Science.gov

Sample records for strange baryons sigma

  1. Strangeness in the baryon ground states

    NASA Astrophysics Data System (ADS)

    Semke, A.; Lutz, M. F. M.

    2012-10-01

    We compute the strangeness content of the baryon octet and decuplet states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-Nc sum rule estimates of the counter terms relevant for the baryon masses at N3LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. From a global fit we determine the axial coupling constants F ≃ 0.45 and D ≃ 0.80 in agreement with their values extracted from semi-leptonic decays of the baryons. Moreover, various flavor symmetric limits of baron octet and decuplet masses as obtained by the QCDSF-UKQCD group are recovered. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.

  2. Strange Baryon Physics in Full Lattice QCD

    SciTech Connect

    Huey-Wen Lin

    2007-11-01

    Strange baryon spectra and form factors are key probes to study excited nuclear matter. The use of lattice QCD allows us to test the strength of the Standard Model by calculating strange baryon quantities from first principles.

  3. Strangeness and meson-nucleon sigma terms

    SciTech Connect

    Dahiya, Harleen; Sharma, Neetika

    2011-10-21

    The chiral constituent quark model ({chi}CQM) has been extended to calculate the flavor structure of the nucleon through the meson-nucleon sigma terms which have large contributions from the quark sea and are greatly affected by chiral symmetry breaking and SU(3) symmetry breaking. The hidden strangeness component in the nucleon has also been investigated and its significant contribution is found to be consistent with the recent available experimental observations.

  4. Observation of the Heavy Baryons Sigma b and Sigma b*.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-11-16

    We report an observation of new bottom baryons produced in pp collisions at the Tevatron. Using 1.1 fb(-1) of data collected by the CDF II detector, we observe four Lambda b 0 pi+/- resonances in the fully reconstructed decay mode Lambda b 0-->Lambda c + pi-, where Lambda c+-->pK* pi+. We interpret these states as the Sigma b(*)+/- baryons and measure the following masses: m Sigma b+=5807.8 -2.2 +2.0(stat.)+/-1.7(syst.) MeV/c2, m Sigma b- =5815.2+/-1.0(stat.)+/-1.7(syst.) MeV/c2, and m(Sigma b*)-m(Sigma b)=21.2-1.9 +2.0(stat.)-0.3+0.4(syst.) MeV/c2. PMID:18233134

  5. Nucleon sigma term and strange quark content from lattice QCD with exact chiral symmetry

    SciTech Connect

    Ohki, H.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Yamada, N.; Matsufuru, H.; Noaki, J.; Shintani, E.; Onogi, T.

    2008-09-01

    We calculate the nucleon sigma term in two-flavor lattice QCD utilizing the Feynman-Hellman theorem. Both sea and valence quarks are described by the overlap fermion formulation, which preserves exact chiral and flavor symmetries on the lattice. We analyze the lattice data for the nucleon mass using the analytical formulae derived from the baryon chiral perturbation theory. From the data at valence quark mass set different from sea quark mass, we may extract the sea quark contribution to the sigma term, which corresponds to the strange quark content. We find that the strange quark content is much smaller than the previous lattice calculations and phenomenological estimates.

  6. Direct observation of the strange b baryon Xib-.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Banerjee, P; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chan, K; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clément, C; Clément, B; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; de Jong, P; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, J; Guo, F; Gutierrez, P; Gutierrez, G; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J R; Kalk, J M; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kothari, B; Kozelov, A V; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lellouch, J; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, Q Z; Li, L; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merekov, Y P; Merkin, M; Merritt, K W; Meyer, J; Meyer, A; Michaut, M; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Otero y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Panov, G; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perea, P M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pompos, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rozhdestvenski, A; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schliephake, T; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, R P; Snow, J; Snow, G R; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Strauss, E; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Tanasijczuk, A; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, S; Uvarov, L; Uzunyan, S; Vachon, B; van den Berg, P J; van Eijk, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Vertogradova, Y; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vokac, P; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Weber, G; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Yu, C; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2007-08-01

    We report the first direct observation of the strange b baryon Xi(b)- (Xi(b)+). We reconstruct the decay Xi(b)- -->J/psiXi-, with J/psi-->mu+mu-, and Xi--->Lambdapi--->ppi-pi- in pp collisions at square root of s =1.96 TeV. Using 1.3 fb(-1) of data collected by the D0 detector, we observe 15.2 +/- 4.4(stat)(-0.4)(+1.9)(syst) Xi(b)- candidates at a mass of 5.774 +/- 0.011(stat) +/- 0.015(syst) GeV. The significance of the observed signal is 5.5 sigma, equivalent to a probability of 3.3 x 10(-8) of it arising from a background fluctuation. Normalizing to the decay Lambda(b)-->J/psiLambda, we measure the relative rate sigma(Xi(b-) x B(Xi)b})- -->J/psiXi-)/sigma(Lambda(b)) x B(Lambda(b)-->J/psiLambda) = 0.28+/-0.09(stat)(-0.08)(+0.09)(syst). PMID:17930744

  7. Pion- and strangeness-baryon σ terms in the extended chiral constituent quark model

    NASA Astrophysics Data System (ADS)

    An, C. S.; Saghai, B.

    2015-07-01

    Within an extended chiral constituent quark formalism, we investigate contributions from all possible five-quark components in the octet baryons to the pion-baryon (σπ B) and strangeness-baryon (σs B) sigma terms: B ≡N ,Λ ,Σ ,Ξ . The probabilities of the quark-antiquark components in the ground-state baryon octet wave functions are calculated by taking the baryons to be admixtures of three- and five-quark components, with the relevant transitions handled via the 3P0 mechanism. Predictions for σπ B and σs B obtained by using input parameters taken from the literature are reported. Our results turn out to be, in general, consistent with the findings via lattice QCD and chiral perturbation theory.

  8. U-spin predictions of the transition magnetic moments of the electromagnetic decay of the {Sigma}{sup ∗}(1385) baryons

    SciTech Connect

    Keller, Dustin M.; Hicks, Kenneth H.

    2013-05-01

    The transition magnetic moments for decuplet-to-octet baryon electromagnetic decays are calculated from the CLAS experimental results and are compared with calculations to first order in the 1/N{sub c} expansion of quantum chromodynamics (QCD) and new U-spin predictions. Using the U-spin predictions for the {Sigma} *{sup 0} --> {Sigma}{sup 0} {gamma} and {Sigma} *{sup +} → {Sigma}{sup +} {gamma} decays, the SU(3)-forbidden transition {Sigma} *{sup -} → {Sigma}{sup -} {gamma} is obtained. In addition, the doubly strange baryon radiative decay {Xi} *{sup 0} → {Xi} {gamma} is predicted using U-spin.

  9. Exact baryon, strangeness, and charge conservation in hadronic gas models

    SciTech Connect

    Cleymans, J.; Marais, M.; Suhonen, E.

    1997-11-01

    Relativistic heavy ion collisions are studied assuming that particles can be described by a hadron gas in thermal and chemical equilibrium. The exact conservation of baryon number, strangeness, and charge is explicitly taken into account. For heavy ions the effect arising from the neutron surplus becomes important and leads to a substantial increase in, e.g., the {pi}{sup {minus}}/{pi}{sup +} ratio. A method is developed which is suited to the study of small systems up to baryon number 20, which, unfortunately excludes cases like S-S. {copyright} {ital 1997} {ital The American Physical Society}

  10. Production of the charmed strange baryon. xi. /sub c//sup +/ by neutrons

    SciTech Connect

    Not Available

    1986-12-01

    We report on the observation of a narrow resonance at a mass of 2450 MeV/c/sup 2/ in the final states ..lambda..K/sup -/..pi../sup +/..pi../sup +/ and ..sigma../sup 0/K/sup -/..pi../sup +/..pi../sup +/. The mass, width, lifetime, and decay modes support the interpretation of a hadronically produced charm-strange baryon, the ..xi../sub c//sup +/. We present our preliminary measurements of the lifetime, and the ..lambda.., x/sub feynman,/ and p/sub t/ dependence of the state.

  11. Octet baryon masses and sigma terms from an SU(3) chiral extrapolation

    SciTech Connect

    Young, Ross; Thomas, Anthony

    2009-01-01

    We analyze the consequences of the remarkable new results for octet baryon masses calculated in 2+1- avour lattice QCD using a low-order expansion about the SU(3) chiral limit. We demonstrate that, even though the simulation results are clearly beyond the power-counting regime, the description of the lattice results by a low-order expansion can be significantly improved by allowing the regularisation scale of the effective field theory to be determined by the lattice data itself. The model dependence of our analysis is demonstrated to be small compared with the present statistical precision. In addition to the extrapolation of the absolute values of the baryon masses, this analysis provides a method to solve the difficult problem of fine-tuning the strange-quark mass. We also report a determination of the sigma terms for all of the octet baryons, including an accurate value of the pion-nucleon sigma term and the first determination of the strangeness sigma term based on 2+1-flavour l

  12. Baryonic strangeness and related susceptibilities in QCD

    NASA Astrophysics Data System (ADS)

    Majumder, A.; Müller, B.

    2006-11-01

    The ratios of off-diagonal to diagonal conserved charge susceptibilities, e.g., χBS/χS,χQS/χS, related to the quark flavor susceptibilities, have proven to be discerning probes of the flavor carrying degrees of freedom in hot strongly interacting matter. Various constraining relations between the different susceptibilities are derived based on the Gell-Mann-Nishijima formula and the assumption of isospin symmetry. Using generic models of deconfined matter and results from lattice quantum chromodynamics, it is demonstrated that the flavor-carrying degrees of freedom at a temperature above 1.5Tc are quarklike quasiparticles. A new observable related by isospin symmetry to CBS=-3χBS/χS and equal to it in the baryon free regime is identified. This new observable, which is blind to neutral and nonstrange particles, carries the potential of being measured in relativistic heavy-ion collisions.

  13. Electroproduction of baryon-meson states and strangeness suppression

    NASA Astrophysics Data System (ADS)

    Santopinto, E.; García-Tecocoatzi, H.; Bijker, R.

    2016-08-01

    We describe the electroproduction ratios of baryon-meson states from nucleon, inferring from the sea quarks in the nucleon using an extension of the quark model that takes into account the sea. As a result we provide, with no adjustable parameters, the predictions of ratios of exclusive meson-baryon final states: ΛK+, Σ* K, ΣK, pπ0, and nπ+. These predictions are in agreement with the new JLab experimental data showing that sea quarks play an important role in the electroproduction. We also predicted further ratios of exclusive reactions that can be measured and tested in future experiments. In particular, we suggested new experiments on deuterium and tritium. Such measurements can provide crucial tests of different predictions concerning the structure of nucleon and its sea quarks helping to solve an outstanding problem. Finally, we compute the so called strangeness suppression factor, λs, that is the suppression of strange quark-antiquark pairs compared to nonstrange pairs, and we found that our finding with this simple extension of the quark model is in good agreement with the results of JLab and CERN experiments.

  14. Strange baryonic resonances and resonances coupling to strange hadrons at SIS energies

    NASA Astrophysics Data System (ADS)

    Fabbietti, L.

    2016-01-01

    The role played by baryonic resonances in the production of final states containing strangeness for proton-proton reactions at 3.5 GeV measured by HADES is discussed by means of several very different measurements. First the associate production of Δ resonances accompanying final states with strange hadrons is presented, then the role of interferences among N* resonances, as measured by HADES for the first time, is summarised. Last but not least the role played by heavy resonances, with a mass larger than 2 GeV/c2 in the production of strange and non-strange hadrons is discussed. Experimental evidence for the presence of a Δ(2000)++ are presented and hypotheses are discussed employing the contribution of similar objects to populate the excesses measured by HADES for the Ξ in A+A and p+A collisions and in the dilepton sector for A+A collisions. This extensive set of results helps to better understand the dynamic underlaying particle production in elementary reactions and sets a more solid basis for the understanding of heavy ion collisions at the same energies and even higher as planned at the FAIR facility.

  15. Observation of the sigma_b baryons at CDF

    SciTech Connect

    Pursley, Jennifer M.; /Johns Hopkins U.

    2007-03-01

    We present a measurement of four new bottom baryons in proton-antiproton collisions with a center of mass energy of 1.96 TeV. Using 1.1 fb{sup -1} of data collected by the CDF II detector, we observe four {Lambda}{sup 0}{sub b}{pi}{+-} resonances in the fully reconstructed decay mode {Lambda}{sup 0}{sub b} {yields} {Lambda}{sup +}{sub c}{pi}{sup -}, where {Lambda}{sup +}{sub c} {yields} pK{sup -}{pi}{sup +}. The probability for the background to produce a similar or larger signal is less than 8.3 x 10{sup -8}, corresponding to a significance of greater than 5.2 {sigma}. We interpret these baryons as the {Sigma}{sub b}{sup (*){+-}} baryons.

  16. A Study of Double-Charm and Charm-Strange Baryons inElectron-Positron Annihilations

    SciTech Connect

    Edwards, Adam J.; /SLAC

    2007-10-15

    In this dissertation I describe a study of double-charm and charm-strange baryons based on data collected with the BABAR Detector at the Stanford Linear Accelerator Center. In this study I search for new baryons and make precise measurements of their properties and decay modes. I seek to verify and expand upon double-charm and charm-strange baryon observations made by other experiments. The BABAR Detector is used to measure subatomic particles that are produced at the PEP-II storage rings. I analyze approximately 300 million e+e- {yields} c{bar c} events in a search for the production of double-charm baryons. I search for the double-charm baryons {Xi}{sup +}{sub cc} (containing the quarks ccd) and {Xi}{sup ++}{sub cc} (ccu) in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +} and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}{pi}{sup +}, respectively. No statistically significant signals for their production are found, and upper limits on their production are determined. Statistically significant signals for excited charm-strange baryons are observed with my analysis of approximately 500 million e+e- {yields} c{bar c} events. The charged charm-strange baryons {Xi}{sub c}(2970){sup +}, {Xi}{sub c}(3055){sup +}, {Xi}{sub c}(3123){sup +} are found in decays to {Lambda}{sup +}{sub c}K{sup -}{pi}{sup +}, the same decay mode used in the {Xi}{sup +}{sub cc} search. The neutral charm-strange baryon {Xi}{sub c}(3077){sup 0} is observed in decays to {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}. I also search for excited charm-strange baryon decays to {Lambda}{sup +}{sub c}K{sub 8}, {Lambda}{sup +}{sub c}K{sup -}, {Lambda}{sup +}{sub c}K{sub 8}{pi}{sup -}{pi}{sup +}, and {Lambda}{sup +}{sub c}K{sup -}{pi}{sup -}{pi}{sup +}. No significant charm-strange baryon signals a f h these decay modes. For each excited charm-strange baryon state that I observe, I measure its mass, natural width (lifetime), and production rate. The properties of these excited charm-strange baryons and their

  17. A Study of Excited Charm-Strange Baryons withEvidence for new Baryons Xi_c(3055)+ and Xi_c(3123)+

    SciTech Connect

    Collaboration, The BABAR; Aubert, B.

    2007-10-30

    We present a study of excited charm-strange baryon states produced in e{sup +}e{sup -} annihilations at or near a center-of-mass energy of 10.58 GeV, in a data sample with an integrated luminosity of 384 fb{sup -1} recorded with the BABAR detector at the PEP-II e+e storage rings at the Stanford Linear Accelerator Center. We study strong decays of charm-strange baryons to {Lambda}{sub c}{sup +}K{sub S}{sup 0}, {Lambda}{sub c}{sup +}K{sup -}, {Lambda}{sub c}{sup +}K{sup -}{pi}{sup +}, {Lambda}{sub c}{sup +}K{sub S}{sup 0}{pi}{sup -}, {Lambda}{sub c}{sup +}K{sub S}{sup 0}{pi}{sup -}{pi}{sup +}, {Lambda}{sub c}{sup +}K{sup -}{pi}{sup -}{pi}{sup +}. This study confirms the existence of the states {Xi}{sub c}(2980){sup +}, {Xi}{sub c}(3077){sup +}, and {Xi}{sub c}(3077){sup -}, with a more accurate determination of the {Xi}{sub c}(2980){sup +} mass and width. We also present evidence for two new states, {Xi}{sub c}(3055){sup +} and {Xi}{sub c}(3123){sup +}, decaying through the intermediate resonant modes {Sigma}{sub c}(2455){sup ++}K{sup -} and {Sigma}{sub c}(2520){sup ++}K{sup -}, respectively. For each of these baryons, we measure the yield in each final state, determine the statistical significance, and calculate the product of the production cross-section and branching fractions. We also measure the masses and widths of these excited charm-strange baryons.

  18. Observation of the Doubly Strange b Baryon {omega}{sub b}{sup -}

    SciTech Connect

    Abazov, V. M.; Alexeev, G. D.; Kharzheev, Y. M.; Komissarov, E. V.; Malyshev, V. L.; Merekov, Y. P.; Rozhdestvenski, A.; Tokmenin, V. V.; Vertogradov, L. S.; Vertogradova, Y.; Yatsunenko, Y. A.; Abbott, B.; Gutierrez, P.; Hossain, S.; Jain, S.; Rominsky, M.; Severini, H.; Skubic, P.; Strauss, M.; Abolins, M.

    2008-12-05

    We report the observation of the doubly strange b baryon {omega}{sub b}{sup -} in the decay channel {omega}{sub b}{sup -}{yields}J/{psi}{omega}{sup -}, with J/{psi}{yields}{mu}{sup +}{mu}{sup -} and {omega}{sup -}{yields}{lambda}K{sup -}{yields}(p{pi}{sup -})K{sup -}, in pp collisions at {radical}(s)=1.96 TeV. Using approximately 1.3 fb{sup -1} of data collected with the D0 detector at the Fermilab Tevatron Collider, we observe 17.8{+-}4.9(stat){+-}0.8(syst) {omega}{sub b}{sup -} signal events at a mass of 6.165{+-}0.010(stat){+-}0.013(syst) GeV. The significance of the observed signal is 5.4{sigma}, corresponding to a probability of 6.7x10{sup -8} of it arising from a background fluctuation.

  19. Strange b baryon production and lifetime in Z decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    In a data sample of approximately four million hadronic Z decays recorded with the ALEPH detector from 1990 to 1995, a search for the strange b baryon Ξb is performed with a study of Ξ-lepton correlations. Forty-four events with same sign Ξ-ℓ - combinations are found whereas 8.4 are expected based on the rate of opposite sign Ξ-ℓ + combinations. This significant excess is interpreted as evidence for Ξb semileptonic decays. The measured product branching ratio is Br(b → Ξ b) × Br(Ξ b → X cXℓ -overlineν ℓ) × Br(X c → Ξ -X‧) = (5.4±1.1(stat) ± 0.8(syst)) × 10 -4 per lepton species, averaged over electrons and muons, with X c a charmed baryon. The Ξb lifetime is measured to be τΞb = 1.35 -0.28+0.37(stat) -0.17+0.15(syst) ps.

  20. Measurements of Direct CP Violating Asymmetries in Charmless Decays of Strange Bottom Mesons and Bottom Baryons

    SciTech Connect

    Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.; Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.; Vizan, J.; Amerio, S.; Dorigo, T.; Gresele, A.; Lazzizzera, I.

    2011-05-06

    We report measurements of direct CP--violating asymmetries in charmless decays of neutral bottom hadrons to pairs of charged hadrons with the upgraded Collider Detector at the Fermilab Tevatron. Using a data sample corresponding to 1 fb{sup -1} of integrated luminosity, we obtain the first measurements of direct CP violation in bottom strange mesons, A{sub CP}(B{sub s}{sup 0}{yields}K{sup -}{pi}{sup +})=+0.39{+-}0.15(stat){+-}0.08(syst), and bottom baryons, A{sub CP}({Lambda}{sub b}{sup 0}{yields}p{pi}{sup -})=+0.03{+-}0.17(stat){+-}0.05(syst) and A{sub CP}({Lambda}{sub b}{sup 0}{yields}pK{sup -})=+0.37{+-}0.17(stat){+-}0.03(syst). In addition, we measure CP violation in B{sup 0}{yields}K{sup +}{pi}{sup -} decays with 3.5{sigma} significance, A{sub CP}(B{sup 0}{yields}K{sup +}{pi}{sup -})=-0.086{+-}0.023(stat){+-}0.009(syst), in agreement with the current world average. Measurements of branching fractions of B{sub s}{sup 0}{yields}K{sup +}K{sup -} and B{sup 0}{yields}{pi}{sup +}{pi}{sup -} decays are also updated.

  1. Measurements of Direct CP Violating Asymmetries in Charmless Decays of Strange Bottom Mesons and Bottom Baryons

    SciTech Connect

    Aaltonen, T.; Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; /Purdue U. /Waseda U. /Dubna, JINR

    2011-03-01

    We report measurements of direct CP-violating asymmetries in charmless decays of neutral bottom hadrons to pairs of charged hadrons with the upgraded Collider Detector at the Fermilab Tevatron. Using a data sample corresponding to 1 fb{sup -1} of integrated luminosity, we obtain the first measurements of direct CP violation in bottom strange mesons, A{sub CP}(B{sub s}{sup 0} {yields} K{sup -}{pi}{sup +}) = +0.39 {+-} 0.15 (stat) {+-} 0.08 (syst), and botton baryons, A{sub CP}({Lambda}{sub b}{sup 0} {yields} p{pi}{sup -}) = + 0.03 {+-} 0.17 (stat) {+-} 0.05 (syst) and A{sub CP} ({Lambda}{sub b}{sup 0} {yields} pK{sup -}) = +0.37 {+-} 0.17 (stat) {+-} 0.03 (syst). In addition, they measure CP violation in B{sup 0} {yields} K{sup +}{pi}{sup -} decays with 3.5{sigma} significance, A{sub CP} (B{sup 0} {yields} K{sup +}{pi}{sup -}) = -0.086 {+-} 0.023 (stat) {+-} 0.009 (syst), in agreement with the current world average. Measurements of branching fractions of B{sub s}{sup 0} {yields} K{sup +}K{sup -} and B{sup 0} {yields} {pi}{sup +}{pi}{sup -} decays are also updated.

  2. Pattern of (Multi)strange (Anti)baryon Production and Search for Deconfinement

    NASA Astrophysics Data System (ADS)

    Rafelski, Johann

    1998-04-01

    We study (multi)strange particle abundances obtained recently in relativistic heavy ion collisions and determine thermal and chemical source parameters(J. Letessier et al., Phys. Lett. B410 (1997) 315--322 hep-ph/9710310 and: Acta Physica Polonica in press, hep- ph/9710340). These are primarily constrained by (multi)strange (anti)baryon relative abundances, which have been measured for Pb--Pb 158 A GeV interactions(I. Kralik, for WA97 collaboration, QM97 Tsukuba, to appear in Nucl. Phys. A) and S-S/W/Pb 200 A GeV interactions(See: proceedings of S'96-Budapest, APH N.S., Heavy Ion Physics 4 (1996) vii--x). We have extended our analysis and have now determined the properties of the particle source using the fitted macro canonical parameters, allowing as required for non-equilibrium dynamics of the locally thermal fireball. We find that in the 158 A GeV Pb--Pb collisions the entropy per baryon, energy per baryon, strangeness per baryon implied by particle spectra are all in the range of values associated commonly with the deconfined QGP phase.

  3. High-pT azimuthal correlations of neutral strange baryons and mesons in STAR at RHIC

    SciTech Connect

    Bielcikova, Jana

    2006-07-11

    We present results on two-particle azimuthal correlations of high-pT neutral strange baryons ({lambda},{lambda}-bar) and mesons (K{sub S}{sup 0}) associated with non-identified charged particles in d+Au and Au+Au collisions at {radical}(s{sub NN}) = 200 GeV. In particular, we discuss properties of the near-side yield of associated charged particles as a function of centrality, transverse momentum and zT, as well as possible baryon/meson and particle/antiparticle differences. The results are compared to the proton and pion triggered correlations and to fragmentation and recombination models.

  4. Baryon-Strangeness Correlations from Hadron/String- and Quark-Dynamics

    SciTech Connect

    Haussler, Stephane; Scherer, Stefan; Bleicher, Marcus

    2007-02-27

    Baryon-strangeness correlations (CBS) are studied with a hadron/string transport approach (UrQMD) and a dynamical quark recombination model (quark molecular dynamics, qMD) for various energies from Elab = 4A GeV to {radical}(s{sub NN}) = 200 GeV. As expected, we find that the hadron/string dynamics shows correlations similar to a simple hadron gas. In case of the quark molecular dynamics, we find that initially the CBS correlation is that of a weakly interacting QGP but changes in the process of hadronization also to the value for a hadron gas. Therefore, we conclude that the hadronization process itself makes the initial baryon strangeness correlation unobservable. To make an experimental study of this observable more feasible, we also investigate how a restriction to only charged kaons and {lambda}'s (instead of all baryons and all strange particles) influences the theoretical result on CBS. We find that a good approximation of the full result can be obtained in this limit in the present simulation.

  5. SELEX: Recent Progress in the Analysis of Charm-Strange and Double-Charm Baryons

    SciTech Connect

    Engelfried, Jurgen

    2007-02-01

    SELEX (Fermilab Experiment 781) [1] employs beams of {Sigma}{sup -}, {pi}{sup -}, and protons at around 600 GeV/c to study production and decay properties of charmed baryons. It took data in the 1996/7 fixed target run and is currently analyzing those data. Here they focus on recently obtained results concerning the {Omega}{sub c}{sup 0} lifetime and the doubly-charmed baryons {Xi}{sub cc}{sup +} and {Xi}{sub cc}{sup ++}.

  6. Relativistic quark-diquark model of baryons with a spin-isospin transition interaction: Non-strange baryon spectrum and nucleon magnetic moments

    NASA Astrophysics Data System (ADS)

    De Sanctis, M.; Ferretti, J.; Santopinto, E.; Vassallo, A.

    2016-05-01

    The relativistic interacting quark-diquark model of baryons, recently developed, is here extended introducing in the mass operator a spin-isospin transition interaction. This refined version of the model is used to calculate the non-strange baryon spectrum. The results are compared to the present experimental data. A preliminary calculation of the magnetic moments of the proton and neutron is also presented.

  7. Strangeness driven phase transitions in compressed baryonic matter and their relevance for neutron stars and core collapsing supernovae

    SciTech Connect

    Raduta, Ad. R.; Gulminelli, F.; Oertel, M.

    2015-02-24

    We discuss the thermodynamics of compressed baryonic matter with strangeness within non-relativistic mean-field models with effective interactions. The phase diagram of the full baryonic octet under strangeness equilibrium is built and discussed in connection with its relevance for core-collapse supernovae and neutron stars. A simplified framework corresponding to (n, p, Λ)(+e)-mixtures is employed in order to test the sensitivity of the existence of a phase transition on the (poorely constrained) interaction coupling constants and the compatibility between important hyperonic abundances and 2M{sub ⊙} neutron stars.

  8. Enhanced strange baryon production in Au+Au collisions compared to p+p at {radical}{ovr s}{sub NN} = 200 GeV.

    SciTech Connect

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; STAR Collaboration; McClain, C. J.; High Energy Physics; Univ. of Illinois; Panjab Univ.; Variable Energy Cyclotron Centre; Kent State Univ.; Particle Physic Lab.

    2008-01-01

    We report on the observed differences in production rates of strange and multistrange baryons in Au+Au collisions at {radical}s{sub NN} = 200 GeV compared to p+p interactions at the same energy. The strange baryon yields in Au+Au collisions, when scaled down by the number of participating nucleons, are enhanced relative to those measured in p+p reactions. The enhancement observed increases with the strangeness content of the baryon, and it increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at the lower collision energy {radical}s{sub NN} = 17.3 GeV. The previous observations are for the bulk production, while at intermediate p{sub T},1 < p{sub T} < 4 GeV/c, the strange baryons even exceed binary scaling from p+p yields.

