, Peter; Kawamura, Shozo

    Impact processes are often analyzed using the coefficient of restitution which represents the kinetic energy loss during impact. In this paper the effect of strain rate dependency of the yield stress on the coefficient of restitution is investigated experimentally and numerically for the impact of a steel sphere against a steel rod. Finite Element simulations using strain-rate dependent material behavior are carried out. In addition, Finite Element simulations with elastic-plastic material behavior, which ignore the strain rate dependency, are carried out as well as elastic material behavior. Comparisons between the experiments and the simulations using strain-rate dependent material behavior show good agreement, and also prove the strong dependency of the coefficient of restitution on the strain rate dependency of the yield stress for steel. The results from both, the experiments and the simulations show also the strong influence of the wave propagation in the rod on the coefficient of restitution.

  20. Effects of Strain Rates on Mechanical Properties and Fracture Mechanism of DP780 Dual Phase Steel

    NASA Astrophysics Data System (ADS)

    Li, Shengci; Kang, Yonglin; Zhu, Guoming; Kuang, Shuang

    2015-06-01

    The mechanical properties of DP780 dual phase steel were measured by quasi-static and high-speed tensile tests at strain rates between 0.001 and 1000 s-1 at room temperature. The deformation and fracture mechanisms were analyzed by observation of the tensile fracture and microstructure near the fracture. Dynamic factor and feret ratio quantitative methods were applied to study the effect of strain rate on the microstructure and properties of DP780 steel. The constitutive relation was described by a modified Johnson-Cook and Zerilli-Armstrong model. The results showed that the strain rate sensitivity of yield strength is bigger than that of ultimate tensile strength; as strain rate increased, the formation of microcracks and voids at the ferrite/martensite interface can be alleviated; the strain rate effect is unevenly distributed in the plastic deformation region. Moreover, both models can effectively describe the experimental results, while the modified Zerilli-Armstrong model is more accurate because the strain-hardening rate of this model is independent of strain rate.

  1. The effect of an acute bout of resistance exercise on carotid artery strain and strain rate.

    PubMed

    Black, Jane M; Stöhr, Eric J; Stone, Keeron; Pugh, Christopher J A; Stembridge, Mike; Shave, Rob; Esformes, Joseph I

    2016-09-01

    Arterial wall mechanics likely play an integral role in arterial responses to acute physiological stress. Therefore, this study aimed to determine the impact of low and moderate intensity double-leg press exercise on common carotid artery (CCA) wall mechanics using 2D vascular strain imaging. Short-axis CCA ultrasound images were collected in 15 healthy men (age: 21 ± 3 years; stature: 176.5 ± 6.2 cm; body mass; 80.6 ± 15.3 kg) before, during, and immediately after short-duration isometric double-leg press exercise at 30% and 60% of participants' one-repetition maximum (1RM: 317 ± 72 kg). Images were analyzed for peak circumferential strain (PCS), peak systolic and diastolic strain rate (S-SR and D-SR), and arterial diameter. Heart rate (HR), systolic and diastolic blood pressure (SBP and DBP) were simultaneously assessed and arterial stiffness indices were calculated post hoc. A two-way repeated measures ANOVA revealed that during isometric contraction, PCS and S-SR decreased significantly (P < 0.01) before increasing significantly above resting levels post exercise (P < 0.05 and P < 0.01, respectively). Conversely, D-SR was unaltered throughout the protocol (P = 0.25). No significant differences were observed between the 30% and 60% 1RM trials. Multiple regression analysis highlighted that HR, BP, and arterial diameter did not fully explain the total variance in PCS, S-SR, and D-SR Acute double-leg press exercise is therefore associated with similar transient changes in CCA wall mechanics at low and moderate intensities. CCA wall mechanics likely provide additional insight into localized intrinsic vascular wall properties beyond current measures of arterial stiffness. PMID:27624687

  2. Strong strain rate effect on the plasticity of amorphous silica nanowires

    SciTech Connect

    Yue, Yonghai; Zheng, Kun

    2014-06-09

    With electron-beam (e-beam) off, in-situ tensile experiments on amorphous silica nanowires (NWs) were performed inside a transmission electron microscope (TEM). By controlling the loading rates, the strain rate can be adjusted accurately in a wide range. The result shows a strong strain rate effect on the plasticity of amorphous silica NWs. At lower strain rate, the intrinsic brittle materials exhibit a pronounced elongation higher than 100% to failure with obvious necking near ambient temperature. At the strain rate higher than 5.23 × 10{sup −3}/s, the elongation of the NW decreased dramatically, and a brittle fracture feature behavior was revealed. This ductile feature of the amorphous silica NWs has been further confirmed with the in-situ experiments under optical microscopy while the effect of e-beam irradiation could be eliminated.

  3. The effect analysis of strain rate on power transmission tower-line system under seismic excitation.

    PubMed

    Tian, Li; Wang, Wenming; Qian, Hui

    2014-01-01

    The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system. PMID:25105157

  4. The Effect Analysis of Strain Rate on Power Transmission Tower-Line System under Seismic Excitation

    PubMed Central

    Wang, Wenming

    2014-01-01

    The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system. PMID:25105157

  5. Modeling temperature and strain rate history in effects in OFHU Cu

    NASA Astrophysics Data System (ADS)

    Tanner, Albert Buck

    Accurate material behavior prediction during large deformations is essential. For the U.S. Army, explosively formed projectiles (EFP), penetrators, and vehicle armor are applications which will benefit from a better understanding of and ability to predict material behavior when subjected to high and varying strain rates and temperatures. Linking macro-scale material behavior with the evolution of microstructure has proven effective in obtaining an appropriate mathematical structure for constitutive relationships. Incorporation of strain rate, temperature, and deformation path history effects are especially critical to accurately predict material responses for arbitrary nonisothermal, variable strain rate conditions. Material constitutive equations contain numerous parameters which must be determined experimentally, and often are not fully optimized. The goal of this research was to develop more physically descriptive kinematics and kinetics models for large strain deformation based on internal state variable (ISV) evolution laws which include strain rate and temperature history dependence. A unique and comprehensive set of experiments involving sequences of different strain rates, temperatures, and deformation paths, as well as, constant strain rate, isothermal and experiments characterizing restoration processes, were conducted on OFHC Cu. Microstructural examinations found that recrystallization occurs and has a significant influence on the flow stress. The performance of various models, including state-of-the-art models such as the BCJ (Sandia), MTS (Los Alamos), and McDowell models were correlated and compared to experimental data. A novel hybrid optimization strategy was used to obtain the optimum parameter set possible corresponding to each model form. To account for the observed flow stress softening, an internal state variable representing the "softened" recrystallized state was incorporated into the hardening evolution equations in the BCJ and Mc

  6. Numerical study of strain-rate effect in cold rolls forming of steel

    NASA Astrophysics Data System (ADS)

    Falsafi, J.; Demirci, E.; Silberschmidt, V. V.

    2013-07-01

    Cold roll forming (CRF) is a well-known continuous manufacturing process, in which a flat strip is deformed by successive rotating pairs of tools, without changing the material thickness. In the past decades, to lessen the process-development efforts, finite-element simulations have been increasingly employed to improve the process design and predict the manufacturing-induced defects. One of the important aspects in design of the CRF process is consideration of resulting strains in the final product as the material passes through several complex forming stands. Sufficient knowledge of longitudinal strain in the workpiece is required to set various process parameters. Increasing a process speed in a roll forming operation can bring cost advantages, but the influence of the forming speed on the strain distribution should be explored. This study is focussed on a strain-rate effect in the CRF process of steel sheets. The strain-rate dependency of a plastic behaviour observed in most metals can affect the finished product's quality as well as process parameters. This paper investigates the influence of the strain rate on longitudinal strains induced in the roll forming operation by incorporating a phenomenological Johnson-Cook constitutive model, which allows studying the impact of the process speed on the output product. Taking advantage of 3D finite element analysis, a roll forming process was simulated using MCS.Marc, comprising a complete set of forming stations. Through the changing of the process speed, the strain rate impact on longitudinal peak strains and forming length was investigated. The results highlight the effect of the strain rate on edge thinning and subsequent undesirable distortions in the product.

  7. The Effect of Temperature and Strain Rate on Porosity Loss in Granular Material

    NASA Astrophysics Data System (ADS)

    Choens, R. C.; Chester, F. M.

    2013-12-01

    Experimental rock deformation was used to quantify the relationship between temperature, stress, and strain rate for brittle consolidation of wet quartz sand at hydrostatic conditions. Petrographic analysis of natural quartz sandstone employing cathode luminescence has shown that grain-scale fracture and grain rearrangement, and associated sealing of fractures, can contribute significantly to consolidation during burial, and that fracturing is similar to that produced during pressure induced consolidation in experiments. The crushing pressure (P*) for granular material, which largely depends on grain size and porosity, is typically defined by room temperature laboratory experiments at strain rates of 10-4 to 10-5 sec-1. Failure envelopes determined for natural sandstones based on measurement of P* generally imply burial depths in excess of inferred burial history. Previous work has shown that elevated temperature decreases the failure strength necessary to cause intergranular fractures, and thus P* should be a strong function of temperature and time. We use soil mechanics principles to determine rate laws for brittle consolidation of sand to better estimate in situ failure conditions of porous geomaterials. Experiments were conducted on St. Peter's sand, a sub rounded quartz sand sieved to 250 to 350 μm grain size. Three different hydrostatic load paths were used for this study: constant plastic strain rate consolidation, plastic strain rate stepping consolidation, and secondary creep consolidation experiments. Constant rate experiments were performed at 10-5 to 10-7 sec-1, and at 20, 150, and 225 C. Creep experiments reached strain rates as low as 10-10 sec-1. Comparison of results from consolidation experiments at different temperatures and strain rates in volume strain versus log pressure space show the consolidation curves are parallel and the effect of increase in temperature and decrease in plastic strain rate is to shift the curves to lower pressures

  8. Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure

    NASA Astrophysics Data System (ADS)

    Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; Weinberger, Christopher R.

    2016-06-01

    In this work, we develop a tantalum strength model that incorporates effects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate effects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa. The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.

  9. Compressive behavior of bulk metallic glass under different conditions --- Coupled effect of temperature and strain rate

    NASA Astrophysics Data System (ADS)

    Yin, Weihua

    Metallic glass was first reported in 1960 by rapid quenching of Au-Si alloys. But, due to the size limitation, this material did not attract remarkable interest until the development of bulk metallic glasses (BMGs) with specimen sizes in excess of 1 mm. BMGs are considered to be promising engineering materials because of their ultrahigh strength, high elastic limit and wear resistance. However, they usually suer from a strong tendency for localized plastic deformation with catastrophic failure. Many basic questions, such as the origin of shear softening and the strain rate eect remain unclear. In this thesis, the mechanical behavior of the Zr55Al 10Ni5Cu30 bulk metallic glass and a metallic glass composite is investigated. The stress-strain relationship for Zr55Al10Ni 5Cu30 over a wide range of strain rate (5x10 --5 to 2x103 s--1) was investigated in uniaxial compression loading using both MTS servo-hydraulic system (quasi-static) and compression Kolsky bar system (dynamic). The effect of the strain rate on the fracture stress at room temperature was discussed. Based on the experimental results, the strain rate sensitivity of the bulk metallic glass changes from a positive value to a negative value at high strain rate, which is a consequence of the significant adiabatic temperature rise during the dynamic testing. In order to characterize the temperature eect on the mechanical behavior of the metallic glass, a synchronically assembled heating unit was designed to be attached onto the Kolsky bar system to perform high temperature and high strain rate mechanical testing. A transition from inhomogeneous deformation to homogeneous deformation has been observed during the quasi-static compressive experiments at testing temperatures close to the glass transition temperature. However, no transition has been observed at high strain rates at all the testing temperatures. A free volume based model is applied to analyze the stress-strain behavior of the homogeneous

  10. The direct effects of strain on burning rates of composite solid propellants

    NASA Technical Reports Server (NTRS)

    Langhenry, M. T.

    1984-01-01

    A mathematical model is developed to predict burn rate augmentation due to strain in a composite solid propellant. The model assumes the effect is due to the ability of the flame to penetrate the small fissures and voids that form when a propellant is strained. The number and size of these fissures is obtained by applying a flaw propagation analysis to randomly distributed flaws that form when the binder-oxidizer particle bonds break under stress. A flame height is calculated with Summerfield's burn rate equation and is used to compute the burn rate augmentation based upon the additional burn area created when the flame penetrates the fissures. Comparisons are made with data obtained from published sources. The existence of threshold pressure and strains, above which augmentation occurs, is verified although the model predicts a lower threshold pressure and higher threshold strain than expected. Further results and applications of the model are discussed.

  11. Impurity effects on high-temperature tensile ductility of iridium alloys at high strain rate

    SciTech Connect

    McKamey, C.G.; George, E.P.; Lee, E.H.; Ohriner, E.K.; Heatherly, L.; Cohron, J.W.

    1999-12-17

    The current study was undertaken to determine what effects, if any, larger amounts of certain impurities (Al,Cr,Fe,Ni, and Si) might have on the physical metallurgy and mechanical properties of the DOP-26 iridium alloy. This report summarizes the effects of these impurities on grain growth behavior and high-temperature high-strain-rate tensile ductility. Comparisons are made to the grain growth behavior and high-strain-rate tensile properties of the DOP-26 alloy without intentional impurity additions.

  12. Strain Rate and Temperature Effects on the Formability and Damage of Advanced High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Winkler, S.; Thompson, A.; Salisbury, C.; Worswick, M.; van Riemsdijk, I.; Mayer, R.

    2008-06-01

    In order to understand the crashworthiness and formability of advance high-strength steels, the effects of strain rate and temperature on the constitutive response of DP 600 and DP 780 steel tubes were investigated and compared with commercial drawing quality (DQ) and high strength low alloy (HSLA) 350 steel tubes. Uniaxial tensile tests were conducted at quasi-static (QS) (0.003 and 0.1 s-1), intermediate (30 and 100 s-1), and high (500, 1000, and 1500 s-1) strain rates using an Instron, instrumented falling weight impact tester and tensile split Hopkinson bar (TSHB) apparatus, respectively. Elevated temperature tests at 150 °C and 300 °C were also conducted at high strain rates. Following testing, metallography and microscopy techniques were used for material and damage characterization. The results obtained show that the steels studied exhibit a positive strain rate sensitivity. Compared to DQ and HSLA 350, the DP steels were found to have less formability at QS rates but enhanced formability at higher strain rates. A decrease in strength and ductility was measured with increasing temperature for the DP steels, indicating a reduction in energy adsorption due to adiabatic heating during a crash event.

  13. Effects of temperature and strain rate on the mechanical properties of silicene

    SciTech Connect

    Pei, Qing-Xiang Zhang, Yong-Wei; Sha, Zhen-Dong; Zhang, Ying-Yan

    2014-01-14

    Silicene, a graphene-like two-dimensional silicon, has attracted great attention due to its fascinating electronic properties similar to graphene and its compatibility with existing semiconducting technology. So far, the effects of temperature and strain rate on its mechanical properties remain unexplored. We investigate the mechanical properties of silicene under uniaxial tensile deformation by using molecular dynamics simulations. We find that the fracture strength and fracture strain of silicene are much higher than those of bulk silicon, though the Young's modulus of silicene is lower than that of bulk silicon. An increase in temperature decreases the fracture strength and fracture strain of silicene significantly, while an increase in strain rate enhances them slightly. The fracture process of silicene is also studied and brittle fracture behavior is observed in the simulations.

  14. Effect of high strain rates on peak stress in a Zr-based bulk metallic glass

    SciTech Connect

    Sunny, George; Yuan Fuping; Prakash, Vikas; Lewandowski, John

    2008-11-01

    The mechanical behavior of Zr{sub 41.25}Ti{sub 13.75}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} (LM-1) has been extensively characterized under quasistatic loading conditions; however, its mechanical behavior under dynamic loading conditions is currently not well understood. A Split-Hopkinson pressure bar (SHPB) and a single-stage gas gun are employed to characterize the mechanical behavior of LM-1 in the strain-rate regime of 10{sup 2}-10{sup 5}/s. The SHPB experiments are conducted with a tapered insert design to mitigate the effects of stress concentrations and preferential failure at the specimen-insert interface. The higher strain-rate plate-impact compression-and-shear experiments are conducted by impacting a thick tungsten carbide (WC) flyer plate with a sandwich sample comprising a thin bulk metallic glass specimen between two thicker WC target plates. Specimens employed in the SHPB experiments failed in the gage-section at a peak stress of approximately 1.8 GPa. Specimens in the high strain-rate plate-impact experiments exhibited a flow stress in shear of approximately 0.9 GPa, regardless of the shear strain-rate. The flow stress under the plate-impact conditions was converted to an equivalent flow stress under uniaxial compression by assuming a von Mises-like material behavior and accounting for the plane strain conditions. The results of these experiments, when compared to the previous work conducted at quasistatic loading rates, indicate that the peak stress of LM-1 is essentially strain rate independent over the strain-rate range up to 10{sup 5}/s.

  15. Temperature and strain rate effects in high strength high conductivity copper alloys tested in air

    SciTech Connect

    Edwards, D.J.

    1998-03-01

    The tensile properties of the three candidate alloys GlidCop{trademark} Al25, CuCrZr, and CuNiBe are known to be sensitive to the testing conditions such as strain rate and test temperature. This study was conducted on GlidCop Al25 (2 conditions) and Hycon 3HP (3 conditions) to ascertain the effect of test temperature and strain rate when tested in open air. The results show that the yield strength and elongation of the GlidCop Al25 alloys exhibit a strain rate dependence that increases with temperature. Both the GlidCop and the Hycon 3 HP exhibited an increase in strength as the strain rate increased, but the GlidCop alloys proved to be the most strain rate sensitive. The GlidCop failed in a ductile manner irrespective of the test conditions, however, their strength and uniform elongation decreased with increasing test temperature and the uniform elongation also decreased dramatically at the lower strain rates. The Hycon 3 HP alloys proved to be extremely sensitive to test temperature, rapidly losing their strength and ductility when the temperature increased above 250 C. As the test temperature increased and the strain rate decreased the fracture mode shifted from a ductile transgranular failure to a ductile intergranular failure with very localized ductility. This latter observation is based on the presence of dimples on the grain facets, indicating that some ductile deformation occurred near the grain boundaries. The material failed without any reduction in area at 450 C and 3.9 {times} 10{sup {minus}4} s{sup {minus}1}, and in several cases failed prematurely.

  16. High Strain-Rate and Temperature Effects on the Response of Composites

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2004-01-01

    The objective of the research is to expand the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, to include elevated temperature tests. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, strain rate and temperature dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into the development and testing of the epoxy resin at elevated temperatures. Two types of epoxy resins were tested in shear at high strain rates of about 700 per second and elevated temperatures of 50 and 80 C. The results show that the temperature significantly affects the response of epoxy.

  17. Effect of strain rate and dislocation density on the twinning behavior in tantalum

    NASA Astrophysics Data System (ADS)

    Florando, Jeffrey N.; El-Dasher, Bassem S.; Chen, Changqiang; Swift, Damian C.; Barton, Nathan R.; McNaney, James M.; Ramesh, K. T.; Hemker, Kevin J.; Kumar, Mukul

    2016-04-01

    The conditions which affect twinning in tantalum have been investigated across a range of strain rates and initial dislocation densities. Tantalum samples were subjected to a range of strain rates, from 10-4/s to 103/s under uniaxial stress conditions, and under laser-induced shock-loading conditions. In this study, twinning was observed at 77K at strain rates from 1/s to 103/s, and during laser-induced shock experiments. The effect of the initial dislocation density, which was imparted by deforming the material to different amounts of pre-strain, was also studied, and it was shown that twinning is suppressed after a given amount of pre-strain, even as the global stress continues to increase. These results indicate that the conditions for twinning cannot be represented solely by a critical global stress value, but are also dependent on the evolution of the dislocation density. In addition, the analysis shows that if twinning is initiated, the nucleated twins may continue to grow as a function of strain, even as the dislocation density continues to increase.

  18. Effects of tissue preservation temperature on high strain-rate material properties of brain.

    PubMed

    Zhang, Jiangyue; Yoganandan, Narayan; Pintar, Frank A; Guan, Yabo; Shender, Barry; Paskoff, Glenn; Laud, Purushottam

    2011-02-01

    Postmortem preservation conditions may be one of factors contributing to wide material property variations in brain tissues in literature. The objective of present study was to determine the effects of preservation temperatures on high strain-rate material properties of brain tissues using the split Hopkinson pressure bar (SHPB). Porcine brains were harvested immediately after sacrifice, sliced into 2 mm thickness, preserved in ice cold (group A, 10 samples) and 37°C (group B, 9 samples) saline solution and warmed to 37°C just prior to the test. A SHPB with tube aluminum transmission bar and semi-conductor strain gauges were used to enhance transmitted wave signals. Data were gathered using a digital acquisition system and processed to obtain stress-strain curves. All tests were conducted within 4 h postmortem. The mean strain-rate was 2487±72 s(-1). A repeated measures model with specimen-level random effects was used to analyze log transformed stress-strain responses through the entire loading range. The mean stress-strain curves with ±95% confidence bands demonstrated typical power relationships with the power value of 2.4519 (standard error, 0.0436) for group A and 2.2657 (standard error, 0.0443) for group B, indicating that responses for the two groups are significantly different. Stresses and tangent moduli rose with increasing strain levels in both groups. These findings indicate that storage temperatures affected brain tissue material properties and preserving tissues at 37°C produced a stiffer response at high strain-rates. Therefore, it is necessary to incorporate material properties obtained from appropriately preserved tissues to accurately predict the responses of brain using stress analyses models, such as finite element simulations. PMID:21055756

  19. Negative strain rate sensitivity in bulk metallic glass and its similarities with the dynamic strain aging effect during deformation

    SciTech Connect

    Dalla Torre, Florian H.; Dubach, Alban; Siegrist, Marco E.; Loeffler, Joerg F.

    2006-08-28

    Detailed investigations were carried out on the deformation behavior of Zr-based monolithic bulk metallic glass and bulk metallic glass matrix composites. The latter, due to splitting and multiplication of shear bands, exhibits larger compressive strains than the former, without significant loss of strength. Serrated flow in conjunction with a negative strain rate sensitivity was observed in both materials. This observation, together with an increase in stress drops with increasing strain and their decrease with increasing strain rate, indicates phenomenologically close similarities with the dynamic strain aging deformation mechanism known for crystalline solids. The micromechanical mechanism of a shear event is discussed in light of these results.

  20. Effect of Strain Rate and Temperature Gradient on Warm Formability of Aluminum Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Bagheriasl, R.; Ghavam, K.; Worswick, M. J.

    2011-08-01

    The effect of temperature gradient and forming speed on warm formability of aluminum alloy sheet has been studied using a coupled thermal mechanical finite element model of cup deep drawing. A user-defined material model was developed using the Bergstrom temperature and strain-rate dependant hardening model and Barlat YLD2000 anisotropic yield surface, which was implemented within LS-DYNA. The stress-strain curves for AA3003 at elevated temperatures and different strain rates were used to fit the Bergstrom hardening parameters. The anisotropy parameters were considered to be non-temperature dependant. The numerical model was validated against experiments from previous work and was found to accurately predict punch force for warm deep drawing. Increases in forming speed are shown to have a negative effect on formability. It is concluded that non-isothermal warm forming can be used to improve the formability of aluminum alloy sheet.

  1. Strain rate and inertial effects on impact loaded single-edge notch bend specimens

    SciTech Connect

    Vargas, P.M.; Dodds, R.H. Jr.

    1995-12-31

    Many problems in fracture mechanics of ductile metals involve surface breaking defects located in structures subjected to impact or blast. When the severity of impact loads is sufficient to produce large inelastic deformations, the assessment of crack-tip conditions must include the effects of plasticity, strain rate and inertia. This work examines the interaction of impact loading, inelastic material deformation and rate sensitivity with the goal of improving the interpretation of ductile fracture toughness values measured under dynamic loading. The authors focus on shallow and deeply notched bend test specimens, SE(B)s, employed routinely to measure the static fracture toughness of a material. A thorough understanding of the test specimen`s dynamic behavior is a prerequisite to the application of measured fracture properties in structural applications. Three-dimensional, nonlinear dynamic analyses are performed for SE(B) fracture specimens subjected to impact loading. Loading rates obtained in conventional drop tower tests are applied in the analyses. An explicit time integration procedure coupled with an efficient (one-point) element integration scheme is employed to compute the dynamic response of the specimen. Strain-rate sensitivity is introduced via a new, efficient implementation of the Bodner-Partom viscoplastic constitutive model. Material properties for A533B steel are used in the analyses. Static analyses of the SE(B) specimens provide baseline responses for assessment of inertial effects. Similarly, dynamic analyses using a strain-rate insensitive material provide reference responses for the assessment of strain rate effects. Strains at key locations on the specimens and the support reactions are extracted from the analyses to assess the accuracy of static formulas commonly used to estimate applied J values. Inertial effects on the applied J are quantified by examining the acceleration component of J evaluated through a domain integral procedure.

  2. Effect of temperature and strain rate on the compressive behaviour of supramolecular polyurethane

    NASA Astrophysics Data System (ADS)

    Tang, Xuegang; Siviour, Clive R.; Buckley, C. Paul; Feula, Antonio; Hayes, Wayne

    2015-09-01

    Supramolecular polyurethanes (SPUs) possess thermoresponsive and thermoreversible properties, and those characteristics are highly desirable in both bulk commodity and value-added applications such as adhesives, shape-memory materials, healable coatings and lightweight, impact-resistant structures (e.g. protection for mobile electronics). A better understanding of the mechanical properties, especially the rate and temperature sensitivity, of these materials are required to assess their suitability for different applications. In this paper, a newly developed SPU with tuneable thermal properties was studied, and the response of this SPU to compressive loading over strain rates from 10-3 to 104 s-1 was presented. Furthermore, the effect of temperature on the mechanical response was also demonstrated. The sample was tested using an Instron mechanical testing machine for quasi-static loading, a home-made hydraulic system for moderate rates and a traditional split Hopkinson pressure bars (SHPBs) for high strain rates. Results showed that the compression stress-strain behaviour was affected significantly by the thermoresponsive nature of SPU, but that, as expected for polymeric materials, the general trends of the temperature and the rate dependence mirror each other. However, this behaviour is more complicated than observed for many other polymeric materials, as a result of the richer range of transitions that influence the behaviour over the range of temperatures and strain rates tested.

  3. A Study on the Effect of Strain Rate on the Dynamic Recrystallization Mechanism of Alloy 617B

    NASA Astrophysics Data System (ADS)

    Jiang, He; Dong, Jianxin; Zhang, Maicang; Yao, Zhihao

    2016-07-01

    The effect of strain rate on dynamic recrystallization (DRX) behavior and mechanism of alloy 617B was investigated by isothermal compression test in a temperature range of 1393 K to 1483 K (1120 °C to 1210 °C) with a wide strain rate scope of 0.01 to 20 s-1. The microstructure evolution was investigated comprehensively by optical microscopy, electron backscatter diffraction (EBSD), electron channeling contrast imaging (ECCI), and transmission electron microscopy (TEM) to provide detailed insight into the effect of strain rate on DRX mechanism. The study shows that DRX is accelerated at both low strain rate and high strain rate conditions with an apparent sluggish kinetics at the intermediate strain rate of 1 s-1. In the low strain rate condition (i.e., <1 s-1), DRX is mainly controlled by the growth of DRX nuclei due to the sufficient time. When the strain rate is higher than 1 s-1, besides the commonly accepted reason of adiabatic heat generated by high strain rate, enhanced DRX nucleation mechanism is crucial for the promotion of DRX at high strain rate. High strain rate could lead to enhanced pile-up of dislocation and higher stored energy, which can facilitate the process of DRX. In addition, distortion or subdivision of twins and "grain fragment" are detected when the strain rate is higher than 1 s-1, which provide additional DRX nucleation mechanism. As a result, the combined effect leads to the higher DRX nucleation rate to promote DRX at high strain rate. The effect of strain rate on DRX is the completion result between sufficiency of time on the one hand and adiabatic heat and enhanced nucleation mechanism on the other.

  4. Effects of strain rate and confining pressure on the deformation and failure of shale

    SciTech Connect

    Cook, J.M. ); Sheppard, M.C. ); Houwen, O.H. )

    1991-06-01

    Previous work on shale mechanical properties has focused on the slow deformation rates appropriate to wellbore deformation. Deformation of shale under a drill bit occurs at a very high rate, and the failure properties of the rock under these conditions are crucial in determining bit performance and in extracting lithology and pore-pressure information from drilling parameters. Triaxial tests were performed on two nonswelling shales under a wide range of strain rates and confining and pore pressures. At low strain rates, when fluid is relatively free to move within the shale, shale deformation and failure are governed by effective stress or pressure (i.e., total confining pressure minus pore pressure), as is the case for ordinary rock. If the pore pressure in the shale is high, increasing the strain rate beyond about 0.1%/sec causes large increases in the strength and ductility of the shale. Total pressure begins to influence the strength. At high stain rates, the influence of effective pressure decreases, except when it is very low (i.e., when pore pressure is very high); ductility then rises rapidly. This behavior is opposite that expected in ordinary rocks. This paper briefly discusses the reasons for these phenomena and their impact on wellbore and drilling problems.

  5. Microstructural and strain rate effects on plastic deformation in aluminum 2219-T87

    NASA Astrophysics Data System (ADS)

    Rincon, Carlos D.

    A fundamental investigation has been conducted on the effects of microstructure and strain rate on the plastic deformation of theta-prime-strengthened 2219 aluminum. The motivation for this work is based upon a previous study which showed inhomogeneous and locally extreme work hardening in the HAZ regions in VPPA 2219-T87 butt welds. This strongly suggests that the HAZ microstructure plays a major role in the deformation and fracture process in precipitation hardened aluminum alloy 2219. Tensile specimens of the weld joint exhibited more rapid work hardening in the heat-affected-zone (HAZ) at higher strain levels. Microhardness contour maps for these welds illustrated that late stage deformation was concentrated in two crossing bands at about 45sp° to the tensile axis. The width of the deformation bands and the ultimate tensile strength seemed to be dictated by the amount of work hardening in the HAZ. In this study, three different heat treatments were used to produce samples with different particle sizes and particle spacings, but all hardened by copper aluminide precipitates of the thetasp' structure. The heat treatments were categorized as being (A) as-received T87 condition, (B) T87 condition aged at approximately 204sp°C for 3 hours and (C) T87 over-aged at 204sp°C for 7 days. Uniaxial tensile tests consisted of two sets of experiments: (1) three heat treatments (A, B, and C) at two strain rates (0.02 minsp{-1} and 0.2 minsp{-1}) and (2) three heat treatments that were interrupted at select stress-strain levels (0.8% and 2% total strain) during the tensile tests at strain rate equal to 0.02 minsp{-1} at room temperature. Furthermore, a detailed transmission electron microscopy (TEM) study demonstrates the microstructural development during tensile deformation. The Voce equation of strain-hardening provides a slightly better fit to the tensile curves than the Ludwik-Hollomon equation. At higher strains, localized areas showed strain fields around thetasp

  6. Strain-rate effects on microstructural deformation in irradiated 316 SS

    NASA Astrophysics Data System (ADS)

    Cole, James I.; Tsai, Hanchung; Allen, Todd R.; Yoshitake, Tsunemitsu; Akasaka, Naoaki; Yamagata, Ichiro; Nakamura, Yasuo

    2006-06-01

    A series of studies have been performed to investigate the post-irradiation deformation and failure behavior of 12% cold-worked 316 stainless steel following irradiation to variety of doses and temperatures in the outer rows of the experimental breeder reactor II (EBR-II). In the current phase of these studies, three sets of samples with different radiation-induced microstructures have been characterized with transmission electron microscopy (TEM) following tensile testing to failure at a 'fast' strain-rate (1 × 10 -3 s -1) and a 'slow' strain-rate (1 × 10 -7 s -1). The samples were irradiated to doses between 9 and 41 dpa at temperatures between 383 and 443 °C. Tensile tests were conducted at a temperature of 430 °C and only regions outside of the necked region were examined. Over the parameters tested, strain-rate had a negligible effect on the deformation microstructure. In addition, there was no clear evidence of localized deformation behavior and the deformation appeared relatively homogeneous, characterized by unfaulting and incorporation of faulted dislocation loops into the general dislocation network structure. The influence of the defect microstructures and strain-rate on deformation behavior is discussed.

  7. The effect of strain rate on the compressive strength of dry and saturated tuff

    SciTech Connect

    Olsson, W.A.

    1989-09-01

    The uniaxial compressive strength of air-dry and water-saturated ashfall tuff from the Nevada Test Site was measured as a function of strain rate from 10{sup {minus}6} to 10{sup 3} s{sup {minus}1}. Two different testing devices were used to achieve this wide range in rate, an electro-hydraulic, servo-controlled load frame, and a Kolsky bar. Critical strain rates of 82 s{sup {minus}1} and 22{sup {minus}1} were found for dry and saturated tuffs, respectively. Below the critical rate the strength is a weak function of strain rate and above the critical rate strength varies as the cube root of strain rate. The strengths of the dry and saturated tuff are the same above the critical rate. At slower rates, the saturated tuff is weaker at all rates and shows a slightly stronger strain-rate sensitivity. 26 refs., 5 figs.

  8. A modified Weibull model for tensile strength distribution of carbon nanotube fibers with strain rate and size effects

    NASA Astrophysics Data System (ADS)

    Sun, Gengzhi; Pang, John H. L.; Zhou, Jinyuan; Zhang, Yani; Zhan, Zhaoyao; Zheng, Lianxi

    2012-09-01

    Fundamental studies on the effects of strain rate and size on the distribution of tensile strength of carbon nanotube (CNT) fibers are reported in this paper. Experimental data show that the mechanical strength of CNT fibers increases from 0.2 to 0.8 GPa as the strain rate increases from 0.00001 to 0.1 (1/s). In addition, the influence of fiber diameter at low and high strain rate conditions was investigated further with statistical analysis. A modified Weibull distribution model for characterizing the tensile strength distribution of CNT fibers taking into account the effect of strain rate and fiber diameter is proposed.

  9. Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel.

    PubMed

    Gao, Xing; Shi, Zhijun; Lau, Andrew; Liu, Changqin; Yang, Guang; Silberschmidt, Vadim V

    2016-05-01

    This study is focused on anomalous strain-rate-dependent behaviour of bacterial cellulose (BC) hydrogel that can be strain-rate insensitive, hardening, softening, or strain-rate insensitive in various ranges of strain rate. BC hydrogel consists of randomly distributed nanofibres and a large content of free water; thanks to its ideal biocompatibility, it is suitable for biomedical applications. Motivated by its potential applications in complex loading conditions of body environment, its time-dependent behaviour was studied by means of in-aqua uniaxial tension tests at constant temperature of 37 °C at various strain rates ranging from 0.000 1s(-1) to 0.3s(-1). Experimental results reflect anomalous strain-rate-dependent behaviour that was not documented before. Micro-morphological observations allowed identification of deformation mechanisms at low and high strain rates in relation to microstructural changes. Unlike strain-rate softening behaviours in other materials, reorientation of nanofibres and kinematics of free-water flow dominate the softening behaviour of BC hydrogel at high strain rates. PMID:26952406

  10. Effect of strain rate on bake hardening response of BH220 steel

    NASA Astrophysics Data System (ADS)

    Das, Anindya; Tarafder, Soumitro; Sivaprasad, S.; Chakrabarti, Debalay

    2015-09-01

    This study aims at understanding the bake hardening ability of ultra low carbon BH220 steel at different strain rates. The as-received material has been pre-strained to four different levels and then deformed in tension under (a) as pre-strained state and (b) after baking at 170 ∘C for 20 minutes, at three different strain rates of 0.001, 0.1 and 100/s. In both the conditions, yield stress increased with pre-strain and strain rate, but bake hardening ability was found to decrease when strain rate was increased. The strain rate sensitivity of the material was also found to decrease with bake hardening. Generation of dislocation forests and their subsequent immobility during baking treatment enables them to act as long range obstacles during further deformation. At higher strain rates, less amount of dislocations are produced which can interact with themselves and produce hardening, because of which bake hardening ability and the strain rate drops. A dislocation based strengthening model, as proposed by Larour et al. 2011 [7], was used to predict the yield stress values obtained at different conditions. The equation produced excellent co-relation with the experimental data.

  11. Environmental and high strain rate effects on composites for engine applications

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Smith, G. T.

    1982-01-01

    The complex environmental and loading conditions experienced by many turbine engine components impose severe durability and damage tolerance requirements for component materials. Programs are being conducted to establish the structural performance of composite materials under anticipated engine operating environments. A description is presented of the results obtained in connection with several of these programs. A comparison of predicted and measured hygrothermal effects is considered along with hygrothermal effects on defect growth, high strain rate effects on composite mechanical properties, dynamic stress intensity factors for composites, and the indentation laws for composite impact analysis.

  12. The Effects of Stress Triaxiality, Temperature and Strain Rate on the Fracture Characteristics of a Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Guo, Weiguo; Guo, Jin; Wang, Ziang; Lu, Shengli

    2016-05-01

    In this work, to study the effects of stress triaxiality, temperature, and strain rate on the fracture behaviors of a single-crystal Nickel-base superalloy, a series of experiments over a temperature range of 293 to 1373 K, strain rate range of 0.001 to 4000/s, and stress triaxiality range of -0.6 to 1.1 are conducted. Anomalous peak of stress is noticed in the yield stress versus temperature curves, and strain rate effect on the anomalous peak of yield stress is analyzed. The anomalous peak shifts to higher temperature as the strain rate increases. Then the effects of stress triaxiality, temperature, and strain rate on its fracture behaviors, including strain to fracture, path of crack propagation, and fracture surface, are observed and analyzed. A valley of the fracture strain is formed in the fracture strain versus temperature curve over the selected temperature range. The micrograph of fracture surface is largely dependent on the temperature, stress triaxiality, and strain rate. Finally, the original Johnson-Cook (J-C) fracture criterion cannot describe the effect of stress triaxiality and temperature on the fracture behaviors of single-crystal Nickel-base superalloy. A modified J-C fracture criterion is developed, which takes the anomalous stress triaxiality and temperature effects on the fracture behaviors of single-crystal Nickel-base superalloy into account.

  13. The Effect of Electric Current and Strain Rate on Serrated Flow of Sheet Aluminum Alloy 5754

    NASA Astrophysics Data System (ADS)

    Zhao, Kunmin; Fan, Rong; Wang, Limin

    2016-03-01

    Electrically assisted tensile tests are carried out on sheet aluminum alloy AA5754 at electric current densities ranging from 0 to 30.4 A/mm2 and strain rates ranging from 10-3 to 10-1 s-1. The strain rate sensitivity and the serrated flow behavior are investigated in accordance with dynamic strain aging mechanism. The strain rate sensitivity changes from negative to positive and keeps increasing with current density. The tendency toward serrated flow is characterized by the onset of Portevin-Le Chatelier (PLC) instabilities, which are influenced by strain rate, temperature, and electric current. The evolutions of three types of serrated flow are observed and analyzed with respect to strain rate and current density. The magnitude of serration varies with strain rate and current density. The serrated flow can be suppressed by a high strain rate, a high temperature, or a strong electric current. The threshold values of these parameters are determined and discussed. Conventional oven-heated tensile tests are conducted to distinguish the electroplasticity. The flow stress reduces more in electrically assisted tension compared to oven-heated tension at the same temperature level. The electric current helps suppress the serrated flow at the similar temperature level of oven-heating.

  14. Strain Rate Effect on the Mechanical Behaviour of Sandstones with Different Grain Sizes

    NASA Astrophysics Data System (ADS)

    Wasantha, P. L. P.; Ranjith, P. G.; Zhao, J.; Shao, S. S.; Permata, G.

    2015-09-01

    Sandstone specimens with different grain sizes were tested under uniaxial compression at a range of strain rates to investigate the coupled influence of strain rate and grain size on the mechanical behaviour of sandstone. Average grain sizes of sandstones were 105.4 µm (fine grained, FG), 228 µm (medium grained, MG) and 321 µm (coarse grained, CG), and the considered strain rates were 10-6, 10-5, 10-4 and 10-3 S-1. We used an optical deformation and strain measuring system for all the tests to determine the deformation characteristics of specimens during loading. The peak strength was observed to increase non-linearly with an increasing gradient against logarithmic strain rate for FG sandstone, while the trend was a linear increase for MG sandstone and unsystematic for CG sandstone. The relationships of elastic modulus versus logarithmic strain rate for the three types of sandstones showed similar trends as for the peak strength. This observation suggests that the FG sandstones are more responsive to strain rate compared to coarser-grained sandstones and this was attributed to the differences in micro-crack development patterns of sandstones with different grain sizes. A surprising behaviour was observed for CG sandstone, which displayed an increase of strength at the slowest strain rate, reversing the general decreasing trend of strength with decreasing strain rate. Stress redistribution associated with grain fracturing was proposed as a possible mechanism to explain this counter-intuitive behaviour. Finally, the results of this paper suggest that the size of constituent grains is a critical parameter that needs to be incorporated in considerations of the mechanical behaviour of sandstones under different strain rates.

  15. Effect of Strain Rate on the Deformation of Red Blood Cells Entering a Constriction

    NASA Astrophysics Data System (ADS)

    Mancuso, Jordan; Ristenpart, William

    2015-11-01

    Although much work has investigated the stretching behavior of RBCs in shear flows, relatively little work has examined the deformation that occurs in the physiologically important extensional flow at the entrance to a constriction. In particular, there is currently no analytical model to predict the extent of deformation as a function of the strain rate in the constriction entrance. Here we experimentally elucidate the relationship between strain rate and the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We systematically varied the flow rate and the microchannel geometry to vary the strain rate, and we measured the resulting RBC deformations with high speed video. We demonstrate that the Kelvin Voigt model captures the stretching dynamics, and that the RBC membrane elastic shear modulus increases approximately linearly with increasing strain rate.

  16. The Effect of Strain-Rate Sensitivity on Formability of AA 5754-O at Cold and Warm Temperatures

    NASA Astrophysics Data System (ADS)

    Ozturk, Fahrettin; Pekel, Hakan; Halkaci, Huseyin S.

    2011-02-01

    Aluminum-magnesium (Al-Mg) alloys have been widely used in diverse applications ranging from automotive bodies to food processing industries because of their excellent high-strength-to-weight ratio, corrosion resistance, and recyclability potential. The formability of these alloys is decreased at room temperature (RT) and is related with the strain-rate sensitivity. This study presents the effect of strain-rate sensitivity on formability of AA 5754-O alloy sheet at a test temperature range of -60 to 250 °C by duplicate tensile test at different strain rates. The test results indicated that the formability change with positive or negative strain-rate sensitivity values. It was observed that the strain-rate sensitivity values increased at negative temperatures with respect to RT. The best formability condition for this alloy in the test ranges was observed at 250 °C and 0.0016 s-1.

  17. Physically-based strength model of tantalum incorporating effects of temperature, strain rate and pressure

    DOE PAGESBeta

    Lim, Hojun; Battaile, Corbett C.; Brown, Justin L.; Weinberger, Christopher R.

    2016-06-14

    In this work, we develop a tantalum strength model that incorporates e ects of temperature, strain rate and pressure. Dislocation kink-pair theory is used to incorporate temperature and strain rate e ects while the pressure dependent yield is obtained through the pressure dependent shear modulus. Material constants used in the model are parameterized from tantalum single crystal tests and polycrystalline ramp compression experiments. It is shown that the proposed strength model agrees well with the temperature and strain rate dependent yield obtained from polycrystalline tantalum experiments. Furthermore, the model accurately reproduces the pressure dependent yield stresses up to 250 GPa.more » The proposed strength model is then used to conduct simulations of a Taylor cylinder impact test and validated with experiments. This approach provides a physically-based multi-scale strength model that is able to predict the plastic deformation of polycrystalline tantalum through a wide range of temperature, strain and pressure regimes.« less

  18. Effect of strain rate on the tensile material properties of human placenta.

    PubMed

    Manoogian, Sarah J; Bisplinghoff, Jill A; McNally, Craig; Kemper, Andrew R; Santago, Anthony C; Duma, Stefan M

    2009-09-01

    Automobile crashes are the largest cause of injury death for pregnant females and the leading cause of traumatic fetal injury mortality in the United States. Computational models, useful tools to evaluate the risk of fetal loss in motor vehicle crashes, are based on a limited number of quasistatic material tests of the placenta. This study presents a total of 64 uniaxial tensile tests on coupon specimens from six human placentas at three strain rates. Material properties of the placental tissue were evaluated at strain rates of 0.07/s, 0.70/s, and 7.00/s. The test data have average failure strains of 0.34, 0.36, and 0.37, respectively. Failure stresses of 10.8 kPa, 11.4 kPa, and 18.6 kPa correspond to an increase in strain rate from 0.07/s to 7.0/s. The results indicate rate dependence only when comparing the highest strain rate of 7.0/s to either of the lower rates. There is no significant rate dependence between 0.07/s and 0.70/s. When compared with previous testing of placental tissue, the current study addresses the material response to more strain rates as well as provides a much larger set of available data. In summary, tensile material properties for the placenta have been determined for use in computational modeling of pregnant occupant kinematics in events ranging from low impact activities to severe impacts such as in motor vehicle crashes. PMID:19725697

  19. A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model

    DOE PAGESBeta

    Kemenov, Konstantin A.; Calhoon, William H.

    2015-03-24

    Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable,more » the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.« less

  20. A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model

    SciTech Connect

    Kemenov, Konstantin A.; Calhoon, William H.

    2015-03-24

    Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable, the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.

  1. Effects of strain rate, test temperature and test environment on tensile properties of vandium alloys

    SciTech Connect

    Gubbi, A.N.; Rowcliffe, A.F.; Eatherly, W.S.; Gibson, L.T.

    1996-10-01

    Tensile testing was carried out on SS-3 tensile specimens punched from 0.762-mm-thick sheets of the large heat of V-4Cr-4Ti and small heats of V-3Cr-3Ti and V-6Cr-6Ti. The tensile specimens were annealed at 1000{degrees} for 2 h to obtain a fully recrystallized, fine grain microstructure with a grain size in the range of 10-19 {mu}m. Room temperature tests at strain rates ranging from 10{sup {minus}3} to 5 x 10{sup {minus}1}/s were carried out in air; elevated temperature testing up to 700{degrees}C was conducted in a vacuum better than 1 x 10{sup {minus}5} torr (<10{sup {minus}3} Pa). To study the effect of atomic hydrogen on ductility, tensile tests were conducted at room temperature in an ultra high vacuum chamber (UHV) with a hydrogen leak system.

  2. Thixoforming of Steel: New Tools Conception to Analyse Thermal Exchanges and Strain Rate Effects

    SciTech Connect

    Cezard, P.; Bigot, R.; Becker, E.; Mathieu, S.; Pierret, J. C.; Rassili, A.

    2007-04-07

    Through different papers, authors shown that the influence of thermal exchanges was a first order parameter on the semi-solid steel behaviour, and certainly for every semi-solid metallic materials. These thermal exchanges hide other parameters effect like, for example, the strain rate influence. This paper tries to determine the influence of these two parameters by using a new extrusion device on a hydraulic press. This new tools conception annihilated the influence of the decrease of the punch speed before stopping and permitted to have a constant speed during the experiment. This work also deals with the homogeneous flow during thixoforming of steel and shows the importance to couple initial temperature of the slug with punch speed. This paper presents different conditions which permitted to have a homogeneous flow by keeping a low load.

  3. Strain rate effects on mechanical properties in tension of aluminium alloys used in armour applications

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Dotta, M.; Forni, D.; Bianchi, S.; Kaufmann, H.

    2012-08-01

    The mechanical properties in tension of two aluminium alloys (AA5059-H131 and AA7039-T651) used in armour applications were determined from tests carried out over a wide range of strain-rates on round specimens. The experimental research was developed in the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The target strain rates were set at the following four levels: 10-3, 30, 300 and 1000s-1. The quasi-static tests were performed with a universal electromechanical machine, whereas a hydro-pneumatic machine and a Split Hopkinson Tensile Bar apparatus were used for medium and high strain-rates respectively. The required parameters by the Johnson-Cook constitutive law were also determined.

  4. High strain rates effects in quasi-isentropic compression of solids

    SciTech Connect

    Ravelo, Ramon; Holian, Brad L; Germann, Timothy C

    2009-01-01

    We have performed large-scale molecular-dynamics (MD) simulations of shock loading and quasi-isentropic compression in defective copper crystals, modeling the interatomic interactions with an embedded-atom method potential. For samples with a relatively low density of pre-existing defects, the strain rate dependence of the flow stress follows a power law in the 10{sup 9}-10{sup 12} s{sup -1} regime with an exponent of 0.40. For initially damaged, isotropic crystals the flow stress exhibits a narrow linear region in strain rate, which then bends over at high strain rates in a manner reminiscent of shear thinning in fluids. The MD results can be described by a modification of Eyring's theory of Couette shear flow in fluids.

  5. Effect of Strain Rate on Tensile Properties of Carbon Fiber Epoxy-Impregnated Bundle Composite

    NASA Astrophysics Data System (ADS)

    Naito, Kimiyoshi

    2014-03-01

    The tensile tests for high tensile strength polyacrylonitrile (PAN)-based (T1000GB) carbon fiber epoxy-impregnated bundle composite at various strain rates ranging from 3.33 × 10-5 to 6.0 × 102 s-1 (various crosshead speeds ranging from 8.33 × 10-7 to 1.5 × 101 m/s) were investigated. The statistical distributions of the tensile strength were also evaluated. The results clearly demonstrated that the tensile strength of bundle composite slightly increased with an increase in the strain rate (crosshead speed) and the Weibull modulus of tensile strength for the bundle composite decreased with an increase in the strain rate (crosshead speed), there is a linear relation between the Weibull modulus and the average tensile strength on log-log scale.

  6. Effects of cold-treatment and strain-rate on mechanical properties of NbTi/Cu superconducting composite wires.

    PubMed

    Guan, Mingzhi; Wang, Xingzhe; Zhou, Youhe

    2015-01-01

    During design and winding of superconducting magnets at room temperature, a pre-tension under different rate is always applied to improve the mechanical stability of the magnets. However, an inconsistency rises for superconductors usually being sensitive to strain and oversized pre-stress which results in degradation of the superconducting composites' critical performance at low temperature. The present study focused on the effects of the cold-treatment and strain-rate of tension deformation on mechanical properties of NbTi/Cu superconducting composite wires. The samples were immersed in a liquid nitrogen (LN2) cryostat for the adiabatic cold-treatment, respectively with 18-hour, 20-hour, 22-hour and 24-hour. A universal testing machine was utilized for tension tests of the NbTi/Cu superconducting composite wires at room temperature; a small-scale extensometer was used to measure strain of samples with variable strain-rate. The strength, elongation at fracture and yield strength of pre-cold-treatment NbTi/Cu composite wires were drawn. It was shown that, the mechanical properties of the superconducting wires are linearly dependent on the holding time of cold-treatment at lower tensile strain-rate, while they exhibit notable nonlinear features at higher strain-rate. The cold-treatment in advance and the strain-rate of pre-tension demonstrate remarkable influences on the mechanical property of the superconducting composite wires. PMID:25713767

  7. Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation

    NASA Astrophysics Data System (ADS)

    Tian, L.; Jiao, Z. M.; Yuan, G. Z.; Ma, S. G.; Wang, Z. H.; Yang, H. J.; Zhang, Y.; Qiao, J. W.

    2016-05-01

    In this study, nanoindentation tests with continuous stiffness measurement technique were measured to investigate the deformation behavior of a high-entropy alloy AlCoCrFeNi under different indentation strain rates at room temperature. Results suggest that the creep behavior exhibits remarkable strain rate dependence. In-situ scanning images showed a conspicuous pileup around the indents, indicating that an extremely localized plastic deformation occurred during the nanoindentation. Under different strain rates, elastic modulus basically remains unchanged, while the hardness decreases with increasing indentation depth due to the indentation size effect. Furthermore, the modulus and hardness of AlCoCrFeNi HEAs are greater than that of the Al x CoCrFeNi (x = 0.3,0.5) at the strain rate of 0.2 s-1 due to its higher negative enthalpy of mixing related to the atomic binding force, and the solid solution strengthening induced by the lattice distortion, respectively.

  8. Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation

    NASA Astrophysics Data System (ADS)

    Tian, L.; Jiao, Z. M.; Yuan, G. Z.; Ma, S. G.; Wang, Z. H.; Yang, H. J.; Zhang, Y.; Qiao, J. W.

    2016-06-01

    In this study, nanoindentation tests with continuous stiffness measurement technique were measured to investigate the deformation behavior of a high-entropy alloy AlCoCrFeNi under different indentation strain rates at room temperature. Results suggest that the creep behavior exhibits remarkable strain rate dependence. In-situ scanning images showed a conspicuous pileup around the indents, indicating that an extremely localized plastic deformation occurred during the nanoindentation. Under different strain rates, elastic modulus basically remains unchanged, while the hardness decreases with increasing indentation depth due to the indentation size effect. Furthermore, the modulus and hardness of AlCoCrFeNi HEAs are greater than that of the Al x CoCrFeNi ( x = 0.3,0.5) at the strain rate of 0.2 s-1 due to its higher negative enthalpy of mixing related to the atomic binding force, and the solid solution strengthening induced by the lattice distortion, respectively.

  9. Effect of strain rate on formability in warm deep drawing of high tensile strength steel sheet

    NASA Astrophysics Data System (ADS)

    Yoshihara, Shoichiro; Iwamatsu, Go

    2014-10-01

    In tensile test of the high tensile strength steel, tensile strength isdrastically decreased as the temperature is raised. Then, the strain rate sensitivity exponent of high tensile strength steel (SUS631) in this study is high at 800 degrees especially. Also, elongation is increased as the temperature is raised. In deep drawing, the maximum punch load of the high tensile strength steel is examined on difference punch speed at 600 and 800 degrees. On the other hand, finite element (FE) simulation was used for the possibility to evaluate the forming load on difference punch speed in warm deep drawing. In FE simulation, we have considered both the strain hardening exponent and the strain rate sensitivity exponent (m-value) because we cannot neglect m-value 0.184 at 800 degrees. The tendency of the forming load in the experiments agrees the results in FE simulation.

  10. Strain rate effects on the mechanical behavior of two Dual Phase steels in tension

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Singh, N. K.; Forni, D.; Singha, M. K.; Gupta, N. K.

    2016-05-01

    This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s-1 to 600 s-1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20∘C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s-1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s-1, and 18 s-1) and high strain rates (200 s-1, 400 s-1, and 600 s-1) respectively. Tests under quasi-static condition are performed at high temperature (200∘C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.

  11. Strain rate effects on the mechanical behavior of two Dual Phase steels in tension

    NASA Astrophysics Data System (ADS)

    Cadoni, E.; Singh, N. K.; Forni, D.; Singha, M. K.; Gupta, N. K.

    2016-04-01

    This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s-1 to 600 s-1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20∘C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s-1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s-1, and 18 s-1) and high strain rates (200 s-1, 400 s-1, and 600 s-1) respectively. Tests under quasi-static condition are performed at high temperature (200∘C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.

  12. Analytical and experimental studies on the strain rate effects in penetration of 10wt % ballistic gelatin

    NASA Astrophysics Data System (ADS)

    Liu, L.; Jia, Z.; Ma, X. L.; Fan, Y. R.

    2013-07-01

    This work concentrates on modeling the super-elastic behavior of 10wt% ballistic gelatin at 4°C and the mechanical responses at quasi-static and high-speed penetrations. Uniaxial compression and simple shearing experiments were carried out to determine the moduli in Mooney-Rivlin model describing the elastic behavior of gelatin at low strain rates. The failure mode is determined to be elastic fracture as the tensile stretch ratio exceeds a critical value. For high compression strain rates, the available results from the split Hopkinson pressure bar (SHPB) experiments for 10wt% gelatin were carefully examined and assessed. Linear relationship between the moduli and the strain rate is established. Based on these material parameters, an analytic solution of stress for the quasi-static and quasi-dynamic expansion of spherical cavity in gelatin is derived. As a consequence, the work needed to open unit volume of cavity, Ps, which is the key parameter in studying penetration problems, is linearly increasing with the characteristic strain rate. The application of Ps to our quasi-static and high-speed penetration experiments is discussed and assessed.

  13. Hydrostatic Stress Effects Incorporated Into the Analysis of the High-Strain-Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.

    2003-01-01

    Procedures for modeling the effect of high strain rate on composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and strain rate dependence of the composite response is primarily due to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. An experimental program has been carried out through a university grant with the Ohio State University to obtain tensile and shear deformation data for a representative polymer for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used at the NASA Glenn Research Center to develop, characterize, and correlate a material model in which the strain rate dependence and nonlinearity (including hydrostatic stress effects) of the polymer are correctly analyzed. To obtain the material data, Glenn s researchers designed and fabricated test specimens of a representative toughened epoxy resin. Quasi-static tests at low strain rates and split Hopkinson bar tests at high strain rates were then conducted at the Ohio State University. The experimental data confirmed the strong effects of strain rate on both the tensile and shear deformation of the polymer. For the analytical model, Glenn researchers modified state variable constitutive equations previously used for the viscoplastic analysis of metals to allow for the analysis of the nonlinear, strain-rate-dependent polymer deformation. Specifically, we accounted for the effects of

  14. Temperature, moisture, and strain rate effects on the compressive mechanical behavior of Nylon 6/6

    SciTech Connect

    Kawahara, W.A.; Brandon, S.L.; Korellis, J.S.

    1988-04-01

    Material test results are presented for the mechanical behavior of Nylon 66 in compression. Static compression modes include direct compression, stress relaxation and creep. Dynamic direct compression results are included. Tests are performed at atmospheric pressure; strain rates range from 10/sup /minus/4/sec to 10/sup 2/sec; temperatures are 20, 65, 110, 150 and 200/degree/C; moisture levels are 0% (dry), 2% and 6% (saturated); true strains to /minus/0.25 are imposed. Our empirical Temperature-Moisture equivalence of 14/degree/C per 1% moisture is discussed with respect to the /open quotes/free volume/close quotes/ concept.

  15. The effects of strain rate and CCVC interfacial layer on mechanical behaviours of CALL

    NASA Astrophysics Data System (ADS)

    Shiguo, Rao; Yuanming, Xia; Kang, Sun

    1994-07-01

    In this paper, the loading and loading-unloading tests of CALL and CALL (CCVC) under tensile impact have been carried out by a self-designed Rotating Circular Disk Tensile impact Apparatus. The quasi-static tension and short beam bending tests are performed on the Shimadzu-5000 testing apparatus. Experiment results show that both CALL and CALL (CCVC) have positive hybrid effect. Under quasi-static tension, the two composites have no obvious yielding until fracture, but have an obvious yielding point on the dynamic tensile stress-strain curves. The dynamic unstable fracture strain is about three times the static unstable fracture strain. The interlaminar shear strength (ISS) of CALL (CCVC) is 10 more than that of CALL. At the same time, the tensile strength and unstable fracture strain of CALL (CCVC) are also higher than that of CALL. In this paper, some conclusions are also drawn from the SEM observation of the fracture specimen surfaces.

  16. Incorporation of Mean Stress Effects into the Micromechanical Analysis of the High Strain Rate Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2002-01-01

    The results presented here are part of an ongoing research program, to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. A micromechanics approach is employed in this work, in which state variable constitutive equations originally developed for metals have been modified to model the deformation of the polymer matrix, and a strength of materials based micromechanics method is used to predict the effective response of the composite. In the analysis of the inelastic deformation of the polymer matrix, the definitions of the effective stress and effective inelastic strain have been modified in order to account for the effect of hydrostatic stresses, which are significant in polymers. Two representative polymers, a toughened epoxy and a brittle epoxy, are characterized through the use of data from tensile and shear tests across a variety of strain rates. Results computed by using the developed constitutive equations correlate well with data generated via experiments. The procedure used to incorporate the constitutive equations within a micromechanics method is presented, and sample calculations of the deformation response of a composite for various fiber orientations and strain rates are discussed.

  17. The effect of shearing strain-rate on the ultimate shearing resistance of clay

    NASA Technical Reports Server (NTRS)

    Cheng, R. Y. K.

    1975-01-01

    An approach for investigating the shearing resistance of cohesive soils subjected to a high rate of shearing strain is described. A fast step-loading torque apparatus was used to induce a state of pure shear in a hollow cylindrical soil specimen. The relationship between shearing resistance and rate of shear deformation was established for various soil densities expressed in terms of initial void ratio or water content. For rate of shearing deformation studies, the shearing resistance increases initially with shearing velocity, but subsequently reaches a terminal value as the shearing velocity increases. The terminal shearing resistance is also found to increase as the density of the soil increases. The results of this investigation are useful in the rheological study of clay. It is particularly important for mobility problems of soil runways, since the soil resistance is found to be sensitive to the rate of shearing.

  18. Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N)

    NASA Astrophysics Data System (ADS)

    Mandal, Sumantra; Jayalakshmi, M.; Bhaduri, A. K.; Subramanya Sarma, V.

    2014-11-01

    In this paper, the effect of strain rate (in the domain of 0.001 to 10 s-1) on dynamic recrystallization (DRX) kinetics in a nitrogen-enhanced 316L(N) austenitic stainless steel during high temperature [≥1123 K (≥850 °C)] deformation is reported. In the low strain rate domain ( i.e., <0.1 s-1), the DRX is predominantly governed by higher growth of DRX grains resulting in a higher DRX fraction and larger DRX grain size. On the other hand, DRX at higher strain rates ( i.e., ≥1 s-1) is mainly controlled by higher nucleation resulting in higher DRX fraction with a finer grain size. In the intermediate strain rate regime of 0.1 s-1, sluggish kinetics of DRX is observed since neither the nucleation nor the growth of DRX grains is predominant. The annealing twinning event, which may accelerates the DRX kinetics, is also observed to occur more frequently during the low and high strain rate deformations.

  19. The effect of strain rate on the viscoelastic response of aortic valve tissue: a direct-fit approach.

    PubMed

    Doehring, Todd C; Carew, Evelyn O; Vesely, Ivan

    2004-02-01

    Knowledge of strain-rate sensitivity of soft tissue viscoelastic and nonlinear elastic properties is important for accurate predictions of biomechanical behavior and for quantitative assessment of the effects of disease or surgical/pharmaceutical intervention. Soft tissues are known to exhibit mild rate sensitivity, but experimental artifacts related to testing system control can confound estimation of these effects. "Perfect" ramp-and-hold stress-relaxation tests become difficult at high strain rates because of problems related to undershoot/overshoot error and vibrations. These errors can introduce unwanted bias into parameter estimation methods that rely on idealizations of the applied ramp-and-hold displacement. To address these problems, we describe a new method for estimating quasilinear viscoelastic (QLV) parameters that directly fits the QLV constitutive model to the actual point-wise stress-time history of the test, using an adaptive grid refinement (AGR) global optimization algorithm. This new method significantly improves the accuracy and predictivity of QLV parameter estimates for heart valve tissues, compared to traditional methods that use idealized displacement data. We estimated QLV parameters for aortic valve tissue over a range of physiologic displacement rates, finding that the viscoelastic content parameter (C) increased slightly with increasing strain rate, but the fast (tau1) and slow (tau2) time constants were strain rate insensitive. PMID:15008370

  20. Effect of strain rates on deformation behaviors of an in situ Ti-based metallic glass matrix composite

    NASA Astrophysics Data System (ADS)

    Jiao, Z. M.; Wang, Z. H.; Chu, M. Y.; Wang, Y. S.; Yang, H. J.; Qiao, J. W.

    2016-06-01

    Quasi-static and dynamic deformation behaviors of an in situ dendrite-reinforced metallic glass matrix composite: Ti56Zr18V10Cu4Be12 were investigated. Upon quasi-static compression, the composite exhibits distinguished work hardening, accompanied by the ultimate strength of 1290 MPa and the plasticity of 20 %. The improved plasticity is attributed to the multiplication of shear bands within the glass matrix and pileups of dislocations within the dendrites. Upon dynamic compression, the stable plastic flow prevails and the yielding stress increases with the strain rate. The macroscopic plasticity decreases considerably, since the shear bands cannot be effectively hindered by dendrites with deteriorated toughness. The dendrite-dominated mechanism results in the positive strain-rate sensitivity, and the Cowper-Symonds model is employed to depict the strain-rate dependency of yielding strength.

  1. The effect of strain rate on the deformation zone in thin polystyrene films

    NASA Astrophysics Data System (ADS)

    Si, Lun; Massa, Michael V.; Dalnoki-Veress, Kari

    2003-03-01

    The phenomenon of crazing in glassy polymers has been extensively studied. Previous studies by Kramer and co-workers have shown that below a critical thickness ( ˜150 nm for polystyrene) crazing is different from what is observed in bulk-like samples. For thin films we observe a two dimensional necking region. This deformation zone does not exhibit the fibrillar structure associated with a craze. When applying a strain to a film with thickness h, a necked region is formed which is uniform and has a thickness d ˜ h/4. We will present our results of a detailed atomic force microscopy study of the thickness of the deformation zone and the extension ratio as a function of the film thickness and strain rate.

  2. The effect of strain rate on the failure stress and toughness of bone of different mineral densities.

    PubMed

    Wallace, R J; Pankaj, P; Simpson, A H R W

    2013-09-01

    The risk of low energy fracture of the bone increases with age and osteoporosis. This paper investigates the effect of strain rate and mineral level on the peak stress and toughness of whole ovine bones. 40 fresh ovine femurs were subjected to 3-point bending at high (17.14s(-1)) and low (8.56 × 10(-3)s(-1)) strain rates with or without a controlled amount of demineralisation. Mineral removal was achieved by ultrasonically assisted exposure in Ethylene diamine tetra-acetic acid (EDTA). The ultimate stress for whole bones of normal mineral content was 200 MPa at the high rate of strain and 149 MPa at the low rate of strain. With changes in bone mineral levels such as may occur in osteomalacia and osteoporosis, the change in toughness varied at different strain rates; a mean value of 3.7 ± 1.4 MJ/m(3) was obtained for the toughness of normal quality whole bone tested at slow loading rate and a reduction of approximately 25% was observed in the demineralised whole bone specimens at the slow loading rate (mean 2.8 ± 0.9 MJ/m(3)). When tested at the high loading rate there was a negligible difference in the toughness between the two (2.0 ± 0.6 MJ/m(3)) mineral levels. This indicated that there was a strain rate dependant effect for the mineral density, and that the removal of mineral alone did not explain all of the reduction in mechanical properties that occur with age or disease. Thus, the reduction in mechanical properties at high strain rates was likely to be due to other phenomena such as increased porosity or reduced collagen quality, rather than loss of mineral. With decreasing mineral levels, as measured by DEXA in clinical practice, the increased fracture risk is dependent on the velocity of the impact. Thus the estimates of increased fracture risk given clinically for a lower DEXA value should be different for high and low energy injuries. PMID:23870507

  3. Effect of heating rate on the stress-strain state in a cylindrical shell with a stiffener ring

    SciTech Connect

    Sorokina, I.V.; Babanskii, V.G.; Rachkov, V.I.

    1988-05-01

    The effect of the heating rate on the stress-strain state of chemical production systems during start-up was examined in a quasistatic formulation of the thermoelasticity problem. The temperature fields were determined for a thin-walled shell with a stiffener ring by solving the nonstationary problem of heat conductivity. The calculations incorporate heat balance equations using the thermal conductivity and specific heat of the shell and ring materials. Thermoelastic stresses were determined for the calculated temperature field as a function of time. Results show that the heating rate has a strong effect on the stress-strain state of the thin-wall structures in the zone of the edge effect and that a linear increase in heating rate increases thermal stresses almost proportionally. The method was designed for optimizing the time required for startup and shutdown of chemical plant equipment and maximizing plant efficiency.

  4. Effect of strain rate and temperature on mechanical properties of selected building Polish steels

    NASA Astrophysics Data System (ADS)

    Moćko, Wojciech; Kruszka, Leopold

    2015-09-01

    Currently, the computer programs of CAD type are basic tool for designing of various structures under impact loading. Application of the numerical calculations allows to substantially reduce amount of time required for the design stage of such projects. However, the proper use of computer aided designing technique requires input data for numerical software including elastic-plastic models of structural materials. This work deals with the constitutive model developed by Rusinek and Klepaczko (RK) applied for the modelling of mechanical behaviour of selected grades structural St0S, St3SX, 18GS and 34GS steels and presents here results of experimental and empirical analyses to describe dynamic elastic-plastic behaviours of tested materials at wide range of temperature. In order to calibrate the RK constitutive model, series of compression tests at wide range of strain rates, including static, quasi-static and dynamic investigations at lowered, room and elevated temperatures, were carried out using two testing stands: servo-hydraulic machine and split Hopkinson bar. The results were analysed to determine influence of temperature and strain rate on visco-plastic response of tested steels, and show good correlation with experimental data.

  5. An Experimental study of the initial volumetric strain rate effect on the creep behaviour of reconstituted clays

    NASA Astrophysics Data System (ADS)

    Bagheri, M.; Rezania, M.; Nezhad, M. M.

    2015-09-01

    Clayey soils tend to undergo continuous compression with time, even after excess pore pressures have substantially dissipated. The effect of time on deformation and mechanical response of these soft soils has been the subject of numerous studies. Based on these studies, the observed time-dependent behaviour of clays is mainly related to the evolution of soil volume and strength characteristics with time, which are classified as creep and/or relaxation properties of the soil. Apart from many empirical relationships that have been proposed in the literature to capture the rheological behaviour of clays, a number of viscid constitutive relationships have also been developed which have more attractive theoretical attributes. A particular feature of these viscid models is that their creep parameters often have clear physical meaning (e.g. coefficient of secondary compression, Cα). Sometimes with these models, a parameter referred to as initial/reference volumetric strain rate, has also been alluded as a model parameter. However, unlike Cα, the determination of and its variations with stress level is not properly documented in the literature. In an attempt to better understand , this paper presents an experimental investigation of the reference volumetric strain rate in reconstituted clay specimens. A long-term triaxial creep test, at different shear stress levels and different strain rates, was performed on clay specimen whereby the volumetric strain rate was measured. The obtained results indicated the stress-level dependency and non-linear variation of with time.

  6. High strain rate behavior of polyurea compositions

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant S.; Milby, Christopher

    2012-03-01

    High-strain-rate response of three polyurea compositions with varying molecular weights has been investigated using a Split Hopkinson Pressure Bar arrangement equipped with aluminum bars. Three polyurea compositions were synthesized from polyamines (Versalink, Air Products) with a multi-functional isocyanate (Isonate 143L, Dow Chemical). Amines with molecular weights of 1000, 650, and a blend of 250/1000 have been used in the current investigation. These materials have been tested to strain rates of over 6000/s. High strain rate results from these tests have shown varying trends as a function of increasing strain. While higher molecular weight composition show lower yield, they do not show dominant hardening behavior at lower strain. On the other hand, the blend of 250/1000 show higher load bearing capability but lower strain hardening effects than the 600 and 1000 molecular weight amine based materials. Results indicate that the initial increase in the modulus of the blend of 250/1000 may lead to the loss of strain hardening characteristics as the material is compressed to 50% strain, compared to 1000 molecular weight amine based material.

  7. Microstructural evolution during ultra-rapid annealing of severely deformed low-carbon steel: strain, temperature, and heating rate effects

    NASA Astrophysics Data System (ADS)

    Mostafaei, M. A.; Kazeminezhad, M.

    2016-07-01

    An interaction between ferrite recrystallization and austenite transformation in low-carbon steel occurs when recrystallization is delayed until the intercritical temperature range by employing high heating rate. The kinetics of recrystallization and transformation is affected by high heating rate and such an interaction. In this study, different levels of strain are applied to low-carbon steel using a severe plastic deformation method. Then, ultra-rapid annealing is performed at different heating rates of 200-1100°C/s and peak temperatures of near critical temperature. Five regimes are proposed to investigate the effects of heating rate, strain, and temperature on the interaction between recrystallization and transformation. The microstructural evolution of severely deformed low-carbon steel after ultra-rapid annealing is investigated based on the proposed regimes. Regarding the intensity and start temperature of the interaction, different microstructures consisting of ferrite and pearlite/martensite are formed. It is found that when the interaction is strong, the microstructure is refined because of the high kinetics of transformation and recrystallization. Moreover, strain shifts an interaction zone to a relatively higher heating rate. Therefore, severely deformed steel should be heated at relatively higher heating rates for it to undergo a strong interaction.

  8. Acute Radiation Effects on Cardiac Function Detected by Strain Rate Imaging in Breast Cancer Patients

    SciTech Connect

    Erven, Katrien; Jurcut, Ruxandra; Weltens, Caroline; Giusca, Sorin; Ector, Joris; Wildiers, Hans; Van den Bogaert, Walter; Voigt, Jens-Uwe

    2011-04-01

    Purpose: To investigate the occurrence of early radiation-induced changes in regional cardiac function using strain rate imaging (SRI) by tissue Doppler echocardiography. Methods and Materials: We included 20 left-sided and 10 right-sided breast cancer patients receiving radiotherapy (RT) to the breast or chest wall. Standard echocardiography and SRI were performed before RT (baseline), immediately after RT (post-RT), and at 2 months follow-up (FUP) after RT. Regional strain (S) and strain rate (SR) values were obtained from all 18 left ventricular (LV) segments. Data were compared to the regional radiation dose. Results: A reduction in S was observed post-RT and at FUP in left-sided patients (S{sub post-RT}: -17.6 {+-} 1.5%, and S{sub FUP}: -17.4 {+-} 2.3%, vs. S{sub baseline}: -19.5 {+-} 2.1%, p < 0.001) but not in right-sided patients. Within the left-sided patient group, S and SR were significantly reduced after RT in apical LV segments (S{sub post-RT}: -15.3 {+-} 2.5%, and S{sub FUP}: -14.3 {+-} 3.7%, vs. S{sub baseline}: -19.3 {+-} 3.0%, p < 0.01; and SR{sub post-RT}: -1.06 {+-} 0.15 s {sup -1}, and SR{sub FUP}: -1.16 {+-} 0.28 s {sup -1}, vs. SR{sub baseline}: -1.29 {+-} 0.27s {sup -1}, p = 0.01), but not in mid- or basal segments. Furthermore, we observed that segments exposed to more than 3 Gy showed a significant decrease in S after RT (S{sub post-RT}: -16.1 {+-} 1.6%, and S{sub FUP}: -15.8 {+-} 3.4%, vs. S{sub baseline}: -18.9 {+-} 2.6%, p < 0.001). This could not be observed in segments receiving less than 3 Gy. Conclusions: SRI shows a dose-related regional decrease in myocardial function after RT. It might be a useful tool in the evaluation of modern RT techniques, with respect to cardiac toxicity.

  9. Effect of strain rate on shear properties and fracture characteristics of DP600 and AA5182-O sheet metal alloys

    NASA Astrophysics Data System (ADS)

    Rahmaan, Taamjeed; Butcher, Cliff; Abedini, Armin; Worswick, Michael

    2015-09-01

    Shear tests were performed at strain rates ranging from quasi-static (.01 s-1) to 600 s-1 for DP600 steel and AA5182-O sheet metal alloys at room temperature. A miniature sized shear specimen was modified and validated in this work to perform high strain rate shear testing. Digital image correlation (DIC) techniques were employed to measure the strains in the experiments, and a criterion to detect the onset of fracture based on the hardening rate of the materials is proposed. At equivalent strains greater than 20%, the DP600 and AA5182 alloys demonstrated a reduced work hardening rate at elevated strain rates. At lower strains, the DP600 shows positive rate sensitivity while the AA5182 was not sensitive to strain rate. For both alloys, the equivalent fracture strain and elongation to failure decreased with strain rate. A conversion of the shear stress to an equivalent stress using the von Mises yield criterion provided excellent agreement with the results from tensile tests at elevated strain rates. Unlike the tensile test, the shear test is not limited by the onset of necking so the equivalent stress can be determined over a larger range of strain.

  10. Microstructure and strain rate effects on the mechanical behavior of particle reinforced epoxy-based reactive materials

    NASA Astrophysics Data System (ADS)

    White, Bradley William

    The effects of reactive metal particles on the microstructure and mechanical properties of epoxy-based composites is investigated in this work. Particle reinforced polymer composites show promise as structural energetic materials that can provide structural strength while simultaneously being capable of releasing large amounts of chemical energy through highly exothermic reactions occurring between the particles and with the matrix. This advanced class of materials is advantageous due to the decreased amount of high density inert casings needed for typical energetic materials and for their ability to increase payload expectancy and decrease collateral damage. Structural energetic materials can be comprised of reactive particles that undergo thermite or intermetallic reactions. In this work nickel (Ni) and aluminum (Al) particles were chosen as reinforcing constituents due to their well characterized mechanical and energetic properties. Although, the reactivity of nickel and aluminum is well characterized, the effects of their particle size, volume fractions, and spatial distribution on the mechanical behavior of the epoxy matrix and composite, across a large range of strain rates, are not well understood. To examine these effects castings of epoxy reinforced with 20--40 vol.% Al and 0--10 vol.% Ni were prepared, while varying the aluminum nominal particle size from 5 to 50 mum and holding the nickel nominal particle size constant at 50 mum. Through these variations eight composite materials were produced, possessing unique microstructures exhibiting different particle spatial distributions and constituent makeup. In order to correlate the microstructure to the constitutive response of the composites, techniques such as nearest-neighbor distances, and multiscale analysis of area fractions (MSAAF) were used to quantitatively characterize the microstructures. The composites were investigated under quasi-static and dynamic compressive loading conditions to characterize

  11. The effects of molecular weight on the single lap shear creep and constant strain rate behavior of thermoplastic polyimidesulfone adhesive

    NASA Technical Reports Server (NTRS)

    Dembosky, Stanley K.; Sancaktar, Erol

    1985-01-01

    The bonded shear creep and constant strain rate behaviors of zero, one, and three percent endcapped thermoplastic polyimidesulfone adhesive were examined at room and elevated temperatures. Endcapping was accomplished by the addition of phthalic anhydrides. The primary objective was to determine the effects of molecular weight on the mechanical properties of the adhesive. Viscoelastic and nonlinear elastic constitutive equations were utilized to model the adhesive. Ludwik's and Crochet's relations were used to describe the experimental failure data. The effects of molecular weight changes on the above mentioned mechanical behavior were assessed. The viscoelastic Chase-Goldsmith and elastic nonlinear relations gave a good fit to the experimental stress strain behavior. Crochet's relations based on Maxwell and Chase-Goldsmith models were fit to delayed failure data. Ludwik's equations revealed negligible rate dependence. Ultimate stress levels and the safe levels for creep stresses were found to decrease as molecular weight was reduced.

  12. Toxic Effects of Linear Alkylbenzene Sulfonate on Metabolic Activity, Growth Rate, and Microcolony Formation of Nitrosomonas and Nitrosospira Strains

    PubMed Central

    Brandt, Kristian K.; Hesselso/e, Martin; Roslev, Peter; Henriksen, Kaj; So/rensen, Jan

    2001-01-01

    Strong inhibitory effects of the anionic surfactant linear alkylbenzene sulfonate (LAS) on four strains of autotrophic ammonia-oxidizing bacteria (AOB) are reported. Two Nitrosospira strains were considerably more sensitive to LAS than two Nitrosomonas strains were. Interestingly, the two Nitrosospira strains showed a weak capacity to remove LAS from the medium. This could not be attributed to adsorption or any other known physical or chemical process, suggesting that biodegradation of LAS took place. In each strain, the metabolic activity (50% effective concentration [EC50], 6 to 38 mg liter−1) was affected much less by LAS than the growth rate and viability (EC50, 3 to 14 mg liter−1) were. However, at LAS levels that inhibited growth, metabolic activity took place only for 1 to 5 days, after which metabolic activity also ceased. The potential for adaptation to LAS exposure was investigated with Nitrosomonas europaea grown at a sublethal LAS level (10 mg liter−1); compared to control cells, preexposed cells showed severely affected cell functions (cessation of growth, loss of viability, and reduced NH4+ oxidation activity), demonstrating that long-term incubation at sublethal LAS levels was also detrimental. Our data strongly suggest that AOB are more sensitive to LAS than most heterotrophic bacteria are, and we hypothesize that thermodynamic constraints make AOB more susceptible to surfactant-induced stress than heterotrophic bacteria are. We further suggest that AOB may comprise a sensitive indicator group which can be used to determine the impact of LAS on microbial communities. PMID:11375155

  13. On strain-rate sensitivity and size effect of brittle solids: transition from cooperative phenomena to microcrack nucleation

    NASA Astrophysics Data System (ADS)

    Mastilovic, Sreten

    2013-03-01

    An idealized brittle microscale system is subjected to dynamic uniaxial tension in the medium-to-high strain-rate range (dot \\varepsilon in [100s^{-1},1 × 107 s^{-1}]) to investigate its mechanical response under constrained spatial and temporal scales. The setup of dynamic simulations is designed to ensure practically identical in-plane stress conditions on a system of continuum particles forming a two-dimensional, geometrically and structurally disordered, lattice. The rate sensitivity of size effects is observed as well as the ordering effect of kinetic energy. A simple phenomenological expression is developed to account for the tensile strength sensitivity of the small-sized brittle systems to the strain-rate and extrinsic size effects, which may serve as a guideline for formulation of constitutive relations in the MEMS design. The representative sample is defined as a square lattice size for which the tensile strength becomes rate-insensitive and an expression is proposed to model its evolution between two asymptotes corresponding to the limiting loading rates. The dynamics of damage accumulation is analyzed as a function of sample size and loading rate.

  14. Surface evolution effects observed in velocimetry of materials at high strain rates

    NASA Astrophysics Data System (ADS)

    Moro, Erik; Briggs, Matthew; Hull, Lawrence

    2014-03-01

    According to the accepted model for photon Doppler velocimetry (PDV), a particular probe measures the bulk (or average) motion of a surface moving along its beam axis. Utilizing this model, a surface's velocity vector may be reconstructed via a number of probes, at distinct angles of incidence, all of which view the same region on the surface. However, this approach does not account for localized effects of surface evolution, which may interact with PDV's interferometer in ways that are not yet fully appreciated. Consider, for example, that the material flow of a straining surface occurs tangent to the surface and may project along the beam axes of non-normal probes. We present a recent series of explosive tests, whose results suggest that non-normal PDV probes measure the effects of surface evolution as it projects along their beam axes. We believe that these effects have not been observed before. The implication is that PDV probes are capable of measuring the bulk motion of a surface, as well as measuring discrete events associated with surface evolution and failure.

  15. Effect of Buffer Conditions and Organic Cosolvents on the Rate of Strain-Promoted Azide-Alkyne Cycloaddition.

    PubMed

    Davis, Derek L; Price, Erin K; Aderibigbe, Sabrina O; Larkin, Maureen X-H; Barlow, Emmett D; Chen, Renjie; Ford, Lincoln C; Gray, Zackery T; Gren, Stephen H; Jin, Yuwei; Keddington, Keith S; Kent, Alexandra D; Kim, Dasom; Lewis, Ashley; Marrouche, Rami S; O'Dair, Mark K; Powell, Daniel R; Scadden, Mick'l H C; Session, Curtis B; Tao, Jifei; Trieu, Janelle; Whiteford, Kristen N; Yuan, Zheng; Yun, Goyeun; Zhu, Judy; Heemstra, Jennifer M

    2016-08-01

    We investigate the effect of buffer identity, ionic strength, pH, and organic cosolvents on the rate of strain-promoted azide-alkyne cycloaddition with the widely used DIBAC cyclooctyne. The rate of reaction between DIBAC and a hydrophilic azide is highly tolerant to changes in buffer conditions but is impacted by organic cosolvents. Thus, bioconjugation reactions using DIBAC can be carried out in the buffer that is most compatible with the biomolecules being labeled, but the use of organic cosolvents should be carefully considered. PMID:27387821

  16. Dendritic flux avalanches and the accompanied thermal strain in type-II superconducting films: effect of magnetic field ramp rate

    NASA Astrophysics Data System (ADS)

    Jing, Ze; Yong, Huadong; Zhou, You-He

    2015-07-01

    Dendritic flux avalanches and the accompanying thermal stress and strain in type-II superconducting thin films under transverse magnetic fields are numerically simulated in this paper. The influence of the magnetic field ramp rate, edge defects, and the temperature of the surrounding coolant are considered. Maxwell's equations and the highly nonlinear E-J power-law characteristics of superconductors, coupled with the heat diffusion equation, are adopted to formulate these phenomena. The fast Fourier transform-based iteration scheme is used to track the evolution of the magnetic flux and the temperature in the superconducting film. The finite element method is used to analyze the thermal stress and strain induced in the superconducting film. It is found that the ramp rate has a significant effect on the flux avalanche process. The avalanches nucleate more easily for a film under a large magnetic field ramp rate than for a film under a small one. In addition, the avalanches always initiate from edge defects or areas that experience larger magnetic fields. The superconducting films experience large thermal strain induced by the large temperature gradient during the avalanche process, which may even lead to the failure of the sample.

  17. Effect of trabecular bone loss on cortical strain rate during impact in an in vitro model of avian femur

    PubMed Central

    Reich, Tal; Gefen, Amit

    2006-01-01

    Background Osteoporotic hip fractures occur due to loss of cortical and trabecular bone mass and consequent degradation in whole bone strength. The direct cause of most fractures is a fall, and hence, characterizing the mechanical behavior of a whole osteopenic bone under impact is important. However, very little is known about the mechanical interactions between cortical and trabecular bone during impact, and it is specifically unclear to what extent epiphyseal trabecular bone contributes to impact resistance of whole bones. We hypothesized that trabecular bone serves as a structural support to the cortex during impact, and hence, loss of a critical mass of trabecular bone reduces internal constraining of the cortex, and, thereby, decreases the impact tolerance of the whole bone. Methods To test this hypothesis, we conducted cortical strain rate measurements in adult chicken's proximal femora subjected to a Charpy impact test, after removing different trabecular bone core masses to simulate different osteopenic severities. Results We found that removal of core trabecular bone decreased by ~10-fold the cortical strain rate at the side opposite to impact (p < 0.01), i.e. from 359,815 ± 1799 μm/m per second (mean ± standard error) for an intact (control) specimen down to 35,997 ± 180 μm/m per second where 67% of the total trabecular bone mass (~0.7 grams in adult chicken) were removed. After normalizing the strain rate by the initial weight of bone specimens, a sigmoid relation emerged between normalized strain rate and removed mass of trabecular bone, showing very little effect on the cortex strain rate if below 10% of the trabecular mass is removed, but most of the effect was already apparent for less than 30% trabecular bone loss. An analytical model of the experiments supported this behavior. Conclusion We conclude that in our in vitro avian model, loss of over 10% of core trabecular bone substantially altered the deformation response of whole bone to impact

  18. Effect of Strain Rate on Hot Ductility Behavior of a High Nitrogen Cr-Mn Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhua; Meng, Qing; Qu, Minggui; Zhou, Zean; Wang, Bo; Fu, Wantang

    2016-03-01

    18Mn18Cr0.6N steel specimens were tensile tested between 1173 K and 1473 K (900 °C and 1200 °C) at 9 strain rates ranging from 0.001 to 10 s-1. The tensile strained microstructures were analyzed through electron backscatter diffraction analysis. The strain rate was found to affect hot ductility by influencing the strain distribution, the extent of dynamic recrystallization and the resulting grain size, and dynamic recovery. The crack nucleation sites were primarily located at grain boundaries and were not influenced by the strain rate. At 1473 K (1200 °C), a higher strain rate was beneficial for grain refinement and preventing hot cracking; however, dynamic recovery appreciably occurred at 0.001 s-1 and induced transgranular crack propagation. At 1373 K (1100 °C), a high extent of dynamic recrystallization and fine new grains at medium strain rates led to good hot ductility. The strain gradient from the interior of the grain to the grain boundary increased with decreasing strain rate at 1173 K and 1273 K (900 °C and 1000 °C), which promoted hot cracking. Grain boundary sliding accompanied grain rotation and did not contribute to hot cracking.

  19. High strain rate behaviour of polypropylene microfoams

    NASA Astrophysics Data System (ADS)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  20. The Effect of transient change in strain rate on plastic flow behaviour of Al-Mg-Si alloy at elevated temperatures

    SciTech Connect

    Petrov, P.; Voronkov, V.; Potapenko, K.; Ivanov, V.

    2011-05-04

    In extrusion forging processes, the abrupt changes in strain rate follows the plastic deformation of a material within the deforming zone. To simulate accurately this effect, the specific experimental investigation of the plastic flow during the transient change in strain rate should be performed. The present paper deals with the investigation of this effect on the flow stress of an Al-Mg-Si alloy during its deformation at 350 deg. C. The investigation consists of two steps. Both steps are connected to the monotonic uniaxial compression loading of a cylindrical specimen. During the first step the flow behaviour of the alloy is investigated at the constant strain rate wihin the range of 0.1-50 s{sup -1} at the temperature range of 350-430 deg. C. During the second step the strain rate is abruptly increased or decreased from its current value at a fixed engineering strain of 17-21%. From the beginning of the test up to the strain of 17-21% the value of the strain rate is constant and equal to either 1 s{sup -1} or 10 s{sup -1}. At the strain of 17-21% the value of a strain rate is either increased to 10 s{sup -1} or decreased to 1 s{sup -1}.The results of the experimental investigations were used to determine the isothermal flow stress-strain curves of the Al-Mg-Si alloy as well as the heat effect of plastic deformation of the alloy. On basis of these curves, the strain rate sensitivity index m as a function of true strain and temperature was determined. This parameter allows to optimize a technological process of hot forging of the aluminium alloy as well as it is very important data for the construction of a phenomenological flow stress model.

  1. The Effect of transient change in strain rate on plastic flow behaviour of Al-Mg-Si alloy at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Petrov, P.; Voronkov, V.; Potapenko, K.; Ivanov, V.

    2011-05-01

    In extrusion forging processes, the abrupt changes in strain rate follows the plastic deformation of a material within the deforming zone. To simulate accurately this effect, the specific experimental investigation of the plastic flow during the transient change in strain rate should be performed. The present paper deals with the investigation of this effect on the flow stress of an Al-Mg-Si alloy during its deformation at 350° C. The investigation consists of two steps. Both steps are connected to the monotonic uniaxial compression loading of a cylindrical specimen. During the first step the flow behaviour of the alloy is investigated at the constant strain rate wihin the range of 0.1-50 s-1 at the temperature range of 350-430° C. During the second step the strain rate is abruptly increased or decreased from its current value at a fixed engineering strain of 17-21%. From the beginning of the test up to the strain of 17-21% the value of the strain rate is constant and equal to either 1 s-1 or 10 s-1. At the strain of 17-21% the value of a strain rate is either increased to 10 s-1 or decreased to 1 s-1. The results of the experimental investigations were used to determine the isothermal flow stress-strain curves of the Al-Mg-Si alloy as well as the heat effect of plastic deformation of the alloy. On basis of these curves, the strain rate sensitivity index m as a function of true strain and temperature was determined. This parameter allows to optimize a technological process of hot forging of the aluminium alloy as well as it is very important data for the construction of a phenomenological flow stress model.

  2. Effects of surface cracks and strain rate on the tensile behavior of Balmoral Red granite

    NASA Astrophysics Data System (ADS)

    Mardoukhi, Ahmad; Hokka, Mikko; Kuokkala, Veli-Tapani

    2015-09-01

    This paper presents an experimental procedure for studying the effects of surface cracks on the mechanical behavior of Balmoral Red granite under dynamic and quasi-static loading. Three different thermal shocks were applied on the surface of the Brazilian Disc test samples by keeping a flame torch at a fixed distance from the sample surface for 10, 30, and 60 seconds. Microscopy clearly shows that the number of the surface cracks increases with the duration of the thermal shock. After the thermal shock, the Brazilian Disc tests were performed using a servohydraulic materials testing machine and a compression Split Hopkinson Pressure Bar (SHPB) device. The results show that the tensile strength of the rock decreases and the rate sensitivity of the rock increases as more cracks are introduced to the structure. The DIC analysis of the Brazilian disc tests shows that the fracture of the sample initiates at the center of the samples or slightly closer to the incident bar contact point. This is followed by crushing of the samples at both contact points with the stress bars.

  3. The effect of heat developed during high strain rate deformation on the constitutive modeling of amorphous polymers

    NASA Astrophysics Data System (ADS)

    Safari, Keivan H.; Zamani, Jamal; Guedes, Rui M.; Ferreira, Fernando J.

    2016-02-01

    An adiabatic constitutive model is proposed for large strain deformation of polycarbonate (PC) at high strain rates. When the strain rate is sufficiently high such that the heat generated does not have time to transfer to the surroundings, temperature of material rises. The high strain rate deformation behavior of polymers is significantly affected by temperature-dependent constants and thermal softening. Based on the isothermal model which first was introduced by Mulliken and Boyce et al. (Int. J. Solids Struct. 43:1331-1356, 2006), an adiabatic model is proposed to predict the yield and post-yield behavior of glassy polymers at high strain rates. When calculating the heat generated and the temperature changes during the step by step simulation of the deformation, temperature-dependent elastic constants are incorporated to the constitutive equations. Moreover, better prediction of softening phenomena is achieved by the new definition for softening parameters of the proposed model. The constitutive model has been implemented numerically into a commercial finite element code through a user material subroutine (VUMAT). The experimental results, obtained using a split Hopkinson pressure bar, are supported by dynamic mechanical thermal analysis (DMTA) and Decompose/Shift/Reconstruct (DSR) method. Comparison of adiabatic model predictions with experimental data demonstrates the ability of the model to capture the characteristic features of stress-strain curve of the material at very high strain rates.

  4. EFFECTS OF RING STRAIN ON GAS-PHASE RATE CONSTANTS. 2. OH RADICAL REACTIONS WITH CYCLOALKENES

    EPA Science Inventory

    Relative rate constants for the gas phase reactions of OH radicals with a series of cycloalkenes have been determined at 298 + or - 2 K, using methyl nitrite photolysis in air as a source of OH radicals. The data show that the rate constants for the nonconjugated cycloalkenes stu...

  5. Implementation of an Associative Flow Rule Including Hydrostatic Stress Effects Into the High Strain Rate Deformation Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    A previously developed analytical formulation has been modified in order to more accurately account for the effects of hydrostatic stresses on the nonlinear, strain rate dependent deformation of polymer matrix composites. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical J2 plasticity theory definitions of effective stress and effective inelastic strain, along with the equations used to compute the components of the inelastic strain rate tensor, are appropriately modified. To verify the revised formulation, the shear and tensile deformation of two representative polymers are computed across a wide range of strain rates. Results computed using the developed constitutive equations correlate well with experimental data. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite for several fiber orientation angles across a variety of strain rates. The computed values compare well to experimentally obtained results.

  6. The effect of turbulent strain rate on the viability of E.coli in simulated wastewater discharge

    NASA Astrophysics Data System (ADS)

    Cotel, Aline; Battani, Brian; Semrau, Jeremy

    2003-11-01

    During storm events, release of combined sewage overflows can and does occur throughout the United States, most notably in the Great Lakes. Such overflows can deteriorate overall water quality and also lead to the closure of recreational beaches for many reasons, including due to the presence of harmful microorganisms. Here we report on how different mixing regimes created by varying the Reynolds number of simulated wastewater discharges affect the concentration and viability of microorganisms. A laboratory model was created to simulate a typical discharge containing free-floating Escherichia coli. From the experimental results, it was apparent that in the near field (five diameters from the point of discharge) the viability of E. coli was reduced as the Reynolds number of discharge increased, and such viability was more than could be explained by dilution alone. The discrepancy between observed cell viability and dilution can be attributed to the Kolmogorov strain rate. Such an effect on cell viability was only observed in the near field and did not occur in the far field, suggesting that one possible strategy to mitigate the impact of wastewater discharges, particularly that of combined sewer overflows would be to increase the Kolmogorov strain rate in the near field.

  7. Modeling the Nonlinear, Strain Rate Dependent Deformation of Woven Ceramic Matrix Composites With Hydrostatic Stress Effects Included

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.

    2004-01-01

    An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites with a plain weave fiber architecture. In the developed model, the differences in the tension and compression response have also been considered. State variable based viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear stiffness is independent of the stiffness in the normal directions. The developed equations have been implemented into a commercially available transient dynamic finite element code, LS-DYNA, through the use of user defined subroutines (UMATs). The tensile, compressive, and shear deformation of a representative plain weave woven ceramic matrix composite are computed and compared to experimental results. The computed values correlate well to the experimental data, demonstrating the ability of the model to accurately compute the deformation response of woven ceramic matrix composites.

  8. Modeling the Nonlinear, Strain Rate Dependent Deformation of Shuttle Leading Edge Materials with Hydrostatic Stress Effects Included

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.

    2004-01-01

    An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites, such as the Reinforced Carbon Carbon (RCC) material used on the leading edges of the Space Shuttle. In the developed model, the differences in the tension and compression deformation behaviors have also been accounted for. State variable viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear response is independent of the stiffness in the normal directions. The developed equations have been implemented into LS-DYNA through the use of user defined subroutines (UMATs). Several sample qualitative calculations have been conducted, which demonstrate the ability of the model to qualitatively capture the features of the deformation response present in woven ceramic matrix composites.

  9. High Strain Rate Behavior of Polyurea Compositions

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Milby, Christopher

    2011-06-01

    Polyurea has been gaining importance in recent years due to its impact resistance properties. The actual compositions of this viscoelastic material must be tailored for specific use. It is therefore imperative to study the effect of variations in composition on the properties of the material. High-strain-rate response of three polyurea compositions with varying molecular weights has been investigated using a Split Hopkinson Pressure Bar arrangement equipped with titanium bars. The polyurea compositions were synthesized from polyamines (Versalink, Air Products) with a multi-functional isocyanate (Isonate 143L, Dow Chemical). Amines with molecular weights of 1000, 650, and a blend of 250/1000 have been used in the current investigation. The materials have been tested up to strain rates of 6000/s. Results from these tests have shown interesting trends on the high rate behavior. While higher molecular weight composition show lower yield, they do not show dominant hardening behavior. On the other hand, the blend of 250/1000 show higher load bearing capability but lower strain hardening effects than the 600 and 1000 molecular weight amine based materials. Refinement in experimental methods and comparison of results using aluminum Split Hopkinson Bar is presented.

  10. Strain Rate Effects on the Energy Absorption of Rapidly Manufactured Composite Tubes

    SciTech Connect

    Brighton, Aaron M; Forrest, Mark; Starbuck, J Michael; ERDMAN III, DONALD L; Fox, Bronwyn

    2009-01-01

    Quasi-static and intermediate rate axial crush tests were conducted on tubular specimens of Carbon/Epoxy (Toray T700/G83C) and Glass/Polypropylene (Twintex). The quasi-static tests were conducted at 10 mm/min (1.67x10-4 m/s); five different crush initiators were used. Tests at intermediate rates were performed at speeds of 0.25 m/s, 0.5 m/s, 0.75 m/s 1m/s, 2 m/s and 4 m/s. Quasi-static tests of tubular specimens showed high specific energy absorption (SEA) values with 86 kJ/kg for Carbon/Epoxy specimens. The specific energy absorption of the Glass/Polypropylene specimens was measured to be 29 kJ/kg. Results from the intermediate test rates showed that while a decrease in specific energy absorbed was observed as speeds increased, values did not fall below 55kj/kg for carbon specimens or 35 kJ/kg for the Glass/Polypropylene specimens. When compared with steel and aluminium, specific energy absorption values of 15 kJ/kg and 30 kJ/kg respectively, the benefits of using composite materials in crash structures are apparent.

  11. Impact Damage and Strain Rate Effects for Toughened Epoxy Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    Structural integrity of composite systems under dynamic impact loading is investigated herein. The GENOA virtual testing software environment is used to implement the effects of dynamic loading on fracture progression and damage tolerance. Combinations of graphite and glass fibers with a toughened epoxy matrix are investigated. The effect of a ceramic coating for the absorption of impact energy is also included. Impact and post impact simulations include verification and prediction of (1) Load and Impact Energy, (2) Impact Damage Size, (3) Maximum Impact Peak Load, (4) Residual Strength, (5) Maximum Displacement, (6) Contribution of Failure Modes to Failure Mechanisms, (7) Prediction of Impact Load Versus Time, and (8) Damage, and Fracture Pattern. A computer model is utilized for the assessment of structural response, progressive fracture, and defect/damage tolerance characteristics. Results show the damage progression sequence and the changes in the structural response characteristics due to dynamic impact. The fundamental premise of computational simulation is that the complete evaluation of composite fracture requires an assessment of ply and subply level damage/fracture processes as the structure is subjected to loads. Simulation results for the graphite/epoxy composite were compared with the impact and tension failure test data, correlation and verification was obtained that included: (1) impact energy, (2) damage size, (3) maximum impact peak load, (4) residual strength, (5) maximum displacement, and (6) failure mechanisms of the composite structure.

  12. Effects of temperature and strain rate on the tensile behaviors of SIMP steel in static lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Yan, Wei; Sha, Wei; Wang, Wei; Shan, Yiyin; Yang, Ke

    2016-05-01

    In order to assess the susceptibility of candidate structural materials to liquid metal embrittlement, this work investigated the tensile behaviors of ferritic-martensitic steel in static lead bismuth eutectic (LBE). The tensile tests were carried out in static lead bismuth eutectic under different temperatures and strain rates. Pronounced liquid metal embrittlement phenomenon is observed between 200 °C and 450 °C. Total elongation is reduced greatly due to the liquid metal embrittlement in LBE environment. The range of ductility trough is larger under slow strain rate tensile (SSRT) test.

  13. The effect of moisture content on the dynamic fragmentation of wet sand at high strain rates

    NASA Astrophysics Data System (ADS)

    Xue, Kun

    2014-03-01

    A comprehensive model is established to account for the instability onset of rapidly expanding granular shells subject to the explosion loadings generated by the detonation of the central explosives. The moisture content strongly influences the shock interactions in the wet particle beds and the ensuing evolvement of the granular compacts. A material model for granular materials which can account for the degree of saturation was incorporated into a non-linear dynamic simulation program to investigate the moisture of effect on the shock responses of wet granular materials. In conjunction with our instability model, the predicted instability diameters of the expanding dry/wet granular shells are in a good agreement with the experimental results. Particularly the postponed instability onset of the wet granular shell found both experimentally and analytically can largely be attributed to the significantly greater kinetic energy obtained by wet particles thanks to less energy of shock wave consumed in compacting the granular materials.

  14. A comparison of eastern North American seismic strain-rates to glacial rebound strain-rates

    NASA Technical Reports Server (NTRS)

    James, Thomas S.; Bent, Allison L.

    1994-01-01

    Glacial rebound strain-rates computed using a simple Laurentide glacial loading model are of the order of 10(exp -9) per year within the region of glaciation and extending several hundred kilometers beyond. The horizontal strain-rates receive approximately equal contributions from horizontal and vertical velocities, a consequence of the spherical geometry adopted for the Earth model. In the eastern United States and southeastern Canada the computed strain-rates are 1-3 orders of magnitude greater than an estimate of the average seismic strain-rate (Anderson, 1986) and approximately 1 order of magnitude greater than predicted erosional strain-rates. The predicted glacial rebound strain-rates are not, in general, oriented in such a way as to augment the observed state of deviatoric stress, possibly explaining why the seismic strain-rates are much smaller than the glacial rebound strain-rates. An exception to this may be seismically active regions in the St. Lawrence valley.

  15. Effect of strain rate on the tensile properties of unirradiated and irradiated V-4Cr-4Ti

    NASA Astrophysics Data System (ADS)

    Rowcliffe, A. F.; Zinkle, S. J.; Hoelzer, D. T.

    2000-12-01

    Tensile tests were carried out on an annealed, unirradiated V-4Cr-4Ti alloy from RT to 850°C at strain rates ranging from 10-1 to 10-5 s-1. Below 300°C, where interstitial solutes are relatively immobile, deformation is homogeneous, and the strain rate sensitivity (SRS) of the yield and flow stress is positive. Between 300°C and 700°C, the formation of solute atmospheres at locked dislocations results in dynamic strain-aging (DSA), deformation becomes heterogeneous, and the SRS of the flow stress is negative; in this regime the lower yield stress is independent of strain rate. Above 700°C, substitutional solutes are also mobile, DSA declines, and the material enters a power law creep regime in which the SRS becomes positive again. Following neutron irradiation to 0.5 dpa at temperatures ⩽400°C, severe flow localization occurs due to the high number density of <1 1 0> and <1 1 1> loops. However, above 400°C, strain hardening capacity returns but without the Lüders extension. At 500°C, after several percent plastic deformation, DSA occurs as interstitial solutes are released from the defect structure.

  16. Environmental and strain rate effects on graphite/epoxy composites. Final Report; M.S. Thesis, 1987

    NASA Technical Reports Server (NTRS)

    Peimandis, Konstantinos

    1991-01-01

    The hygrothermal characterization of unidirectional graphite/epoxy composites over a range of strain rates was investigated. Special techniques developed for such hygrothermal characterization are also described. The mechanical properties of the composite material were obtained and analyzed by means of a time-temperature-moisture superposition principle. The results show the following: (1) the embedded gage technique was thoroughly examined and found to be appropriate for both hygrothermal expansion and mechanical strain measurements; (2) all transverse properties were found to decrease with increasing temperature and moisture content; and (3) ultimate transverse properties were found to increase with strain rate at low temperatures but follow an opposite trend at high temperatures compared to dry specimens.

  17. The effects of temperature and strain rate on the yielding behavior of the single crystal superalloy PWA 1480

    NASA Technical Reports Server (NTRS)

    Milligan, Walter W.; Antolovich, Stephen D.

    1988-01-01

    Interrupted tensile tests were conducted on (001) oriented single crystals at temperatures from 20 to 1093 C. Two strain rates were used, 0.5 and 50 percent/min. After the tests, the deformation substructures were characterized by transmission electron microscopy. Results of these tests are given.

  18. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    SciTech Connect

    Zinkle, S.J.; Eatherly, W.S.

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination of high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.

  19. High strain rate damage of Carrara marble

    NASA Astrophysics Data System (ADS)

    Doan, Mai-Linh; Billi, Andrea

    2011-10-01

    Several cases of rock pulverization have been observed along major active faults in granite and other crystalline rocks. They have been interpreted as due to coseismic pervasive microfracturing. In contrast, little is known about pulverization in carbonates. With the aim of understanding carbonate pulverization, we investigate the high strain rate (c. 100 s-1) behavior of unconfined Carrara marble through a set of experiments with a Split Hopkinson Pressure Bar. Three final states were observed: (1) at low strain, the sample is kept intact, without apparent macrofractures; (2) failure is localized along a few fractures once stress is larger than 100 MPa, corresponding to a strain of 0.65%; (3) above 1.3% strain, the sample is pulverized. Contrary to granite, the transition to pulverization is controlled by strain rather than strain rate. Yet, at low strain rate, a sample from the same marble displayed only a few fractures. This suggests that the experiments were done above the strain rate transition to pulverization. Marble seems easier to pulverize than granite. This creates a paradox: finely pulverized rocks should be prevalent along any high strain zone near faults through carbonates, but this is not what is observed. A few alternatives are proposed to solve this paradox.

  20. High Strain Rate Rheology of Polymer Melts

    NASA Astrophysics Data System (ADS)

    Kelly, Adrian; Gough, Tim; Whiteside, Ben; Coates, Phil D.

    2009-07-01

    A modified servo electric injection moulding machine has been used in air-shot mode with capillary dies fitted at the nozzle to examine the rheology of a number of commercial polymers at wall shear strain rates of up to 107 s-1. Shear and extensional flow properties were obtained through the use of long and orifice (close to zero land length) dies of the same diameter. A range of polyethylene, polypropylene and polystyrene melts have been characterized; good agreement was found between the three techniques used in the ranges where strain rates overlapped. Shear viscosity of the polymers studied was found to exhibit a plateau above approximately 1×106 s-1. A relationship between the measured high strain rate rheological behaviour and molecular structure was noted, with polymers containing larger side groups reaching the rate independent plateau at lower strain rates than those with simpler structures.

  1. Matrix dominated stress/strain behavior in polymeric composites: Effects of hold time, nonlinearity and rate dependency

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    1992-01-01

    In order to understand matrix dominated behavior in laminated polymer matrix composites, an elastic/viscoplastic constitutive model was developed and used to predict stress strain behavior of off-axis and angle-ply symmetric laminates under in-plane, tensile axial loading. The model was validated for short duration tests at elevated temperatures. Short term stress relaxation and short term creep, strain rate sensitivity, and material nonlinearity were accounted for. The testing times were extended for longer durations, and periods of creep and stress relaxation were used to investigate the ability of the model to account for long term behavior. The model generally underestimated the total change in strain and stress for both long term creep and long term relaxation respectively.

  2. Assessment of the effect of off-pump coronary artery bypass (OPCAB) surgery on right ventricle function using strain and strain rate imaging

    PubMed Central

    Khani, Mohammad; Hosseintash, Mahsa; Foroughi, Mahnoosh; Naderian, Mohammadreza

    2016-01-01

    Background Right ventricle function significantly decreases after coronary artery bypass surgery; as one of the likely causes, such a condition is attributed to the use of cardiopulmonary pump (CPB). Because nowadays there is a tendency toward increasing use of off-pump coronary artery bypass (OPCAB) surgery, this study was conducted to evaluate the right ventricle function after this type of surgery using strain and strain rate imaging (SRI) echocardiography. Methods This study was conducted on 30 patients, candidate for elective OPCAB surgery, between 2011 and 2012. Standard echocardiography was performed before the surgery and the right ventricle function was examined using strain and SRI echocardiography. Then patient underwent surgery, 6 days and 3 months after surgery they underwent echocardiography again and the results obtained from the three stages were compared with each other. Results Participants included 30 patients (23 males and 7 females) with a mean age of 66±11 years. Compared to the prior of the surgery, 6 days and 3 months after the surgery there was a significant decrease in tricuspid annular plane systolic excursion (TAPSE), tissue Doppler imaging (TDI) at the lateral annulus of tricuspid valve, and strain and SRI of right ventricle. However, the values obtained 3 months after surgery were significantly higher than those obtained after 6 days. In other words, the right ventricle function 6 days after the surgery had dropped, however some of the values recovered 3 months after the surgery. Conclusions The findings of this study are consistent with other studies in this field and showed that after coronary artery surgery a decline occurs in right ventricular function. However, more detailed quantitative strain and SRI parameters which were measured in our study showed that at the early days after the OPCAB surgery there is a decline in the right ventricle function which is relatively reversible at longer intervals (3 months after surgery). PMID

  3. Recent advances in echocardiography: strain and strain rate imaging

    PubMed Central

    Mirea, Oana; Duchenne, Jurgen; Voigt, Jens-Uwe

    2016-01-01

    Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications. PMID:27158476

  4. Experimental Techniques for Evaluating the Effects of Aging on Impact and High Strain Rate Properties of Triaxial Braided Composite Materials

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.; Ruggeri, Charles R.; Gilat, Amos; Matrka, Thomas

    2010-01-01

    An experimental program is underway to measure the impact and high strain rate properties of triaxial braided composite materials and to quantify any degradation in properties as a result of thermal and hygroscopic aging typically encountered during service. Impact tests are being conducted on flat panels using a projectile designed to induce high rate deformation similar to that experienced in a jet engine fan case during a fan blade-out event. The tests are being conducted on as-fabricated panels and panels subjected to various numbers of aging cycles. High strain rate properties are being measured using a unique Hopkinson bar apparatus that has a larger diameter than conventional Hopkinson bars. This larger diameter is needed to measure representative material properties because of the large unit cell size of the materials examined in this work. In this paper the experimental techniques used for impact and high strain rate testing are described and some preliminary results are presented for both as-fabricated and aged composites.

  5. The ductility of stoichiometric and Ni-rich polycrystals of Ni{sub 3}Al: The effect of strain rate

    SciTech Connect

    Schulson, E.M.; Xu, Y.

    1997-12-31

    Polycrystals of stoichiometric Ni{sub 3}Al are brittle in air at room temperature, at least at strain rates from 10{sup {minus}4} s{sup {minus}1} to 7 s{sup {minus}1}. This is indicative of intrinsic brittle behavior. Nickel-rich (Ni24Al) polycrystals, on the other hand, undergo a brittle-to-ductile transition upon raising the strain rate to above about 10{sup {minus}2}s{sup {minus}1}. It is argued that the transition reflects the suppression of environmental embrittlement, not of the intermetallic per se but of a Ni-rich solution that decorates the grain boundaries of the off-stoichiometric alloy.

  6. A high-strain-rate superplastic ceramic.

    PubMed

    Kim, B N; Hiraga, K; Morita, K; Sakka, Y

    2001-09-20

    High-strain-rate superplasticity describes the ability of a material to sustain large plastic deformation in tension at high strain rates of the order of 10-2 to 10-1 s-1 and is of great technological interest for the shape-forming of engineering materials. High-strain-rate superplasticity has been observed in aluminium-based and magnesium-based alloys. But for ceramic materials, superplastic deformation has been restricted to low strain rates of the order of 10-5 to 10-4 s-1 for most oxides and nitrides with the presence of intergranular cavities leading to premature failure. Here we show that a composite ceramic material consisting of tetragonal zirconium oxide, magnesium aluminate spinel and alpha-alumina phases exhibits superplasticity at strain rates up to 1 s-1. The composite also exhibits a large tensile elongation, exceeding 1,050 per cent for a strain rate of 0.4 s-1. The tensile flow behaviour and deformed microstructure of the material indicate that superplasticity is due to a combination of limited grain growth in the constitutive phases and the intervention of dislocation-induced plasticity in the zirconium oxide phase. We suggest that the present results hold promise for the application of shape-forming technologies to ceramic materials. PMID:11565026

  7. Nonlinear stress-strain behavior of carbon nanotube fibers subject to slow sustained strain rate

    NASA Astrophysics Data System (ADS)

    Sun, Gengzhi; Wang, Dong; Pang, John H. L.; Liu, Jun; Zheng, Lianxi

    2013-09-01

    Nonlinear stress-strain behavior of carbon nanotube (CNT) fibers is studied based on the test data where fiber strength can be modeled by the Weibull distribution. CNT fibers spun from vertically aligned arrays are tensioned at slow sustained strain rate (0.00001 1/s) to study the tensile strength resulting from sliding-to-failure effects. A model is developed to estimate the Weibull modulus which characterizes the dispersion of fiber strengths in terms of the maximum sustained stress and failure strain of the fibers. The results show that the sliding indeed has great influence on the stress-strain relation of CNT fibers at low strain rate.

  8. Effect of the removal of the surface layer of a TRIP steel sheet on its phase composition after static tension at various strain rates

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Slizov, A. K.; Sirotinkin, V. P.; Prosvirnin, D. V.; Kobeleva, L. I.; Eliseev, E. A.; Rybal'chenko, O. V.; Ashmarin, A. A.

    2016-01-01

    The effect of the removal of the surface layer of a thin strip made of austenitic-martensitic VNS9-Sh (23Kh15N5AM3-Sh) TRIP steel on the phase composition of the strip surface is studied after static tension at various strain rates. An increase in the strain rate is shown to increase the austenite content in the surface layer of the metal. The removal of a 10-μm-thick surface layer by electropolishing results in an increase in the austenite content due to the initial nonuniform phase composition of the thin TRIP steel strip across its thickness after cold rolling.

  9. A multi-scale model of dislocation plasticity in α-Fe: Incorporating temperature, strain rate and non-Schmid effects

    SciTech Connect

    Lim, H.; Hale, L. M.; Zimmerman, J. A.; Battaile, C. C.; Weinberger, C. R.

    2015-01-05

    In this study, we develop an atomistically informed crystal plasticity finite element (CP-FE) model for body-centered-cubic (BCC) α-Fe that incorporates non-Schmid stress dependent slip with temperature and strain rate effects. Based on recent insights obtained from atomistic simulations, we propose a new constitutive model that combines a generalized non-Schmid yield law with aspects from a line tension (LT) model for describing activation enthalpy required for the motion of dislocation kinks. Atomistic calculations are conducted to quantify the non-Schmid effects while both experimental data and atomistic simulations are used to assess the temperature and strain rate effects. The parameterized constitutive equation is implemented into a BCC CP-FE model to simulate plastic deformation of single and polycrystalline Fe which is compared with experimental data from the literature. This direct comparison demonstrates that the atomistically informed model accurately captures the effects of crystal orientation, temperature and strain rate on the flow behavior of siangle crystal Fe. Furthermore, our proposed CP-FE model exhibits temperature and strain rate dependent flow and yield surfaces in polycrystalline Fe that deviate from conventional CP-FE models based on Schmid's law.

  10. A multi-scale model of dislocation plasticity in α-Fe: Incorporating temperature, strain rate and non-Schmid effects

    DOE PAGESBeta

    Lim, H.; Hale, L. M.; Zimmerman, J. A.; Battaile, C. C.; Weinberger, C. R.

    2015-01-05

    In this study, we develop an atomistically informed crystal plasticity finite element (CP-FE) model for body-centered-cubic (BCC) α-Fe that incorporates non-Schmid stress dependent slip with temperature and strain rate effects. Based on recent insights obtained from atomistic simulations, we propose a new constitutive model that combines a generalized non-Schmid yield law with aspects from a line tension (LT) model for describing activation enthalpy required for the motion of dislocation kinks. Atomistic calculations are conducted to quantify the non-Schmid effects while both experimental data and atomistic simulations are used to assess the temperature and strain rate effects. The parameterized constitutive equationmore » is implemented into a BCC CP-FE model to simulate plastic deformation of single and polycrystalline Fe which is compared with experimental data from the literature. This direct comparison demonstrates that the atomistically informed model accurately captures the effects of crystal orientation, temperature and strain rate on the flow behavior of siangle crystal Fe. Furthermore, our proposed CP-FE model exhibits temperature and strain rate dependent flow and yield surfaces in polycrystalline Fe that deviate from conventional CP-FE models based on Schmid's law.« less

  11. Effect of dislocation structure on the strain rate dependence of the flow stress in a 2D discrete dislocation dynamics model

    NASA Astrophysics Data System (ADS)

    Song, Hengxu; Papanikolaou, Stefanos; van der Giessen, Erik

    2015-03-01

    It is well known for almost three decades that crystal plasticity in metals, such as Cu, is strongly rate dependent at strain rates higher than 10⌃3/s. This rate sensitivity is typically attributed to dislocation drag effects, but there appears to be a large range of possible high-rate-sensitivity exponents, depending on the sample and the experimental group. Thus, one may hypothesize that the dislocation structure has a strong influence on these effects. We elucidate the origins of rate effects in crystal plasticity and their connection with relaxed, before applying stress, dislocation structures by investigating simple bending in a model of discrete dislocation plasticity in two dimensions. We find that the high-strain-rate sensitivity changes significantly as a function of strain, different material treatment (annealed or not) and properties of dislocation sources (surface vs. bulk nucleation). We characterize in detail the emerging patterning in the dislocation structure and we provide predictions for future experiments on the dependence of the rate sensitivity on dislocation-related characteristics.

  12. Burning Rate of Composite Propellants under the Conditions of Strain

    NASA Astrophysics Data System (ADS)

    Hu, Songqi; Chen, Jing; Wu, Guanjie; Liu, Yingji; Hua, Yijin

    2014-12-01

    In this work, a correlation between propellant burning rate and strain was established. In order to investigate the effects of strain and pressure, and to measure burning rate of composite propellants, a novel apparatus was designed and prepared. Burning rates of three formula composite propellants under different pressures and strains were measured using such device. Based on the measurements, a model for the analysis on the experimental results was proposed. It was demonstrated that the model corresponded with the experimental data if the propellant samples were under tensile strain increasing from 0 to 20%. Burning rate ratio and tensile strain obeyed the quadratic relationship, burning rate increased with strain, but there was no mutation in less than 20% deformation. Furthermore, burning rate ratio of composite propellants which had low Poisson ratio increased fast as tensile strain decreased. And the less binder component of composite propellants, the burning ratio changed more significantly under a given strain state. In addition, as the exposed area increased, the burning rate ratio became larger.

  13. The effect of time step, thermostat, and strain rate on ReaxFF simulations of mechanical failure in diamond, graphene, and carbon nanotube.

    PubMed

    Jensen, Benjamin D; Wise, Kristopher E; Odegard, Gregory M

    2015-08-01

    As the sophistication of reactive force fields for molecular modeling continues to increase, their use and applicability has also expanded, sometimes beyond the scope of their original development. Reax Force Field (ReaxFF), for example, was originally developed to model chemical reactions, but is a promising candidate for modeling fracture because of its ability to treat covalent bond cleavage. Performing reliable simulations of a complex process like fracture, however, requires an understanding of the effects that various modeling parameters have on the behavior of the system. This work assesses the effects of time step size, thermostat algorithm and coupling coefficient, and strain rate on the fracture behavior of three carbon-based materials: graphene, diamond, and a carbon nanotube. It is determined that the simulated stress-strain behavior is relatively independent of the thermostat algorithm, so long as coupling coefficients are kept above a certain threshold. Likewise, the stress-strain response of the materials was also independent of the strain rate, if it is kept below a maximum strain rate. Finally, the mechanical properties of the materials predicted by the Chenoweth C/H/O parameterization for ReaxFF are compared with literature values. Some deficiencies in the Chenoweth C/H/O parameterization for predicting mechanical properties of carbon materials are observed. PMID:26096628

  14. Study of High Strain Rate Response of Composites

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2003-01-01

    The objective of the research was to continue the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, and to initiate a study of the effects of temperature by developing an elevated temperature test. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, rate dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into testing the epoxy resin. Three types of epoxy resins were tested in tension and shear at various strain rates that ranges from 5 x 10(exp -5), to 1000 per second. Pilot shear experiments were done at high strain rate and an elevated temperature of 80 C. The results show that all, the strain rate, the mode of loading, and temperature significantly affect the response of epoxy.

  15. High-Strain-Rate Compression Testing of Ice

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Lerch, Bradley A.

    2006-01-01

    In the present study a modified split Hopkinson pressure bar (SHPB) was employed to study the effect of strain rate on the dynamic material response of ice. Disk-shaped ice specimens with flat, parallel end faces were either provided by Dartmouth College (Hanover, NH) or grown at Case Western Reserve University (Cleveland, OH). The SHPB was adapted to perform tests at high strain rates in the range 60 to 1400/s at test temperatures of -10 and -30 C. Experimental results showed that the strength of ice increases with increasing strain rates and this occurs over a change in strain rate of five orders of magnitude. Under these strain rate conditions the ice microstructure has a slight influence on the strength, but it is much less than the influence it has under quasi-static loading conditions. End constraint and frictional effects do not influence the compression tests like they do at slower strain rates, and therefore the diameter/thickness ratio of the samples is not as critical. The strength of ice at high strain rates was found to increase with decreasing test temperatures. Ice has been identified as a potential source of debris to impact the shuttle; data presented in this report can be used to validate and/or develop material models for ice impact analyses for shuttle Return to Flight efforts.

  16. Strain Rates and Scalar Dissipation Rates in Gaseous Transverse Jets

    NASA Astrophysics Data System (ADS)

    Shoji, Takeshi; Gevorkyan, Levon; Besnard, Andrea; Karagozian, Ann

    2015-11-01

    This experimental study quantifies local strain rates and scalar dissipation rates for the non-reactive gaseous jet in crossflow (JICF) using simultaneous acetone planar laser-induced fluorescence (PLIF) imaging and stereo particle image velocimetry (PIV). Flush nozzle and flush pipe injectors are used to create jets consisting of mixtures of He and N2, with varying exit velocity profiles, jet-to-crossflow momentum flux ratios J, and density ratios S. Strain rates in the vicinity of windward and lee-side jet shear layers are quantified based both on scalar dissipation rates extracted from PLIF measurements within locally 1D layer-like structures and on vector fields extracted from PIV measurements. Strain rates from the simultaneous measurements are in very good qualitative agreement with one another on the jets' windward and lee sides, and are also consistent with flame ignition locations in comparable reactive JICF experiments. Quantitative differences in strain fields are most pronounced at lower J values, corresponding to absolutely unstable shear layers and high local strain fields, although these differences are affected by the PLIF spatial resolution for a range of flow conditions. Extraction of dominant mode structures via POD will also be presented. Supported by NSF grant CBET-1437014 & AFOSR grant FA9550-15-1-0261 (A004376801).