  9. Enhanced strange baryon production in Au+Au collisions compared to p+p at sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S.-L.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Callner, J.; Catu, O.; Cebra, D.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; Moura, M. M. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Souza, R. Derradi De; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. G.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Horner, M. J.; Huang, H. Z.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jin, F.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kumar, A.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Qattan, I. A.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Relyea, D.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Rykov, V.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, X.-H.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Z.; Surrow, B.; Symons, T. J. M.; Toledo, A. Szanto De; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; Kolk, N. Van Der; Leeuwen, M. Van; Molen, A. M. Vander; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.; Webb, J. C.; Westfall, G. D.; , C. Whitten, Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, J.; Wu, Y.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, H.; Zhang, S.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J. X.

    2008-04-01

    We report on the observed differences in production rates of strange and multistrange baryons in Au+Au collisions at sNN=200 GeV compared to p+p interactions at the same energy. The strange baryon yields in Au+Au collisions, when scaled down by the number of participating nucleons, are enhanced relative to those measured in p+p reactions. The enhancement observed increases with the strangeness content of the baryon, and it increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at the lower collision energy sNN=17.3 GeV. The previous observations are for the bulk production, while at intermediate pT,1strange baryons even exceed binary scaling from p+p yields.

  10. New look at the [70,1{sup -}] nonstrange and strange baryons in the 1/N{sub c} expansion

    SciTech Connect

    Matagne, N.; Stancu, Fl.

    2011-05-23

    The masses of excited nonstrange and strange baryons belonging to the multiplet [70,1{sup -}] are calculated in the 1/N{sub c} expansion to order 1/N{sub c} with a new method which allows to considerably reduce the number of linearly independent operators entering the mass formula. This study represents an extension to SU(6) of our work on nonstrange baryons, the framework of which was SU(4).

  11. Observation of a narrow baryon resonance with positive strangeness formed in K+Xe collisions

    NASA Astrophysics Data System (ADS)

    Barmin, V. V.; Asratyan, A. E.; Borisov, V. S.; Curceanu, C.; Davidenko, G. V.; Dolgolenko, A. G.; Guaraldo, C.; Kubantsev, M. A.; Larin, I. F.; Matveev, V. A.; Shebanov, V. A.; Shishov, N. N.; Sokolov, L. I.; Tarasov, V. V.; Tumanov, G. K.; Verebryusov, V. S.; Diana Collaboration

    2014-04-01

    The charge-exchange reaction K+Xe→K0pXe' is investigated using the data of the DIANA experiment. The distribution of the pK0 effective mass shows a prominent enhancement near 1538 MeV formed by nearly 80 events above the background, whose width is consistent with being entirely due to the experimental resolution. Under the selections based on a simulation of K+Xe collisions, the statistical significance of the signal reaches 5.5σ. We interpret this observation as strong evidence for formation of a pentaquark baryon with positive strangeness, Θ+(uudds¯), in the charge-exchange reaction K+n→K0p on a bound neutron. The mass of the Θ+ baryon is measured as m (Θ+)=1538±2 MeV. Using the ratio between the numbers of resonant and nonresonant charge-exchange events in the peak region, the intrinsic width of this baryon resonance is determined as Γ (Θ+)=0.34±0.10 MeV.

  12. Charmed and strange baryon production in 29 GeV electron positron annihilation

    SciTech Connect

    Klein, S.R.

    1988-06-01

    This dissertation presents measurements of the production rates of baryons with different strangeness and spin. The analyses presented here use data taken with the Mark III detector at the PEP storage ring, operating at a center of mass energy of 29 GeV. The ..xi../sup /minus// production rate is measured to be 0.017 +- 0.004 +- 0.004 per hadronic event, ..cap omega../sup /minus// production is measured to be 0.014 +- 0.006 +- 0.004 per hadronic event, and ..xi..*/sup 0/ production is less than 0.006 per hadronic event at a 90% confidence level. These measurements place strong constraints on models of baryon production. In particular, the unexpectedly high rate of ..cap omega../sup /minus// production is difficult to explain in any diquark based model. Semileptonic ..lambda../sub c//sup +/ decays have also been observed. Because neither the branching ratios nor the production rate are well known, it is difficult to interpret these results. However, they do indicate that the branching ratio for ..lambda../sub c//sup +/ ..-->.. ..lambda..l..nu.. may be higher than previous experimental measurements. 85 refs., 45 figs., 12 tabs.

  13. Subthreshold production of {sigma}(1385) baryons in Al+Al collisions at 1.9A GeV

    SciTech Connect

    Lopez, X.; Andronic, A.; Hartmann, O. N.; Hildenbrand, K. D.; Kim, Y. J.; Koczon, P.; Leifels, Y.; Reisdorf, W.; Schuettauf, A.; Herrmann, N.; Benabderrahmane, M. L.; Cordier, E.; Merschmeyer, M.; Pelte, D.; Crochet, P.; Barret, V.; Bastid, N.; Dupieux, P.

    2007-11-15

    First measurement of subthreshold {sigma}(1385) production is presented. Experimental data are presented for Al+Al reactions at 1.9A GeV measured with the FOPI detector at SIS/GSI. The {sigma}(1385)/{lambda} ratio is found to be in good agreement with the transport and statistical model predictions. The results allow for a better understanding of subthreshold strangeness production and strangeness exchange reaction which is the dominant process for K{sup -} production below and close-to threshold.

  14. Decays of negative parity non-strange baryons in the 1/Nc expansion

    SciTech Connect

    Jose L. Goity; Carlos L. Schat; Norberto Scoccola

    2004-04-01

    The decays of non-strange negative parity baryons via the emission of single {pi} and {eta} mesons are analyzed in the framework of the 1/N{sub c} expansion. A basis of spin-flavor operators is established to that order, and with this basis the different partial wave decay amplitudes are obtained. The unknown effective coefficients are determined by fitting to the S- and D-wave partial widths as provided by the PDG. A full set of relations between widths that result at the leading order, i.e. order N{sub c0}, is given and tested with the data. The rather large errors of the input partial widths, that result from the often discrepant results for the resonance parameters from different analyses of the data, lead to a rather good fit at the leading order N{sub c0}. The next to leading order fit fails for that reason to pin down with satisfactory accuracy the effective sub leading effective constants.

  15. Multi-strange baryon production in psbnd Pb collisions at √{sNN} = 5.02 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.

    2016-07-01

    The multi-strange baryon yields in Pbsbnd Pb collisions have been shown to exhibit an enhancement relative to pp reactions. In this work, Ξ and Ω production rates have been measured with the ALICE experiment as a function of transverse momentum, pT, in psbnd Pb collisions at a centre-of-mass energy of √{sNN} = 5.02 TeV. The results cover the kinematic ranges 0.6 GeV / c strange baryons have been identified by reconstructing their weak decays into charged particles. The pT spectra are analysed as a function of event charged-particle multiplicity, which in psbnd Pb collisions ranges over one order of magnitude and lies between those observed in pp and Pbsbnd Pb collisions. The measured pT distributions are compared to the expectations from a Blast-Wave model. The parameters which describe the production of lighter hadron species also describe the hyperon spectra in high multiplicity psbnd Pb collisions. The yield of hyperons relative to charged pions is studied and compared with results from pp and Pbsbnd Pb collisions. A continuous increase in the yield ratios as a function of multiplicity is observed in psbnd Pb data, the values of which range from those measured in minimum bias pp to the ones in Pbsbnd Pb collisions. A statistical model qualitatively describes this multiplicity dependence using a canonical suppression mechanism, in which the small volume causes a relative reduction of hadron production dependent on the strangeness content of the hyperon.

  16. Formation of a narrow baryon resonance with positive strangeness in K{sup +} collisions with Xe nuclei

    SciTech Connect

    Barmin, V. V.; Asratyan, A. E.; Borisov, V. S.; Curceanu, C.; Davidenko, G. V.; Dolgolenko, A. G.; Guaraldo, C.; Kubantsev, M. A.; Larin, I. F.; Matveev, V. A.; Shebanov, V. A.; Shishov, N. N.; Sokolov, L. I.; Tumanov, G. K.; Verebryusov, V. S.

    2010-07-15

    The data on the charge-exchange reaction K{sup +}Xe {sup {yields}}K{sup 0}pXe', obtained with the bubble chamber DIANA, are reanalyzed using increased statistics and updated selections. Our previous evidence for formation of a narrow pK{sup 0} resonance with mass near 1538 MeV is confirmed. The statistical significance of the signal reaches some 8{sigma} (6{sigma}) standard deviations when estimated as S/{radical}B (S/{radical}B + S. The mass and intrinsic width of the {Theta}{sup +} baryon are measured as m = 1538 {+-} 2 MeV and {Gamma} = 0.39 {+-} 0.10 MeV.

  17. Global Analysis Of The Negative Parity Non-Strange Baryons In The 1/N{sub c} Expansion

    SciTech Connect

    Goity, Jose L.; Gonzalez de Urreta, Emiliano Jose; Scoccola, Norberto N.

    2014-02-01

    A global study of the negative parity non-strange baryon observables is performed in the framework of the 1/N{sub c} expansion. Masses, partial decay widths and photo-couplings are simultaneously analyzed. A main objective is to determine the composition of the spin 1/2 and 3/2 nucleon states, which come in pairs and involve two mixing angles which can be determined and tested for consistency by the mentioned observables. The issue of the assignment of those nucleon states to the broken SU(4) X O(3) mixed-symmetry multiplet is studied in detail, with the conclusion that the assignment made in the old studies based on the non-relativistic quark model is the preferred one. In addition, the analysis involves an update of the input data with respect to previous works.

  18. Dynamics of strangeness production in heavy-ion collisions near threshold energies

    SciTech Connect

    Feng Zhaoqing; Jin Genming

    2010-11-15

    Within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model, the dynamics of strangeness (K{sup 0,+}, {Lambda}, and {Sigma}{sup -,0,+}) production in heavy-ion collisions near threshold energies is investigated systematically, with the strange particles considered to be produced mainly by inelastic collisions of baryon-baryon and pion-baryon. Collisions in the region of suprasaturation densities of the dense baryonic matter formed in heavy-ion collisions dominate the yields of strangeness production. Total multiplicities as functions of incident energies and collision centralities are calculated with the Skyrme parameter SLy6. The excitation function of strangeness production is analyzed and also compared with the KaoS data for K{sup +} production in the reactions {sup 12}C+{sup 12}C and {sup 197}Au+{sup 197}Au.

  19. Multi-strange baryon elliptic flow in Pb-Pb collisions at sqrt {s_{NN} } = 2.76 TeV measured with the ALICE detector

    NASA Astrophysics Data System (ADS)

    Yin, Zhongbao

    2012-12-01

    We present the results on elliptic flow with multi-strange baryons produced in Pb-Pb collisions at sqrt {s_{NN} } = 2.76 TeV. The analysis is performed with the ALICE detector at LHC. Multi-strange baryons are reconstructed via their decay topologies and the v 2 measurements are analyzed with the two-particle scalar product method. The p T differential v 2 values are compared to the viscous hydrodynamical (VISH2+1) model calculation and to the STAR measurements in Au-Au collisions at sqrt {s_{NN} } = 200 GeV. We found that the model describes ≡ and Ωv 2 measurements within uncertainties. The differential v 2 of ≡ and Ω is similar to the STAR measurements at 200 GeV in Au-Au collisions.

  20. Multi-strange baryon elliptic flow in Pb-Pb collisions at sqrt {s_{NN} } = 2.76 TeV measured with the ALICE detector

    NASA Astrophysics Data System (ADS)

    Yin, Zhongbao

    2012-12-01

    We present the results on elliptic flow with multi-strange baryons produced in Pb-Pb collisions at sqrt {s_{NN} } = 2.76 TeV. The analysis is performed with the ALICE detector at LHC. Multi-strange baryons are reconstructed via their decay topologies and the v 2 measurements are analyzed with the two-particle scalar product method. The p T differential v 2 values are compared to the viscous hydrodynamical (VISH2+1) model calculation and to the STAR measurements in Au-Au collisions at sqrt {s_{NN} } = 200 GeV. We found that the model describes ≡ and Ω v 2 measurements within uncertainties. The differential v 2 of ≡ and Ω is similar to the STAR measurements at 200 GeV in Au-Au collisions.

  1. Formation of a narrow baryon resonance with positive strangeness in K + collisions with Xe nuclei

    NASA Astrophysics Data System (ADS)

    Barmin, V. V.; Asratyan, A. E.; Borisov, V. S.; Curceanu, C.; Davidenko, G. V.; Dolgolenko, A. G.; Guaraldo, C.; Kubantsev, M. A.; Larin, I. F.; Matveev, V. A.; Shebanov, V. A.; Shishov, N. N.; Sokolov, L. I.; Tumanov, G. K.; Verebryusov, V. S.

    2010-07-01

    The data on the charge-exchange reaction K +Xe → K 0 pXe', obtained with the bubble chamber DIANA, are reanalyzed using increased statistics and updated selections. Our previous evidence for formation of a narrow pK 0 resonance with mass near 1538 MeV is confirmed. The statistical significance of the signal reaches some 8 (6) standard deviations when estimated as {S {sqrt B ( {{S {/ {sqrt {B + S} }}} )}} . The mass and intrinsic width of the Θ+ baryon are measured as m = 1538 ± 2 MeV and Γ = 0.39 ± 0.10 MeV.

  2. Further evidence for formation of a narrow baryon resonance with positive strangeness in K + collisions with Xe nuclei

    NASA Astrophysics Data System (ADS)

    Barmin, V. V.; Asratyan, A. E.; Borisov, V. S.; Curceanu, C.; Davidenko, G. V.; Dolgolenko, A. G.; Guaraldo, C.; Kubantsev, M. A.; Larin, I. F.; Matveev, V. A.; Shebanov, V. A.; Shishov, N. N.; Sokolov, L. I.; Tumanov, G. K.

    2007-01-01

    We have continued our investigation of the charge-exchange reaction K +Xe → K 0 pXe’ in the bubble chamber DIANA. In agreement with our previous results based on part of the present statistics, formation of a narrow pK 0 resonance with mass of 1537 ± 2 MeV/c 2 is observed in the elementary transition K + n → K 0 p on a neutron bound in the xenon nucleus. The visible width of the peak is consistent with being entirely due to instrumental resolution and allows one to place an upper limit on its intrinsic width: Γ < 9 MeV/c 2. A more precise estimate of the resonance intrinsic width, Γ = 0.36 ± 0.11 MeV/c 2, is obtained from the ratio between the numbers of resonant and nonresonant charge-exchange events. The signal is observed in a restricted interval of incident K + momentum that is consistent with smearing of a narrow pK 0 resonance by Fermi motion of the target neutron. The statistical significance of the signal is some 7.3, 5.3, and 4.3 standard deviations for the estimators S/sqrt B ,S/sqrt {S + B} and S/sqrt {S + 2B} , respectively. This observation confirms and reinforces our earlier results, and offers strong evidence for formation of a pentaquark baryon with positive strangeness in the charge-exchange reaction K + n → K 0 p on a bound neutron.

  3. Baryon-baryon mixing in hypernuclei

    SciTech Connect

    Gibson, B.F.

    1998-12-31

    Implications of few-body hypernuclei for the understanding of the baryon-baryon interaction are examined. Octet-octet coupling effects not present in conventional, non strange nuclei are the focus. The need to identify strangeness {minus}2 hypernuclei to test model predictions is emphasized.

  4. Strangeness in the Nucleon

    SciTech Connect

    Dahiya, Harleen; Gupta, Manmohan

    2007-10-03

    There are several different experimental indications, such as the {sigma}{sub {pi}}{sub N} term, strange spin polarization, strangeness contribution to the magnetic moment of the proton, ratio of strange and non strange quark flavor distributions which suggest that the nucleon contains a hidden strangeness component which is contradictory to the naive constituent quark model. Chiral constituent quark model with configuration mixing ({chi}CQM{sub config}) is known to provide a satisfactory explanation of the ''proton spin problem'' and related issues. In the present work, we have extended the model to carry out the calculations for the parameters pertaining to the strange quark content of the nucleon, for example, the strange spin polarization {delta}s, strange components of the weak axial vector form factors {delta}{sigma} and {delta}{sub 8} as well as F and D, strangeness magnetic moment of the proton {mu}{sub p}{sup s}, the strange quark content in the nucleon f{sub s} coming from the {sigma}{sub {pi}}{sub N} term, the ratios between strange and non-strange quarks (2s/u+d) and (2s/u-bar+d), contribution of strangeness to angular momentum sum rule etc. Our result demonstrates the broad consistency with the experimental observations as well as other theoretical considerations.

  5. Multi-strange baryon production in Au-Au collisions at sqrt(sNN) = 130 GeV

    SciTech Connect

    Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj, S.; Bhaskar, P.; Bhati, A.K.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Ganti, M.S.; Gutierrez, T.D.; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grigoriev, V.; Cronstal, S.; Grosnick, D.; Guedon, M.; Guertin, S.M.; Gupta, A.; Gushin, E.; Hallman, T.J.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang, S.L.; Hughes, E.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Jiang, H.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Konstantinov, A.S.; Kopytine, S.M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; et al.

    2003-07-31

    The transverse mass spectra and mid-rapidity yields for {Xi}s and {Omega}s plus their anti-particles are presented. The 10% most central collision yields suggest that the amount of multi-strange particles produced per produced charged hadron increases from SPS to RHIC energies. A hydrodynamically inspired model fit to the spectra, which assumes a thermalized source, seems to indicate that these multi-strange particles experience a significant transverse flow effect, but are emitted when the system is hotter and the flow is smaller than values obtained from a combined fit to {pi}, K, p and {Lambda}s.

  6. Multi-strange baryon production in Au+Au collisions at {radical}s{sub NN} = 130 GeV

    SciTech Connect

    Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj, S.; Bhaskar, P.; Bhati, A.K.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Majumdar, M.R.; Eckardt, V.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Ganti, M.S.; Gutierrez, T.D.; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grigoriev, V.; Gronstal, S.; Grosnick, D.; Guedon, M.; Guertin, S.M.; Gupta, A.; Gushin, E.; Hallman, T.J.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang, S.L.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Konstantinov, A.S.; Kopytine, M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; et al.

    2003-07-30

    The transverse mass spectra and mid-rapidity yields for {Xi}s and {Omega}s plus their anti-particles are presented. The 10% most central collision yields suggest that the amount of multi-strange particles produced per produced charged hadron increases from SPS to RHIC energies. A hydrodynamically inspired model fit to the spectra, which assumes a thermalized source, seems to indicate that these multi-strange particles experience a significant transverse flow effect, but are emitted when the system is hotter and the flow is smaller than values obtained from a combined fit to {pi}, K, p and {lambda}s.

  7. Strange Light Nuclei

    SciTech Connect

    Nakamura, Satoshi N.

    2014-04-01

    "Strange" means 1) unusual or surprising, especially in a way that is difficult to explain or understand or 2) having strangeness degree of freedom. Light nuclear systems with strangeness, light hypernuclei, are perfect playground to study baryon force which would be a bridge between well established nuclear force in low energy region and QCD, the first principle of the strong interaction. Overview of study of light hypernuclei is given and recent experimental findings are reviewed.

  8. Multi-strange baryon production at mid-rapidity in Pb-Pb collisions at √{sNN}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adam, J.; Adamová, D.; Adare, A. M.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agocs, A. G.; Agostinelli, A.; Ahammed, Z.; Ahmad, N.; Ahmad Masoodi, A.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bailhache, R.; Bairathi, V.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Bán, J.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bergognon, A. A. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bornschein, J.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Canoa Roman, V.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Díaz, A.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contin, G.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; D'Erasmo, G.; Dainese, A.; Dang, R.; Danu, A.; Das, K.; Das, D.; Das, I.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; Deppman, A.; de Barros, G. O. V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Divià, R.; Di Bari, D.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Elia, D.; Emschermann, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Goerlich, L.; Gomez, R.; González-Zamora, P.; Gorbunov, S.; Gotovac, S.; Graczykowski, L. K.; Grajcarek, R.; Grelli, A.; Grigoras, C.; Grigoras, A.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.

    2014-01-01

    The production of Ξ- and Ω- baryons and their anti-particles in Pb-Pb collisions at √{sNN}=2.76 TeV has been measured using the ALICE detector. The transverse momentum spectra at mid-rapidity (|y|<0.5) for charged Ξ and Ω hyperons have been studied in the range 0.6∼150 and saturate thereafter. The enhancements (yields per participant nucleon relative to those in pp collisions) increase both with the strangeness content of the baryon and with centrality, but are less pronounced than at lower energies.

  9. Search for exotic baryon states with the SPHINX detector

    SciTech Connect

    Kurshetsov, V.F.; Landsberg, L.G.

    1994-11-01

    A number of diffractive processes involving the production of baryon states are studied in a series of experiments using the SPHINX detector and the E{sub p} = 70 GeV proton beam of the IHEP accelerator. These include p + N {yields} [pK{sup +}K{sup {minus}}] + N, p + N {yields} [p{phi}] + N, p + N {yields} [{Lambda}(1520)K{sup +}] + N, p + N {yields} [{Sigma}(1385){sup 0}K{sup +}] + N, p + N {yields} [{Sigma}(1385){sup 0}K{sup +}] + N + (neutrals), p + N {yields} [{Sigma}{sup 0}K{sup +}] + N, and a number of other transitions. Searches for narrow heavy baryons, which are candidates for cryptoexotic hadron states with hidden strangeness, are reported. The first results on meson production in the deep fragmentation region are presented. 21 refs., 14 figs., 2 tabs.

  10. Search for exotic baryons with hidden strangeness in proton diffractive production at the energy of 70 GeV

    NASA Astrophysics Data System (ADS)

    Kurshetsov, Victor

    2002-06-01

    First preliminary results from upgraded SPHINX spectrometer, working in the proton beam with the energy of 70 GeV of IHEP accelerator, are presented. The data for the reaction p + N [right arrow] [Sigma]0K+ + N based on a new statistics are in a good agreement with our previous data and strongly supports the existence of X(2000) state (with the increase of statistics for this state by a factor of approx 5). We also observed radiative decay of Lambda(1520) [right arrow] Lambda + gamma. The significant increase of statistics for many diffractive production reactions will allow us to study them in great detail.

  11. Near-side azimuthal and pseudorapidity correlations using neutral strange baryons and mesons in d +Au , Cu + Cu, and Au + Au collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Abelev, B.; Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Barnby, L. S.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bombara, M.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Gaillard, L.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, C.; Li, Y.; Li, W.; Li, X.; Li, X.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, L.; Ma, R.; Ma, G. L.; Ma, Y. G.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nattrass, C.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, H.; Wang, Y.; Wang, G.; Wang, Y.; Wang, J. S.; Wang, F.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, J.; Xu, H.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, S.; Yang, Y.; Yang, Y.; Yang, C.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, S.; Zhang, J. B.; Zhang, J.; Zhang, J.; Zhang, Z.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-07-01

    We present measurements of the near side of triggered di-hadron correlations using neutral strange baryons (Λ ,Λ ¯) and mesons (KS0) at intermediate transverse momentum (3 < pT <6 GeV /c ) to look for possible flavor and baryon-meson dependence. This study is performed in d +Au , Cu+Cu, and Au+Au collisions at √{sN N}=200 GeV measured by the STAR experiment at RHIC. The near-side di-hadron correlation contains two structures, a peak which is narrow in azimuth and pseudorapidity consistent with correlations from jet fragmentation, and a correlation in azimuth which is broad in pseudorapidity. The particle composition of the jet-like correlation is determined using identified associated particles. The dependence of the conditional yield of the jet-like correlation on the trigger particle momentum, associated particle momentum, and centrality for correlations with unidentified trigger particles are presented. The neutral strange particle composition in jet-like correlations with unidentified charged particle triggers is not well described by PYTHIA. However, the yield of unidentified particles in jet-like correlations with neutral strange particle triggers is described reasonably well by the same model.

  12. Observation of an exotic S = +1 baryon in exclusive photoproduction from the deuteron.

    PubMed

    Stepanyan, S; Hicks, K; Carman, D S; Pasyuk, E; Schumacher, R A; Smith, E S; Tedeschi, D J; Todor, L; Adams, G; Ambrozewicz, P; Anciant, E; Anghinolfi, M; Asavapibhop, B; Audit, G; Avakian, H; Bagdasaryan, H; Ball, J P; Barrow, S P; Battaglieri, M; Beard, K; Bektasoglu, M; Bellis, M; Berman, B L; Bianchi, N; Biselli, A S; Boiarinov, S; Bouchigny, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Butuceanu, C; Calarco, J R; Carnahan, B; Chen, S; Ciciani, L; Cole, P L; Coleman, A; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Cummings, J P; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; De Vita, R; Dharmawardane, K V; Dhuga, K S; Djalali, C; Dodge, G E; Doughty, D; Dragovitsch, P; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Empl, A; Eugenio, P; Fatemi, R; Feuerbach, R J; Ficenec, J; Forest, T A; Funsten, H; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Gordon, C I O; Gothe, R; Griffioen, K; Guidal, M; Guillo, M; Guo, L; Gyurjyan, V; Hadjidakis, C; Hakobyan, R S; Hardie, J; Heddle, D; Heimberg, P; Hersman, F W; Hicks, R S; Holtrop, M; Hu, J; Hyde-Wright, C E; Ito, M M; Jenkins, D; Joo, K; Juengst, H G; Kellie, J D; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Klusman, M; Kossov, M; Kramer, L H; Kuang, Y; Kubarovsky, V; Kuhn, S E; Kuhn, J; Lachniet, J; Lawrence, D; Li, J; Lima, A; Livingston, K; Lukashin, K; Manak, J J; McAleer, S; McNabb, J W C; Mecking, B A; Mehrabyan, S; Melone, J J; Mestayer, M D; Meyer, C A; Mikhailov, K; Minehart, R; Mirazita, M; Miskimen, R; Mokeev, V; Morand, L; Morrow, S; Muccifora, V; Mueller, J; Murphy, L Y; Mutchler, G S; Napolitano, J; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; Nozar, M; O'Brien, J; O'Rielly, G V; Opper, A K; Osipenko, M; Park, K; Peterson, G; Philips, S A; Pivnyuk, N; Pocanic, D; Pogorelko, O; Polli, E; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rossi, P; Rowntree, D; Rubin, P; Sabatié, F; Salgado, C; Santoro, J; Sapunenko, V; Serov, V S; Sharabian, Y G; Shaw, J; Simionatto, S; Skabelin, A V; Smith, L C; Sober, D I; Strakovsky, I I; Stavinsky, A; Stoler, P; Suleiman, R; Taiuti, M; Taylor, S; Thoma, U; Thompson, R; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Wang, K; Weinstein, L B; Weller, H; Weygand, D P; Whisnant, C S; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J

    2003-12-19

    In an exclusive measurement of the reaction gammad-->K(+)K(-)pn, a narrow peak that can be attributed to an exotic baryon with strangeness S=+1 is seen in the K(+)n invariant mass spectrum. The peak is at 1.542+/-0.005 GeV/c(2) with a measured width of 0.021 GeV/c(2) FWHM, which is largely determined by experimental mass resolution. The statistical significance of the peak is (5.2+/-0.6)sigma. The mass and width of the observed peak are consistent with recent reports of a narrow S=+1 baryon by other experimental groups. PMID:14754107

  13. Finite volume effects in the chiral extrapolation of baryon masses

    NASA Astrophysics Data System (ADS)

    Lutz, M. F. M.; Bavontaweepanya, R.; Kobdaj, C.; Schwarz, K.

    2014-09-01

    We perform an analysis of the QCD lattice data on the baryon octet and decuplet masses based on the relativistic chiral Lagrangian. The baryon self-energies are computed in a finite volume at next-to-next-to-next-to-leading order (N3LO), where the dependence on the physical meson and baryon masses is kept. The number of free parameters is reduced significantly down to 12 by relying on large-Nc sum rules. Altogether we describe accurately more than 220 data points from six different lattice groups, BMW, PACS-CS, HSC, LHPC, QCDSF-UKQCD and NPLQCD. Values for all counterterms relevant at N3LO are predicted. In particular we extract a pion-nucleon sigma term of 39-1+2 MeV and a strangeness sigma term of the nucleon of σsN=84-4+28 MeV. The flavor SU(3) chiral limit of the baryon octet and decuplet masses is determined with (802±4) and (1103±6) MeV. Detailed predictions for the baryon masses as currently evaluated by the ETM lattice QCD group are made.

  14. Staggered baryons

    NASA Astrophysics Data System (ADS)

    Bailey, Jon Andrew

    The strong force binds protons and neutrons within nuclei and quarks within mesons and baryons. Calculations of the masses of the light-quark baryons from the theory of the strong force, quantum chromodynamics (QCD), require numerical methods in which continuous Minkowski spacetime is replaced by a discrete Euclidean spacetime lattice. Finite computational resources and theoretical constraints impose significant limitations on lattice calculations. The price of perhaps the fastest formulation of lattice QCD, rooted staggered QCD, includes quark degrees of freedom called tastes, associated discretization effects called taste violations, and the rooting conjecture for eliminating the tastes in the continuum limit. Empirically successful rooted staggered QCD calculations of the baryon spectrum would constitute numerical evidence for the rooting conjecture and further vindication of QCD as the theory of the strong force. With such calculations as the goal, I discuss expected features of the staggered baryon spectrum, examine the spectra of interpolating operators transforming irreducibly under the staggered lattice symmetry group, construct such a set of baryon operators, and show how they could allow for particularly clean calculations of the masses of the nucleon, Delta, Sigma*, Ξ*, and O-. To quantify taste violations in baryonic quantities, I develop staggered chiral perturbation theory for light-quark baryons by mapping the Symanzik action into heavy baryon chiral perturbation theory, calculate the masses of flavor-symmetric nucleons to third order in partially quenched and fully dynamical staggered chiral perturbation theory, and discuss in detail the pattern of taste symmetry breaking and the resulting baryon degeneracies and mixings. The resulting chiral forms could be used with interpolating operators already in use to study the restoration of taste symmetry in the continuum limit.

  15. Exclusive electroproduction of strange mesons with JLab 12 GeV

    SciTech Connect

    Strikman, Mark; Weiss, Christian

    2009-01-01

    We summarize the physics topics which can be addressed by measurements of high-Q^2 exclusive electroproduction of strange mesons, gamma* N -> phi N, K* Lambda, K Lambda, K Sigma, at Jefferson Lab with 11 GeV beam energy. The proposed investigations are aimed both at exploring the reaction mechanism (dominance of point-like configurations) and extracting information about baryon structure from the data (generalized parton distributions, or GPDs). They include (a) probing the t-dependence of the nucleon's gluon GPD (transverse spatial distribution of gluons) in phi meson production; (b) separating the nucleon helicity-flip and nonflip quark GPDs in K* Lambda production with measurement of the Lambda recoil polarization; (c) probing strangeness polarization in the nucleon in K Lambda and K Sigma production. These studies rely only on the analysis of cross section ratios, which are less affected by the theoretical uncertainties of present GPD-based calculations than absolute cross sect

  16. Coupling vector and pseudoscalar mesons to study baryon resonances

    SciTech Connect

    Khemchandani, K. P.; Kaneko, H.; Hosaka, A.; Martinez Torres, A.; Nagahiro, H.

    2011-11-01

    A study of meson-baryon systems with total strangeness -1 is made within a framework based on the chiral and hidden local symmetries. These systems consist of octet baryons, pseudoscalar and vector mesons. The pseudoscalar meson-baryon (PB) dynamics has been earlier found determinant for the existence of some strangeness -1 resonances, for example, {Lambda}(1405), {Lambda}(1670), etc. The motivation of the present work is to study the effect of coupling the closed vector meson-baryon (VB) channels to these resonances. To do this, we obtain the PB{yields}PB and VB{yields}VB amplitudes from the t-channel diagrams and the PB{r_reversible}VB amplitudes are calculated using the Kroll-Ruddermann term where, considering the vector meson dominance phenomena, the photon is replaced by a vector meson. The calculations done within this formalism reveal a very strong coupling of the VB channels to the {Lambda}(1405) and {Lambda}(1670). In the isospin 1 case, we find evidence for a double pole structure of the {Sigma}(1480) which, like the isospin 0 resonances, is also found to couple strongly to the VB channels. The strong coupling of these low-lying resonances to the VB channels can have important implications on certain reactions producing them.

  17. Additional Strange Hadrons from QCD Thermodynamics and Strangeness Freezeout in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Bazavov, A.; Ding, H.-T.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Maezawa, Y.; Mukherjee, Swagato; Ohno, H.; Petreczky, P.; Schmidt, C.; Sharma, S.; Soeldner, W.; Wagner, M.

    2014-08-01

    We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. We show that the thermodynamic presence of these additional states gets imprinted in the yields of the ground-state strange hadrons leading to a systematic 5-8 MeV decrease of the chemical freeze-out temperatures of ground-state strange baryons.

  18. Multiply Strange Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Schaffner, J.; Dover, C. B.; Gal, A.; Greiner, C.; Millener, D. J.; Stocker, H.

    1994-10-01

    We investigate the stability of multiply strange baryonic systems, in the context of a mean field approach obtained from an underlying set of phenomenological meson-baryon interactions. The coupling parameters which determine the conventional σ + ω mean fields (Hartree potentials) seen by various baryon species (N, Λ, Ξ) in the many-body system are constrained by reproducing the trend of observed binding energies of single particle (N, Λ, Ξ) states, as well as the energy per particle and density of non-strange nuclear matter. We also consider additional scalar (σ*) and vector (φ) fields which couple strongly to strange baryons. The couplings of these fields are adjusted to produce strong hyperon-hyperon interactions, as suggested by the data on ΛΛ hypernuclei. Extrapolating this approach to systems of large strangeness S, we find a broad class of objects composed of neutrons, protons, Λ‧s and Ξ‧s, which are stable against strong decay. In these systems, the presence of filled Λ orbitals blocks the strong decay ΞN → ΛΛ, leading to a strangeness fraction fs = |S|/A ≍1, density ρ ≍ (2 - 3) ρ0, and charge fraction fq in the range - 0.1 strange quark matter ("stranglets"), but with a low binding energy per particle EB/A ≍ -10 to -20 MeV. We compare with an approximate mass formula which qualitatively describes the results of the mean field calculations. Such weakly bound multi-strange objects can be stable for very large A, unlike ordinary nuclei, since the Coulomb repulsion generated by the protons is largely cancelled by the presence of a comparable number of Ξ‧s, leading to a small net charge (positive or negative) of order A1/3. We comment on the weak decays of such subjects and the possibility of their production in relativistic heavy ion collisions.

  19. Strange skyrmion molecules

    NASA Astrophysics Data System (ADS)

    Kopeliovich, Vladimir B.; Stern, Boris E.

    1997-05-01

    Composed skyrmions with B=2, strangeness content close to 0.5 and the binding energy of several tens of Mev are described. These skyrmions are obtained starting from the system of two B=1 hedgehogs located in different SU(2) subgroups of SU(3) and have the mass and baryon number distribution of molecular (dipole) type. The quantization of zero modes of skyrmion molecules and physics consequences of their existence are discussed.

  20. Strange skyrmion molecules

    SciTech Connect

    Kopeliovich, Vladimir B.; Stern, Boris E.

    1997-05-20

    Composed skyrmions with B=2, strangeness content close to 0.5 and the binding energy of several tens of Mev are described. These skyrmions are obtained starting from the system of two B=1 hedgehogs located in different SU(2) subgroups of SU(3) and have the mass and baryon number distribution of molecular (dipole) type. The quantization of zero modes of skyrmion molecules and physics consequences of their existence are discussed.

  1. Measurements of strangeness production in the STAR experiment at RHIC

    SciTech Connect

    Wilson, W.K.

    1995-07-15

    Simulations of the ability of the STAR (Solenoidal Tracker at RHIC) detector to measure strangeness production in central Au+Au collisions at RHIC are presented. Emphasis is placed on the reconstruction of short lived particles using a high resolution inner tracker. The prospects for performing neutral kaon interferometry are discussed. Simulation results for measurements of strange and multi-strange baryons are presented.

  2. Observation of an Exotic S = +1 Baryon in Exclusive Photoproduction from the Deuteron

    SciTech Connect

    Stepan Stepanyan; Kenneth Hicks; Daniel Carman; Evgueni Pasyuk; Reinhard Schumacher; Elton Smith; David Tedeschi; Luminita Todor

    2003-12-19

    In an exclusive measurement of the reaction {gamma}d {yields} K{sup +} K{sup -} p n, a narrow peak that can be attributed to an exotic baryon with strangeness S = +1 is seen in the K{sup +}n invariant mass spectrum. The peak is at 1542 {+-} 5 MeV/c{sup 2} with a measured width of 21 MeV/c{sup 2} FWHM, equivalent to the experimental invariant mass resolution. The statistical significance of the peak is 5.3 {+-} 0.5 {sigma} for a Gaussian peak shape on top of a smooth background.

  3. Observation of an Exotic Baryon with S=+1 in Photoproduction from the Proton

    SciTech Connect

    Valery Kubarovsky; Lei Guo; Dennis Weygand; Paul Stoler; Marco Battaglieri; Raffaella De Vita; Gary Adams; Ji Li; Mina Nozar; Carlos Salgado; Pawel Ambrozewicz; Eric Anciant; Marco Anghinolfi; Burin Asavapibhop; Gerard Audit; Thierry Auger; Harutyun AVAKIAN; Hovhannes Baghdasaryan; Jacques Ball; Steve Barrow

    2004-01-01

    The reaction {gamma}p {yields} {pi}{sup +} K{sup -} K{sup +}n was studied at Jefferson Lab using a tagged photon beam with an energy range of 3-5.47 GeV. A narrow baryon state with strangeness S = +1 and mass M = 1555 {+-} 10 MeV/c{sup 2} was observed in the nK{sup +} invariant mass spectrum. The peak's width is consistent with the CLAS resolution (FWHM = 26 MeV/c{sup 2}), and its statistical significance is 7.8 {+-} 1.0 {sigma}. A baryon with positive strangeness has exotic structure and cannot be described in the framework of the naive constituent quark model. The mass of the observed state is consistent with the mass predicted by a chiral soliton model for the {Theta}{sup +} baryon. In addition, the pK{sup +} invariant mass distribution was analyzed in the reaction {gamma} p {yields} K{sup -} K{sup +}p with high statistics in search of doubly-charged exotic baryon states. No resonance structures were found in this spectrum.

  4. Observation of an exotic baryon with S=+1 in photoproduction from the proton.

    PubMed

    Kubarovsky, V; Guo, L; Weygand, D P; Stoler, P; Battaglieri, M; DeVita, R; Adams, G; Li, Ji; Nozar, M; Salgado, C; Ambrozewicz, P; Anciant, E; Anghinolfi, M; Asavapibhop, B; Audit, G; Auger, T; Avakian, H; Bagdasaryan, H; Ball, J P; Barrow, S; Beard, K; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Bianchi, N; Biselli, A S; Boiarinov, S; Bouchigny, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Butuceanu, C; Calarco, J R; Carman, D S; Carnahan, B; Cetina, C; Chen, S; Ciciani, L; Cole, P L; Connelly, J; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Cummings, J P; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Dharmawardane, K V; Djalali, C; Dodge, G E; Doughty, D; Dragovitsch, P; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Empl, A; Eugenio, P; Farhi, L; Fatemi, R; Feuerbach, R J; Ficenec, J; Forest, T A; Frolov, V; Funsten, H; Gaff, S J; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girard, P; Gothe, R; Gordon, C I O; Griffioen, K; Guidal, M; Guillo, M; Gyurjyan, V; Hadjidakis, C; Hakobyan, R S; Hancock, D; Hardie, J; Heddle, D; Heimberg, P; Hersman, F W; Hicks, K; Holtrop, M; Hu, J; Ilieva, Y; Ito, M M; Jenkins, D; Joo, K; Juengst, H G; Kelley, J H; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, F J; Klimenko, A V; Klusman, M; Kossov, M; Kramer, L H; Kuhn, S E; Kuhn, J; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Longhi, A; Lukashin, K; Major, R W; Manak, J J; Marchand, C; McAleer, S; McNabb, J W C; Mecking, B A; Mehrabyan, S; Melone, J J; Mestayer, M D; Meyer, C A; Mikhailov, K; Minehart, R; Mirazita, M; Miskimen, R; Mokeev, V; Morand, L; Morrow, S A; Mozer, M U; Muccifora, V; Mueller, J; Mutchler, G S; Napolitano, J; Nasseripour, R; Nelson, S O; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; O'Brien, J T; O'Rielly, G V; Opper, A K; Osipenko, M; Park, K; Pasyuk, E; Peterson, G; Philips, S A; Pivnyuk, N; Pocanic, D; Pogorelko, O; Polli, E; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rossi, P; Rowntree, D; Rubin, P D; Sabatié, F; Sabourov, K; Santoro, J P; Sapunenko, V; Sargsyan, M; Schumacher, R A; Serov, V S; Shafi, A; Sharabian, Y G; Shaw, J; Simionatto, S; Skabelin, A V; Smith, E S; Smith, T; Smith, L C; Sober, D I; Spraker, M; Stavinsky, A; Stepanyan, S; Strakovsky, I I; Strauch, S; Taiuti, M; Taylor, S; Tedeschi, D J; Thoma, U; Thompson, R; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Wang, K; Weinstein, L B; Weisberg, A; Whisnant, C S; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J

    2004-01-23

    The reaction gamma p-->pi(+)K(-)K(+)n was studied at Jefferson Laboratory using a tagged photon beam with an energy range of 3-5.47 GeV. A narrow baryon state with strangeness S=+1 and mass M=1555+/-10 MeV/c(2) was observed in the nK(+) invariant mass spectrum. The peak's width is consistent with the CLAS resolution (FWHM=26 MeV/c(2)), and its statistical significance is (7.8+/-1.0)sigma. A baryon with positive strangeness has exotic structure and cannot be described in the framework of the naive constituent quark model. The mass of the observed state is consistent with the mass predicted by the chiral soliton model for the Theta(+) baryon. In addition, the pK(+) invariant mass distribution was analyzed in the reaction gamma p-->K(-)K(+)p with high statistics in search of doubly charged exotic baryon states. No resonance structures were found in this spectrum. PMID:14753864

  5. CHIRAL MODEL FOR DENSE, HOT AND STRANGE HADRONIC MATTER

    SciTech Connect

    ZSCHIESCHE,D.; PAPAZOGLOU,P.; BECKMANN,C.W.; SCHRAMM,S.; SCHAFFNER-BIELICH,J.; STOCKER,H.; GREINER,W.

    1999-06-10

    Until now it is not possible to determine the equation of state (EOS) of hadronic matter from QCD. One successfully applied alternative way to describe the hadronic world at high densities and temperatures are effective models like the RMF-models, where the relevant degrees of freedom are baryons and mesons instead of quarks and gluons. Since approximate chiral symmetry is an essential feature of QCD, it should be a useful concept for building and restricting effective models. It has been shown that effective {sigma}-{omega}-models including SU(2) chiral symmetry are able to obtain a reasonable description of nuclear matter and finite nuclei. Recently [4] the authors have shown that an extended SU(3) x SU(3) chiral {sigma}-{omega} model is able to describe nuclear matter ground state properties, vacuum properties and finite nuclei satisfactorily. This model includes the lowest SU(3) multiplets of the baryons (octet and decuplet), the spin-0 and the spin-1 mesons as the relevant degrees of freedom. Here they discuss the predictions of this model for dense, hot, and strange hadronic matter.

  6. Strange stars

    NASA Technical Reports Server (NTRS)

    Alcock, Charles; Farhi, Edward; Olinto, Angela

    1986-01-01

    Strange matter, a form of quark matter that is postulated to be absolute stable, may be the true ground stage of the hadrons. If this hypothesis is correct, neutron stars may convert to 'strange stars'. The mass-radius relation for strange stars is very different from that of neutron stars; there is no minimum mass, and for mass of 1 solar mass or less, mass is proportional to the cube of the radius. For masses between 1 solar mass and 2 solar masses, the radii of strange stars are about 10 km, as for neutron stars. Strange stars may have an exposed quark surface, which is capable of radiating at rates greatly exceeding the Eddington limit, but has a low emissivity for X-ray photons. The stars may have a thin crust with the same composition as the preneutron drip outer layer of a conventional neutron star crust. Strange stars cool efficiently via neutrino emission.

  7. Strange Baryon Resonance Production in {radical}(s{sub NN})=200 GeV p+p and Au+Au Collisions

    SciTech Connect

    Abelev, B. I.; Bielcik, J.; Bielcikova, J.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Lamont, M. A. C.; Lin, G.; Majka, R.; Nattrass, C.; Salur, S.; Sandweiss, J.; Smirnov, N.; Witt, R.; Aggarwal, M. M.; Bhati, A. K.

    2006-09-29

    We report the measurements of {sigma}(1385) and {lambda}(1520) production in p+p and Au+Au collisions at {radical}(s{sub NN})=200 GeV from the STAR Collaboration. The yields and the p{sub T} spectra are presented and discussed in terms of chemical and thermal freeze-out conditions and compared to model predictions. Thermal and microscopic models do not adequately describe the yields of all the resonances produced in central Au+Au collisions. Our results indicate that there may be a time span between chemical and thermal freeze-out during which elastic hadronic interactions occur.

  8. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    NASA Astrophysics Data System (ADS)

    Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.

    2016-05-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.

  9. Charmed Bottom Baryon Spectroscopy

    SciTech Connect

    Brown, Zachary S; Detmold, William; Meinel, Stefan; Orginos, Kostas

    2014-11-01

    The spectrum of doubly and triply heavy baryons remains experimentally unexplored to a large extent. Although the detection of such heavy particle states may lie beyond the reach of exper- iments for some time, it is interesting compute this spectrum from QCD and compare results between lattice calculations and continuum theoretical models. Several lattice calculations ex- ist for both doubly and triply charmed as well as doubly and triply bottom baryons. Here, we present preliminary results from the first lattice calculation of doubly and triply heavy baryons including both charm and bottom quarks. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. We present preliminary results for the ground state spectrum.

  10. Fully Coupled Channel Approach to Doubly Strange s-Shell Hypernuclei

    SciTech Connect

    Nemura, H.; Shinmura, S.; Akaishi, Y.; Myint, Khin Swe

    2005-05-27

    We describe ab initio calculations of doubly strange, S=-2, s-shell hypernuclei ({sub {lambda}}{sub {lambda}}{sup 4}H, {sub {lambda}}{sub {lambda}}{sup 5}H, {sub {lambda}}{sub {lambda}}{sup 5}He, and {sub {lambda}}{sub {lambda}}{sup 6}He) as a first attempt to explore the few-body problem of the full-coupled channel scheme for these systems. The wave function includes {lambda}{lambda}, {lambda}{sigma}, N{xi}, and {sigma}{sigma} channels. Minnesota NN, D2{sup '} YN, and simulated YY potentials based on the Nijmegen hard-core model are used. Bound-state solutions of these systems are obtained. We find that a set of phenomenological B{sub 8}B{sub 8} interactions among the octet baryons in S=0,-1, and -2 sectors, which is consistent with all of the available experimental binding energies of S=0,-1, and -2 s-shell (hyper)nuclei, can predict a particle stable bound state of {sub {lambda}}{sub {lambda}}{sup 4}H. For {sub {lambda}}{sub {lambda}}{sup 5}H and {sub {lambda}}{sub {lambda}}{sup 5}He, {lambda}N-{sigma}N and {xi}N-{lambda}{sigma} potentials significantly affect the net {lambda}{lambda}-N{xi} coupling, and a large {xi} probability is obtained even for a weaker {lambda}{lambda}-N{xi} potential.

  11. A proposal to construct SELEX - segmented large-x baryon spectrometer

    SciTech Connect

    Russ, J.,; Edelstein, R.; Gibaut, D.; Lipton, R.; Potter, D.; Lach, J.; Stutte, L.; Li, Yun-Shan; Tang, Fu-Kun; Lang, Feng-Fei; Li, Cheng-Ze; Denisov, A.S.; Golovtsov, V.; Grachev, V.; Krivshich, A.; Kuropatkin, N.; Schegelsky, V.; Smirnov, N.; Terentiev, N.K.; Uvarov, L.; Vorobyov, A.; /St. Petersburg, INP /Iowa U. /Sao Paulo U. /Yale U.

    1987-11-01

    Heavy flavor experiments currently in progress at e{sup +}e{sup -} colliders or in the fixed target programs at CERN and Fermilab are aimed at collecting large samples (> 10,000 reconstructed events) of charmed events. These experiments will provide a great deal of information about charmed meson systems, but the expected yield of charmed baryons is not large--10% or less of the sample size. The most detailed study of the charm strange baryon {Xi}{sub c}{sup +} comes not from a large-statistics central production experiment at high energy but rather from a 20-day run at modest beam flux in the CERN hyperon beam. This proposal exploits the advantages in triggering and particle identification of large-x production to make a systematic study of charm baryon production and decay systematics. For the dominant ({approx} 10% branching ratio) modes of these baryons, they expect to collect 10{sup 6} triggered events in each mode per running period. This will give adequate statistics to study even highly suppressed modes. The study of meson systematics by the Mark III spectrometer at SPEAR led to a revolution in the understanding of charmed meson decay mechanisms. No present experiment will supply a similar data set for the charmed baryons. A fixed target experiment cannot supply the absolute branching ratios that e{sup +}e{sup -} annihilation on the {Upsilon}(3770) resonance provides for the Mark III data. They can supply relative branching ratios for the non-leptonic and semileptonic decay modes of charmed baryons and establish the importance of two-body resonance modes in the decay mechanism. This information, along with lifetime measurements for {Lambda}{sub c}{sup +}, {Sigma}{sub c}{sup ++}, {Sigma}{sub c}{sup +}, {Sigma}{sub c}{sup 0}, {Xi}{sub c}{sup +} and {Omega}{sub c}{sup 0} baryons, will permit evaluation in the baryon sector of the role of color suppression, Pauli suppression, sextet enhancement and other varied mechanisms which influence decay rates of charmed

  12. Numerical precision radiative corrections to the Dalitz plot of light and heavy quark unpolarized baryon semileptonic decays: The cases {xi}{sup 0}{yields}{sigma}{sup +}e{nu} and {lambda}{sub c}{sup +}{yields}{lambda}e{sup +}{nu}

    SciTech Connect

    Flores-Mendieta, Ruben; Torres, J.J.; Neri, M.; Martinez, A.; Garcia, A.

    2005-02-01

    We propose and discuss a numerical use for our previous precision results for the radiative corrections to unpolarized spin one-half baryon semileptonic decays, which is not compromised to fixing the form factors at prescribed values. We present various cross-checks and comparisons with other results available in the literature of such analytical radiative corrections. Our analysis, however, is general and applies to all charge assignments to the baryons allowed by heavy quarks. The procedure is exemplified with the processes {xi}{sup 0}{yields}{sigma}{sup +}e{nu} and {lambda}{sub c}{sup +}{yields}{lambda}e{sup +}{nu}.

  13. Strangeness at high temperatures: from hadrons to quarks.

    PubMed

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2013-08-23

    Appropriate combinations of up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number and electric charge fluctuations, obtained from lattice QCD calculations, have been used to probe the strangeness carrying degrees of freedom at high temperatures. For temperatures up to the chiral crossover, separate contributions of strange mesons and baryons can be well described by an uncorrelated gas of hadrons. Such a description breaks down in the chiral crossover region, suggesting that the deconfinement of strangeness takes place at the chiral crossover. On the other hand, the strangeness carrying degrees of freedom inside the quark gluon plasma can be described by a weakly interacting gas of quarks only for temperatures larger than twice the chiral crossover temperature. In the intermediate temperature window, these observables show considerably richer structures, indicative of the strongly interacting nature of the quark gluon plasma. PMID:24010429

  14. Inclusive Sigma- photoproduction on the neutron via the reaction gamma n (p) ---> K+ Sigma- (p)

    SciTech Connect

    Jorn Langheinrich; Ana Lima; Barry Berman

    2006-06-01

    The analysis described here is part of a comprehensive survey of the elementary strangeness photoproduction cross sections on the nucleon. The six elementary strangeness reactions are {gamma}n {yields} K{sup 0}{Lambda} and {gamma}p {yields} K{sup +}{Lambda} {gamma}n {yields} K{sup 0}{Sigma}{sup 0} and {gamma}p {yields} K{sup +}{Sigma}{sup 0} {gamma}n {yields} K{sup +}{Sigma}{sup -} and {gamma}p {yields} K{sup 0}{Sigma}|{sup +}

  15. Problems and prospects in strange baryon spectroscopy

    SciTech Connect

    Tripp, R.D.

    1983-08-01

    The study of Y* resonances by means of formation experiments has long suffered from deficiences of available K/sup -/ beams, both in intensity and purity. For example a typical single-stage separated K/sup -/ beam of 750 MeV/c has at BNL or CERN an intensity of about 10/sup 5/ K/sup -//pulse with a ratio of K/sup -/ to contaminating ..pi../sup -/, ..mu../sup -/, and e/sup -/ of 1:10. At a kaon factory the K/sup -/ yield is expected to be several orders of magnitude higher. Then, trading intensity for purity by employing two stages of separation and/or improved beam optics, one could reasonably expect to obtain an intensity of 10/sup 6/ K/sup -//sec, unencumbered by the high contamination that would otherwise torture the apparatus. Detector requirements are briefly considered.

  16. Liquid-gas phase transition in nuclear matter including strangeness

    SciTech Connect

    Wang, P.; Leinweber, D.B.; Williams, A.G.; Thomas, A.W.

    2004-11-01

    We apply the chiral SU(3) quark mean field model to study the properties of strange hadronic matter at finite temperature. The liquid-gas phase transition is studied as a function of the strangeness fraction. The pressure of the system cannot remain constant during the phase transition, since there are two independent conserved charges (baryon and strangeness number). In a range of temperatures around 15 MeV (precise values depending on the model used) the equation of state exhibits multiple bifurcates. The difference in the strangeness fraction f{sub s} between the liquid and gas phases is small when they coexist. The critical temperature of strange matter turns out to be a nontrivial function of the strangeness fraction.

  17. Charmed Bottom Baryon Spectroscopy

    SciTech Connect

    Zachary Brown, William Detmold, Stefan Meinel, Konstantinos Orginos

    2012-09-01

    The arena of doubly and triply heavy baryons remains experimentally unexplored to a large extent. This has led to a great deal of theoretical effort being put forth in the calculation of mass spectra in this sector. Although the detection of such heavy particle states may lie beyond the reach of experiments for some time, it is interesting to compare results between lattice QCD computations and continuum theoretical models. Several recent lattice QCD calculations exist for both doubly and triply charmed as well as doubly and triply bottom baryons. In this work we present preliminary results from the first lattice calculation of the mass spectrum of doubly and triply heavy baryons including both charm and bottom quarks. The wide range of quark masses in these systems require that the various flavors of quarks be treated with different lattice actions. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. The calculation of the ground state spectrum is presented and compared to recent models.

  18. Searches for a possible strangeness S = -2 dibaryon

    SciTech Connect

    Barnes, P. D.

    1982-01-01

    Since the advent of QCD there has been a strong interest in manifestations of quark degrees of freedom in medium energy nuclear and particle physics. Within the framework of multiquark states the emphasis has centered on states with more than three quarks bound by colour forces rather than by the conventional mesonic forces. Dibaryon systems have played an important role within that framework. One of the most spectacular and exciting predictions is the possible existence, according to the MIT bag model, of a stable, flavor-singlet, strangeness = /sup -/2,J/sup P/ = 0/sup +/ dihyperon, called by R. Jaffe the H particle. It is a six-quark object (2u, 2d, 2s quarks) with a predicted mass around 2150 MeV, i.e., below the ..lambda lambda.. mass with a binding energy around 80 MeV. Its decay channels would be restricted to ..sigma..N and ..lambda..N, via the weak interaction. The relevant two body states are shown. A similar prediction was obtained on the basis of the same model by Mulders et al., with a mass of 2164 MeV for this state. For completeness it should be mentioned that in a recent estimate of the center-of-mass correction to the static MIT bag model, the authors suggest that the dilambda mass moves up to just above the ..lambda lambda.. threshold. These calculations are undergoing further tets. Although all these results come from a specific model, Lipkin has argued that the general features of QCD and the known baryon mass splittings imply that the six-quark state with charge zero, spin zero, and strangeness = /sup -/2 would have the greatest binding potential.