  17. Strain rate change tests with the Split Hopkinson Bar method

    NASA Astrophysics Data System (ADS)

    Isakov, M.; Kokkonen, J.; Östman, K.; Kuokkala, V.-T.

    2016-05-01

    In this paper, methods to produce rapid strain rate changes for strain rate sensitivity measurements in Split Hopkinson Bar arrangements are presented and discussed. Two different cases are considered: a strain rate change test within the high strain rate region in compression, and a tension test incorporating a large strain rate jump directly from the low strain rate region to high strain rates. The former method is based on the loading wave amplitude manipulation, while the latter method is based on the incorporation of a low strain rate loading device into a Tensile Split Hopkinson Bar apparatus.

  18. Effect of Strain Rate on Cathodic Reaction During Stress Corrosion Cracking of X70 Pipeline Steel in a Near-Neutral pH Solution

    NASA Astrophysics Data System (ADS)

    Liu, Z. Y.; Li, X. G.; Cheng, Y. F.

    2011-10-01

    The effect of strain rate on cathodic reactions of X70 pipeline steel during stress corrosion cracking in a near-neutral pH solution was investigated by electrochemical impedance spectroscope and potentiodynamic polarization curve measurements as well as slow strain rate tests. A local additional potential model was used to understand mechanistically the role of strain rate in electrochemical cathodic reaction. It was found that an application of elastic stress would not affect the electrochemical stable state of the steel specimen at a macroscopic scale. Under a weak cathodic polarization, the interfacial charge-transfer process occurring on steel contains both cathodic and anodic reactions. Since the anodic reaction process is still significant, localized dissolution could occur even at such a cathodic potential, resulting in generation of corrosion pits. These pits could be the start sites to initiate stress corrosion cracks. Strain rate affects the corrosion reaction, which is associated with the generation of dislocation emergence points and slip steps on the specimen surface, resulting in a negative local additional potential to enhance the cathodic reaction locally.

  19. Suppression and Structure of Low Strain Rate Nonpremixed Flames

    NASA Technical Reports Server (NTRS)

    Hamins, Anthony; Bundy, Matthew; Park, Woe Chul; Lee, Ki Yong; Logue, Jennifer

    2003-01-01

    The agent concentration required to achieve suppression of low strain rate nonpremixed flames is an important fire safety consideration. In a microgravity environment such as a space platform, unwanted fires will likely occur in near quiescent conditions where strain rates are very low. Diffusion flames typically become more robust as the strain rate is decreased. When designing a fire suppression system for worst-case conditions, low strain rates should be considered. The objective of this study is to investigate the impact of radiative emission, flame strain, agent addition, and buoyancy on the structure and extinction of low strain rate nonpremixed flames through measurements and comparison with flame simulations. The suppression effectiveness of a suppressant (N2) added to the fuel stream of low strain rate methane-air diffusion flames was measured. Flame temperature measurements were attained in the high temperature region of the flame (T greater than 1200 K) by measurement of thin filament emission intensity. The time varying temperature was measured and simulated as the flame made the transition from normal to microgravity conditions and as the flame extinguished.

  20. High strain-rate magnetoelasticity in Galfenol

    NASA Astrophysics Data System (ADS)

    Domann, J. P.; Loeffler, C. M.; Martin, B. E.; Carman, G. P.

    2015-09-01

    This paper presents the experimental measurements of a highly magnetoelastic material (Galfenol) under impact loading. A Split-Hopkinson Pressure Bar was used to generate compressive stress up to 275 MPa at strain rates of either 20/s or 33/s while measuring the stress-strain response and change in magnetic flux density due to magnetoelastic coupling. The average Young's modulus (44.85 GPa) was invariant to strain rate, with instantaneous stiffness ranging from 25 to 55 GPa. A lumped parameters model simulated the measured pickup coil voltages in response to an applied stress pulse. Fitting the model to the experimental data provided the average piezomagnetic coefficient and relative permeability as functions of field strength. The model suggests magnetoelastic coupling is primarily insensitive to strain rates as high as 33/s. Additionally, the lumped parameters model was used to investigate magnetoelastic transducers as potential pulsed power sources. Results show that Galfenol can generate large quantities of instantaneous power (80 MW/m3 ), comparable to explosively driven ferromagnetic pulse generators (500 MW/m3 ). However, this process is much more efficient and can be cyclically carried out in the linear elastic range of the material, in stark contrast with explosively driven pulsed power generators.

  1. Deformation twinning: Influence of strain rate

    SciTech Connect

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  2. Material mechanical characterization method for multiple strains and strain rates

    DOEpatents

    Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli

    2016-01-19

    A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.

  3. Rate- and strain-dependent brittle deformation of rocks

    NASA Astrophysics Data System (ADS)

    Brantut, N.; Heap, M. J.; Baud, P.; Meredith, P. G.

    2014-03-01

    We develop a unifying framework to quantify rate-dependent deformation in the brittle field and establish links between the microscale time-dependent crack growth processes and the macroscopically observed rate dependency. Triaxial deformation experiments have been performed under both constant strain rate and constant stress (creep) conditions on three types of sandstone. The measured relative evolution of P wave speeds as a function of inelastic axial strain is similar for both types of test, despite differences in strain rate of up to 3 orders of magnitude. This similarity indicates that there exists a direct, time-independent link between the microstructural state (as reflected by the variations in P wave speed) and the inelastic axial strain. Comparison of applied stresses between constant strain rate and creep experiments as a function of inelastic strain indicates that creep deformation requires less mechanical work to bring the sample to failure. This energy deficit corresponds to a stress deficit, which can be related to a deficit in energy release rate of the microcracks. We establish empirically that the creep strain rate is given by ɛ˙∝exp(ΔQ/σ∗), where ΔQ is the stress deficit (negative) and σ∗ is an activation stress. This empirical exponential relation between creep strain rate and stress deficit is analogous to rate-and-state friction law. We develop a micromechanical approach based on fracture mechanics to determine the evolution of an effective stress intensity factor at crack tips during creep deformation and estimate the activation volume of the stress corrosion reaction responsible for brittle creep.

  4. A new radial strain and strain rate estimation method using autocorrelation for carotid artery

    NASA Astrophysics Data System (ADS)

    Ye, Jihui; Kim, Hoonmin; Park, Jongho; Yeo, Sunmi; Shim, Hwan; Lim, Hyungjoon; Yoo, Yangmo

    2014-03-01

    Atherosclerosis is a leading cause of cardiovascular disease. The early diagnosis of atherosclerosis is of clinical interest since it can prevent any adverse effects of atherosclerotic vascular diseases. In this paper, a new carotid artery radial strain estimation method based on autocorrelation is presented. In the proposed method, the strain is first estimated by the autocorrelation of two complex signals from the consecutive frames. Then, the angular phase from autocorrelation is converted to strain and strain rate and they are analyzed over time. In addition, a 2D strain image over region of interest in a carotid artery can be displayed. To evaluate the feasibility of the proposed radial strain estimation method, radiofrequency (RF) data of 408 frames in the carotid artery of a volunteer were acquired by a commercial ultrasound system equipped with a research package (V10, Samsung Medison, Korea) by using a L5-13IS linear array transducer. From in vivo carotid artery data, the mean strain estimate was -0.1372 while its minimum and maximum values were -2.961 and 0.909, respectively. Moreover, the overall strain estimates are highly correlated with the reconstructed M-mode trace. Similar results were obtained from the estimation of the strain rate change over time. These results indicate that the proposed carotid artery radial strain estimation method is useful for assessing the arterial wall's stiffness noninvasively without increasing the computational complexity.

  5. The influence of strain rate and hydrogen on the plane-strain ductility of Zircaloy cladding

    SciTech Connect

    Link, T.M.; Motta, A.T.; Koss, D.A.

    1998-03-01

    The authors studied the ductility of unirradiated Zircaloy-4 cladding under loading conditions prototypical of those found in reactivity-initiated accidents (RIA), i.e.: near plane-strain deformation in the hoop direction (transverse to the cladding axis) at room temperature and 300 C and high strain rates. To conduct these studies, they developed a specimen configuration in which near plane-strain deformation is achieved in the gage section, and a testing methodology that allows one to determine both the limit strain at the onset of localized necking and the fracture strain. The experiments indicate that there is little effect of strain rate (10{sup {minus}3} to 10{sup 2} s{sup {minus}1}) on the ductility of unhydrided Zircaloy tubing deformed under near plane-strain conditions at either room temperature or 300 C. Preliminary experiments on cladding containing 190 ppm hydrogen show only a small loss of fracture strain but no clear effect on limit strain. The experiments also indicate that there is a significant loss of Zircaloy ductility when surface flaws are present in the form of thickness imperfections.

  6. Strain rate dependency of oceanic intraplate earthquake b-values at extremely low strain rates

    NASA Astrophysics Data System (ADS)

    Sasajima, Ryohei; Ito, Takeo

    2016-06-01

    We discovered a clear positive dependence of oceanic intraplate earthquake (OCEQ) b-values on the age of the oceanic lithosphere. OCEQ b-values in the youngest (<10 Ma) oceanic lithosphere are around 1.0, while those in middle to old (>20 Ma) oceanic lithosphere exceed 1.5, which is significantly higher than the average worldwide earthquake b-value (around 1.0). On the other hand, the b-value of intraplate earthquakes in the Ninety East-Sumatra orogen, where oceanic lithosphere has an anomalously higher strain rate compared with normal oceanic lithosphere, is 0.93, which is significantly lower than the OCEQ b-value (about 1.9) with the same age (50-110 Ma). Thus, the variation in b-values relates to the strain rate of the oceanic lithosphere and is not caused by a difference in thermal structure. We revealed a negative strain rate dependency of the b-value at extremely low strain rates (<2 × 10-10/year), which can clearly explain the above b-values. We propose that the OCEQ b-value depends strongly on strain rate (either directly or indirectly) at extremely low strain rates. The high OCEQ b-values (>1.5) in oceanic lithosphere >20 Ma old imply that future improvement in seismic observation will capture many smaller magnitude OCEQs, which will provide valuable information on the evolution of the oceanic lithosphere and the driving mechanism of plate tectonics.

  7. Characterisation of human diaphragm at high strain rate loading.

    PubMed

    Gaur, Piyush; Chawla, Anoop; Verma, Khyati; Mukherjee, Sudipto; Lalvani, Sanjeev; Malhotra, Rajesh; Mayer, Christian

    2016-07-01

    Motor vehicle crashes (MVC׳s) commonly results in life threating thoracic and abdominal injuries. Finite element models are becoming an important tool in analyzing automotive related injuries to soft tissues. Establishment of accurate material models including tissue tolerance limits is critical for accurate injury evaluation. The diaphragm is the most important skeletal muscle for respiration having a bi-domed structure, separating the thoracic cavity from abdominal cavity. Traumatic rupture of the diaphragm is a potentially serious injury which presents in different forms depending upon the mechanisms of the causative trauma. A major step to gain insight into the mechanism of traumatic rupture of diaphragm is to understand the high rate failure properties of diaphragm tissue. Thus, the main objective of this study was to estimate the mechanical and failure properties of human diaphragm at strain rates associated with blunt thoracic and abdominal trauma. A total of 23 uniaxial tensile tests were performed at various strain rates ranging from 0.001-200s(-1) in order to characterize the mechanical and failure properties on human diaphragm tissue. Each specimen was tested to failure at one of the four strain rates (0.001s(-1), 65s(-1), and 130s(-1), 190s(-1)) to investigate the effects of strain rate dependency. High speed video and markers placed on the grippers were used to measure the gripper to gripper displacement. Engineering stresses reported in the study is calculated from the ratio of force measured and initial cross sectional area whereas engineering strain is calculated from the ratio of the elongation to the undeformed length (gauge length) of the specimen.The results of this study showed that the diaphragm tissues is rate dependent with higher strain rate tests giving higher failure stress and higher failure strains. The failure stress for all tests ranged from 1.17MPa to 4.1MPa and failure strain ranged from 12.15% to 24.62%. PMID:27062242

  8. Strain rate behavior of magnetorheological materials

    NASA Astrophysics Data System (ADS)

    Seminuk, Kenneth; Joshi, Vasant; Gump, Jared; Stoltz, Chad; Forbes, Jerry

    2014-05-01

    Strain rate response of two Hydroxyl-terminated Polybutadiene/ Iron (HTPB/Fe) compositions under electromagnetic fields has been investigated using a Split Hopkinson Pressure bar arrangement equipped with aluminum bars. Two HTPB/Fe compositions were developed, the first without plasticizer and the second containing plasticizer. Samples were tested with and without the application of a 0.01 Tesla magnetic field. Strain gauge data taken from the Split Hopkinson Pressure Bar has been used to determine the extent of change in mechanical properties by inducing a mild electromagnetic field onto each sample. Raw data from strain gages was processed using commercial software (Signo) and Excel spreadsheet. It is of particular interest to determine whether the mechanical properties of binder systems can be manipulated by adding ferrous or Magnetostrictive particulates. Data collected from the Split Hopkinson Pressure bar indicate changes in the Mechanical Stress-Strain curves and suggest that the impedance of a binder system can be altered by means of a magnetic field.

  9. Strain energy release rate distributions for double cantilever beam specimens

    NASA Technical Reports Server (NTRS)

    Crews, J. H., Jr.; Shivakumar, K. N.; Raju, I. S.

    1991-01-01

    A 24-ply composite double cantilever-beam specimen under mode I (opening) loading has been analyzed by a 3D FEM code that calculated along a straight delamination starter for several different specimen materials. An isotropic specimen was found to have a strain-energy release rate distribution which varied along its delamination front due to the boundary-layer effect and another effect associated with the anticlastic curvature of the bent specimen arms. A 0-deg graphite-reinforced epoxy specimen had a nearly-uniform strain-energy release rate distribution which dropped only near the edge, due to the boundary-layer effect, and a +/- 45-deg graphite/epoxy specimen exhibited a pronounced strain-energy release rate variation across the specimen width.

  10. Associative Flow Rule Used to Include Hydrostatic Stress Effects in Analysis of Strain-Rate-Dependent Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.

    2004-01-01

    designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and the strain-rate dependence of the composite response are due primarily to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. By applying micromechanics techniques along with given fiber properties, one can also determine the effects of the hydrostatic stresses in the polymer on the overall composite deformation response. First efforts to account for the hydrostatic stress effects in the composite deformation applied purely empirical methods that relied on composite-level data. In later efforts, to allow polymer properties to be characterized solely on the basis of polymer data, researchers at the NASA Glenn Research Center developed equations to model the polymers that were based on a non-associative flow rule, and efforts to use these equations to simulate the deformation of representative polymer materials were reasonably successful. However, these equations were found to have difficulty in correctly analyzing the multiaxial stress states found in the polymer matrix constituent of a composite material. To correct these difficulties, and to allow for the accurate simulation of the nonlinear strain-rate-dependent deformation analysis of polymer matrix composites, in the efforts reported here Glenn researchers reformulated the polymer constitutive equations from basic principles using the concept of an associative flow rule. These revised equations were characterized and validated in an

  11. Strain-rate effects on the texture evolution of low-symmetry metals: Modeling and validation using the Taylor cylinder impact test

    NASA Astrophysics Data System (ADS)

    Plunkett, B.; Cazacu, O.; Lebensohn, R. A.

    2006-08-01

    In this paper, a model for describing the influence of evolving texture on the response of pre-textured metals for dynamic loading conditions is proposed. Yielding is described using a recently developed criterion which captures simultaneously anisotropy and compression-tension asymmetry associated with deformation twinning. The anisotropy coefficients as well as the size of the elastic domain are considered to be functions of the accumulated plastic strain. The specific expressions for the evolution laws are determined based on experimental data and numerical test results performed with a self-consistent viscoplastic model together with a macroscopic scale interpolation technique. An overstress approach is used to incorporate rate effects in the formulation. Application of the model to the description of the high-strain rate response of low-symmetry (clock-rolled hexagonal-closed-packed zirconium) is presented. The very good agreement between the simulated and experimental post-test geometries of the Taylor impact specimens in terms of major and minor side profiles and impact-interface footprints shows the ability of the model to describe the evolution of anisotropy as a function of the strain rate.

  12. Effect of strain rates from 10/sup -2/ to 10 sec/sup -1/ in triaxial compression tests on three rocks

    SciTech Connect

    Blanton, T.L.

    1981-02-01

    Room-temperature, compression tests at strain rates from 10/sup -2/ to 10 sec/sup -1/ have been run on Charcoal Granodiorite to 0.45 GPa confining pressure and on Berea Sandstone and Indiana Limestone to 0.25 GPa confining pressure. For each rock at each confining pressure, the differential stress at failure is relatively constant up to a strain rate of 1 sec/sup -1/ and apparently increases abruptly above this strain rate. Dynamic analysis of the testing apparatus indicates that the apparent sudden increase in strength is due to machine inertia and does not reflect a real increase in the strength of the rocks. Taking inertia into account, the actual failure stresses of the three rocks are relatively independent of strain rate betweeen 10/sup -2/ and 10 sec/sup -1/. In the same interval, the strains at which the unconfined rocks begin to fragment tend to be lower at higher strain rates. The combination of decreasing strains and relatively constant stresses with increasing strain rate suggests that the energy necessary to fragment the unconfined rocks is lower at higher strain rates.

  13. Strain rate dependency of laser sintered polyamide 12

    NASA Astrophysics Data System (ADS)

    Cook, J. E. T.; Goodridge, R. D.; Siviour, C. R.

    2015-09-01

    Parts processed by Additive Manufacturing can now be found across a wide range of applications, such as those in the aerospace and automotive industry in which the mechanical response must be optimised. Many of these applications are subjected to high rate or impact loading, yet it is believed that there is no prior research on the strain rate dependence in these materials. This research investigates the effect of strain rate and laser energy density on laser sintered polyamide 12. In the study presented here, parts produced using four different laser sintered energy densities were exposed to uniaxial compression tests at strain rates ranging from 10-3 to 10+3 s-1 at room temperature, and the dependence on these parameters is presented.

  14. Path dependent high strain, strain-rate deformation of polymer toroidal elements

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Wei; Nesterenko, Vitali F.

    2014-08-01

    The dynamic behavior of toroidal elements (o-rings) is investigated at the range of global engineering strains up to 0.7 and strain rates about 100 s-1. It was observed that the corresponding average dynamic stiffness of rubber toroidal elements increases up to 3 times in comparison with their quasistatic compression. The viscoelastic dynamic model using linear strain-rate dependence and Hertz damped model did not satisfactory agree with experimental data in investigated range of strains and strain-rates. In order to reflect experimental results, a modified viscoelastic model with power-law strain-rate dependence was proposed. Path dependent deformation of o-rings with different levels of pre-compression was investigated under dynamic loading conditions. It was found that dynamic response of pre-compressed o-rings at the initial strain range of 0.04-0.25 is similar to the behavior of uncompressed o-rings, but further increasing pre-compression to 0.4 and 0.5 results in different force-strain curves demonstrating memory effect. This phenomenon is explained using a model incorporating dependence of dynamic force on initial pre-compression introducing critical level of dynamic strain, after which memory of initial pre-compression fades. This model predicts that force history of weakly compressed o-rings (initial strain 4%) on the stage of loading represents an envelope for all other data in agreement with experiments. In all cases, the dynamic behavior was characterized by stiffer force-displacement curves in comparison with quasistatic compression of o-rings.

  15. Critical scaling with strain rate in overdamped sheared disordered solids

    NASA Astrophysics Data System (ADS)

    Clemmer, Joel; Salerno, Kenneth; Robbins, Mark

    In the limit of quasistatic shear, disordered solids demonstrate non-equilibrium critical behavior including power-law distributions of avalanches. Using molecular dynamics simulations of 2D and 3D overdamped binary LJ glasses, we explore the critical behavior in the limit of finite strain rate. We use finite-size scaling to find the critical exponents characterizing shear stress, kinetic energy, and measures of temporal and spatial correlations. The shear stress of the system rises as a power β of the strain rate. Larger system size extends this power law to lower rates. This behavior is governed by a power law drop of the dynamic correlation length with increasing shear stress defined by the exponent ν. This finite-size effect also impacts the scaling of the RMS kinetic energy with strain rate as avalanches begin nucleating simultaneously leading to continuous deformation of the solid. As system size increases, avalanches begin overlapping at lower rates. The correlation function of non-affine displacement exhibits novel anisotropic power law scaling with the magnitude of the wave vector. Its strain rate dependence is used to determine the scaling of the dynamic correlation length. Support provided by: DMR-1006805; NSF IGERT-0801471; OCI-0963185; CMMI-0923018.

  16. High strain rate deformation of layered nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.

    2012-11-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.

  17. High strain rate deformation of layered nanocomposites.

    PubMed

    Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L

    2012-01-01

    Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers. PMID:23132014

  18. High Strain-Rate Compressive Behavior of Bulk Structural Adhesives: Epoxy and Methacrylate Adhesives

    NASA Astrophysics Data System (ADS)

    Yokoyama, Takashi; Nakai, Kenji; Yatim, Norfazrina Hayati Mohd

    The present paper describes the determination of high strain-rate compressive stress-strain loops for bulk specimens of two different epoxy and methacrylate structural adhesives on the standard split Hopkinson pressure bar with a tapered striker bar. The full compressive stress-strain data including unloading process are obtained over a wide range of strain rates from 10-3 to 103/s at room temperature. The effects of strain rate on the initial (secant) modulus, flow stress, dissipation energy and hysteresis loss ratio are studied. The experimental results show that both bulk structural adhesives exhibit highly strain-rate dependent viscoelastic behavior like polymeric materials.

  19. HIGH-RATE FORMABILITY OF HIGH-STRENGTH ALUMINUM ALLOYS: A STUDY ON OBJECTIVITY OF MEASURED STRAIN AND STRAIN RATE

    SciTech Connect

    Upadhyay, Piyush; Rohatgi, Aashish; Stephens, Elizabeth V.; Davies, Richard W.; Catalini, David

    2015-02-18

    Al alloy AA7075 sheets were deformed at room temperature at strain-rates exceeding 1000 /s using the electrohydraulic forming (EHF) technique. A method that combines high speed imaging and digital image correlation technique, developed at Pacific Northwest National Laboratory, is used to investigate high strain rate deformation behavior of AA7075. For strain-rate sensitive materials, the ability to accurately model their high-rate deformation behavior is dependent upon the ability to accurately quantify the strain-rate that the material is subjected to. This work investigates the objectivity of software-calculated strain and strain rate by varying different parameters within commonly used commercially available digital image correlation software. Except for very close to the time of crack opening the calculated strain and strain rates are very consistent and independent of the adjustable parameters of the software.

  20. The effect of size, crack depth and strain rate on fracture toughness—temperature curves of a low activation martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Edsinger, K.; Odette, G. R.; Lucas, G. E.; Sheckherd, J. W.

    1996-10-01

    Fracture toughness K( T) curves for F82H were determined as a function of specimen size, crack size and strain rate. It was found that F82H shows a relatively abrupt transition from lower-shelf, quasi-cleavage fracture to upper-shelf ductile fracture. However, decreasing specimen size, crack size and strain rate resulted in a shift of the K( T) curve to lower temperatures. The differences in the lower shelf/knee regime were reconciled by combining a critical stressed area criteria for quasi-cleavage fracture with stress fields determined by finite element methods for the different specimen geometries. The results demonstrated that the large effective toughness for small specimens or specimens with shallow cracks are a consequence of having to deform the specimens to much higher Js before the stressed-area criteria are met ahead of the crack. Such large toughnesses and low transition temperatures support the contention that thin-walled ferritic structures should remain a viable option for advanced fusion reactors.

  1. High strain rate loading of polymeric foams and solid plastics

    NASA Astrophysics Data System (ADS)

    Dick, Richard D.; Chang, Peter C.; Fourney, William L.

    2000-04-01

    The split-Hopkinson pressure bar (SHPB) provided a technique to determine the high strain rate response for low density foams and solid ABS and polypropylene plastics. These materials are used in the interior safety panels of automobiles and crash test dummies. Because the foams have a very low impedance, polycarbonate bars were used to acquire the strain rate data in the 100 to 1600 l/s range. An aluminum SPHB setup was used to obtain the solid plastics data which covered strain rates of 1000 to 4000 l/s. The curves for peak strain rate versus peak stress for the foams over the test range studied indicates only a slight strain rate dependence. Peak strain rate versus peak stress curves for polypropylene shows a strain rate dependence up to about 1500 l/s. At that rate the solid poly propylene indicates no strain rate dependence. The ABS plastics are strain rate dependent up to 3500 l/s and then are independent at larger strain rates.

  2. Strain Rate Dependency of Coarse Crystal Marble Under Uniaxial Compression: Strength, Deformation and Strain Energy

    NASA Astrophysics Data System (ADS)

    Li, Yanrong; Huang, Da; Li, Xi'an

    2014-07-01

    Strain rate during testing, uniaxial or triaxial, has important influence on the measured mechanical properties of rocks. Uniaxial compression tests were performed at nine pre-specified static-to-quasistatic strain rates (ranging from 1 × 10-5 to 1 × 10-1 s-1) on coarse crystal marble. The aim is to gain deep insight into the influence of strain rate on characteristic stresses, deformation properties and conversion of strain energy of such rock. It is found that the strain rate of 5 × 10-3 s-1 is the threshold to delineate the failure modes the tested coarse marble behaves in. At a strain rate less than this threshold, single-plane shear and conjugate X-shaped shear are the main failure modes, while beyond this threshold, extensile and splitting failures are dominant. The stress for crack initiation, the critical stress for dilation, the peak stress, and Young's modulus are all found to increase with strain rate, with an exception that the above stresses and modulus appear relatively low compared to the strain rate in the range of between 1 × 10-4 and 5 × 10-3 s-1. The pre-peak absorbed strain energy, damage strain energy and elastic strain energy are found to increase with strain rate. In addition, the elastic strain energy stored before peak point favors brittle failure of the specimen, as the more stored elastic energy in the specimen, the stronger the fragmenting.

  3. Effects of aspect ratio and specimen size on uniaxial failure stress of iron green bodies at high strain rates

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, Yuki; Nishida, Masahiro; Ogura, Takashi; Häggblad, H.-Å.; Jonsén, P.; Gustafsson, G.

    2015-09-01

    Powder metallurgy is used for the production of a number of mechanical parts and is an essential production method. These are great advantages such as product cost effectiveness and product uniqueness. In general, however parts created by powder metallurgy have low strength because of low density. In order to increase strength as well as density, new techniques such as high-velocity-compaction (HVC) was developed and further investigation has been conducted on improvement of techniques and optimum condition using computer simulation. In this study, the effects of aspect ratio and specimen size of iron green bodies on failure strength of uniaxial compression and failure behavior were examined using a split Hopkinson pressure Bar. The diameters of specimens were 12.5 mm and 25 mm the aspect ratios (thickness/diameter) were 0.8 and 1.2.

  4. Strain rate dependent properties of human craniovertebral ligaments.

    PubMed

    Mattucci, Stephen F E; Moulton, Jeffrey A; Chandrashekar, Naveen; Cronin, Duane S

    2013-07-01

    Craniovertebral ligaments were tested to failure under tensile loading. Ligaments tested included: transverse ligament, anterior atlanto occipital membrane, posterior atlanto occipital membrane, capsular ligaments between Skull-C1 and C1-C2, anterior atlantoaxial membrane, posterior atlantoaxial membrane and the tectorial membrane/vertical cruciate/apical/alar ligament complex. The objective of this study was to obtain mechanical properties of craniovertebral ligaments of a younger population, at varying strain rates representative of automotive crash scenarios, and investigate rate and gender effects for use in numerical models of the cervical spine. There have been few studies conducted on the mechanical properties of human craniovertebral ligaments. Only one study has tested all of the ligaments, and previous studies use older age specimens (mean age 67, from most complete study). Further, tests were often not performed at elongation rates representative of car crash scenarios. Previous studies did not perform tests in an environment resembling in vivo conditions, which has been shown to have a significant effect on ligament tensile behaviour. Fifty-four craniovertebral ligaments were isolated from twenty-one spines, and tested to failure in tension under simulated in vivo temperature and hydration levels, at quasi-static (0.5 s(-1)) and high strain rates (150 s(-1)). Values for failure force, failure elongation, stiffness, and toe region elongation were obtained from force-displacement curves. Values were analyzed for strain rate and gender effects. Increased strain rate produced several significant effects including: higher failure forces for the transverse ligament and capsular ligament (Skull-C1), lower failure elongation for the tectorial membrane complex, higher stiffness for the tectorial membrane complex and capsular ligament (Skull-C1), and lower toe region elongation for capsular ligament (Skull-C1). Gender effects were limited. Ligament tests

  5. High strain-rate testing of parachute materials

    SciTech Connect

    Gwinn, K.W.; Totten, J.J.; Waye, D.E.

    1994-12-31

    Research at Sandia National Laboratories has shown a strain rate dependence of many materials used in the production of parachutes. Differences in strength of 30% have been found between strain rates of 12 sec{sup {minus}1} and slow rates normally used to define material properties for lightweight nylon cloth. These structures are sometimes deployed in a rapid fashion and the loading is experienced in milliseconds; the production of material data in the same loading regime is required for full understanding of material response. Also, material behavior suitable for structural analysis of these structures is required for successful analysis. This is especially important when different materials are used in the same fabric structure. Determining the distribution of load to various portions of a nylon and Kevlar parachute requires the correct moduli and material behavior in the analytical model. The effect of strain rate on the material properties of nylon and Kevlar components commonly used in parachute construction are reported in this paper. These properties are suitable for use in analytical models of these fabric structures.

  6. Effect of irradiation temperature and strain rate on the mechanical properties of V-4Cr-4Ti irradiated to low doses in fission reactors

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.; Rowcliffe, A.F.; Alexander, D.J.; Gibson, L.T.

    1998-09-01

    Tensile tests performed on irradiated V-(3-6%)Cr-(3-6%)Ti alloys indicate that pronounced hardening and loss of strain hardening capacity occurs for doses of 0.1--20 dpa at irradiation temperatures below {approximately}330 C. The amount of radiation hardening decreases rapidly for irradiation temperatures above 400 C, with a concomitant increase in strain hardening capacity. Low-dose (0.1--0.5 dpa) irradiation shifts the dynamic strain aging regime to higher temperatures and lower strain rates compared to unirradiated specimens. Very low fracture toughness values were observed in miniature disk compact specimens irradiated at 200--320 C to {approximately}1.5--15 dpa and tested at 200 C.

  7. Implementation of Higher Order Laminate Theory Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kim, Heung Soo; Zhu, Linfa; Chattopadhyay, Aditi; Goldberg, Robert K.

    2004-01-01

    A procedure has been developed to investigate the nonlinear response of composite plates under large strain and high strain rate loading. A recently developed strain dependent micromechanics model is extended to account for the shear effects during impact. Four different assumptions of shear deformation effects are investigated to improve the development strain rate dependent micromechanics model. A method to determine through the thickness strain and transverse Poisson's ratio is developed. The revised micromechanics model is implemented into higher order laminate theory. Parametric studies are conducted to investigate transverse shear effects during impact.

  8. The Effect of Cooling Rate, and Cool Deformation Through Strain-Induced Transformation, on Microstructural Evolution and Mechanical Properties of Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Mousavi Anijdan, S. H.; Yue, Steve

    2012-04-01

    In this article, a detailed study was conducted to evaluate the microstructural evolution and mechanical properties of microalloyed steels processed by thermomechanical schedules incorporating cool deformation. Cool deformation was incorporated into a full scale simulation of hot rolling, and the effect of prior austenite conditioning on the cool deformability of microalloyed steels was investigated. As well, the effect of varying cooling rate, from the end of the finishing stage to the cool deformation temperature, 673 K (400 °C), on mechanical properties and microstructural evolution was studied. Transmission electron microscopy (TEM) analysis, in particular for Nb containing steels, was also conducted for the precipitation evaluation. Results show that cool deformation greatly improves the strength of microalloyed steels. Of the several mechanisms identified, such as work hardening, precipitation, grain refinement, and strain-induced transformation (SIT) of retained austenite, SIT was proposed, for the first time in microalloyed steels, to be a significant factor for strengthening due to the deformation in ferrite. Results also show that the effect of precipitation in ferrite for the Nb bearing steels is greatly overshadowed by SIT at room temperature.

  9. Influence of strain rate and temperature on the radial compression behavior of wet spruce

    SciTech Connect

    Uhmeier, A.; Salmen, L.

    1995-12-31

    In this study, the influences of moisture content, density, strain rate and temperature on the mechanical response of spruce compressed radially to 50% strain were investigated. Regression models were obtained for the plateau stress, energy absorption, plastic strain and reduction of plateau stress after the first compression. Temperature and strain rate had a great influence on the mechanical behaviour of spruce. It was found that lumen water had a significant effect on the deformation process at high strain rates. The reduction in plateau stress after one compression was about 30-55%, which might increase the collapsibility of the wood fibers.

  10. Stress Corrosion Cracking Behavior of Interstitial Free Steel Via Slow Strain Rate Technique

    NASA Astrophysics Data System (ADS)

    Murkute, Pratik; Ramkumar, J.; Mondal, K.

    2016-07-01

    An interstitial free steel is subjected to slow strain rate tests to investigate the stress corrosion cracking (SCC) behavior at strain rates ranging from 10-4 to 10-6s-1 in air and 3.5 wt.% NaCl solution. The ratios of time to failure, failure strain, and ultimate tensile stress at different strain rates in air to that in corrosive were considered as SCC susceptibility. Serrated stress-strain curve observed at lowest strain rate is explained by the Portevin-Le Chatelier effect. Maximum susceptibility to SCC at lowest strain rate is attributed to the soluble γ-FeOOH in the rust analyzed by Fourier Transformed Infrared spectroscopy. Mechanism for SCC relates to the anodic dissolution forming the groove, where hydrogen embrittlement can set in and finally fracture happens due to triaxiality.

  11. Finite Element Modeling of the Behavior of Armor Materials Under High Strain Rates and Large Strains

    NASA Astrophysics Data System (ADS)

    Polyzois, Ioannis

    propagated outwards diagonally towards the front and back edges forming an hourglass pattern. This pattern matched the failure behavior of specimens tested experimentally, which also exhibited failure through the formation of adiabatic shear bands. Adiabatic shear bands are known to lead to a complete shear failure. Both mechanical and thermal mechanisms contribute to the formation of shear bands. However, the finite element simulations did not show the effects of temperature rise within the material, a phenomenon which is known to contribute to thermal instabilities, whereby strain hardening effects are outweighed by thermal softening effects and adiabatic shear bands begin to form. In the simulations, the purely mechanical maximum shear stress failure, nucleating from the center of the specimens, was used as an indicator of the time at which these shear bands begin to form. The time and compressive stress at the moment of thermal instability in experimental results which have shown to form adiabatic shear bands, matched closely to those at which shear failure was first observed in the simulations. Although versatile in modeling BCC behavior, the Johnson-Cook model did not show the correct stress response in face-centered cubic (FCC) metals, such as aluminum 5083, where effects of strain rate and temperature depend on strain. Similar observations have been reported in literature. In the Johnson-Cook model, temperature, strain rate and strain" parameters are independent of each other. To this end, a more physical-based model based on dislocation mechanics, namely the Feng and Bassim constitutive model, would be more appropriate.

  12. Uncovering high-strain rate protection mechanism in nacre

    NASA Astrophysics Data System (ADS)

    Huang, Zaiwang; Li, Haoze; Pan, Zhiliang; Wei, Qiuming; Chao, Yuh J.; Li, Xiaodong

    2011-11-01

    Under high-strain-rate compression (strain rate ~103 s-1), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10-3 s-1). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials.

  13. Uncovering high-strain rate protection mechanism in nacre.

    PubMed

    Huang, Zaiwang; Li, Haoze; Pan, Zhiliang; Wei, Qiuming; Chao, Yuh J; Li, Xiaodong

    2011-01-01

    Under high-strain-rate compression (strain rate approximately 10(3) s(-1)), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10(-3) s(-1)). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials. PMID:22355664

  14. Spall Response of Tantalum at Extreme Strain-Rates

    NASA Astrophysics Data System (ADS)

    Hahn, Eric; Germann, Tim; Meyers, Marc

    Strain-rate and microstructure play a significant role in the ultimate mechanical response of materials. Using non-equilibrium molecular dynamics simulations, we characterize the ductile tensile failure of single and nanocrystalline tantalum over multiple orders of magnitude of strain-rate. This comparison is extended to over nine orders of magnitude including experimental results from resent laser shock campaigns. Spall strength primarily follows a power law dependence with strain-rate over this extensive range. In all cases, voids nucleate heterogeneously at pre-existing defects. Predictions based on traditional theory suggest that, as strain-rate increases, tensile strength should increase. Alternatively, as grain size decreases, tensile strength may decrease due to an increased propensity to fail at a growing volume fraction of grain boundaries. Strain-rate and grain size dictate void nucleation sites by changing the type and density of available defects: vacancies, dislocations, twins, and grain boundaries.

  15. Uncovering high-strain rate protection mechanism in nacre

    PubMed Central

    Huang, Zaiwang; Li, Haoze; Pan, Zhiliang; Wei, Qiuming; Chao, Yuh J.; Li, Xiaodong

    2011-01-01

    Under high-strain-rate compression (strain rate ∼103 s−1), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10−3 s−1). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials. PMID:22355664

  16. A numerical method for determining the strain rate intensity factor under plane strain conditions

    NASA Astrophysics Data System (ADS)

    Alexandrov, S.; Kuo, C.-Y.; Jeng, Y.-R.

    2016-07-01

    Using the classical model of rigid perfectly plastic solids, the strain rate intensity factor has been previously introduced as the coefficient of the leading singular term in a series expansion of the equivalent strain rate in the vicinity of maximum friction surfaces. Since then, many strain rate intensity factors have been determined by means of analytical and semi-analytical solutions. However, no attempt has been made to develop a numerical method for calculating the strain rate intensity factor. This paper presents such a method for planar flow. The method is based on the theory of characteristics. First, the strain rate intensity factor is derived in characteristic coordinates. Then, a standard numerical slip-line technique is supplemented with a procedure to calculate the strain rate intensity factor. The distribution of the strain rate intensity factor along the friction surface in compression of a layer between two parallel plates is determined. A high accuracy of this numerical solution for the strain rate intensity factor is confirmed by comparison with an analytic solution. It is shown that the distribution of the strain rate intensity factor is in general discontinuous.

  17. Talc lubrication at high strain rate

    NASA Astrophysics Data System (ADS)

    Doan, M.; Hirose, T.; Andreani, M.; Boullier, A.; Calugaru, D.; Boutareaud, S.

    2012-12-01

    Talc is a very soft material that has been found in small quantities in active fault zones. Its presence, even in small amount, has been demonstrated in numerous weak faults where microseismicity activity may also occur. Although talc properties have been investigated at low slip rate, its effects at coseismic rate have not been investigated. Here we show that a few weight percents of talc are enough to significantly alter the frictional behavior of natural serpentinite gouge at seismic slip rate. We performed high velocity friction experiments on wet powders mixing talc and serpentinite in varying proportions. At 1.3 m/s, pure natural serpentinite starts sliding with a high friction peak of 0.5 that falls exponentially to a steady-state value of ~0.2 over slip greater than 5 m. By introducing only 5%wt of talc, the initial peak in friction of serpentinite is cut-off: friction levels to 0.35 below 2 m of displacement before merging the exponential decay curve observed for pure serpentinite. For a larger amount of talc, friction curve becomes closer to the talc behavior, which exhibits a friction of 0.2, regardless of displacement. Increasing the amount of talc not only alters the mechanical properties of the mixture, it also changes deformation mechanism and the resulting microstructure. Below 5%wt of talc, deformation is accommodated by cataclastic comminution of serpentine grains, without any thermal decomposition. When talc is present in larger proportion, it accommodates slip with intense delamination. Principal slip zone is composed of serpentine grains smaller than 0.5 μm, 40 times smaller than the size of the initials serpentine grains. Talc grains inserted within the mixture shows extensive delamination after only 3 m of displacement. Talc lamellae are observed along the microscopic shear planes that pervade the principal slip zone and the remaining gouge. We infer that easy delamination of talc multiplies the number of talc grains and increases its

  18. Effect of High Tensile Strain Rate on the Evolution of Microstructure in Fe-Mn-C-Al Twinning-Induced Plasticity (TWIP) Steel

    NASA Astrophysics Data System (ADS)

    Das, Tuhin; Saha, Rajib; Bera, Supriya; Dahmen, Kirsten; Ghosh, Mainak; Haldar, Arunansu; Bleck, Wolfgang; Chowdhury, Sandip Ghosh

    2015-01-01

    Fe-17.8Mn-0.52C-0.5Al TWIP steel has been investigated under high-strain rate conditions. Twinning along with stacking faults and high dislocation densities in the austenite matrix has been evaluated by X-ray diffraction line profile analysis and transmission electron microscopy. The samples strained at 100 s-1 show a gradient in the evolution of the dislocation density along the gage length except the fracture end where the density shows a decrease. In case of the samples strained at 1 s-1, the evolution of density shows attainment of a near-saturation stage. Electron backscatter diffraction analysis shows that the decrease in the dislocation density as well as near-saturation stage is due to dynamic recovery as well as dynamic recrystallization at region near the fracture end. The dynamically recrystallized grains are related to the deformed matrix through twin relationship.

  19. Strain rate change transients during cyclic deformation of copper

    SciTech Connect

    Kaschner, G.C.; Gibeling, J.C.

    1996-12-15

    In the present study, the authors have undertaken to apply the strain rate change method to mechanically probe the mechanisms of cyclic deformation in copper. The goals of this work were twofold: to carefully explore differences in results obtained under conventional displacement control with those recorded under plastic strain control and to apply the formalism for monotonic deformation described above to cyclic deformation. To achieve these goals, it has been necessary to utilize computed-variable servo-hydraulic control to develop a new test technique incorporating strain rate change tests performed during low cycle fatigue. Plastic strain is used as the control variable to ensure a constant plastic strain rate between pre-determined plastic strain limits.

  20. On the response of rubbers at high strain rates.

    SciTech Connect

    Niemczura, Johnathan Greenberg

    2010-02-01

    In this report, we examine the propagation of tensile waves of finite deformation in rubbers through experiments and analysis. Attention is focused on the propagation of one-dimensional dispersive and shock waves in strips of latex and nitrile rubber. Tensile wave propagation experiments were conducted at high strain-rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in the rubber strips. Analysis of the response through the theory of finite waves and quantitative matching between the experimental observations and analytical predictions was used to determine an appropriate instantaneous elastic response for the rubbers. This analysis also yields the tensile shock adiabat for rubber. Dispersive waves as well as shock waves are also observed in free-retraction experiments; these are used to quantify hysteretic effects in rubber.

  1. The stress analysis using the rate type formulation of natural strain

    SciTech Connect

    Kato, Yasuyuki; Nishimura, Tetsu; Koizumi, Jun; Saito, Tatsuo

    1996-12-01

    The effectiveness of the Natural Strain theory for describing a large deformation is mentioned in this paper. The Natural Strain is obtained by integrating infinitesimal strain increment on an identical line element over the whole process of the deformation path. Consequently, the shear strain becomes pure angular strain which is obtained by removing the rigid body rotation from the rotating angle of a line element. The expression of the Natural Strain is different from the strain expression of the ordinary rate type. So the additive low of strain on an identical line element can be satisfied. In this paper, the stress analysis of a pure elastic body is discussed on the combined deformation of simple tension and simple shear concerning the three types of the different deformation paths. The authors compare the Natural Strain with the rotationless strain suggested by Stoeren-Rice.

  2. Effect of severe plastic deformation on microstructure and mechanical properties of magnesium and aluminium alloys in wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir; Skripnyak, Evgeniya; Skripnyak, Vladimir; Vaganova, Irina; Skripnyak, Nataliya

    2013-06-01

    Results of researches testify that a grain size have a strong influence on the mechanical behavior of metals and alloys. Ultrafine grained HCP and FCC metal alloys present higher values of the spall strength than a corresponding coarse grained counterparts. In the present study we investigate the effect of grain size distribution on the flow stress and strength under dynamic compression and tension of aluminium and magnesium alloys. Microstructure and grain size distribution in alloys were varied by carrying out severe plastic deformation during the multiple-pass equal channel angular pressing, cyclic constrained groove pressing, and surface mechanical attrition treatment. Tests were performed using a VHS-Instron servo-hydraulic machine. Ultra high speed camera Phantom V710 was used for photo registration of deformation and fracture of specimens in range of strain rates from 0,01 to 1000 1/s. In dynamic regime UFG alloys exhibit a stronger decrease in ductility compared to the coarse grained material. The plastic flow of UFG alloys with a bimodal grain size distribution was highly localized. Shear bands and shear crack nucleation and growth were recorded using high speed photography.

  3. Temperature and strain-rate dependence of surface dislocation nucleation.

    PubMed

    Zhu, Ting; Li, Ju; Samanta, Amit; Leach, Austin; Gall, Ken

    2008-01-18

    Dislocation nucleation is essential to the plastic deformation of small-volume crystalline solids. The free surface may act as an effective source of dislocations to initiate and sustain plastic flow, in conjunction with bulk sources. Here, we develop an atomistic modeling framework to address the probabilistic nature of surface dislocation nucleation. We show the activation volume associated with surface dislocation nucleation is characteristically in the range of 1-10b3, where b is the Burgers vector. Such small activation volume leads to sensitive temperature and strain-rate dependence of the nucleation stress, providing an upper bound to the size-strength relation in nanopillar compression experiments. PMID:18232884

  4. FAST TRACK COMMUNICATION High rate straining of tantalum and copper

    NASA Astrophysics Data System (ADS)

    Armstrong, R. W.; Zerilli, F. J.

    2010-12-01

    High strain rate measurements reported recently for several tantalum and copper crystal/polycrystal materials are shown to follow dislocation mechanics-based constitutive relations, first at lower strain rates, for dislocation velocity control of the imposed plastic deformations and, then at higher rates, transitioning to nano-scale dislocation generation control by twinning or slip. For copper, there is the possibility of added-on slip dislocation displacements to be accounted for from the newly generated dislocations.

  5. High strain-rate plastic flow in Fe and Al

    NASA Astrophysics Data System (ADS)

    Smith, Raymond; Eggert, Jon; Rudd, Robert; Bolme, Cynthia; Collins, Gilbert

    2011-06-01

    Understanding the nature and time-dependence of material deformation at high strain rates is an important goal in condensed matter physics. Under dynamic loading, the rate of plastic strain is determined by the flow of dislocations through the crystal lattice and is a complex function of time, distance, sample purity, temperature, internal stresses, microstructure and strain rate. Under shock compression time-dependent plasticity is typically inferred by fitting elastic precursor stresses as a function of propagation distance with a phenomenologically based dislocation kinetics model. We employ a laser-driven ramp wave loading technique to compress 6-70 micron thick samples of bcc-Fe and fcc-Al over a strain rate range of 1e6-1e8 1/s. Our data show that for fixed sample thickness, stresses associated the onset of plasticity are highly dependent on the strain rate of compression and do not readily fit into the elastic stress - distance evolution descriptive of instantaneous shock loading. We find that the elastic stress at the onset of plasticity is well correlated with the strain rate at the onset of plastic flow for both shock- and ramp-wave experiments. Our data, combined with data from other dynamic compression platforms, reveal a sharp increase in the peak elastic stress at high strain rates, consistent with a transition in dislocation flow dominated by phonon drag. smith248@llnl.gov

  6. High strain rate properties of unidirectional composites, part 1

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.

    1991-01-01

    Experimental methods were developed for testing and characterization of composite materials at strain rates ranging from quasi-static to over 500 s(sup -1). Three materials were characterized, two graphite/epoxies and a graphite/S-glass/epoxy. Properties were obtained by testing thin rings 10.16 cm (4 in.) in diameter, 2.54 cm (1 in.) wide, and six to eight plies thick under internal pressure. Unidirectional 0 degree, 90 degree, and 10 degree off-axis rings were tested to obtain longitudinal, transverse, and in-plane shear properties. In the dynamic tests internal pressure was applied explosively through a liquid and the pressure was measured with a calibrated steel ring. Strains in the calibration and specimen rings were recorded with a digital processing oscilloscope. The data were processed and the equation of motion solved numerically by the mini-computer attached to the oscilloscope. Results were obtained and plotted in the form of dynamic stress-strain curves. Longitudinal properties which are governed by the fibers do not vary much with strain rate with only a moderate (up to 20 percent) increase in modulus. Transverse modulus and strength increase sharply with strain rate reaching values up to three times the static values. The in-plane shear modulus and shear strength increase noticeably with strain rate by up to approximately 65 percent. In all cases ultimate strains do not vary significantly with strain rates.

  7. Compression of polypropylene across a wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Okereke, M. I.; Buckley, C. P.; Siviour, C. R.

    2012-11-01

    Three grades of polypropylene were tested in uniaxial compression at room temperature, across a wide range of strain rate: 10-4 s-1 to 104 s-1. One grade is a conventional polypropylene homopolymer. The two other grades are the polypropylene forming the matrix phase of a continuous glass fibre-reinforced thermoplastic composite prepreg, with and without blending with a carbon-black master batch. Tests at the highest strain rates were performed using a compression split Hopkinson pressure bar. The test specimens, for all the three rates, were imaged using appropriate digital cameras in order to observe the deformation process. In addition, the images obtained were analysed digitally to obtain true strain measurements for the medium rates category. All three grades of polypropylene showed pronounced strain-rate dependence of compressive yield stress, increasing by factors of up to 4 across the range of rates. At the lowest rates, there was close agreement between the yield stresses for all three materials, and also close agreement with the Eyring theory. Considering the highest strain rates, however, yield stresses increased more rapidly with log(strain-rate) than would be expected from a linear Eyring prediction and values for the three materials diverged. This was attributed to the contributions made in each material by both alpha and beta relaxation processes. Also prominent in the medium- and high-rate experimental results was pronounced post-yield strain softening, greatest at the highest strain-rates. This resulted from a combination of thermal softening from adiabatic heating, and structural rejuvenation as often seen in glassy polymers in quasi-static tests.

  8. Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo

    NASA Astrophysics Data System (ADS)

    Sridharan, Arati; Nguyen, Jessica K.; Capadona, Jeffrey R.; Muthuswamy, Jit

    2015-06-01

    Objective. The objective of this research is to characterize the mechanical interactions of (1) soft, compliant and (2) non-compliant implants with the surrounding brain tissue in a rodent brain. Understanding such interactions will enable the engineering of novel materials that will improve stability and reliability of brain implants. Approach. Acute force measurements were made using a load cell in n = 3 live rats, each with 4 craniotomies. Using an indentation method, brain tissue was tested for changes in force using established protocols. A total of 4 non-compliant, bare silicon microshanks, 3 non-compliant polyvinyl acetate (PVAc)-coated silicon microshanks, and 6 compliant, nanocomposite microshanks were tested. Stress values were calculated by dividing the force by surface area and strain was estimated using a linear stress-strain relationship. Micromotion effects from breathing and vascular pulsatility on tissue stress were estimated from a 5 s interval of steady-state measurements. Viscoelastic properties were estimated using a second-order Prony series expansion of stress-displacement curves for each shank. Main results. The distribution of strain values imposed on brain tissue for both compliant nanocomposite microshanks and PVAc-coated, non-compliant silicon microshanks were significantly lower compared to non-compliant bare silicon shanks. Interestingly, step-indentation experiments also showed that compliant, nanocomposite materials significantly decreased stress relaxation rates in the brain tissue at the interface (p < 0.05) compared to non-compliant silicon and PVAc-coated silicon materials. Furthermore, both PVAc-coated non-compliant silicon and compliant nanocomposite shanks showed significantly reduced (by 4-5 fold) stresses due to tissue micromotion at the interface. Significance. The results of this study showed that soft, adaptive materials reduce strains and strain rates and micromotion induced stresses in the surrounding brain tissue

  9. Compliant Intracortical Implants Reduce Strains and Strain Rates in Brain Tissue In Vivo

    PubMed Central

    Sridharan, Arati; Nguyen, Jessica K.; Capadona, Jeffrey R.; Muthuswamy, Jit

    2015-01-01

    Objective The objective of this research is to characterize the mechanical interactions of (1) soft, compliant and (2) non-compliant implants with the surrounding brain tissue in a rodent brain. Understanding such interactions will enable the engineering of novel materials that will improve stability and reliability of brain implants. Approach Acute force measurements were made using a load cell in n=3 live rats, each with 4 craniotomies. Using an indentation method, brain tissue was tested for changes in force using established protocols. A total of 4 non-compliant, bare silicon microshanks, 3 non-compliant polyvinyl acetate (PVAc)-coated silicon microshanks, and 6 compliant, nanocomposite microshanks were tested. Stress values were calculated by dividing the force by surface area and strain was estimated using a linear stress-strain relationship. Micromotion effects from breathing and vascular pulsatility on tissue stress were estimated from a 5 sec interval of steady-state measurements. Viscoelastic properties were estimated using a second-order Prony series expansion of stress-displacement curves for each shank. Main results The distribution of strain values imposed on brain tissue for both compliant nanocomposite microshanks and PVAc-coated, non-compliant silicon microshanks were significantly lower compared to non-compliant bare silicon shanks. Interestingly, step-indentation experiments also showed that compliant, nanocomposite materials significantly decreased stress relaxation rates in the brain tissue at the interface (p<0.05) compared to non-compliant silicon and PVAc-coated silicon materials. Further, both PVAc-coated non-compliant silicon and compliant nanocomposite shanks showed significantly reduced (by 4–5 fold) stresses due to tissue micromotion at the interface. Significance The results of this study showed that soft, adaptive materials reduce strains and strain rates and micromotion induced stresses in the surrounding brain tissue

  10. Bone strain magnitude is correlated with bone strain rate in tetrapods: implications for models of mechanotransduction

    PubMed Central

    Aiello, B. R.; Iriarte-Diaz, J.; Blob, R. W.; Butcher, M. T.; Carrano, M. T.; Espinoza, N. R.; Main, R. P.; Ross, C. F.

    2015-01-01

    Hypotheses suggest that structural integrity of vertebrate bones is maintained by controlling bone strain magnitude via adaptive modelling in response to mechanical stimuli. Increased tissue-level strain magnitude and rate have both been identified as potent stimuli leading to increased bone formation. Mechanotransduction models hypothesize that osteocytes sense bone deformation by detecting fluid flow-induced drag in the bone's lacunar–canalicular porosity. This model suggests that the osteocyte's intracellular response depends on fluid-flow rate, a product of bone strain rate and gradient, but does not provide a mechanism for detection of strain magnitude. Such a mechanism is necessary for bone modelling to adapt to loads, because strain magnitude is an important determinant of skeletal fracture. Using strain gauge data from the limb bones of amphibians, reptiles, birds and mammals, we identified strong correlations between strain rate and magnitude across clades employing diverse locomotor styles and degrees of rhythmicity. The breadth of our sample suggests that this pattern is likely to be a common feature of tetrapod bone loading. Moreover, finding that bone strain magnitude is encoded in strain rate at the tissue level is consistent with the hypothesis that it might be encoded in fluid-flow rate at the cellular level, facilitating bone adaptation via mechanotransduction. PMID:26063842

  11. Strain Rate Dependent Modeling of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1999-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Strain rate dependent inelastic constitutive equations have been developed to model the polymer matrix, and have been incorporated into a micromechanics approach to analyze polymer matrix composites. The Hashin failure criterion has been implemented within the micromechanics results to predict ply failure strengths. The deformation model has been implemented within LS-DYNA, a commercially available transient dynamic finite element code. The deformation response and ply failure stresses for the representative polymer matrix composite AS4/PEEK have been predicted for a variety of fiber orientations and strain rates. The predicted results compare favorably to experimentally obtained values.

  12. Elastocaloric cooling processes: The influence of material strain and strain rate on efficiency and temperature span

    NASA Astrophysics Data System (ADS)

    Schmidt, Marvin; Schütze, Andreas; Seelecke, Stefan

    2016-06-01

    This paper discusses the influence of material strain and strain rate on efficiency and temperature span of elastocaloric cooling processes. The elastocaloric material, a newly developed quaternary Ni-Ti-Cu-V alloy, is characterized at different maximum strains and strain rates. The experiments are performed with a specially designed test setup, which enables the measurement of mechanical and thermal process parameters. The material efficiency is compared to the efficiency of the Carnot process at equivalent thermal operation conditions. This method allows for a direct comparison of the investigated material with other caloric materials.

  13. Mapping Strain-rate Dependent Dislocation-Defect Interactions by Atomistic Simulations

    SciTech Connect

    Fan, Yue; Osetskiy, Yury N; Yip, Sidney; Yildiz-Botterud, Bilge

    2013-01-01

    Probing the mechanisms of defect-defect interactions at strain rates lower than 106 s-1 is an unresolved challenge to date to molecular dynamics (MD) techniques. Here we propose a novel atomistic approach based on transition state theory and the concept of a strain-dependent effective activation barrier that is capable of simulating the kinetics of dislocation-defect interactions at virtually any strain rate, exemplified within 10-7 to 107 s-1. We apply this approach to the problem of an edge dislocation colliding with a cluster of self-interstitial atoms (SIA) under shear deformation. Using an activation-relaxation algorithm (1), we uncover a unique strain-rate dependent trigger mechanism that allows the SIA cluster to be absorbed during the process leading to dislocation climb. Guided by this finding, we determine the activation barrier of the trigger mechanism as a function of shear strain, and use that in a coarse-graining rate equation formulation for constructing a mechanism map in the phase space of strain-rate and temperature. Our predictions of a crossover from a defect recovery at the low strain rate regime to defect absorption behavior in the high strain-rate regime are validated against our own independent, direct MD simulations at 105 to 107 s-1. Implications of the present approach for probing molecular-level mechanisms in strain-rate regimes previously considered inaccessible to atomistic simulations are discussed.

  14. Imploding Liner Material Strength Measurements at High-Strain and High Strain Rate

    SciTech Connect

    Bartsch, R.R.; Lee, H.; Holtkamp, D.; Wright, B.; Stokes, J.; Morgan, D.; Anderson, W.; Broste, W.

    1998-10-18

    Imploding, cylindrical liners provide a unique, shockless means of simultaneously accessing high strain and high-strain-rate for measurement of strength of materials in plastic flow. The radial convergence in the liner geometry results in the liner thickening as the circumference becomes smaller. Strains of up to {approximately}1.25 and strain rates of up to {approximately}10{sup 6} sec{sup -1} can be readily achieved in a material sample placed inside of an aluminum driver liner, using the Pegasus II capacitor bank. This provides yield strength data at conditions where none presently exists. The heating from work done against the yield strength is measured with multichannel pyrometry from infrared radiation emitted by the material sample. The temperature data as a function of liner position are unfolded to give the yield strength along the strain, strain-rate trajectory. Proper design of the liner and sample configuration ensures that the current diffused into the sample adds negligible heating. An important issue, in this type of temperature measurement, is shielding of the pickup optics from other sources of radiation. At strains greater than those achievable on Pegasus, e.g. the LANL Atlas facility, some materials may be heated all the way to melt by this process. Recent data on 6061-T6 Aluminum will be compared with an existing model for strain and strain-rate heating. The liner configuration and pyrometry diagnostic will also be discussed.

  15. Bicrystals with strain gradient effects

    SciTech Connect

    Shu, J.Y.

    1997-01-09

    Boundary between two perfectly bonded single crystals plays an important role in determining the deformation of the bicrystals. This work addresses the role of the grain boundary by considering the elevated hardening of a slip system due to a slip gradient. The slip gradients are associated with geometrically necessary dislocations and their effects become pronounced when a representative length scale of the deformation field is comparable to the dominant microstructural length scale of a material. A new rate-dependent crystal plasticity theory is presented and has been implemented within the finite element method framework. A planar bicrystal under uniform in-plane loading is studied using the new crystal theory. The strain is found to be continuous but nonuniform within a boundary layer around the interface. The lattice rotation is also nonuniform within the boundary layer. The width of the layer is determined by the misorientation of the grains, the hardening of slip systems, and most importantly by the characteristic material length scales. The overall yield strength of the bicrystal is also obtained. A significant grain-size dependence of the yield strength, the Hall- Petch effect is predicted.

  16. Suppression of Low Strain Rate Nonpremixed Flames by an Agent

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L. (Technical Monitor); Hamins, A.; Bundy, M.; Oh, C. B.; Park, J.; Puri, I. K.

    2004-01-01

    The extinction and structure of non-premixed methane/air flames were investigated in normal gravity and microgravity through the comparison of experiments and calculations using a counterflow configuration. From a fire safety perspective, low strain rate conditions are important for several reasons. In normal gravity, many fires start from small ignition sources where the convective flow and strain rates are weak. Fires in microgravity conditions, such as a manned spacecraft, may also occur in near quiescent conditions where strain rates are very low. When designing a fire suppression system, worst-case conditions should be considered. Most diffusion flames become more robust as the strain rate is decreased. The goal of this project is to investigate the extinction limits of non-premixed flames using various agents and to compare reduced gravity and normal gravity conditions. Experiments at the NASA Glenn Research Center's 2.2-second drop tower were conducted to attain extinction and temperature measurements in low-strain non-premixed flames. Extinction measurements using nitrogen added to the fuel stream were performed for global strain rates from 7/s to 50/s. The results confirmed the "turning point" behavior observed previously by Maruta et al. in a 10 s drop tower. The maximum nitrogen volume fraction in the fuel stream needed to assure extinction for all strain rates was measured to be 0.855+/-0.016, associated with the turning point determined to occur at a strain rate of 15/s. The critical nitrogen volume fraction in the fuel stream needed for extinction of 0-g flames was measured to be higher than that of 1-g flames.

  17. Tantalum strength model incorporating temperature, strain rate and pressure

    NASA Astrophysics Data System (ADS)

    Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt

    Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. High strain rate fracture behavior of fused silica

    NASA Astrophysics Data System (ADS)

    Ruggiero, Andrew; Iannitti, Gianluca; Testa, Gabriel; Limido, Jerome; Lacome, Jean; Olovsson, Lars; Ferraro, Mario; Bonora, Nicola

    2013-06-01

    Fused silica is a high purity synthetic amorphous silicon dioxide characterized by low thermal expansion coefficient, excellent optical qualities and exceptional transmittance over a wide spectral range. Because of its wide use in the military industry as window material, it may be subjected to high-energy ballistic impacts. Under such dynamic conditions, post-yield response of the ceramic as well as the strain rate related effects become significant and should be accounted for in the constitutive modeling. In this study, the procedure for constitutive model validation and model parameters identification, is presented. Taylor impact tests and drop weight tests were designed and performed at different impact velocities, from 1 to 100 m/s, and strain rates, from 102 up to 104 s-1. Numerical simulation of both tests was performed with IMPETUS-FEA, a general non-linear finite element software which offers NURBS finite element technology for the simulation of large deformation and fracture in materials. Model parameters were identified by optimization using multiple validation metrics. The validity of the parameters set determined with the proposed procedure was verified comparing numerical predictions and experimental results for an independent designed test consisting in a fused silica tile impacted at prescribed velocity by a steel sphere.

  19. Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations

    PubMed Central

    Fan, Yue; Osetskiy, Yuri N.; Yip, Sidney; Yildiz, Bilge

    2013-01-01

    Probing the mechanisms of defect–defect interactions at strain rates lower than 106 s−1 is an unresolved challenge to date to molecular dynamics (MD) techniques. Here we propose an original atomistic approach based on transition state theory and the concept of a strain-dependent effective activation barrier that is capable of simulating the kinetics of dislocation–defect interactions at virtually any strain rate, exemplified within 10−7 to 107 s−1. We apply this approach to the problem of an edge dislocation colliding with a cluster of self-interstitial atoms (SIAs) under shear deformation. Using an activation–relaxation algorithm [Kushima A, et al. (2009) J Chem Phys 130:224504], we uncover a unique strain-rate–dependent trigger mechanism that allows the SIA cluster to be absorbed during the process, leading to dislocation climb. Guided by this finding, we determine the activation barrier of the trigger mechanism as a function of shear strain, and use that in a coarse-graining rate equation formulation for constructing a mechanism map in the phase space of strain rate and temperature. Our predictions of a crossover from a defect recovery at the low strain-rate regime to defect absorption behavior in the high strain-rate regime are validated against our own independent, direct MD simulations at 105 to 107 s−1. Implications of the present approach for probing molecular-level mechanisms in strain-rate regimes previously considered inaccessible to atomistic simulations are discussed. PMID:24114271

  20. High strain rate compression testing of glass fibre reinforced polypropylene

    NASA Astrophysics Data System (ADS)

    Govender, R. A.; Langdon, G. S.; Cloete, T. J.; Nurick, G. N.

    2012-08-01

    This paper details an investigation of the high strain rate compression testing of GFPP with the Split Hopkinson Pressure Bar (SHPB) in the through-thickness and in-plane directions. GFPP posed challenges to SHPB testing as it fails at relatively high stresses, while having relatively low moduli and hence mechanical impedance. The modifications to specimen geometry and incident pulse shaping in order to gather valid test results, where specimen equilibrium was achieved for SHPB tests on GFPP are presented. In addition to conventional SHPB tests to failure, SHPB experiments were designed to achieve specimen equilibration at small strains, which permitted the capture of high strain rate elastic modulus data. The strain rate dependency of GFPP's failure strengths in the in-plane and through-thickness direction is modelled using a logarithmic law.

  1. Creep Strain and Strain Rate Response of 2219 Al Alloy at High Stress Levels

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. B.; Wagner, John A.; Lisagor, W. Barry

    1998-01-01

    As a result of high localized plastic deformation experienced during proof testing in an International Space Station connecting module, a study was undertaken to determine the deformation response of a 2219-T851 roll forging. After prestraining 2219-T851 Al specimens to simulate strains observed during the proof testing, creep tests were conducted in the temperature range from ambient temperature to 107 C (225 F) at stress levels approaching the ultimate tensile strength of 2219-T851 Al. Strain-time histories and strain rate responses were examined. The strain rate response was extremely high initially, but decayed rapidly, spanning as much as five orders of magnitude during primary creep. Select specimens were subjected to incremental step loading and exhibited initial creep rates of similar magnitude for each load step. Although the creep rates decreased quickly at all loads, the creep rates dropped faster and reached lower strain rate levels for lower applied loads. The initial creep rate and creep rate decay associated with primary creep were similar for specimens with and without prestrain; however, prestraining (strain hardening) the specimens, as in the aforementioned proof test, resulted in significantly longer creep life.

  2. Strain Rate Dependence of Compressive Stress-Strain Loops of Several Polymers

    NASA Astrophysics Data System (ADS)

    Nakai, Kenji; Yokoyama, Takashi

    The compressive stress-strain loops of several commercial polymers at strain rates of nearly 700/s are determined in the standard split Hopkinson pressure bar. Four different polymers or typical thermoplastics: ABS, PA-6, PA-66 and PC are tested at room temperature. Cylindrical specimens with a slenderness ratio (= height l /diameter d) of 0.5 are used in the Hopkinson bar tests, and those with l/d = 1.5 as specified in the ASTM Designation E9-89a are used in the static tests. The stress-strain loops in compression at low and intermediate strain rates are measured in an Instron testing machine. The influences of strain rate on the Young's modulus, 2.5% flow stress and dissipation energy are investigated. It is demonstrated that the area within the stress-strain loop (or dissipation energy) increases with increasing strain rate as well as given strain, that is, all polymers tested exhibit intrinsic dynamic viscoelasticity and a high elastic aftereffect following complete unloading.

  3. Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2002-01-01

    A research program is underway to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Under these types of loading conditions, the material response can be highly strain rate dependent and nonlinear. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. To verify the analytical model, tensile stress-strain curves are predicted for a representative composite over strain rates ranging from around 1 x 10(exp -5)/sec to approximately 400/sec. The analytical predictions compare favorably to experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.

  4. In vitro strain measurement in the porcine antrum using ultrasound doppler strain rate imaging.

    PubMed

    Ahmed, Aymen Bushra; Gilja, Odd Helge; Gregersen, Hans; Ødegaard, Svein; Matre, Knut

    2006-04-01

    Strain rate imaging (SRI) enables study of deformation in soft tissues. The aim of this study was to evaluate the accuracy of SRI in measuring strain in the porcine antral wall in vitro. An experimental set-up enabled controlled distension of a porcine stomach in a saline reservoir. Radial strain obtained by SRI was compared with radial strain calculated from B-mode ultrasonography. Circumferential strain obtained by SRI was compared with circumferential strain calculated from sonomicrometry. The agreement between radial strain values measured by SRI and B-mode, along and across several ultrasound (US) beams, using US frequency 6.7 MHz and strain length (SL) = 1.9 mm was = -1.0 +/- 12.1% and 0.5 +/- 13.4%, respectively (mean difference +/- 2SD%) and it was better than with SL 1.2 mm. Compared with sonomicrometry, SRI-determined circumferential strain using 6.7 MHz and SL = 1.9 mm was less accurate, whether averaging along or across several US beams (-9.2 +/- 46.7% and 13.8 +/- 51.2%, respectively). In conclusion, SRI gave accurate measurement of radial strain of the antral wall, but seemed to be less accurate for measurement of circumferential strain for this in vitro set-up. PMID:16616598

  5. Experimental and numerical study on tensile strength of concrete under different strain rates.

    PubMed

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10(-7) s(-1) to 10(-4) s(-1) in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

  6. Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates

    PubMed Central

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10−7 s−1 to 10−4 s−1 in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

  7. Experimental Study on Tensile Behavior of Carbon Fiber and Carbon Fiber Reinforced Aluminum at Different Strain Rate

    NASA Astrophysics Data System (ADS)

    Zhou, Yuanxin; Wang, Ying; Jeelani, Shaik; Xia, Yuanming

    2007-01-01

    In this study, dynamic and quasi-static tensile behaviors of carbon fiber and unidirectional carbon fiber reinforced aluminum composite have been investigated. The complete stress strain curves of fiber bundles and the composite at different strain rates were obtained. The experimental results show that carbon fiber is a strain rate insensitive material, but the tensile strength and critical strain of the Cf/Al composite increased with increasing of strain rate because of the strain rate strengthening effect of aluminum matrix. Based on experimental results, a fiber bundles model has been combined with Weibull strength distribution function to establish a one-dimensional damage constitutive equation for the Cf/Al composite.

  8. Modelling Deformation and Texture Evolution in OFHC Copper at Large Strain and High Strain Rate

    NASA Astrophysics Data System (ADS)

    Bonora, Nicola; Testa, Gabriel; Ruggiero, Andrew; Iannitti, Gianluca; Hörnqvist, Magnus; Mortazavi, Nooshin

    2015-06-01

    In this work, a two-scale approach to simulate high rate deformation and texture evolution in OFHC copper is presented. The modified Rusinek-Klepaczko material model was used to simulate the response of the material at continuum scale accounting for different deformation mechanisms occurring over an extensive range of strain rate and temperature. Material model parameters were determined from characterization test (mainly uniaxial tests) results. Successively, the model was validated simulating material deformation in Taylor anvil impact, symmetric Taylor impact (rod-on-rod) and dynamic tensile extrusion (DTE) tests. Texture evolution, under different deformation paths was simulated using the crystal plasticity package CPFEM and results were compared with those obtained by EBSD analysis. The possibility to incorporate the effect of grain size evolution and fragmentation at continuum scale is discussed.

  9. High Strain Rate Behavior of Polymer Matrix Composites Analyzed

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.

    2001-01-01

    Procedures for modeling the high-speed impact of composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. To characterize and validate material models that could be used in the design of impactresistant engine cases, researchers must obtain material data over a wide variety of strain rates. An experimental program has been carried out through a university grant with the Ohio State University to obtain deformation data for a representative polymer matrix composite for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used to characterize and validate a constitutive model that was developed at the NASA Glenn Research Center.

  10. Magnetic Implosion for Novel Strength Measurements at High Strain Rates

    SciTech Connect

    Lee, H.; Preston, D.L.; Bartsch, R.R.; Bowers, R.L.; Holtkamp, D.; Wright, B.L.

    1998-10-19

    Recently Lee and Preston have proposed to use magnetic implosions as a new method for measuring material strength in a regime of large strains and high strain rates inaccessible to previously established techniques. By its shockless nature, this method avoids the intrinsic difficulties associated with an earlier approach using high explosives. The authors illustrate how the stress-strain relation for an imploding liner can be obtained by measuring the velocity and temperature history of its inner surface. They discuss the physical requirements that lead us to a composite liner design applicable to different test materials, and also compare the code-simulated prediction with the measured data for the high strain-rate experiments conducted recently at LANL. Finally, they present a novel diagnostic scheme that will enable us to remove the background in the pyrometric measurement through data reduction.

  11. Mechanical properties of single bovine trabeculae are unaffected by strain rate.

    PubMed

    Szabó, M E; Taylor, M; Thurner, P J

    2011-03-15

    For a better understanding of traumatic bone fractures, knowledge of the mechanical behavior of bone at high strain rates is required. Importantly, it needs to be clarified how quasistatic mechanical testing experiments relate to real bone fracture. This merits investigating the mechanical behavior of bone with an increase in strain rate. Various studies examined how cortical and trabecular bone behave at varying strain rates, but no one has yet looked at this question using individual trabeculae. In this study, three-point bending tests were carried out on bovine single trabeculae excised from a proximal femur to test the trabecular material's strain rate sensitivity. An experimental setup was designed, capable of measuring local strains at the surface of such small specimens, using digital image correlation. Microdamage was detected using the bone whitening effect. Samples were tested through two orders of magnitude, at strain rates varying between 0.01 and 3.39 s(-1). No linear relationship was observed between the strain rate and the Young's modulus (1.13-16.46 GPa), the amount of microdamage, the maximum tensile strain at failure (14.22-61.65%) and at microdamage initiation (1.95-12.29%). The results obtained in this study conflict with previous studies reporting various trends for macroscopic cortical and trabecular bone samples with an increase in strain rate. This discrepancy might be explained by the bone type, the small sample geometry, the limited range of strain rates tested here, the type of loading and the method of microdamage detection. Based on the results of this study, the strain rate can be ignored when modeling trabecular bone. PMID:21333291

  12. A constitutive model for ballistic gelatin at surgical strain rates.

    PubMed

    Ravikumar, Nishant; Noble, Christopher; Cramphorn, Edward; Taylor, Zeike A

    2015-07-01

    This paper describes a constitutive model for ballistic gelatin at the low strain rates experienced, for example, by soft tissues during surgery. While this material is most commonly associated with high speed projectile penetration and impact investigations, it has also been used extensively as a soft tissue simulant in validation studies for surgical technologies (e.g. surgical simulation and guidance systems), for which loading speeds and the corresponding mechanical response of the material are quite different. We conducted mechanical compression experiments on gelatin specimens at strain rates spanning two orders of magnitude (~0.001-0.1s(-1)) and observed a nonlinear load-displacement history and strong strain rate-dependence. A compact and efficient visco-hyperelastic constitutive model was then formulated and found to fit the experimental data well. An Ogden type strain energy density function was employed for the elastic component. A single Prony exponential term was found to be adequate to capture the observed rate-dependence of the response over multiple strain rates. The model lends itself to immediate use within many commercial finite element packages. PMID:25863009

  13. Pressure-strain-rate events in homogeneous turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Brasseur, James G.; Lee, Moon J.

    1988-01-01

    A detailed study of the intercomponent energy transfer processes by the pressure-strain-rate in homogeneous turbulent shear flow is presented. Probability density functions (pdf's) and contour plots of the rapid and slow pressure-strain-rate show that the energy transfer processes are extremely peaky, with high-magnitude events dominating low-magnitude fluctuations, as reflected by very high flatness factors of the pressure-strain-rate. A concept of the energy transfer class was applied to investigate details of the direction as well as magnitude of the energy transfer processes. In incompressible flow, six disjoint energy transfer classes exist. Examination of contours in instantaneous fields, pdf's and weighted pdf's of the pressure-strain-rate indicates that in the low magnitude regions all six classes play an important role, but in the high magnitude regions four classes of transfer processes, dominate. The contribution to the average slow pressure-strain-rate from the high magnitude fluctuations is only 50 percent or less. The relative significance of high and low magnitude transfer events is discussed.

  14. Dynamic Recrystallization During High-Strain-Rate Tension of Copper

    NASA Astrophysics Data System (ADS)

    Mortazavi, Nooshin; Bonora, Nicola; Ruggiero, Andrew; Hörnqvist Colliander, Magnus

    2016-06-01

    Discontinuous dynamic recrystallization can occur during dynamic tensile extrusion of copper, which is subjected to uniaxial tensile strains of ~5 and strain rates up to 106 s-1 in the extruded section. Through high-resolution transmission Kikuchi diffraction, we show that nucleation occurs through subgrain rotation and grain boundary bulging at boundaries between <001> and <111> oriented grains. The observed nuclei consist of subgrains with a size of approximately 200 to 400 nm.

  15. Effects of H2O, CO2, and N2 air contaminants on critical airside strain rates for extinction of hydrogen-air counterflow diffusion flames

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Guerra, Rosemary

    1989-01-01

    Dish-shaped counterflow diffusion flames centered by opposing laminar jets of H2 and clean and contaminant O2/N2 mixtures in an argon bath at 1 atm were used to study the effects of contaminants on critical airside strain. The jet velocities for both flame extinction and restoration are found for a wide range of contaminant and O2 concentrations in the air jet. The tests are also conducted for a variety of input H2 concentrations. The results are compared with those from several other studies.

  16. Mechanical Solder Characterisation Under High Strain Rate Conditions

    NASA Astrophysics Data System (ADS)

    Meier, Karsten; Roellig, Mike; Wiese, Steffen; Wolter, Klaus-Juergen

    2010-11-01

    Using a setup for high strain rate tensile experiments the mechanical behavior of two lead-free tin based solders is investigated. The first alloy is SnAg1.3Cu0.5Ni. The second alloy has a higher silver content but no addition of Ni. Solder joints are the main electrical, thermal and mechanical interconnection technology on the first and second interconnection level. With the recent rise of 3D packaging technologies many novel interconnection ideas are proposed with innovative or visionary nature. Copper pillar, stud bump, intermetallic (SLID) and even spring like joints are presented in a number of projects. However, soldering will remain one of the important interconnect technologies. Knowing the mechanical properties of solder joints is important for any reliability assessment, especially when it comes to vibration and mechanical shock associated with mobile applications. Taking the ongoing miniaturization and linked changes in solder joint microstructure and mechanical behavior into account the need for experimental work on that issue is not satisfied. The tests are accomplished utilizing miniature bulk specimens to match the microstructure of real solder joints as close as possible. The dogbone shaped bulk specimens have a crucial diameter of 1 mm, which is close to BGA solder joints. Experiments were done in the strain rate range from 20 s-1 to 600 s-1. Solder strengthening has been observed with increased strain rate for both SAC solder alloys. The yield stress increases by about 100% in the investigated strain rate range. The yield level differs strongly. A high speed camera system was used to assist the evaluation process of the stress and strain data. Besides the stress and strain data extracted from the experiment the ultimate fracture strain is determined and the fracture surfaces are evaluated using SEM technique considering rate dependency.

  17. Prediction of FV520B Steel Flow Stresses at High Temperature and Strain Rates

    NASA Astrophysics Data System (ADS)

    Han, Xiaolan; Zhao, Shengdun; Zhang, Chenyang; Fan, Shuqin; Xu, Fan

    2015-10-01

    In order to develop reliable constitutive equations for the simulation, the hot deformation behavior of FV520B steel was investigated through isothermal compression tests in a wide range of temperatures from 900 °C to 1100 °C at an interval of 50 °C and strain rate from 0.01 to 10 s-1 on Gleeble-1500D simulator. The effects of temperature and strain rate on deformation behavior were represented by Zener-Holloman parameter in an exponent-type equation of Arrhenius constitutive. The influence of strain was incorporated in the constitutive analysis by material constants expressed as a polynomial function of strain. The constitutive equation (considering the compensation of strain) could precisely predict the flow stress only at strain rate 0.01 s-1 except at the temperatures of 900 °C and 1000 °C, whereas the flow stress predicted by a modified equation (incorporating both the strain and strain rate) demonstrated a well agreement with the experimental data throughout the entire range of temperatures and strain rates. Correlation coefficient (R) of 0.988 and average absolute relative error (AARE) of 5.7% verified the validity of developed equation from statistical analysis, which further confirmed that the modified constitutive equation could accurately predict the flow stress of FV520B steel.

  18. Finite element modeling for strain rate dependency of fracture resistance in compact bone.

    PubMed

    Charoenphan, S; Polchai, A

    2007-02-01

    Crack growths in compact bones driven by various strain rate levels were studied using finite element modeling. The energy resistance curves in bovine femur cortical bones were characterized, whereas the orthotropic viscoelasticity in bone materials was accounted for to assess the effect of strain rate on the energy resistance curve. The models were also used to justify the anticipated plane strain response as a result of rather thick specimens used in experiments. Similarities were found between the experimental and model results when crack resistance ability exhibited in bones with slow loading rates, while unstable crack growth existed in bones with rapid loading rates. The critical energy release rates slightly decreased with the increase in strain rates. The hybrid experimental and computational method introduced in this study could be beneficial for application in fracture study in which standard experiments cannot be validly performed. PMID:17227094

  19. High strain rate superplasticity in metals and composites

    SciTech Connect

    Nieh, T.G.; Wadsworth, J.; Higashi, K.

    1993-07-01

    Superplastic behavior at very high strain rates (at or above 1 s{sup {minus}1}) in metallic-based materials is an area of increasing interest. The phenomenon has been observed quite extensively in metal alloys, metal-matrix composites (MMC), and mechanically-alloyed (MA) materials. In the present paper, experimental results on high strain rate behavior in 2124 Al-based materials, including Zr-modified 2124, SiC-reinforced 2124, MA 2124, and MA 2124 MMC, are presented. Except for the required fine grain size, details of the structural requirements of this phenomenon are not yet understood. Despite this, a systematic approach to produce high strain rate superplasticity (HSRS) in metallic materials is given in this paper. Evidences indicate that the presence of a liquid phase, or a low melting point region, at boundary interfaces is responsible for HSRS.

  20. Stress, strain rate and anisotropy in Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Savage, M. K.; Aoki, Y.; Unglert, K.; Ohkura, T.; Umakoshi, K.; Shimizu, H.; Iguchi, M.; Tameguri, T.; Ohminato, T.; Mori, J.

    2016-04-01

    Seismic anisotropy, the directional dependence of wave speeds, may be caused by stress-oriented cracks or by strain-oriented minerals, yet few studies have quantitatively compared anisotropy to stress and strain over large regions. Here we compare crustal stress and strain rates on the Island of Kyushu, Japan, as measured from inversions of focal mechanisms, GPS and shear wave splitting. Over 85,000 shear wave splitting measurements from local and regional earthquakes are obtained from the NIED network between 2004 and 2012, and on Aso, Sakurajima, Kirishima and Unzen volcano networks. Strain rate measurements are made from the Japanese Geonet stations. JMA-determined S arrival times processed with the MFAST shear wave splitting code measure fast polarisations (Φ), related to the orientation of the anisotropic medium and time delays (dt), related to the path length and the percent anisotropy. We apply the TESSA 2-D delay time tomography and spatial averaging code to the highest quality events, which have nearly vertical incidence angles, separating the 3455 shallow (depth < 40 km) from the 4957 deep (> = 40 km) earthquakes. Using square grids with 30 km sides for all the inversions, the best correlations are observed between splitting from shallow earthquakes and stress. Axes of maximum horizontal stress (SHmax) and Φ correlate with a coefficient c of 0.56, significant at the 99% confidence level. Their mean difference is 31.9°. Axes of maximum compressional strain rate and SHmax are also well aligned, with an average difference of 28°, but they do not correlate with each other, meaning that where they differ, the difference is not systematic. Anisotropy strength is negatively correlated with the stress ratio parameter determined from focal mechanism inversion (c = - 0.64; significant at the 99% confidence level). The anisotropy and stress results are consistent with stress-aligned microcracks in the crust in a dominantly strike-slip regime. Eigenvalues of

  1. Mechanical strength model for plastic bonded granular materials at high strain rates and large strains

    SciTech Connect

    Browning, R.V.; Scammon, R.J.

    1997-07-01

    Modeling impact events on systems containing plastic bonded explosive materials requires accurate models for stress evolution at high strain rates out to large strains. For example, in the Steven test geometry reactions occur after strains of 0.5 or more are reached for PBX-950l. The morphology of this class of materials and properties of the constituents are briefly described. We then review the viscoelastic behavior observed at small strains for this class of material, and evaluate large strain models used for granular materials such as cap models. Dilatation under shearing deformations of the PBX is experimentally observed and is one of the key features modeled in cap style plasticity theories, together with bulk plastic flow at high pressures. We propose a model that combines viscoelastic behavior at small strains but adds intergranular stresses at larger strains. A procedure using numerical simulations and comparisons with results from flyer plate tests and low rate uniaxial stress tests is used to develop a rough set of constants for PBX-9501. Comparisons with the high rate flyer plate tests demonstrate the viscoelastic based model show that the observed characteristic behavior is captured by this model.

  2. Mechanical strength model for plastic bonded granular materials at high strain rates and large strains

    SciTech Connect

    Browning, R.V.; Scammon, R.J.

    1998-07-01

    Modeling impact events on systems containing plastic bonded explosive materials requires accurate models for stress evolution at high strain rates out to large strains. For example, in the Steven test geometry reactions occur after strains of 0.5 or more are reached for PBX-9501. The morphology of this class of materials and properties of the constituents are briefly described. We then review the viscoelastic behavior observed at small strains for this class of material, and evaluate large strain models used for granular materials such as cap models. Dilatation under shearing deformations of the PBX is experimentally observed and is one of the key features modeled in cap style plasticity theories, together with bulk plastic flow at high pressures. We propose a model that combines viscoelastic behavior at small strains but adds intergranular stresses at larger strains. A procedure using numerical simulations and comparisons with results from flyer plate tests and low rate uniaxial stress tests is used to develop a rough set of constants for PBX-9501. Comparisons with the high rate flyer plate tests demonstrate that the observed characteristic behavior is captured by this viscoelastic based model. {copyright} {ital 1998 American Institute of Physics.}

  3. Low strain rate compression measurements of PBXN-9, PBX 9501, and mock 9501

    SciTech Connect

    Idar, D.J.; Scott, P.D.; Funk, D.J.; Peterson, P.D.

    1998-07-01

    Low strain rate (10{sup {minus}3} to 10{sup {minus}1}s{sup {minus}1}) compression measurements have been obtained on three different composite materials: PBXN-9, PBX 9501, and a 9501 sugar mock. These measurements expand on earlier efforts to identify the behavior of PBX 9501 and sugar mocks at different rates, sample aspect ratios (L/d) and temperatures. PBX 9501 samples at three different L/d{close_quote}s were strained at the same strain rate to evaluate L/d effects on the stress-strain parameters. PBXN-9 data were obtained at two different L/d{close_quote}s, two different temperatures, and at three different rates. The PBXN-9 data exhibit similar trends to other energetic materials data, i.e. 1)increased ultimate compressive strength and modulus of elasticity with either an increase in strain rate, or decrease in temperature, and 2)small increases in the strain at maximum stress with decreases in temperature or strain rate. A comparison of the PBXN-9 data to the PBX 9501 data shows that both begin to fail at comparable strains, however the PBXN-9 data is considerably weaker in terms of the ultimate compressive strength. {copyright} {ital 1998 American Institute of Physics.}

  4. Low strain rate compression measurements of PBXN-9, PBX 9501, and mock 9501

    NASA Astrophysics Data System (ADS)

    Idar, D. J.; Peterson, P. D.; Scott, P. D.; Funk, D. J.

    1998-07-01

    Low strain rate (10-3 to 10-1 s-1) compression measurements have been obtained on three different composite materials: PBXN-9, PBX 9501, and a 9501 sugar mock. These measurements expand on earlier efforts to identify the behavior of PBX 9501 and sugar mocks at different rates, sample aspect ratios (L/d) and temperatures. PBX 9501 samples at three different L/d's were strained at the same strain rate to evaluate L/d effects on the stress-strain parameters. PBXN-9 data were obtained at two different L/d's, two different temperatures, and at three different rates. The PBXN-9 data exhibit similar trends to other energetic materials data, i.e. 1)increased ultimate compressive strength and modulus of elasticity with either an increase in strain rate, or decrease in temperature, and 2)small increases in the strain at maximum stress with decreases in temperature or strain rate. A comparison of the PBXN-9 data to the PBX 9501 data shows that both begin to fail at comparable strains, however the PBXN-9 data is considerably weaker in terms of the ultimate compressive strength.

  5. Low strain rate compression measurements of PBX 9501, PBXN-9, and MOCK 9501

    SciTech Connect

    Idar, D.J.; Peterson, P.D.; Scott, P.D.; Funk, D.J.

    1997-07-01

    Low strain rate (10{sup -3} to 10{sup -1} 1/s) compression measurements have been obtained on three different composite materials: PBX 9501, PBXN-9, and a sugar mock of PBX 9501. These measurements expand on earlier efforts to identify the behavior of PBX 9501 and sugar mocks at different rates, aspect ratios (L/d) and temperatures. PBX 9501 samples at three different L/d`s were strained at the same rate to evaluate Lid effects on the stress strain parameters. Extensometer and strain gage data obtained with these measurements were also compared for precision. PBXN-9 data were obtained at two different L/ds, two different temperatures, and at three different rates. The PBXN-9 data exhibit similar trends to other energetic materials data, i.e. 1) increased ultimate compressive strength and modulus of elasticity with either an increase in strain rate, or decrease in temperature, and 2) small changes in the strain at maximum stress with changes in temperature or strain rate. A comparison of the PBXN-9 data to the PBX 9501 data shows that both begin to fail at comparable strains, however the PBXN- 9 data is considerably weaker in terms of the ultimate compressive strength.

  6. Low Strain Rate Compression Measurements of PBX 9501, PBXN-9, and Mock 9501

    NASA Astrophysics Data System (ADS)

    Idar, D. J.; Peterson, P. D.; Scott, P. D.; Funk, D. J.

    1997-07-01

    Low strain rate (10-3 to 10-1 1/s) compression measurements have been obtained on three different composite materials: PBX 9501, PBXN-9, and a sugar mock of PBX 9501. These measurements expand on earlier efforts to identify the behavior of PBX 9501 and sugar mocks at different rates, aspect ratios (L/d) and temperatures. PBX 9501 samples at three different L/d's were strained at the same rate to evalute the effect of aspect ration on stress-strain parameters. Extensometer and strain gage data obtained with these measurements were also compared for precision. PBXN-9 data were obtained at two different L/d's, two different temperatures, an at three different rates. The PBXN-9 data exhibit similar trends to other energetic materials data, i.e. 1) increased ultimate compressive strength and modulus of elasticity with either an increase in strain rate, or decrease in temperature, and 2) small changes in the strain at maximum stress with changes in temperature or strain rate. A comparison of the PBXN-9 data to the PBX 9501 data shows that both begin to fail at comparable strains. However, PBXN-9 is considerably weaker in terms of the ultimate compressive strength.

  7. Iodine induced SCC of Zr alloys at constant strain rate

    NASA Astrophysics Data System (ADS)

    Goryachev, S. B.; Gritsuk, A. R.; Prasolov, F. F.; Snegirev, M. G.; Shestak, V. E.; Novikov, V. V.; Bibilashvili, Yu. K.

    1992-12-01

    Stress corrosion cracking of Zr and its alloys Zry-4, Zry-2 and Zr-1% Nb has been studied in flowing iodine vapour at a constant strain rate. The tests were performed using flat samples of Zr and its alloy claddings as well as Zr coated Zr-1% Nb claddings. Zr-1% Nb is shown to be more resistant to SCC as compared to Zry-4 and Zry-2. No corrosion induced failure of Zr or Zr-coated Zr-1% Nb claddings has been actually observed. The influence of strain rate, temperature and iodine partial pressure on SCC has been studied for Zr-1% Nb.

  8. Onset Mechanism of Strain Rate Induced Flow Stress Up-turn

    SciTech Connect

    Fan, Yue; Osetskiy, Yury N; Yip, Sidney; Yildiz-Botterud, Bilge

    2012-01-01

    The strain-rate response of flow stress in a plastically deforming crystal is formulated through a stresssensitive dislocation mobility model that can be evaluated by atomistic simulation. For the flow stress of a model crystal of bcc Fe containing a 1/2 <111> screw dislocation, this approach describes naturally a non-Arrhenius upturn at high strain rate, an experimentally established transitional behavior for which the underlying mechanism has not been clarified. Implications of our findings regarding the previous explanations of strain-rate effects on flow stress are discussed.

  9. Mechanical and microstructural response of Ni sub 3 Al at high strain rate and elevated temperatures

    SciTech Connect

    Sizek, H.W.; Gray, G.T. III.

    1990-01-01

    In this paper, the effect of strain rate and temperature on the substructure evolution and mechanical response of Ni{sub 3}Al will be presented. The strain rate response of Ni{sub 3}Al was studied at strain rates from 10{sup {minus}3} s{sup {minus}1} (quasi-static) to 10{sup 4} s{sup {minus}1} using a Split Hopkinson Pressure Bar. The Hopkinson Bar tests were conducted at temperatures ranging from 77K to 1273K. At high strain rates the flow strength increased significantly with increasing temperature, similar to the behavior observed at quasi-static rates. The work hardening rates increased with strain rate and varied with temperatures. The work hardening rates, appeared to be significantly higher than those found for Ni270. The substructure evolution was characterized utilizing TEM. The defect generation and rate sensitivity of Ni{sub 3}Al are also discussed as a function of strain rate and temperature. 15 refs., 4 figs.

  10. On Estimation of GPS-based Indonesian Strain Rate Map

    NASA Astrophysics Data System (ADS)

    Susilo, Susilo; Abidin, Hasanuddin Z.; Meilano, Irwan; Sapiie, Benyamin; Wijanarto, Antonius B.

    2016-04-01

    Using the GPS-derived rates at survey mode (sGPS) stations and continuous GPS stations across Indonesian region, covering the 22 years period from 1993 to 2014, the linear deformation velocities with an accuracy of about 2 to 3 mm/year level are derived. These velocities are corrected to the coseismic and postseismic deformation caused by significant earthquakes in that period. In this study, we use this GPS velocities field to construct a crustal strain rate map without including the physical model yet. An interpolation method was used to compute the velocity model. By differentiation of the continuous velocity model, we derive the strain rate map of Indonesia. At present, our result is only the magnitude of the strain rate. The Indonesian strain rate map is very important for studying the deformation characteristics in the region and to establish a deformation (velocity) model for supporting the implementation of the Indonesian Geospatial Reference System 2013 (IGRS 2013). This is a new semi-dynamic geocentric datum of Indonesia, which uses the global ITRF2008 reference frame, with a reference epoch of 1 January 2012. A deformation (velocity) model is required to transform coordinates from an observation epoch to or from this reference epoch.

  11. Analytical Modeling of the High Strain Rate Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2003-01-01

    The results presented here are part of an ongoing research program to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. State variable constitutive equations originally developed for metals have been modified in order to model the nonlinear, strain rate dependent deformation of polymeric matrix materials. To account for the effects of hydrostatic stresses, which are significant in polymers, the classical 5 plasticity theory definitions of effective stress and effective plastic strain are modified by applying variations of the Drucker-Prager yield criterion. To verify the revised formulation, the shear and tensile deformation of a representative toughened epoxy is analyzed across a wide range of strain rates (from quasi-static to high strain rates) and the results are compared to experimentally obtained values. For the analyzed polymers, both the tensile and shear stress-strain curves computed using the analytical model correlate well with values obtained through experimental tests. The polymer constitutive equations are implemented within a strength of materials based micromechanics method to predict the nonlinear, strain rate dependent deformation of polymer matrix composites. In the micromechanics, the unit cell is divided up into a number of independently analyzed slices, and laminate theory is then applied to obtain the effective deformation of the unit cell. The composite mechanics are verified by analyzing the deformation of a representative polymer matrix composite (composed using the representative polymer analyzed for the correlation of the polymer constitutive equations) for several fiber orientation angles across a variety of strain rates. The computed values compare favorably to experimentally obtained results.

  12. Influence of strain rate on the quasi-static tensile strength of Kevlar 29 narrow fabrics

    SciTech Connect

    Ericksen, R.H.

    1981-01-01

    Increasing the strain rate from 3 x 10/sup -4/ min/sup -1/ to 1.4 min/sup -1/ resulted in a 20% increase in fabric strength. Similar changes in strength with strain rate were obtained for warp yarns removed from the fabrics. Static and sliding loop yarn tests, and tests in which yarn was interwoven through wires, were used to determine effect of abrasion, bending and lateral compression as a function of strain rate. Results eliminated yarn damage by abrasion and demonstrated that unwoven yarn strength, in presence of bending or lateral compression, was dependent on strain rate. Yarn and fiber pullout tests showed that increasing strain rate caused a transition from stick-slip to smooth curves. Results suggested a mechanism whereby strain-rate dependent frictional behavior of Kevlar influences woven fabric strength. It appears that friction restrains highly loaded fibers in a fabric from adjusting their position to relieve stress concentrations. Yarn tensile strength is influenced by strain rate when the fiber arrangement has been altered by weaving or when bending or lateral compressive forces are also present.

  13. A geodetic plate motion and Global Strain Rate Model

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Blewitt, Geoffrey; Klein, Elliot C.

    2014-10-01

    present a new global model of plate motions and strain rates in plate boundary zones constrained by horizontal geodetic velocities. This Global Strain Rate Model (GSRM v.2.1) is a vast improvement over its predecessor both in terms of amount of data input as in an increase in spatial model resolution by factor of ˜2.5 in areas with dense data coverage. We determined 6739 velocities from time series of (mostly) continuous GPS measurements; i.e., by far the largest global velocity solution to date. We transformed 15,772 velocities from 233 (mostly) published studies onto our core solution to obtain 22,511 velocities in the same reference frame. Care is taken to not use velocities from stations (or time periods) that are affected by transient phenomena; i.e., this data set consists of velocities best representing the interseismic plate velocity. About 14% of the Earth is allowed to deform in 145,086 deforming grid cells (0.25° longitude by 0.2° latitude in dimension). The remainder of the Earth's surface is modeled as rigid spherical caps representing 50 tectonic plates. For 36 plates we present new GPS-derived angular velocities. For all the plates that can be compared with the most recent geologic plate motion model, we find that the difference in angular velocity is significant. The rigid-body rotations are used as boundary conditions in the strain rate calculations. The strain rate field is modeled using the Haines and Holt method, which uses splines to obtain an self-consistent interpolated velocity gradient tensor field, from which strain rates, vorticity rates, and expected velocities are derived. We also present expected faulting orientations in areas with significant vorticity, and update the no-net rotation reference frame associated with our global velocity gradient field. Finally, we present a global map of recurrence times for Mw=7.5 characteristic earthquakes.

  14. Determination of the strain rate dependent thermal softening behavior of thermoplastic materials for crash simulations

    NASA Astrophysics Data System (ADS)

    Hopmann, Christian; Klein, Jan; Schöngart, Maximilian

    2016-03-01

    Thermoplastic materials are increasingly used as a light weight replacement for metal, especially in automotive applications. Typical examples are frontends and bumpers. The loads on these structures are very often impulsive, for example in a crash situation. A high rate of loading causes a high strain rate in the material which has a major impact on the mechanical behavior of thermoplastic materials. The stiffness as well as the rigidity of polymers increases to higher strain rates. The increase of the mechanical properties is superimposed at higher rates of loading by another effect which works reducing on stiffness and rigidity, the increase of temperature caused by plastic deformation. The mechanical behavior of thermoplastic materials is influenced by temperature opposing to strain rate. The stiffness and rigidity are decreased to higher values of temperature. The effect of thermal softening on thermoplastic materials is investigated at IKV. For this purpose high-speed tensile tests are performed on a blend, consisting of Polybutylenterephthalate (PBT) and Polycarbonate (PC). In preliminary investigations the effects of strain rate on the thermomechanical behavior of thermoplastic materials was studied by different authors. Tensile impact as well as split Hopkinson pressure bar (SHPB) tests were conducted in combination with high-speed temperature measurement, though, the authors struggled especially with temperature measurement. This paper presents an approach which uses high-speed strain measurement to transpire the link between strain, strain rate and thermal softening as well as the interdependency between strain hardening and thermal softening. The results show a superimposition of strain hardening and thermal softening, which is consistent to preliminary investigations. The advantage of the presented research is that the results can be used to calibrate damage and material models to perform mechanical simulations using Finite Element Analysis.

  15. Quasi-Static and High Strain Rate Compressive Response of Injection-Molded Cenosphere/HDPE Syntactic Foam

    NASA Astrophysics Data System (ADS)

    Bharath Kumar, B. R.; Singh, Ashish Kumar; Doddamani, Mrityunjay; Luong, Dung D.; Gupta, Nikhil

    2016-07-01

    High strain rate compressive properties of high-density polyethylene (HDPE) matrix syntactic foams containing cenosphere filler are investigated. Thermoplastic matrix syntactic foams have not been studied extensively for high strain rate deformation response despite interest in them for lightweight underwater vehicle structures and consumer products. Quasi-static compression tests are conducted at 10-4 s-1, 10-3 s-1 and 10-2 s-1 strain rates. Further, a split-Hopkinson pressure bar is utilized for characterizing syntactic foams for high strain rate compression. The compressive strength of syntactic foams is higher than that of HDPE resin at the same strain rate. Yield strength shows an increasing trend with strain rate. The average yield strength values at high strain rates are almost twice the values obtained at 10-4 s-1 for HDPE resin and syntactic foams. Theoretical models are used to estimate the effectiveness of cenospheres in reinforcing syntactic foams.

  16. Quasi-Static and High Strain Rate Compressive Response of Injection-Molded Cenosphere/HDPE Syntactic Foam

    NASA Astrophysics Data System (ADS)

    Bharath Kumar, B. R.; Singh, Ashish Kumar; Doddamani, Mrityunjay; Luong, Dung D.; Gupta, Nikhil

    2016-04-01

    High strain rate compressive properties of high-density polyethylene (HDPE) matrix syntactic foams containing cenosphere filler are investigated. Thermoplastic matrix syntactic foams have not been studied extensively for high strain rate deformation response despite interest in them for lightweight underwater vehicle structures and consumer products. Quasi-static compression tests are conducted at 10-4 s-1, 10-3 s-1 and 10-2 s-1 strain rates. Further, a split-Hopkinson pressure bar is utilized for characterizing syntactic foams for high strain rate compression. The compressive strength of syntactic foams is higher than that of HDPE resin at the same strain rate. Yield strength shows an increasing trend with strain rate. The average yield strength values at high strain rates are almost twice the values obtained at 10-4 s-1 for HDPE resin and syntactic foams. Theoretical models are used to estimate the effectiveness of cenospheres in reinforcing syntactic foams.

  17. High Strain Rate Tensile Testing of DOP-26 Iridium

    SciTech Connect

    Schneibel, Joachim H; Carmichael Jr, Cecil Albert; George, Easo P

    2007-11-01

    The iridium alloy DOP-26 was developed through the Radioisotope Power Systems Program in the Office of Nuclear Energy of the Department of Energy. It is used for clad vent set cups containing radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for spacecraft. This report describes mechanical testing results for DOP-26. Specimens were given a vacuum recrystallization anneal of 1 hour at 1375 C and tested in tension in orientations parallel and perpendicular to the rolling direction of the sheet from which they were fabricated. The tests were performed at temperatures ranging from room temperature to 1090 C and strain rates ranging from 1 x 10{sup -3} to 50 s{sup -1}. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1 x 10{sup -4} Torr. The yield stress (YS) and the ultimate tensile stress (UTS) decreased with increasing temperature and increased with increasing strain rate. Between 600 and 1090 C, the ductility showed a slight increase with increasing temperature. Within the scatter of the data, the ductility did not depend on the strain rate. The reduction in area (RA), on the other hand, decreased with increasing strain rate. The YS and UTS values did not differ significantly for the longitudinal and transverse specimens. The ductility and RA values of the transverse specimens were marginally lower than those of the longitudinal specimens.

  18. High-strain-rate deformation and comminution of silicon carbide

    NASA Astrophysics Data System (ADS)

    Shih, C. J.; Nesterenko, V. F.; Meyers, M. A.

    1998-05-01

    Granular flow of comminuted ceramics governs the resistance for penetration of ceramic armor under impact. To understand the mechanism of the granular flow, silicon carbide was subjected to high-strain, high-strain-rate deformation by radial symmetric collapse of a thick-walled cylinder by explosive. The deformation, under compressive stresses, was carried out in two stages: the first stage prefractured the ceramic, while a large deformation was accomplished in the second stage. The total tangential strain (-0.23) was accommodated by both homogeneous deformation (-0.10) and shear localization (-0.13). Three microstructures, produced by different processing methods, were investigated. The microstructural differences affected the microcrack propagation: either intergranular or transgranular fracture was observed, depending on the processing conditions. Nevertheless, the spacing between shear bands and the shear displacement within the shear bands were not significantly affected by the microstructure. Within the shear bands, the phenomenon of comminution occurred, and the thickness of the shear bands increased gradually with the shear strain. A bimodal distribution of fragments developed inside the shear bands. The comminution proceeded through the incorporation of fragments from the shear-band interfaces and the erosion of fragments inside the shear band. Outside the shear bands, an additional comminution mechanism was identified: localized bending generated comminution fronts, which transformed the fractured material into the comminuted material. The observed features of high-strain-rate deformation of comminuted SiC can be used for validation of computer models for penetration process.

  19. GPS-derived Strain Rates in western Turkey

    NASA Astrophysics Data System (ADS)

    Ozener, Haluk; Aktug, Bahadir; Dogru, Asli

    2014-05-01

    In western Turkey, the distribution of earthquakes indicates that the Aegean Region is under North-South extension. In order to estimate strain rates around the Tuzla Fault, which is located in the Aegean Region of western Turkey, five Global Positioning System (GPS) surveys were carried out between 2009 and 2012. The velocity field obtained from this study was combined with the published velocity field of the region and strain rates were calculated. Maximum values of strain accumulation were found to be on and around the sites close to Izmir. The velocities in ITRF2005 reached up to 20 mm/yr relative to the Eurasian plate. The Results of strain calculation indicated up to 140x10-9strain/yr and the direction of the extension and compression of the area showed consistency with present day kinematics of the Aegean Region. The GPS network in the area should be extended westward to increase the spatial resolution of the results. Besides, real-time GPS data coming from CORS sites can also provide an improved assessment of the status.

  20. Characterization of strain rate sensitivity in pharmaceutical materials using indentation creep analysis.

    PubMed

    Katz, Jeffrey M; Buckner, Ira S

    2013-02-14

    Understanding how a material's response to stress changes as the stress is applied at different rates is important in predicting performance of pharmaceutical powders during tablet compression. Widely used methods for determining strain rate sensitivity (SRS) are empirically based and can often provide inconsistent or misleading results. Indentation creep data, collected during hardness tests on compacts formed from several common tableting excipients, were used to predict each material's relative sensitivity to changes in strain rate. Linear relationships between Ln(indentation hardness) and Ln(strain rate) were observed for all materials tested. The slope values taken from these relationships were compared to traditional strain rate sensitivity estimates based on in-die Heckel analysis. Overall, the results from the two methods were quite similar, but several advantages were evident in the creep data. The most notable advantage was the ability to characterize strain rate sensitivity derived from plastic behavior with little influence of elastic deformation. For example, two grades of corn starch had very similar creep behavior, but their yield pressures were affected very differently when the compaction rate was increased. This inconsistency was related to the difference in the viscoelastic recovery exhibited by these two materials. This new method promises to allow a better understanding of strain rate effects observed during tablet manufacturing. PMID:22985770

  1. Effect of Thermal Aging on the Mechanical Properties of Sn3.0Ag0.5Cu/Cu Solder Joints Under High Strain Rate Conditions

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Luong; Kim, Ho-Kyung

    2015-07-01

    Shear tests with velocities between 0.5 m/s and 2.5 m/s were conducted to investigate the deformation characteristics of 0.76 mm lead-free Sn-3Ag-0.5Cu solder ball joints after thermal aging at 373 K up to 1000 h. A scanning electron microscope equipped with energy dispersive spectroscopy was then used to examine the fracture surfaces and microstructures of the solder joints. The results showed that the main failure mode of the solder joints was the brittle interfacial fracture mode with cleavage failure in the intermetallic compound (IMC). The maximum shear strength and the fracture toughness ( K C) of the solder joint decreased substantially after aging for the initial aging time, after which they decreased gradually with further aging or an increase in the strain rate. The evolution of the IMC layer when it was thicker and had coarser nodules due to thermal aging was the primary cause of the reduction in the shear strength and fracture toughness in this study.

  2. Influence of strain rates on the mechanical behaviors of shape memory polymer

    NASA Astrophysics Data System (ADS)

    Guo, Xiaogang; Liu, Liwu; Zhou, Bo; Liu, Yanju; Leng, Jinsong

    2015-09-01

    In the last few decades, shape memory polymers have demonstrated their major advantages of extremely high recovery strain, low density and low cost. Generally, the mechanical behavior of shape memory polymers is strongly dependent on the loading strain rates. Uniaxial tensile experiments were conducted on one kind of typical shape memory polymer (epoxy) at several different temperatures (348 K, 358 K, 368 K and 378 K) and true strain rates (0.25% s-1, 1.25% s-1 and 2.5% s-1). Thus, the influence of strain rate and temperature on the mechanical behavior of epoxy, in particular on the post yield stresses and the strain hardening behavior, were investigated through this experimental study. Based on our previous work Guo (2014 Smart Mater. Struct. 23 105019), a simplified model which can explain the shape memory effect of epoxy was proposed to predict the strain hardening behavior of the shape memory polymer. Based on the suggestion of Rault (1998 J. Non-Cryst. Solids 235-7 737-41), a linear compensation model was introduced to indicate the change in yield stresses with the increase of strain rate and temperature. Finally, the new model predictions for the true strain and stress behavior of epoxy were compared with the experimental results.

  3. High strain rate properties of angle-ply composite laminates, part 3

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.

    1991-01-01

    Angle-ply graphite/epoxy and graphite/S-glass/epoxy laminates were characterized in uniaxial tension at strain rates ranging from quasi-static to over 500 s(sup -1). Laminate ring specimens of +/-15(sub 2s), +/-22.5(sub 2s), +/-30(sub 2s), +/-45(sub 2s), +/-60(sub 2s), +/-67.5(sub 2s), and +/-75(sub 2s) degree layups were loaded under internal pressure. Results were presented in the form of stress-strain curves to failure. Properties determined included moduli, Poisson's ratios, strength, and ultimate strain. In all seven laminates for the two materials tested the modulus and strength increase with strain rate. The effect of strain rate varies with layup, being lowest for the fiber dominated +/-15(sub 2s) degree laminates and highest for the matrix dominated +/-75(sub 2s) degree laminates. The highest increments over the static values are 10 to 25 percent for the +/-15(sub 2s) degree layup and 200 to 275 percent for the +/-75(sub 2s) degree layup. Ultimate strains do not show any significant trends with strain rate. In almost all cases the ultimate strain values are within +/-20 percent of the mean value and in half of the cases the deviation from the mean are less than 10 percent.

  4. Modeling Large-Strain, High-Rate Deformation in Metals

    SciTech Connect

    Lesuer, D R; Kay, G J; LeBlanc, M M

    2001-07-20

    The large strain deformation response of 6061-T6 and Ti-6Al-4V has been evaluated over a range in strain rates from 10{sup -4} s{sup -1} to over 10{sup 4} s{sup -1}. The results have been used to critically evaluate the strength and damage components of the Johnson-Cook (JC) material model. A new model that addresses the shortcomings of the JC model was then developed and evaluated. The model is derived from the rate equations that represent deformation mechanisms active during moderate and high rate loading. Another model that accounts for the influence of void formation on yield and flow behavior of a ductile metal (the Gurson model) was also evaluated. The characteristics and predictive capabilities of these models are reviewed.

  5. Distribution of strain rates in the Taiwan orogenic wedge

    NASA Astrophysics Data System (ADS)

    Mouthereau, F.; Fillon, C.; Ma, K.-F.

    2009-07-01

    To constrain the way Eurasian crust is accreted to the Taiwan orogenic wedge we investigate the present-day 3D seismogenic deformation field using the summation of 1129 seismic moment tensors of events ( Mw > 4) covering a period of 11 years (1995 to 2005). Based on the analysis of the principal strain-rate field, including dilatation and maximum shear rates, we distinguish four domains. Domain I comprises the Coastal Plain and the Western Foothills. It is mainly contractional in both the horizontal plane and in cross-section. Domain II comprises the eastern Western Foothills, the Hsuehshan Range and the Backbone Range. It is characterized by the highest contraction rates of 10 - 6 yr - 1 in association with area expansion in cross-section and area contraction in the horizontal plane. Domain III corresponds to the Central Range. It is characterized by area contraction in cross-section and area expansion in the horizontal plane. The maximum contractional axis is typically low and plunges ~ 30°E. Extension is larger, horizontal and strikes parallel to the axis of the mountain range. Domain IV corresponding to the Coastal Range and offshore Luzon Arc shows deformation patterns similar to domain II. This seismogenic strain-rate field, which is found in good agreement with the main features of the geodetic field, supports shortening within a thick wedge whose basal décollement is relatively flat and located in the middle-to-lower crust > 20 km. The east plunges of maximum strain-rate axes below the Central Range argue for the development of top-to-the-east transport of rocks resulting from the extrusion of the whole crust along west-dipping crustal-scale shear zones. The study of seismogenic strain rates argues that the initiation of subduction reversal has already started in the Taiwan collision domain.

  6. Influence of strain rate on the structure/property of Ti-48Al-1V

    SciTech Connect

    Gray, G.T. III.

    1990-01-01

    While the influence of strain rate on the structure/property response of pure titanium and a variety of titanium alloys has been extensively studied, the effect of strain rate on the stress-strain and deformation response of titanium aluminides remains largely unknown. In this paper, a preliminary study of the effect of strain rate and temperature on the substructure evolution and mechanical response of a (48Al-1V)TiAl alloy is presented. The compressive true stress-true strain response of Ti-48Al-1V was found to depend on both the applied strain rate, varied between 0.001 and 7500 s{sup {minus}1}, and the test temperature, varied between 25 and 700{degree}C. The rate of strain hardening in Ti-48Al-1V is seen to increase with increasing strain rate. The substructure evolution of Ti-48Al-1V was observed to depend on the applied strain rate and temperature of deformation. The substructure of Ti-48Al-1V deformed to {var epsilon} = 0.20 at 0.001 s{sup {minus}1} at 25{degree}C was seen to consist of predominately random dislocation debris and isolated grains containing a high density of stacking faults. The majority of the dislocations appear to be (111) 1/2{l angle}110{r angle} unit type ordinary dislocations which is consistent with previous observations on Ti-48Al. Increasing the rate of deformation at room temperature to 75000 s{sup {minus}1} is seen to increase the density of deformation twins and the overall random dislocation debris density. The substructure of Ti-48Al-1V deformed a at high-strain-rate at elevated temperatures was seen to be quite similar to that observed following high-rate deformation at room temperature except for an even higher incidence of twinning. The defect generation and the rate sensitivity of TiAl are discussed as a function of strain rate and contrasted to that observed in conventional titanium alloys. 34 refs., 8 figs.

  7. Implementation of Fiber Substructuring Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2001-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were incorporated into a mechanics of materials based micromechanics method. In the current work, the micromechanics method is revised such that the composite unit cell is divided into a number of slices. Micromechanics equations are then developed for each slice, with laminate theory applied to determine the elastic properties, effective stresses and effective inelastic strains for the unit cell. Verification studies are conducted using two representative polymer matrix composites with a nonlinear, strain rate dependent deformation response. The computed results compare well to experimentally obtained values.

  8. Implementation of Laminate Theory Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were implemented into a mechanics of materials based micromechanics method. In the current work, the computation of the effective inelastic strain in the micromechanics model was modified to fully incorporate the Poisson effect. The micromechanics equations were also combined with classical laminate theory to enable the analysis of symmetric multilayered laminates subject to in-plane loading. A quasi-incremental trapezoidal integration method was implemented to integrate the constitutive equations within the laminate theory. Verification studies were conducted using an AS4/PEEK composite using a variety of laminate configurations and strain rates. The predicted results compared well with experimentally obtained values.

  9. Strain rate, temperature and representative length scale influence on plasticity and yield stress in copper

    SciTech Connect

    Dupont, Virginie; Germann, Timothy C

    2011-01-18

    Shock compression of materials constitutes a complex process involving high strain rates, elevated temperatures and compression of the lattice. Materials properties are greatly affected by temperature, the representative length scale and the strain rate of the deformation. Experimentally, it is difficult to study the dynamic microscopic mechanisms that affect materials properties following high intensity shock loading, but they can be investigated using molecular dynamics (MD) simulations. Moreover, MD allows a better control over some parameters. We are using MD simulations to study the effect of the strain rate, representative length scale and temperature on the properties of metals during compression. A half-million-atom Cu sample is subjected to strain rates ranging from 10{sup 7} s{sup -1} to 10{sup 12} s{sup -1} at different temperatures ranging from 50K to 1500K. Single crystals as well as polycrystals are investigated. Plasticity mechanisms as well as the evolution of the micro- and macro-yield stress are observed. Our results show that the yield stress increases with increasing strain rate and decreasing temperature. We also show that the strain rate at which the transition between constant and increasing yield stress as a function of the temperature occurs increases with increasing temperature. Calculations at different grain sizes will give an insight into the grain size effect on the plasticity mechanisms and the yield stress.

  10. The influence of acute unloading on left ventricular strain and strain rate by speckle tracking echocardiography in a porcine model.

    PubMed

    Dahle, Geir Olav; Stangeland, Lodve; Moen, Christian Arvei; Salminen, Pirjo-Riitta; Haaverstad, Rune; Matre, Knut; Grong, Ketil

    2016-05-15

    Noninvasive measurements of myocardial strain and strain rate by speckle tracking echocardiography correlate to cardiac contractile state but also to load, which may weaken their value as indices of inotropy. In a porcine model, we investigated the influence of acute dynamic preload reductions on left ventricular strain and strain rate and their relation to the pressure-conductance catheter-derived preload recruitable stroke work (PRSW) and peak positive first derivative of left ventricular pressure (LV-dP/dtmax). Speckle tracking strain and strain rate in the longitudinal, circumferential, and radial directions were measured during acute dynamic reductions of end-diastolic volume during three different myocardial inotropic states. Both strain and strain rate were sensitive to unloading of the left ventricle (P < 0.001), but the load dependency for strain rate was modest compared with strain. Changes in longitudinal and circumferential strain correlated more strongly to changes in end-diastolic volume (r = -0.86 and r = -0.72) than did radial strain (r = 0.35). Longitudinal, circumferential, and radial strain significantly correlated with LV-dP/dtmax (r = -0.53, r = -0.46, and r = 0.86), whereas only radial strain correlated with PRSW (r = 0.55). Strain rate in the longitudinal, circumferential and radial direction significantly correlated with both PRSW (r = -0.64, r = -0.58, and r = 0.74) and LV-dP/dtmax (r = -0.95, r = -0.70, and r = 0.85). In conclusion, the speckle tracking echocardiography-derived strain rate is more robust to dynamic ventricular unloading than strain. Longitudinal and circumferential strain could not predict load-independent contractility. Strain rates, and especially in the radial direction, are good predictors of preload-independent inotropic markers derived from conductance catheter. PMID:26968547

  11. Strain-rate dependence for Ni/Al hybrid foams

    NASA Astrophysics Data System (ADS)

    Jung, Anne; Larcher, Martin; Jirousek, Ondrej; Koudelka, Petr; Solomos, George

    2015-09-01

    Shock absorption often needs stiff but lightweight materials that exhibit a large kinetic energy absorption capability. Open-cell metal foams are artificial structures, which due to their plateau stress, including a strong hysteresis, can in principle absorb large amounts of energy. However, their plateau stress is too low for many applications. In this study, we use highly novel and promising Ni/Al hybrid foams which consist of standard, open-cell aluminium foams, where nanocrystalline nickel is deposited by electrodeposition as coating on the strut surface. The mechanical behaviour of cellular materials, including their behaviour under higher strain-rates, is governed by their microstructure due to the properties of the strut material, pore/strut geometry and mass distribution over the struts. Micro-inertia effects are strongly related to the microstructure. For a conclusive model, the exact real microstructure is needed. In this study a micro-focus computer tomography (μCT) system has been used for the analysis of the microstructure of the foam samples and for the development of a microstructural Finite Element (micro-FE) mesh. The microstructural FE models have been used to model the mechanical behaviour of the Ni/Al hybrid foams under dynamic loading conditions. The simulations are validated by quasi-static compression tests and dynamic split Hopkinson pressure bar tests.

  12. High strain rate fracture behaviour of fused silica

    NASA Astrophysics Data System (ADS)

    Ruggiero, A.; Iannitti, G.; Testa, G.; Limido, J.; Lacome, J. L.; Olovsson, L.; Ferraro, M.; Bonora, N.

    2014-05-01

    Fused silica is a high purity synthetic amorphous silicon dioxide characterized by low thermal expansion coefficient, excellent optical qualities and exceptional transmittance over a wide spectral range. Because of its wide use in the military industry as window material, it may be subjected to high-energy ballistic impacts. Under such dynamic conditions, post-yield response of the ceramic as well as the strain rate related effects become significant and should be accounted for in the constitutive modelling. In this study, the Johnson-Holmquist (J-H) model parameters have been identified by inverse calibration technique, on selected validation test configurations, according to the procedure described hereafter. Numerical simulations were performed with LS-DYNA and IMPETUS-FEA, a general non-linear finite element software which offers NURBS finite element technology for the simulation of large deformation and fracture in materials. In order to overcome numerical drawbacks associated with element erosion, a modified version of the J-H model is proposed.

  13. High strain rate behavior of pure metals at elevated temperature

    NASA Astrophysics Data System (ADS)

    Testa, Gabriel; Bonora, Nicola; Ruggiero, Andrew; Iannitti, Gianluca; Domenico, Gentile

    2013-06-01

    In many applications and technology processes, such as stamping, forging, hot working etc., metals and alloys are subjected to elevated temperature and high strain rate deformation process. Characterization tests, such as quasistatic and dynamic tension or compression test, and validation tests, such as Taylor impact and DTE - dynamic tensile extrusion -, provide the experimental base of data for constitutive model validation and material parameters identification. Testing material at high strain rate and temperature requires dedicated equipment. In this work, both tensile Hopkinson bar and light gas gun where modified in order to allow material testing under sample controlled temperature conditions. Dynamic tension tests and Taylor impact tests, at different temperatures, on high purity copper (99.98%), tungsten (99.95%) and 316L stainless steel were performed. The accuracy of several constitutive models (Johnson and Cook, Zerilli-Armstrong, etc.) in predicting the observed material response was verified by means of extensive finite element analysis (FEA).