  19. Strangeness conservation constraints in hadron gas models

    SciTech Connect

    Tiwari, V.K.; Singh, S.K.; Uddin, S.; Singh, C.P.

    1996-05-01

    We examine the implications of the constraints arising due to strangeness conservation on the strangeness production in various existing thermal hadron-gas models. The dependence of strangeness chemical potential {mu}{sub {ital S}} on the baryon chemical potential {mu}{sub {ital B}} and temperature {ital T} is investigated. The incorporation of finite-size, hard-core, repulsive interactions in the thermodynamically consistent description of hot and dense hadron gas alters the results obtained for pointlike particles. We compare results in two extreme alternative cases: (1) {ital K} and {ital K}{sup {asterisk}} mesons are treated as point particles and they can penetrate all volumes occupied by baryons and antibaryons and (2) the volume occupied by the baryons and antibaryons is not accessible to them. We find that the results indeed depend on the assumptions made. Moreover, the anomalous results obtained for the ratios {bar {Xi}}/{Xi} and {bar {Lambda}}/{Lambda} rule out the second possibility. {copyright} {ital 1996 The American Physical Society.}

  20. STOPPING AND BARYON TRANSPORT IN HEAVY ION REACTIONS.

    SciTech Connect

    VIDEBAEK, F.

    2005-02-05

    In this report I will give an experimental overview on nuclear stopping in hadron collisions, and relate observations to understanding of baryon transport. Baryon number transport is not only evidenced via net-proton distributions but also by the enhancement of strange baryons near mid-rapidity. Although the focus is on high-energy data obtained from pp and heavy ions from RHIC, relevant data from SPS and ISR will be considered. A discussion how the available data at higher energy relates and gives information on baryon junction, quark-diquark breaking will be made.

  1. B baryons at CDF

    SciTech Connect

    Donati, S.; /Pisa U. /INFN, Pisa

    2009-01-01

    In this paper we review the most recent results concerning B Baryons at CDF, including the study of the {Omega}{sub b}{sup -}, {Xi}{sub b}{sup -} and {Sigma}{sub b}{sup {+-}(*)} observation and properties, and a new measurement of the {Lambda}{sub b}{sup 0} lifetime and the observation of new {Lambda}{sub b}{sup 0} decay modes. The {Omega}{sub b}{sup -} bayron is observed through the decay chain {Omega}{sub b}{sup -} {yields} J/{Psi}{Omega}{sup -}, where J/{Psi} {yields} {mu}{sup +}{mu}{sup -}, {Omega}{sup -} {yields} {Lambda}K{sup -}, and {Lambda} {yields} pK{sup -}, using 4.2 fb{sup -1} of data. The {Omega}{sub b}{sup -} mass is measured to be 6054.4 {+-} 6.8(stat.) {+-} 0.9(syst.) MeV/c{sup 2}, and the lifetime 1.13{sub -0.40}{sup _0.53}(stat.) {+-} 0.02(syst.) ps. For the {Xi}{sub b}{sup -} the mass is measured 5790.9 {+-} 2.6(stat.) {+-} 0.8(syst.) MeV/c{sup 2} and the lifetime 1.56{sub -0.25}{sup +0.27}(stat.) {+-} 0.02(syst.) ps. The four new states {Sigma}{sub b}{sup +}, {Sigma}{sub b}{sup -}, {Sigma}*{sub b}{sup +}, and {Sigma}*{sub b}{sup -} have been observed in 1.1 fb{sup -1} of data, and the masses have been determined, m({Sigma}{sub b}{sup +}) = 5807.8{sub -2.2}{sup +2.0}(stat.) {+-} 1.7(syst.), m({Sigma}{sub b}{sup -}) = 5815.2 {+-} 1.0(stat.) {+-} 1.7(syst.), m({Sigma}*{sub b}{sup +}) = 5829.0{sub -1.8-1.8}{sup +1.6+1.7}, and m{Sigma}*{sub b}{sup -} = 5836.4 {+-} 2.0(stat.){sub -1.7}{sup +1.8}(syst.). CDF has performed a new measurement of the {Lambda}{sub b}{sup 0} lifetime using 1.1 fb{sup -1} of data collected by the displaced vertex trigger 1.401 {+-} 0.046(stat.) {+-} 0.035(syst.), where the main systematic error is due to the uncertainty on the trigger model.

  2. Strange hadron production at low transverse momenta

    NASA Astrophysics Data System (ADS)

    Veres, Gábor I.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wyslouch, B.; Zhang, J.

    2004-01-01

    Some of the latest results of the PHOBOS experiment from the \\sqrt{s_{NN}}= 200\\ GeV Au+Au data are discussed. Those relevant to strangeness production are emphasized. These observations relate to the nature of the matter created when heavy ions collide at the highest achieved energy. The invariant yields of strange and non-strange charged hadrons at very low transverse momentum have been measured, and used to differentiate between different dynamical scenarios. In the intermediate transverse momentum range, the measured ratios of strange and anti-strange kaons approach one, while the antibaryon to baryon ratio is still significantly less, independent of collision centrality and transverse momentum. At high transverse momenta, we find that central and peripheral Au+Au collisions produce similar numbers of charged hadrons per participant nucleon pair, rather than per binary nucleon-nucleon collision. Finally, we describe the upgrades of PHOBOS completed for the 2003 d+Au and p+p run, which extend the transverse momentum range over which particle identification is possible and, at the same time, implement a trigger system selective for high-pT particles.

  3. Observation of the {omega}{sub b}{sup -} baryon and measurement of the properties of the {xi}{sub b}{sup -} and {omega}{sub b}{sup -} baryons

    SciTech Connect

    Aaltonen, T.; Maki, T.; Mehtala, P.; Orava, R.; Osterberg, K.; Saarikko, H.; Remortel, N. van; Adelman, J.; Brubaker, E.; Fedorko, W. T.; Grosso-Pilcher, C.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Paramonov, A. A.; Schmidt, M. A.; Shiraishi, S.; Shochet, M.

    2009-10-01

    We report the observation of the bottom, doubly-strange baryon {omega}{sub b}{sup -} through the decay chain {omega}{sub b}{sup -}{yields}J/{psi}{omega}{sup -}, where J/{psi}{yields}{mu}{sup +}{mu}{sup -}, {omega}{sup -}{yields}{lambda}K{sup -}, and {lambda}{yields}p{pi}{sup -}, using 4.2 fb{sup -1} of data from pp collisions at {radical}(s)=1.96 TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose probability of arising from a background fluctuation is 4.0x10{sup -8}, or 5.5 Gaussian standard deviations. The {omega}{sub b}{sup -} mass is measured to be 6054.4{+-}6.8(stat){+-}0.9(syst) MeV/c{sup 2}. The lifetime of the {omega}{sub b}{sup -} baryon is measured to be 1.13{sub -0.40}{sup +0.53}(stat){+-}0.02(syst) ps. In addition, for the {xi}{sub b}{sup -} baryon we measure a mass of 5790.9{+-}2.6(stat){+-}0.8(syst) MeV/c{sup 2} and a lifetime of 1.56{sub -0.25}{sup +0.27}(stat){+-}0.02(syst) ps. Under the assumption that the {xi}{sub b}{sup -} and {omega}{sub b}{sup -} are produced with similar kinematic distributions to the {lambda}{sub b}{sup 0} baryon, we find ({sigma}({xi}{sub b}{sup -})B({xi}{sub b}{sup -}{yields}J/{psi}{xi}{sup -})/{sigma}({lambda}{sub b}{sup 0})B({lambda}{sub b}{sup 0}{yields}J/{psi}{lambda}))=0.167{sub -0.025}{sup +0.037}(stat){+-}0.012(syst) and ({sigma}({omega}{sub b}{sup -})B({omega}{sub b}{sup -}{yields}J/{psi}{omega}{sup -})/{sigma}({lambda}{sub b}{sup 0})B({lambda}{sub b}{sup 0}{yields}J/{psi}{lambda}))=0.045{sub -0.012}{sup +0.017}(stat){+-} 0.004(syst) for baryons produced with transverse momentum in the range of 6-20 GeV/c.

  4. Observation of a Narrow Baryon Resonance Decaying to pK{sup 0}{sub S} in Proton-Nucleus Interactions at 70 GeV/c with the SVD-2 Setup

    SciTech Connect

    Aleev, A.N.; Amaglobeli, N.S.; Balandin, V.P.; Boguslavsky, I.V.; Gramenitsky, I.M.; Zhidkov, N.K.; Kokoulina, E.S.; Kosarev, I.G.; Kuzmin, N.A.; Lanshikov, G.I.; Nikitin, V.A.; Oleinik, A.A.; Rufanov, I.A.; Topuria, T.P.; Furmanec, N.F.; Shafranov, M.D.; Yukaev, A.I.; Ardashev, E.N.; Vasiliev, M.V.; Vorobiev, A. P.

    2005-06-01

    Data from the SVD-2 experiment that were obtained at the IHEP accelerator in 70-GeV/c proton-nucleus interactions are analyzed with the aim of searches for an exotic {theta}{sup +} baryon that decays through the pK{sup 0}{sub S} channel. The reaction pN {yields} pK{sup 0}{sub S} + X characterized by a bounded multiplicity of charged secondaries is used for this analysis. A resonance of mass M = 1526 {+-} 3(stat.) {+-} 3(syst.) MeV/c{sup 2} and width {gamma} < 24 MeV/c{sup 2} is observed in the invariant-mass spectrum of the pK{sup 0}{sub S} system at a statistical significance of 5.6{sigma}. The mass and the width of this resonance correspond to the recently found positive-strangeness {theta}{sup +} baryon, which was predicted to be an exotic baryon consisting of five quarks (pentaquark), uudds-bar. The total cross section for the production of a {theta}{sup +} baryon in pA interactions is estimated at a value within the range 30-120 {mu}b for x{sub F} {>=} 0. An analysis of the A dependence of the cross section for {theta}{sup +}-baryon production does not reveal a significant deviation from the A dependence for inelastic events ({approx}A{sup 0.7})

  5. Baryon spectroscopy

    SciTech Connect

    Klempt, Eberhard; Richard, Jean-Marc

    2010-04-15

    About 120 baryons and baryon resonances are known, from the abundant nucleon with u and d light-quark constituents up to the {Xi}{sub b}{sup -}=(bsd), which contains one quark of each generation and to the recently discovered {Omega}{sub b}{sup -}=(bss). In spite of this impressively large number of states, the underlying mechanisms leading to the excitation spectrum are not yet understood. Heavy-quark baryons suffer from a lack of known spin parities. In the light-quark sector, quark-model calculations have met with considerable success in explaining the low-mass excitations spectrum but some important aspects such as the mass degeneracy of positive-parity and negative-parity baryon excitations remain unclear. At high masses, above 1.8 GeV, quark models predict a very high density of resonances per mass interval which is not yet observed. In this review, issues are identified discriminating between different views of the resonance spectrum; prospects are discussed on how open questions in baryon spectroscopy may find answers from photoproduction and electroproduction experiments which are presently carried out in various laboratories.

  6. Strange Quark Star Crusts

    SciTech Connect

    Steiner, Andrew W.

    2007-02-27

    If strange quark matter is absolutely stable, some neutron stars may be strange quark stars. Strange quark stars are usually assumed to have a simple liquid surface. We show that if the surface tension of droplets of quark matter in the vacuum is sufficiently small, droplets of quark matter on the surface of a strange quark star may form a solid crust on top of the strange quark star. This solid crust can significantly modify the predictions for the photon emission for the surface in an observable way.

  7. In Medium Properties of Charmed Strange Mesons in Dense Hadron ic Matter

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil

    2015-05-01

    The medium modifications of the charmed strange mesons in the dense hadronic matter are investigated within chiral S U(4) model. The charmed strange meson properties modifies due to their interactions with the nucleons, hyperons and the scalar mesons (scalar-isoscalar mesons ( σ, ζ), scalar isovector meson ( δ)) in the dense hadronic medium. The various parameters used in the chiral model are obtained by fitting the vacuum baryon masses and saturation properties of nuclear matter. The non-linear coupled equations of the scalar fields are solved to obtain their baryon density, isospin and strangeness dependent values. Furthermore, the dispersion relations are derived for charmed strange mesons. Effects of isospin asymmetry and strangeness on the energies of charmed strange mesons are investigated. The in medium properties of charmed strange mesons can be particularly relevant to the experiments with neutron rich beams at the Facility for Antiproton and Ion Research (FAIR) at GSI, Germany, as well as to experiments at the Rare Isotope Accelerator (RIA) laboratory, USA. The present study of the in medium properties of charmed strange mesons will be of direct relevance for the observables from the compressed baryonic matter, resulting from the heavy ion collision experiments.

  8. Heavy baryons - Recent and very new results

    SciTech Connect

    Peter S Cooper

    2003-01-15

    Recent results on observations, properties and decay modes of the charmed and beauty baryons will be reviewed. Candidates for several new high mass states which include a cleanly-identified daughter {Lambda}{sub c}{sup +} baryon are seen in data from the SELEX experiment at Fermilab. These states are candidates for doubly-charmed baryons: a {Xi}{sub cc}{sup ++} state and a {Xi}{sub cc}{sup +} state. These candidates are more than 5{sigma} signals in each case at masses of 3520 and 3460 MeV respectively.

  9. Exact strangeness conservation and particle production

    NASA Astrophysics Data System (ADS)

    Cleymans, J.; Redlich, K.; Suhonen, E.

    The production of strange particles is studied in terms of a statistical formalism requiring strangeness to be exactly conserved while baryon number is treated grand canonically using a chemical potential. The gas is considered to be in thermal and chemical equilibrium and to have zero overall strangeness. All particles and resonances having masses up to approximately 2 GeV and strangeness up to plus or minus 3 are included. General formulas for different particle multiplicities in terms of infinite series of modified Bessel functions are derived. In contrast to the integral representation of particle numbers in the canonical ensemble, results can be easily handled numerically since the series converge very rapidly. As an illustration, the above formalism is applied to the description of particle production in proton-proton, proton-nucleus and nucleus-nucleus collisions. In particular the K/pi ratio shows a strong dependence on the interaction volume on the system while, in contrast, the antiLambda/Lambda ratio is almost independent of the volume. These results are in qualitative agreement with experimental data.

  10. Last orbits of binary strange quark stars

    SciTech Connect

    Limousin, Francois; Gourgoulhon, Eric; Gondek-Rosinska, Dorota

    2005-03-15

    We present the first relativistic calculations of the final phase of inspiral of a binary system consisting of two stars built predominantly of strange quark matter (strange quark stars). We study the precoalescing stage within the Isenberg-Wilson-Mathews approximation of general relativity using a multidomain spectral method. A hydrodynamical treatment is performed under the assumption that the flow is either rigidly rotating or irrotational, taking into account the finite density at the stellar surface--a distinctive feature with respect to the neutron star case. The gravitational-radiation driven evolution of the binary system is approximated by a sequence of quasiequilibrium configurations at fixed baryon number and decreasing separation. We find that the innermost stable circular orbit (ISCO) is given by an orbital instability both for synchronized and irrotational systems. This contrasts with neutron stars for which the ISCO is given by the mass-shedding limit in the irrotational case. The gravitational wave frequency at the ISCO, which marks the end of the inspiral phase, is found to be {approx}1400 Hz for two irrotational 1.35 M{sub {center_dot}} strange stars and for the MIT bag model of strange matter with massless quarks and a bag constant B=60 MeV fm{sup -3}. Detailed comparisons with binary neutrons star models, as well as with third order post-Newtonian point-mass binaries are given.

  11. Production of strange clusters in relativistic heavy ion collisions

    SciTech Connect

    Dover, C.B.; Baltz, A.J.; Pang, Yang; Schlagel, T.J.; Kahana, S.H.

    1993-02-01

    We address a number of issues related to the production of strangeness in high energy heavy ion collisions, including the possibility that stable states of multi-strange hyperonic or quark matter might exist, and the prospects that such objects may be created and detected in the laboratory. We make use of events generated by the cascade code ARC to estimate the rapidity distribution dN/dy of strange clusters produced in Si+Au and Au+Au collisions at AGS energies. These calculations are performed in a simple coalescence model, which yields a consistent description of the strange cluster (d, [sup 3]HE, [sup 3]H, [sup 4]He) production at these energies. If a doubly strange, weakly bound [Lambda][Lambda] dibaryon exists, we find that it is produced rather copiously in Au+Au collisions, with dN/dy [approximately]0.1 at raid-rapidity. If one adds another non-strange or strange baryon to a cluster, the production rate decreases by roughly one or two orders of magnitude, respectively. For instance, we predict that the hypernucleus [sub [Lambda][Lambda

  12. The physics of strange matter

    SciTech Connect

    Olinto, A.V. |

    1991-12-01

    Strange matter may be the ground state of matter. We review the phenomenology and astrophysical implications of strange matter, and discuss the possible ways for testing the strange matter hypothesis.

  13. Theoretical perspectives on strange physics

    NASA Astrophysics Data System (ADS)

    Ellis, J.

    1983-04-01

    Kaons are heavy enough to have an interesting range of decay modes available to them, and light enough to be produced in sufficient numbers to explore rate modes with satisfying statistics. Kaons and their decays have provided at least two major breakthroughs in fundamental physics: CP violation, and their lack of flavor-changing neutral interactions warned us to expect charm. In addition, K0-anti K0 mixing has provided one of the most elegant and sensitive laboratories for testing quantum mechanics. There is every reason to expect that future generations of kaon experiments with intense sources would add further to fundamental physics. This talk attempts to set future kaon experiments in a general theoretical context, and indicate how they bear upon fundamental theoretical issues. A survey of different experiments which would be done with an Intense Medium Energy Source of Strangeness, including rare K decays, probes of the nature of CP isolation, (SIGMA) decays, hyperon decays and neutrino physics is given.

  14. Excited baryons

    SciTech Connect

    Mukhopadhyay, N.C.

    1986-01-01

    The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)

  15. Strangeness Physics with CLAS at Jefferson Lab

    SciTech Connect

    Schumacher, Reinhard

    2010-08-05

    We review recent developments in strangeness photo- and electro- production off the proton and neutron, as investigated using CLAS in Hall B at Jefferson Lab. By measuring sufficient spin observables one can decompose the reaction mechanism into elementary amplitudes. We discuss progress toward this end in recent data from CLAS, including cross sections and spin observables. We next discuss new results on the mass distribution of the {Lambda}(1405), which shows signs of being a composite meson-baryon object of mixed isospin. The work on other hyperons such as the {Xi} resonances will be mentioned, and future prospects for the CLAS program outlined.

  16. Strangeness Physics with CLAS at Jefferson Lab

    SciTech Connect

    Reinhard Schumacher

    2010-08-01

    We review recent developments in strangeness photo- and electro- production off the proton and neutron, as investigated using CLAS in Hall B at Jefferson Lab. By measuring sufficient spin observables one can decompose the reaction mechanism into elementary amplitudes. We discuss progress toward this end in recent data from CLAS, including cross sections and spin observables. We next discuss new results on the mass distribution of the Lambda(1405), which shows signs of being a composite meson-baryon object of mixed isospin. The work on other hyperons such as the Xi resonances will be mentioned, and future prospects for the CLAS program outlined.

  17. Neutron stars and strange stars in the chiral SU(3) quark mean field model

    SciTech Connect

    P. Wang; S. Lawley; D. B. Leinweber; A. W. Thomas; A. G. Williams

    2005-06-01

    We investigate the equations of state for pure neutron matter and strange hadronic matter in {beta}-equilibrium, including {Lambda}, {Sigma} and {Xi} hyperons. The masses and radii of pure neutron stars and strange hadronic stars are obtained. For a pure neutron star, the maximum mass is about 1.8 M{sub sun}, while for a strange hadronic star, the maximum mass is around 1.45M{sub sun}. The typical radii of pure neutron stars and strange hadronic stars are about 11.0-12.3 km and 10.7-11.7 km, respectively.

  18. Cascade ({xi}) Physics: a New Approach to Baryon Spectroscopy

    SciTech Connect

    Nefkens, B. M. K.

    2006-11-17

    Cascade hyperons have two special characteristics, which are particularly valuable as experimental and theoretical tools: cascades have strangeness minus two and their widths are quite narrow compared to the N* and {delta}+ resonances. The narrow width allows the detection by the missing mass or invariant mass techniques. The makeup of the cascade states is two ''massive'' strange and one light quark, this makes them much more amendable to Lattice Gauge calculations. Using the well established Flavor Symmetry of QCD we can use a comparison of the Cascades with the N* and {delta}* resonances to make a conclusive search for the 'Unseen Resonances' of the quark model, for Hybrid Baryons, Meson-Baryon Bound States and other Exotica. We can investigate the flavor dependence of confinement: is the string tension between two strange quarks the same as between two down quarks?.

  19. Cascade (Ξ) Physics: a New Approach to Baryon Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nefkens, B. M. K.

    2006-11-01

    Cascade hyperons have two special characteristics, which are particularly valuable as experimental and theoretical tools: cascades have strangeness minus two and their widths are quite narrow compared to the N* and Δ+ resonances. The narrow width allows the detection by the missing mass or invariant mass techniques. The makeup of the cascade states is two "massive" strange and one light quark, this makes them much more amendable to Lattice Gauge calculations. Using the well established Flavor Symmetry of QCD we can use a comparison of the Cascades with the N* and Δ* resonances to make a conclusive search for the "Unseen Resonances" of the quark model, for Hybrid Baryons, Meson-Baryon Bound States and other Exotica. We can investigate the flavor dependence of confinement: is the string tension between two strange quarks the same as between two down quarks?

  20. Production of strange clusters in relativistic heavy ion collisions

    SciTech Connect

    Dover, C.B.; Baltz, A.J.; Pang, Yang; Schlagel, T.J.; Kahana, S.H.

    1993-02-01

    We address a number of issues related to the production of strangeness in high energy heavy ion collisions, including the possibility that stable states of multi-strange hyperonic or quark matter might exist, and the prospects that such objects may be created and detected in the laboratory. We make use of events generated by the cascade code ARC to estimate the rapidity distribution dN/dy of strange clusters produced in Si+Au and Au+Au collisions at AGS energies. These calculations are performed in a simple coalescence model, which yields a consistent description of the strange cluster (d, {sup 3}HE, {sup 3}H, {sup 4}He) production at these energies. If a doubly strange, weakly bound {Lambda}{Lambda} dibaryon exists, we find that it is produced rather copiously in Au+Au collisions, with dN/dy {approximately}0.1 at raid-rapidity. If one adds another non-strange or strange baryon to a cluster, the production rate decreases by roughly one or two orders of magnitude, respectively. For instance, we predict that the hypernucleus {sub {Lambda}{Lambda}}{sup 6}He should have dN/dy {approximately}5 {times} 10{sup {minus}6} for Au+Au central collisions. It should be possible to measure the successive {Lambda} {yields} p{pi}{minus} weak decays of this object. We comment on the possibility that conventional multi-strange hypernuclei may serve as ``doorway states`` for the production of stable configurations of strange quark matter, if such states exist.

  1. Six sigma.

    PubMed

    Carter, Pam

    2010-12-01

    When I was first introduced to the Six Sigma process, I resisted it with every ounce of energy I had. I continuously fabricated reasons so that I was unable to complete the training that my company required. When it came time for my performance review, I could not hide the truth from my manager; I had not completed the required training. It was then that I began my journey into the world of Six Sigma. Once I understood that a black belt and a green belt certification had nothing to do with karate, I felt much better. PMID:21117529

  2. Strange-particle production via the weak interaction

    SciTech Connect

    Adera, G. B.; Van Der Ventel, B. I. S.; Niekerk, D. D. van; Mart, T.

    2010-08-15

    The differential cross sections for the neutrino-induced weak charged current production of strange particles in the threshold energy region are presented. The general representation of the weak hadronic current is newly developed in terms of eighteen unknown invariant amplitudes to parametrize the hadron vertex. The Born-term approximation is used for the numerical calculations in the framework of the Cabibbo theory and SU(3) symmetry. For unpolarized octet baryons four processes are investigated, whereas in the case of polarized baryons only one process is chosen to study the sensitivity of the differential cross section to the various polarizations of the initial-state nucleon and the final-state hyperon.

  3. Strangeness and charm in nuclear matter

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Cabrera, Daniel; Garcia-Recio, Carmen; Molina, Raquel; Nieves, Juan; Oset, Eulogio; Ramos, Angels; Romanets, Olena; Salcedo, Lorenzo Luis

    2013-09-01

    The properties of strange (K, Kbar and K) and open-charm (D, Dbar and D*) mesons in dense matter are studied using a unitary approach in coupled channels for meson-baryon scattering. In the strangeness sector, the interaction with nucleons always comes through vector-meson exchange, which is evaluated by chiral and hidden gauge Lagrangians. For the interaction of charmed mesons with nucleons we extend the SU(3) Weinberg-Tomozawa Lagrangian to incorporate spin-flavor symmetry and implement a suitable flavor symmetry breaking. The in-medium solution for the scattering amplitude accounts for Pauli blocking effects and meson self-energies. On one hand, we obtain the K, Kbar and K spectral functions in the nuclear medium and study their behaviour at finite density, temperature and momentum. We also make an estimate of the transparency ratio of the γA→K+KA‧ reaction, which we propose as a tool to detect in-medium modifications of the K meson. On the other hand, in the charm sector, several resonances with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with 1/2+ and 3/2+ baryons. The properties of these states in matter are analyzed and their influence on the open-charm meson spectral functions is studied. We finally discuss the possible formation of D-mesic nuclei at FAIR energies.

  4. Strangeness production in AA and pp collisions

    NASA Astrophysics Data System (ADS)

    Castorina, Paolo; Satz, Helmut

    2016-07-01

    Boost-invariant hadron production in high-energy collisions occurs in causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) are conserved locally in spatially restricted correlation clusters. Their size is determined by two time scales: the equilibration time specifying the formation of a quark-gluon plasma, and the hadronization time, specifying the onset of confinement. The expected values for these scales provide the theoretical basis for the suppression observed for strangeness production in elementary interactions ( pp , e^+e^- below LHC energies. In contrast, the space-time superposition of individual collisions in high-energy heavy-ion interactions leads to higher energy densities, resulting in much later hadronization and hence much larger hadronization volumes. This largely removes the causality constraints and results in an ideal hadronic resonance gas in full chemical equilibrium. In the present paper, we determine the collision energies needed for that; we also estimate when pp collisions reach comparable hadronization volumes and thus determine when strangeness suppression should disappear there as well.

  5. Fast pulsars, compact stars, and the strange matter hypothesis

    SciTech Connect

    Weber, F.; Glendenning, N.K.

    1993-03-17

    Part one of this paper deals with the recent finding of the possible existence of a mixed phase of baryon matter and quark matter inside neutron stars. In part two we review the theoretically determined minimum rotational periods of neutron stars, which serve to distinguish between pulsars that can be understood as rotating neutron stars and those that can not. Likely candidates for the latter are hypothetical strange stars. Their mass-radius relationship is discussed in the last part. It is pointed out that strange stars with a nuclear crust can give rise to the observed phenomena of pulsar glitches, thus passing the only astrophysical test of the strange-matter hypothesis existing to date.

  6. Baryonic popcorn

    NASA Astrophysics Data System (ADS)

    Kaplunovsky, Vadim; Melnikov, Dmitry; Sonnenschein, Jacob

    2012-11-01

    In the large N c limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2D zigzag configuration where instantons pop up into the holographic dimension. At low density the system takes the form of an "abelian anti- ferromagnetic" straight periodic chain. Above a critical density there is a second order phase transition into a zigzag structure. An even higher density yields a rich phase space characterized by the formation of multi-layer zigzag structures. The finite size of the lattices in the transverse dimension is a signal of an emerging Fermi sea of quarks. We thus propose that the popcorn transitions indicate the onset of the "quarkyonic" phase of the cold dense nuclear matter.