  14. Strain and strain rate: An emerging technology in the perioperative period

    PubMed Central

    Malik, Vishwas; Subramaniam, Arun; Kapoor, Poonam Malhotra

    2016-01-01

    Newer noninvasive parameters are being used for perioperative detection of myocardial ischaemia. TDI and global strain rate are some of these parameters. TDI signal is a modification of the routine Doppler flow signal. It is obtained by using thresholding and filtering algorithms that reject echoes originating from the blood pool (by-passing the high pass filter). Set-Up of the machine by activating the TDI function allows decreasing the system gain using a low pass filter and eliminates the signal produced by blood flow. Doppler shift obtained from myocardial tissue motion are of higher amplitudes (reflectivity 40 dB higher) and move about 10 times slower than blood (velocity range: 0.06 to 0.24 m/s). Speckle tracking echocardiography (tissue tracking, 2D strain) utilizes routine gray-scale 2D echo images to calculate myocardial strain. Interactions of ultrasound with myocardium result in reflection and scattering. These interactions generate a finely gray-shaded, speckled pattern (acoustic marker). This speckled pattern is unique for each myocardial region and relatively stable throughout the cardiac cycle. Spatial and temporal image processing of acoustic speckles in both 2D and 3D allows for the calculation of myocardial velocity, strain, and Strain rate. PMID:26750682

  15. Materials Science under Extreme Conditions of Pressure and Strain Rate

    SciTech Connect

    Remington, B A; Bazan, G; Bringa, E; Caturla, M; Edwards, M J; Glendinning, S G; Kad, B; Kalantar, D H; Kumar, M; Lasinski, B F; Lorenz, K T; McNaney, J; Meyerhofer, D; Meyers, M A; Pollaine, S M; Reisman, D B; Rowley, D; Schneider, M; Stolken, J; Wark, J; Yaakobi, B

    2003-03-27

    Solid state dynamics experiments at very high pressures (P >> 10 GPa) and strain rates ({var_epsilon} >> 10{sup 5} s{sup -1}) have been demonstrated on high energy laser facilities, albeit over brief intervals of time and small spatial scales. We have developed two methods for driving samples to high pressures (10-100 GPa) at high strain rate (10{sup 6}-10{sup 8} s{sup -1}) in the solid state. One method uses a shockless compression technique, and the other uses multiple staged shocks. These drives are calibrated with VISAR measurements of the resulting compression wave. Deformation mechanisms are inferred under these conditions by characterizing recovered samples. Material strength at high pressures and strain rates is deduced by measuring the reduced growth of material perturbations at a hydrodynamically unstable interface. Microscopic lattice response is determined by time-resolved Bragg diffraction and x-ray absorption spectroscopy (EXAFS). Large-scale simulations, both at the continuum level using constitutive models and at the lattice level using molecular dynamics simulation, are used to interpret these integral experiments. We will review our progress in this new area of laser-based materials science research, then present a vision for carrying these solid-state experiments to much higher pressures, P > 1000 GPa, on the National Ignition Facility (NIF) laser facility.

  16. Spall fracture in aluminium alloy at high strain rates

    NASA Astrophysics Data System (ADS)

    Joshi, K. D.; Rav, Amit; Sur, Amit; Kaushik, T. C.; Gupta, Satish C.

    2016-05-01

    Spall fracture strength and dynamic yield strength has been measured in 8mm thick target plates of aluminium alloy Al2024-T4 at high strain rates generated in three plate impact experiments carried out at impact velocities of 180 m/s, 370 m/s and 560m/s, respectively, using single stage gas gun facility. In each experiment, the free surface velocity history of the Al2024-T4 sample plate measured employing velocity interferometer system for any reflector (VISAR) is used to determine the spall strength and dynamic yield strength of this material. The spall strength of 1.11 GPa, 1.16 GPa and 1.43 GPa, determined from measured free surface velocity history of sample material in three experiments performed at impact velocity of 180 m/s, 370 m/s and 560 m/s, respectively, are higher than the quasi static value of 0.469 GPa and display almost linearly increasing trend with increasing impact velocity or equivalently with increasing strain rates. The average strain rates just ahead of the spall fracture are determined to be 1.9×10 4/s, 2.0×104/s and 2.5×104/s, respectively. The dynamic yield strength determined in the three experiments range from 0.383 GPa to 0.407 GPa, which is higher than the quasi static value of 0.324GPa.

  17. Strain rates, stress markers and earthquake clustering (Invited)

    NASA Astrophysics Data System (ADS)

    Fry, B.; Gerstenberger, M.; Abercrombie, R. E.; Reyners, M.; Eberhart-Phillips, D. M.

    2013-12-01

    The 2010-present Canterbury earthquakes comprise a well-recorded sequence in a relatively low strain-rate shallow crustal region. We present new scientific results to test the hypothesis that: Earthquake sequences in low-strain rate areas experience high stress drop events, low-post seismic relaxation, and accentuated seismic clustering. This hypothesis is based on a physical description of the aftershock process in which the spatial distribution of stress accumulation and stress transfer are controlled by fault strength and orientation. Following large crustal earthquakes, time dependent forecasts are often developed by fitting parameters defined by Omori's aftershock decay law. In high-strain rate areas, simple forecast models utilizing a single p-value fit observed aftershock sequences well. In low-strain rate areas such as Canterbury, assumptions of simple Omori decay may not be sufficient to capture the clustering (sub-sequence) nature exhibited by the punctuated rise in activity following significant child events. In Canterbury, the moment release is more clustered than in more typical Omori sequences. The individual earthquakes in these clusters also exhibit somewhat higher stress drops than in the average crustal sequence in high-strain rate regions, suggesting the earthquakes occur on strong Andersonian-oriented faults, possibly juvenile or well-healed . We use the spectral ratio procedure outlined in (Viegas et al., 2010) to determine corner frequencies and Madariaga stress-drop values for over 800 events in the sequence. Furthermore, we will discuss the relevance of tomographic results of Reyners and Eberhart-Phillips (2013) documenting post-seismic stress-driven fluid processes following the three largest events in the sequence as well as anisotropic patterns in surface wave tomography (Fry et al., 2013). These tomographic studies are both compatible with the hypothesis, providing strong evidence for the presence of widespread and hydrated regional

  18. Strain Rate Behavior of HTPB-Based Magnetorheological Materials

    NASA Astrophysics Data System (ADS)

    Stoltz, Chad; Seminuk, Kenneth; Joshi, Vasant

    2013-06-01

    It is of particular interest to determine whether the mechanical properties of binder systems can be manipulated by adding ferrous or Magnetostrictive particulates. Strain rate response of two HTPB/Fe (Hydroxyl-terminated Polybutadiene/Iron) compositions under electromagnetic fields has been investigated using a Split Hopkinson Pressure bar arrangement equipped with aluminum bars. Two HTPB/Fe compositions were developed, the first without plasticizer and the second containing plasticizer. Samples were tested with and without the application of a 0.01 Tesla magnetic field coil. Strain gauge data taken from the Split Hopkinson Pressure bar has been used to determine what mechanical properties were changed by inducing a mild electromagnetic field onto each sample. The data reduction method to obtain stress-strain plots included dispersion corrections for deciphering minute changes due to compositional alterations. Data collected from the Split Hopkinson Pressure bar indicate changes in the Mechanical Stress-Strain curves and suggest that the impedance of a binder system can be altered by means of a magnetic field. We acknowledge the Defense Threat Reduction Agency for funding.

  19. Mechanical Behavior of Glidcop Al-15 at High Temperature and Strain Rate

    NASA Astrophysics Data System (ADS)

    Scapin, M.; Peroni, L.; Fichera, C.

    2014-05-01

    Strain rate and temperature are variables of fundamental importance for the definition of the mechanical behavior of materials. In some elastic-plastic models, the effects, coming from these two quantities, are considered to act independently. This approach should, in some cases, allow to greatly simplify the experimental phase correlated to the parameter identification of the material model. Nevertheless, in several applications, the material is subjected to dynamic load at very high temperature, as, for example, in case of machining operation or high energy deposition on metals. In these cases, to consider the effect of strain rate and temperature decoupled could not be acceptable. In this perspective, in this work, a methodology for testing materials varying both strain rate and temperature was described and applied for the mechanical characterization of Glidcop Al-15, a copper-based composite reinforced with alumina dispersion, often used in nuclear applications. The tests at high strain rate were performed using the Hopkinson Bar setup for the direct tensile tests. The heating of the specimen was performed using an induction coil system and the temperature was controlled on the basis of signals from thermocouples directly welded on the specimen surface. Varying the strain rate, Glidcop Al-15 shows a moderate strain-rate sensitivity at room temperature, while it considerably increases at high temperature: material thermal softening and strain-rate hardening are strongly coupled. The experimental data were fitted using a modified formulation of the Zerilli-Armstrong model able to reproduce this kind of behavior with a good level of accuracy.

  20. High- and low-strain rate compression properties of several energetic material composites as a function of strain rate and temperature

    SciTech Connect

    Gray, G.T. III; Idar, D.J.; Blumenthal, W.R.; Cady, C.M.; Peterson, P.D.

    1998-12-31

    High- and low-strain rate compression data were obtained on several different energetic composites: PBX 9501, X0242-92-4-4, PBXN-9, as well as the polymeric binder used in PBX 9501 and X0242-92-4-4 composites. The effects of energetic-to-binder ratios, different binder systems, and different energetic formulations were investigated. All the energetic composites exhibit increasing elastic modulus, E, maximum flow stresses, {sigma}{sub m}, and strain-at-maximum stress, {var_epsilon}{sub m}, with increasing strain rate at ambient temperature. PBX 9501 displays marginally higher ultimate flow strength than X0242-92-4-4, and significantly higher ultimate compressive strength than PBXN-9 at quasi-static and dynamic strain rates. The failure mode of PBX 9501 and X0242-92-4-4 under high-rate loading changes from a mixture of ductile binder tearing and transgranular cleavage and cracking of the HMX when tested at 20 C to transgranular brittle HMX cleavage and glassy fracture of the binder at {minus}40 C.

  1. Evolution of plastic anisotropy for high-strain-rate computations

    SciTech Connect

    Schiferl, S.K.; Maudlin, P.J.

    1994-12-01

    A model for anisotropic material strength, and for changes in the anisotropy due to plastic strain, is described. This model has been developed for use in high-rate, explicit, Lagrangian multidimensional continuum-mechanics codes. The model handles anisotropies in single-phase materials, in particular the anisotropies due to crystallographic texture--preferred orientations of the single-crystal grains. Textural anisotropies, and the changes in these anisotropies, depend overwhelmingly no the crystal structure of the material and on the deformation history. The changes, particularly for a complex deformations, are not amenable to simple analytical forms. To handle this problem, the material model described here includes a texture code, or micromechanical calculation, coupled to a continuum code. The texture code updates grain orientations as a function of tensor plastic strain, and calculates the yield strength in different directions. A yield function is fitted to these yield points. For each computational cell in the continuum simulation, the texture code tracks a particular set of grain orientations. The orientations will change due to the tensor strain history, and the yield function will change accordingly. Hence, the continuum code supplies a tensor strain to the texture code, and the texture code supplies an updated yield function to the continuum code. Since significant texture changes require relatively large strains--typically, a few percent or more--the texture code is not called very often, and the increase in computer time is not excessive. The model was implemented, using a finite-element continuum code and a texture code specialized for hexagonal-close-packed crystal structures. The results for several uniaxial stress problems and an explosive-forming problem are shown.

  2. Single chain stochastic polymer modeling at high strain rates.

    SciTech Connect

    Harstad, E. N.; Harlow, Francis Harvey,; Schreyer, H. L.

    2001-01-01

    Our goal is to develop constitutive relations for the behavior of a solid polymer during high-strain-rate deformations. In contrast to the classic thermodynamic techniques for deriving stress-strain response in static (equilibrium) circumstances, we employ a statistical-mechanics approach, in which we evolve a probability distribution function (PDF) for the velocity fluctuations of the repeating units of the chain. We use a Langevin description for the dynamics of a single repeating unit and a Lioville equation to describe the variations of the PDF. Moments of the PDF give the conservation equations for a single polymer chain embedded in other similar chains. To extract single-chain analytical constitutive relations these equations have been solved for representative loading paths. By this process we discover that a measure of nonuniform chain link displacement serves this purpose very well. We then derive an evolution equation for the descriptor function, with the result being a history-dependent constitutive relation.

  3. Compressive behaviour of dam concrete at higher strain rates

    NASA Astrophysics Data System (ADS)

    Caverzan, A.; Peroni, M.; Solomos, G.

    2016-05-01

    The mechanical behaviour of concrete when subjected to impact or blast has still many aspects requiring further study. Dam concrete is characterized by large coarse aggregates, hence large specimen sizes are needed in order to study a representative volume of the material. Exploiting an innovative equipment, based on Hopkinson bar techniques, the dynamic behaviour of concrete of 64 mm maximum aggregate size has been investigated. Direct dynamic compression tests have been performed on medium and large size cylindrical samples. Full stress-strain curves have been obtained, which have allowed the estimation of fracturing energies and of the relevant dynamic increase factor. The experimental campaign has also included a reference standard concrete in order to highlight the peculiarity of the dam concrete at high strain rates and to validate the transition of this type of testing to very large specimens.

  4. Strain-Rate Frequency Superposition (SRFS) - A rheological probe of structural relaxation in soft materials

    NASA Astrophysics Data System (ADS)

    Wyss, Hans M.

    2007-03-01

    The rheological properties of soft materials such as concentrated suspensions, emulsions, or foams often exhibit surprisingly universal linear and nonlinear features. Here we show that their linear and nonlinear viscoelastic responses can be unified in a single picture by considering the effect of the strain-rate amplitude on the structural relaxation of the material. We present a new approach to oscillatory rheology, which keeps the strain rate amplitude fixed as the oscillation frequency is varied. This allows for a detailed study of the effects of strain rate on the structural relaxation of soft materials. Our data exhibits a characteristic scaling, which isolates the response due to structural relaxation, even when it occurs at frequencies too low to be accessible with standard techniques. Our approach is reminiscent of a technique called time-temperature superposition (TTS), where rheological curves measured at different temperatures are shifted onto a single master curve that reflects the viscoelastic behavior in a dramatically extended range of frequencies. By analogy, we call our approach strain-rate frequency superposition (SRFS). Our experimental results show that nonlinear viscoelastic measurements contain useful information on the slow relaxation dynamics of soft materials. The data indicates that the yielding behavior of soft materials directly probes the structural relaxation process itself, shifted towards higher frequencies by an applied strain rate. This suggests that SRFS will provide new insight into the physical mechanisms that govern the viscoelastic response of a wide range of soft materials.

  5. Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading

    NASA Technical Reports Server (NTRS)

    Gilat, Amos; Goldberg, Robert K.; Roberts, Gary D.

    2005-01-01

    The mechanical response of E-862 and PR-520 resins is investigated in tensile and shear loadings. At both types of loading the resins are tested at strain rates of about 5x10(exp 5), 2, and 450 to 700 /s. In addition, dynamic shear modulus tests are carried out at various frequencies and temperatures, and tensile stress relaxation tests are conducted at room temperature. The results show that the toughened PR-520 resin can carry higher stresses than the untoughened E-862 resin. Strain rate has a significant effect on the response of both resins. In shear both resins show a ductile response with maximum stress that is increasing with strain rate. In tension a ductile response is observed at low strain rate (approx. 5x10(exp 5) /s), and brittle response is observed at the medium and high strain rates (2, and 700 /s). The hydrostatic component of the stress in the tensile tests causes premature failure in the E-862 resin. Localized deformation develops in the PR-520 resin when loaded in shear. An internal state variable constitutive model is proposed for modeling the response of the resins. The model includes a state variable that accounts for the effect of the hydrostatic component of the stress on the deformation.

  6. Atomic Scale Modeling of High Strain Rate Deformation and Failure of HCP Metals

    NASA Astrophysics Data System (ADS)

    Mackenchery, Karoon; Agarwal, Garvit; Dongare, Avinash

    2015-06-01

    A fundamental understanding of the microstructure effects on the defect evolution at the atomic resolution and the related contribution to plasticity at the macro-scales is needed to obtain a reliable performance of metallic materials in extreme environments. Large-scale molecular dynamics simulations are carried out to characterize the dynamic evolution of defect/damage structures during the deformation and failure behavior of HCP (Mg, Ti) metallic systems (single crystal and nanocrystalline at high strain rates as well as under shock loading conditions. The evolution of various types of dislocations, twins, faults, etc. and the related deformation and failure response (nucleation and growth of voids/cracks) will be discussed. The effects of strain rates on relationships between the microstructure and the strength of these materials at high strain rates and the underlying micromechanisms related to deformation and failure will be discussed.

  7. Stress state and strain rate dependence of the human placenta.

    PubMed

    Weed, Benjamin C; Borazjani, Ali; Patnaik, Sourav S; Prabhu, R; Horstemeyer, M F; Ryan, Peter L; Franz, Thomas; Williams, Lakiesha N; Liao, Jun

    2012-10-01

    Maternal trauma (MT) in automotive collisions is a source of injury, morbidity, and mortality for both mothers and fetuses. The primary associated pathology is placental abruption in which the placenta detaches from the uterus leading to hemorrhaging and termination of pregnancy. In this study, we focused on the differences in placental tissue response to different stress states (tension, compression, and shear) and different strain rates. Human placentas were obtained (n = 11) for mechanical testing and microstructure analysis. Specimens (n = 4+) were tested in compression, tension, and shear, each at three strain rates (nine testing protocols). Microstructure analysis included scanning electron microscopy, histology, and interrupted mechanical tests to observe tissue response to various loading states. Our data showed the greatest stiffness in tension, followed by compression, and then by shear. The study concludes that mechanical behavior of human placenta tissue (i) has a strong stress state dependence and (ii) behaves in a rate dependent manner in all three stress states, which had previously only been shown in tension. Interrupted mechanical tests revealed differences in the morphological microstructure evolution that was driven by the kinematic constraints from the different loading states. Furthermore, these structure-property data can be used to develop high fidelity constitutive models for MT simulations. PMID:22581478

  8. Evaluation of a theory for pressure-strain rate

    NASA Technical Reports Server (NTRS)

    Weinstock, J.; Shariff, K.

    1987-01-01

    A theoretical expression for the slow part (the nonlinear fluctuation part) of the pressure-strain rate is compared with simulations of anisotropic homogeneous flows. The objective is to determine the quantitative accuracy of the theory and to test its prediction that the generalized Rotta coefficient, a non-dimensionalized ratio of slow term to the Reynolds stress anisotropy, varies with direction and can be negative. Comparisons are made between theoretical and simulation values of the slow term itself and of the generalized Rotta coefficients. The implications of the comparison for two-point closure theories and for Reynolds stress modeling are pointed out.

  9. Influence of strain rate and temperature on the structure/property behavior of high-purity titanium

    SciTech Connect

    Gray, G.T. III

    1997-05-01

    The effect of strain rate, temperature, grain size, and texture on the substructure and mechanical response of high-purity polycrystalline titanium is presented. The compressive stress-strain response of 20 and 240 {mu}m grain size high-purity Ti was found to depend on both the applied strain rate; 0.001 {le} {epsilon} {le} 7500 s{sup -1}, and the test temperature; 77 {le} T {le} 873 K. The rate of strain hardening in Ti is seen to increase with increasing strain rate. The substructure of high-purity Ti deformed at high-strain-rate or quasi-statically at 77K displayed a higher incidence of deformation twinning than during quasi-static deformation at 298K.

  10. Strain rate dependent calcite microfabric evolution - an experiment carried out by nature

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard; Rice, A. Hugh N.; Huet, Benjamin; Habler, Gerlinde

    2013-04-01

    The deformation behaviour of calcite has been studied experimentally in detail. Different strain rates and pressure and temperature conditions have been used to investigate a wide range of deformation regimes/mechanisms. However, a direct comparison with natural fault rocks remains difficult because of the extreme differences between experimental and natural strain rates. An a-type flanking structure developed in calcite-marbles of the Pyrgos unit, on Syros, provides a natural laboratory for directly studying the effects of strain rate variations at constant P-T conditions. The rocks of the Pyrgos unit underwent Eocene blueschist-facies metamorphism, resulting in coarse grained recrystallized marbles. During the subsequent greenschist-facies overprinting, the flanking structure started to form adjacent to a several meters long cross-cutting element (CE), which rotated into the shear direction, developing an antithetic offset. Comparing the microfabrics in the 1-2 cm thick CE mylonites and in the surrounding host rocks, which formed under the same metamorphic conditions but with different strain rates, is the central focus of this study. Numerical models have shown that a-type flanking folds form with a background shear strain of only about 1-2. However, the displacement along the CE varies between 60 and 120 cm, resulting in shear strains between 30 and 120. Assuming that all the deformation took place during the same event, significant strain rate variations (1 to 2 orders of magnitude) must have occurred between the CE and the host rock. Due to the extreme variations in strain and strain rate, different deformation mechanisms and types of dynamic recrystallization were active, leading to the development of different microstructures and textures. With increasing strain, the dominant deformation mechanism changed from twinning to dislocation glide and -climb and finally to diffusion creep. Additionally, a change from subgrain rotation to bulging recrystallization

  11. Measurement of strain and strain rate in embryonic chick heart using spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dou, Shidan; Suo, Yanyan; Liang, Chengbo; Wang, Yi; Zhao, Yuqian; Liu, Jian; Xu, Tao; Wang, Ruikang; Ma, Zhenhe

    2016-03-01

    It is important to measure embryonic heart myocardial wall strain and strain rate for understanding the mechanisms of embryonic heart development. Optical coherence tomography (OCT) can provide depth resolved images with high spatial and temporal resolution, which makes it have the potential to reveal the complex myocardial activity in the early stage embryonic heart. We develop a novel method to measure strain in embryonic chick heart based on spectral domain OCT images and subsequent image processing. We perform 4D(x,y,z,t) scanning on the outflow tract (OFT) of chick embryonic hearts in HH18 stage (~3 days of incubation). Only one image sequence acquired at the special position is selected based on the Doppler blood flow information where the probe beam penetrates through the OFT perpendicularly. For each image of the selected sequence, the cross-section of the myocardial wall can be approximated as an annulus. The OFT is segmented with a semi-automatic boundary detection algorithm, thus the area and mean circumference of the annular myocardial wall can be achieved. The myocardial wall thickness was calculated using the area divided by the mean circumference, and then the strain was obtained. The results demonstrate that OCT can be a useful tool to describe the biomechanical characteristics of the embryonic heart.

  12. Computational modeling of dynamic mechanical properties of pure polycrystalline magnesium under high loading strain rates

    NASA Astrophysics Data System (ADS)

    Li, Qizhen

    2015-09-01

    Computational simulations were performed to investigate the dynamic mechanical behavior of pure polycrystalline magnesium under different high loading strain rates with the values of 800, 1000, 2000, and 3600 s-1. The Johnson-Cook model was utilized in the simulations based on finite element modeling. The results showed that the simulations provided well-matched predictions of the material behavior such as the strain rate-time history, the stress-strain curve, and the temperature increase. Under high loading strain rates, the tested material experienced linear strain hardening at the early stage of plastic deformation, increased strain hardening at the intermediate plastic deformation region, and decreased strain hardening at the region before fracture. The strain hardening rates for the studied high loading strain rate cases do not vary much with the change of strain rates.

  13. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure.

    PubMed

    Zioupos, Peter; Hansen, Ulrich; Currey, John D

    2008-10-20

    It is difficult to define the 'physiological' mechanical properties of bone. Traumatic failures in-vivo are more likely to be orders of magnitude faster than the quasistatic tests usually employed in-vitro. We have reported recently [Hansen, U., Zioupos, P., Simpson, R., Currey, J.D., Hynd, D., 2008. The effect of strain rate on the mechanical properties of human cortical bone. Journal of Biomechanical Engineering/Transactions of the ASME 130, 011011-1-8] results from tests on specimens of human femoral cortical bone loaded in tension at strain rates (epsilon ) ranging from low (0.08s(-1)) to high (18s(-1)). Across this strain rate range the modulus of elasticity generally increased, stress at yield and failure and strain at failure decreased for rates higher than 1s(-1), while strain at yield was invariant for most strain rates and only decreased at rates higher than 10s(-1). The results showed that strain rate has a stronger effect on post-yield deformation than on initiation of macroscopic yielding. In general, specimens loaded at high strain rates were brittle, while those loaded at low strain rates were much tougher. Here, a post-test examination of the microcracking damage reveals that microcracking was inversely related to the strain rate. Specimens loaded at low strain rates showed considerable post-yield strain and also much more microcracking. Partial correlation and regression analysis suggested that the development of post-yield strain was a function of the amount of microcracking incurred (the cause), rather than being a direct result of the strain rate (the excitation). Presumably low strain rates allow time for microcracking to develop, which increases the compliance of the specimen, making them tougher. This behaviour confirms a more general rule that the degree to which bone is brittle or tough depends on the amount of microcracking damage it is able to sustain. More importantly, the key to bone toughness is its ability to avoid a ductile

  14. Influence of strain rate and temperature on the mechanical behavior of iron aluminide-based alloys

    SciTech Connect

    Gray, G.T.

    1995-04-01

    Iron aluminides are receiving increasing attention as potential high temperature structural materials due to their excellent oxidation and sulfidation resistance. Although the influence of strain rate on the microstructure/property relationships of pure iron and a variety of iron alloys and steels has been extensively studied, the effect of strain rate on the stress-strain and deformation response of iron aluminides remains poorly understood. In this paper the influence of strain rate, varied between 0.001 and 10{sup 4} s{sup {minus}1}, and temperature, between 77 & 1073{degree}K, on the mechanical behavior of Fe-40Al-0.1B and Fe-16.12Al-5.44Cr-0.11Zr-0.13C-1.07Mo-006Y, called FAP-Y, (both in at.%) is presented. The rate sensitivity and work hardening of Fe-40Al and the disordered alloy based on Fe-16% Al are discussed as a function of strain rate and temperature.

  15. Strain-Rate-Free Diffusion Flames: Initiation, Properties, and Quenching

    NASA Technical Reports Server (NTRS)

    Fendell, Francis; Rungaldier, Harald; Gokoglu, Suleyman; Schultz, Donald

    1997-01-01

    For about a half century, the stabilization of a steady planar deflagration on a heat-sink-type flat-flame burner has been of extraordinary service for the theoretical modeling and diagnostic probing of combusting gaseous mixtures. However, most engineering devices and most unwanted fire involve the burning of initially unmixed reactants. The most vigorous burning of initially separated gaseous fuel and oxidizer is the diffusion flame. In this useful idealization (limiting case), the reactants are converted to product at a mathematically thin interface, so no interpenetration of fuel and oxidizer occurs. This limit is of practical importance because it often characterizes the condition of optimal performance (and sometimes environmentally objectionable operation) of a combustor. A steady planar diffusion flame is most closely approached in the laboratory in the counterflow apparatus. The utility of this simple-strain-rate flow for the modeling and probing of diffusion flames was noted by Pandya and Weinberg 35 years ago, though only in the last decade or so has its use become internationally common place. However, typically, as the strain rate a is reduced below about 20 cm(exp -1), and the diffusion-flame limit (reaction rate much faster than the flow rate) is approached, the burning is observed to become unstable in earth gravity. The advantageous steady planar flow is not available in the diffusion-flame limit in earth gravity. This is unfortunate because the typical spatial scale in a counterflow is (k/a)(sup 1/2), where k denotes a characteristic diffusion coefficient; thus, the length scale becomes large, and the reacting flow is particularly amenable to diagnostic probing, as the diffusion-flame limit is approached. The disruption of planar symmetry is owing the fact that, as the strain rate a decreases, the residence time (l/a) of the throughput in the counterflow burner increases. Observationally, when the residence time exceeds about 50 msec, the

  16. Tissue tectonics: morphogenetic strain rates, cell shape change and intercalation

    PubMed Central

    Blanchard, Guy B.; Kabla, Alexandre J.; Schultz, Nora L.; Butler, Lucy C.; Sanson, Benedicte; Gorfinkiel, Nicole; Mahadevan, L.; Adams, Richard J.

    2016-01-01

    The dynamic reshaping of tissues during morphogenesis results from a combination of individual cell behaviours and collective cell rearrangements. However, a comprehensive framework to unambiguously measure and link cell behaviour to tissue morphogenesis is lacking. Here we introduce such a kinematic framework, bridging cell and tissue behaviours at an intermediate, mesoscopic, level of cell clusters or domains. By measuring domain deformation in terms of the relative motion of cell positions and the evolution of their shapes, we characterize the basic invariant quantities that measure fundamental classes of cell behaviour, namely tensorial rates of cell shape change and cell intercalation. In doing so we introduce an explicit definition of cell intercalation as a continuous process. We demonstrate how spatiotemporal mapping of strain rates in three models of tissue morphogenesis leads to new insight into morphogenetic mechanisms. Our quantitative approach has broad relevance for the precise characterisation and comparison of morphogenetic phenotypes. PMID:19412170

  17. A numerical basis for strain-gradient plasticity theory: Rate-independent and rate-dependent formulations

    NASA Astrophysics Data System (ADS)

    Nielsen, K. L.; Niordson, C. F.

    2014-02-01

    A numerical model formulation of the higher order flow theory (rate-independent) by Fleck and Willis [2009. A mathematical basis for strain-gradient plasticity theory - part II: tensorial plastic multiplier. Journal of the Mechanics and Physics of Solids 57, 1045-1057.], that allows for elastic-plastic loading/unloading and the interaction of multiple plastic zones, is proposed. The predicted model response is compared to the corresponding rate-dependent version of visco-plastic origin, and coinciding results are obtained in the limit of small strain-rate sensitivity. First, (i) the evolution of a single plastic zone is analyzed to illustrate the agreement with earlier published results, whereafter examples of (ii) multiple plastic zone interaction, and (iii) elastic-plastic loading/unloading are presented. Here, the simple shear problem of an infinite slab constrained between rigid plates is considered, and the effect of strain gradients, strain hardening and rate sensitivity is brought out. For clarity of results, a 1D model is constructed following a procedure suitable for generalization to 2D and 3D.

  18. Impact performance of FRC slabs under various strain rates

    NASA Astrophysics Data System (ADS)

    Horska, Alena; Jiricek, Pavel; Foglar, Marek

    2015-09-01

    Impact resistance of plain concrete and FRC composites gains high importance in the present days. This paper presents outcomes of the experiments focused on performance of FRC slabs subjected to impact loading of various strain rates. The FRC slabs, thickness 30, 60 and 120 mm were subjected to various drop-weight impacts. The different drop-hammer weights provided different loading speeds and strain rates. The performance of the slabs was recorded with the use of high speed cameras. The cameras were used for impact speed control and specimen deflection measurement. With the use of the recordings, the force-time response of the slabs could be plotted. The plots correspond to the mechanical behaviour obtained by static load tests (loading speed 0.2 mm/min) but several differences can be found. Several types of FRC (varying fiber material, fiber content, etc.) were tested and evaluated. The experimental program is supplemented by numerical modelling which provides good agreement with the experimental results.

  19. Strain-rate-dependent model for the dynamic compression of elastoplastic spheres

    NASA Astrophysics Data System (ADS)

    Burgoyne, Hayden A.; Daraio, Chiara

    2014-03-01

    We present a force-displacement contact model for the compressive loading of elastoplastic spheres. This model builds from the well known Hertz contact law for elastic, quasistatic compression to incorporate a material's strain-rate-dependent plasticity in order to describe collisions between particles. In the quasistatic regime, finite-element analysis is used to derive an empirical function of the material properties. A Johnson-Cook strain rate dependence is then included into the model to study dynamic effects. We validate the model using split Hopkinson bar experiments and show that the model can accurately simulate the force-displacement response of strain-rate-dependent elastoplastic spheres during dynamic compression and unloading.

  20. Strain-rate-dependent model for the dynamic compression of elastoplastic spheres.

    PubMed

    Burgoyne, Hayden A; Daraio, Chiara

    2014-03-01

    We present a force-displacement contact model for the compressive loading of elastoplastic spheres. This model builds from the well known Hertz contact law for elastic, quasistatic compression to incorporate a material's strain-rate-dependent plasticity in order to describe collisions between particles. In the quasistatic regime, finite-element analysis is used to derive an empirical function of the material properties. A Johnson-Cook strain rate dependence is then included into the model to study dynamic effects. We validate the model using split Hopkinson bar experiments and show that the model can accurately simulate the force-displacement response of strain-rate-dependent elastoplastic spheres during dynamic compression and unloading. PMID:24730833

  1. Influence of temperature and strain rate on the compressive behavior of PMMA and polycarbonate polymers

    SciTech Connect

    Cady, C. M.; Lopez, M. F.; Gray, G. T. , III; Idar, D. J.; Blumenthal, W. R.

    2001-01-01

    Compression stress-strain measurements have been made on commercial polymethylmethacrylate (PMMA) and polycarbonate (PC) polymers as a function of tcmperature (-197 C to 220 C) and strain rate. A split-Hopkinson-pressure bar (SJIPU) was used to achieve strain rates of about 2500 s-' and a servohydraulic tester was used for lower strain rate testing (0.001 to 5 s-'). The mechanical response of these transparent polymers is quite different. The strength of PC is weakly dependent on strain rate, only moderately dependent on temperature, and remains ductile to -197OC. In contrast, the strength of PMMA is linearly dependent on temperature and strongly dependent on strain rate. Significantly, PMMA develops cracking and fails in compression with little ductility ( 7 4 % total strain) at either low strain rates and very low temperatures (-197OC) or at high strain rates and temperatures very near ambient.

  2. Strain Rate and Anisotropic Microstructure Dependent Mechanical Behaviors of Silkworm Cocoon Shells

    PubMed Central

    Xu, Jun; Zhang, Wen; Gao, Xiang; Meng, Wanlin; Guan, Juan

    2016-01-01

    Silkworm cocoons are multi-layered composite structures comprised of high strength silk fiber and sericin, and their mechanical properties have been naturally selected to protect pupas during metamorphosis from various types of external attacks. The present study attempts to gain a comprehensive understanding of the mechanical properties of cocoon shell materials from wild silkworm species Antheraea pernyi under dynamic loading rates. Five dynamic strain rates from 0.00625 s-1 to 12.5 s-1 are tested to show the strain rate sensitivity of the cocoon shell material. In the meantime, the anisotropy of the cocoon shell is considered and the cocoon shell specimens are cut along 0°, 45° and 90° orientation to the short axis of cocoons. Typical mechanical properties including Young’s modulus, yield strength, ultimate strength and ultimate strain are extracted and analyzed from the stress-strain curves. Furthermore, the fracture morphologies of the cocoon shell specimens are observed under scanning electron microscopy to help understand the relationship between the mechanical properties and the microstructures of the cocoon material. A discussion on the dynamic strain rate effect on the mechanical properties of cocoon shell material is followed by fitting our experimental results to two previous models, and the effect could be well explained. We also compare natural and dried cocoon materials for the dynamic strain rate effect and interestingly the dried cocoon shells show better overall mechanical properties. This study provides a different perspective on the mechanical properties of cocoon material as a composite material, and provides some insight for bio-inspired engineering materials. PMID:26939063

  3. Strain Rate and Anisotropic Microstructure Dependent Mechanical Behaviors of Silkworm Cocoon Shells.

    PubMed

    Xu, Jun; Zhang, Wen; Gao, Xiang; Meng, Wanlin; Guan, Juan

    2016-01-01

    Silkworm cocoons are multi-layered composite structures comprised of high strength silk fiber and sericin, and their mechanical properties have been naturally selected to protect pupas during metamorphosis from various types of external attacks. The present study attempts to gain a comprehensive understanding of the mechanical properties of cocoon shell materials from wild silkworm species Antheraea pernyi under dynamic loading rates. Five dynamic strain rates from 0.00625 s-1 to 12.5 s-1 are tested to show the strain rate sensitivity of the cocoon shell material. In the meantime, the anisotropy of the cocoon shell is considered and the cocoon shell specimens are cut along 0°, 45° and 90° orientation to the short axis of cocoons. Typical mechanical properties including Young's modulus, yield strength, ultimate strength and ultimate strain are extracted and analyzed from the stress-strain curves. Furthermore, the fracture morphologies of the cocoon shell specimens are observed under scanning electron microscopy to help understand the relationship between the mechanical properties and the microstructures of the cocoon material. A discussion on the dynamic strain rate effect on the mechanical properties of cocoon shell material is followed by fitting our experimental results to two previous models, and the effect could be well explained. We also compare natural and dried cocoon materials for the dynamic strain rate effect and interestingly the dried cocoon shells show better overall mechanical properties. This study provides a different perspective on the mechanical properties of cocoon material as a composite material, and provides some insight for bio-inspired engineering materials. PMID:26939063

  4. Patterns of stress and strain rate in southern Africa

    NASA Astrophysics Data System (ADS)

    Bird, Peter; Ben-Avraham, Zvi; Schubert, Gerald; Andreoli, Marco; Viola, Giulio

    2006-08-01

    The southward propagation of the East Africa rift presents an opportunity to study plate boundary formation. We tabulate orientation data which confirm the province of NW-SE directed most compressive horizontal principal stress ("Wegener stress anomaly") earlier tentatively attributed to ridge push. We also collect information on stress "regime," described by the associated Andersonian fault type(s). We use thin shell finite element models with realistic rheology to test three causes of stress: (1) lateral variations in density moment, (2) resistance of unbroken lithosphere to relative plate rotation, and (3) stress concentration ahead of a crack tip. Models with stress due primarily to variations in density moment are unsuccessful in their predictions (59-73% incorrect regimes; 32-40° azimuth errors). Models in which Africa-Somalia spreading is regulated at realistic rates by remote boundary conditions are more accurate (18-41% incorrect regimes; 25-35° azimuth errors). Treating the East Africa rift as a frictionless crack degrades the fit in either case. Apparently, the Wegener stress anomaly is caused primarily by resistance to the relative rotation between the Somalia and Africa plates. The East Africa rift north of 21°S may be weakened by strain but has residual friction ≥0.1. Greater strength of oceanic lithosphere is likely to cause stress increases, reorientations, and regime changes offshore. The predicted strain rate map has high rates along the rift, curving at 12°S into a western arc through Angola-Namibia-South Africa. Seismic hazard in Namibia may be greater than the instrumental catalog suggests. However, a number of unfit data indicate that these models represent only a first step.

  5. High strain rate and high temperature behaviour of metallic materials for jet engine turbine containment

    NASA Astrophysics Data System (ADS)

    Gálvez, F.; Cendón, D.; Enfedaque, A.; Sánchez-Gálvez, V.

    2006-08-01

    This work presents a study on the mechanical characterisation of the materials involved in air jet engine turbines. The final objective is to analyse the phenomenon of a turbine blade off failure, to verify the requirements of the case containment. The materials in the turbine are under high temperatures, ranging from 400circC to 800circC and when the fail of the blade occurs if impacts against the case, reaching strain rates up to 103 s - 1. To obtain the behaviour of the materials, testing at high strain rate and high temperature at one time is necessary. The experimental set-up used was a split Hopkinson pressure bar, with a high temperature furnace adapted. The bars used on the device were high strength nickel alloys with a cooling system to decrease the temperature of the measurement devices. The effect of wave dispersion due to the temperature gradient has been also studied to correct the measurements if necessary. The material tested has been the FV535 stainless steel used on the case. The full stress-strain curves at different temperatures and at strain rates up to 103 s-1 have been obtained. The experimental results show a marked influence of the strain rate and the temperature that cannot be neglected. The Johnson-Cook material model has been used to fit the results of the material tests.

  6. Strain rate viscoelastic analysis of soft and highly hydrated biomaterials

    PubMed Central

    Tirella, A; Mattei, G; Ahluwalia, A

    2014-01-01

    Measuring the viscoelastic behavior of highly hydrated biological materials is challenging because of their intrinsic softness and labile nature. In these materials, it is difficult to avoid prestress and therefore to establish precise initial stress and strain conditions for lumped parameter estimation using creep or stress-relaxation (SR) tests. We describe a method ( or epsilon dot method) for deriving the viscoelastic parameters of soft hydrated biomaterials which avoids prestress and can be used to rapidly test degradable samples. Standard mechanical tests are first performed compressing samples using different strain rates. The dataset obtained is then analyzed to mathematically derive the material's viscoelastic parameters. In this work a stable elastomer, polydimethylsiloxane, and a labile hydrogel, gelatin, were first tested using the, in parallel SR was used to compare lumped parameter estimation. After demonstrating that the elastic parameters are equivalent and that the estimation of short-time constants is more precise using the proposed method, the viscoelastic behavior of porcine liver was investigated using this approach. The results show that the constitutive parameters of hepatic tissue can be quickly quantified without the application of any prestress and before the onset of time-dependent degradation phenomena. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 3352–3360, 2014 PMID:23946054

  7. Strain-rate stiffening of cortical bone: observations and implications from nanoindentation experiments

    NASA Astrophysics Data System (ADS)

    Maruyama, Noriko; Shibata, Yo; Wurihan, Affb; Swain, Michael V.; Kataoka, Yu; Takiguchi, Yuichi; Yamada, Atsushi; Maki, Koutaro; Miyazaki, Takashi

    2014-11-01

    While bone mineralization is considered to be responsible for its stiffness, bone durability partially associated with the time-dependent viscoelasticity of matrix proteins is still poorly elucidated. Here we demonstrate a novel mechanism of highly mineralized bone durability almost independent of inherent viscoelastic behaviour along with a protocol for measuring the mechanical properties of mineralized tissues. Strain-rate nanoindentation tests showed substantial stiffening of the highly mineralized calvarial bone, whereas large creep or stress relaxation was observed during constant load or displacement tests, respectively. Based on the lower viscoelasticity of the highly mineralized structure, such large time-dependent response appears to be associated with nanoscale dimensional recovery, rather than viscoelastic behaviour, implying the inverse namely strain-rate dependent dilatant behaviour. This dilatant expansion increased the indenter penetration resistance into the surface, enhancing instantaneous stiffness. The associated stiffening and higher effective elastic modulus were highly strain-rate dependent and more readily observed in more highly mineralized tissues such as the calvarial bone. Such strain-rate stiffening and consequent dimensional recovery may be vital responses of bone tissues against excessive deformation to maintain tissue integrity.While bone mineralization is considered to be responsible for its stiffness, bone durability partially associated with the time-dependent viscoelasticity of matrix proteins is still poorly elucidated. Here we demonstrate a novel mechanism of highly mineralized bone durability almost independent of inherent viscoelastic behaviour along with a protocol for measuring the mechanical properties of mineralized tissues. Strain-rate nanoindentation tests showed substantial stiffening of the highly mineralized calvarial bone, whereas large creep or stress relaxation was observed during constant load or displacement

  8. Strain-rate master curves for a PBX and binder

    NASA Astrophysics Data System (ADS)

    Drodge, Daniel; Williamson, David; Palmer, Stewart; Proud, William

    2011-06-01

    Many studies have been performed, using several different experimental techniques, to characterise the mechanical response of Polymer Bonded Explosives (PBX). Here we draw together a range of techniques, namely Dynamic Mechanical Analysis, quasi-static compression, Hopkinson Bar and ultrasonics, to produce a master curve. This was performed with a UK PBX and its binder, and the shift-factors required to produce a consistent master curve were consistent with previous findings, and furthermore implied that a simple linear conversion between strain-rate and frequency is acceptable, the constant of proportionality being 2 π . This has been cited before as a consequence of the Cox Merz rule. The benefit of this approach is that a wider range of mechanical testing data can now be employed in code validation.

  9. Potential pitfalls of strain rate imaging: angle dependency

    NASA Technical Reports Server (NTRS)

    Castro, P. L.; Greenberg, N. L.; Drinko, J.; Garcia, M. J.; Thomas, J. D.

    2000-01-01

    Strain Rate Imaging (SRI) is a new echocardiographic technique that allows for the real-time determination of myocardial SR, which may be used for the early and accurate detection of coronary artery disease. We sought to study whether SR is affected by scan line alignment in a computer simulation and an in vivo experiment. Through the computer simulation and the in vivo experiment we generated and validated safe scanning sectors within the ultrasound scan sector and showed that while SRI will be an extremely valuable tool in detecting coronary artery disease there are potential pitfalls for the unwary clinician. Only after accounting for these affects due to angle dependency, can clinicians utilize SRI's potential as a valuable tool in detecting coronary artery disease.

  10. Intermediate strain-rate loading experiments -- Techniques and applications

    SciTech Connect

    Chhabildas, L.C.; Reinhart, W.D.

    1998-09-01

    Gas guns and velocity interferometric techniques have been used to determine the loading behavior of AD995 alumina rods 19 mm in diameter by 75 mm and 150 mm long, respectively. Graded-density materials were used to impact both bare and sleeved alumina rods while the velocity interferometer was used to monitor the axial-velocity of the free end of the rods. Results of these experiments demonstrate that (1) a time-dependent stress pulse generated during impact allows an efficient transition from the initial uniaxial strain loading to a uniaxial stress state as the stress pulse propagates through the rod, and (2) the intermediate loading rates obtained in this configuration lie between split Hopkinson bar and shock-loading techniques.

  11. Material dynamics at extreme pressures and strain rates

    SciTech Connect

    Remington, B A; Cavallo, R M; Edwards, M J; Ho, D D; Lasinski, B F; Lorenz, K T; Lorenzana, H E; McNaney, J M; Pollaine, S M; Yaakobi, B

    2004-08-25

    Solid state experiments at extreme pressures (10-100 GPa) and strain rates ({approx}10{sup 6}-10{sup 8}s{sup -1}) are being developed on high-energy laser facilities, and offer the possibility for exploring new regimes of materials science. [Re 2004] These extreme solid-state conditions can be accessed with either shock loading or with quasi-isentropic ramped pressure pulses being developed on the Omega laser. [Ed 2004] Velocity interferometer measurements establish the high strain rates. Constitutive models for solid-state strength under these conditions are tested by comparing 2D continuum simulations with experiments measuring perturbation growth due to the Rayleigh-Taylor instability in solid-state samples. Lattice compression, phase, and temperature are deduced from extended x-ray absorption fine structure (EXAFS) measurements, from which the shock-induced a-w phase transition in Ti is inferred to occur on sub-nanosecond time scales. [Ya 2004] Time resolved lattice response and phase can be inferred from dynamic x-ray diffraction measurements, where the elastic-plastic (1D-3D) lattice relaxation in shocked Cu is shown to occur promptly (< 1 ns). [Lo 2003] Subsequent large-scale MD simulations have elucidated the microscopic dynamics that underlie the 3D lattice relaxation. Deformation mechanisms are identified by examining the residual microstructure in recovered samples. [Re 2004] For example, the slip-twinning threshold in single-crystal Cu shocked along the [001] direction is shown to occur at shock strengths of 20-40 GPa, whereas the corresponding transition for Cu shocked along the [134] direction occurs at shock strengths of 40-60 GPa. We present highlights from our group's research in laser-based material science including our newest approach for achieving much higher pressures, P > 1000 GPa, in the solid state on the National Ignition Facility (NIF) laser.

  12. Effect of the temperature, strain rate and microstructure on flow and fracture characteristics of Ti-45Al-2Nb-2Mn+0.8vol.% TiB2 XD alloy

    NASA Astrophysics Data System (ADS)

    Erice, B.; Pérez-Martín, M. J.; Cendón, D. A.; Gálvez, F.

    2012-05-01

    A series of quasi-static and dynamic tensile tests at varying temperatures were carried out to determine the mechanical behaviour of Ti-45Al-2Nb-2Mn+0.8vol.% TiB2 XD as-HIPed alloy. The temperature for the tests ranged from room temperature to 850 ∘C. The effect of the temperature on the ultimate tensile strength, as expected, was almost negligible within the selected temperature range. Nevertheless, the plastic flow suffered some softening because of the temperature. This alloy presents a relatively low ductility; thus, a low tensile strain to failure. The dynamic tests were performed in a Split Hopkinson Tension Bar, showing an increase of the ultimate tensile strength due to the strain rate hardening effect. Johnson-Cook constitutive relation was used to model the plastic flow. A post-testing microstructural of the specimens revealed an inhomogeneous structure, consisting of lamellar α2 + γ structure and γ phase equiaxed grains in the centre, and a fully lamellar structure on the rest. The assessment of the duplex-fully lamellar area ratio showed a clear relationship between the microstructure and the fracture behaviour.

  13. Influence of the tensile strain rate on the mechanical properties and phase composition of VNS 9-Sh TRIP steel

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Slizov, A. K.; Prosvirnin, D. V.; Sirotinkin, V. P.; Ashmarin, A. A.; Gol'dberg, M. A.

    2015-10-01

    The influence of the strain rate on the mechanical properties and the phase composition of a sheet VNS 9-Sh (23Kh15N5AM3-Sh) TRIP steel is studied during static tension. The strain rate is changed in the range from 8.3 × 10-5 to 25 × 10-3 s-1. The dependence of the mechanical properties on the strain rate is found to be nonlinear. The TRIP effect is most pronounced at a strain rate of (8.3-17) × 10-5 s-1. In this strain rate, the deformation martensite content increases significantly, from 50 to 87%, as is detected by X-ray diffraction.

  14. Mechanical strain effects on black phosphorus nanoresonators.

    PubMed

    Wang, Cui-Xia; Zhang, Chao; Jiang, Jin-Wu; Park, Harold S; Rabczuk, Timon

    2016-01-14

    We perform classical molecular dynamics simulations to investigate the effects of mechanical strain on single-layer black phosphorus nanoresonators at different temperatures. We find that the resonant frequency is highly anisotropic in black phosphorus due to its intrinsic puckered configuration, and that the quality factor in the armchair direction is higher than in the zigzag direction at room temperature. The quality factors are also found to be intrinsically larger than those in graphene and MoS2 nanoresonators. The quality factors can be increased by more than a factor of two by applying tensile strain, with uniaxial strain in the armchair direction being the most effective. However, there is an upper bound for the quality factor increase due to nonlinear effects at large strains, after which the quality factor decreases. The tension induced nonlinear effect is stronger along the zigzag direction, resulting in a smaller maximum strain for quality factor enhancement. PMID:26649476

  15. Comparison of epoxy-based encapsulating materials over temperature and strain-rate

    NASA Astrophysics Data System (ADS)

    Khan, Amnah; Proud, William

    2015-06-01

    The effects of varying strain rates and temperatures on the compressive response of an epoxy resin with and without alumina filler have been investigated. The samples are studied in the range of temperatures from - 20° C to + 80° C over a range of strain rates (10-4 s-1 to 10+3 s-1). Three loading devices were used to access this range: an Instron, drop weight and a Split Hopkinson Pressure Bar. Stress-strain data was obtained, along with high-speed images. The response of the materials is compared and discussed in relation to their use as encapsulants of piezoelectric systems. The Institute of Shock Physics acknowledges the support of AWE, Aldermaston, UK and Imperial College London.

  16. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Akifumi; Kobayashi, Hidetoshi; Horikawa, Keitaro; Tanigaki, Kenichi

    2015-09-01

    These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10-3 to 103 s-1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from - 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  17. Identification of strain-rate and thermal sensitive material model with an inverse method

    NASA Astrophysics Data System (ADS)

    Peroni, L.; Scapin, M.; Peroni, M.

    2010-06-01

    This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strainrates and temperatures. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields) or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena). Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work. The method presented requires strong effort both from experimental and numerical point of view, anyway it allows to precisely identify the parameters of different material models. This could provide great advantages when high reliability of the material behaviour is necessary. Applicability of this method is particularly indicated for special applications in the field of aerospace engineering, ballistic, crashworthiness studies or particle accelerator technologies, where materials could be submitted to strong plastic deformations at high-strain rate in a wide range of temperature. Thermal softening effect has been investigated in a temperature range between 20°C and 1000°C.

  18. Present-day CGPS-derived Crustal Strain Rate Field of the Saint Lawrence River Valley

    NASA Astrophysics Data System (ADS)

    Goudarzi, M. A.; Cocard, M.; Santerre, R.

    2015-12-01

    The Saint Lawrence River valley (SLRV) is one of the most seismically active areas in eastern Canada. Along the SLRV and the Ottawa valley, earthquakes are concentrated on three distinct zones of western Quebec along the Ottawa River, Charlevoix, and Lower Saint Lawrence. The entire area is also subject to the glacial isostatic adjustment (GIA). We studied the earth's surface deformation of the area using the velocity field of 51 continuous GPS (CGPS) stations and the least-squares collocation method. While the intraplate horizontal velocities showed a coherent horizontal motion towards southeast with the typical magnitude of ~1.3 mm/yr for stations along the SLRV, the interpolated vertical velocities demonstrated a coherent uplift with the average rate of 3.1 mm/yr. We estimated strain rate tensors including the effect of vertical velocity. A NNW-SSE shortening with a typical rate of ~3.6-8.1 nstrain/yr was observed over Lower Saint Lawrence. In Charlevoix, an extension with a typical rate of ~3.0-7.1 nstrain/yr was oriented in ENE-WSW parallel to the SLRV. In western Quebec, the deformation has a shear straining mechanism with a typical shortening rate of ~1.0-5.1 nstrain/yr and extension rate of ~1.6-4.1 nstrain/yr. The extension over the northern model is consistent with the prediction of the GIA models. The range of the estimated strain rates of the area (~1.0-8.1 nstrain/yr) is between typical values of rigid blocks (< 0.1 nstrain/yr) and active tectonic regions (> 100 μstrain/yr). A strong correlation was observed between epicenters of earthquakes and areas with the highest rate of shear strain. We found a good agreement between the orientations of the principal axes of strain rate tensors and the maximum horizontal compressional stress σH from World Stress Map 2008 for both strike-slip and thrust faulting regimes especially those derived from focal mechanisms. This shows our CGPS intraplate velocities are representative of the current crustal deformation

  19. The Compressive Behavior of Isocyanate-crosslinked Silica Aerogel at High Strain Rates

    NASA Technical Reports Server (NTRS)

    Luo, H.; Lu, H.; Leventis, N.

    2006-01-01

    Aerogels are low-density, highly nano-porous materials. Their engineering applications are limited due to their brittleness and hydrophilicity. Recently, a strong lightweight crosslinked silica aerogel has been developed by encapsulating the skeletal framework of amine-modified silica aerogels with polyureas derived by isocyanate. The mesoporous structure of the underlying silica framework is preserved through conformal polymer coating, and the thermal conductivity remains low. Characterization has been conducted on the thermal, physical properties and the mechanical properties under quasi-static loading conditions. In this paper, we present results on the dynamic compressive behavior of the crosslinked silica aerogel (CSA) using a split Hopkinson pressure bar (SHPB). A new tubing pulse shaper was employed to help reach the dynamic stress equilibrium and constant strain rate. The stress-strain relationship was determined at high strain rates within 114-4386/s. The effects of strain rate, density, specimen thickness and water absorption on the dynamic behavior of the CSA were investigated through a series of dynamic experiments. The Young's moduli (or 0.2% offset compressive yield strengths) at a strain rate approx.350/s were determined as 10.96/2.08, 159.5/6.75, 192.2/7.68, 304.6/11.46, 407.0/20.91 and 640.5/30.47 MPa for CSA with densities 0.205, 0.454, 0.492, 0.551,0.628 and 0.731 g/cu cm, respectively. The deformation and failure behaviors of a native silica aerogel with density (0.472 g/cu cm ), approximately the same as a typical CSA sample were observed with a high speed digital camera. Digital image correlation technique was used to determine the surface strains through a series of images acquired using high speed photography. The relative uniform axial deformation indicated that localized compaction did not occur at a compressive strain level of approx.17%, suggesting most likely failure mechanism at high strain rate to be different from that under quasi

  20. The compressive behavior of isocyanate-crosslinked silica aerogel at high strain rates

    NASA Astrophysics Data System (ADS)

    Luo, H.; Lu, H.; Leventis, N.

    2006-06-01

    Aerogels are low-density, highly nano-porous materials. Their engineering applications are limited due to their brittleness and hydrophilicity. Recently, a strong lightweight crosslinked silica aerogel has been developed by encapsulating the skeletal framework of amine-modified silica aerogels with polyureas derived by isocyanate. The mesoporous structure of the underlying silica framework is preserved through conformal polymer coating, and the thermal conductivity remains low. Characterization has been conducted on the thermal, physical properties and the mechanical properties under quasi-static loading conditions. In this paper, we present results on the dynamic compressive behavior of the crosslinked silica aerogel (CSA) using a split Hopkinson pressure bar (SHPB). A new tubing pulse shaper was employed to help reach the dynamic stress equilibrium and constant strain rate. The stress-strain relationship was determined at high strain rates within 114-4386 s-1. The effects of strain rate, density, specimen thickness and water absorption on the dynamic behavior of the CSA were investigated through a series of dynamic experiments. The Young’s moduli (or 0.2% offset compressive yield strengths) at a strain rate ˜350 s-1 were determined as 10.96/2.08, 159.5/6.75, 192.2/7.68, 304.6/11.46, 407.0/20.91 and 640.5/30.47 MPa for CSA with densities 0.205, 0.454, 0.492, 0.551, 0.628 and 0.731 g cm-3, respectively. The deformation and failure behaviors of a native silica aerogel with density (0.472 g cm-3), approximately the same as a typical CSA sample were observed with a high speed digital camera. Digital image correlation technique was used to determine the surface strains through a series of images acquired using high speed photography. The relative uniform axial deformation indicated that localized compaction did not occur at a compressive strain level of ˜17%, suggesting most likely failure mechanism at high strain rate to be different from that under quasi

  1. Global Earthquake Activity Rate models based on version 2 of the Global Strain Rate Map

    NASA Astrophysics Data System (ADS)

    Bird, P.; Kreemer, C.; Kagan, Y. Y.; Jackson, D. D.

    2013-12-01

    Global Earthquake Activity Rate (GEAR) models have usually been based on either relative tectonic motion (fault slip rates and/or distributed strain rates), or on smoothing of seismic catalogs. However, a hybrid approach appears to perform better than either parent, at least in some retrospective tests. First, we construct a Tectonic ('T') forecast of shallow (≤ 70 km) seismicity based on global plate-boundary strain rates from version 2 of the Global Strain Rate Map. Our approach is the SHIFT (Seismic Hazard Inferred From Tectonics) method described by Bird et al. [2010, SRL], in which the character of the strain rate tensor (thrusting and/or strike-slip and/or normal) is used to select the most comparable type of plate boundary for calibration of the coupled seismogenic lithosphere thickness and corner magnitude. One difference is that activity of offshore plate boundaries is spatially smoothed using empirical half-widths [Bird & Kagan, 2004, BSSA] before conversion to seismicity. Another is that the velocity-dependence of coupling in subduction and continental-convergent boundaries [Bird et al., 2009, BSSA] is incorporated. Another forecast component is the smoothed-seismicity ('S') forecast model of [Kagan & Jackson, 1994, JGR; Kagan & Jackson, 2010, GJI], which was based on optimized smoothing of the shallow part of the GCMT catalog, years 1977-2004. Both forecasts were prepared for threshold magnitude 5.767. Then, we create hybrid forecasts by one of 3 methods: (a) taking the greater of S or T; (b) simple weighted-average of S and T; or (c) log of the forecast rate is a weighted average of the logs of S and T. In methods (b) and (c) there is one free parameter, which is the fractional contribution from S. All hybrid forecasts are normalized to the same global rate. Pseudo-prospective tests for 2005-2012 (using versions of S and T calibrated on years 1977-2004) show that many hybrid models outperform both parents (S and T), and that the optimal weight on S

  2. Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography.

    PubMed

    Li, Peng; Liu, Aiping; Shi, Liang; Yin, Xin; Rugonyi, Sandra; Wang, Ruikang K

    2011-11-21

    We present a method to assess the in vivo radial strain and strain rate of the myocardial wall, which is of great importance to understand the biomechanics of cardiac development, using tissue Doppler optical coherence tomography (tissue-DOCT). Combining the structure and velocity information acquired from tissue-DOCT, the velocity distribution in the myocardial wall is plotted, from which the radial strain and strain rate are evaluated. The results demonstrate that tissue-DOCT can be used as a useful tool to describe tissue deformation, especially, the biomechanical characteristics of the embryonic heart. PMID:22016198

  3. Comparison of strain rates of dart impacted plaques and pendulum impacted bumpers

    SciTech Connect

    Scammell, K.L.

    1987-01-01

    The difference in strain rates prevailing during pendulum impact of bumpers versus high speed dart impact of plaques was investigated. Uni-axial strain gages were applied to the tension side of the plaques and bumpers directly opposite the point of impact. The plaques were impacted with an instrumented high rate dart impact tester and the bumpers impacted with a full scale bumper pendulum impact tester. Theoretical calculations and actual strain rate data support the conclusion that the strain rate of a plaque during dart impact significantly exceeds that of bumper strain rate during pendulum impact.

  4. Implementation of Improved Transverse Shear Calculations and Higher Order Laminate Theory Into Strain Rate Dependent Analyses of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Lin-Fa; Kim, Soo; Chattopadhyay, Aditi; Goldberg, Robert K.

    2004-01-01

    A numerical procedure has been developed to investigate the nonlinear and strain rate dependent deformation response of polymer matrix composite laminated plates under high strain rate impact loadings. A recently developed strength of materials based micromechanics model, incorporating a set of nonlinear, strain rate dependent constitutive equations for the polymer matrix, is extended to account for the transverse shear effects during impact. Four different assumptions of transverse shear deformation are investigated in order to improve the developed strain rate dependent micromechanics model. The validities of these assumptions are investigated using numerical and theoretical approaches. A method to determine through the thickness strain and transverse Poisson's ratio of the composite is developed. The revised micromechanics model is then implemented into a higher order laminated plate theory which is modified to include the effects of inelastic strains. Parametric studies are conducted to investigate the mechanical response of composite plates under high strain rate loadings. Results show the transverse shear stresses cannot be neglected in the impact problem. A significant level of strain rate dependency and material nonlinearity is found in the deformation response of representative composite specimens.

  5. Investigation of thermomechanical couplings, strain localization and shape memory properties in a shape memory polymer subjected to loading at various strain rates

    NASA Astrophysics Data System (ADS)

    Pieczyska, E. A.; Staszczak, M.; Maj, M.; Kowalczyk-Gajewska, K.; Golasiński, K.; Cristea, M.; Tobushi, H.; Hayashi, S.

    2016-08-01

    This paper presents experimental and modeling results of the effects of thermomechanical couplings occurring in a polyurethane shape memory polymer (SMP) subjected to tension at various strain rates within large strains. The SMP mechanical curves, recorded using a testing machine, and the related temperature changes, measured in a contactless manner using an IR camera, were used to investigate the polymer deformation process at various loading stages. The effects of thermomechanical couplings allowed the determination of the material yield point in the initial loading stage, the investigation of nucleation and development of the strain localization at larger strains and the estimation of the effects of thermoelastic behavior during the unloading process. The obtained stress–strain and thermal characteristics, the results of the dynamic mechanical analysis and estimated values of the shape fixity and shape recovery parameters confirmed that the shape memory polymer (T g = 45 °C) is characterized by good mechanical and shape memory properties, as well as high sensitivity to the strain rate. The mechanical response of the SMP subjected to tension was simulated using the finite element method and applying the large strain, two-phase model. Strain localization observed in the experiment was well reproduced in simulations and the temperature spots were correlated with the accumulated viscoplastic deformation of the SMP glassy phase.

  6. Servohydraulic methods for mechanical testing in the Sub-Hopkinson rate regime up to strain rates of 500 1/s.

    SciTech Connect

    Crenshaw, Thomas B.; Boyce, Brad Lee

    2005-10-01

    Tensile and compressive stress-strain experiments on metals at strain rates in the range of 1-1000 1/s are relevant to many applications such as gravity-dropped munitions and airplane accidents. While conventional test methods cover strain rates up to {approx}10 s{sup -1} and split-Hopkinson and other techniques cover strain rates in excess of {approx}1000 s{sup -1}, there are no well defined techniques for the intermediate or ''Sub-Hopkinson'' strain-rate regime. The current work outlines many of the challenges in testing in the Sub-Hopkinson regime, and establishes methods for addressing these challenges. The resulting technique for obtaining intermediate rate stress-strain data is demonstrated in tension on a high-strength, high-toughness steel alloy (Hytuf) that could be a candidate alloy for earth penetrating munitions and in compression on a Au-Cu braze alloy.

  7. Fiber-Optic Strain Gauge With High Resolution And Update Rate

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Mahajan, Ajay; Sayeh, Mohammad; Regez, Bradley

    2007-01-01

    An improved fiber-optic strain gauge is capable of measuring strains in the approximate range of 0 to 50 microstrains with a resolution of 0.1 microstrain. (To some extent, the resolution of the strain gauge can be tailored and may be extensible to 0.01 microstrain.) The total cost of the hardware components of this strain gauge is less than $100 at 2006 prices. In comparison with prior strain gauges capable of measurement of such low strains, this strain gauge is more accurate, more economical, and more robust, and it operates at a higher update rate. Strain gauges like this one are useful mainly for measuring small strains (including those associated with vibrations) in such structures as rocket test stands, buildings, oilrigs, bridges, and dams. The technology was inspired by the need to measure very small strains on structures supporting liquid oxygen tanks, as a way to measure accurately mass of liquid oxygen during rocket engine testing. This improved fiber-optic strain gauge was developed to overcome some of the deficiencies of both traditional foil strain gauges and prior fiber-optic strain gauges. Traditional foil strain gages do not have adequate signal-to-noise ratios at such small strains. Fiber-optic strain gauges have been shown to be potentially useful for measuring such small strains, but heretofore, the use of fiberoptic strain gauges has been inhibited, variously, by complexity, cost, or low update rate.

  8. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    NASA Technical Reports Server (NTRS)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  9. Distributed strain monitoring for bridges: temperature effects

    NASA Astrophysics Data System (ADS)

    Regier, Ryan; Hoult, Neil A.

    2014-03-01

    To better manage infrastructure assets as they reach the end of their service lives, quantitative data is required to better assess structural behavior and allow for more informed decision making. Distributed fiber optic strain sensors are one sensing technology that could provide comprehensive data for use in structural assessments as these systems potentially allow for strain to be measured with the same accuracy and gage lengths as conventional strain sensors. However, as with many sensor technologies, temperature can play an important role in terms of both the structure's and sensor's performance. To investigate this issue a fiber optic distributed strain sensor system was installed on a section of a two span reinforced concrete bridge on the TransCanada Highway. Strain data was acquired several times a day as well as over the course of several months to explore the effects of changing temperature on the data. The results show that the strain measurements are affected by the bridge behavior as a whole. The strain measurements due to temperature are compared to strain measurements that were taken during a load test on the bridge. The results show that even a small change in temperature can produce crack width and strain changes similar to those due to a fully loaded transport truck. Future directions for research in this area are outlined.

  10. Ultra-high strain rate behavior of FCC nanostructures

    NASA Astrophysics Data System (ADS)

    Crum, Ryan Scott

    This work addresses the influence of ultra-high strain rates loading observed in our world today via ballistics, explosions and astrophysical collisions on well-defined metal structures. There is a plentiful amount of research examining metals at a macroscopic level that are subjected to ballistics and explosions but observing the microstructure is difficult as those procedures are fairly destructive testing mechanisms. Therefore, to understand the true mechanisms that occur in these loading situations a more novel technique is necessary. Modifications were made to the Laser Spallation Technique in order to load structures under a single transient wave pulse. This study characterized FCC nanostructures shock loaded at extreme pressures, strain rates and temperatures. By utilizing nanostructures, extremely large values of stain could be produced within the structure. It was first observed that at lower laser fluence levels and subsequently low stress states that there was a chemical activation of the surface of Cu nanopillars. This occurred due to nanofacet formation on the surface of the nanopillars which left pristine Cu surfaces to recombine with the environment. Dislocation motion was also observed and clearly identified in Cu nanopillars, Cu nanobenches and Al nanopillars. Further studies analyzed Cu nanopillars subjected to higher laser fluence generated stress waves, which led to bending and axial shortening deformation. These deformations were observed at laser fluence values of 144 kJ/m2 for bending and 300 kJ/m 2 for bulging similar to that of Taylor Impact experiments. To explore an even more extreme loading environment, a specialized test setup was employed to cryogenically cool the copper nanopillars to a temperature of 83K in an attempt to elucidate brittle behavior. Under these loading conditions the nanopillars continued to deform in a ductile manner but with delayed onset of both bending deformation and bulging deformation compared to the room

  11. Influence of high-strain rate and temperature on the mechanical behavior of Nl-, Fe-, and Ti- based aluminides

    SciTech Connect

    Gray, G.T. III

    1996-09-01

    The majority of the strength characterization studies on ordered intermetallics have concentrated on the assessment of strength and work-hardening at conventional strain rates. Although the influence of strain rate on the structure/property relationships of pure nickel, iron, and titanium and a variety of their alloys have been extensively studied, the effect of strain rate on the stress-strain response of Ni-, Fe-, and Ti-based aluminides remains poorly understood. Dynamic constitutive behavior is however relevant to high speed impact performance of these materials such as during foreign object damage in aerospace applications, high-rate forging, and localized deformation behavior during machining. The influence of strain rate, varied between 0.001 and 10{sup 4} s{sup -1}, and temperatures, between 77 & 800K, on the compressive mechanical behavior of Ni{sub 3}A1, NiAl, Fe{sub 3}Al, Fe-40Al-0.1B, Ti-24Al-11Nb, and Ti-48Al-2Cr-2Nb will be presented. In this paper the influence of strain rate on the anomalous temperature dependency of the flow stresses in these aluminides will be reviewed and compared between aluminides. The rate sensitivity and work hardening of each aluminide will be discussed as a function of strain rate and temperature and contrasted to each other and to the values typical for their respective disordered base metals. 66 refs., 16 figs., 2 tabs.

  12. Deformation mechanism transition caused by strain rate in a pulse electric brush-plated nanocrystalline Cu

    NASA Astrophysics Data System (ADS)

    Jiang, Zhonghao; Zhang, Hanzhuo; Gu, Changdong; Jiang, Qing; Lian, Jianshe

    2008-09-01

    Bulk nanocrystalline Cu was synthesized by a pulse electric brush-plating technique. A very large strength (at 2% plastic strain) increase from 644 to 1451 MPa was obtained by compression tests at room temperature and strain rates from 1×10-5 to 3×100 s-1. A transition in plastic deformation mechanism with strain rate from a combination of the thermally activated grain boundary sliding and the dislocation emission-absorption in grain boundaries to one dominated by the dislocation activity has been revealed by the significant changes in strain rate sensitivity and apparent activation volume with strain rate.

  13. Yield strength dependence on strain rate of molybdenum-alloy nanofibers

    SciTech Connect

    Loya, P. E.; Peng, C.; Zhang, P.; Zhang, J.; Lou, J.; Xia, Y. Z.; Bei, H.; George, E. P.; Gao, Y. F.

    2014-06-23

    The yield strength dependence on strain rate was studied for molybdenum-alloy nanofibers with varying initial dislocation density at three different pre-strain levels. In-situ tensile experiments at three displacement rates were carried out in a scanning electron microscope. Yield strength and its scatter decreased as a function of the pre-strain level for different displacement rates. A statistical model was used to analyze the results, and a negative strain rate dependence was inferred from the yield experiments. This finding suggests the need for theoretical investigations since classical models such as dynamic strain aging may have limitations at such nanoscales.

  14. Kinetics of the iron α -ɛ phase transition at high-strain rates: Experiment and model

    NASA Astrophysics Data System (ADS)

    Amadou, N.; de Resseguier, T.; Brambrink, E.; Vinci, T.; Benuzzi-Mounaix, A.; Huser, G.; Morard, G.; Guyot, F.; Miyanishi, K.; Ozaki, N.; Kodama, R.; Koenig, M.

    2016-06-01

    In this article, we investigate the kinetics of the iron α -ɛ transition under laser-driven ramp compression for deformation rates ranging from 3 to 9 ×107s-1 . As in previous work, we observe a plateau in the rear surface velocity profile at the transition. With increasing deformation rate the transition onset pressure raises from 11 to 25 GPa, while the plateau duration decreases. These kinetic effects are well reproduced by an Avrami-type kinetics model of nucleation and growth with a constant, nanosecond scale completion time, which suggests an isokinetic regime over the explored range of strain rates.

  15. High strain-rate response of injectable PAA hydrogel.

    PubMed

    Lin, Hong-Ru; Wang, Shih-Han; Chiang, Chia-Chin; Juang, Yun-Ching; Yu, Fu-Ann; Tsai, Liren

    2015-01-01

    Hydrogel materials have been widely considered as potential soft tissue replacements because of their high permeability, hydrophilicity, and biocompatibility, as well as their low coefficient of friction. Injectable (thermo-responsive) hydrogels can provide support and cushioning at irregularly shaped disease sites, and are thus suitable for use in treating osteoarthritis or degenerative disc disease. However, while some injectable hydrogels have been proven to sustain human body weight during daily activities, their mechanical properties under harsh dynamic conditions have not been well documented. A specified injectable polyacrylic acid (PAA) hydrogel was prepared for this study. To simulate sudden impacts or unexpected shocks to the PAA hydrogel, the split Hopkinson pressure bar technique was utilized. The dynamic responses of various hydrogels at confined high strain rates (100-2590 s(-1)) were presented. Hydrogel specimens with 3.37, 6.75, and 13.5% acrylic acid (AAc) concentrations were tested in the following three different material conditions: raw, phosphate-buffered saline (PBS) swollen, and PBS swollen with elevated temperature (37 °C). The dynamic bulk moduli of the hydrogels varied from 1.55 to 47.8 MPa depending on the given hydrogel's AAc concentration and swollen condition. PMID:25816201

  16. High Strain Rate Response of Sandwich Composites with Nanophased Cores

    NASA Astrophysics Data System (ADS)

    Mahfuz, Hassan; Uddin, Mohammed F.; Rangari, Vijaya K.; Saha, Mrinal C.; Zainuddin, Shaik; Jeelani, Shaik

    2005-05-01

    Polyurethane foam materials have been used as core materials in a sandwich construction with S2-Glass/SC-15 facings. The foam material has been manufactured from liquid polymer precursors of polyurethane. The precursors are made of two components; part-A (diphenylmethane diisocyanate) and part-B (polyol). In one set of experiments, part-A was mixed with part-B to manufacture the foam. In another set, TiO2 nanoparticles have been dispersed in part-A through ultrasonic cavitation technique. The loading of nanoparticles was 3% by weight of the total polymer precursor. The TiO2 nanoparticles were spherical in shape, and were about 29 nm in diameter. Sonic cavitation was carried out with a vibrasound liquid processor at 20 kHz frequency with a power intensity of about 100 kW/m2. The two categories of foams manufactured in this manner were termed as neat and nanophased. Sandwich composites were then fabricated using these two categories of core materials using a co-injection resin transfer molding (CIRTM) technique. Test samples extracted from the panel were subjected to quasi-static as well as high strain rate loadings. Rate of loading varied from 0.002 s-1 to around 1300 s-1. It has been observed that infusion of nanoparticles had a direct correlation with the cell geometry. The cell dimensions increased by about 46% with particle infusion suggesting that nanoparticles might have worked as catalysts during the foaming process. Correspondingly, enhancement in thermal properties was also noticed especially in the TGA experiments. There was also a significant improvement in mechanical properties due to nanoparticle infusion. Average increase in sandwich strength and energy absorption with nanophased cores was between 40 60% over their neat counterparts. Details of manufacturing and analyses of thermal and mechanical tests are presented in this paper.

  17. High strain rate modeling of ceramics and ceramic composites

    NASA Astrophysics Data System (ADS)

    Espinosa, H. D.

    1994-07-01

    The high strain rate response of an AlN/AlN/Al composite manufactured by Lanxide Armor Products, Inc., has been studied through normal and pressure-shear plate impact experiments. Differences in the measured shear resistance, as a function of the impact configuration, motivated the examination of the material response by means of a microcracking multiple-plane model and a continuum elasto-viscoplastic constitutive model. Numerical simulations of the normal impact experiments do not support microcracking as the dominant inelastic mechanism. By contrast, an elasto-viscoplastic description of the material behavior predicts the main features of the normal stress history and the thickness dependence of the Hugoniot elastic limit. Nonetheless, the elasto-viscoplastic model cannot reproduce both the normal and pressure-shear experiments with a single set of model parameters. The inadequacy of the continuum elasto-viscoplastic model seems to result from the isotropic assumption embodied in its formulation. The shear resistance measured in the pressure-shear experiments is adequately predicted by a microcracking multiple-plane model. The agreement seems to hinge in the continuous shearing of the material on a micro-localized fashion, i.e. only one orientation becomes dominant and controls the inelastic shear deformation rate. This event does not occur in the normal impact configuration, in which the amount of inelasticity is primarily controlled by the elastic compressibility of the material. These findings explain the higher sensitivity to damage and microplasticity observed in the pressure-shear configuration, as well as the softer material response recorded in this configuration.

  18. Controlling the Lithiation-Induced Strain and Charging Rate in Nanowire Electrodes by Coating

    SciTech Connect

    Zhang, Li Q.; Liu, Xiao H.; Liu, Yang; Huang, Shan; Zhu, Ting; Gui, Liangjin; Mao, Scott X.; Ye, Zhi Zhen; Wang, Chong M.; Sullivan, J. P.; Huang, Jian Yu

    2011-05-04

    Lithiation-induced-strain (LIS) in electrode materials plagues the performance and lifetime of lithium ion batteries (LIBs). Controlling the LIS is one of the ultimate goals for making better LIBs. Here we report that by carbon or aluminum coating, the charging rate and LIS of individual SnO2 nanowire electrodes can be altered dramatically: namely the carbon or aluminum coated nanowires can be charged about 10 times faster than the non-coated nanowires, and the radial expansion of the coated nanowires was completely suppressed, resulting little or no mismatch strain at the reaction front, as evidenced by the lack of dislocations near the reaction front. The improved charging rate and the suppression of the radial expansion were attributed to the mechanical confinement of the coatings. These studies demonstrate an effective route to control the charging rate and LIS, enabling the design of better LIBs.

  19. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    SciTech Connect

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  20. Mechanical characterization of brain tissue in simple shear at dynamic strain rates.

    PubMed

    Rashid, Badar; Destrade, Michel; Gilchrist, Michael D

    2013-12-01

    During severe impact conditions, brain tissue experiences a rapid and complex deformation, which can be seen as a mixture of compression, tension and shear. Diffuse axonal injury (DAI) occurs in animals and humans when both the strains and strain rates exceed 10% and 10/s, respectively. Knowing the mechanical properties of brain tissue in shear at these strains and strain rates is thus of particular importance, as they can be used in finite element simulations to predict the occurrence of brain injuries under different impact conditions. However, very few studies in the literature provide this information. In this research, an experimental setup was developed to perform simple shear tests on porcine brain tissue at strain rates ≤120/s. The maximum measured shear stress at strain rates of 30, 60, 90 and 120/s was 1.15±0.25kPa, 1.34±0.19kPa, 2.19±0.225kPa and 2.52±0.27kPa, (mean±SD), respectively at the maximum amount of shear, K=1. Good agreement of experimental, theoretical (Ogden and Mooney-Rivlin models) and numerical shear stresses was achieved (p=0.7866-0.9935). Specimen thickness effects (2.0-10.0mm thick specimens) were also analyzed numerically and we found that there is no significant difference (p=0.9954) in the shear stress magnitudes, indicating a homogeneous deformation of the specimens during simple shear tests. Stress relaxation tests in simple shear were also conducted at different strain magnitudes (10-60% strain) with the average rise time of 14ms. This allowed us to estimate elastic and viscoelastic parameters (initial shear modulus, μ=4942.0Pa, and Prony parameters: g1=0.520, g2=0.3057, τ1=0.0264s, and τ2=0.011s) that can be used in FE software to analyze the non-linear viscoelastic behavior of brain tissue. This study provides new insight into the behavior in finite shear of brain tissue under dynamic impact conditions, which will assist in developing effective brain injury criteria and adopting efficient countermeasures against

  1. Investigation of the mechanical behavior of kangaroo humeral head cartilage tissue by a porohyperelastic model based on the strain-rate-dependent permeability.

    PubMed

    Thibbotuwawa, Namal; Oloyede, Adekunle; Senadeera, Wijitha; Li, Tong; Gu, YuanTong

    2015-11-01

    Solid-interstitial fluid interaction, which depends on tissue permeability, is significant to the strain-rate-dependent mechanical behavior of humeral head (shoulder) cartilage. Due to anatomical and biomechanical similarities to that of the human shoulder, kangaroos present a suitable animal model. Therefore, indentation experiments were conducted on kangaroo shoulder cartilage tissues from low (10(-4)/s) to moderately high (10(-2)/s) strain-rates. A porohyperelastic model was developed based on the experimental characterization; and a permeability function that takes into account the effect of strain-rate on permeability (strain-rate-dependent permeability) was introduced into the model to investigate the effect of rate-dependent fluid flow on tissue response. The prediction of the model with the strain-rate-dependent permeability was compared with those of the models using constant permeability and strain-dependent permeability. Compared to the model with constant permeability, the models with strain-dependent and strain-rate-dependent permeability were able to better capture the experimental variation at all strain-rates (p < 0.05). Significant differences were not identified between models with strain-dependent and strain-rate-dependent permeability at strain-rate of 5 × 10(-3)/s (p = 0.179). However, at strain-rate of 10(-2)/s, the model with strain-rate-dependent permeability was significantly better at capturing the experimental results (p < 0.005). The findings thus revealed the significance of rate-dependent fluid flow on tissue behavior at large strain-rates, which provides insights into the mechanical deformation mechanisms of cartilage tissues. PMID:26275487

  2. On the influence of strain rate in acousto-elasticity : experimental results for Berea sandstone

    NASA Astrophysics Data System (ADS)

    Riviere, J. V.; Candela, T.; Scuderi, M.; Marone, C.; Guyer, R. A.; Johnson, P. A.

    2013-12-01

    Elastic nonlinear effects are pervasive in the Earth, including during strong ground motion, tidal forcing and earthquake slip processes. We study elastic nonlinear effects in the laboratory with the goal of developing new methods to probe elastic changes in the Earth, and to characterize and understand their origins. Here we report on nonlinear, frequency dispersion effects by applying a method termed dynamic acousto-elasticity (DAE), analogous to quasi-static acousto-elasticity. DAE allows one to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. We perform DAE on samples of Berea sandstone subject to 0.5 MPa uniaxial and biaxial loading conditions with oscillating loads at frequencies from 0.001 to 10 Hz and amplitudes of a few 100 kPa. We compare results to DAE measurements made in the kHz range. We observe that the average decrease in modulus due to nonlinear material softening increases with frequency, suggesting a frequency and/or a strain rate dependence. Previous quasi-static measurements (Claytor et al., GRL 2009) show that stress-strain nonlinear hysteretic behavior disappears when the experiment is performed at a very low strain-rate, implying that a rate dependent nonlinear elastic model would be useful (Gusev et al., PRB 2004). Our results also suggest that when elastic nonlinear Earth processes are studied, stress forcing frequency is an important consideration, and may lead to unexpected behaviors.

  3. The effect of strain path on the critical strain for serrated flow in solution treated AA6082

    SciTech Connect

    An, Y.G.; Wilson, D.V.; Bate, P.S.

    1996-05-15

    Serrated flow is often observed in solid solutions in certain regimes of temperature and strain rate. Generally such flow only begins after a critical amount of strain, which depends on the material and the deformation conditions. The phenomenon is closely associated with solute locking of dislocations during deformation, or dynamic strain aging. Cottrell and Ham and Jaffrey proposed that serrated flow begins when the velocity of dislocations equals the drift velocity of solute atoms in the stress field of the dislocation, and that the critical strain was associated with the deformation required to introduce sufficient vacancies to give diffusion at the required rate for this to occur. Changes in strain path have been shown to reduce the positive strain rate sensitivity of strain hardening in commercial purity aluminium, and the work reported here indicates that such changes may affect the negative rate sensitivity of either flow stress or its development with strain, or both, which is manifested as an effect on the critical strain for serrated flow after a change in strain path. AA6082 alloy (0.76 wt pct Si, 0.63 wt pct Mg) plate of 8.0 mm thickness was used in the study. Both compression-tension and two stage compression tests were used.

  4. Constant strain rate compression of bovine cortical bone on the Split-Hopkinson Pressure Bar.

    PubMed

    Bekker, A; Cloete, T J; Chinsamy-Turan, A; Nurick, G N; Kok, S

    2015-01-01

    Cortical bone is a visco-elastic material which implies that strain rate will affect its response. Although the Split-Hopkinson Pressure Bar is an accepted technique for determining the dynamic compressive properties of cortical bone it has been shown that the strain rate of compression does not remain constant throughout the duration of a classical experiment with a uniform striker. This raises concerns as to the measurement of smeared responses. This paper presents a shaped striker technique whereby the incident pulse can be shaped to attain a constant strain rate experiment for bovine bone. Shaped strikers offer benefits such as re-usability and increased test repeatability. A comparison of the stress-strain-strain rate responses attained through classical and constant strain rate experiments shows that the shape of the stress-strain curves from conventional experiments is adversely affected in the portion where the strain rate varies. The dynamic response corridors for the two tests are similar, however the ultimate properties are affected. It is concluded that the strain rate history should be presented with dynamic stress-strain responses since the instantaneous strain rate is a likely contributor to potential constitutive models. PMID:25492009

  5. A one-dimensional strain-rate-dependent constitutive model for superelastic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ren, Wenjie; Li, Hongnan; Song, Gangbing

    2007-02-01

    Recently, there is increasing interest in using superelastic shape memory alloys (SMAs) in civil, mechanical and aerospace engineering, attributed to their large recoverable strain range (up to 6-8%), high damping capacity, and excellent fatigue property. In this research, an improved Graesser's model is proposed to model the strain-rate-dependent hysteretic behavior of superelastic SMA wires. Cyclic loading tests of superelastic SMA wires are first performed to determine their hysteresis properties. The effects of the strain amplitude and the loading rate on the mechanical properties are studied and formulated using the least-square method. Based on Graesser's model, an improved model is developed. The improved model divides the full loop into three parts: the loading branch, the unloading branch before the completion of the reverse transformation and the elastic unloading branch after the completion of reverse transformation, where each part adopts its respective parameters. Numerical simulations are conducted using both the original and the improved Graesser's models. Comparisons indicate that the improved Graesser's model accurately reflects the hysteresis characteristics and provides a better prediction of the SMAs' actual hysteresis behavior than the original Graesser's model at varying levels of strain and loading rate.

  6. High-strain-rate brain injury model using submerged acute rat brain tissue slices.

    PubMed

    Sarntinoranont, Malisa; Lee, Sung J; Hong, Yu; King, Michael A; Subhash, Ghatu; Kwon, Jiwoon; Moore, David F

    2012-01-20

    Blast-induced traumatic brain injury (bTBI) has received increasing attention in recent years due to ongoing military operations in Iraq and Afghanistan. Sudden impacts or explosive blasts generate stress and pressure waves that propagate at high velocities and affect sensitive neurological tissues. The immediate soft tissue response to these stress waves is difficult to assess using current in vivo imaging technologies. However, these stress waves and resultant stretching and shearing of tissue within the nano- to microsecond time scale of blast and impact are likely to cause initial injury. To visualize the effects of stress wave loading, we have developed a new ex vivo model in which living tissue slices from rat brain, attached to a ballistic gelatin substrate, were subjected to high-strain-rate loads using a polymer split Hopkinson pressure bar (PSHPB) with real-time high-speed imaging. In this study, average peak fluid pressure within the test chamber reached a value of 1584±63.3 psi. Cavitation due to a trailing underpressure wave was also observed. Time-resolved images of tissue deformation were collected and large maximum eigenstrains (0.03-0.42), minimum eigenstrains (-0.33 to -0.03), maximum shear strains (0.09-0.45), and strain rates (8.4×10³/sec) were estimated using digital image correlation (DIC). Injury at 4 and 6 h was quantified using Fluoro-Jade C. Neuronal injury due to PSHPB testing was found to be significantly greater than injury associated with the tissue slice paradigm alone. While large pressures and strains were encountered for these tests, this system provides a controllable test environment to study injury to submerged brain slices over a range of strain rate, pressure, and strain loads. PMID:21970544

  7. Modelling and Simulation of Dynamic Recrystallization (DRX) In OFHC Copper at Very High Strain Rates

    NASA Astrophysics Data System (ADS)

    Testa, Gabriel; Bonora, Nicola; Ruggiero, Andrew; Iannitti, Gianluca; Hörnqvist, Magnus; Mortazavi, Nooshin

    2015-06-01

    At high strain rates, the deformation process is essentially adiabatic and if the plastic work is large enough, dynamic recrystallization can occur. In this work, an examination on microstructure evolution in Dynamic Tensile Extrusion (DTE) test of OFHC copper, performed at 400 m/s, was carried out. EBSD investigations, along the center line of the fragment remaining in the extrusion die, showed a progressive elongation of the grains, and an accompanying development of a strong < 001 > + < 111 > dual fiber texture. Meta-dynamic discontinuous dynamic recrystallization (DRX) occurred at larger strains, and it was showed that nucleation occurred during straining. A criterion, based on the evolution of Zener-Hollomon parameter during the dynamic deformation process, was proposed. Finally, DTE test was simulated using the modified Rusinek-Klepaczko constitutive model incorporating restoring effects induced by recrystallization processes.

  8. The variation of the yield stress of Ti alloys with strain rate at high temperatures

    SciTech Connect

    Rosen, R.S.; Paddon, S.P.; Kassner, M.E.

    1999-06-01

    This study extended investigation on the elevated-temperature yield-strength dependence of beta-phase titanium alloys on strain rate and temperature. Yield stresses were found to increase substantially with increasing strain rate at elevated temperatures due to the high strain-rate sensitivity of titanium at high temperatures. Above 1000 C, the strain-rate sensitivities were found to increase substantially with increasing temperature and/or decreasing strain rate. The six alloys examined were TIMETAL 21S, Ti-15-3-, Ti-6-4, Ti-13-11-3, Beta C, and Beta III. There was particular interest in determining the strain-rate sensitivity of these alloys through strain-rate change tests above 1000 C. The yield stresses of all the titanium alloys at temperatures above 1093 C were less than 1% of their ambient temperature values. strain hardening was negligible in the alloys tested at these high temperatures. Extended tensile ductilities of 100 to 200% were observed due to the pronounced strain-rare sensitivity. The rate controlling mechanism for plasticity, based on activation energy and the strain-rate sensitivity measurements, is discussed.

  9. Molecular simulation of dislocation motion in magnesium alloys under high strain rates

    NASA Astrophysics Data System (ADS)

    Yi, Peng; Cammarata, Robert; Falk, Michael

    Dislocation motion of < a>dislocations on the basal and the prismatic planes under simple shear was studied using molecular simulations in Mg/Al and Mg/Y alloys. The critical resolved shear stress (CRSS) was calculated at temperature from 0K to 500K with solute concentrations from 0 to 7 at.%. The strain rates of 106-108 s-1 used in the simulation correspond to experimental strain rates of 101-105 s-1 based on Orowan's equation. Basal slip is dominated by the < a>edge dislocations. Solute hardening to the CRSS follows a power law, cn, where c is the solute concentration. The exponent n transitions from close to 2/3 at low temperature to close to 1 at high temperature. Temperature and strain rate effects on the CRSS are captured by Kocks model based on thermally activated events. Prismatic slip is controlled by the < a>screw dislocation that cross-slips between the basal and the prismatic planes, in a locking-unlocking pattern. Temperature affects the slip kinetics through the diffusion of the screw dislocation on the basal plane, which leads to vacancy and loop generation. Solute softening was observed for both Mg/Al and Mg/Y alloys. The softening on prismatic slip is due to the solute pinning effect on the basal plane, and Al is more effective in softening.

  10. Grain-size-independent plastic flow at ultrahigh pressures and strain rates.

    PubMed

    Park, H-S; Rudd, R E; Cavallo, R M; Barton, N R; Arsenlis, A; Belof, J L; Blobaum, K J M; El-dasher, B S; Florando, J N; Huntington, C M; Maddox, B R; May, M J; Plechaty, C; Prisbrey, S T; Remington, B A; Wallace, R J; Wehrenberg, C E; Wilson, M J; Comley, A J; Giraldez, E; Nikroo, A; Farrell, M; Randall, G; Gray, G T

    2015-02-13

    A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100  GPa) and strain rate (∼10(7)  s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25  μm sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion. PMID:25723227

  11. Material dynamics under extreme conditions of pressure and strain rate

    SciTech Connect

    Remington, B A; Allen, P; Bringa, E; Hawreliak, J; Ho, D; Lorenz, K T; Lorenzana, H; Meyers, M A; Pollaine, S W; Rosolankova, K; Sadik, B; Schneider, M S; Swift, D; Wark, J; Yaakobi, B

    2005-09-06

    Solid state experiments at extreme pressures (10-100 GPa) and strain rates ({approx}10{sup 6}-10{sup 8}s{sup -1}) are being developed on high-energy laser facilities, and offer the possibility for exploring new regimes of materials science. These extreme solid-state conditions can be accessed with either shock loading or with a quasi-isentropic ramped pressure drive. Velocity interferometer measurements establish the high pressure conditions. Constitutive models for solid-state strength under these conditions are tested by comparing 2D continuum simulations with experiments measuring perturbation growth due to the Rayleigh-Taylor instability in solid-state samples. Lattice compression, phase, and temperature are deduced from extended x-ray absorption fine structure (EXAFS) measurements, from which the shock-induced {alpha}-{omega} phase transition in Ti and the {alpha}-{var_epsilon} phase transition in Fe are inferred to occur on sub-nanosec time scales. Time resolved lattice response and phase can also be measured with dynamic x-ray diffraction measurements, where the elastic-plastic (1D-3D) lattice relaxation in shocked Cu is shown to occur promptly (< 1 ns). Subsequent large-scale molecular dynamics (MD) simulations elucidate the microscopic dynamics that underlie the 3D lattice relaxation. Deformation mechanisms are identified by examining the residual microstructure in recovered samples. The slip-twinning threshold in single-crystal Cu shocked along the [001] direction is shown to occur at shock strengths of {approx}20 GPa, whereas the corresponding transition for Cu shocked along the [134] direction occurs at higher shock strengths. This slip-twinning threshold also depends on the stacking fault energy (SFE), being lower for low SFE materials. Designs have been developed for achieving much higher pressures, P > 1000 GPa, in the solid state on the National Ignition Facility (NIF) laser.

  12. The high-strain-rate and spallation response of tantalum, Ta-10W, and T-111

    SciTech Connect

    Gray, G.T. III; Rollett, A.D.

    1991-01-01

    The compressive true stress-true response of tantalum, Ta-10W, and T-111 were found to depend on the applied strain rate, in the range 0.001 to 7000 s{sup {minus}1}. The strain-rate sensitivities of the flow stress of tantalum, Ta-10W, and T-111 a 1% strain are 0.062, 0.031, and 0.024, respectively. The rates of strain hardening in Tantalum, Ta-10W, and T-111 are seen to exhibit differing behavior with increasing strain rate. The calculated average strain-hardening rate in tantalum, {Theta}, for the quasi-static (0.001 s{sup {minus}1}) data at 25{degrees}C is 2080 MPa/unit strain. The hardening rate at 3000s{sup {minus}1} at 25{degrees}C decreases to 846 MPa/unit strain. Normalizing the work hardening rate in tantalum with the Taylor Factor for a random polycrystal, ({Theta} / (3.07){sup 2}), yields work hardening rates of {mu}/276 at quasi-static strain rates and {mu}/680 at high-rates, assuming a shear modulus of 61 GPa for tantalum at room temperature. While the work hardening of all the tantalum-based materials are similar at quasi-static rates, alloying results in a small reduction in hardening rate. With increasing strain rate, the work hardening rate in tantalum decreases by approximately a factor of two compared to the alloys. Alloying tantalum with substitutional or interstitial elements is thought to result in increased edge dislocation storage and screw dislocation cross-slip due to interactions with the alloying elements at high strain rates. 28 refs.

  13. The Strength of Plastic Bonded Explosives as a Function of Pressure, Strain Rate and Temperature

    NASA Astrophysics Data System (ADS)

    Wiegand, Donald

    2005-07-01

    Measurements as a function of strain rate and temperature have indicated the importance of the polymer binder in determining the strength of plastic bonded explosives at ambient conditions and low strain rate. Recent measurements of strength as a function of pressure further support this conclusion. As pressure or strain rate are increased or temperature is decreased the strength increases as does the strength of many polymers. In addition, at relatively large values of pressure or strain rate and/or relatively low values of temperature the strength is less sensitive to changes of these quantities. These trends suggest that as the polymer binder becomes stronger with increasing pressure or strain rate or with decreasing temperature, the strength of the explosive component of these composites becomes more important in determining the strength of the composite. Results will be presented for plastic bonded explosives, e.g., LX-14, that demonstrate these trends as a function of pressure, strain rate and temperature.

  14. High-strain-rate characterization of TPOs and graphite/epoxy and graphite/peek composites

    NASA Astrophysics Data System (ADS)

    Brar, N. S.; Simha, H.; Pratap, A.

    2001-06-01

    Tensile and compressive stress-strain response of two types of TPOs and graphite-epoxy composites are investigated at strain rates in the range 0.001/s-1000/s. Specimen strain in the low strain rate regime 0.001-100/s was determined using an optical extensometer in conjunction with standard MTS machine. Tensile test at high strain rate were performed on newly developed tensile version of All- Polymeric Split Hopkinson Bar. Tensile TPO specimens in the dog-bone configuration are placed in specially designed grips fabricated from nylatron. Compression response of TPO specimens at high strain rate is determined using 25.4-mm diameter aluminum bars. Peak compressive stress increases from 10 MPa at a strain rate of 100/s to 35 MPa at a strain rate of 1000/s. Preliminary data on high strain rate tensile response of graphite-epoxy and graphite-peek composites are presented. These data are intended to develop a material model incorporating strain rate sensitivity for TPOs and to be used in car crash simulations.

  15. Sequential Effects in Essay Ratings

    ERIC Educational Resources Information Center

    Attali, Yigal

    2011-01-01

    Contrary to previous research on sequential ratings of student performance, this study found that professional essay raters of a large-scale standardized testing program produced ratings that were drawn toward previous ratings, creating an assimilation effect. Longer intervals between the two adjacent ratings and higher degree of agreement with…

  16. Application of a nanosecond laser pulse to evaluate dynamic hardness under ultra-high strain rate

    NASA Astrophysics Data System (ADS)

    Radziejewska, Joanna

    2016-04-01

    The paper presents results of experimental tests of plastic metals deformation generated by a shock wave induced by laser pulse. Tests were carried out on the Nd:YAG laser with a wavelength of 1064 nm and the laser pulse of 10 ns duration. The shock wave generate by the laser pulse was used to induced local plastic deformation of the material surface. The study examined the possibility of application the process to develop a new method of measuring the dynamic hardness of materials under ultra-high strain rate. It has been shown that the shock wave induced by the laser pulse with an energy of 0.35-1.22 J causes a repeatable plastic deformation of surface of commercially available metals and alloys without thermal effects on the surfaces. Based on the knowledge of an imprint geometry, it is possible to evaluate the dynamic hardness of materials at strain rate in the range of 107 s-1.

  17. Electromagnetic Radiation From The High Strain Rate Fracture Of Mild Carbon-Steel

    NASA Astrophysics Data System (ADS)

    Brown, William; Calahan, Kenneth

    2005-07-01

    We present results of an experimental study of the back surface emission of electromagnetic radiation resulting from the impact fracture of mild carbon-steel at strain rates of approximates 10^6/s. We obtained time-domain measurements of two perpendicular components of the electric displacement vector at distances of up to 20 m from the targets. Spectral analysis of these data provides results that are consistent with theoretical predictions of the strain-rate dependence of the Misra Effect. We provide evidence that this phenomenon, that has only been reported previously during quasi-static measurements, is also present during explosive and impact fracture conditions. This work supported by the Defense Threat Reduction Agency under contract DTRA01-01-C-0033.

  18. Compressive properties of a closed-cell aluminum foam as a function of strain-rate and temperature

    SciTech Connect

    Cady, Carl M; Gray, Ill, George T; Liu, Cheng; Lovato, Manuel L; Mukai, T

    2008-01-01

    The compressive constitutive behavior of a closed-cell aluminum foam (ALPORAS) manufactured by Shinko Wire Co. in Japan was evaluated under static and dynamic loading conditions as a function of temperature. High-strain-rate tests (1000-2000 s{sup -1}) were conducted using a split-Hopkinson pressure bar (SHPB). Quasi-static and intermediate-strain-rate tests were conducted on a hydraulic load frame. A small but discernable change in the flow stress behavior as a function of strain rate was measured. The deformation behavior of the Al-foam was however found to be strongly temperature dependent under both quasi-static and dynamic loading. Localized deformation and stress state instability during testing of metal foams is discussed in detail since the mechanical behavior over the entire range of strain rates indicates non-uniform deformation. Additionally, investigation of the effect of residual stresses created during manufacturing on the mechanical behavior was investigated.

  19. Maximum Principal Strain and Strain Rate Associated with Concussion Diagnosis Correlates with Changes in Corpus Callosum White Matter Indices

    PubMed Central

    MCALLISTER, THOMAS W.; FORD, JAMES C.; JI, SONGBAI; BECKWITH, JONATHAN G.; FLASHMAN, LAURA A.; PAULSEN, KEITH; GREENWALD, RICHARD M.

    2014-01-01

    On-field monitoring of head impacts, combined with finite element (FE) biomechanical simulation, allow for predictions of regional strain associated with a diagnosed concussion. However, attempts to correlate these predictions with in vivo measures of brain injury have not been published. This article reports an approach to and preliminary results from the correlation of subject-specific FE model-predicted regions of high strain associated with diagnosed concussion and diffusion tensor imaging to assess changes in white matter integrity in the corpus callosum (CC). Ten football and ice hockey players who wore instrumented helmets to record head impacts sustained during play completed high field magnetic resonance imaging preseason and within 10 days of a diagnosed concussion. The Dartmouth Subject-Specific FE Head model was used to generate regional predictions of strain and strain rate following each impact associated with concussion. Maps of change in fractional anisotropy (FA) and median diffusivity (MD) were generated for the CC of each athlete to correlate strain with change in FA and MD. Mean and maximum strain rate correlated with change in FA (Spearman ρ = 0.77, p = 0.01; 0.70, p = 0.031), and there was a similar trend for mean and maximum strain (0.56, p = 0.10; 0.6, p = 0.07), as well as for maximum strain with change in MD (−0.63, p = 0.07). Change in MD correlated with injury-to-imaging interval (ρ = −0.80, p = 0.006) but change in FA did not (ρ = 0.18, p = 0.62). These results provide preliminary confirmation that model-predicted strain and strain rate in the CC correlate with changes in indices of white matter integrity. PMID:21994062

  20. Myocardial Strain and Strain Rate in Kawasaki Disease: Range, Recovery, and Relationship to Systemic Inflammation/Coronary Artery Dilation

    PubMed Central

    Frank, Benjamin; Davidson, Jesse; Tong, Suhong; Martin, Blake; Heizer, Heather; Anderson, Marsha S; Glode, Mary P; Dominguez, Samuel R; Jone, Pei-Ni

    2016-01-01

    Background Kawasaki Disease (KD), a systemic vasculitis of medium sized vessels, is the most common cause of acquired heart disease among children in the developed world. Some KD patients demonstrate echocardiographic evidence of depressed myocardial mechanics. However, the incidence, etiology, and reversibility of abnormal mechanics in KD patients remain undefined. Methods and results We retrospectively studied 41 KD patients and measured myocardial strain and strain rate by velocity vector imaging from pre-treatment and convalescent echocardiograms. Pre-treatment procalcitonin, C-reactive protein (CRP), and coronary artery z-scores were obtained in all patients and compared between the groups with preserved versus depressed acute phase mechanics. The change in mechanics between the acute and convalescent phases was also assessed. Patients with initially low longitudinal strain improved by the convalescent period (mean difference - 4.0%; p<0.005) with the greatest improvement occurring in patients with the lowest initial strain (−7.3%; p<0.05). Patients with higher initial strain did not change significantly by the convalescent period. Patients with lower longitudinal and circumferential strain demonstrated higher median procalcitonin levels (1.2 vs. 0.3 ng/mL; p<0.05 and 1.8 vs. 0.4 ng/mL; p<0.05 respectively) and a trend towards higher CRP, but no difference in coronary artery z-scores. Strain rate was not associated with inflammatory markers or coronary artery z-scores. Conclusions The range of strain found in our cohort was large. Improvement in mean strain was driven primarily by patients with lower initial strain. Lower strain was associated with increased markers of systemic inflammation, but not proximal coronary artery changes. PMID:27182455

  1. Transformation-rate maxima during lath martensite formation: plastic vs. elastic shape strain accommodation

    NASA Astrophysics Data System (ADS)

    Loewy, Sarah; Rheingans, Bastian; Mittemeijer, Eric J.

    2016-05-01

    Recently, a modulated formation behaviour of lath martensite in Fe-Ni(-based) alloys was observed, exhibiting a series of transformation-rate maxima. This peculiar transformation behaviour was explained on the basis of the hierarchical microstructure of lath martensite, minimising the net shape strain associated with martensite formation, by a block-by-block formation of martensite packages occurring simultaneously in all packages. In the present work, the martensitic transformation upon slow cooling of two Fe-Ni alloys, containing 22 and 25 at.% of Ni, respectively, was investigated by high-resolution dilatometry with the aim of identifying the influence of alloy composition on the modulated transformation behaviour. The differences observed for the two alloys, a more rapid sequence of the transformation-rate maxima and a narrower temperature range in case of Fe-25 at.% Ni, can be explained consistently as a consequence of the lower transformation temperatures in Fe-25 at.% Ni, highlighting the role of temporary accommodation of the shape strain during formation of the lath martensite microstructure: the depression of the transformation toward lower temperatures leads to a higher strength of the austenite, hence resulting in a more elastic (less plastic) temporary accommodation of the shape strain upon block formation and thereby in a more effective mutual compensation of the shape strain by neighbouring blocks. A kinetic model on the basis of energy-change considerations is presented which is able to describe the observed modulated transformation behaviour.

  2. Background rates of swarm earthquakes that are synchronized with volumetric strain changes

    NASA Astrophysics Data System (ADS)

    Kumazawa, Takao; Ogata, Yosihiko; Kimura, Kazuhiro; Maeda, Kenji; Kobayashi, Akio

    2016-05-01

    Off the east coast of the Izu Peninsula in Japan, there is a submarine volcanic region where earthquake swarms occur caused by magma intrusions. We investigated the background seismicity rates of the swarm activity by removing the triggering effect of aftershocks. We found that such background rate changes coincide with the changes of exponentially weighted averages of volumetric strain increments at the Higashi-Izu station. We further found that such a relationship consistently depends on the distance between the strainmeter station and the location of the swarm onset. The quantitative relationships revealed here may be used to monitor magma intrusions that drive the stress changes.

  3. Experimental determination of the strain and strain rate dependence of the fraction of plastic work converted to heat

    SciTech Connect

    Hodowany, J.; Ravichandran, G.; Rosakis, A.J.

    1995-12-31

    When metals are deformed dynamically, there is insufficient time for heat generated by plastic deformation to be conducted to the surroundings. Thus, the conversion of plastic work into heat at high strain rates can result in significant temperature increases, which contribute to thermal softening, thereby altering a material`s constitutive response. The fraction of plastic work converted to heat represents the strength of the coupling term between temperature and mechanical fields in thermalmechanical problems involving plastic flow. The experimental determination of this constitutive function is important since it is an integral part of the formulation of coupled thermomechanical field equations. This fraction also plays an important role in failure mode characterization for metals deforming at high rates of strain, such as the formation of adiabatic shear bands. This investigation systematically examines the rate of conversion of plastic work to heat in metals under dynamic loading. Temperature was measured in-situ using an array of high speed In-Sb infrared detectors. The plastic work rate and the heat generation rate were determined directly from experimental data. The ratio of heat generation rate to plastic work rate, i.e., the relative rate at which plastic work is converted to heat, was calculated from this data. The functional dependence of this quantity upon strain and strain rate is reported for 1020 steel, 2024 aluminum, Ti-6Al-4V titanium alloy, and C300 maraging steel.

  4. The role of reactant unmixedness, strain rate, and length scale on premixed combustor performance

    SciTech Connect

    Samuelsen, S.; LaRue, J.; Vilayanur, S.; Guillaume, D.

    1995-12-31

    Lean premixed combustion provides a means to reduce pollutant formation and increase combustion efficiency. However, fuel-air mixing is rarely uniform in space and time. This nonuniformity in concentration will lead to relative increases in pollutant formation and decreases in combustion efficiency. The nonuniformity of the concentration at the exit of the premixer has been defined by Lyons (1981) as the ``unmixedness.`` Although turbulence properties such as length scales and strain rate are known to effect unmixedness, the exact relationship is unknown. Evaluating this relationship and the effect of unmixedness in premixed combustion on pollutant formation and combustion efficiency are an important part of the overall goal of US Department of Energy`s Advanced Turbine System (ATS) program and are among the goals of the program described herein. The information obtained from ATS is intended to help to develop and commercialize gas turbines. The contributions to the program which the University of California (Irvine) Combustion Lab (UCICL) will provide are: (1) establish the relationship of inlet unmixedness, length scales, and mean strain rate to performance, (2) determine the optimal levels of inlet unmixedness, length scales, and mean strain rates to maximize combustor performance, and (3) identify efficient premixing methods for achieving the necessary inlet conditions. The program during this reporting period is focused on developing a means to measure and qualify different degrees of temporal and spatial unmixedness. Laser diagnostic methods for planer unmixedness measurements are being developed and preliminary results are presented herein. These results will be used to (1), aid in the design of experimental premixers, and (2), determine the unmixedness which will be correlated with the emissions of the combustor. This measure of unmixedness coupled with length scale, strain rate and intensity information is required to attain the UCI goals.

  5. Strain Rate Dependency of Bronze Metal Matrix Composite Mechanical Properties as a Function of Casting Technique

    NASA Astrophysics Data System (ADS)

    Brown, Lloyd; Joyce, Peter; Radice, Joshua; Gregorian, Dro; Gobble, Michael

    2012-07-01

    Strain rate dependency of mechanical properties of tungsten carbide (WC)-filled bronze castings fabricated by centrifugal and sedimentation-casting techniques are examined, in this study. Both casting techniques are an attempt to produce a functionally graded material with high wear resistance at a chosen surface. Potential applications of such materials include shaft bushings, electrical contact surfaces, and brake rotors. Knowledge of strain rate-dependent mechanical properties is recommended for predicting component response due to dynamic loading or impact events. A brief overview of the casting techniques for the materials considered in this study is followed by an explanation of the test matrix and testing techniques. Hardness testing, density measurement, and determination of the volume fraction of WC particles are performed throughout the castings using both image analysis and optical microscopy. The effects of particle filling on mechanical properties are first evaluated through a microhardness survey of the castings. The volume fraction of WC particles is validated using a thorough density survey and a rule-of-mixtures model. Split Hopkinson Pressure Bar (SHPB) testing of various volume fraction specimens is conducted to determine strain dependence of mechanical properties and to compare the process-property relationships between the two casting techniques. The baseline performances of C95400 bronze are provided for comparison. The results show that the addition of WC particles improves microhardness significantly for the centrifugally cast specimens, and, to a lesser extent, in the sedimentation-cast specimens, largely because the WC particles are more concentrated as a result of the centrifugal-casting process. Both metal matrix composites (MMCs) demonstrate strain rate dependency, with sedimentation casting having a greater, but variable, effects on material response. This difference is attributed to legacy effects from the casting process, namely

  6. Dynamic Mechanical Response of Biomedical 316L Stainless Steel as Function of Strain Rate and Temperature

    PubMed Central

    Lee, Woei-Shyan; Chen, Tao-Hsing; Lin, Chi-Feng; Luo, Wen-Zhen

    2011-01-01

    A split Hopkinson pressure bar is used to investigate the dynamic mechanical properties of biomedical 316L stainless steel under strain rates ranging from 1 × 103 s−1 to 5 × 103 s−1 and temperatures between 25°C and 800°C. The results indicate that the flow stress, work-hardening rate, strain rate sensitivity, and thermal activation energy are all significantly dependent on the strain, strain rate, and temperature. For a constant temperature, the flow stress, work-hardening rate, and strain rate sensitivity increase with increasing strain rate, while the thermal activation energy decreases. Catastrophic failure occurs only for the specimens deformed at a strain rate of 5 × 103 s−1 and temperatures of 25°C or 200°C. Scanning electron microscopy observations show that the specimens fracture in a ductile shear mode. Optical microscopy analyses reveal that the number of slip bands within the grains increases with an increasing strain rate. Moreover, a dynamic recrystallisation of the deformed microstructure is observed in the specimens tested at the highest temperature of 800°C. PMID:22216015

  7. High pressure and high strain rate behavior of cementitious materials: Experiments and elastic/viscoplastic modeling

    NASA Astrophysics Data System (ADS)

    Schmidt, Martin Jeffrey

    The goal of this dissertation was to experimentally investigate the high rate and high pressure mechanical response of a mortar and concrete mix and use or develop a constitutive model able to describe the observed behavior. Triaxial compression tests at a strain rate of 10-6/ s, and for confining pressures ranging from 0 to 0.5 GPa were conducted. Dynamic tests in the range 60/s to about 160/s under both unconfined and confined conditions were conducted using the University of Florida's 7.62 cin diameter split Hopkinson pressure bar (SHPB). The data obtained in such tests allowed the quantification of the combined effects of confining pressure and strain rate on the deformation and strength of the materials. For mortar, dilatancy has been observed at high levels of the principal stress difference for both dynamic and quasi-static conditions. The unconfined dynamic compressive strengths are approximately double those of the quasi-static compressive strengths. Most of the confined SHPB mortar specimens showed very little damage post-test other than some chipping around the top edges, most likely due to localized tensile effects. For the concrete selected for this research. WES5000, quasi-static hydrostatic tests conducted up to a pressure of 0.5 GPa allowed for the accurate determination of the dependence of the bulk modulus on pressure and the correct estimation of the material's compaction properties when subjected to pressures in the range encountered in dynamic events. For confined quasi-static conditions, the material exhibited hardening behavior up to failure. Both compressibility and dilatancy regimes of the volumetric behavior were observed, the dilatancy threshold being highly dependent on the level of confinement. The unconfined dynamic strength is as high as 1.5 times the quasi-static strength, the material generally exhibiting far more cracking under similar loading conditions than was observed in mortar. The confined dynamic tests showed similar stress-strain

  8. Modelling the rheology of MgO under Earth's mantle pressure, temperature and strain rates.

    PubMed

    Cordier, Patrick; Amodeo, Jonathan; Carrez, Philippe

    2012-01-12

    Plate tectonics, which shapes the surface of Earth, is the result of solid-state convection in Earth's mantle over billions of years. Simply driven by buoyancy forces, mantle convection is complicated by the nature of the convecting materials, which are not fluids but polycrystalline rocks. Crystalline materials can flow as the result of the motion of defects--point defects, dislocations, grain boundaries and so on. Reproducing in the laboratory the extreme deformation conditions of the mantle is extremely challenging. In particular, experimental strain rates are at least six orders of magnitude larger than in nature. Here we show that the rheology of MgO at the pressure, temperature and strain rates of the mantle is accessible by multiscale numerical modelling starting from first principles and with no adjustable parameters. Our results demonstrate that extremely low strain rates counteract the influence of pressure. In the mantle, MgO deforms in the athermal regime and this leads to a very weak phase. It is only in the lowermost lower mantle that the pressure effect could dominate and that, under the influence of lattice friction, a viscosity of the order of 10(21)-10(22) pascal seconds can be defined for MgO. PMID:22237109

  9. Modeling Anisotropic Plasticity: 3D Eulerian Hydrocode Simulations of High Strain Rate Deformation Processes

    NASA Astrophysics Data System (ADS)

    Burkett, Michael; Clancy, Sean; Maudlin, Paul; Holian, Kathleen

    2001-06-01

    : Previously developed constitutive models and solution algorithms for anisotropic elastoplastic material strength has been implemented in the three-dimensional CONEJO hydrodynamics code. CONEJO is an explicit, Eulerian continuum mechanics code that is utilized to predict formation processes associated with material deformation at elevated strain-rates and is a code development project under the Accelerated Strategic Computing Initiative (ASCI) program. Some special features of CONEJO include a high-order advection algorithm, a material interface tracking scheme, and van Leer monotonic advection-limiting. The anisotropic constitutive modeling is posed in an unrotated material frame using the theorem of polar decomposition to describe rigid body rotation. An Euler-Rodrigues description is used to quantify the rigid body rotations. Continuous quadratic yield functions fitted from polycrystal simulations for a metallic hexagonal-close-packed structure were utilized. Associative flow formulations incorporating these yield functions were solved using a geometric normal return method. Simple rectangular shear problems, "R-value" problems, and Taylor cylinder impact test data were utilized to verify and validate the implementation of the anisotropic model. A "stretching rod" problem (involving large strain and strain-rate deformation) was selected to investigate the effects of material anisotropy for this deformation process. The rod necking rate and topology was compared for CONEJO simulations using several isotropic and anisotropic descriptions that utilized the Mechanical Threshold Stress (MTS) model.

  10. Tensile Strength of Carbon Nanotubes Under Realistic Temperature and Strain Rate

    NASA Technical Reports Server (NTRS)

    Wei, Chen-Yu; Cho, Kyeong-Jae; Srivastava, Deepak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Strain rate and temperature dependence of the tensile strength of single-wall carbon nanotubes has been investigated with molecular dynamics simulations. The tensile failure or yield strain is found to be strongly dependent on the temperature and strain rate. A transition state theory based predictive model is developed for the tensile failure of nanotubes. Based on the parameters fitted from high-strain rate and temperature dependent molecular dynamics simulations, the model predicts that a defect free micrometer long single-wall nanotube at 300 K, stretched with a strain rate of 1%/hour, fails at about 9 plus or minus 1% tensile strain. This is in good agreement with recent experimental findings.

  11. Experimental study of vorticity-strain rate interaction in turbulent partially-premixed jet flames using tomographic particle image velocimetry

    DOE PAGESBeta

    Coriton, Bruno; Frank, Jonathan H.

    2016-02-16

    In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet withmore » Reynolds number of approximately 13,000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s2 tangential to the shear layer. The extensive and compressive principal strain rates, s1 and s3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. As a result, the production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s1¯-s2¯ plane and orthogonal to s3¯.« less

  12. Experimental study of vorticity-strain rate interaction in turbulent partially premixed jet flames using tomographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Coriton, Bruno; Frank, Jonathan H.

    2016-02-01

    In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet with Reynolds number of approximately 13 000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s2 tangential to the shear layer. The extensive and compressive principal strain rates, s1 and s3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. The production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s1 ¯-s2 ¯ plane and orthogonal to s3 ¯.

  13. A comparative study of high strain rate behavior of three martensitic steels

    NASA Astrophysics Data System (ADS)

    Last, H. R.; Garrett, R. K.; Rajendran, A. M.

    1996-05-01

    This paper describes the high strain rate response of HY100, HY130 and AF1410 steels determined from the split Hopkinson bar and quasi-static experiments under room and high temperatures. Differences in the macroscopic high strain rate response of these steels were observed. Metallurgical fracture surface analysis provided insight into the microstructural response and the observed macroscopic behavior of each steel.

  14. Digital image correlation analysis of the deformation behavior of Pb-free solders at intermediate strain rates

    NASA Astrophysics Data System (ADS)

    Yazzie, K. E.; Williams, J. J.; Kingsbury, D.; Peralta, P.; Jiang, H.; Chawla, N.

    2010-07-01

    Digital image correlation (DIC) is a powerful tool for quantifying local stresses and strains. The demand for environmentally benign Pb-free solders and the push toward smaller portable electronics will make it more likely for solder interconnects to en-counter mechanical shock through dropping or mishandling. Thus, quantifying the strain rate behavior of Pb-free solders from the quasi-static to the shock regime is essential for developing reliable numerical models of the mechanical shock behavior. In this paper we report on the use of DIC to measure the local strain and strain rate occurring in the neck of Sn-3.5Ag-0.7Cu specimens, at the onset of necking. Tensile tests were conducted in the range 10-3s-1-30 s-1. A parametric study was conducted to identify the optimum DIC parameters for the experimental setup. The effect of microstructure and applied strain rate on the local values of strain and strain rate is discussed

  15. Dynamic high-temperature characterization of an iridium alloy in compression at high strain rates.

    SciTech Connect

    Song, Bo; Nelson, Kevin; Lipinski, Ronald J.; Bignell, John L.; Ulrich, G. B.; George, E. P.

    2014-06-01

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-temperature high-strain-rate performance are needed for understanding high-speed impacts in severe elevated-temperature environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain-rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. Current high-temperature Kolsky compression bar techniques are not capable of obtaining satisfactory high-temperature high-strain-rate stress-strain response of thin iridium specimens investigated in this study. We analyzed the difficulties encountered in high-temperature Kolsky compression bar testing of thin iridium alloy specimens. Appropriate modifications were made to the current high-temperature Kolsky compression bar technique to obtain reliable compressive stress-strain response of an iridium alloy at high strain rates (300 10000 s-1) and temperatures (750ÀC and 1030ÀC). Uncertainties in such high-temperature high-strain-rate experiments on thin iridium specimens were also analyzed. The compressive stress-strain response of the iridium alloy showed significant sensitivity to strain rate and temperature.

  16. Vortex induced strain effects in anisotropic superconductors

    SciTech Connect

    Miranovic, P.; Dobrosavljevic-Grujic, L.; Kogan, V.G.

    1996-12-31

    Strain in a superconductor, produced by the normal vortex core, can affect both static and dynamic properties of vortices. It causes an additional vortex-vortex interaction which is long-ranged ({approximately} 1/r{sup 2}) as compared with finite but much stronger London interaction in the fields far below H{sub c2}. The energy of this magneto-elastic interaction is calculated within London model. The role of strain effects in forming vortex lattice structure is demonstrated for YBa{sub 2}Cu{sub 3}O{sub 7}.

  17. Exciton effects in strained armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Jia, Yonglei; Liu, Junlin

    2016-01-01

    The exciton effects in 1-nm-wide armchair graphene nanoribbons (AGNRs) under the uniaxial strain were studied within the nonorthogonal tight-binding (TB) model, supplemented by the long-range Coulomb interactions. The obtained results show that both the excitation energy and exciton binding energy are modulated by the uniaxial strain. The variation of these energies depends on the ribbon family. In addition, the results show that the variation of the exciton binding energy is much weaker than the variation of excitation energy. Our results provide new guidance for the design of optomechanical systems based on graphene nanoribbons.

  18. Mechanical deformation model of the western United States instantaneous strain-rate field

    USGS Publications Warehouse

    Pollitz, F.F.; Vergnolle, M.

    2006-01-01

    system is systematically underpredicted by models which account only for relaxation from known large earthquakes. This strongly suggests that in addition to viscoelastic-cycle effects, steady deep slip in the lower lithosphere is needed to explain the observed strain-rate field. ?? 2006 The Authors Journal compilation ?? 2006 RAS.

  19. Influence of strain rate and temperature on the mechanical behavior of beryllium

    SciTech Connect

    Blumenthal, W. R.; Abeln, S. P.; Cannon, D. D.; Gray, G. T. III; Carpenter, R. W.

    1998-07-10

    The compressive stress-strain response of three grades of beryllium were studied as a function of strain rate and temperature. Grades S200D, E, and F represent a historical perspective of beryllium processing from the 1960's through 1990's technology. The purpose of this study was to measure the mechanical behavior of beryllium over a range of deformation conditions for constitutive model development and to obtain microstructural evidence for deformation mechanisms. The compressive stress-strain response was found to be independent of grade and strongly dependent on the applied strain rate between 0.001 and 8000 s{sup -1}. The strain-hardening response displayed a moderate temperature dependence between 77 deg. K and 873 deg. K. Microstructural examination of SHPB specimens revealed that twinning was extensive at strains above 7%. A SHPB sample deformed to over 20% strain contained both twinning and grain boundary microcracking.

  20. High strain rate characterization of low-density low-strength materials

    NASA Astrophysics Data System (ADS)

    Sawas, O.; Brar, N. S.; Brockman, R. A.

    1998-07-01

    The Conventional Split Hopkinson Bar (CSHB) is a reliable experimental technique for measuring high strain rate properties of high-strength materials. Attempts to use the CSHB for similar measurements in more compliant materials, such as plastics and foams, are limited by the maximum achievable strain and high noise-to-signal ratios. This work introduces an all-polymeric split Hopkinson bar (APSHB) experiment, which overcomes these limitations. The proposed method uses polymeric pressure bars to achieve a closer impedance match between the pressure bars and the specimen materials, thus providing both low noise-to-signal ratio data and a longer input pulse for higher maximum strain. Data reduction procedures for APSHB that account for the viscoelastic behavior of the pressure bars are presented. Comparing the high strain rate response of 1100 Al obtained from CSHB and APSHB validates these procedures. Stress-strain data at strain rates of 500-2000/s for polycarbonate, polyurethane foam, and styrofoam are presented.

  1. High strain rate properties of off-axis composite laminates, part 2

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.

    1991-01-01

    Unidirectional off-axis graphite/epoxy and graphite/S-glass/epoxy laminates were characterized in uniaxial tension at strain rates ranging from quasi-static to over 500 s(sup -1). Laminate ring specimens were loaded by internal pressure with the tensile stress at 22.5, 30, and 45 degrees relative to the fiber direction. Results were presented in the form of stress-strain curves to failure. Properties determined included moduli, Poisson's ratios, strength, and ultimate strain. In all three laminates of both materials the modulus and strength increase sharply with strain rate, reaching values roughly 100, 150, and 200 percent higher than corresponding static values for the 22.5(sub 8), 30(sub 8), and 45(sub 8) degree laminates, respectively. In the case of ultimate strain no definite trends could be established, but the maximum deviation from the average of any value for any strain rate was less than 18 percent.