  7. Baryon spectroscopy at ELPH and LEPS2

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takatsugu

    2014-09-01

    Baryon spectroscopy is an important testing ground for understanding low energy QCD. Meson photoproduction is complementary to π induced reactions for studying excited baryons. Among the meson photo-produced reactions, the neutron target, kaon photo-produced, and multi-meson photo-produced reactions are important to reveal the properties of baryon resonances. The photoproduction experiments at ELPH and the planned experiments at LEPS2 will be discussed. The nucleon and Δ resonances are studied with an electromagnetic calorimeter FOREST at ELPH, Tohoku University by using various photoproduction reactions. A narrow resonance observed at W-75 MeV in η photoproduction on the neutron is of great interest. It would be attributed to a member of anti-decuplet pentaquark baryons with hidden strangeness since no signature corresponding to this bump has been observed so far in the proton channel. Multi-meson/kaon photoproduction is a good tool to study highly excited baryons. The results obtained at ELPH and planned experiments at LEPS2 will be presented.

  8. Strange Nonchaotic Stars

    NASA Astrophysics Data System (ADS)

    Lindner, John F.; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G.; Ditto, William L.

    2015-02-01

    The unprecedented light curves of the Kepler space telescope document how the brightness of some stars pulsates at primary and secondary frequencies whose ratios are near the golden mean, the most irrational number. A nonlinear dynamical system driven by an irrational ratio of frequencies generically exhibits a strange but nonchaotic attractor. For Kepler's "golden" stars, we present evidence of the first observation of strange nonchaotic dynamics in nature outside the laboratory. This discovery could aid the classification and detailed modeling of variable stars.

  9. Baryon Spectroscopy Results at the Tevatron

    SciTech Connect

    Van Kooten, R.

    2010-08-05

    The Tevatron at Fermilab continues to collect data at high luminosity resulting in datasets in excess of 6 fb{sup -1} of integrated luminosity. The high collision energies allow for the observation of new heavy quark baryon states not currently accessible at any other facility. In addition to the ground state Lb, the spectroscopy and properties of the new heavy baryon states {Omega}{sub b}, {Xi}{sub b}, and {Sigma}{sub b}{sup (*)} as measured by the CDF and DOe Collaborations will be presented.

  10. [Through strangeness to oneself].

    PubMed

    Sorgedrager, D B

    1993-11-01

    "Being strange" as opposed to "being oneself" is part of the thinking in all cultures. Belonging to a given culture is actually defined by ones identity and by "being oneself". Both concepts--"being oneself" or "being strange"--are rational and related constructs. Whatever they are confronted with, for most human beings it is self-evident to differentiate between subject and object, between "being oneself" or "being strange". This explains why thinking often occurs in opposites or polarities, as an either/or. All "being strange" has its origins in one's own self. "Being strange" becomes most obvious when persons, gestalt or cultures strongly deviate from one's own familiar situation. It is part of man's disposition to be cautious, suspicious of and at distance from everything considered strange and different. That explains his xenophobia feelings and actions. Behind this attitude we can always discover one's wish to preserve the familiar beliefs--combined with an uneasiness to give up one's thinking and behaviour that is proven and routine. It is only by reflecting on our own culture and our own inheritance that we have the possibility to come to terms with our own ethnic identity and foreign behavioral patterns. If we do not try to understand other cultures while keeping our own cultural identity, tensions and violent conflicts will inevitably result. PMID:8278564

  11. Strangeness electroproduction on the nucleon at CLAS

    SciTech Connect

    Daniel Carman

    2012-04-01

    High-precision measurements of strange particle production from both proton and neutron targets are a core part of the physics program with the CLAS spectrometer in Hall B at Jefferson Laboratory. Measurements have been carried out at beam energies up to 6 GeV in experiments with polarized beams and polarized targets. This talk will focus on the electroproduction measurements that have been completed, which include cross sections and hyperon polarization observables for K{sup +}Y (Y = {Lambda}{Sigma}{sup 0}) final states over a broad kinematic range in momentum transfer Q{sup 2} and invariant energy W, while spanning nearly the full kaon center-of-mass angular range. These data in the strangeness sector are necessary to better understand the different production mechanisms for {Lambda} and {Sigma} hyperons and to disentangle the different resonant and non-resonant amplitudes in the intermediate state. The usefulness of the CLAS electroproduction data as part of a coupled-channel model fit will be discussed as well as an outlook of this program for the future.

  12. Strangeness S =-1 hyperon-nucleon scattering in covariant chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Li, Kai-Wen; Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bingwei

    2016-07-01

    Motivated by the successes of covariant baryon chiral perturbation theory in one-baryon systems and in heavy-light systems, we study relevance of relativistic effects in hyperon-nucleon interactions with strangeness S =-1 . In this exploratory work, we follow the covariant framework developed by Epelbaum and Gegelia to calculate the Y N scattering amplitude at leading order. By fitting the five low-energy constants to the experimental data, we find that the cutoff dependence is mitigated, compared with the heavy-baryon approach. Nevertheless, the description of the experimental data remains quantitatively similar at leading order.

  13. Strange nonchaotic stars.

    PubMed

    Lindner, John F; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G; Ditto, William L

    2015-02-01

    The unprecedented light curves of the Kepler space telescope document how the brightness of some stars pulsates at primary and secondary frequencies whose ratios are near the golden mean, the most irrational number. A nonlinear dynamical system driven by an irrational ratio of frequencies generically exhibits a strange but nonchaotic attractor. For Kepler's "golden" stars, we present evidence of the first observation of strange nonchaotic dynamics in nature outside the laboratory. This discovery could aid the classification and detailed modeling of variable stars. PMID:25699444

  14. Strangeness at SIS energies

    SciTech Connect

    Koch, Volker

    2005-09-28

    In this contribution the authors discuss the physics of strange hadrons in low energy ({approx_equal} 1-2 AGeV) heavy ion collision. In this energy range the relevant strange particle are the kaons and anti-kaons. The most interesting aspect concerning these particles are so called in-medium modifications. They will attempt to review the current status of understanding of these in medium modifications. In addition they briefly discuss other issues related with kaon production, such as the nuclear equation of state and chemical equilibrium.

  15. Strange particle production in neutrino-neon charged current interactions

    SciTech Connect

    Plano, R.; Baker, N.J.; Connolly, P.L.; Kahn, S.A.; Murtagh, M.J.; Palmer, R.B.; Samios, N.P.; Tanaka, M.; Baltay, C.; Bregman, M.

    1986-01-01

    Neutral strange particle production in charged-current muon-neutrino interactions have been studied in the Fermilab 15-foot neon bubble chamber. Associated production is expected to be the major source of strange particles in charged-current neutrino interactions. sigma-neutral and xi-minus production by neutrinos was observed. The dependence on various leptonic and hadronic variables is investigated. A fit to single and associated production of s, s/anti-s, and c quarks is described based on the number of single and double strange particle production events. Inclusive neutral strange particle decays (V/sup 0/) production rates as a fraction of all charged-current events are measured and are tabulated. The lambda/K ratio is found to be 0.39 +- 0.04 and the fraction of lambda coming from sigma-neutral is (16 +- 5)%. The single- and double V/sup 0/ production was used to determine the associated s anti-s production rate and single s-quark production rate. 13 refs., 7 figs., 3 tabs. (LEW)

  16. Spectroscopy of charmed baryons

    SciTech Connect

    Solovieva, E. I.

    2015-12-15

    Apresent-day classification of charmed baryons is presented, a quark model for ground states is briefly described, and the energy levels of excited states are analyzed. In addition, a survey of experimentally observed states of charmed baryons is given.

  17. Two alternative versions of strangeness

    PubMed Central

    Nishijima, Kazuhikoa

    2008-01-01

    The concept of strangeness emerged from the low energy phenomenology before the entry of quarks in particle physics. The connection between strangeness and isospin is rather accidental and loose and we recognize later that the definition of strangeness is model-dependent. Indeed, in Gell-Mann’s triplet quark model we realize that there is a simple alternative representation of strangeness. When the concept of generations is incorporated into the quark model we find that only the second alternative version of strangeness remains meaningful, whereas the original one does no longer keep its significance. PMID:18997448

  18. Strange Nonchaotic Stars

    NASA Astrophysics Data System (ADS)

    Lindner, John F.; Kohar, Vivek; Kia, Behnam; Hippke, Michael; Learned, John G.; Ditto, William L.

    2015-08-01

    Exploiting the unprecedented capabilities of the planet-hunting Kepler space telescope, which stared at 150 000 stars for four years, we discuss recent evidence that certain stars dim and brighten in complex patterns with fractal features. Such stars pulsate at primary and secondary frequencies whose ratios are near the famous golden mean, the most irrational number. A nonlinear system driven by an irrational ratio of frequencies is generically attracted toward a “strange” behavior that is geometrically fractal without displaying the “butterfly effect” of chaos. Strange nonchaotic attractors have been observed in laboratory experiments and have been hypothesized to describe the electrochemical activity of the brain, but a bluish white star 16 000 light years from Earth in the constellation Lyra may manifest, in the scale-free distribution of its minor frequency components, the first strange nonchaotic attractor observed in the wild. The recognition of stellar strange nonchaotic dynamics may improve the classification of these stars and refine the physical modeling of their interiors. We also discuss nonlinear analysis of other RR Lyrae stars in Kepler field of view and discuss some toy models for modeling these stars.References: 1) Hippke, Michael, et al. "Pulsation period variations in the RRc Lyrae star KIC 5520878." The Astrophysical Journal 798.1 (2015): 42.2) Lindner, John F., et al. "Strange nonchaotic stars." Phys. Rev. Lett. 114, 054101 (2015)

  19. Neutron stars, strange stars, and the nuclear equation of state

    SciTech Connect

    Weber, F.; Glendenning, N.K.

    1992-11-02

    This article consists of three parts. In part one we review the present status of dense nuclear matter calculations, and introduce a representative collection of realistic nuclear equations of state which are derived for different assumptions about the physical behavior of dense matter (baryon population, pion condensation,.possible transition of baryon matter to quark matter). In part two we review recently performed non-rotating and rotating compact star calculations performed for these equations of state. The minimum stable rotational periods of compact stars, whose knowledge is of decisive importance for the interpretation of rapidly rotating pulsars, axe determined. For this purpose two different limits on stable rotation are studied: rotation at the general relativistic Kepler period (below which mass shedding at the star's equator sets in), and, secondly, rotation at the gravitational radiation-reaction instability (at which emission of gravitational waves set in which slows the star down). Part three of this article deals with the properties of hypothetical strange stars. Specifically we investigate the amount of nuclear solid crust that can be carried by a rotating strange star, and answer the question whether such objects can give rise to the observed phenomena of pulsar glitches, which is at the present time the only astrophysical test of the strange-quark-matter hypothesis.

  20. Neutron stars, strange stars, and the nuclear equation of state

    SciTech Connect

    Weber, F.; Glendenning, N.K.

    1992-11-02

    This article consists of three parts. In part one we review the present status of dense nuclear matter calculations, and introduce a representative collection of realistic nuclear equations of state which are derived for different assumptions about the physical behavior of dense matter (baryon population, pion condensation,.possible transition of baryon matter to quark matter). In part two we review recently performed non-rotating and rotating compact star calculations performed for these equations of state. The minimum stable rotational periods of compact stars, whose knowledge is of decisive importance for the interpretation of rapidly rotating pulsars, axe determined. For this purpose two different limits on stable rotation are studied: rotation at the general relativistic Kepler period (below which mass shedding at the star`s equator sets in), and, secondly, rotation at the gravitational radiation-reaction instability (at which emission of gravitational waves set in which slows the star down). Part three of this article deals with the properties of hypothetical strange stars. Specifically we investigate the amount of nuclear solid crust that can be carried by a rotating strange star, and answer the question whether such objects can give rise to the observed phenomena of pulsar glitches, which is at the present time the only astrophysical test of the strange-quark-matter hypothesis.

  1. Electromagnetic structure of decuplet baryons towards the chiral regime

    SciTech Connect

    Boinepalli, S.; Leinweber, D. B.; Moran, P. J.; Williams, A. G.; Zanotti, J. M.; Zhang, J. B.

    2009-09-01

    The electromagnetic properties of the baryon decuplet are calculated in quenched QCD on a 20{sup 3}x40 lattice with a lattice spacing of 0.128 fm using the fat-link irrelevant clover fermion action with quark masses providing a pion mass as low as 300 MeV. Magnetic moments and charge radii are extracted from the electric and magnetic form factors for each individual quark sector. From these, the corresponding baryon properties are constructed. We present results for the higher-order moments of the spin-3/2 baryons, including the electric-quadrupole moment E2 and the magnetic-octupole moment M3. The world's first determination of a nonzero M3 form factor for the {delta} baryon is presented. With these results we provide a conclusive analysis which shows that decuplet baryons are deformed. We compare the decuplet-baryon results from a similar lattice calculation of the octet baryons. We establish that the environment sensitivity is far less pronounced for the decuplet baryons compared to the octet baryons. A surprising result is that the charge radii of the decuplet baryons are generally smaller than those of the octet baryons. The magnetic moment of the {delta}{sup +} reveals a turnover in the low quark-mass region, making it smaller than the proton magnetic moment. These results are consistent with the expectations of quenched chiral perturbation theory. A similar turnover is also noticed in the magnetic moment of the {sigma}*{sup 0}, but not for {xi}* where only kaon loops can appear in quenched QCD. The electric-quadrupole moment of the {omega}{sup -} baryon is positive when the negative charge factor is included, and is equal to 0.86{+-}0.12x10{sup -2} fm{sup 2}, indicating an oblate shape.

  2. Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---

    NASA Astrophysics Data System (ADS)

    Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.

    We review the Nijmegen extended-soft-core (ESC) models for the baryon-baryon (BB) interactions of the SU(3) flavor-octet of baryons (N, Lambda, Sigma, and Xi). The interactions are basically studied from the meson-exchange point of view, in the spirit of the Yukawa-approach to the nuclear force problem [H. Yukawa, ``On the interaction of Elementary Particles I'', Proceedings of the Physico-Mathematical Society of Japan 17 (1935), 48], using generalized soft-core Yukawa-functions. These interactions are supplemented with (i) multiple-gluon-exchange, and (ii) structural effects due to the quark-core of the baryons. We present in some detail the most recent extended-soft-core model, henceforth referred to as ESC08, which is the most complete, sophisticated, and successful interaction-model. Furthermore, we discuss briefly its predecessor the ESC04-model [Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73 (2006), 044007; Th. A. Rijken and Y. Yamamoto, Ph ys. Rev. C 73 (2006), 044008; Th. A. Rijken and Y. Yamamoto, nucl-th/0608074]. For the soft-core one-boson-exchange (OBE) models we refer to the literature [Th. A. Rijken, in Proceedings of the International Conference on Few-Body Problems in Nuclear and Particle Physics, Quebec, 1974, ed. R. J. Slobodrian, B. Cuec and R. Ramavataram (Presses Universitè Laval, Quebec, 1975), p. 136; Th. A. Rijken, Ph. D. thesis, University of Nijmegen, 1975; M. M. Nagels, Th. A. Rijken and J. J. de Swart, Phys. Rev. D 17 (1978), 768; P. M. M. Maessen, Th. A. Rijken and J. J. de Swart, Phys. Rev. C 40 (1989), 2226; Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59 (1999), 21; V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59 (1999), 3009]. All ingredients of these latter models are also part of ESC08, and so a description of ESC08 comprises all models so far in principle. The extended-soft-core (ESC) interactions consist of local- and non-local-potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of

  3. Strange stars, strange dwarfs, and planetary-like strange-matter objects

    SciTech Connect

    Weber, F.; Schaab, C.; Weigel, M.K.; Glendenning, N.K.

    1995-05-01

    This paper gives an overview of the properties of all possible equilibrium sequences of compact strange-matter stars with nuclear crusts, which range from strange stars to strange dwarfs. In contrast to their non-strange counterparts--neutron stars and white dwarfs--their properties are determined by two (rather than one) parameters, the central star density and the density at the base of the nuclear crust. This leads to stellar strange-matter configurations whose properties are much more complex than those of the conventional sequence. As an example, two generically different categories of stable strange dwarfs are found, which could be the observed white dwarfs. Furthermore the authors find very-low-mass strange stellar objects, with masses as small as those of Jupiter or even lighter planets. Such objects, if abundant enough, should be seen by the presently performed gravitational microlensing searches.

  4. (Multi-)strange hadron and light (anti-)nuclei production with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Lea, Ramona

    2016-01-01

    Thanks to its excellent tracking performance and particle identification capabilities, the ALICE detector allows for the identification of light (anti-)(hyper)nuclei and for the measurement of (multi-)strange particles over a wide range of transverse momentum. Deuterons, 3He and 4He and their corresponding anti-nuclei are identified via their specific energy loss in the Time Projection Chamber and the velocity measurement provided by the Time-Of-Flight detector. Strange and multi-strange baryons and mesons as well as (anti-)hypertritons are reconstructed via their topological decays. Detailed measurements of (multi-)strange hadron production in pp, p-Pb and Pb-Pb collision and of light (anti-)nuclei and (anti-)hypertritons in Pb-Pb collisions with ALICE at the LHC are presented. The experimental results will be compared with the predictions of both statistical hadronization and coalescence models.

  5. Strangeness Prospects with the CBM Experiment

    NASA Astrophysics Data System (ADS)

    Friese, Volker

    2016-01-01

    The CBM experiment will study strongly interacting matter at high net-baryon densities with nuclear collisions up to 45A GeV beam energy at the future FAIR facility. With interaction rates unprecedented in heavy-ion collisions, CBM will give access also to extremely rare probes and thus to the early stage of the collisions, in search for the first-order phase transition from confined to deconfined matter and the QCD critical point. The CBM physics programme will be started with beams delivered by the SIS-100 synchrotron, providing energies from 2 to 11 GeV/nucleon for heavy nuclei, up to 14 GeV/nucleon for light nuclei, and 30 GeV for protons. The highest net baryon densities will be explored with ion beams up to 45 GeV/nucleon energy delivered by SIS-300 in a later stage of the FAIR project. After several years of preparation, the CBM experiment now enters the realisation phase. In this article, we report on the current status of the system developments and the expected physics performance for strange and charmed observables, as well as on the roadmap towards the first data taking.

  6. Measurement of b-Baryons with the CDF II detector

    SciTech Connect

    Heuser, Joachim; /Karlsruhe U., EKP

    2007-10-01

    We report the observation of new bottom baryon states. The most recent result is the observation of the baryon {Xi}{sub b}{sup -} through the decay {Xi}{sub b}{sup -} {yields} J/{psi}{Xi}{sup -}. The significance of the signal corresponds to 7.7{sigma} and the {Xi}{sub b}{sup -} mass is measured to be 5792.9{+-}2.5(stat.){+-}1.7(syst.) MeV/c{sup 2}. In addition we observe four resonances in the {Lambda}{sub b}{sup 0}{pi}{sup {+-}} spectra, consistent with the bottom baryons {Sigma}{sub b}{sup (*){+-}}. All observations are in agreement with theoretical expectations.

  7. Strange stars at finite temperature

    NASA Astrophysics Data System (ADS)

    Ray, Subharthi; Bagchi, Manjari; Dey, Jishnu; Dey, Mira

    2006-03-01

    We calculate strange star properties, using large Nc approximation with built-in chiral symmetry restoration (CSM). We used a relativistic Hartree Fock meanfield approximation method, using a modi.ed Richardson potential with two scale parameters Λ and Λ', to find a new set of equation of state (EOS) for strange quark matter. We take the effect of temperature (T) on gluon mass, in addition to the usual density dependence, and find that the transition T from hadronic matter to strange matter is 80 MeV. Therefore formation of strange stars may be the only signal for formation of QGP with asymptotic freedom (AF) and CSM.

  8. Baryonic B Decays

    NASA Astrophysics Data System (ADS)

    Chistov, R.

    2016-02-01

    In this talk the decays of B-mesons into baryons are discussed. Large mass of B-meson makes possible the decays of the type B → baryon (+mesons). Experimental observations and measurements of these decays at B-factories Belle and BaBar have stimulate the development of theoretical models in this field. We briefly review the experimental results together with the current theoretical models which describe baryonic B decays.

  9. Charmed bottom baryon spectroscopy from lattice QCD

    DOE PAGESBeta

    Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas

    2014-11-19

    In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physicalmore » pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.« less

  10. Charmed bottom baryon spectroscopy from lattice QCD

    SciTech Connect

    Brown, Zachary S.; Detmold, William; Meinel, Stefan; Orginos, Kostas

    2014-11-19

    In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with JP = 1/2+ and JP = 3/2+. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/mQ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.

  11. Strangeness suppression of qq creation observed in exclusive reactions.

    PubMed

    Mestayer, M D; Park, K; Adhikari, K P; Aghasyan, M; Pereira, S Anefalos; Ball, J; Battaglieri, M; Batourine, V; Bedlinskiy, I; Biselli, A S; Boiarinov, S; Briscoe, W J; Brooks, W K; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Contalbrigo, M; Cortes, O; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dupre, R; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fleming, J A; Forest, T A; Garillon, B; Garçon, M; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Golovatch, E; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Hakobyan, H; Hanretty, C; Hattawy, M; Holtrop, M; Hughes, S M; Hyde, C E; Ilieva, Y; Ireland, D G; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Koirala, S; Kubarovsky, V; Kuleshov, S V; Lenisa, P; Levine, W I; Livingston, K; Lu, H Y; MacGregor, I J D; Mayer, M; McKinnon, B; Meyer, C A; Mirazita, M; Mokeev, V; Montgomery, R A; Moody, C I; Moutarde, H; Movsisyan, A; Camacho, C Munoz; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Peng, P; Phelps, W; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Protopopescu, D; Puckett, A J R; Raue, B A; Rimal, D; Ripani, M; Rizzo, A; Rosner, G; Roy, P; Sabatié, F; Saini, M S; Schott, D; Schumacher, R A; Simonyan, A; Sokhan, D; Strauch, S; Sytnik, V; Tang, W; Tian, Ye; Ungaro, M; Vernarsky, B; Vlassov, A V; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Weinstein, L B; Wood, M H; Zachariou, N; Zhang, J; Zhao, Z W; Zonta, I

    2014-10-10

    We measured the ratios of electroproduction cross sections from a proton target for three exclusive meson-baryon final states: ΛK(+), pπ(0), and nπ(+), with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization, we extract qq creation probabilities for the first time in exclusive two-body production, in which only a single qq pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to nonstrange pairs, similar to that seen in high-energy production. PMID:25375706

  12. Strange and Multi-strange Particle Production in Au+Au Collisions at sqrt sNN = 62.4GeV

    SciTech Connect

    Aggarwal, M.M.; Dunlop, J.; et al.

    2011-02-04

    We present results on strange and multistrange particle production in Au + Au collisions at {radical}s{sub NN} = 62.4 GeV as measured with the STAR detector at RHIC. Midrapidity transverse momentum spectra and integrated yields of K{sub S}{sup 0}, {lambda}, {Xi}, and {Omega} and their antiparticles are presented for different centrality classes. The particle yields and ratios follow a smooth energy dependence. Chemical freeze-out parameters, temperature, baryon chemical potential, and strangeness saturation factor obtained from the particle yields are presented. Intermediate transverse momentum (p{sub T}) phenomena are discussed based on the ratio of the measured baryon-to-meson spectra and nuclear modification factor. The centrality dependence of various measurements presented show a similar behavior as seen in Au + Au collisions at {radical}s{sub NN} = 200 GeV.

  13. Meson and baryon correlation studies using the PEP-TPC/2. gamma. Facility

    SciTech Connect

    Ronan, M.T.

    1991-03-01

    Results on vector meson, and strange and charmed-baryon production are presented for data taken during the period 1982--1986 using the TPC/2{gamma} detector at PEP. Vector mesons ({rho}{sup 0}, K{sup *} and {phi}) with 0, 1 and 2 strange quarks are used to obtain redundant measures of strange-quark suppression and of the vector to pseudoscalar ratio in hadronization. Measurements of the production rates of {Lambda}, {Xi}{sup {minus}}, {Omega} and {Xi}{sup *0} hyperons and for the {Lambda}{sub c} and of rapidity correlations between {Lambda}{bar {Lambda}} pairs provide sensitive tests of baryon production in fragmentation models. In addition, two- and three-particle correlations between like sign pions provide further evidence for the Bose-Einstein effect in e{sup +}e{sup {minus}} interactions including the relativistic motion of particle sources. 9 refs., 7 figs.

  14. Is the Strange Situation Too Strange for Japanese Infants?

    ERIC Educational Resources Information Center

    Ujiie, Tastuo

    The applicability of the Strange Situation procedure and the ABC typology for Japanese infants is discussed by examining data from studies in which the Strange Situation procedure was performed with Japanese infants. Findings of a study conducted in Sapporo, Japan, are discussed and their implications are pointed out. The discussion concludes that…

  15. Penta-Quark States with Strangeness, Hidden Charm and Beauty

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Jun; Zou, Bing-Song

    The classical quenched quark models with three constituent quarks provide a good description for the baryon spatial ground states, but fail to reproduce the spectrum of baryon excited states. More and more evidences suggest that unquenched effects with multi-quark dynamics are necessary ingredients to solve the problem. Several new hyperon resonances reported recently could fit in the picture of penta-quark states. Based on this picture, some new hyperon excited states were predicted to exist; meanwhile with extension from strangeness to charm and beauty, super-heavy narrow N* and Λ* resonances with hidden charm or beauty were predicted to be around 4.3 and 11 GeV, respectively. Recently, two of such N* with hidden charm might have been observed by the LHCb experiment. More of those states are expected to be observed in near future. This opens a new window in order to study hadronic dynamics for the multi-quark states.

  16. Strange experiments at the AGS

    SciTech Connect

    Chrien, R.

    1990-01-01

    The purpose of this review is to report recent progress in nuclear experiments involving strangeness which have been carried out at the Brookhaven Alternating Gradient Synchrotron over the past three years. These recent developments are noted in three areas: few body systems and dibaryons; strange probes of the nucleus; and associated production of hypernuclei. 9 refs., 3 figs.

  17. Electroproduction of Strange Nuclei

    SciTech Connect

    E.V. Hungerford

    2002-06-01

    The advent of high-energy, CW-beams of electrons now allows electro-production and precision studies of nuclei containing hyperons. Previously, the injection of strangeness into a nucleus was accomplished using secondary beams of mesons, where beam quality and target thickness limited the missing mass resolution. We review here the theoretical description of the (e, e'K+) reaction mechanism, and discuss the first experiment demonstrating that this reaction can be used to precisely study the spectra of light hypernuclei. Future experiments based on similar techniques, are expected to attain even better resolutions and rates.

  18. Hybrid baryons in QCD

    SciTech Connect

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.

  19. B baryons at D-Zero

    SciTech Connect

    Ratoff, Peter Neil; /Lancaster U.

    2009-01-01

    The observation of the b baryons {Xi}{sub b}{sup -} and {Omega}{sub b}{sup -} in high energy proton-antiproton collisions in the D-Zero Detector at Fermilab's Tevatron Collider are presented, along with measurements of the masses and production rates of these states. Within the standard model a total of 15 b baryons are predicted (counting quark content only). Taking into consideration intrinsic angular momentum, there are 10 charmless b baryons in J=1/2 and J=3/2 muliplets. These states are unique to hadron colliders since the B factories operate at insufficient energy to produce them, and they are expected to be produced copiously at the Tevatron. There are interesting mass predictions for these states from various theoretical models but the experimental challenge to observe them is very substantial. At the start of Tevatron Run II ({approx}2003) only the {Lambda}{sub b} had been observed (first by the UA1 collaboration in 1991). However, in the past three years at the Tevatron, another four of the predicted J=1/2 states containing just one b quark have been observed. The {Sigma}{sub b}{sup +} (uub) and {Sigma}{sub b}{sup -} (ddb) were recorded by the CDF collaboration in the {Sigma}{sub b} {yields} {pi}{Lambda}{sub c} {pi} ({Lambda}{sub c} {pi}) channel while at D-Zero the {Xi}{sub b}{sup -} (bds) and {Omega}{sub b}{sup -} (bss) states were observed. The measurements leading to the identification of the latter two states are the subject of the remainder of this presentation.