  2. Fracture and strain rate behavior of airplane fuselage materials under blast loading

    NASA Astrophysics Data System (ADS)

    Mediavilla Varas, J.; Soetens, F.; Kroon, E.; van Aanhold, J. E.; van der Meulen, O. R.; Sagimon, M.

    2010-06-01

    The dynamic behavior of three commonly used airplane fuselage materials is investigated, namely of Al2024-T3, Glare-3 and CFRP. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The results showed no strain rate effect on Al2024-T3 and an increase in the failure strain and failure strength of Glare-3, but no stiffening. The LSM results on CFRP were inconclusive. Two types of fracture tests were carried out to determine the dynamic crack propagation behavior of these materials, using prestressed plates and pressurized barrels, both with the help of explosives. The prestressed plates proved to be not suitable, whereas the barrel tests were quite reliable, allowing to measure the crack speeds. The tougher, more ductile materials, Al2024-T3 and Glare-3, showed lower crack speeds than CFRP, which failed in a brittle manner.

  3. Modeling anisotropy plasticity : 3D Eulerian hydrocode simulations of high strain rate deformation processes.

    SciTech Connect

    Burkett, M. W.; Clancy, S. P.; Maudlin, P. J.; Holian, K. S.

    2001-01-01

    Previously developed constitutive models and solution algorithms for anisotropic elastoplastic material strength have been implemented in the three-dimensional Conejo hydrodynamics code. The anisotropic constitutive modeling is posed in an unrotated material frame of reference using the theorem of polar decomposition to obtain rigid body rotation. Continuous quadratic yield functions fitted from polycrystal simulations for a metallic hexagonal-close-packed structure were utilized. Simple rectangular shear problems, R-value problems, and Taylor cylinder impact data were used to verify and validate the implementation of the anisotropic model. A stretching rod problem (involving large strain and high strain-rate deformation) was selected to investigate the effects of material anisotropy. Conejo simulations of rod topology were compared for two anisotropic cases.

  4. Modeling Anisotropic Plasticity: 3D Eulerian Hydrocode Simulations of High Strain Rate Deformation Processes

    NASA Astrophysics Data System (ADS)

    Burkett, Michael W.; Clancy, Sean P.; Maudlin, Paul J.; Holian, Kathleen S.

    2002-07-01

    Previously developed constitutive models and solution algorithms for anisotropic elastoplastic material strength have been implemented in the three-dimensional Conejo hydrodynamics code. The anisotropic constitutive modeling is posed in an unrotated material frame of reference using the theorem of polar decomposition to obtain rigid body rotation. Continuous quadratic yield functions fitted from polycrystal simulations for a metallic hexagonal-close-packed structure were utilized. Simple rectangular shear problems, R-Value problems, and Taylor cylinder impact data were used to verify and validate the implementation of the anisotropic model. A stretching rod problem (involving large strain and high strain-rate deformation) was selected to investigate the effects of material anisotropy. Conejo simulations of rod topology were compared for two anisotropic cases.

  5. Constitutive equation for hardened SKD11 steel at high temperature and high strain rate using the SHPB technique

    NASA Astrophysics Data System (ADS)

    Tang, D. W.; Wang, C. Y.; Hu, Y. N.; Song, Y. X.

    2010-03-01

    In this present work, dynamic tests have been performed on hardened SKD11 steel (62 Rockwell C hardness) specimens by means of a high temperature split Hopkinson pressure bar (SHPB) test system. Effects of temperature as well as those of strain and strain rate for the hardened steel are taken into account by using two ellipsoidal radiant heating reflectors with two halogen lamps and magnetic valve. The result obtained at high stain rates were compared with those at low strain rates under the different temperature. It was seen that the flow stress curves are found to include a work hardening region and a work softening region and the mechanical behavior of the hardened steel is highly sensitive to both the strain rate and the temperature. To determine the true flow stress- true strain, temperature relationship, specimens are tested from room temperature to 1073K at a strain rate form 0.01 s-1 to 104 s-1: The parameters for a Johnson-Cook constitutive equation and a modified Johnson-Cook constitutive equation are determined from the test results by fitting the data from both quasi-static compression and high temperature-dynamic compression tests. The modified Johnson-Cook constitutive equation is more suitable for expressing the dynamic behavior of the hardened SKD11 steel above the vicinity of the recrystallization temperature.

  6. Constitutive equation for hardened SKD11 steel at high temperature and high strain rate using the SHPB technique

    NASA Astrophysics Data System (ADS)

    Tang, D. W.; Wang, C. Y.; Hu, Y. N.; Song, Y. X.

    2009-12-01

    In this present work, dynamic tests have been performed on hardened SKD11 steel (62 Rockwell C hardness) specimens by means of a high temperature split Hopkinson pressure bar (SHPB) test system. Effects of temperature as well as those of strain and strain rate for the hardened steel are taken into account by using two ellipsoidal radiant heating reflectors with two halogen lamps and magnetic valve. The result obtained at high stain rates were compared with those at low strain rates under the different temperature. It was seen that the flow stress curves are found to include a work hardening region and a work softening region and the mechanical behavior of the hardened steel is highly sensitive to both the strain rate and the temperature. To determine the true flow stress- true strain, temperature relationship, specimens are tested from room temperature to 1073K at a strain rate form 0.01 s-1 to 104 s-1: The parameters for a Johnson-Cook constitutive equation and a modified Johnson-Cook constitutive equation are determined from the test results by fitting the data from both quasi-static compression and high temperature-dynamic compression tests. The modified Johnson-Cook constitutive equation is more suitable for expressing the dynamic behavior of the hardened SKD11 steel above the vicinity of the recrystallization temperature.

  7. Strain Rate Dependence of Compressive Yield and Relaxation in DGEBA Epoxies

    NASA Astrophysics Data System (ADS)

    Arechederra, Gabriel K.; Reprogle, Riley C.; Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.; Chambers, Robert S.

    2015-03-01

    The mechanical response in uniaxial compression of two diglycidyl ether of bisphenol-A epoxies were studied. These were 828DEA (Epon 828 cured with diethanolamine (DEA)) and 828T403 (Epon 828 cured with Jeffamine T-403). Two types of uniaxial compression tests were performed: A) constant strain rate compression and B) constant strain rate compression followed by a constant strain relaxation. The peak (yield) stress was analyzed as a function of strain rate from Eyring theory for activation volume. Runs at different temperatures permitted the construction of a mastercurve, and the resulting shift factors resulted in an activation energy. Strain and hold tests were performed for a low strain rate where a peak stress was lacking and for a higher strain rate where the peak stress was apparent. Relaxation from strains at different places along the stress-strain curve was tracked and compared. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Tensile behaviour of geopolymer-based materials under medium and high strain rates

    NASA Astrophysics Data System (ADS)

    Menna, Costantino; Asprone, Domenico; Forni, Daniele; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Bozza, Anna; Prota, Andrea; Cadoni, Ezio

    2015-09-01

    Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.

  9. Strain rate dependence of the tensile properties of V-(4--5%)Cr-(4--5%)Ti irradiated in EBR-II and HFBR

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.; Robertson, J.P.; Rowcliffe, A.F.

    1998-03-01

    Elevated temperature tensile tests performed on V-(405)Cr-(4-5)Ti indicate that the yield stress increases with increasing strain rate for irradiation and test temperatures near 200 C, and decreases with increasing strain rate for irradiation and test temperatures near 400 C. This observation is in qualitative agreement with the temperature-dependent strain rate effects observed on unirradiated specimens, and implies that some interstitial solute remains free to migrate in irradiated specimens. Additional strain rate data at different temperatures are needed.

  10. Investigating strength of materials at very high strain rates using magnetically driven expanding cylinders

    NASA Astrophysics Data System (ADS)

    Lovinger, Zev; Nemirovsky, Ron; Avriel, Eyal; Dorogoy, Avraham; Ashuach, Yehezkel; Rittel, Daniel

    2015-09-01

    Dynamic characterization of strength properties is done, in common practice by the means of a Split-Hopkinson Pressure Bar (also named Kolsky-Bar) apparatus. In such systems, strain rates are limited up to ˜ 5 ṡ 103 sec-1. For higher strain rates, the strain rate hardening is assumed to be the same as that measured at lower rates, with no direct measurement to validate the assumptions used for this extrapolation. In this work we are using a pulsed current generator (PCG) to create electro-magnetic (EM) driving forces on expanding cylinders. Most standard techniques for creating EM driving forces on cylinders or rings, as reported in the literature, reach strain rates of 1e3-1e4. Using our PCG, characterized by a fast rise time, we reach strain rates of ˜1e5, thus paving the way to a standard technique to measure strength at very high strain rates. To establish the experimental technique, we conducted a numerical study of the expanding cylinder set up using 2D hydrodynamic simulations to reach the desired high strain rates.

  11. Strain rates estimated by geodetic observations in the Borborema Province, Brazil

    NASA Astrophysics Data System (ADS)

    Marotta, Giuliano Sant'Anna; França, George Sand; Monico, João Francisco Galera; Bezerra, Francisco Hilário R.; Fuck, Reinhardt Adolfo

    2015-03-01

    The strain rates for the Borborema Province, located in northeastern Brazil, were estimated in this study. For this purpose, we used GNSS tracking stations with a minimum of two years data. The data were processed using the software GIPSY, version 6.2, provided by the JPL of the California Institute of Technology. The PPP method was used to process the data using the non-fiducial approach. Satellite orbits and clock were supplied by the JPL. Absolute phase center offsets and variations for both the receiver and the satellite antennaes were applied, together with ambiguity resolution; corrections of the first and second order effects of the ionosphere and troposphere models adopting the VMF1 mapping function; 10° elevation mask; FES2004 oceanic load model and terrestrial tide WahrK1 PolTid FreqDepLove OctTid. From a multi annual solution, involving at least 2 years of continuous data, the coordinates and velocities as well as their accuracies were estimated. The strain rates were calculated using the Delaunay triangulation and the Finite Element Method. The results show that the velocity direction is predominantly west and north, with maximum variation of 4.0 ± 1.5 mm/year and 4.1 ± 0.5 mm/year for the x and y components, respectively. The highest strain values of extension and contraction were 0.109552 × 10-6 ± 3.65 × 10-10/year and -0.072838 × 10-6 ± 2.32 × 10-10/year, respectively. In general, the results show that the highest strain and variation of velocity values are located close to the Potiguar Basin, region that concentrates seismic activities of magnitudes of up to 5.2 mb. We conclude that the contraction direction of strain is consistent with the maximum horizontal stress derived from focal mechanism and breakout data. In addition, we conclude that the largest strain rates occur around the Potiguar Basin, an area already recognized as one of the major sites of seismicity in intraplate South America.

  12. Strain-rate/temperature behavior of high density polyethylene in compression

    NASA Technical Reports Server (NTRS)

    Clements, L. L.; Sherby, O. D.

    1978-01-01

    The compressive strain rate/temperature behavior of highly linear, high density polyethylene was analyzed in terms of the predictive relations developed for metals and other crystalline materials. For strains of 5 percent and above, the relationship between applied strain rate, dotted epsilon, and resulting flow stress, sigma, was found to be: dotted epsilon exp times (Q sub f/RT) = k'(sigma/sigma sub c) to the nth power; the left-hand side is the activation-energy-compensated strain rate, where Q sub f is activation energy for flow, R is gas constant, and T is temperature; k is a constant, n is temperature-independent stress exponent, and sigma/sigma sub c is structure-compensated stress. A master curve resulted from a logarithmic plot of activation-energy-compensated strain rate versus structure-compensated stress.

  13. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury

    PubMed Central

    Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian

    2016-01-01

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression. PMID:27480807

  14. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian

    2016-08-01

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression.

  15. Strain-energy release rate analysis of cyclic delamination growth in compressively loaded laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.

    1984-01-01

    Delamination growth in compressively loaded composite laminates was studied analytically and experimentally. The configuration used was a laminate with an across-the-width delamination. An approximate super-position stress analysis was developed to quantify the effects of various geometric, material, and load parameters on mode 1 and mode 2 strain energy release rates G sub 1 and G sub 2, respectively. Calculated values of G sub 1 and G sub 2 were then compared with measured cyclic delamination growth rates to determine the relative importance of G sub 1 and G sub 2. High growth rates were observed only when G sub 1 was large. However, slow growth was observed even when G sub 1 was negligibly small. This growth was apparently due to a large value of G sub 2.

  16. Strain energy release rate analysis of cyclic delamination growth in compressively loaded laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.

    1983-01-01

    Delamination growth in compressively loaded composite laminates was studied analytically and experimentally. The configuration used was a laminate with an across-the-width delamination. An approximate super-position stress analysis was developed to quantify the effects of various geometric, material, and load parameters on mode 2 and mode 2 strain energy release rates G sub/1 and G sub 2, respectively. Calculated values of G sub 1 and G sub 2 were then compared with measured cyclic delamination growth rates to determine the relative importance of G sub 1 and G sub 2. High growth rates were observed only when G sub 1 was large. However, slow growth was observed even when G sub 1 was negligibly small. This growth apparently was due to a large value of G sub 2.

  17. Influence of temperature and strain rate on the mechanical behavior of Adiprene L-100

    SciTech Connect

    Gray, G.T. III; Blumenthal, W.R.; Trujillo, C.P.; Carpenter, R.W. II

    1997-05-01

    The effect of sample thickness, strain rate, and temperature on the mechanical response of Adiprene-L100 is presented. The compressive stress-train response of Adiprene-L100 was found to depend on both the applies train rate; 0.001 {le} {dot {var_epsilon}} {le} 7,000 s{sup {minus}1}, and the test temperature at high-rate; 77 {le} T {le} 298 K. Due to the slow, dispersive wave propagation in Adiprene-L100, thinner sample thicknesses are needed to assure uniform, uniaxial stress conditions within Hopkinson Bar samples; the optimal sample thickness being dependent on test temperature. Decreasing temperature from 298 to 77 K at 3,000 s{sup {minus}1} was found to increase the maximum flow stress in Adiprene-L100 from 10 to {approximately} 210 MPa.

  18. Dynamic mechanical response and a constitutive model of Fe-based high temperature alloy at high temperatures and strain rates.

    PubMed

    Su, Xiang; Wang, Gang; Li, Jianfeng; Rong, Yiming

    2016-01-01

    The effects of strain rate and temperature on the dynamic behavior of Fe-based high temperature alloy was studied. The strain rates were 0.001-12,000 s(-1), at temperatures ranging from room temperature to 800 °C. A phenomenological constitutive model (Power-Law constitutive model) was proposed considering adiabatic temperature rise and accurate material thermal physical properties. During which, the effects of the specific heat capacity on the adiabatic temperature rise was studied. The constitutive model was verified to be accurate by comparison between predicted and experimental results. PMID:27186468

  19. Mechanical response and microcrack formation in a fine-grained duplex TiAl at different strain rates and temperatures

    SciTech Connect

    Jin, Z.; Cady, C.; Gray, G.T. III; Kim, Y.-W.

    1996-10-01

    Compressive behavior of this alloy was studied at strain rates of 0. 001 and 2000 sec{sup -1} and temperatures from -196 C to 1200 C. Temperature dependence of yield stress was found to depend on strain rate: At the quasi-static strain rate, 0.001 sec{sup -1}, the yield stress decreases with temperature with a plateau between 200 and 800 C. At the high strain rate, 2000 sec{sup -1}, the yield stress exhibits a positive temperature dependence above 600 C. Strain hardening rate decreases dramatically with temperature in the very low and high temperature regions with a plateau at intermediate temperatures for both strain rates. As the strain rate increases, the strain hardening rate plateaus extended to higher temperatures. The strain rate sensitivity increases slightly with temperature (but less than 0.1) for strain rates above 0.001 sec{sup -1}. However, at a strain rate of 0.001 sec{sup -1}, there is a dramatic increase in the strain rate sensitivity with temperature; above 1100 C, the rate sensitivity becomes much larger. Microcracks occurring in grain interiors and at grain boundaries were observed at all strain rates and temperatures. Formation and distribution of microcracks were found to vary depending on strain rate and deformation temperature.

  20. Development of intermediate and high strain rate experimentation and material modeling for viscoplastic metals

    NASA Astrophysics Data System (ADS)

    Whittington, Wilburn Ray

    This work presents a combined theoretical-experimental study of strain rate behavior in metals. The method is to experimentally calibrate and validate an Internal State Variable (ISV) constitutive model with a wide range of strain rate sensitivity. Therefore a practical apparatus and methodology for performing highly sought-after intermediate strain rate experimentation was created. For the first time in reported literature, the structure-property relations of Rolled Homogeneous Armor is quantified at the microscale and modeled with varying strain rates, temperatures, and stress states to capture plasticity and damage with a single set of constants that includes intermediate strain rates. A rolled homogeneous armor (RHA) was used as a material system to prove the methodology. In doing so, a newly implemented strain rate dependent nucleation parameter for RHA was implemented to transition the dominant damage mechanism from void growth to void nucleation as strain rate increased. The ISVs were utilized in finite element analysis for robust predictability of mechanical performance as well as predictability of microstructural evolution with regards to void size and number distribution. For intermediate strain rate experiments, robust load acquisition was achieved using a novel serpentine transmittal bar that allowed for long stress waves to traverse a short bar system; this system eliminated load- ringing that plagues servo-hydraulic systems. A direct hydraulic loading apparatus was developed to provide uniform strain rates throughout intermediate rate tests to improve on the current limitations of the state-of-the-art. Key recommendations on the advancement of predictive modeling of dynamic materials, as well as performing advanced dynamic experimentation, are elucidated.

  1. Dynamics of a competing two-strain SIS epidemic model on complex networks with a saturating incidence rate

    NASA Astrophysics Data System (ADS)

    Yang, Junyuan; Li, Chun-Hsien

    2016-05-01

    This paper studies a two-strain SIS epidemic model with a competing mechanism and a saturating incidence rate on complex networks. This type of incidence rate can be used to reflect the crowding effect of the infective individuals. We first obtain the associated reproduction numbers for each of the two strains which determine the existence of the boundary equilibria. The stability of the disease-free and boundary equilibria are further examined. Besides this, we also show that the two competing strains can coexist under certain conditions. Interestingly, the saturating incidence rate can have specific effects on not only the stability of the boundary equilibria, but also the existence of the coexistence equilibrium. Numerical simulations are presented to support the theoretical results.

  2. Predictions and Experimental Microstructural Characterization of High Strain Rate Failure Modes in Layered Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Khanikar, Prasenjit

    applications. The second major objective of this investigation was the use of recently developed dynamic fracture formulations to model and analyze the crack nucleation and propagation of aluminum layered composites subjected to high strain rate loading conditions and how microstructural effects, such as precipitates, dispersed particles, and GB orientations affect failure evolution. This dynamic fracture approach is used to investigate crack nucleation and crack growth as a function of the different microstructural characteristics of each alloy in layered composites with and without pre-existing cracks. The zigzag nature of the crack paths were mainly due to the microstructural features, such as precipitates and dispersed particles distributions and orientations ahead of the crack front, and it underscored the capabilities of the fracture methodology. The evolution of dislocation density and the formation of localized shear slip contributed to the blunting of the propagating crack. Extensive geometrical and thermal softening due to the localized plastic slip also affected crack path orientations and directions. These softening mechanisms resulted in the switching of cleavage planes, which affected crack path orientations. Interface delamination can also have an important role in the failure and toughening of the layered composites. Different scenarios of delamination were investigated, such as planar crack growth and crack penetration into the layers. The presence of brittle surface oxide platelets in the interface region also significantly influenced the interface delamination process. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) and Optical Microscopy (OM) characterization provided further physical insights and validation of the predictive capabilities. The inherent microstructural features of each alloy play a significant role in the dynamic fracture, shear strain localization, and interface delamination of the layered metallic composite

  3. EXPERIMENTAL TESTS OF VANADIUM STRENGTH MODELS AT HIGH PRESSURES AND STRAIN RATES

    SciTech Connect

    Park, H; Barton, N R; Becker, R C; Bernier, J V; Cavallo, R M; Lorenz, K T; Pollaine, S M; Remington, B A; Rudd, R E

    2010-03-02

    Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure material strength or effective lattice viscosity in metal foils are presented. On the Omega Laser in the Laboratory for Laser Energetics, University of Rochester, target samples of polycrystalline vanadium are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the samples in the solid-state. Comparison of the results with constitutive models for solid state strength under these conditions show that the measured RT growth is substantially lower than predictions using existing models that work well at low pressures and long time scales. High pressure, high strain rate data can be explained by the enhanced strength due to a phonon drag mechanism, creating a high effective lattice viscosity.

  4. Strain-rate sensitivity of foam materials: A numerical study using 3D image-based finite element model

    NASA Astrophysics Data System (ADS)

    Sun, Yongle; Li, Q. M.; Withers, P. J.

    2015-09-01

    Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band) of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi) may not be sufficiently representative to capture the actual structural effect. To overcome these limitations, the strain-rate sensitivity of the compressive and tensile properties of closed-cell aluminium Alporas foam is investigated in this study by means of meso-scale realistic finite element (FE) simulations. The FE modelling method based on X-ray computed tomography (CT) image is introduced first, as well as its applications to foam materials. Then the compression and tension of Alporas foam at a wide variety of applied nominal strain-rates are simulated using FE model constructed from the actual cell geometry obtained from the CT image. The stain-rate sensitivity of compressive strength (collapse stress) and tensile strength (0.2% offset yield point) are evaluated when considering different cell-wall material properties. The numerical results show that the rate dependence of cell-wall material is the main cause of the strain-rate hardening of the compressive and tensile strengths at low and intermediate strain-rates. When the strain-rate is sufficiently high, shock compression is initiated, which significantly enhances the stress at the loading end and has complicated effect on the stress at the supporting end. The plastic tensile wave effect is evident at high strain-rates, but shock tension cannot develop in Alporas foam due to the softening associated with single fracture process zone occurring in tensile response. In all cases the micro inertia of individual cell walls subjected to localised deformation is found to

  5. Coseismic Damage Generation in Fault Zones by Successive High Strain Rate Loading Experiments

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M. L.; Renard, F.; Toussaint, R.; Reuschlé, T.; Gratier, J. P.

    2014-12-01

    Damage zones of active faults control both resistance to rupture and transport properties of the fault. Hence, knowing the rock damage's origin is important to constrain its properties. Here we study experimentally the damage generated by a succession of dynamic loadings, a process mimicking the stress history of a rock sample located next to an active fault. A propagating rupture generates high frequency stress perturbations next to its tip. This dynamic loading creates pervasive damage (pulverization), as multiple fractures initiate and grow simultaneously. Previous single loading experiments have shown a strain rate threshold for pulverization. Here, we focus on conditions below this threshold and the dynamic peak stress to constrain: 1) if there is dynamic fracturing at these conditions and 2) if successive loadings (cumulative seismic events) result in pervasive fracturing, effectively reducing the pulverization threshold to milder conditions. Monzonite samples were dynamically loaded (strain rate > 50 s-1) several times below the dynamic peak strength, using a Split Hopkinson Pressure Bar apparatus. Several quasi-static experiments were conducted as well (strain rate < 10-5-s). Samples loaded up to stresses above the quasi-static uniaxial compressive strength (qsUCS) systematically fragmented or pulverized after four successive loadings. We measured several damage proxies (P-wave velocity, porosity), that show a systematic increase in damage with each load. In addition, micro-computed tomography acquisition on several damage samples revealed the growth of a pervasive fracture network between ensuing loadings. Samples loaded dynamically below the qsUCS failed along one fracture after a variable amount of loadings and damage proxies do not show any a systematic trend. Our conclusions is that milder dynamic loading conditions, below the dynamic peak strength, result in pervasive dynamic fracturing. Also, successive loadings effectively lower the pulverization

  6. Microstructure and nanohardness distribution in a polycrystalline Zn deformed by high strain rate impact

    SciTech Connect

    Dirras, G.; Ouarem, A.; Couque, H.; Gubicza, J.; Szommer, P.; Brinza, O.

    2011-05-15

    Polycrystalline Zn with an average grain size of about 300 {mu}m was deformed by direct impact Hopkinson pressure bar at a velocity of 29 m/s. An inhomogeneous grain structure was found consisting of a center region having large average grain size of 20 {mu}m surrounded by a fine-grained rim with an average grain size of 6 {mu}m. Transmission electron microscopy investigations showed a significant dislocation density in the large-grained area while in the fine-grained rim the dislocation density was negligible. Most probably, the higher strain yielded recrystallization in the outer ring while in the center only recovery occurred. The hardening effect of dislocations overwhelms the smaller grain size strengthening in the center part resulting in higher nanohardness in this region than in the outer ring. - Graphical Abstract: (a): EBSD micrograph showing the initial microstructure of polycrystalline Zn that was subsequently submitted to high strain rate impact. (b): an inhomogeneous grain size refinement was obtained which consists of a central coarse-grained area, surrounded by a fine-grained recrystallized rim. The black arrow points to the disc center. Research Highlights: {yields} A polycrystalline Zn specimen was submitted to high strain rate impact loading. {yields} Inhomogeneous grain refinement occurred due to strain gradient in impacted sample. {yields} A fine-grained recrystallized rim surrounded the coarse-grained center of specimen. {yields} The coarse-grained center exhibited higher hardness than the fine-grained rim. {yields} The higher hardness of the center was caused by the higher dislocation density.

  7. Isolation and Characterization of Monokaryotic Strains of Lentinula edodes Showing Higher Fruiting Rate and Better Fruiting Body Production

    PubMed Central

    Ha, Byeong-Suk; Kim, Sinil

    2015-01-01

    The effects of monokaryotic strains on fruiting body formation of Lentinula edodes were examined through mating and cultivation of the mated dikaryotic mycelia in sawdust medium. To accomplish this, monokaryotic strains of L. edodes were isolated from basidiospores of the commercial dikaryotic strains, Chamaram (Cham) and Sanjo701 (SJ701). A total of 703 matings (538 self-matings and 165 outcrosses) were performed, which generated 133 self-mates and 84 outcross mates. The mating rate was 25% and 50% for self-mating and outcross, respectively. The bipolarity of the outcross indicated the multi-allelic nature of the mating type genes. The mating was only dependent on the A mating type locus, while the B locus showed no effect, implying that the B locus is multi-allelic. Next, 145 selected dikaryotic mates were cultivated in sawdust medium. The self-mated dikaryotic progenies showed 51.3% and 69.5% fruiting rates for Cham and SJ701, respectively, while the fruiting rate of the outcross mates was 63.2%. The dikaryotic mates generated by mating with one of the monokaryotic strains, including A20, B2, E1, and E3, showed good fruiting performance and tended to yield high fruiting body production, while many of the monokaryotic strains failed to form fruiting bodies. Overall, these findings suggest that certain monokaryotic strains have traits enabling better mating and fruiting. PMID:25892911

  8. Micro-Structural Response of DP 600 to High Strain Rate Deformation

    NASA Technical Reports Server (NTRS)

    Hamburg, Brian; Schneider, Judy; Jones, Stanley E.

    2008-01-01

    The object of this study was to investigate the micro-structural response of DP 600 subjected to high strain rate, ballistic impact tests. The ballistic tests were conducted using normal impact of a hardened steel penetrator into a 2 mm thick sheet of DP 600. The average strain rates produced from this test method are on the order of 10(exp 5)/s. Electron microscopy was used to investigate the microstructure before and after high strain rate deformation. A variation in material response was observed between tests conducted at 0.8 x 105 and 25 x 10(exp 5)/s.

  9. High Strain and Strain-Rate Behaviour of Ptfe/aluminuim/tungsten Mixtures

    NASA Astrophysics Data System (ADS)

    Addiss, John; Cai, Jing; Walley, Stephen; Proud, William; Nesterenko, Vitali

    2007-12-01

    Conventional drop-weight techniques were modified to accommodate low-amplitude force transducer signals from low-strength, cold isostatically pressed `heavy' composites of polytetrafluoroethylene, aluminum and tungsten (W). The failure strength, strain and the post-critical behavior of failed samples were measured for samples of different porosity and tungsten grain size. Unusual phenomenon of significantly higher strength (55 MPa) of porous composites (density 5.9 g/cm3) with small W particles (<1 μm) in comparison with strength (32 MPa) of dense composites (7.1 g/cm3) with larger W particles (44 μm) at the same volume content of components was observed. This is attributed to force chains created by a network of small W particles. Interrupted tests at different levels of strain revealed the mechanisms of fracture under dynamic compression.

  10. High strain and strain-rate behaviour of PTFE/aluminium/tungsten mixtures

    SciTech Connect

    Addiss, John; Walley, Stephen; Proud, William; Cai Jing; Nesterenko, Vitali

    2007-12-12

    Conventional drop-weight techniques were modified to accommodate low-amplitude force transducer signals from low-strength, cold isostatically pressed 'heavy' composites of polytetrafluoroethylene, aluminum and tungsten (W). The failure strength, strain and the post-critical behavior of failed samples were measured for samples of different porosity and tungsten grain size. Unusual phenomenon of significantly higher strength (55 MPa) of porous composites (density 5.9 g/cm{sup 3}) with small W particles (<1 {mu}m) in comparison with strength (32 MPa) of dense composites (7.1 g/cm{sup 3}) with larger W particles (44 {mu}m) at the same volume content of components was observed. This is attributed to force chains created by a network of small W particles. Interrupted tests at different levels of strain revealed the mechanisms of fracture under dynamic compression.

  11. Crustal strain rate patterns of the western North America Plate boundary

    NASA Astrophysics Data System (ADS)

    Hackl, M.; Malservisi, R.; Furlong, K.; Kirby, E.

    2009-04-01

    The knowledge of the crustal strain rate tensor provides a description of geodynamic processes such as fault strain accumulation. We use interpolation of GPS geodetic measurements to derive the regional strain rate field for selected regions within the western North America plate boundary. We applied the interpolation scheme to data from the Eastern California Shear Zone, the Mendocino triple junction region, and the transition from the Sierra block to the Pacific North West. Our results allow us to define regions of localization of the strain rate at the northern end of the San Andrea Fault system and within the boundary between the Sierra Nevada and Basin and Range. These results help to understand the way in which strain is accommodated in the Sierra/Pacific North West transition. The results will be compared with geologic and tectonic observation of the region.

  12. High Strain Rate Characterization of Laminate Composites Using Direct-Tension Split Hopkinson Bar

    NASA Astrophysics Data System (ADS)

    Akkala, S.; Hommeida, A.; Brar, N. S.

    1999-06-01

    Data on high strain rate response of laminate composites is required to numerically simulate penetration/perforation events. Tension specimens of laminate composites can only be fabricated in dog-bone shape and, therefore, a direct tension Hopkinson bar configuration is more appropriate for acquiring high strain data. Launching a 6.35-mm wall thickness aluminum tube around 25.4 diameter aluminum incident bar produces the tension pulse in the incident bar. Ends of the composite specimens in the dog-bone configuration are placed in specially designed grips, which are screwed in the incident and transmitter bars. The configuration allows testing of specimens with threaded ends. Stress-strain data on 6061-T6 aluminum and titanium 6-4 at a strain rate of 10^3/s agree with the published data. High strain rate data on laminate composite specimens reinforced with graphite and glass fibers will be presented.

  13. Seismic slip and down-dip strain rates in wadati-benioff zones.

    PubMed

    Bevis, M

    1988-06-01

    The rate of accumulation of seismic moment in Wadati-Benioff zones is used to estimate strain rates in subducting slabs that are sinking through the asthenosphere. Between depths of 75 and 175 kilometers a typical down-dip strain rate is about 10(-15) per second, which implies that slabs in this depth range typically accumulate strain of order 10(-1). This result is in accord with geometrical arguments that subducted slabs must experience large membrane strains to deform to their observed shapes. Mantle seismicity (repeated catastrophic shear failure) is apparently a primary mechanism by which large membrane strains accumulate in the cold cores of subducting slabs. Slabs are penetratively deformed, and they have low flexural rigidity compared to oceanic plates at the earth's surface. PMID:17815851

  14. Three-dimensional geometry, strain rates and basement deformation mechanisms of thrust-bend folding

    NASA Astrophysics Data System (ADS)

    Wibberley, Christopher A. J.

    1997-03-01

    Models for thrust-bend folding of an isotropic medium are used to predict initial basement thrust sheet geometries and sub-surface thrust fault shapes from final basement thrust sheet structure. Predicted strains and strain rates from these models are compared with data on deformation fabrics in an example of a basement thrustbend fold in order to characterise the deformation response to thrust-bend folding. The Glencoul thrust sheet in the Moine Thrust Zone of north-west Scotland is restored to an initial thrust sheet geometry. Spatial and orientation distribution data of syn-emplacement fractures and cataclastic fault zones from within the Glencoul thrust sheet are then compared with the strain and strain rate histories predicted by thrust-bend folding models. A different set of cataclastic fault seams is demonstrated to have been generated at each frontal thrust bend. Cataclastic failure is restricted to portions of the thrust sheet that have moved over frontal bends with smaller radii of curvature. From model thrust-bend geometries and an assumed slip rate of 1 x 10 -10 ms -1, estimated minimum (critical) strain rates required for fracture failure of the Lewisian basement are 10 -11 to 10 -14 s -1 for shear strain rates and 10 -12 to 10 -15 s -1 for extensional strain rates.

  15. Influence of strain rate and temperature on the mechanical behavior of beryllium

    SciTech Connect

    Blumenthal, W.R.; Carpenter, R.W.; Cannon, D.D.; Abeln, S.P.; Gray, G.T. III

    1997-07-01

    The compressive stress-strain response of three grades of beryllium were studied as a function of strain rate and temperature. Grades S2OOD, E, and F represent a historical perspective of beryllium processing from the 1960`s through 1990`s technology. The purpose of this study was to measure the mechanical behavior of beryllium over a range of deformation conditions for constitutive model development and to obtain microstructural evidence for deformation mechanisms. The compressive stress-strain response was found to be independent of grade and strongly dependent on the applied strain rate between 0.001 and 8000. The strain-hardening response displayed a moderate temperature dependence between 77 K and 873 K Because distinct yield was not observed, the intercept-stress from linear strain-hardening fits was analyzed and was found to be only weakly dependent on strain rate and temperature above ambient. Microstructural examination of SHPB specimens revealed that twinning was extensive at strains between 7-22%. A SHPB sample deformed to over 20% strain contained both extensive twinning and grain boundary microcracking.

  16. Correcting the Stress-Strain Curve in the Stroke-Rate Controlling Forging Process

    NASA Astrophysics Data System (ADS)

    Li, Y. P.; Matsumoto, H.; Chiba, A.

    2009-05-01

    In this article, a detailed description of the friction correction, adiabatic correction, and the correction from the stroke-rate controlling process into the strain-rate controlling process on the IHS38MSV hypoeutectoid steel is provided. By using compensated data, processing maps were plotted and used to predict the optimum hot forging process. The compressive tests were performed at stroke rates ranging from 0.12 to 120 mm/s and temperatures ranging from 800 °C to 1200 °C by using ThermecMaster-Z equipment. The results showed that the correction by instant friction coefficient, which was carried out on the basis of previous research, could be extended to wider experimental conditions. The corrected data from both stroke-rate controlling and strain-rate controlling processes were in good agreement with each other, indicating that the present correction from the stroke rate into the strain-rate correction is practical and appropriate.

  17. Molecular dynamic simulation of stress evolution analysis in Cu nanowire under ultra-high strain-rate simple tension

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Ching; Pen, Dar-Jen; Chen, Jiun-Nan

    2014-04-01

    This study analyses the behaviour of atoms associated with the propagation of stress waves in Cu nanowires (NWs) during uniaxial tensile deformation using molecular dynamic simulation. Maximum local stress (MLS) and virial stress (VS) methods are adopted to express dynamic stress in ⟨100⟩ Cu NWs under tension. Simulation results indicated that the VS method enhances the averaging effect at ultra-high strain rates (above 1010 s-1), leading to serious undervaluation of yield stress. However, the MLS method provides superior prediction results for the dynamic mechanical responses of NWs under tension at the ultra-high strain rate than does the VS. At a strain rate of 7 × 1010 s-1, the double-peak stress phenomenon was observed in the stress-strain curve using the MLS method. The response time (Trs) to wave propagation, observed at an ultra-high strain rate, is responsible for the accumulation of the elastic stress that is applied at the beginning of tensile loading in a short period, producing the first stress peak. Following plastic deformation, the encounter of the wavefronts with the reduced tensile stress causes the fully constructive interference effect in the middle of the tensile NWs, producing the second stress peak. The results explain the dynamic mechanical behaviour of NWs, contributing to future applications of subsonic manufacturing.

  18. Mechanical response of porcine skin under compression from low to high strain rates

    NASA Astrophysics Data System (ADS)

    Bo, Chiara; Butler, Ben; Williams, Alun; Brown, Katherine; Proud, William

    2013-06-01

    Uniaxial compression experiments were performed on fresh porcine skin samples at different strain rates to study the stress-strain response. Low strain rate experiments were performed with an Instron 5566, while high strain rates were achieved using a Split Hopkinson Pressure Bar system. Magnesium bars and semiconductor strain gauges were used respectively to maximize the signal transmission from porcine skin to the output bar and to allow the signal measurement. Skin samples were harvested from different area of the animal to investigate the heterogeneity of such material. The experimental results showed that the mechanical response of skin in compression is strongly dependent on the strain rate of loading and on the location from which the samples were collected. Specimens collected from the rump showed a stiffer response compared to samples harvested from the thigh. Finally, a histological analysis of the samples post compression was carried out to examine the extent of tissue damage as a function of strain rate. This work is supported by the Atomic Weapons Establishment, UK and The Royal British Legion Centre for Blast Injury Studies at Imperial College London, UK.

  19. Influence of strain rate on the mechanical behaviour in tension of bovine cortical bone

    NASA Astrophysics Data System (ADS)

    Latella, C.; Dotta, M.; Forni, D.; Tesio, N.; Cadoni, E.

    2015-09-01

    The mechanical behaviour of bones when subjected to tension loading in a wide range of strain-rates is fundamental to develop protection systems. The paper presents the preliminary tests on the tensile behaviour of bovine cortical bone at medium and high strain rates. Two special apparatus, both installed at the DynaMat Laboratory of the University of Applied Sciences of Southern Switzerland, a Hydro-Pneumatic Machine and a Modified Hopkinson Bar respectively for medium and high strain-rate tests have been used. Flat shape specimens (having 10 mm of gauge length, 5 mm width and 3 mm thickness) have been obtained from 15 bovine femurs with the same age. The paper describes the preparation techniques of the samples and the experimental results obtained. The bovine cortical bone shown a quite important strain rate dependency.

  20. High strain rate deformation of Ti-48Al-2Cr-2Nb in the duplex morphology

    SciTech Connect

    Maloy, S.A.; Gray, G.T. III

    1995-03-01

    The compressive deformation behavior of Ti-48Al-2Nb-2Cr in the duplex microstructural morphology has been studied at strain rates of 0.001/s and 2000/s over the temperature range from -196 to 1100{degrees}C. The material was cast, homogenized, extruded and heat treated to obtain the duplex microstructure. The yield stress is strain rate sensitive at 25{degrees}C and increases with temperature at a strain rate of 2000/s from 500 to 1100{degrees}C. TEM investigations reveal that deformation occurs in {gamma}-TiAl by means of [111]<112> twinning, 1/2<110> slip, and <101> superdislocations under all conditions depending on the orientation of the grain with respect to the deformation axis. Optical metallography reveals that twinning increases with increasing strain rate. TEM results revealing the dislocation substructure are used to explain the yield stress anomaly.

  1. A Model for High-Strain-Rate Deformation of Uranium-Niobium Alloys

    SciTech Connect

    F.L.Addessio; Q.H.Zuo; T.A.Mason; L.C.Brinson

    2003-05-01

    A thermodynamic approach is used to develop a framework for modeling uranium-niobium alloys under the conditions of high strain rate. Using this framework, a three-dimensional phenomenological model, which includes nonlinear elasticity (equation of state), phase transformation, crystal reorientation, rate-dependent plasticity, and porosity growth is presented. An implicit numerical technique is used to solve the evolution equations for the material state. Comparisons are made between the model and data for low-strain-rate loading and unloading as well as for heating and cooling experiments. Comparisons of the model and data also are made for low- and high-strain-rate uniaxial stress and uniaxial strain experiments. A uranium-6 weight percent niobium alloy is used in the comparisons of model and experiment.

  2. Physical mechanisms underlying the strain-rate-dependent mechanical behavior of kangaroo shoulder cartilage

    NASA Astrophysics Data System (ADS)

    Thibbotuwawa, Namal; Oloyede, Adekunle; Li, Tong; Singh, Sanjleena; Senadeera, Wijitha; Gu, YuanTong

    2015-09-01

    Due to anatomical and biomechanical similarities to human shoulder, kangaroo was chosen as a model to study shoulder cartilage. Comprehensive enzymatic degradation and indentation tests were applied on kangaroo shoulder cartilage to study mechanisms underlying its strain-rate-dependent mechanical behavior. We report that superficial collagen plays a more significant role than proteoglycans in facilitating strain-rate-dependent behavior of the kangaroo shoulder cartilage. By comparing the mechanical properties of degraded and normal cartilages, it was noted that proteoglycan and collagen degradation significantly compromised strain-rate-dependent mechanical behavior of the cartilage. Superficial collagen contributed equally to the tissue behavior at all strain-rates. This is different to the studies reported on knee cartilage and confirms the importance of superficial collagen on shoulder cartilage mechanical behavior. A porohyperelastic numerical model also indicated that collagen disruption would lead to faster damage of the shoulder cartilage than when proteoglycans are depleted.

  3. Materials design and processings for industrial high-strain-rate superplastic forming

    SciTech Connect

    Hosokawa, H.; Higashi, K.

    2000-07-01

    The optimum materials design in microstructural control could be developed for the high-strain-rate superplastic materials in the industrial scale. In the present work, it is reported that the high-performance-engine pistons with near-net-shape can be fabricated by the superplastic forging technology in the high-strain-rate superplastic PM Al-Si based alloy, which is produced by using this optimum materials design.

  4. Physics of friction and strain rate localization in synthetic fault gouge

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.; Richardson, Eliza; Marone, Chris

    2000-11-01

    Data on synthetic fault gouge previously collected by Richardson and Marone [1999] were compared with the predictions of a unified theory for rate- and state-dependent friction compiled by Sleep [1997]. The theory treats the gouge as a continuum one-dimensional fluid sheared between parallel plates. It is predicted that the strain rate localized into a shear band of width called Wss during steady state sliding from the nominal width of the gouge zone Wnom. The critical displacement during velocity stepping tests is predicted to be Wss ɛint, where ɛint is the critical strain, an intrinsic material property. It is predicted that the strain rate for renewed sliding after holds delocalizes to a width Wnew which is greater than Wss and for long holds approaches the full gouge zone width Wnom. The displacement for recovery of the shear traction to its steady state value is predicted to be Wnewɛint, which for long holds is much greater than the critical displacement obtained by velocity stepping. Only the macroscopic effects of this process could be studied using the laboratory data in hand. Compaction during the hold and the difference between peak shear traction upon restart and the steady state shear traction during sliding (healing) were measured. To simulate more complex normal traction variations on real faults, the normal traction was varied sinusoidally about its previous value during some holds. The theory reasonably predicts the observed relationship between healing and compaction and healing versus hold time. It predicts the slip needed for recovery of shear traction following holds but poorly predicts the shear traction versus time during recovery. We attribute this failure to the fact that the laboratory gouge is a heterogeneous three-dimensional substance. Qualitatively, the delocalized width Wnew varies with position within the gouge plane, and slip is required for localized shear to organize in three dimensions. As strain rate was not observed as a

  5. High Strain Rate Characterization of Plastics and Foams Using Polymeric Split Hopkinson Bar

    NASA Astrophysics Data System (ADS)

    Sawas, Omar; Brar, N. S.

    1997-07-01

    High strain rate and high/low temperature response of engineered plastics and foams is relevant and important for the design and development of fighter aircraft canopies, submarine interiors and automobile exterior and interior systems. The mechanical impedance of conventional split Hopkinson bar materials (aluminum or steel) is extremely large compared to those of plastic or foam specimens. To overcome this difficulty of impedance mismatch we have developed the Polymeric Split Hopkinson Bar (PSHB). A viscoelastic model for cast acrylic bar material, which relates stresses and strains as well as particle velocity and strain, is developed to account for the wave dispersion along the bar. The model is verified by comparing the stress strain data on 1100 aluminum and polycarbonate specimens obtained using PSHB and conventional aluminum SHB. Stress-strain data at a strain rate of 103/s on low strength polyurethane foam (density = 0.57 g/cm3) following this technique show that the foam has a recoverable compressive strain of 0.4 at a stress of 2.9 MPa. High strain rate (2x102-2x103/s) data on polycarbonate, generic elastomer, and styrofoam will also be presented.

  6. A method for calculating strain energy release rate based on beam theory

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Pandey, R. K.

    1993-01-01

    The Timoshenko beam theory was used to model cracked beams and to calculate the total strain energy release rate. The root rotation of the beam segments at the crack tip were estimated based on an approximate 2D elasticity solution. By including the strain energy released due to the root rotations of the beams during crack extension, the strain energy release rate obtained using beam theory agrees very well with the 2D finite element solution. Numerical examples were given for various beam geometries and loading conditions. Comparisons with existing beam models were also given.

  7. Micromechanics-Based Permeability Evolution in Brittle Materials at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Perol, Thibaut; Bhat, Harsha S.

    2016-08-01

    We develop a micromechanics-based permeability evolution model for brittle materials at high strain rates (≥ 100 s^{-1}). Extending for undrained deformation the mechanical constitutive description of brittle solids, whose constitutive response is governed by micro-cracks, we now relate the damage-induced strains to micro-crack aperture. We then use an existing permeability model to evaluate the permeability evolution. This model predicts both the percolative and connected regime of permeability evolution of Westerly Granite during triaxial loading at high strain rate. This model can simulate pore pressure history during earthquake coseismic dynamic ruptures under undrained conditions.

  8. Impact comminution of solids due to local kinetic energy of high shear strain rate: I. Continuum theory and turbulence analogy

    NASA Astrophysics Data System (ADS)

    Bažant, Zdeněk P.; Caner, Ferhun C.

    2014-03-01

    The modeling of high velocity impact into brittle or quasibrittle solids is hampered by the unavailability of a constitutive model capturing the effects of material comminution into very fine particles. The present objective is to develop such a model, usable in finite element programs. The comminution at very high strain rates can dissipate a large portion of the kinetic energy of an impacting missile. The spatial derivative of the energy dissipated by comminution gives a force resisting the penetration, which is superposed on the nodal forces obtained from the static constitutive model in a finite element program. The present theory is inspired partly by Grady's model for expansive comminution due to explosion inside a hollow sphere, and partly by analogy with turbulence. In high velocity turbulent flow, the energy dissipation rate gets enhanced by the formation of micro-vortices (eddies) which dissipate energy by viscous shear stress. Similarly, here it is assumed that the energy dissipation at fast deformation of a confined solid gets enhanced by the release of kinetic energy of the motion associated with a high-rate shear strain of forming particles. For simplicity, the shape of these particles in the plane of maximum shear rate is considered to be regular hexagons. The particle sizes are assumed to be distributed according to the Schuhmann power law. The condition that the rate of release of the local kinetic energy must be equal to the interface fracture energy yields a relation between the particle size, the shear strain rate, the fracture energy and the mass density. As one experimental justification, the present theory agrees with Grady's empirical observation that, in impact events, the average particle size is proportional to the (-2/3) power of the shear strain rate. The main characteristic of the comminution process is a dimensionless number Ba (Eq. (37)) representing the ratio of the local kinetic energy of shear strain rate to the maximum possible

  9. Strain rate tensor in Iran from a new GPS velocity field

    NASA Astrophysics Data System (ADS)

    Masson, Frédéric; Lehujeur, Maximilien; Ziegler, Yann; Doubre, Cécile

    2014-04-01

    The aim of this paper is to determine the strain rate tensor (SRT) for the Iranian region. In this study, (1) we apply a method of computation of the SRT never used for the Iranian area and (2) we use a new GPS velocity field obtained from several previously published velocity fields. First, the method is described and tested on a synthetic case, which mimics the real Iranian case. The synthetic tests confirm that the method allows us to both retrieve high gradients of the strain rate field and reduce the effect of an erroneous velocity vector. Second, the method is applied to a real data set covering the Arabia-Eurasia collision zone in Iran. We particularly focus on the Zagros-Makran transition zone, the Central Iran region and the northernmost part of the Arabia-Eurasia collision zone (NW Iran-Caucasus-East Turkey). Whereas the main characteristics of the obtained SRT are consistent with known tectonic features, important new results are found in the Central Iran, with the strike-slip style along the Anar and Deshir faults, and the Zagros-Makran transition zone, with a north-south variation of the SRT along the Zendan-Minab-Palami fault system. We link these results to recent active tectonic studies.

  10. High speed imaging for material parameters calibration at high strain rate

    NASA Astrophysics Data System (ADS)

    Sasso, M.; Fardmoshiri, M.; Mancini, E.; Rossi, M.; Cortese, L.

    2016-05-01

    To describe the material behaviour at high strain rates dynamic experimental tests are necessary, and appropriate constitutive models are to be calibrated accordingly. A way to achieve this is through an inverse procedure, based on the minimization of an error function calculated as the difference between experimental and numerical data coming from Finite Element analysis. This approach, widely used in the literature, has a heavy computational cost associated with the minimization process that requires, for each variation of the material model parameters, the execution of FE calculations. In this work, a faster but yet effective calibration procedure is studied Experimental tests were performed on an aluminium alloy AA6061-T6, by means of a direct tension-compression Split Hopkinson bar. A fast camera with a resolution of 192 × 128 pixels and capable of a sample rate of 100,000 fps captured images of the deformation process undergone by the samples during the tests. The profile of the sample obtained after the image binarization and processing, was postprocessed to derive the deformation history; afterwards it was possible to calculate the true stress and strain, and carry out the inverse calibration by analytical computations. The results of this method were compared with the ones coming from the Finite Element approach.

  11. Strain-rate dependence of the compressive properties of normal and carbon-fiber-reinforced bone cement.

    PubMed

    Saha, S; Pal, S

    1983-11-01

    Normal and carbon-fiber-reinforced (1 wt. %) bone cement samples were tested in compression at various strain rates. Both the compressive strength and proportional limit increased in general with increasing strain rate. Similar strain-rate sensitivity was also shown by the carbon-fiber-reinforced bone cement. The mechanical properties, namely the modulus of elasticity, the proportional limit, and the compressive strength of the carbon-fiber-reinforced bone cement showed highly significant positive correlations with the strain rate. PMID:6654926

  12. Stress response by the strain-rate change in binary, stoichiometric Ni{sub 3}Al single crystal

    SciTech Connect

    Demura, M.; Hirano, T.

    1997-12-31

    The strain-rate dependence of flow stress in single crystals of binary, stoichiometric Ni{sub 3}Al was studied in the temperature region of the yield stress anomaly. Below 400 K, the steady-state flow stress was found to be independent of strain rate, though it changed temporarily when the strain rate was changed. The strain-rate insensitivity can be explained by assuming that the flow stress is controlled by the multiplication/immobilization of mobile dislocations.

  13. Transient x-ray diffraction with simultaneous imaging under high strain-rate loading

    SciTech Connect

    Fan, D.; E, J. C.; Zhao, F.; Luo, S. N.; Lu, L.; Li, B.; Qi, M. L.; Sun, T.; Fezzaa, K.; Chen, W.

    2014-11-15

    Real time, in situ, multiframe, diffraction, and imaging measurements on bulk samples under high and ultrahigh strain-rate loading are highly desirable for micro- and mesoscale sciences. We present an experimental demonstration of multiframe transient x-ray diffraction (TXD) along with simultaneous imaging under high strain-rate loading at the Advanced Photon Source beamline 32ID. The feasibility study utilizes high strain-rate Hopkinson bar loading on a Mg alloy. The exposure time in TXD is 2–3 μs, and the frame interval is 26.7–62.5 μs. Various dynamic deformation mechanisms are revealed by TXD, including lattice expansion or compression, crystal plasticity, grain or lattice rotation, and likely grain refinement, as well as considerable anisotropy in deformation. Dynamic strain fields are mapped via x-ray digital image correlation, and are consistent with the diffraction measurements and loading histories.

  14. LS-DYNA Implementation of Polymer Matrix Composite Model Under High Strain Rate Impact

    NASA Technical Reports Server (NTRS)

    Zheng, Xia-Hua; Goldberg, Robert K.; Binienda, Wieslaw K.; Roberts, Gary D.

    2003-01-01

    A recently developed constitutive model is implemented into LS-DYNA as a user defined material model (UMAT) to characterize the nonlinear strain rate dependent behavior of polymers. By utilizing this model within a micromechanics technique based on a laminate analogy, an algorithm to analyze the strain rate dependent, nonlinear deformation of a fiber reinforced polymer matrix composite is then developed as a UMAT to simulate the response of these composites under high strain rate impact. The models are designed for shell elements in order to ensure computational efficiency. Experimental and numerical stress-strain curves are compared for two representative polymers and a representative polymer matrix composite, with the analytical model predicting the experimental response reasonably well.

  15. Transient x-ray diffraction with simultaneous imaging under high strain-rate loading

    NASA Astrophysics Data System (ADS)

    Fan, D.; Lu, L.; Li, B.; Qi, M. L.; E, J. C.; Zhao, F.; Sun, T.; Fezzaa, K.; Chen, W.; Luo, S. N.

    2014-11-01

    Real time, in situ, multiframe, diffraction, and imaging measurements on bulk samples under high and ultrahigh strain-rate loading are highly desirable for micro- and mesoscale sciences. We present an experimental demonstration of multiframe transient x-ray diffraction (TXD) along with simultaneous imaging under high strain-rate loading at the Advanced Photon Source beamline 32ID. The feasibility study utilizes high strain-rate Hopkinson bar loading on a Mg alloy. The exposure time in TXD is 2-3 μs, and the frame interval is 26.7-62.5 μs. Various dynamic deformation mechanisms are revealed by TXD, including lattice expansion or compression, crystal plasticity, grain or lattice rotation, and likely grain refinement, as well as considerable anisotropy in deformation. Dynamic strain fields are mapped via x-ray digital image correlation, and are consistent with the diffraction measurements and loading histories.

  16. Flow rate/pressure drop data gathered from testing a sample of the Space Shuttle Strain Isolation Pad (SIP): Effects of ambient pressure combined with tension and compression conditions

    NASA Technical Reports Server (NTRS)

    Springfield, R. D.; Lawing, P. L.

    1983-01-01

    Tests were conducted on a sample of strain isolation pad (SIP) typical of that used in the shuttle orbiter thermal protection system to determine the characteristics of SIP internal flow. Data obtained were pressure drop as a function of flow rate for a range of ambient pressures representing various points along the Shuttle trajectory and for stretched and compressed conditions of the SIP. Flow was in the direction of the weave parallel to most of the fibers. The data are plotted in several standard engineering formats in order to be of maximum utility to the user. In addition to providing support to the Space Shuttle Program, these data are a source of experimental information on flow through fiberous (rather than the more usual sand bed type) porous media.

  17. Modeling Grain Size and Strain Rate in Linear Friction Welded Waspaloy

    NASA Astrophysics Data System (ADS)

    Chamanfar, Ahmad; Jahazi, Mohammad; Gholipour, Javad; Wanjara, Priti; Yue, Stephen

    2013-09-01

    The high-temperature deformation behavior of the Ni-base superalloy, Waspaloy, using uniaxial isothermal compression testing was investigated at temperatures above the γ' solvus, 1333 K, 1373 K, and 1413 K (1060 °C, 1100 °C, and 1140 °C) for constant true strain rates of 0.001, 0.01, 0.1, and 1 s-1 and up to a true strain of 0.83. Flow softening and microstructural investigation indicated that dynamic recrystallization took place during deformation. For the investigated conditions, the strain rate sensitivity factor and the activation energy of hot deformation were 0.199 and 462 kJ/mol, respectively. Constitutive equations relating the dynamic recrystallized grain size to the deformation temperature and strain rate were developed and used to predict the grain size and strain rate in linear friction-welded (LFWed) Waspaloy. The predictions were validated against experimental findings and data reported in the literature. It was found that the equations can reliably predict the grain size of LFWed Waspaloy. Furthermore, the estimated strain rate was in agreement with finite element modeling data reported in the literature.

  18. Influence of temperature on the high-strain-rate mechanical behavior of PBX 9501

    SciTech Connect

    Gray, G.T. III; Blumenthal, W.R.; Idar, D.J.; Cady, C.M.

    1998-07-01

    High-strain-rate (2000 s{sup {minus}1}) compression measurements utilizing a specially-designed Split-Hopkinson-Pressure Bar have been obtained as a function of temperature from {minus}55 to +50{degree}C for the plastic-bonded explosive PBX 9501. The PBX 9501 high-strain-rate data was found to exhibit similarities to other energetic, propellant, and polymer-composite materials as a function of strain rate and temperature. The high-rate response of the energetic was found to exhibit increased ultimate compressive fracture strength and elastic loading modulus with decreasing temperature. PBX 9501 exhibited nearly invariant fracture strains of {approximately}1.5 percent as a function of temperature at high-strain rate. The maximum compressive strength of PBX 9501 was measured to increase from {approximately}55 MPa at 50{degree}C to 150 MPa at {minus}55{degree}C. Scanning electron microscopic observations of the fracture mode of PBX 9501 deformed at high-strain revealed predominantly transgranular cleavage fracture of the HMX crystals. {copyright} {ital 1998 American Institute of Physics.}

  19. Dynamic tensile fracture of mortar at ultra-high strain-rates

    NASA Astrophysics Data System (ADS)

    Erzar, B.; Buzaud, E.; Chanal, P.-Y.

    2013-12-01

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 104 to 4 × 104 s-1. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.

  20. Dynamic tensile fracture of mortar at ultra-high strain-rates

    SciTech Connect

    Erzar, B. Buzaud, E.; Chanal, P.-Y.

    2013-12-28

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 10{sup 4} to 4 × 10{sup 4} s{sup −1}. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.

  1. Static and dynamic strain energy release rates in toughened thermosetting composite laminates

    NASA Technical Reports Server (NTRS)

    Cairns, Douglas S.

    1992-01-01

    In this work, the static and dynamic fracture properties of several thermosetting resin based composite laminates are presented. Two classes of materials are explored. These are homogeneous, thermosetting resins and toughened, multi-phase, thermosetting resin systems. Multi-phase resin materials have shown enhancement over homogenous materials with respect to damage resistance. The development of new dynamic tests are presented for composite laminates based on Width Tapered Double Cantilevered Beam (WTDCB) for Mode 1 fracture and the End Notched Flexure (ENF) specimen. The WTDCB sample was loaded via a low inertia, pneumatic cylinder to produce rapid cross-head displacements. A high rate, piezo-electric load cell and an accelerometer were mounted on the specimen. A digital oscilloscope was used for data acquisition. Typical static and dynamic load versus displacement plots are presented. The ENF specimen was impacted in three point bending with an instrumented impact tower. Fracture initiation and propagation energies under static and dynamic conditions were determined analytically and experimentally. The test results for Mode 1 fracture are relatively insensitive to strain rate effects for the laminates tested in this study. The test results from Mode 2 fracture indicate that the toughened systems provide superior fracture initiation and higher resistance to propagation under dynamic conditions. While the static fracture properties of the homogeneous systems may be relatively high, the apparent Mode 2 dynamic critical strain energy release rate drops significantly. The results indicate that static Mode 2 fracture testing is inadequate for determining the fracture performance of composite structures subjected to conditions such as low velocity impact. A good correlation between the basic Mode 2 dynamic fracture properties and the performance is a combined material/structural Compression After Impact (CAI) test is found. These results underscore the importance of

  2. Properties of heterogeneous energetic materials under high strain, high strain rate deformation

    NASA Astrophysics Data System (ADS)

    Cai, Jing

    Heterogeneous energetic materials have many applications. Their dynamic behavior and microstructural evolution upon plastic deformation have remained not fully understood. The following heterogeneous materials were investigated in the this study: the pure PTFE (usually a mixture of crystalline and amorphous phases), PTFE-Sn, PTFE-Al, PTFE-Al-W, and carbon fibers filled Al alloy. Sample manufacturing processes involving ball milling and Cold Isostatic Pressing were employed. Quasi-static and Hopkinson bar tests were carried out to obtain the compressive strengths of composites. The Conventional Thick-walled Cylinder (TWC) method and newly developed small-scale Hopkinson bar based TWC experiments were conducted to investigate single shear bands and their assembly. Conventional and "soft" drop-weight tests were performed to examine the mechanical properties and the initiation of chemical reactions. Scanning Electron Microscopy was used to detect the details of the microstructures and failure mechanisms of heterogeneous materials. New features in the dynamic behavior of heterogeneous materials were observed. They include the following: (1) Strain softening, instead of thermal softening, is the main mechanism in the initiation of shear bands in explosively driven TWC tests of solid PTFE. (2) Cold isostatically pressed PTFE-Sn samples were more stable with respect to shear localization than solid PTFE. (3) The dynamic collapse of solid PTFE-Al samples with different particle sizes was accomplished with the shear localization bands and cracks. (4) Force chains in the fine W and Al particles were attributed to the high strength of the porous PTFE-Al-W composite containing fine W particles in comparison with composites with coarse W particles. (5) Debonding of metal particles from the PTFE matrix and the fracture of the matrix were identified to be two major mechanisms for the failure of the PTFE-Al-W composites. (6) The formation of PTFE nano-fibers during high strain flow

  3. Study of mechanical properties, microstructures and corrosion behavior of al 7075 t651 alloy with varying strain rate

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Ghosh, M.; Mondal, K.; Venkitanarayanan, P.; Moon, A. P.; Varshney, A.