  20. ``Towards Strange Metallic Holography'

    SciTech Connect

    Hartnoll, Sean A.; Polchinski, Joseph; Silverstein, Eva; Tong, David; /Cambridge U., DAMTP /Santa Barbara, KITP /UC, Santa Barbara

    2010-08-26

    We initiate a holographic model building approach to 'strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarized branes, and from a gravitating charged Fermi gas. We also identify general features of renormalization group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z {ge} 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.

  1. Converting neutron stars into strange stars

    NASA Technical Reports Server (NTRS)

    Olinto, A. V.

    1991-01-01

    If strange matter is formed in the interior of a neutron star, it will convert the entire neutron star into a strange star. The proposed mechanisms are reviewed for strange matter seeding and the possible strange matter contamination of neutron star progenitors. The conversion process that follows seeding and the recent calculations of the conversion timescale are discussed.

  2. Study ofe+e- to Lambda anti-Lambda, Lambda anti-Sigma^0,Sigma^0 anti-Sigma^0 using Initial State Radiation with BaBar

    SciTech Connect

    Aubert, B.

    2007-09-14

    We study the e+e- --> Lambda anti-Lambda gamma, Lambda anti-Sigma0 gamma, Sigma0 anti-Sigma0 gamma processes using 230 fb-1 of integrated luminosity collected by the BaBar detector at e+e- center-of-mass energy of 10.58 GeV. From the analysis of the baryon-antibaryon mass spectra the cross sections for e+e- --> Lambda anti-Lambda, Lambda anti-Sigma0, Sigma0 anti-Sigma0 are measured in the dibaryon mass range from threshold up to 3 GeV/c{sup 2}. The ratio of electric and magnetic form factors, |G{sub E}/G{sub M}|, is measured for e+e- --> Lambda anti-Lambda, and limits on the relative phase between Lambda form factors are obtained. We also measure the J/psi --> Lambda anti-Lambda, Sigma0 anti-Sigma0 and psi(2S) --> Lambda anti-Lambda branching fractions.

  3. Electrically charged strange quark stars

    SciTech Connect

    Negreiros, Rodrigo Picanco; Weber, Fridolin; Malheiro, Manuel; Usov, Vladimir

    2009-10-15

    The possible existence of compact stars made of absolutely stable strange quark matter--referred to as strange stars--was pointed out by Witten almost a quarter of a century ago. One of the most amazing features of such objects concerns the possible existence of ultrastrong electric fields on their surfaces, which, for ordinary strange matter, is around 10{sup 18} V/cm. If strange matter forms a color superconductor, as expected for such matter, the strength of the electric field may increase to values that exceed 10{sup 19} V/cm. The energy density associated with such huge electric fields is on the same order of magnitude as the energy density of strange matter itself, which, as shown in this paper, alters the masses and radii of strange quark stars at the 15% and 5% levels, respectively. Such mass increases facilitate the interpretation of massive compact stars, with masses of around 2M{sub {center_dot}}, as strange quark stars.

  4. Decays of J/psi (3100) to baryon final states

    SciTech Connect

    Eaton, M.W.

    1982-05-01

    We present results for the decays of psi(3100) into baryon and hyperon final states. The sample studied here consists of 1.3 million produced psi decays. The decays into nonstrange baryons agree well with currently established results, but with better statistics. In addition, significant resonance formation in multibody final states is observed. The decay psi ..-->.. anti pp..gamma.., the first direct photon decay of the psi involving baryons in the final state, is presented and the theoretical implications of the decays are briefly explored. Several new decays of the psi involving strange baryons are explored, including the first observations of three body final states involving hyperons. The I-spin symmetry of the strong decay psi ..-->.. baryons has clearly been observed. The reduced matrix elements for psi ..-->.. B anti B are presented for final states of different SU(3) content. The B/sub 8/ anti B/sub 8/ results are in excellent agreement with the psi being an SU(3) singlet as are the results for psi ..-->.. B/sub 10/ anti B/sub 10/. We present the first evidence for the SU(3) violating decays of the type psi ..-->.. B/sub 8/ anti B/sub 10/ + c.c.. Angular distributions for psi ..-->.. B/sub 8/ anti B/sub 8/ are presented and compared with theoretical predictions. Statistics are limited, but the data tends to prefer other than a 1 + Cos/sup 2/theta distribution.

  5. Magnetic Field of Strange Dwarfs

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. S.

    2016-03-01

    The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.

  6. Precision Holographic Baryons

    SciTech Connect

    Yi Piljin

    2011-10-21

    We overview a holographic QCD based on the D4-D8 string theory model, with emphasis on baryons and nucleon-meson interactions thereof. Baryons are realized as holographic images of Skyrmions, but with much qualitative changes. This allows us to derive, without adjustable parameters, couplings of baryons to the entire tower of spin one mesons and also to pseudoscalar mesons. We find some surprisingly good match against empirical values for nucleons, in particular. Tensor couplings to all axial-vectors and iso-singlet vectors all vanish, while, for {rho} mesons, tensor couplings are found to be dominant. We close with various cautionary comments and speculations.

  7. Precision Holographic Baryons

    NASA Astrophysics Data System (ADS)

    Yi, Piljin

    2011-10-01

    We overview a holographic QCD based on the D4-D8 string theory model, with emphasis on baryons and nucleon-meson interactions thereof. Baryons are realized as holographic images of Skyrmions, but with much qualitative changes. This allows us to derive, without adjustable parameters, couplings of baryons to the entire tower of spin one mesons and also to pseudoscalar mesons. We find some surprisingly good match against empirical values for nucleons, in particular. Tensor couplings to all axial-vectors and iso-singlet vectors all vanish, while, for ρ mesons, tensor couplings are found to be dominant. We close with various cautionary comments and speculations.

  8. Strangeness in Nucleon

    SciTech Connect

    Benaoum, Hachemi

    2008-04-01

    Results of the parity violating asymmetry APV for longitudinally polarized 3 GeV electrons from both hydrogen and helium cryogenic targets, at small scatteting angle thetalab~6 ° are presented. The asymmetry for hydrogen is a function of a linear combination of GEs and GMs, the strange quark contributions to the electric and magnetic form factors of the nucleon respectively, and that for 4He is a function solely of GEs. The combination of the two results therefore allows GEs and GMs to be separately determined.

  9. Strange perspectives at FAIR

    NASA Astrophysics Data System (ADS)

    Steinheimer, J.; Sturm, C.; Schramm, S.; Stöcker, H.

    2010-09-01

    Adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt, Germany, the Facility for Antiproton and Ion Research (FAIR) substantially expands research goals and technical possibilities. It will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented fore-front research in hadron, nuclear and atomic physics as well as applied sciences which will be described briefly in this paper. The start version of FAIR, the so-called Modularized Start Version, will deliver first beams in 2017/2018. As an example the paper presents research efforts on strangeness at FAIR using heavy ion collisions, exotic nuclei from fragmentation and antiprotons to tackle various topics in this area. In particular hypernuclei and metastable exotic multi-hypernuclear objects will be investigated.

  10. A new three-baryon-force in {lambda}{lambda} hypernuclei

    SciTech Connect

    Nemura, Hidekatsu

    2008-04-29

    We describe a few-body calculation of {sub {lambda}}{sub {lambda}}{sup 5}H as well as {sub {lambda}}{sub {lambda}}{sup 4}H and {sub {lambda}}{sub {lambda}}{sup 6}He taking account fully coupled-channel two-baryon potentials acting among the octet of baryons. The wave function includes not only pnn{lambda}{lambda} and ppnn{xi}{sup -} components but also pnn{lambda}{sigma}{sup 0}, ppn{lambda}{sigma}{sup -}, pnn{sigma}{sup 0}{sigma}{sup 0} and ppn{sigma}{sup 0}{sigma}{sup -}. An effective YY potential based on Nijmegen model D is used. We find that the pnn{lambda}{sigma}{sup 0} and ppn{lambda}{sigma}{sup -} components play an important role in producing the {sub {lambda}}{sub {lambda}}{sup 5}H bound state. The present result requires the introduction of a new coupled-channel three-body-force, N{lambda}{lambda}--NN{xi}, if the intermediate pnn{lambda}{sigma}{sup 0} and ppn{lambda}{sigma}{sup -} states are eliminated from the model space.

  11. Strangeness and onset of deconfinement

    SciTech Connect

    Becattini, F.

    2012-05-15

    I will review the current status of global strangeness production in relativistic heavy-ion collisions with particular emphasis on recent results from core-corona model. I will discuss its relevance for the detection of the onset of deconfinement.

  12. Torsional oscillations of strange stars

    NASA Astrophysics Data System (ADS)

    Mannarelli, Massimo

    2014-11-01

    Strange stars are one of the hypothetical compact stellar objects that can be formed after a supernova explosion. The existence of these objects relies on the absolute stability of strange collapsed quark matter with respect to standard nuclear matter. We discuss simple models of strange stars with a bare quark matter surface, thus standard nuclear matter is completely absent. In these models an electric dipole layer a few hundreds Fermi thick should exist close to the star surface. Studying the torsional oscillations of the electrically charged layer we estimate the emitted power, finding that it is of the order of 1045 erg/s, meaning that these objects would be among the brightest compact sources in the heavens. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. Although part of the radiated power should be absorbed by the electrosphere surrounding the strange star, a sizable fraction of photons should escape and be detectable.

  13. How Strange is the Proton?

    SciTech Connect

    Piotr Decowski

    2006-11-15

    The paper discusses application of parity violating polarized electron scattering off nucleons to study strange form factors of the nucleon. The results from the recent HAPPEX experiment are discussed in more detail.

  14. High statistics analysis using anisotropic clover lattices: (III) Baryon-baryon interactions

    SciTech Connect

    Beane, S; Detmold, W; Lin, H; Luu, T; Orginos, K; Savage, M; Torok, A; Walker-Loud, A

    2010-01-19

    Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m{sub {pi}} {approx} 390 MeV, a spatial volume of L{sup 3} {approx} (2.5 fm){sup 3}, and a spatial lattice spacing of b {approx} 0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin-dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multi-baryon systems.

  15. Charm Baryon Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chistov, R.

    2016-02-01

    B-factories Belle and BaBar during its operation made not only measurements connected with B-meson decays but also numerous observation and measurements in charm physics. In particular, their results on charm baryon decays and spectroscopy have enlarged and enriched the current picture of heavy flavour hadrons. In this talk we overview current status of charm baryons and their excited states.

  16. Multi-baryon systems

    SciTech Connect

    Kostas Orginos, Will Detmold

    2012-12-01

    In this talk I review the challenges related to calculations of properties of interacting baryons on the lattice. I present the progress made addressing the problem of calculating the large number of Wick contractions necessary to compute states with the quantum numbers of many baryons in lattice QCD. Examples of correlation functions computed using these techniques are shown for the quantum numbers of the light nuclei, He-4, Be-8, C-12, O-16 and Si-28.

  17. Hybrid baryons [alpha].

    SciTech Connect

    Page, P. R.

    2002-01-01

    The authors review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modeled by both the bag and flux tube models. The low lying hybrid baryon is N 1/2{sup +} with a mass of 1.5 - 1.8 GeV. Hybrid baryons can be produced in the glue rich processes of diffractive {gamma}N and {pi}N production, {Psi} decays and p{bar p} annihilation. We review the current status of research on three quarks with a gluonic excitation, called a hybrid baryon. The excitation is not an orbital or radial excitation between the quarks. Hybrid baryons have also been reviewed elsewhere. The Mercedes-Benz logl in Figure 1 indicates two possible views of the confining interaction of three quarks, an essential issue in the study of hybrid baryons. In the logo the three points where the Y shape meets the boundary circle should be identified with the three quarks. There are two possibilities fo rthe interaction of the quarks: (1) a pairwise interaction of the quarks represented by the circle, or (2) a Y shaped interaction between the quarks, represented by the Y-shape in the logo.

  18. Charmed baryon strong decays in a chiral quark model

    SciTech Connect

    Zhong Xianhui; Zhao Qiang

    2008-04-01

    Charmed baryon strong decays are studied in a chiral quark model. The data for the decays of {lambda}{sub c}{sup +}(2593), {lambda}{sub c}{sup +}(2625), {sigma}{sub c}{sup ++,+,0}, and {sigma}{sub c}{sup +,0}(2520) are accounted for successfully, which allows one to fix the pseudoscalar-meson-quark couplings in an effective chiral Lagrangian. Extending this framework to analyze the strong decays of the newly observed charmed baryons, we classify that {lambda}{sub c}(2880) and {lambda}{sub c}(2940) as D-wave states in the N=2 shell; {lambda}{sub c}(2880) could be |{lambda}{sub c}{sup 2}D{sub {lambda}}{sub {lambda}}(3/2){sup +}> and {lambda}{sub c}(2940) could be |{lambda}{sub c}{sup 2}D{sub {lambda}}{sub {lambda}}(5/2){sup +}>. Our calculation also suggests that {lambda}{sub c}(2765) is very likely a {rho}-mode P-wave excited state in the N=1 shell, and favors a |{lambda}{sub c}{sup 4}P{sub {rho}}(1/2){sup -}> configuration. The {sigma}{sub c}(2800) favors being a |{sigma}{sub c}{sup 2}P{sub {lambda}}(1/2){sup -}> state. But its being |{sigma}{sub c}{sup ++4}P{sub {lambda}}(5/2){sup -}> cannot be ruled out.

  19. Baryon Spectroscopy and Resonances

    SciTech Connect

    Robert Edwards

    2011-12-01

    A short review of current efforts to determine the highly excited state spectrum of QCD, and in particular baryons, using lattice QCD techniques is presented. The determination of the highly excited spectrum of QCD is a major theoretical and experimental challenge. The experimental investigation of the excited baryon spectrum has been a long-standing element of the hadronic-physics program, an important component of which is the search for so-called 'missing resonances', baryonic states predicted by the quark model based on three constituent quarks but which have not yet been observed experimentally. Should such states not be found, it may indicate that the baryon spectrum can be modeled with fewer effective degrees of freedom, such as in quark-diquark models. In the past decade, there has been an extensive program to collect data on electromagnetic production of one and two mesons at Jefferson Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To analyze these data, and thereby refine our knowledge of the baryon spectrum, a variety of physics analysis models have been developed at Bonn, George Washington University, Jefferson Laboratory and Mainz. To provide a theoretical determination and interpretation of the spectrum, ab initio computations within lattice QCD have been used. Historically, the calculation of the masses of the lowest-lying states, for both baryons and mesons, has been a benchmark calculation of this discretized, finite-volume computational approach, where the aim is well-understood control over the various systematic errors that enter into a calculation; for a recent review. However, there is now increasing effort aimed at calculating the excited states of the theory, with several groups presenting investigations of the low-lying excited baryon spectrum, using a variety of discretizations, numbers of quark flavors, interpolating operators, and fitting methodologies. Some aspects of these calculations remain unresolved and are the subject of intense

  20. Strange Star Surface: A Crust with Nuggets

    SciTech Connect

    Jaikumar, Prashanth; Reddy, Sanjay; Steiner, Andrew W.

    2006-02-03

    We reexamine the surface composition of strange stars. Strange quark stars are hypothetical compact stars which could exist if strange quark matter was absolutely stable. It is widely accepted that they are characterized by an enormous density gradient (10{sup 26} g/cm{sup 4}) and large electric fields at the surface. By investigating the possibility of realizing a heterogeneous crust, comprised of nuggets of strange quark matter embedded in an uniform electron background, we find that the strange star surface has a much reduced density gradient and negligible electric field. We comment on how our findings will impact various proposed observable signatures for strange stars.

  1. Compositeness of the strange, charm, and beauty odd parity Λ states

    NASA Astrophysics Data System (ADS)

    Garcia-Recio, C.; Hidalgo-Duque, C.; Nieves, J.; Salcedo, L. L.; Tolos, L.

    2015-08-01

    We study the dependence on the quark mass of the compositeness of the lowest-lying odd parity hyperon states. Thus, we pay attention to Λ -like states in the strange, charm, and beauty sectors which are dynamically generated using a unitarized meson-baryon model. In the strange sector we use a SU(6) extension of the Weinberg-Tomozawa meson-baryon interaction, and we further implement the heavy-quark spin symmetry to construct the meson-baryon interaction when charmed or beauty hadrons are involved. In the three examined flavor sectors, we obtain two JP=1 /2- and one JP=3 /2- Λ states. We find that the Λ states which are bound states (the three Λb) or narrow resonances [one Λ (1405 ) and one Λc(2595 )] are well described as molecular states composed of s -wave meson-baryon pairs. The 1/2- wide Λ (1405 ) and Λc(2595 ) as well as the 3/2- Λ (1520 ) and Λc(2625 ) states display smaller compositeness so they would require new mechanisms, such as d -wave interactions.

  2. Meson-baryon interaction in the meson exchange picture

    SciTech Connect

    Doering, M.

    2011-10-24

    Elastic {pi}N scattering and the reaction {pi}{sup +}p{yields}K{sup +}{Sigma}{sup +} are described simultaneously in a unitary coupled-channels approach which respects analyticity. SU(3) flavor symmetry is used to relate the t- and u- channel exchanges that drive the meson-baryon interaction in the different channels. Angular distributions, polarizations, and spin-rotation parameters are compared with available experimental data. The pole structure of the amplitudes is extracted from the analytic continuation.

  3. Nuclear matter at high temperature and low net baryonic density

    SciTech Connect

    Costa, R. S.; Duarte, S. B.; Oliveira, J. C. T.; Chiapparini, M.

    2010-11-12

    We study the effect of the {sigma}-{omega} mesons interaction on nucleon-antinucleon matter properties. This interaction is employed in the context of the linear Walecka model to discuss the behavior of this system at high temperature and low net baryonic density regime. The field equations are solved in the relativistic mean-field approximation and our results show that the phase transition pointed out in the literature for this regime is eliminated when the meson interaction are considered.

  4. Magnetic moments of octet baryons and sea antiquark polarizations

    SciTech Connect

    Bartelski, Jan; Tatur, Stanislaw

    2005-01-01

    Using generalized Sehgal equations for magnetic moments of baryon octet and taking into account {sigma}{sup 0}-{lambda} mixing and two particle corrections to independent quark contributions we obtain very good fit using experimental values for errors of such moments. We present sum rules for quark magnetic moments ratios and for integrated spin densities ratios. Because of the SU(3) structure of our equations the results for magnetic moments of quarks and their densities depend on two additional parameters. Using information from deep inelastic scattering and baryon {beta}-decays we discuss the dependence of antiquark polarizations on introduced parameters. For some plausible values of these parameters we show that these polarizations are small if we neglect angular momenta of quarks. Our very good fit to magnetic moments of baryon octet can still be improved by using specific model for angular momentum of quarks.

  5. Baryonic dark matter

    SciTech Connect

    Lynden-Bell, D. ); Gilmore, G. )

    1990-01-01

    Dark matter, first definitely found in the large clusters of galaxies, is now known to be dominant mass in the outer parts of galaxies. All the mass definitely deduced could be made up of baryons, and this would fit well with the requirements of nucleosynthesis in a big bang of small {Omega}{sub B}. However, if inflation is the explanation of the expansion and large scale homogeneity of the universe and of baryon synthesis, and if the universe did not have an infinite extent at the big bang, then {Omega} should be minutely greater than unity. It is commonly hypothesized that most mass is composed of some unknown, non-baryonic form. This book first discusses the known forms, comets, planets, brown dwarfs, stars, gas, galaxies and Lyman {alpha} clouds in which baryons are known to exist. Limits on the amount of dark matter in baryonic form are discussed in the context of the big bang. Inhomogeneities of the right type alleviate the difficulties associated with {Omega}{sub B} = 1 cosmological nucleosynthesis.

  6. Hybrid baryons in QCD

    DOE PAGESBeta

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less

  7. Baryon production at PEP

    SciTech Connect

    Goldhaber, G.; Weiss, J.M.

    1981-09-01

    Measurements of inclusive ..lambda.. + anti ..lambda.. production for 1.0 less than or equal to p less than or equal to 10.0 GeV/c and p + anti p production for 0.4 less than or equal to p less than or equal to 2.0 GeV/c show significant baryon production in e/sup +/e/sup -/ annihilation at E/sub cm/ = 29 GeV. ..lambda.. + anti ..lambda.. production represents 0.2 ..lambda..'s or anti ..lambda..'s per PEP event while the observed p + anti p production implies all baryon-antibaryon pair production is occurring at least as often as 0.6 per event, depending on the yet to be measured p + anti p production at high momentum. Comparisons are made with the first theoretical attempts to account for baryon production at these energies.

  8. Strange Erosional Features

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 19 December 2003

    The strange erosional pattern seen in this THEMIS visible image differs greatly from the surrounding terrain of Lycus Sulchi (see context image). The crescent-shaped erosional pits trend in the southwest-northeast direction, indicating a dominant wind direction from the southwest. Why these pits eroded in the shapes that they did, however, is a mystery.

    Image information: VIS instrument. Latitude 18.6, Longitude 214.6 East (145.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions

    SciTech Connect

    Silas Beane; Detmold, William; Lin, Huey-Wen; Luu, Thomas C.; Orginos, Kostas; Savage, Martin; Torok, Aaron M.; Walker-Loud, Andre

    2010-03-01

    Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m_pi ~ 390 MeV, a spatial volume of L^3 ~ (2.5 fm)^3, and a spatial lattice spacing of b ~ 0.123 fm. Luscher’s method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The N-Sigma interactions are found to be highly spin-dependent, and the interaction in the ^3 S _1 channel is found to be strong. In contrast, the N-Lambda interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is Lambda-Lambda, indicating that the Lambda-Lambda interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of the NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting

  10. Production of strange particles in hadronization processes

    SciTech Connect

    Hofmann, W.

    1987-08-01

    Strange particles provide an important tool for the study of the color confinement mechanisms involved in hadronization processes. We review data on inclusive strange-particle production and on correlations between strange particles in high-energy reactions, and discuss phenomenological models for parton fragmentation. 58 refs., 24 figs.

  11. Problems in baryon spectroscopy

    SciTech Connect

    Capstick, S.

    1994-04-01

    Current issues and problems in the physics of ground- and excited-state baryons are considered, and are classified into those which should be resolved by CEBAF in its present form, and those which may require CEBAF to undergo an energy upgrade to 8 GeV or more. Recent theoretical developments designed to address these problems are outlined.

  12. Baryons and QCD

    SciTech Connect

    Nathan Isgur

    1997-03-01

    The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections.

  13. Doubly charmful baryonic B decays

    SciTech Connect

    Cheng, H.-Y.; Chua, C.-K.; Tsai, S.-Y.

    2006-04-01

    There are two apparent puzzles connected with the two-body and three-body doubly charmed baryonic B decays. First, earlier calculations based on QCD sum rules or the diquark model predict B(B{sup 0}{yields}{xi}{sub c}{sup +}{lambda}{sub c}{sup -}){approx_equal}B(B{sup 0}{yields}B{sub c}N), while experimentally the former has a rate 2 orders of magnitude larger than the latter. Second, a naive estimate of the branching ratio O(10{sup -9}) for the color-suppressed three-body decay B{yields}{lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K, which is highly suppressed by phase space, is too small by 5 to 6 orders of magnitude compared to the experiment. We show that the great suppression for the {lambda}{sub c}{sup +}{lambda}{sub c}{sup -}K production can be alleviated provided that there exists a narrow hidden charm bound state with a mass near the {lambda}{sub c}{lambda}{sub c} threshold. This new state that couples strongly to the charmed baryon pair can be searched for in B decays and in pp collisions by studying the mass spectrum of D{sup (*)}D{sup (*)} or {lambda}{sub c}{lambda}{sub c}. The doubly charmful decay B{yields}{xi}{sub c}{lambda}{sub c} has a configuration more favorable than the singly charmful one such as B{sup 0}{yields}{lambda}{sub c}p since no hard gluon is needed to produce the energetic {xi}{sub c}{lambda}{sub c} pair in the former decay, while two hard gluons are needed for the latter process. Assuming that a soft qq quark pair is produced through the {sigma} and {pi} meson exchanges in the configuration for B{yields}{xi}{sub c}{lambda}{sub c}, it is found that its branching ratio is of order 10{sup -3}, in agreement with the experiment.

  14. Baryons as Solitons

    NASA Astrophysics Data System (ADS)

    Rajeev, Sarada Gangadharan

    In this dissertation we study the soliton models of baryons originally proposed by Skyrme. Baryons are interpreted in the naive quark model as bound states of three quarks. Here, we interpret them as solitonic bound states of mesons. This is natural in Quantum Chromodynamics, the theory of strong interactions. The low energy properties of chromodynamics are well accounted for by the chiral model. The Wess-Zumino anomaly plays a crucial role in this model. A derivation within the canonical formulation of the Wess-Zumino is given. It is shown that the anomaly leads to a modification of the current algebra. An operator that creates solitonic states out of the vacuum is constructed. It is shown that this operator is fermionic if the number of colors is odd. The Wess -Zumino anomaly is shown to be responsible for this fact. The anomaly is studied in detail in the simpler context of a two dimensional theory. The operator creating solitons is constructed and its equations of motion are found. This model has an infinite number of conserved charges satisfying a Kac-Moody algebra. A derivation of the Wess-Zumino anomaly starting from Quantum Chromodynamics is given. Further the Skyrme constant is calculated, within certain approximations. This enables us to calculate the mass of the soliton and it agrees with the baryon mass to 20%. The constants D and F that couple the baryons to mesons are also computed. They also agree to about 20%. Thus the identification of baryons as solitons of the chiral model is established.

  15. The Compressed Baryonic Matter Experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Senger, Peter

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At top RHIC and LHC energies, the QCD phase diagram is studied at very high temperatures and very low net-baryon densities. These conditions presumably existed in the early universe about a microsecond after the big bang. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure such as a critical point, a first order phase transition between hadronic and partonic matter, or new phases like quarkyonic matter. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at neutron star core densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure rare diagnostic probes such as multi-strange hyperons, charmed particles and vector mesons decaying into lepton pairs with unprecedented precision and statistics. Most of these particles will be studied for the first time in the FAIR energy range. In order to achieve the required precision, the measurements will be performed at very high reaction rates of 100 kHz to 10 MHz. This requires very fast and radiation-hard detectors, and a novel data read-out and analysis concept based on free streaming front-end electronics and a high-performance computing cluster for online event selection. The layout, the physics performance, and the status of the proposed CBM experimental

  16. Strange-quark-matter stars

    SciTech Connect

    Glendenning, N.K.

    1989-11-01

    We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 13 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to consist of individual hadrons. We conclude that it is implausible that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, is a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation if strange matter is stable at an energy density exceeding about 5.4 times that of nuclear matter. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 34 refs., 10 figs., 1 tab.

  17. How strange is pion electroproduction?

    NASA Astrophysics Data System (ADS)

    Gorchtein, Mikhail; Spiesberger, Hubert; Zhang, Xilin

    2016-01-01

    We consider pion production in parity-violating electron scattering (PVES) in the presence of nucleon strangeness in the framework of partial wave analysis with unitarity. Using the experimental bounds on the strange form factors obtained in elastic PVES, we study the sensitivity of the parity-violating asymmetry to strange nucleon form factors. For forward kinematics and electron energies above 1 GeV, we observe that this sensitivity may reach about 20% in the threshold region. With parity-violating asymmetries being as large as tens p.p.m., this study suggests that threshold pion production in PVES can be used as a promising way to better constrain strangeness contributions. Using this model for the neutral current pion production, we update the estimate for the dispersive γZ-box correction to the weak charge of the proton. In the kinematics of the Qweak experiment, our new prediction reads Re □γZV (E = 1.165 GeV) = (5.58 ± 1.41) ×10-3, an improvement over the previous uncertainty estimate of ± 2.0 ×10-3. Our new prediction in the kinematics of the upcoming MESA/P2 experiment reads Re □γZV (E = 0.155 GeV) = (1.1 ± 0.2) ×10-3.

  18. A strange cat in Dublin

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac

    2012-11-01

    Not many life stories in physics involve Nazis, illicit sex, a strange cat and the genetic code. Thus, a new biography of the great Austrian physicist Erwin Schrödinger is always of interest, and with Erwin Schrödinger and the Quantum Revolution, veteran science writer John Gribbin does not disappoint.

  19. Supersymmetric sigma models

    SciTech Connect

    Bagger, J.A.

    1984-09-01

    We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model.

  20. Baryons in holographic QCD

    SciTech Connect

    Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru

    2007-04-15

    We study baryons in holographic QCD with D4/D8/D8 multi-D-brane system. In holographic QCD, the baryon appears as a topologically nontrivial chiral soliton in a four-dimensional effective theory of mesons. We call this topological soliton brane-induced Skyrmion. Some review of D4/D8/D8 holographic QCD is presented from the viewpoints of recent hadron physics and QCD phenomenologies. A four-dimensional effective theory with pions and {rho} mesons is uniquely derived from the non-Abelian Dirac-Born-Infeld (DBI) action of D8 brane with D4 supergravity background at the leading order of large N{sub c}, without small amplitude expansion of meson fields to discuss chiral solitons. For the hedgehog configuration of pion and {rho}-meson fields, we derive the energy functional and the Euler-Lagrange equation of brane-induced Skyrmion from the meson effective action induced by holographic QCD. Performing the numerical calculation, we obtain the soliton solution and figure out the pion profile F(r) and the {rho}-meson profile G-tilde(r) of the brane-induced Skyrmion with its total energy, energy density distribution, and root-mean-square radius. These results are compared with the experimental quantities of baryons and also with the profiles of standard Skyrmion without {rho} mesons. We analyze interaction terms of pions and {rho} mesons in brane-induced Skyrmion, and find a significant {rho}-meson component appearing in the core region of a baryon.

  1. Scalar mesons in a linear sigma model with (axial-)vector mesons

    SciTech Connect

    Parganlija, D.; Kovacs, P.; Wolf, Gy.; Giacosa, F.; Rischke, D. H.

    2013-03-25

    The structure of the scalar mesons has been a subject of debate for many decades. In this work we look for qq states among the physical resonances using an extended Linear Sigma Model that contains scalar, pseudoscalar, vector, and axial-vector mesons both in the non-strange and strange sectors. We perform global fits of meson masses, decay widths and amplitudes in order to ascertain whether the scalar qq states are below or above 1 GeV. We find the scalar states above 1 GeV to be preferred as qq states.

  2. Strange particle production in hadronic Z{sup 0} decays

    SciTech Connect

    Baird, K.G. III

    1996-04-01

    A study has been made of neutral strange baryons and pseudoscalar mesons produced in hadronic decays of the weak gauge boson V. The experiment was performed at the Stanford Linear Accelerator Center, which has the unique capability of colliding highly polarized electrons with unpolarized positrons. Overall production rates and spectra of the K{sup 0} and the {Lambda}{sup 0} (+{Lambda}{sup 0}) were measured and compared with other experiments as well as with Quantum Chromodynamics calculations. The combination of the small, stable beam spots produced by the SLAC Linear Collider (SLC) and the precision vertexing capabilities of the SLC Large Detector (SLD) permitted the separation of the hadronic events into three quark flavor-enriched samples. An unfolding was performed to obtain flavor-pure samples, and for the first time measurements were made of K{sup 0} and {Lambda}{sup 0} (+{Lambda}{sup 0}) production rates and spectra in uds, c, and b quark events at the Z{sup 0} pole. This measurement revealed significant production differences. Utilizing the large quark production asymmetry due to the polarized electron beam, high-purity quark and antiquark jet samples were obtained. The first measurement of production differences of the {Lambda}{sup 0} baryon in quark and antiquark jets was performed, which provided clear evidence for a leading particle effect at high momenta.

  3. Strange Particle Production in Hadronic Z Boson Decays

    NASA Astrophysics Data System (ADS)

    Baird, Kenneth George, III

    A study has been made of neutral strange baryons and pseudoscalar mesons produced in hadronic decays of the weak gauge boson Z^0. The experiment was performed at the Stanford Linear Accelerator Center, which has the unique capability of colliding highly polarized electrons with unpolarized positrons. Overall production rates and spectra of the K^0 and the Lambda^0(+|Lambda ^0) were measured and compared with other experiments as well as with Quantum Chromodynamics calculations. The combination of the small, stable beam spots produced by the SLAC Linear Collider (SLC) and the precision vertexing capabilities of the SLAC Large Detector (SLD) permitted the separation of the hadronic events into three quark flavor-enriched samples. An unfolding was performed to obtain flavor-pure samples, and for the first time measurements were made of K^0 and Lambda ^0(+|Lambda^0) production rates and spectra in uds, c, and b quark events at the Z^0 pole. This measurement revealed significant production differences. Utilizing the large quark production asymmetry due to the polarized electron beam, high-purity quark and antiquark jet samples were obtained. The first measurement of production differences of the Lambda^0 baryon in quark and antiquark jets was performed, which provided clear evidence for a leading particle effect at high momenta.

  4. Relativistic Quark-Model Results for Baryon Ground and Resonant States

    SciTech Connect

    Plessas, W.; Melde, T.

    2008-10-13

    Latest results from a study of baryon ground and resonant states within relativistic constituent quark models are reported. After recalling some typical spectral properties, the description of ground states, especially with regard to the nucleon and hyperon electromagnetic structures, is addressed. In the following, recent covariant predictions for pion, eta, and kaon partial decay widths of light and strange baryon resonances below 2 GeV are summarized. These results exhibit a characteristic pattern that is distinct from nonrelativistic or relativized decay studies performed so far. Together with a detailed analysis of the spin, flavor, and spatial structures of the wave functions, it supports a new and extended classification scheme of baryon ground and resonant states into SU(3) flavor multiplets.

  5. Spectroscopy of doubly charmed baryons

    SciTech Connect

    Vijande, J.; Valcarce, A.; Fernandez, F.; Garcilazo, H.

    2006-02-11

    We study the mass spectrum of baryons with two and three charmed quarks. For double charm baryons the spin splitting is found to be smaller than standard quark-model potential predictions. This splitting is not influenced either by the particular form of the confining potential or by the regularization taken for the contact term of the spin-spin potential. We consistently predict the spectra for triply charmed baryons.

  6. Impact of strange quark matter nuggets on pycnonuclear reaction rates in the crusts of neutron stars

    SciTech Connect

    Golf, B.; Hellmers, J.; Weber, F.

    2009-07-15

    This article presents an investigation into the pycnonuclear reaction rates in dense crustal matter of neutron stars contaminated with strange quark matter nuggets. The presence of such nuggets in the crustal matter of neutron stars would be a natural consequence if Witten's strange quark matter hypothesis is correct. The methodology presented in this article is a recreation of a recent representation of nuclear force interactions embedded within pycnonuclear reaction processes. The study then extends the methodology to incorporate distinctive theoretical characteristics of strange quark matter nuggets, like their low charge-per-baryon ratio, and then assesses their effects on the pycnonuclear reaction rates. Particular emphasis is put on the impact of color superconductivity on the reaction rates. Depending on whether quark nuggets are in this novel state of matter, their electric charge properties vary drastically, which turns out to have a dramatic effect on the pycnonuclear reaction rates. Future nuclear fusion network calculations may thus have the potential to shed light on the existence of strange quark matter nuggets and on whether they are in a color superconducting state, as suggested by QCD.

  7. Polarisation observables for strangeness photoproduction on a frozen spin target with CLAS at Jefferson Lab

    SciTech Connect

    Stuart Fegan

    2012-04-01

    The FROST experiment at Jefferson Lab used the CLAS detector in Hall B with the intention of performing a complete measurement of polarization observables associated with strangeness photoproduction, in combination with data from previous JLab experiments. This was achieved by utilizing the FROST polarized target in conjunction with polarized photon beams, allowing direct measurement of beam-target double polarization observables. By studying strangeness reactions, such as {gamma}p {yields} K{sup +}{Lambda}{sup 0}, it may be possible to find 'missing' baryon resonances, predicted by symmetric quark models but not observed in previous experiments, whose results are consistent with the di-quark model. It is thought these 'missing' resonances remain undiscovered because they have different coupling strengths for different reaction channels, such as the strangeness reactions, whereas the current data is dominated by studies of pN reactions. Observing these resonances therefore has important implications for our knowledge of the excited states of nucleons, and the models predicting the quark interactions within them. The G polarization observable is one of the beam-target double polarization observables, associated with a longitudinally polarized target and a linearly polarized photon beam, and its measurement for the strangeness reaction {gamma}p {yields} K{sup +}{Lambda}{sup 0} is the focus of the work presented.

  8. Neutron stars and strange matter

    SciTech Connect

    Cooperstein, J.

    1986-01-01

    The likelihood is investigated that quark matter with strangeness of order unity resides in neutron stars. In the strong coupling regime near rho/sub 0/ this is found to be unlikely. Considering higher densities where perturbative expansions are used, we find a lower bound to be at 7rho/sub 0/ for the transition density. This is higher than the inferred density of observed neutron stars, and thus the transition to quark matter is precluded. 15 refs., 3 figs.

  9. Open strangeness production in CLAS

    SciTech Connect

    G. Niculescu

    2003-05-01

    An extensive program dedicated to the study of open strangeness systems was established in Hall B at Jefferson Lab. This program takes full advantage of the excellent characteristics of the CEBAF accelerator combined with the almost complete angular coverage of the CLAS detector. A general overview of the program is given, as well as results for the angular dependence of the electroproduction of kaon-hyperon final states.

  10. Results on Charm Baryon Spectroscopy from Tevatron

    SciTech Connect

    Wick, Felix

    2011-05-01

    Due to an excellent mass resolution and a large amount of available data, the CDF experiment, located at the Tevatron proton-antiproton accelerator, allows the precise measurement of spectroscopic properties, like mass and decay width, of a variety of states. This was exploited to examine the first orbital excitations of the {Lambda}{sub c} baryon, the resonances {Lambda}{sub c}(2595) and {Lambda}{sub c}(2625), in the decay channel {Lambda}{sub c}{sup +} {pi}{sup +}{pi}{sup -}, as well as the {Lambda}{sub c} spin excitations {Sigma}{sub c}(2455) and {Sigma}{sub c}(2520) in its decays to {Lambda}{sub c}{sup +} {pi}{sup -} and {Lambda}{sub c}{sup +} {pi}{sup -} final states in a data sample corresponding to an integrated luminosity of 5.2 fb{sup -1}. We present measurements of the mass differences with respect to the {Lambda}{sub c} and the decay widths of these states, using significantly higher statistics than previous experiments.

  11. Fluctuations, strangeness, and quasiquarks in heavy-ion collisions from lattice QCD

    NASA Astrophysics Data System (ADS)

    Gavai, R. V.; Gupta, Sourendu

    2006-01-01

    We report measurements of diagonal susceptibilities for the baryon number, χB, electrical charge, χQ, third component of isospin, χI, strangeness, χS, and hypercharge, χY, as well as the off-diagonal χBQ, χBY, χBS, etc. We show that the ratios of susceptibilities in the high-temperature phase are robust variables, independent of lattice spacing, and therefore give predictions for experiments. We also investigate strangeness production and flavor symmetry breaking matrix elements at finite temperature. Finally, we present evidence that in the high-temperature phase of QCD the different flavor quantum numbers are excited in linkages which are exactly the same as one expects from quarks. We present some investigations of these quarklike quasiparticles.

  12. The effect of finite temperature and chemical potential on nucleon properties in the logarithmic quark sigma model

    NASA Astrophysics Data System (ADS)

    Abu-Shady, M.; Abu-Nab, A.

    2015-12-01

    The logarithmic quark sigma model is applied to study the nucleon properties at finite temperature and chemical potential. The field equations have been solved numerically in the mean-field approximation by using the extended iteration method at finite temperature and baryon chemical potential. Baryon properties are investigated, such as the hedgehog mass, the magnetic moments of the proton and neutron, and the pion-nucleon coupling constant. We find that the hedgehog mass and the magnetic moments of the proton and neutron increase with increasing temperature and chemical potential, while the pion-nucleon coupling constant decreases. A comparison with the original sigma model and QCD sum rules is presented. We conclude that the logarithmic quark sigma model successfully describes baryon properties of a hot and dense medium.

  13. Prospects for strangeness measurement in ALICE

    SciTech Connect

    Vernet, R.

    2008-09-15

    The study of strangeness production at LHC will bring significant information on the bulk chemical properties, its dynamics, and the hadronization mechanisms involved at these energies. The ALICE experiment will measure strange particles from topology (secondary vertices) and from resonance decays over a wide range in transverse momentum and shed light on this new QCD regime. These motivations will be presented as well as the identification performance of ALICE for strange hadrons.

  14. Quark Interchange Model of Baryon Interactions.

    NASA Astrophysics Data System (ADS)

    Maslow, Joel Neal

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point -like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and we assume that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (qq) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of Yn scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  15. Quark interchange model of baryon interactions

    SciTech Connect

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  16. Is the sub-millisecond pulsar strange?

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Olinto, Angela V.

    1989-01-01

    The possibility that the submillisecond pulsar from supernova 1987A is composed of strange matter is theoretically discussed. It is shown that for a range of hadron parameters, the maximum rotation rate of secularly stable strange stars may exceed that of the half-millisecond pulsar and the nonrotating maximum mass is greater than 1.52 solar mass. The low-mass companion(s) to SN1987A, inferred from the periodic modulations of the optical signal, can be accounted for by stable strange-matter lump(s) ejected from the young strange star.

  17. Exciting Baryons with MAMI

    NASA Astrophysics Data System (ADS)

    Ostrick, Michael

    Meson photoproduction is an important tool in baryon spectroscopy. In modern experiments all spin degrees of freedom can be exploited in order to determine partial wave amplitudes and resonance parameters. With the Crystal Ball/TAPS detector setup at the energy-tagged photon facility at the Mainz Microtron MAMI photoproduction can be studied up to the center-of-mass energy W = 1.9 GeV. Selected results for differential cross sections and transverse target asymmetries in π0, η, and η' production are presented.

  18. Strangeness suppression of qq¯ creation observed in exclusive reactions

    DOE PAGESBeta

    Mestayer, M. D.; Park, K.; Adhikari, K. P.; Aghasyan, M.; Pereira, S. Anefalos; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; et al

    2014-10-10

    In this study, we measured the ratios of electroproduction cross sections from a proton target for three exclusive meson-baryon final states: ΛK+, pπ0, and nπ+, with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization, we extract qq¯ creation probabilities for the first time in exclusive two-body production, in which only a single qq¯ pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to nonstrange pairs, similar to that seen in high-energy production.

  19. Baryon and chiral symmetry breaking

    SciTech Connect

    Gorsky, A.; Krikun, A.

    2014-07-23

    We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.

  20. Energy Dependence of $\\bar{K}N$ Interactions and Resonance Pole of Strange Dibaryons

    SciTech Connect

    Ikeda, Y.; Kamano, H.; Sato, T.

    2010-09-01

    We study the resonance energy of the strange dibaryons using two models with the energy-independent and energy-dependent potentials for the s-wave $\\bar{K}N$ interaction, both of which are derived by certain reductions from the leading order term of the effective chiral Lagrangian. These potential models produce rather different off-shell behaviors of the two-body $\\bar{K}N$ - $\\pi\\Sigma$ amplitudes in $I=0$ channel, i.e., the model with energy-independent (energy-dependent) potential predicts one (two) resonance pole in the $\\Lambda(1405)$ region, while they describe the available data equally well. We find that the energy-independent potential model predicts one resonance pole of the strange dibaryons, whereas the energy-dependent potential model predicts two resonance poles: one is the shallow quasi-bound state of the $\\bar{K}NN$, and another is the resonance of the $\\pi Y N$ with large width. An investigation of the binding energy of the strange dibaryons will make a significant contribution to clarify resonance structure of s-wave $\\bar{K}N$ -$\\pi\\Sigma$ around the $\\Lambda(1405)$ region.

  1. Measurements of strange hadrons KS0, Λ and Ξ from Au+Au collisions at √SNN = 14.5 GeV in STAR

    NASA Astrophysics Data System (ADS)

    Usman Ashraf, Muhammad

    2016-01-01

    We report the measurements of the production of strange hadrons KS0, Λ and Ξ at mid rapidity in Au+Au collisions at √SNN = 14.5 GeV from the Beam Energy Scan (BES) program at the BNL Relativistic Heavy Ion Collider (RHIC). The collision energy dependence of strange hadron yields are also presented. To understand the recombination and part.on energy loss mechanisms, nuclear modification factors and baryon to meson ratios are measured and also compared with the statistical and thermal model.

  2. Investigating strangeness in the proton by studying the effects of Light Cone parton distributions in the Meson Cloud Model

    NASA Astrophysics Data System (ADS)

    Tuppan, Sam; Budnik, Garrett; Fox, Jordan

    2014-09-01

    The Meson Cloud Model (MCM) has proven to be a natural explanation for strangeness in the proton because of meson-baryon splitting into kaon-hyperon pairs. Total strangeness is predicted by integrated splitting functions, which represent the probability that the proton will fluctuate into a given meson-baryon pair. However, the momentum distributions s (x) and s (x) in the proton are determined from convolution integrals that depend on the parton distribution functions (PDFs) used for the mesons and baryons in the MCM. Theoretical calculations of these momentum distributions use many different forms for these PDFs. In our investigation, we calculate PDFs for K, K*, Λ, and Σ from two-body wave functions in a Light Cone Model (LCM) of the hadrons. We use these PDFs in conjunction with the MCM to create a hybrid model and compare our results to other theoretical calculations, experimental data from NuTeV, HERMES, ATLAS, and global parton distribution analyses. The Meson Cloud Model (MCM) has proven to be a natural explanation for strangeness in the proton because of meson-baryon splitting into kaon-hyperon pairs. Total strangeness is predicted by integrated splitting functions, which represent the probability that the proton will fluctuate into a given meson-baryon pair. However, the momentum distributions s (x) and s (x) in the proton are determined from convolution integrals that depend on the parton distribution functions (PDFs) used for the mesons and baryons in the MCM. Theoretical calculations of these momentum distributions use many different forms for these PDFs. In our investigation, we calculate PDFs for K, K*, Λ, and Σ from two-body wave functions in a Light Cone Model (LCM) of the hadrons. We use these PDFs in conjunction with the MCM to create a hybrid model and compare our results to other theoretical calculations, experimental data from NuTeV, HERMES, ATLAS, and global parton distribution analyses. This research has been supported in part by the

  3. Including the {delta}(1232) resonance in baryon chiral perturbation theory

    SciTech Connect

    Hacker, C.; Wies, N.; Scherer, S.; Gegelia, J.

    2005-11-01

    Baryon chiral perturbation theory with explicit {delta}(1232) degrees of freedom is considered. The most general interactions of pions, nucleons, and {delta} consistent with all underlying symmetries as well as with the constraint structure of higher-spin fields are constructed. By use of the extended on-mass-shell renormalization scheme, a manifestly Lorentz-invariant effective-field theory with a systematic power counting is obtained. As applications, we discuss the mass of the nucleon, the pion-nucleon {sigma} term, and the pole of the {delta} propagator.

  4. Maximum rotation frequency of strange stars

    SciTech Connect

    Zdunik, J.L.; Haensel, P. )

    1990-07-15

    Using the MIT bag model of strange-quark matter, we calculate the maximum angular frequency of the uniform rotation of strange stars. After studying a broad range of the MIT bag-model parameters, we obtain an upper bound of 12.3 kHz.

  5. Strangeness production with protons and pions

    SciTech Connect

    Dover, C.B.

    1993-04-01

    We discuss the spectrum of physics questions related to strangeness which could be addressed with intense beams of protons and pions in the few GeV region. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hypernuclei in proton and pion-nucleus collisions, and spin phenomena in hypernuclei.

  6. Strangeness production with protons and pions

    SciTech Connect

    Dover, C.B.

    1993-01-01

    We discuss the spectrum of physics questions related to strangeness which could be addressed with intense beams of protons and pions in the few GeV region. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hypernuclei in proton and pion-nucleus collisions, and spin phenomena in hypernuclei.

  7. Strangeness detection in ALICE experiment at LHC

    SciTech Connect

    Safarik, K.

    1995-07-15

    The authors present some parameters of the ALICE detector which concern the detection of strange particles. The results of a simulation for neutral strange particles and cascades, together with estimated rates are presented. They also briefly discuss the detection of charged K-mesons. Finally, they mention the possibility of open charm particle detection.

  8. QCD in Neutron Stars and Strange Stars

    SciTech Connect

    Weber, Fridolin; Negreiros, Rodrigo

    2011-05-24

    This paper provides an overview of the possible role of Quantum Chromo Dynamics (QCD) for neutron stars and strange stars. The fundamental degrees of freedom of QCD are quarks, which may exist as unconfined (color superconducting) particles in the cores of neutron stars. There is also the theoretical possibility that a significantly large number of up, down, and strange quarks may settle down in a new state of matter known as strange quark matter, which, by hypothesis, could be more stable than even the most stable atomic nucleus, {sup 56}Fe. In the latter case new classes of self-bound, color superconducting objects, ranging from strange quark nuggets to strange quark stars, should exist. The properties of such objects will be reviewed along with the possible existence of deconfined quarks in neutron stars. Implications for observational astrophysics are pointed out.

  9. The Maximum Mass of Rotating Strange Stars

    NASA Astrophysics Data System (ADS)

    Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.

    2012-12-01

    Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.

  10. Latest results on charmed baryons. xi. /sup +//sub /ital c// and. cap omega. /sup 0//sub /ital c//

    SciTech Connect

    Smith, V. J.

    1989-04-25

    The observation of charmed-strange baryons ..xi../sup +//sub /ital c//(nee /ital A//sup +/)and ..cap omega../sup 0//sub /ital c// (nee T/sup 0/) at the Cern-SPS and Fermilab is discussed.Some questions about the production and decay of these particles are mentioned,and currently proposed experiments to address these questions are brieflypresented.

  11. Heavy vector and axial-vector mesons in hot and dense asymmetric strange hadronic matter

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Chhabra, Rahul

    2015-09-01

    We calculate the effects of finite density and temperature of isospin asymmetric strange hadronic matter, for different strangeness fractions, on the in-medium properties of vector (D*,Ds*,B*,Bs*) and axial-vector (D1,D1 s,B1,B1 s) mesons, using the chiral hadronic SU(3) model and QCD sum rules. We focus on the evaluation of in-medium mass-shift and shift in decay constant of above vector and axial-vector mesons. In the quantum chromodynamics sum rule approach, the properties, e.g., the masses and decay constants of vector and axial-vector mesons are written in terms of quark and gluon condensates. These quark and gluon condensates are evaluated in the present work within the chiral SU(3) model, through the medium modification of scalar-isoscalar fields σ and ζ , the scalar-isovector field δ , and the scalar dilaton field χ , in the strange hadronic medium which includes both nucleons as well as hyperons. As we shall see in detail, the masses and decay constants of heavy vector and axial-vector mesons are affected significantly from isospin asymmetry and the strangeness fraction of the medium, and these modifications may influence the experimental observables produced in heavy-ion collision experiments. The results of present investigations of in-medium properties of vector and axial-vector mesons at finite density and temperature of strange hadronic medium may be helpful for understanding the experimental data from heavy-ion collision experiments in particular for the compressed baryonic matter (CBM) experiment of the FAIR facility at GSI, Germany.

  12. Electromagnetic properties of baryons

    SciTech Connect

    Ledwig, T.; Pascalutsa, V.; Vanderhaeghen, M.; Martin-Camalich, J.

    2011-10-21

    We discuss the chiral behavior of the nucleon and {Delta}(1232) electromagnetic properties within the framework of a SU(2) covariant baryon chiral perturbation theory. Our one-loop calculation is complete to the order p{sup 3} and p{sup 4}/{Delta} with {Delta} as the {Delta}(1232)-nucleon energy gap. We show that the magnetic moment of a resonance can be defined by the linear energy shift only when an additional relation between the involved masses and the applied magnetic field strength is fulfilled. Singularities and cusps in the pion mass dependence of the {Delta}(1232) electromagnetic moments reflect a non-fulfillment. We show results for the pion mass dependence of the nucleon iso-vector electromagnetic quantities and present preliminary results for finite volume effects on the iso-vector anomalous magnetic moment.

  13. Decay and spectra of baryons especially beauty baryons

    NASA Astrophysics Data System (ADS)

    Kalman, C. S.

    1996-06-01

    Masses and decays of the baryons are considered. The entire spectroscopy of baryons containing u,d,s,c and b quarks is calculated using the five quark masses and only four additional parameters describing the potential between the baryons. This potential is taken to be a short-range Coulomb potential together with a long-range linear potential modified by a harmonic-oscillator potential. Decays are studied using the quark pair creation model of Le Yaouanc et. al. The pair strength γ is replaced by kγ . This and the meson radius are the only parameters used in the calculation of the decays. Overall, we have a useful model, employing a small number of parameters, yet capable of yielding a description of the baryons in good accord with experimental data.

  14. Baryon asymmetry and split SUSY

    SciTech Connect

    Kasuya, Shinta

    2005-12-02

    It is one of the greatest mysteries that the baryon asymmetry in our universe is so small. It is argued that it may originate from some profound physics beyond the standard model. We investigate the Affleck-Dine baryogenesis in split supersymmetry, and find that the smallness of the baryon asymmetry is directly related to the hierarchy between the supersymmetry breaking squark/slepton masses and the weak scale. Put simply, the baryon asymmetry is small because of the split mass spectrum. LHC may prove or falsify our scenario.

  15. Strangeness in neutron star matter: a challenging puzzle

    NASA Astrophysics Data System (ADS)

    Lonardoni, Diego; Lovato, Alessandro; Gandolfi, Stefano; Pederiva, Francesco

    2014-09-01

    The onset of strange baryons in the core of neutron stars and the consequent softening of the equation of state have been questioned for a long time. Controversial theoretical predictions about the predicted maximum mass and the recent astrophysical observations are the grounds of the so called hyperon puzzle. We attempt to give our contribution to the discussion by studying the general problem of the hyperon-nucleon interaction by means of Auxiliary Field Diffusion Monte Carlo calculations. We employ a phenomenological approach showing that a three-body hyperon-nucleon force provides the strong repulsive contribution needed to correctly describe the systematics of medium-light Λ hypernuclei. The same potential has been used to determine the equation of state and the mass-radius relation of an infinite systems of neutrons and Λ particles. We find that the three-body hyperon-nucleon force has a dramatic effect on the equation of state and the predicted maximum mass. Our results suggest that more constraints on the nature of hyperon-neutron forces are needed before drawing any conclusion on the role played by hyperons in neutron stars. The onset of strange baryons in the core of neutron stars and the consequent softening of the equation of state have been questioned for a long time. Controversial theoretical predictions about the predicted maximum mass and the recent astrophysical observations are the grounds of the so called hyperon puzzle. We attempt to give our contribution to the discussion by studying the general problem of the hyperon-nucleon interaction by means of Auxiliary Field Diffusion Monte Carlo calculations. We employ a phenomenological approach showing that a three-body hyperon-nucleon force provides the strong repulsive contribution needed to correctly describe the systematics of medium-light Λ hypernuclei. The same potential has been used to determine the equation of state and the mass-radius relation of an infinite systems of neutrons and

  16. Properties of strange quark matter objects with two types of surface treatments

    NASA Astrophysics Data System (ADS)

    Xia, Cheng-Jun; Peng, Guang-Xiong; Zhao, En-Guang; Zhou, Shan-Gui

    2016-04-01

    We study strange quark matter (SQM) objects ranging from strangelets to strange stars based on our recently proposed unified description. The important interface effects are investigated by adopting a constant surface tension as well as the multiple reflection expansion (MRE) method. It is shown that the properties of SQM objects are strongly affected by the different surface treatments. In the former case, strangelets are more compact, an electric dipole is predicted on the surface of the quark part, and a local minimum of the energy per baryon appears for unusually small values of the surface tension. In the latter case, on the other hand, an electric potential well is formed, and the energy per baryon decreases monotonically with the SQM object's size. It is found that the MRE scenario coincides with the constant-surface-tension one if realistic values are considered. However, the effects of quark depletion on the quark-vacuum interface cannot be solely described by a constant surface tension. Thus we conclude that the MRE scenario is more reasonable.