    2015-02-01

    Compression test of Al 7075 T651 was carried out at high strain rates (1138 - 2534 s-1) using Split Hopkinson Pressure Bar and at slow strain rate (10-4s-1) in 100KN Universal Testing machine to understand the improvement in mechanical properties and associated changes in microstructures. Cylindrical specimens of 6 mm height and 6 mm diameter were compressed dynamically. The influence of strain rates on mechanical properties, microstructure evolution and corrosion behavior after immersion test in 3.5% NaCl solution was also investigated. Strain rate, withdrawal stress and yield stress were observed to increase with impact velocity in high strain rate tests, while in slow strain rate tests, n value was observed to increase with increasing total strain. Microstructural observations revealed that after high strain rate test, grains of Al matrix were elongated. It was observed that corrosion resistance decreased with increase in impact velocity.

  4. The High-Strain Rate Loading of Structural Biological Materials

    NASA Astrophysics Data System (ADS)

    Proud, W. G.; Nguyen, T.-T. N.; Bo, C.; Butler, B. J.; Boddy, R. L.; Williams, A.; Masouros, S.; Brown, K. A.

    2015-10-01

    The human body can be subjected to violent acceleration as a result of explosion caused by military ordinance or accident. Blast waves cause injury and blunt trauma can be produced by violent impact of objects against the human body. The long-term clinical manifestations of blast injury can be significantly different in nature and extent to those suffering less aggressive insult. Similarly, the damage seen in lower limbs from those injured in explosion incidents is in general more severe than those falling from height. These phenomena increase the need for knowledge of the short- and long-term effect of transient mechanical loading to the biological structures of the human body. This paper gives an overview of some of the results of collaborative investigation into blast injury. The requirement for time-resolved data, appropriate mechanical modeling, materials characterization and biological effects is presented. The use of a range of loading platforms, universal testing machines, drop weights, Hopkinson bars, and bespoke traumatic injury simulators are given.

  5. High strain rate mechanical properties of IM7/8551-7 graphite epoxy composite

    SciTech Connect

    Powers, B.M.; Vinson, J.R.; Hall, I.W.

    1995-12-31

    Polymer matrix composites offer excellent mechanical properties such as high specific strength and stiffness which make them attractive for many naval, aerospace and automotive structural components. Although they are candidate materials for many applications where high strain rate loading is probable, little is known of the material responses to shock loading for most composite materials. Because mechanical properties vary significantly with strain rate, the use of static properties in the analysis and design of structures which undergo dynamic loadings can on one hand lead to a very conservative overweight design, or on the other hand can lead to designs which fail prematurely and unexpectedly. The use of dynamic material properties will ensure the design of composite structures which are weight efficient and structurally sound when they are subjected to dynamic loads. In this study, a Split Hopkinson Pressure Bar is used to obtain compressive mechanical properties of a unidirectional IM7/8551-7 graphite epoxy composite. For each of the three principal directions, the yield stress, yield strain, ultimate stress, ultimate strain, modulus of elasticity, elastic strain energy function and the total strain energy to failure are presented for strain rates varying from 49 sec{sup {minus}1} to 1430 sec{sup {minus}1}. The data from 72 tests are statistically analyzed, represented by equations, and discussed in some detail.

  6. Strain gradient effects on cyclic plasticity

    NASA Astrophysics Data System (ADS)

    Niordson, Christian F.; Legarth, Brian Nyvang

    2010-04-01

    Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between rigid platens have been carried out, using the finite element method. It is shown for elastic-perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening in the presence of conventional material hardening. Furthermore, it is shown that dissipative gradient effects can lead to both an increase and a decrease in the dissipation per load cycle depending on the magnitude of the dissipative length parameter, whereas energetic gradient effects lead to decreasing dissipation for increasing energetic length parameter. For dissipative gradient effects it is found that dissipation has a maximum value for some none zero value of the material length parameter, which depends on the magnitude of the deformation cycles.

  7. Closing an open system: Pore pressure changes in permeable edifice rock at high strain rates

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Wadsworth, Fabian B.

    2016-04-01

    A permeable or open system will react as a closed system if the rocks implicated are deformed on a timescale that precludes fluid movement. Closed system ("undrained") deformation therefore leads to a failure mode dependent change in pore pressure: microcracking (dilatant behaviour) and cataclastic pore collapse (compactant behaviour) will decrease and increase pore pressure, respectively. In the dilatant regime (i.e., in the shallow edifice, < 1 km depth), a decrease in pore pressure will serve to strengthen rock-a process termed dilatancy hardening. However, it is shown here, using undrained triaxial deformation experiments, that the high initial porosity and microcrack density of typical edifice-forming andesites prevent dilatancy hardening. This allows the rock proximal to the magma-filled conduit in the shallow edifice to remain weak during periods of unrest when high magma strain rates could be transferred to the adjacent country rock. Although the propensity for fracturing will likely reduce the structural integrity of the edifice, fracturing of the shallow edifice may improve the outgassing efficiency of the nearby magma-filled conduit. The increase in pore pressure during undrained deformation in the compactant regime (i.e., in the deep edifice, > 1 km depth) could lead to pore pressure embrittlement and fracturing. Indeed, the experiments of this study show that the pore pressure increases during progressive compaction in a closed system. However, the pore pressure is prevented from reaching the critical value required to promote a dilatant response (i.e., fracturing) for two reasons. First, the rate of compaction (i.e., porosity decrease) slows as the sample is deformed at a constant strain rate, a consequence of the decay in effective pressure. Second, the emergence of microcracking as the rock approaches the compactant-dilatant transition acts as a negative feedback and prevents the rock from transiting into the dilatant field. At this point, local

  8. A map of strain rate for Eastern Turkey, from InSAR and GPS data

    NASA Astrophysics Data System (ADS)

    Walters, R. J.; Parsons, B.; Wright, T. J.

    2013-12-01

    Tectonic deformation in Eastern Turkey is dominated by strain localisation on two major strike-slip faults; the North Anatolian Fault (NAF) and the East Anatolian Fault (EAF). Here we use Interferometric Synthetic Aperture Radar (InSAR) to map interseismic strain across the Eurasian-Arabian plate boundary zone in Eastern Turkey, covering both the NAF and the EAF. Most previous InSAR interseismic studies of the NAF have used only descending track data, and in these studies it was therefore necessary to assume purely horizontal, fault-parallel motion in modelling deformation. The slip rate of the EAF has been the focus of only a few geological and geodetic studies, and InSAR has not previously been used to measure interseismic strain accumulation across this fault. We construct ~400 Envisat interferograms on three descending and two ascending tracks in Eastern Turkey, covering both the NAF and EAF. We use these data to generate five line-of-sight velocity maps (ratemaps) using the PiRATE software package (Wang et al., GRL, 2009), which implements a multi-interferogram network approach in order to maximise spatial coverage and correct for orbital errors. We find that the five InSAR ratemaps agree best in overlapping regions when all interferograms are first corrected for atmospheric effects using model outputs from the ERA-Interim global atmospheric model (Jolivet et al., GRL, 2011). From these five overlapping ratemaps, we model elastic strain accumulation for both the NAF and EAF, and calculate slip rates of 20×3 mm/yr and 10×2 mm/yr respectively, with associated locking depths of 16×9 km and 13×4 km. We then use the ratemaps, together with a compilation of GPS data in the area, to calculate a velocity field for Eastern Turkey. We find that the velocity field derived from InSAR and GPS data significantly reduces the uncertainty of east-west velocities when compared with the velocity field derived from GPS data alone, and shows that strain is mainly localised

  9. Strain Rate by Geodetic Observations Associated with Seismic Events in the SIRGAS-CON Network Region.

    NASA Astrophysics Data System (ADS)

    Marotta, G. S.; Franca, G.; Galera Monico, J. F.; Fuck, R. A.

    2014-12-01

    This research investigates surface strains related to seismic events and their relationship with pre- and post-seismic events in South American, Antarctica, Nazca, Cocos, North American and Caribbean plates , by analyzing the variation of estimated earth coordinates, for the period 2000-2014, supplied by a geodetic network called SIRGAS-CON. Based on data provided by the USGS for the same period, and after the Global Congruency test, we selected the events associated with unstable geodetic network points. The resulting strains were estimated based on the finite element method. It was possible to determine the strains along with the resulting guidelines for pre- and post-seismic, considering each region formed for analysis as a homogeneous solid body. Later, a multi-year solution of the network was estimated and used to estimate the strain rates of the earth surface from the changing directions of the velocity vectors of 332 geodetic points located in the South American plate and surround plates. The strain rate was determined and, using Euler vector computed, it was possible to estimate the convergence and accommodation rates to each plate. The results showed that contraction regions coincide with locations with most of the high magnitude seismic events. It suggest that major movements detected on the surface occur in regions with more heterogeneous geological structures and multiple rupture events; significant amounts of elastic strain can be accumulated on geological structures away from the plate boundary faults; and, behavior of contractions and extensions is similar to what has been found in seismological studies. Despite the association between seismic events and the strain of geodetic network, some events of high magnitude were excluded because it does not show the surface strain, which is located at great depths. It was confirmed that events of greater magnitude provide increased surface strain rate when compared with other similar depths.

  10. High-Strain-Rate Forming of Aluminum and Steel Sheets for Automotive Applications

    SciTech Connect

    Rohatgi, Aashish; Stephens, Elizabeth V; Soulami, Ayoub; Davies, Richard W; Smith, Mark T

    2010-06-01

    The formability of aluminum alloy AA5182-O and DP600 steel sheets at high-strain-rates was investigated using an electrohydraulic forming (EHF) setup. Test sheets, ~150 mm diameter x 1 mm thick, were clamped around their circumference and subjected to a pressure-pulse (several 100's duration) generated by a high-energy (up to ~34 kJ) under-water electrical discharge. The real-time strain and strain-rate of the deforming sheets were quantified by the digital image correlation (DIC) technique using a pair of high-speed cameras (~15's per frame). Strain-rate amplification was observed when the sheets were deformed into a conical die, with the maximum in-plane strain-rate and strain for aluminum measured as ~1200 /s and ~0.2, respectively. The deformation behavior of the sheets was modeled using ABAQUS/finite element explicit code and better correlation, between the predicted and the experimental sheet deformation behavior, was observed when an alternate pressure-profile was used instead of the one available from the literature.

  11. Earthquake potential and magnitude limits inferred from a geodetic strain-rate model for southern Europe

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Bird, P.; Jackson, D. D.

    2016-04-01

    The project Seismic Hazard Harmonization in Europe (SHARE), completed in 2013, presents significant improvements over previous regional seismic hazard modeling efforts. The Global Strain Rate Map v2.1, sponsored by the Global Earthquake Model Foundation and built on a large set of self-consistent geodetic GPS velocities, was released in 2014. To check the SHARE seismic source models that were based mainly on historical earthquakes and active fault data, we first evaluate the SHARE historical earthquake catalogues and demonstrate that the earthquake magnitudes are acceptable. Then, we construct an earthquake potential model using the Global Strain Rate Map data. SHARE models provided parameters from which magnitude-frequency distributions can be specified for each of 437 seismic source zones covering most of Europe. Because we are interested in proposed magnitude limits, and the original zones had insufficient data for accurate estimates, we combine zones into five groups according to SHARE's estimates of maximum magnitude. Using the strain rates, we calculate tectonic moment rates for each group. Next, we infer seismicity rates from the tectonic moment rates and compare them with historical and SHARE seismicity rates. For two of the groups, the tectonic moment rates are higher than the seismic moment rates of the SHARE models. Consequently, the rates of large earthquakes forecast by the SHARE models are lower than those inferred from tectonic moment rate. In fact, the SHARE models forecast higher seismicity rates than the historical rates, which indicate that the authors of SHARE were aware of the potentially higher seismic activities in the zones. For one group, the tectonic moment rate is lower than the seismic moment rates forecast by the SHARE models. As a result, the rates of large earthquakes in that group forecast by the SHARE model are higher than those inferred from tectonic moment rate, but lower than what the historical data show. For the other two

  12. An explanation of the small strain-rate sensitivity of Ni{sub 3}Al

    SciTech Connect

    Sun, Y.Q.

    1997-12-31

    Based on the superkink model, an explanation is given in this paper for the small strain-rate sensitivity of the anomalous yield stress of Ni{sub 3}Al. The yield stress is proposed to be the stress needed to destabilize the average superkinks and it varies inversely with superkink height. The yield stress is insensitive to the strain-rate because the superkink height is controlled by the rate at which the superkink widens and is not directly related with the superkink propagation speed.

  13. Strain rate, temperature, and humidity on strength and moduli of a graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Lifshitz, J. M.

    1981-01-01

    Results of an experimental study of the influence of strain rate, temperature and humidity on the mechanical behavior of a graphite/epoxy fiber composite are presented. Three principal strengths (longitudinal, transverse and shear) and four basic moduli (E1, E2, G12 and U12) of a unidirectional graphite/epoxy composite were followed as a function of strain rate, temperature and humidity. Each test was performed at a constant tensile strain rate in an environmental chamber providing simultaneous temperature and humidity control. Prior to testing, specimens were given a moisture preconditioning treatment at 60 C. Values for the matrix dominated moduli and strength were significantly influenced by both environmental and rate parameters, whereas the fiber dominated moduli were not. However, the longitudinal strength was significantly influenced by temperature and moisture content. A qualitative explanation for these observations is presented.

  14. The Contribution of the Expanding Shell Test to the Modeling of Elastoplaticity at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Llorca, Fabrice; Buy, Francois

    2002-07-01

    The expanding shell test allows to load a material in the domain of high strain levels while strain rate is about 104s-1. This test submits an hemisphere to a radial expanding free flight, using a pyrotechnic device. The experiment (experimental apparatus, measurementsellipsis) is described with the difficulties encountered for the interpretation of the experimental data. Under some assumptions, the numerical transformation of radial velocities gives indications about the evolution of the strain, stress, strain rate and temperature rise, this last one being related to plastic work. We show how it is possible to associate both analytical and numerical approaches. Numerical simulation of the test is presented in a companion paper (see Buy01). Results obtained for copper, tantalum and TA6V4 are presented. The contribution of this test to the modeling of elastoplastic behavior is discussed and further works are proposed.

  15. Mechanisms of large strain, high strain rate plastic flow in the explosively driven collapse of Ni-Al laminate cylinders

    NASA Astrophysics Data System (ADS)

    Olney, K. L.; Chiu, P. H.; Higgins, A.; Serge, M.; Weihs, T. P.; Fritz, G.; Stover, A.; Benson, D. J.; Nesterenko, V. F.

    2014-05-01

    Ni-Al laminates have shown promise as reactive materials due to their high energy release through intermetallic reaction. In addition to the traditional ignition methods, the reaction may be initiated in hot spots that can be created during mechanical loading. The explosively driven thick walled cylinder (TWC) technique was performed on two Ni-Al laminates composed of thin foil layers with different mesostructues: concentric and corrugated. These experiments were conducted to examine how these materials accommodate large plastic strain under high strain rates. Finite element simulations of these specimens with mesostuctures digitized from the experimental samples were conducted to provide insight into the mesoscale mechanisms of plastic flow. The dependence of dynamic behaviour on mesostructure may be used to tailor the hot spot formation and therefore the reactivity of the material system.

  16. Influence of strain rate and temperature on the mechanical behavior of beryllium

    SciTech Connect

    Blumenthal, W.R.; Abeln, S.P.; Cannon, D.D.; Gray, G.T. III; Carpenter, R.W.

    1998-07-01

    The compressive stress-strain response of three grades of beryllium were studied as a function of strain rate and temperature. Grades S200D, E, and F represent a historical perspective of beryllium processing from the 1960{close_quote}s through 1990{close_quote}s technology. The purpose of this study was to measure the mechanical behavior of beryllium over a range of deformation conditions for constitutive model development and to obtain microstructural evidence for deformation mechanisms. The compressive stress-strain response was found to be independent of grade and strongly dependent on the applied strain rate between 0.001 and 8000 s{sup {minus}1}. The strain-hardening response displayed a moderate temperature dependence between 77{degree}K and 873{degree}K. Microstructural examination of SHPB specimens revealed that twinning was extensive at strains above 7{percent}. A SHPB sample deformed to over 20{percent} strain contained both twinning and grain boundary microcracking. {copyright} {ital 1998 American Institute of Physics.}

  17. [Effect of pesticides on Bacillus thuringiensis strains under controlled conditions].

    PubMed

    Salerno, C; Dias, S; Sagardoy, M

    1999-01-01

    Little is known about native populations of Bacillus thuringiensis (Bt) isolated from soils of Argentina. We undertook this study to determine the resistance to different pesticides of two commercial and fourteen native strains of Bt under in vitro conditions. An agar plate bioassay test conducted with ten pesticides and sixteen strains of Bt showed that Basagran, Scepter, Fungoxan and Decis were not toxic for the bioinsecticide bacteria at recommended application rates (RAR). In contrast, low concentrations (3.2% RAR) of Agil, Select and Isomero showed a deleterious effect on the bacteria investigated. Simultaneously, four of the pesticides were able to produce phenotypical changes on the Bt colonies grown on nutrient agar. Moreover, in a greenhouse experiment, seven pesticides applied at 1.6%, 12.5% and 100% RAR on soybean leaves were not as inhibitory as under in vitro conditions for two Bt strains (HD-1 and A61). However, survival of these strains in the phyllosphere of soybean differed significantly between untreated leaves and leaves treated with pesticides after 20 days of study (P < 0.05). Finally, and from an ecological point of view, these findings suggest that the addition of some pesticides to soybean leaves in lower concentrations than those recommended could be favourable for the persistence of Bt in this environment. PMID:10425660

  18. Numerical analysis of high strain rate failure of electro-magnetically loaded steel sheets

    NASA Astrophysics Data System (ADS)

    Erice, Borja; Mohr, Dirk

    2015-09-01

    Electro-magnetic forces provide a potentially power full means in designing dynamic experiments with active control of the loading conditions. This article deals with the development of computational models to simulate the thermo-mechanical response of electro-magnetically loaded metallic structures. The model assumes linear electromagnetic constitutive equations and time-independent electric induction to estimate the Joule heating and the Lorentz forces. The latter are then taken into account when evaluating stress equilibrium. A thermo-visco-plastic model with Johnson-Cook type of temperature and strain rate dependence and combined Swift-Voce hardening is used to evaluate the material's thermo-mechanical response. As a first application, the model is used to analyse the effect of electro-magnetic loading on the ductility of advanced high strength steels.

  19. Slow Strain Rate Testing of Alloy 22 in Simulated Concentrated Ground Waters

    SciTech Connect

    King, K J; Wong, L L; Estill, J C; Rebak, R B

    2003-10-29

    The proposed engineering barriers for the high-level nuclear waste repository in Yucca Mountain include a double walled container and a detached drip shield. The candidate material for the external wall of the container is Alloy 22 (N06022). One of the anticipated degradation modes for the containers could be environmentally assisted cracking (EAC). The objective of the current research was to characterize the effect of applied potential and temperature on the susceptibility of Alloy 22 to EAC in simulated concentrated water (SCW) and other environments using the slow strain rate technique (SSRT). Results show that the temperature and applied potential have a strong influence on the susceptibility of Alloy 22 to suffer EAC in SCW solution. Limited results show that sodium fluoride solution is more detrimental than sodium chloride solution.

  20. On the Strain Rate Sensitivity of Abs and Abs Plus Fused Deposition Modeling Parts

    NASA Astrophysics Data System (ADS)

    Vairis, A.; Petousis, M.; Vidakis, N.; Savvakis, K.

    2016-06-01

    In this work the effect of strain rate on the tensile strength of fused deposition modeling parts built with Acrylonitrile-butadiene-styrene (ABS) and ABS plus material is presented. ASTM D638-02a specimens were built with ABS and ABS plus and they were tested on a Schenck Trebel Co. tensile test machine at three different test speeds, equal, lower, and higher to the test speed required by the ASTM D638-02a standard. The experimental tensile strength results were compared and evaluated. The fracture surfaces of selected specimens were examined with a scanning electron microscope, to determine failure mode of the filament strands. It was found that, as the test speed increases, specimens develop higher tensile strength and have higher elastic modulus. Specimens tested in the highest speed of the experiment had on average about 10% higher elastic modulus and developed on average about 11% higher tensile strength.

  1. Modeling anisotropic sensitivity in pentaerythritol tetranitrate using strain rate dependent reactive flow model

    NASA Astrophysics Data System (ADS)

    Kim, Kihong; Fried, Laurence; Yoh, Jack

    2013-06-01

    Initiation of detonation in some high explosives has shown strong anisotropic sensitivity under mechanical impact. Preferred directions of crystal orientation on shock initiation have been experimentally observed in pentaerythritol tetranitrate (PETN), which resulted in dramatic difference in the detonation sensitivity upon shock compression in different directions. The ignition and growth model based on empirical observation on the pressure-dependent initiation of detonation has been widely used to date. Since the model is independent of direction of compression, it is impossible to address sensitivity associated with preferred crystal orientation for establishing the go/no-go criteria. In this paper, we have proposed a new reaction flow model that is consistent with avaialble PETN experiments and atomistic calculations. A general tensor notation is utilized to fully address three-dimensional effect of the strain rate dependence to anisotropic detonation of PETN. K. Kim was supported by post-doctoral research fellowship from the National Research Foundation of Korea.

  2. Peak strain magnitudes and rates in the tibia exceed greatly those in the skull: An in vivo study in a human subject

    PubMed Central

    Hillam, Richard A; Goodship, Allen E; Skerry, Tim M

    2015-01-01

    Bone mass and architecture are the result of a genetically determined baseline structure, modified by the effect of internal hormonal/biochemical regulators and the effect of mechanical loading. Bone strain is thought to drive a feedback mechanism to regulate bone formation and resorption to maintain an optimal, but not excessive mass and organisation of material at each skeletal location. Because every site in the skeleton has different functions, we have measured bone strains induced by physiological and more unusual activities, at two different sites, the tibia and cranium of a young human male in vivo. During the most vigorous activities, tibial strains were shown to exceed 0.2%, when ground reaction exceeded 5 times body weight. However in the skull the highest strains recorded were during heading a heavy medicine/exercise ball where parietal strains were up to 0.0192%. Interestingly parietal strains during more physiological activities were much lower, often below 0.01%. Strains during biting were not dependent upon bite force, but could be induced by facial contortions of similar appearance without contact between the teeth. Rates of strain change in the two sites were also very different, where peak tibial strain rate exceeded rate in the parietal bone by more than 5 fold. These findings suggest that the skull and tibia are subject to quite different regulatory influences, as strains that would be normal in the human skull would be likely to lead to profound bone loss by disuse in the long bones. PMID:26232812

  3. Development of a strain rate dependent material model of human cortical bone for computer-aided reconstruction of injury mechanisms.

    PubMed

    Asgharpour, Zahra; Zioupos, Peter; Graw, Matthias; Peldschus, Steffen

    2014-03-01

    Computer-aided methods such as finite-element simulation offer a great potential in the forensic reconstruction of injury mechanisms. Numerous studies have been performed on understanding and analysing the mechanical properties of bone and the mechanism of its fracture. Determination of the mechanical properties of bones is made on the same basis used for other structural materials. The mechanical behaviour of bones is affected by the mechanical properties of the bone material, the geometry, the loading direction and mode and of course the loading rate. Strain rate dependency of mechanical properties of cortical bone has been well demonstrated in literature studies, but as many of these were performed on animal bones and at non-physiological strain rates it is questionable how these will apply in the human situations. High strain-rates dominate in a lot of forensic applications in automotive crashes and assault scenarios. There is an overwhelming need to a model which can describe the complex behaviour of bone at lower strain rates as well as higher ones. Some attempts have been made to model the viscoelastic and viscoplastic properties of the bone at high strain rates using constitutive mathematical models with little demonstrated success. The main objective of the present study is to model the rate dependent behaviour of the bones based on experimental data. An isotropic material model of human cortical bone with strain rate dependency effects is implemented using the LS-DYNA material library. We employed a human finite element model called THUMS (Total Human Model for Safety), developed by Toyota R&D Labs and the Wayne State University, USA. The finite element model of the human femur is extracted from the THUMS model. Different methods have been employed to develop a strain rate dependent material model for the femur bone. Results of one the recent experimental studies on human femur have been employed to obtain the numerical model for cortical femur. A

  4. Experimental characterization and modelling of UO2 behavior at high temperatures and high strain rates

    NASA Astrophysics Data System (ADS)

    Salvo, Maxime; Sercombe, Jérôme; Ménard, Jean-Claude; Julien, Jérôme; Helfer, Thomas; Désoyer, Thierry

    2015-01-01

    This work presents an experimental characterization of uranium dioxide (UO2) in compression under Reactivity Initiated Accident (RIA) conditions. Pellet samples were tested at four temperatures (1100, 1350, 1550 and 1700 °C) and at a strain rate varying over 4 decades (10-4-10-3-10-2-10-1 /s). The experimental results show that the stress-strain curves cannot be fitted with a unique power law as it is the case at smaller strain rates (10-9-10-5 /s). A strain-hardening also appears in most of the tests. The microstructural observations show a pronounced evolution of the porosity at the pellet center during the tests. A hyperbolic sine model which accounts for volume variations (pore compressibility) was therefore proposed to describe the behavior of UO2 on a large range of temperatures (1100 - 1700 °C) and strain rates (10-9-10-1 /s). The Finite Element simulations of the compression tests lead to results (maximum stress, axial and hoop strain distribution, porosity distribution) in good agreement with the measurements. The model was then assessed on a database of more than two hundred creep tests.

  5. Flow stress and material model study at high strain rate and low temperature

    NASA Astrophysics Data System (ADS)

    Kandasamy, R.; Brar, N. S.

    1994-07-01

    The flow stress of M200 maraging steel, C1008 steel, and 6061-T6 aluminum at low temperatures to 123 K and at a strain rate of about 103 s-1 is measured using split Hopkinson bar (SHB). Liquid nitrogen is used to cool the specimen to the desired temperature. The flow stress of M200 increased to 1.93 GPa at 123 K, an increase of 22 percent compared to 1.58 GPa at room temperature. In the case of 6061-T6 aluminum the flow stress remains at about 390 MPa at temperatures in the range 293 to 123 K. For C1008 steel, the flow stress increased to 860 MPa at 123 K from its room temperature value of 610 MPa. The failure strain for C1008 steel at 123 K was 0.02, compared to 0.2 at room temperature, suggesting a ductile to brittle transition. The Johnson-Cook material model constant ``m'', which accounts for temperature effect, is 0.5 for C1008 at temperatures in the range 123 K to 950 K.

  6. Experimental studies on the effect of coherency strains on coarsening kinetics: Current status and future outlook

    SciTech Connect

    Muralidharan, G.; Epperson, J.E.; Chen, H.

    1994-03-01

    The effect of coherency strains on the coarsening rate constant in Ostwald ripening is an area that is not well understood. We briefly review the extant experimental data on the effect of coherency strains on coarsening rates and explain the need to account for variations in coarsening rates due to composition and diffusivity effects before drawing any conclusions on the dependence of coarsening rates on the misfit parameter. Using the preexisting theories for coarsening rates in multi-component systems, we suggest a simple method to account for the composition dependence of coarsening rates arising from factors unrelated to coherency strain effects. We then present some of the results from our on-going work in the Ni-Al-Si system and explain the relevance of this study to our understanding of coarsening in internally-stressed systems. We conclude the presentation with our views on the direction of future research in this aspect of coarsening.

  7. Measurement of the mechanical properties of car body sheet steels at high strain rates and non ambient temperature

    NASA Astrophysics Data System (ADS)

    Bleck, W.; Larour, P.

    2003-09-01

    Crash behaviour and light weight have become the major design criteria for car bodies. Modem high strength steels offer appropriate solutions for these requirements. The prediction of the crash behaviour in simulation programs requires the information on materials behaviour during dynamic testing. The reduction of the signal waviness and the inertia effects at strain rates above 50s^{-1} are major issues in dynamic tensile testing. Damping techniques or load measurement on the sample itself are the common way to reduce oscillations. Strain measurement from the piston displacement or from optical devices on the specimen itself are also compared. Advantages and drawbacks of those various measurement techniques are presented.

  8. Strain-rate and temperature dependent material properties of Agar and Gellan Gum used in biomedical applications.

    PubMed

    Schiavi, Alessandro; Cuccaro, Rugiada; Troia, Adriano

    2016-01-01

    Agar and Gellan Gum are biocompatible polymers extensively used in several fields of tissue engineering research (e.g. tissue replacement, tissue support, tissue mimicking), due to their mechanical behaviour effectively representative of actual biological tissues. Since mechanical properties of artificial tissues are related to biocompatibility and functionality of medical implants and significantly influence adhesion, growth and differentiation of cells in tissue-engineering scaffolds, an accurate characterization of Young׳s modulus and relaxation time processes is needed. In this study, the strain-rate and temperature dependent material properties of Agarose and one among the numerous kind of Gellan Gum commercially available, known as Phytagel(®), have been investigated. Nine hydrogel samples have been realized with different mechanical properties: the first one Agar-based as a reference material, the further eight samples Gellan Gum based in which the effect of dispersed solid particles like kieselguhr and SiC, as enhancing mechanical properties factors, have been investigated as a function of concentration. Stress-strain has been investigated in compression and relaxation time has been evaluated by means of the Kohlrausch-Williams-Watts time decay function. Mechanical properties have been measured as a function of temperature between 20 °C and 35 °C and at different strain rates, from ~10(-3)s(-1) and ~10(-2)s(-1) (or deformation rate from ~0.01 mms(-1) to ~0.1 mms(-1)). From experimental data, the combined temperature and strain-rate dependence of hydrogels Young׳s modulus is determined on the basis of a constitutive model. In addition to a dependence of Young׳s modulus on temperature, a remarkable influence of strain-rate has been observed, especially in the sample containing solid particles; in same ranges of temperature and strain-rate, also relaxation time variations have been monitored in order to identify a possible dependence of damping

  9. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    SciTech Connect

    Nguyen, Trung Dung; Gu, YuanTong

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  10. Isotopic dating of strain fringe increments: duration and rates of deformation in shear zones

    PubMed

    Muller; Aerden; Halliday

    2000-06-23

    The time scales over which deformation in the Earth's crust remains localized in shear zones are poorly known, as are the associated strain rates. We have determined the longevity and rates of deformation using rubidium-strontium (Rb-Sr) microsampling dating of increments of fibrous strain fringes from a Pyrenean shear zone. The fibers grew quasi-continuously through a protracted deformation history between 87 and 50 million years ago, over a period comparable to that of an orogeny. During a short interval between 66 and 62 million years, a rise in strain rate from 1.1 x 10(-15) to 7. 7 x 10(-15) seconds(-1) occurred. This acceleration correlates with an abrupt change in fiber-growth direction and a stress-field inversion from gravitational collapse to renewed horizontal crustal shortening. PMID:10864865

  11. Elastic precursor shock waves in tantalum at very high strain rates

    NASA Astrophysics Data System (ADS)

    Crowhurst, Jonathan; Armstrong, Michael; Gates, Sean; Radousky, Harry; Zaug, Joseph

    2015-06-01

    We have obtained data from micron-thick tantalum films using our ultrafast laser shock platform. By measuring free surface velocity time histories at breakout, and shock wave arrival times at different film thicknesses, we have been able to estimate the dependence of particle and shock velocities on propagation distances and strain rates. We will show how elastic precursor shock waves depend on strain rate in the regime up to and above 109 s-1. We find that while elastic amplitudes are very large at very early times decay occurs rapidly as propagation distance increases. Finally we will consider the prospects for using these data to obtain the dynamic strength of tantalum at these very high strain rates. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with Laboratory directed Research and Development funding (12ERD042).

  12. Elastic precursor shock waves in tantalum at very high strain rates

    NASA Astrophysics Data System (ADS)

    Crowhurst, Jonathan; Armstrong, Michael; Radousky, Harry; Zaug, Joseph; Gates, Sean

    2015-03-01

    We have obtained data from micron-thick tantalum films using our ultrafast laser shock platform. By measuring free surface velocity time histories at breakout, and shock wave arrival times at different film thicknesses, we have been able to estimate the dependence of particle and shock velocities on propagation distances and strain rates. We will show how elastic precursor shock waves depend on strain rate in the regime up to and above 109 s-1. We find that while elastic amplitudes are very large at very early times decay occurs rapidly as propagation distance increases. Finally we will consider the prospects for using these data to obtain the dynamic strength of tantalum at these very high strain rates. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with Laboratory directed Research and Development funding (12ERD042).

  13. Quantifying velocity, strain rate and stress distribution in coalescing salt sheets for safer drilling

    NASA Astrophysics Data System (ADS)

    Weijermars, R.; van Harmelen, A.

    2015-03-01

    Reaching sub-salt hydrocarbon targets in the deeper part of the Gulf of Mexico requires drilling through a salt canopy. The suture zones in the salt canopy are potential drilling hazards due to anomalous pressure behaviour of entrapped sediments. The Pólya vector field of coalescing salt sheets inside the canopy is used to explain suture formation and distinguish between upright and inclined suture contacts. Our analytical models, based on complex potentials, provide exact solutions for multiple source flows as they compete for space when spreading into the viscous continuum of the salt canopy. The velocity gradient tensor yields the strain rate tensor, which is used to map the principal strain rate magnitude inside the canopy. Quantification of one of the principal strain rates is sufficient because the plane deformation assumption ensures the two principal strain rates are equal in magnitude (but of opposite sign); the third principal dimension can have neither strain nor deviatoric stress. Visualization of the locations where the principal stress vanishes or peaks (with highs and lows) is useful for pre-drilling plans because such peaks must be avoided and the stress-free locations provide the safer drilling sites. A case study-of the Walker Ridge region-demonstrates the practical application of our new method.

  14. Stir zone microstructure and strain rate during Al 7075-T6 friction stir spot welding

    NASA Astrophysics Data System (ADS)

    Gerlich, A.; Avramovic-Cingara, G.; North, T. H.

    2006-09-01

    The factors determining the temperature, heating rate, microstructure, and strain rate in Al 7075-T6 friction stir spot welds are investigated. Stir zone microstructure was examined using a combination of transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD) microscopy, while the strain rate during spot welding was calculated by incorporating measured temperatures and the average subgrain dimensions in the Zener-Hollomon relation. The highest temperature during friction stir spot welding (527 °C) was observed in spot welds made using a tool rotational speed of 3000 rpm. The stir zone regions comprised fine-grained, equiaxed, fully recrystallized microstructures. The calculated strain rate in Al 7075-T6 spot welds decreased from 650 to about 20 s-1 when the tool rotational speed increased from 1000 to 3000 rpm. It is suggested that the decrease in strain rate results when tool slippage occurs when the welding parameter settings facilitate transient local melting during the spot welding operation. Transient local melting and tool slippage are produced when the welding parameters produce sufficiently high heating rates and temperatures during spot welding. However, transient local melting and tool slippage is not produced in Al 7075-T6 spot welds made using a rotational speed of 1000 rpm since the peak temperature is always less than 475 °C.

  15. Strain rate sensitivity of nanoindentation creep in an AlCoCrFeNi high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Jiao, Z. M.; Wang, Z. H.; Wu, R. F.; Qiao, J. W.

    2016-09-01

    Creep behaviors of an AlCoCrFeNi high-entropy alloy with the body-centered cubic structure were investigated by nanoindentation. The enhanced strain gradient induced by higher strain rate leads to decreased strain rate sensitivity during creep process. The present alloy exhibits excellent creep resistance, mainly due to its large entropy of mixing and highly distorted lattice structure.

  16. Effects of uniaxial strain on electron effective mass and tunneling capability of direct gap Ge1-xSnx alloys

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Liang, Renrong; Wang, Jing; Xu, Jun

    2016-01-01

    Direct gap Ge1-xSnx alloys under [100] and [110] uniaxial strain are comprehensively investigated by theoretical calculations using the nonlocal empirical pseudopotential method (EPM). It is shown that [100] uniaxial tensile strain aids indirect-to-direct gap transition in Ge1-xSnx alloys. The Γ electron effective mass along the optimal direction under [110] uniaxial strain is smaller than those under [100] uniaxial strain and (001) biaxial strain. Additionally, the direct tunneling gap is smallest along the strain-perpendicular direction under [110] uniaxial tensile strain, resulting in a maximum direct band-to-band tunneling generation rate. An optimal [110] uniaxial tensile strain is favorable for high-performance direct gap Ge1-xSnx electronic devices.

  17. Material Properties and Constitutive Modeling of Infant Porcine Cerebellum Tissue in Tension at High Strain Rate

    PubMed Central

    Li, Kui; Zhao, Hui; Liu, Wenjun; Yin, Zhiyong

    2015-01-01

    Background The mechanical characterization of infant porcine cerebellum tissue in tension at high strain rate is crucial for modeling traumatic cerebellum injury, which is in turn helpful for understanding the biomechanics of such injuries suffered in traffic accidents. Material and Method In this study, the infant porcine cerebellum tissue was given three loading velocities, ie, 2s-1, 20s-1 and 100s-1 with up to 30% strain to investigate the tensile properties. At least six tensile tests for each strain rate were validly performed. Fung, Gent, Ogden and exponential models were applied to fit the constitutive equations, so as to obtain material parameters from the experimental data. Results The Lagrange stress of infant porcine cerebellum tissue in tension appeared to be no more than 3000Pa at each loading velocity. More specifically, the Lagrange stress at 30% strain was (393.7±84.4)Pa, (928.3±56.3)Pa and (2582.4±282.2)Pa at strain rates of 2s-1, 20s-1 and 100s-1, respectively. Fung (0.833≤R2≤0.924), Gent (0.797≤R2≤0.875), Ogden (0.859≤R2≤0.944) and exponential (0.930≤R2≤0.972) models provided excellent fitting to experimental data up to 30% strain. Conclusions The infant cerebellum tissue shows a stiffer response with increase of the loading speed, indicating a strong strain-rate sensitivity. This study will enrich the knowledge on the material properties of infant brain tissue, which may augment the biofidelity of finite element model of human pediatric cerebellum. PMID:25830545

  18. Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating

    NASA Astrophysics Data System (ADS)

    Jiang, Zhonghao; Liu, Xianli; Li, Guangyu; Jiang, Qing; Lian, Jianshe

    2006-04-01

    A method for synthesizing bulk nanocrystalline Cu by an electric brush-plating technique is reported. This brush-plated nanocrystalline Cu has a fine (26nm) and quite uniform grain structure and predominant high-angle grain boundaries. A pronounced strain rate sensitivity of the stress with an m of 0.104 and the Coble creep and a subsequent transition to the power-law creep were observed in room temperature tensile and creep tests. The dominant grain boundary deformation due to the truly nanocrystalline structure of this nanocrystalline Cu is responsible for the observed strain rate sensitivity.

  19. Energy absorption at high strain rate of glass fiber reinforced mortars

    NASA Astrophysics Data System (ADS)

    Fenu, Luigi; Forni, Daniele; Cadoni, Ezio

    2015-09-01

    In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF) was finally evaluated.

  20. In-vivo Vascular Wall Shear Rate and Circumferential Strain of Renal Disease Patients

    PubMed Central

    Park, Dae Woo; Kruger, Grant H.; Rubin, Jonathan M.; Hamilton, James; Gottschalk, Paul; Dodde, Robert E.; Shih, Albert J.; Weitzel, William F.

    2012-01-01

    This study measures the vascular wall shear rate at the vessel edge using decorrelation based ultrasound speckle tracking. Results for nine healthy and eight renal disease subjects are presented. Additionally, the vascular wall shear rate and circumferential strain during physiologic pressure, pressure equalization and hyperemia are compared for five healthy and three renal disease subjects. The mean and maximum wall shear rates were measured during the cardiac cycle at the top and bottom wall edges. The healthy subjects had significantly higher mean and maximum vascular wall shear rate than the renal disease subjects. The key findings of this research were that the mean vascular wall shear rates and circumferential strain changes between physiologic pressure and hyperemia that was significantly different between healthy and renal disease subjects. PMID:23211936

  1. A method for intermediate strain rate compression testing and study of compressive failure mechanism of Mg-Al-Zn alloy

    NASA Astrophysics Data System (ADS)

    Gupta, Nikhil; Luong, Dung D.; Rohatgi, Pradeep K.

    2011-05-01

    Obtaining meaningful information from the test results is a challenge in the split-Hopkinson pressure bar (SHPB) test method if the specimen does not fail during the test. Although SHPB method is now widely used for high strain rate testing, this limitation has made it difficult to use it for characterization of materials in the intermediate strain rate range (typically 10-1000 s-1). In the present work, a method is developed to characterize materials in the intermediate strain rate range using SHPB setup. In this method, the specimen is repeatedly tested under compression at a given strain rate until failure is achieved. The stress-strain graphs obtained from each test cycle are used to plot the master stress-strain graph for that strain rate. This method is used to study the strain rate dependence of compressive response of a Mg-Al-Zn alloy in the intermediate strain rate range. A remarkable difference is observed in the failure mechanism of the alloy under quasi-static and intermediate strain rate compression. Matrix cracking is the main failure mechanism under quasi-static compression, whereas shattering of intermetallic precipitates, along with plastic deformation of the matrix, is discovered to become prominent as the strain rate is increased.

  2. Adhesive-Bonded Composite Joint Analysis with Delaminated Surface Ply Using Strain-Energy Release Rate

    NASA Technical Reports Server (NTRS)

    Chadegani, Alireza; Yang, Chihdar; Smeltzer, Stanley S. III

    2012-01-01

    This paper presents an analytical model to determine the strain energy release rate due to an interlaminar crack of the surface ply in adhesively bonded composite joints subjected to axial tension. Single-lap shear-joint standard test specimen geometry with thick bondline is followed for model development. The field equations are formulated by using the first-order shear-deformation theory in laminated plates together with kinematics relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. The system of second-order differential equations is solved to using the symbolic computation tool Maple 9.52 to provide displacements fields. The equivalent forces at the tip of the prescribed interlaminar crack are obtained based on interlaminar stress distributions. The strain energy release rate of the crack is then determined by using the crack closure method. Finite element analyses using the J integral as well as the crack closure method are performed to verify the developed analytical model. It has been shown that the results using the analytical method correlate well with the results from the finite element analyses. An attempt is made to predict the failure loads of the joints based on limited test data from the literature. The effectiveness of the inclusion of bondline thickness is justified when compared with the results obtained from the previous model in which a thin bondline and uniform adhesive stresses through the bondline thickness are assumed.

  3. Growth rate regulation of rRNA content of a marine Synechococcus (cyanobacterium) strain

    SciTech Connect

    Binder, B.J.; Liu, Y.C.

    1998-09-01

    The relationship between growth rate and rRNA content in a marine Synechococcus strain was examined. A combination of flow cytometry and whole-cell hybridization with fluorescently labeled 16S rRNA-targeted oligonucleotide probes was used to measure the rRNA content of Synechococcus strain WH8101 cells grown at a range of light-limited growth rates. The sensitivity of this approach was sufficient for the analysis of rRNA even in very slowly growing Synechococcus cells. The relationship between growth rate and cellular rRNA content comprised three phases: (1) at low growth rates, rRNA cell{sup {minus}1} remained approximately constant; (2) at intermediate rates, rRNA cell{sup {minus}1} increased proportionally with growth rate; and (3) at the highest, light-saturated rates, rRNA cell{sup {minus}1} dropped abruptly. Total cellular RNA was well correlated with the probe-based measure of rRNA and varied in a similar manner with growth rate. Mean cell volume and rRNA concentration were related to growth rate in a manner similar to rRNA cell{sup {minus}1}, although the overall magnitude linear increase in ribosome efficiency with increasing growth rate, which is consistent with the prevailing prokaryotic model at low growth rates. Taken together, these results support the notion that measurements of cellular rRNA content might be useful for estimating in situ growth rates in natural Synechococcus populations.

  4. High strain rate characterization of low-density low-strength materials

    NASA Astrophysics Data System (ADS)

    Sawas, Omar

    The Split Hopkinson Bar (SHB) is a reliable experimental technique for measuring high strain rate properties of high-strength, ductile materials. Attempts to apply the SHB in measurement on more compliant materials, such as polymers and foams, are limited by the maximum achievable strain and high noise-to-signal ratios. This work introduces an all-polymeric split Hopkinson bar (APSHB) experiment, which overcomes these limitations. The proposed method uses polymeric pressure bars to achieve a closer impedance match between the pressure bars and the specimen material, thus providing both low signal-to-noise ratio data and a longer input pulse for higher maximum strain. The APSHB requires very careful data reduction procedures because of the viscoelastic behavior of the incident and transmitter pressure bars. The APSHB produces high-quality stress-strain data for a variety of compliant materials, including polycarbonate, elastomer, polyurethane, and styrofoam.

  5. Predictions of High Strain Rate Failure Modes in Layered Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Khanikar, Prasenjit; Zikry, M. A.

    2014-01-01

    A dislocation density-based crystalline plasticity formulation, specialized finite-element techniques, and rational crystallographic orientation relations were used to predict and characterize the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary distributions. Different layer arrangements were investigated for high strain rate applications and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-bonded interface and the potential delamination of the layers. Shear strain localization, dynamic cracking, and delamination are the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be used to optimize behavior for high strain rate applications.

  6. High strain rate behavior of alloy 800H at high temperatures

    NASA Astrophysics Data System (ADS)

    Shafiei, E.

    2016-05-01

    In this paper, a new model using linear estimation of strain hardening rate vs. stress, has been developed to predict dynamic behavior of alloy 800H at high temperatures. In order to prove the accuracy and competency of the presented model, Johnson-Cook model pertaining modeling of flow stress curves was used. Evaluation of mean error of flow stress at deformation temperatures from 850 °C to 1050 °C and at strain rates of 5 S-1 to 20 S-1 indicates that the predicted results are in a good agreement with experimentally measured ones. This analysis has been done for the stress-strain curves under hot working condition for alloy 800H. However, this model is not dependent on the type of material and can be extended for any similar conditions.

  7. Microstructure Evolution of 1050 Commercial Purity Aluminum Processed by High-Strain-Rate Deformation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Chen, Yadong; Ma, Fei; Hu, Haibo; Zhang, Qingming; Tang, Tiegang; Zhang, Xiaowei

    2015-11-01

    1050 commercial purity aluminum was first deformed by split-Hopkinson pressure bar. Two means of loading methods were conducted, namely uni-directional impact and multiaxial impact. The nominal strain rates reached 1.1 ×103 and 3.0 × 103/s, respectively, with the total strain 1.6 and 3.6. TEM observations reveal that the initial coarse grains are refined significantly. The majority of the structures in the deformed state are composed of elongated grains/cells whose width/length average grain sizes are 187/411 nm. However, the grains of multiaxial impacted sample are equiaxed with an average size of 517 nm. Dynamic recovery is suppressed during high-strain-rate deformation, so the dislocation configurations could not reach equilibrium states. High densities of dislocations are generated, forming several kinds of configurations. Interactions of dislocation substructures result in the refinement of grains.

  8. Dynamic Crushing Response of Closed-cell Aluminium Foam at Variable Strain Rates

    NASA Astrophysics Data System (ADS)

    Islam, M. A.; Kader, M. A.; Escobedo, J. P.; Hazell, P. J.; Appleby-Thomas, G. J.; Quadir, M. Z.

    2015-06-01

    The impact response of aluminium foams is essential for assessing their crashworthiness and energy absorption capacity for potential applications. The dynamic compactions of closed-cell aluminium foams (CYMAT) have been tested at variable strain rates. Microstructural characterization has also been carried out. The low strain rate impact test has been carried out using drop weight experiments while the high strain compaction test has been carried out via plate impact experiments. The post impacted samples have been examined using optical and electron microscopy to observe the microstructural changes during dynamic loading. This combination of dynamic deformation during impact and post impact microstructural analysis helped to evaluate the pore collapse mechanism and impact energy absorption characteristics.

  9. Ultrafast high strain rate acoustic wave measurements at high static pressure in a diamond anvil cell

    SciTech Connect

    Armstrong, M; Crowhurst, J; Reed, E; Zaug, J

    2008-02-04

    We have used sub-picosecond laser pulses to launch ultra-high strain rate ({approx} 10{sup 9} s{sup -1}) nonlinear acoustic waves into a 4:1 methanol-ethanol pressure medium which has been precompressed in a standard diamond anvil cell. Using ultrafast interferometry, we have characterized acoustic wave propagation into the pressure medium at static compression up to 24 GPa. We find that the velocity is dependent on the incident laser fluence, demonstrating a nonlinear acoustic response which may result in shock wave behavior. We compare our results with low strain, low strain-rate acoustic data. This technique provides controlled access to regions of thermodynamic phase space that are otherwise difficult to obtain.

  10. Mechanical Characterization of Immature Porcine Brainstem in Tension at Dynamic Strain Rates

    PubMed Central

    Zhao, Hui; Yin, Zhiyong; Li, Kui; Liao, Zhikang; Xiang, Hongyi; Zhu, Feng

    2016-01-01

    Background Many brain injury cases involve pediatric road traffic accidents, and among these, brainstem injury causes disastrous outcomes. A thorough understanding of the tensile characterization of immature brainstem tissue is crucial in modeling traumatic brain injury sustained by children, but limited experimental data in tension is available for the immature brain tissue at dynamic strain rates. Material/Methods We harvested brainstem tissue from immature pigs (about 4 weeks old, and at a developmental stage similar to that of human toddlers) as a byproduct from a local slaughter house and very carefully prepared the samples. Tensile tests were performed on specimens at dynamic strain rates of 2/s, 20/s, and 100/s using a biological material instrument. The constitutive models, Fung, Ogden, Gent, and exponential function, for immature brainstem tissue material property were developed for the recorded experimental data using OriginPro® 8.0 software. The t test was performed for infinitesimal shear modules. Results The curves of stress-versus-stretch ratio were convex in shape, and inflection points were found in all the test groups at the strain of about 2.5%. The average Lagrange stress of the immature brainstem specimen at the 30% strain at the strain rates of 2, 20, and 100/s was 273±114, 515±107, and 1121±197 Pa, respectively. The adjusted R-Square (R2) of Fung, Ogden, Gent, and exponential model was 0.820≤R2≤0.933, 0.774≤R2≤0.940, 0.650≤R2≤0.922, and 0.852≤R2≤0.981, respectively. The infinitesimal shear modulus of the strain energy functions showed a significant association with the strain rate (p<0.01). Conclusions The immature brainstem is a rate-dependent material in dynamic tensile tests, and the tissue becomes stiffer with increased strain rate. The reported results may be useful in the study of brain injuries in children who sustain injuries in road traffic accidents. Further research in more detail should be performed in the

  11. Strain rate hardening: a hidden but critical mechanism for biological composites?

    PubMed

    Chintapalli, Ravi Kiran; Breton, Stephanie; Dastjerdi, Ahmad Khayer; Barthelat, Francois

    2014-12-01

    Natural materials such as nacre, bone, collagen and spider silk boast unusual combinations of stiffness, strength and toughness. Behind this performance is a staggered microstructure, which consists of stiff and elongated inclusions embedded in a softer and more deformable matrix. The micromechanics of deformation and failure associated with this microstructure are now well understood at the "unit cell" level, the smallest representative volume for this type of material. However, these mechanisms only translate to high performance if they propagate throughout large volumes, an important condition which is often overlooked. Here we present, for the first time, a model which captures the conditions for either spreading of deformations or localization, which determines whether a staggered composite is brittle or deformable at the macroscale. The macroscopic failure strain for the material was calculated as function of the viscoplastic properties of the interfaces and the severity of the defect. As expected, larger strains at failure can be achieved when smaller defects are present within the material, or with more strain hardening at the interface. The model also shows that strain rate hardening is a powerful source of large deformations for the material as well, a result we confirmed and validated with tensile experiments on glass-polydimethylsiloxane (PDMS) nacre-like staggered composites. An important implication is that natural materials, largely made of rate-dependent materials, could rely on strain rate hardening to tolerate initial defects and damage to maintain their functionality. Strain rate hardening could also be harnessed and optimized in bio-inspired composites in order to maximize their overall performance. PMID:25174668

  12. A Micromechanics Based Constitutive Model For Brittle Failure at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Bhat, H. S.; Rosakis, A.; Sammis, C. G.

    2011-12-01

    The micromechanical damage mechanics formulated by Ashby and Sammis [1] and generalized by Desh- pande and Evans [2] has been extended to allow for a more generalized stress state and to incorporate an ex- perimentally motivated new crack growth (damage evo- lution) law that is valid over a wide range of loading rates. This law is sensitive to both the crack tip stress field and its time derivative. Incorporating this feature produces strain-rate sensitivity in the constitutive re- sponse. The model is also experimentally verified by predicting the failure strength of Dionysus-Pentelicon marble over strain rates ranging from ˜ 10-6 to 103 s-1. Model parameters determined from from quasi-static experiments were used to predict the failure strength at higher loading rates. Agreement with experimental results was excellent.

  13. Influence of compressibility on the Lagrangian statistics of vorticity-strain-rate interactions.

    PubMed

    Danish, Mohammad; Sinha, Sawan Suman; Srinivasan, Balaji

    2016-07-01

    The objective of this study is to investigate the influence of compressibility on Lagrangian statistics of vorticity and strain-rate interactions. The Lagrangian statistics are extracted from "almost" time-continuous data sets of direct numerical simulations of compressible decaying isotropic turbulence by employing a cubic spline-based Lagrangian particle tracker. We study the influence of compressibility on Lagrangian statistics of alignment in terms of compressibility parameters-turbulent Mach number, normalized dilatation-rate, and flow topology. In comparison to incompressible turbulence, we observe that the presence of compressibility in a flow field weakens the alignment tendency of vorticity toward the largest strain-rate eigenvector. Based on the Lagrangian statistics of alignment conditioned on dilatation and topology, we find that the weakened tendency of alignment observed in compressible turbulence is because of a special group of fluid particles that have an initially negligible dilatation-rate and are associated with stable-focus-stretching topology. PMID:27575211

  14. Inverse correlation between longevity and developmental rate among wild C. elegans strains

    PubMed Central

    Jung, Juyoung; Park, Sangsoon; Cabatbat, Josephine Jill T.; Kim, Pan-Jun; Lee, Seung-Jae V.

    2016-01-01

    Genetic studies using model organisms have shown that many long-lived mutants display impaired fitness, such as reduced fecundity and delayed development. However, in several wild animals, the association between longevity and fitness does not seem to be inevitable. Thus, the relationship between longevity and fitness in wild organisms remains inconclusive. Here, we determined the correlation between lifespan and fitness, developmental rate and brood size, by using 16 wild-derived C. elegans strains originated from various geographic areas. We found a negative correlation between lifespan and developmental rate. In contrast, we did not find such negative correlation between longevity and developmental rate among the individuals of C. elegans strains. These data imply that polymorphic genetic variants among wild isolates determine resource allocation to longevity and developmental rate. PMID:27193830

  15. Influence of compressibility on the Lagrangian statistics of vorticity-strain-rate interactions

    NASA Astrophysics Data System (ADS)

    Danish, Mohammad; Sinha, Sawan Suman; Srinivasan, Balaji

    2016-07-01

    The objective of this study is to investigate the influence of compressibility on Lagrangian statistics of vorticity and strain-rate interactions. The Lagrangian statistics are extracted from "almost" time-continuous data sets of direct numerical simulations of compressible decaying isotropic turbulence by employing a cubic spline-based Lagrangian particle tracker. We study the influence of compressibility on Lagrangian statistics of alignment in terms of compressibility parameters—turbulent Mach number, normalized dilatation-rate, and flow topology. In comparison to incompressible turbulence, we observe that the presence of compressibility in a flow field weakens the alignment tendency of vorticity toward the largest strain-rate eigenvector. Based on the Lagrangian statistics of alignment conditioned on dilatation and topology, we find that the weakened tendency of alignment observed in compressible turbulence is because of a special group of fluid particles that have an initially negligible dilatation-rate and are associated with stable-focus-stretching topology.

  16. Intermediate strain rate behaviour of cancellous bone: Links between microstructural and mechanical properties

    NASA Astrophysics Data System (ADS)

    Prot, Marianne; Cloete, Trevor; Saletti, Dominique; Laporte, Sebastien

    2015-09-01

    Relationships between the micro-architecture description of cancellous bone, obtained from medical imaging, and its mechanical properties can be used to assess the compression fracture risk at high and low strain rate. This study extends the rupture prediction to the intermediate strain rate regime. The micro-architecture description was obtained with a CT-scan, for which geometry, topology, connectivity and anisotropy parameters were computed and compared to mechanical identified parameters in order to confirm their usefulness. Three strain rates were investigated: 1/s, 10/s and 100/s using two different devices: a Wedge-Bar apparatus and a conventional split Hopkinson pressure bar implemented with a Cone-in-Tube striker and a tandem momentum trap. This setup provides a constant strain rate loading with routine specimen recovery allowing the fracture zone to be investigated. This study reveals that a transition in the response behaviour occurred in the intermediate regime and confirms the significant porous organization influence through the regimes.

  17. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    SciTech Connect

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  18. Tensile-strength apparatus applies high strain-rate loading with minimum shock

    NASA Technical Reports Server (NTRS)

    Cotrill, H. E., Jr.; Mac Glashan, W. F., Jr.

    1966-01-01

    Tensile-strength testing apparatus employs a capillary bundle through which a noncompressible fluid is extruded and a quick-release valve system. This apparatus applies the test loads at relatively constant very high strain rates with minimal shock and vibration to the tensile specimen and apparatus.

  19. 0.1-nano-strain resolution fiber optic sensor for quasi-static strain measurement with 1 kS/s sampling rate

    NASA Astrophysics Data System (ADS)

    Chen, Jiageng; Liu, Qingwen; Fan, Xinyu; Ma, Lin; Du, Jiangbing; Tokunaga, Tomochika; He, Zuyuan

    2015-09-01

    We present a newly developed high performance fiber optics sensor for quasi-static strain measurement. The sensor consists of a piece of π-phase shifted FBG for static strain sensing, and fiber Fabry-Perot interferometer for reference, interrogated by an improved sideband interrogation method with real-time feedback loops. Strain resolution of 0.12 nano-strain was achieved with sampling rate up to 1 kS/s in laboratory experiments. Compared with previous sensor systems, the proposed method shows great improvement in the sensing rate as well as the resolution.

  20. Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating.

    PubMed

    Zhang, Li Qiang; Liu, Xiao Hua; Liu, Yang; Huang, Shan; Zhu, Ting; Gui, Liangjin; Mao, Scott X; Ye, Zhi Zhen; Wang, Chong Min; Sullivan, John P; Huang, Jian Yu

    2011-06-28

    The advanced battery system is critically important for a wide range of applications, from portable electronics to electric vehicles. Lithium ion batteries (LIBs) are presently the best performing ones, but they cannot meet requirements for more demanding applications due to limitations in capacity, charging rate, and cyclability. One leading cause of those limitations is the lithiation-induced strain (LIS) in electrodes that can result in high stress, fracture, and capacity loss. Here we report that, by utilizing the coating strategy, both the charging rate and LIS of SnO(2) nanowire electrodes can be altered dramatically. The SnO(2) nanowires coated with carbon, aluminum, or copper can be charged about 10 times faster than the noncoated ones. Intriguingly, the radial expansion of the coated nanowires was completely suppressed, resulting in enormously reduced tensile stress at the reaction front, as evidenced by the lack of formation of dislocations. These improvements are attributed to the effective electronic conduction and mechanical confinement of the coatings. Our work demonstrates that nanoengineering the coating enables the simultaneous control of electrical and mechanical behaviors of electrodes, pointing to a promising route for building better LIBs. PMID:21542642

  1. The effect of hydrogen on the multiaxial stress-strain behavior of titanium tubing

    SciTech Connect

    Lentz, C.W.; Hecker, S.S.; Koss, D.A.; Stout, M.G.

    1983-12-01

    The influence of internal hydrogen on the multiaxial stress-strain behavior of commercially pure titanium has been studied. Thin-walled specimens containing either 20 or 1070 ppm hydrogen were tested at constant stress ratios in combined tension and internal pressure. Hydrogen lowers the yield strength but has no significant effect on strain hardening behavior at strains epsilon greater than or equal to 0.02. Thus, hydrogen embrittlement under plain strain or equibiaxial loading is not a consequence of changes of flow behavior. The yielding behavior is described well by Hill's quadratic yield criterion. As measured mechanically and pole figure analysis, the plastic anisotropy changes with deformation in a manner which depends on stress state. A strain dependent, texture-induced strengthening effect in equibiaxial tension an enhanced strain hardening rate.

  2. Spatial and Temporal Variations in Strain Rates in the Western Transverse Ranges, California

    NASA Astrophysics Data System (ADS)

    Marshall, S. T.; Funning, G. J.; Owen, S. E.

    2012-12-01

    We determine the spatial and temporal variations in strain rates in the Transverse Ranges of southern California by combing data from 52 continuous GPS sites in the Plate Boundary Observatory network with InSAR time series. To characterize periodic seasonal motions in the GPS time series, phases and amplitudes of annual and semiannual motions are estimated for each GPS station. We remove these seasonal terms, and then perform Principal Component Analysis on the residual time series to remove common-mode errors. We find that seasonal GPS motions are not strongly dependent on local substrate geology. To quantify the spatial patterns of deformation in greater detail than GPS can provide, we use a persistent scatterer InSAR (PSI) data set comprised of 23 ENVISAT ASAR scenes. The PSI data were derived using the software package, StaMPS [Hooper et al. 2004]. The PSI data show potential anthropogenic subsidence in the Oxnard/Ventura area as well as at a location just south of the Oak Ridge. A highly localized zone of subsidence is also present along the Ventura Avenue anticline, where ongoing petroleum extraction is occurring. Comparison of the InSAR and the GPS projected into the InSAR line of sight, shows general agreement. The relative lack of significant non-tectonic motions in the western Transverse Ranges is in stark contrast to the nearby Los Angeles basin where anthropogenic motions dominate many InSAR scenes. To determine the local tectonic deformation rates, we remove strain associated with the nearby San Andreas fault using a rectangular dislocation model. Direct inversion of the GPS velocities into a triangulated network with variable strain/rotation rates produces a generalized map of variations in tectonic strain rates. The strain rate map shows the largest strain rates to be near the central Ventura basin with rates generally decreasing westward towards the Santa Barbara Channel. To determine compatible regional fault slip rates, we use a forward mechanical

  3. Compressive viscoelasticity of freshly excised mouse skin is dependent on specimen thickness, strain level and rate.

    PubMed

    Wang, Yuxiang; Marshall, Kara L; Baba, Yoshichika; Lumpkin, Ellen A; Gerling, Gregory J

    2015-01-01

    Although the skin's mechanical properties are well characterized i