  17. Strange and multistrange particle production in Au + Au collisions at {radical}(s{sub NN})=62.4 GeV

    SciTech Connect

    Aggarwal, M. M.; Bhati, A. K.; Pruthi, N. K.; Ahammed, Z.; Dong, X.; Grebenyuk, O.; Hjort, E.; Jacobs, P.; Kikola, D. P.; Kiryluk, J.; Klein, S. R.; Masui, H.; Matis, H. S.; Naglis, M.; Odyniec, G.; Olson, D.; Ploskon, M. A.; Poskanzer, A. M.; Powell, C. B.; Ritter, H. G.

    2011-02-15

    We present results on strange and multistrange particle production in Au + Au collisions at {radical}(s{sub NN})=62.4 GeV as measured with the STAR detector at RHIC. Midrapidity transverse momentum spectra and integrated yields of K{sub S}{sup 0}, {Lambda}, {Xi}, and {Omega} and their antiparticles are presented for different centrality classes. The particle yields and ratios follow a smooth energy dependence. Chemical freeze-out parameters, temperature, baryon chemical potential, and strangeness saturation factor obtained from the particle yields are presented. Intermediate transverse momentum (p{sub T}) phenomena are discussed based on the ratio of the measured baryon-to-meson spectra and nuclear modification factor. The centrality dependence of various measurements presented show a similar behavior as seen in Au + Au collisions at {radical}(s{sub NN})=200 GeV.

  18. B baryon production and decays and B hadron lifetimes

    SciTech Connect

    Donati, S.; /Pisa U. /INFN, Pisa

    2010-01-01

    In this paper we review the most recent results concerning B Baryons at CDF and D0, including the observation and the study of the properties of the {Omega}{sub b}{sup -}, {Xi}{sub b}{sup -} and {Sigma}{sub b}{sup {+-}(*)}, the observation of new {Lambda}{sub b}{sup 0} decay modes, and a new measurement of the lifetime of the b hadrons in decays with a J/{Psi}. The {Omega}{sub b}{sup -} baryon is observed through the decay chain {Omega}{sub b}{sup -} {yields} J/{Psi}{Omega}{sup -}, where J/{Psi} {yields} {mu}{sup +}{mu}{sup -}, {Omega}{sup -} {yields} {Lambda}K{sup -}, and {Lambda} {yields} pK{sup -}, using 4.2 fb{sup -1} of data. The {Omega}{sub b}{sup -} mass is measured to be 6054.4 {+-} 6.8(stat.) {+-} 0.9(syst.) MeV/c{sup 2}, and the lifetime 1.13{sub -0.40}{sup +0.53}(stat.) {+-} 0.02(syst.) ps. For the {Xi}{sub b}{sup -} the mass is measured 5790.9 {+-} 2.6(stat.) {+-} 0.8(syst.) MeV/c{sup 2} and the lifetime 1.56{sub -0.25}{sup +0.27}(stat.) {+-} 0.02(syst.) ps. A new accurate measurement of the properties of the resonances {Sigma}{sub b}{sup +}, {Sigma}{sub b}{sup -}, {Sigma}*{sub b}{sup +}, and {Sigma}*{sub b}{sup -} has been performed in 6 fb{sup -1} of data, and the masses have been determined, m({Sigma}{sub b}{sup +}) = 5811.2{sub -0.8}{sup +0.9}(stat.) {+-} 1.7(syst.), m({Sigma}{sub b}{sup -}) = 5815.5{sub -0.5}{sup +0.6}(stat.) {+-} 1.7(syst.), m({Sigma}*{sub b}{sup +}) = 5832.0 {+-} 0.7(stat.) {+-} 1.8(syst.), and m({Sigma}*{sub b}{sup -}) = 5835.0 {+-} 0.6(stat.) {+-} 1.8(syst.). The {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2595){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}(2625){sup +}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, {Lambda}{sub b}{sup 0} {yields} {Sigma}{sub c}(2455){sup ++}{pi}{sup -}{pi}{sup -} {yields} {Lambda}{sub c}{sup +}{pi}{sup -}{pi}{sup +}{pi}{sup -}, and {Lambda}{sub b}{sup 0} {yields} {Sigma

  19. The strange beauty of the proton

    NASA Astrophysics Data System (ADS)

    Bijker, Roelof; Ferretti, Jacopo; Santopinto, Elena

    2012-10-01

    The contribution of strange quarks to the proton is addressed in two different models of the nucleon, a phenomenological two-component model in which the nucleon is described in terms of an intrinsic three-quark structure surrounded by a meson cloud, and the unquenched quark model in which the effects of the sea quarks are taken into account through a 3P0 quark-antiquark pair creation mechanism. The results for the strange magnetic moment and the strangeness radius of the proton are found to be small, in agreement with the latest experimental results from parity-violating electron scattering and recent lattice calculations.

  20. Progress towards understanding baryon resonances

    SciTech Connect

    Crede, Volker; Roberts, Winston

    2013-07-01

    The composite nature of baryons manifests itself in the existence of a rich spectrum of excited states, in particular in the important mass region 1?2 GeV for the light-flavoured baryons. The properties of these resonances can be identified by systematic investigations using electromagnetic and strong probes, primarily with beams of electrons, photons, and pions. After decades of research, the fundamental degrees of freedom underlying the baryon excitation spectrum are still poorly understood. The search for hitherto undiscovered but predicted resonances continues at many laboratories around the world. Recent results from photo- and electroproduction experiments provide intriguing indications for new states and shed light on the structure of some of the known nucleon excitations. The continuing study of available data sets with consideration of new observables and improved analysis tools have also called into question some of the earlier findings in baryon spectroscopy. Other breakthrough measurements have been performed in the heavy-baryon sector, which has seen a fruitful period in recent years, in particular at the B factories and the Tevatron. First results from the large hadron collider indicate rapid progress in the field of bottom baryons. In this review, we discuss the recent experimental progress and give an overview of theoretical approaches.

  1. The Architects of Modern Physics & Sigma Pi Sigma Heritage

    NASA Astrophysics Data System (ADS)

    White, Gary

    2004-10-01

    While the tools of modern physics were being honed throughout the last century, physicist Marsh W. White (no relation) served as the installation officer for over 200 chapters of the physics honor society, Sigma Pi Sigma. Years earlier, though, his 1926 thesis ``The Energy of High Velocity Electrons'' served as a direct test of one of Einstein's most radical 1905 ideas. The ``red books'' of Sigma Pi Sigma, into which all inductees pen their names, include some of the most talented quantum mechanics of the 20th century, such as Edward Teller and George Gamow. In this talk, I will review these and other links between Sigma Pi Sigma and some of the architects of modern physics.

  2. Strangeness production in PHENIX experiment

    NASA Astrophysics Data System (ADS)

    Kotov, D. O.

    2016-01-01

    The PHENIX experiment at RHIC has measured production of K±, Ks, K* and ϕmesons in p+p, d+Au, Cu+Cu and Au+Au collisions at √sNN = 62.4 and 200 GeV. While p+p collisions provide a baseline and are used for precision tests of pQCD calculations, for heavier colliding systems such as d+Au, Cu+Cu and Au+Au nuclear modification factors are studied at different centralities. These systematic studies enrich current understanding of the strange meson production and its difference from light quark hadrons. The role of radial flow and coalescence in particle production is discussed.

  3. Hyperosmotic shock induces the sigma32 and sigmaE stress regulons of Escherichia coli.

    PubMed

    Bianchi, A A; Baneyx, F

    1999-12-01

    The rise in the levels of sigmaS that accompanies hyperosmotic shock plays an important role in Escherichia coli survival by increasing the transcription of genes involved in the synthesis and transport of osmoprotectants. To determine if other stress regulons collaborate with sigmaS in dealing with high osmolality, we used single copy fusions of lacZ to representative promoters induced by protein misfolding in the cytoplasm (dnaK and ibp ), extracytoplasmic stress [P3rpoH and htrA(degP )] and cold shock (cspA). Both the sigma32-dependent, dnaK and ibp, promoters, and the sigmaE-dependent, P3rpoH and htrA, promoters were rapidly but transiently induced when mid-exponential phase cells were treated with 0.464 M sucrose. The cspA promoter, however, did not respond to the same treatment. Overproduction of the cytoplasmic domain of the sigmaE anti-sigma factor, RseA, reduced the magnitude of osmotic induction in lambdaphi(P3rpoH:lacZ ) lysogens, but had no effect on the activation of the dnaK and ibp promoters. Similarly, induction of the dnaK:lacZ and ibp:lacZ fusions was not altered in either rpoS or ompR genetic backgrounds. Osmotic upshift led to a twofold increase in the enzymatic activity of the lambdaTLF247 rpoH:lacZ translational fusion whether or not the cells were treated with rifampicin, indicating that both heat shock and exposure to high osmolality trigger a transient increase in rpoH translation. Our results suggest that the sigma32, sigmaE and sigmaS regulons closely co-operate in the managment of hyperosmotic stress. Induction of the sigma32 and sigmaE regulons appears to be an emergency response required to repair protein misfolding and facilitate the proper folding of proteins that are rapidly synthesized following loss of turgor, while providing a mechanism to increase the activity of sigmaS, the primary stress factor in osmoadaptation. PMID:10594827

  4. Analysis of 56-plet Positive Parity Baryon Decays in the 1/Nc Expansion

    SciTech Connect

    Jose Goity, Norberto Scoccola, Chandana Jayalath

    2009-10-01

    The partial decay widths of positive parity baryons belonging to 56-plets of SU(6) are analyzed in the framework of the 1/Nc expansion. The channels considered are those with emission of a single pion, K or K-bar mesons, and the analysis is carried out to subleading order in 1/Nc and to first order in SU(3) symmetry breaking. The results for the multiplet [56,0+], to which the Roper resonance belongs, indicate a poor description at leading order, requiring large next to leading order corrections. For the multiplet [56,2+], the P-wave decays in the non-strange sector are well described at leading order and important SU(3) breaking corrections are necessary to describe transitions involving strangeness, on the other hand, the F-wave decays require the next to leading order corrections, which turn out to be however of natural magnitude.

  5. Looking for a hidden-charm pentaquark state with strangeness S =-1 from Ξb- decay into J /ψ K-Λ

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Xing; Geng, Li-Sheng; Liang, Wei-Hong; Oset, Eulogio; Wang, En; Xie, Ju-Jun

    2016-06-01

    Assuming that the recently observed hidden-charm pentaquark state, Pc(4450 ) , is of molecular nature as predicted in the unitary approach, we propose to study the decay of Ξb-→J /ψ K-Λ to search for the strangeness counterpart of the Pc(4450 ) . There are three ingredients in the decay mechanism: the weak decay mechanism, the hadronization mechanism, and the final state interactions in the meson-baryon system of strangeness S =-2 and isospin I =1 /2 and of the J /ψ Λ . All these have been tested extensively. As a result, we provide a genuine prediction of the invariant mass distributions where a strangeness hidden-charm pentaquark state, the counterpart of the Pc(4450 ) , can be clearly seen. The decay rate is estimated to be of similar magnitude as the Λb0→J /ψ K-p measured by the LHCb Collaboration.

  6. Dense baryonic matter: Constraints from recent neutron star observations

    NASA Astrophysics Data System (ADS)

    Hell, Thomas; Weise, Wolfram

    2014-10-01

    Updated constraints from neutron star masses and radii impose stronger restrictions on the equation of state for baryonic matter at high densities and low temperatures. The existence of 2M⊙ neutron stars rules out many soft equations of state with prominent "exotic" compositions. The present work reviews the conditions required for the pressure as a function of baryon density to satisfy these constraints. Several scenarios for sufficiently stiff equations of state are evaluated. The common starting point is a realistic description of both nuclear and neutron matter based on a chiral effective field theory approach to the nuclear many-body problem. Possible forms of hybrid matter featuring a quark core in the center of the star are discussed using a three-flavor Polyakov-Nambu-Jona-Lasinio model. It is found that a conventional equation of state based on nuclear chiral dynamics meets the astrophysical constraints. Hybrid matter generally turns out to be too soft unless additional strongly repulsive correlations, e.g., through vector current interactions between quarks, are introduced. The extent to which strangeness can accumulate in the equation of state is also discussed.

  7. A low-dimensional analogue of holographic baryons

    NASA Astrophysics Data System (ADS)

    Bolognesi, Stefano; Sutcliffe, Paul

    2014-04-01

    Baryons in holographic QCD correspond to topological solitons in the bulk. The most prominent example is the Sakai-Sugimoto model, where the bulk soliton in the five-dimensional spacetime of AdS-type can be approximated by the flat space self-dual Yang-Mills instanton with a small size. Recently, the validity of this approximation has been verified by comparison with the numerical field theory solution. However, multi-solitons and solitons with finite density are currently beyond numerical field theory computations. Various approximations have been applied to investigate these important issues and have led to proposals for finite density configurations that include dyonic salt and baryonic popcorn. Here we introduce and investigate a low-dimensional analogue of the Sakai-Sugimoto model, in which the bulk soliton can be approximated by a flat space sigma model instanton. The bulk theory is a baby Skyrme model in a three-dimensional spacetime with negative curvature. The advantage of the lower-dimensional theory is that numerical simulations of multi-solitons and finite density solutions can be performed and compared with flat space instanton approximations. In particular, analogues of dyonic salt and baryonic popcorn configurations are found and analysed.

  8. Strangeness suppression in the unquenched quark model

    NASA Astrophysics Data System (ADS)

    Bijker, Roelof; García-Tecocoatzi, Hugo; Santopinto, Elena

    2016-07-01

    In this contribution, we discuss the strangeness suppression in the proton in the framework of the unquenched quark model. The theoretical results are in good agreement with the values extracted from CERN and JLab experiments.

  9. Strange Creatures: An Additive Wood Sculpture Project.

    ERIC Educational Resources Information Center

    Wales, Andrew

    2002-01-01

    Describes an art project where students create strange creatures using scraps of wood. Discusses how the students use the wood and other materials. Explains that the students also write about the habitat characteristics of their creatures. Includes learning objectives. (CMK)

  10. Strange quark matter fragmentation in astrophysical events

    NASA Astrophysics Data System (ADS)

    Paulucci, L.; Horvath, J. E.

    2014-06-01

    The conjecture of Bodmer-Witten-Terazawa suggesting a form of quark matter (Strange Quark Matter) as the ground state of hadronic interactions has been studied in laboratory and astrophysical contexts by a large number of authors. If strange stars exist, some violent events involving these compact objects, such as mergers and even their formation process, might eject some strange matter into the interstellar medium that could be detected as a trace signal in the cosmic ray flux. To evaluate this possibility, it is necessary to understand how this matter in bulk would fragment in the form of strangelets (small lumps of strange quark matter in which finite effects become important). We calculate the mass distribution outcome using the statistical multifragmentation model and point out several caveats affecting it. In particular, the possibility that strangelets fragmentation will render a tiny fraction of contamination in the cosmic ray flux is discussed.

  11. Meson-Baryon Scattering Lengths from Mixed-Action Lattice QCD

    SciTech Connect

    Will Detmold, William Detmold, Konstantinos Orginos, Aaron Torok, Silas R Beane, Thomas C Luu, Assumpta Parreno, Martin Savage, Andre Walker-Loud

    2010-04-01

    The $\\pi^+\\Sigma^+$, $\\pi^+\\Xi^0$ , $K^+p$, $K^+n$, and $K^0 \\Xi^0$ scattering lengths are calculated in mixed-action Lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations at four light-quark masses, and at two light-quark masses on the fine MILC configurations. Heavy Baryon Chiral Perturbation Theory with two and three flavors of light quarks is used to perform the chiral extrapolations. We find no convergence for the kaon-baryon processes in the three-flavor chiral expansion. Using the two-flavor chiral expansion, we find $a_{\\pi^+\\Sigma^+} = ?0.197 ± 0.017$ fm, and $a_{\\pi^+\\Xi^0} = ?0.098 0.017$ fm, where the comprehensive error includes statistical and systematic uncertainties.

  12. Strange Attractors in Drift Wave Turbulence

    SciTech Connect

    J.L.V. Lewandowski

    2003-04-25

    A multi-grid part-in-cell algorithm for a shearless slab drift wave model with kinetic electrons is presented. The algorithm, which is based on an exact separation of adiabatic and nonadiabatic electron responses, is used to investigate the presence of strange attractors in drift wave turbulence. Although the simulation model has a large number of degrees of freedom, it is found that the strange attractor is low-dimensional and that it is strongly affected by dissipative (collisional) effects.

  13. Strangeness in the Meson Cloud Model

    SciTech Connect

    Signal, A. I.

    2010-07-27

    I review progress in calculating strange quark and antiquark distributions of the nucleon using the meson cloud model. This progress parallels that of the meson cloud model, which is now a useful theoretical basis for understanding symmetry breaking in nucleon parton distribution functions. I examine the breaking of symmetries involving strange quarks and antiquarks, including quark--antiquark symmetry in the sea, SU(3) flavour symmetry and SU(6) spin-flavour symmetry.

  14. Strangeness Physics with CLAS at Jefferson Lab

    SciTech Connect

    Burkert, Volker

    2009-10-01

    A brief overview of strangeness physics with the CLAS detector at JLab is given, mainly covering the domain of nucleon resonances. Several excited states predicted by the symmetric constituent quark model may have signiffcant couplings to the K+ or K0 channels. I will discuss data that are relevant in the search for such states in the strangeness channel, and give an outlook on the future prospects of the N* program at JLab with electromagnetic probes.

  15. Aspects of excited baryon phenomenology in the 1/N{sub c} expansion of QCD

    SciTech Connect

    Gonzalez de Urreta, E. J.; Scoccola, Norberto N.

    2010-11-12

    We report on the application of the 1/N{sub c} expansion of QCD to the description of the properties of non-strange excited baryons belonging to the [70, 1{sup -}]-plet. In particular, we present the results of an improved determination of the corresponding mixing angles obtained by performing a simultaneous fit of masses and strong decay widths. We find {theta}{sub 1} 0.47{+-}0.06 and {theta}{sub 3} = 2.74{+-}0.07. These values are within the range of those determined in previous non-global analyses but have smaller uncertainties.

  16. THE BARYON CONTENT OF COSMIC STRUCTURES

    SciTech Connect

    McGaugh, Stacy S.; Schombert, James M.; De Blok, W. J. G.; Zagursky, Matthew J. E-mail: jschombe@uoregon.edu E-mail: mzagursk@ifa.hawaii.edu

    2010-01-01

    We make an inventory of the baryonic and gravitating mass in structures ranging from the smallest galaxies to rich clusters of galaxies. We find that the fraction of baryons converted to stars reaches a maximum between M {sub 500} = 10{sup 12} and 10{sup 13} M {sub sun}, suggesting that star formation is most efficient in bright galaxies in groups. The fraction of baryons detected in all forms deviates monotonically from the cosmic baryon fraction as a function of mass. On the largest scales of clusters, most of the expected baryons are detected, while in the smallest dwarf galaxies, fewer than 1% are detected. Where these missing baryons reside is unclear.

  17. DETECTING BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Labatie, A.; Starck, J. L.

    2012-02-20

    Baryon acoustic oscillations (BAOs) are a feature imprinted in the galaxy distribution by acoustic waves traveling in the plasma of the early universe. Their detection at the expected scale in large-scale structures strongly supports current cosmological models with a nearly linear evolution from redshift z Almost-Equal-To 1000 and the existence of dark energy. In addition, BAOs provide a standard ruler for studying cosmic expansion. In this paper, we focus on methods for BAO detection using the correlation function measurement {xi}-hat. For each method, we want to understand the tested hypothesis (the hypothesis H{sub 0} to be rejected) and the underlying assumptions. We first present wavelet methods which are mildly model-dependent and mostly sensitive to the BAO feature. Then we turn to fully model-dependent methods. We present the method used most often based on the {chi}{sup 2} statistic, but we find that it has limitations. In general the assumptions of the {chi}{sup 2} method are not verified, and it only gives a rough estimate of the significance. The estimate can become very wrong when considering more realistic hypotheses, where the covariance matrix of {xi}-hat depends on cosmological parameters. Instead, we propose to use the {Delta}l method based on two modifications: we modify the procedure for computing the significance and make it rigorous, and we modify the statistic to obtain better results in the case of varying covariance matrix. We verify with simulations that correct significances are different from the ones obtained using the classical {chi}{sup 2} procedure. We also test a simple example of varying covariance matrix. In this case we find that our modified statistic outperforms the classical {chi}{sup 2} statistic when both significances are correctly computed. Finally, we find that taking into account variations of the covariance matrix can change both BAO detection levels and cosmological parameter constraints.

  18. Freeze-out parameters from electric charge and baryon number fluctuations: is there consistency?

    PubMed

    Borsanyi, S; Fodor, Z; Katz, S D; Krieg, S; Ratti, C; Szabo, K K

    2014-08-01

    Recent results for moments of multiplicity distributions of net protons and net-electric charge from the STAR Collaboration are compared to lattice QCD results for higher order fluctuations of baryon number and electric charge by the Wuppertal-Budapest Collaboration, with the purpose of extracting the freeze-out temperature and chemical potential. All lattice simulations are performed for a system of 2+1 dynamical quark flavors, at the physical mass for light and strange quarks; all results are continuum extrapolated. We show that it is possible to extract an upper value for the freeze-out temperature, as well as precise baryochemical potential values corresponding to the four highest collision energies of the experimental beam energy scan. Consistency between the freeze-out parameters obtained from baryon number and electric charge fluctuations is found. The freeze-out chemical potentials are now in agreement with the statistical hadronization model. PMID:25126910

  19. Hints for the existence of hexaquark states in the baryon-antibaryon sector

    NASA Astrophysics Data System (ADS)

    Abud, Mario; Buccella, Franco; Tramontano, Francesco

    2010-04-01

    The discovery of some baryon-antibaryon resonances has led us to consider 3q 3q¯ systems as possible candidates. We predict their spectrum in the framework of a constituent model, where the chromomagnetic interaction plays the main role. The relevant parameters are fixed by the present knowledge of tetraquarks. The emerging scenario complies well with experiment; besides the description of the baryon-antibaryon resonances, we find evidence for new tetraquark states, namely, the a0(Y) in the hidden strangeness sector and the Y(4140) and X(4350) in the cscs¯ sector. A detailed account of the spectra and the decay channels is provided for future comparisons with data.

  20. Equation of state of neutron star matter, limiting, rotational periods of fast pulsars, and the properties of strange stars

    SciTech Connect

    Weber, F. |; Glendenning, N.K.

    1993-10-25

    In this paper the following items will be treated: The present status of dense nuclear matter calculations and constraints on the behavior of the associated equation of state at high densities from data on rapidly rotating pulsars. Recent finding of the likely existence of a mixed phase of baryons and quarks forming a coulomb lattice in the dense cores of neutron stars. Review of important findings of recently performed calculations of rapidly rotating compact stars. These are constructed in the framework of general relativity theory for a representative collection of realistic nuclear equations of state. Establish the minimum-possible rotational periods of gravitationally bound neutron stars and self-bound strange stars. Its knowledge is of fundamental importance for the decision between pulsars that can be understood as rotating neutron stars and those that cannot (signature of hypothetical self-bound matter of which strange stars are the likely stellar candidates. Investigate the properties of sequences of strange stars. Specifically, we answer the question whether such objects can give rise to the observed phenomena of pulsar glitches, which is at the present time the only astrophysical test of the strange-quark-matter hypothesis.

  1. Holographic baryons from oblate instantons

    NASA Astrophysics Data System (ADS)

    Rozali, Moshe; Stang, Jared B.; Van Raamsdonk, Mark

    2014-02-01

    We investigate properties of baryons in a family of holographic field theories related to the Sakai-Sugimoto model of holographic QCD. Starting with the N f = 2 Sakai-Sugimoto model, we truncate to a 5D Yang-Mills action for the gauge fields associated with the noncompact directions of the flavor D8-branes. We define a free parameter γ that controls the strength of this Yang-Mills term relative to the Chern-Simons term that couples the Abelian gauge field to the SU(2) instanton density. Moving away from γ = 0 should incorporate some of the effects of taking the Sakai-Sugimoto model away from large 't Hooft coupling λ. In this case, the baryon ground state corresponds to an oblate SU(2) instanton on the bulk flavor branes: the usual SO(4) symmetric instanton is deformed to spread more along the field theory directions than the radial direction. We numerically construct these anisotropic instanton solutions for various values of γ and calculate the mass and baryon charge profile of the corresponding baryons. Using the value γ = 2.55 that has been found to best fit the mesonic spectrum of QCD, we find a value for the baryon mass of 1.19 GeV, significantly more realistic than the value 1.60 GeV computed previously using an SO(4) symmetric ansatz for the instanton.

  2. Prelude to compressed baryonic matter

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    Why study compressed baryonic matter, or more generally strongly interacting matter at high densities and temperatures? Most obviously, because it's an important piece of Nature. The whole universe, in the early moments of the big bang, was filled with the stuff. Today, highly compressed baryonic matter occurs in neutron stars and during crucial moments in the development of supernovae. Also, working to understand compressed baryonic matter gives us new perspectives on ordinary baryonic matter, i.e. the matter in atomic nuclei. But perhaps the best answer is a variation on the one George Mallory gave, when asked why he sought to scale Mount Everest: Because, as a prominent feature in the landscape of physics, it's there. Compressed baryonic matter is a material we can produce in novel, challenging experiments that probe new extremes of temperature and density. On the theoretical side, it is a mathematically well-defined domain with a wealth of novel, challenging problems, as well as wide-ranging connections. Its challenges have already inspired a lot of very clever work, and revealed some wonderful surprises, as documented in this volume.

  3. Cascade physics: A new window on baryon spectroscopy

    SciTech Connect

    J.W. Price

    2006-06-01

    The Xi, or Cascade, hyperons have the unique features of double strangeness and narrow widths. Typically, Gamma Xi^- ~ 10 - 20 MeV, which is 5-30 times narrower than N*, Delta, Lambda, or Sigma states. These features, combined with its isospin of 1/2, make possible a wide-ranging program centered on the physics of the cascade hyperon and its excited states using the photoproduction reaction gammap --> K^+K^+Xi^-. The photoproduction cross section is large enough to consider a coarse survey of cascade-proton scattering. We present the physics motivations for a systematic study of the Cascade hyperons, showing recent results from the CLAS Collaboration, and describe recent developments within the physics community to identify the possibilities for future work in this field.

  4. Quasielastic production of charmed baryons in neutrino-nucleon interaction processes

    SciTech Connect

    Zhizhin, E.D.; Nikitin, Y.P.; Fanchenko, M.S.

    1983-06-01

    The processes of quasielastic production of the charmed baryons ..lambda../sup +//sub c/, ..sigma../sup +//sub c/, and ..sigma../sup + +//sub c/ in neutrino-nucleon reactions are considered. Calculations are made of the differential and total cross sections for two sets of the parameters M/sub V/ and M/sub A/ which determine the form factors of weak transitions of nucleons into charmed baryons. The chosen parameter values make it possible to obtain for the cross sections results which completely span the currently existing range of uncertainties in the theoretical predictions. Attention is drawn to an important kinematic effect which restricts the emission angles of the charmed baryons to the range thetabaryons.

  5. Manage your human sigma.

    PubMed

    Fleming, John H; Coffman, Curt; Harter, James K

    2005-01-01

    If sales and service organizations are to improve, they must learn to measure and manage the quality of the employee-customer encounter. Quality improvement methodologies such as Six Sigma are extremely useful in manufacturing contexts, but they're less useful when it comes to human interactions. To address this problem, the authors have developed a quality improvement approach they refer to as Human Sigma. It weaves together a consistent method for assessing the employee-customer encounter and a disciplined process for managing and improving it. There are several core principles for measuring and managing the employee-customer encounter: It's important not to think like an economist or an engineer when assessing interactions because emotions inform both sides' judgments and behavior. The employee-customer encounter must be measured and managed locally, because there are enormous variations in quality at the work-group and individual levels. And to improve the quality of the employee-customer interaction, organizations must conduct both short-term, transactional interventions and long-term, transformational ones. Employee engagement and customer engagement are intimately connected--and, taken together, they have an outsized effect on financial performance. They therefore need to be managed holistically. That is, the responsibility for measuring and monitoring the health of employee-customer relationships must reside within a single organizational structure, with an executive champion who has the authority to initiate and manage change. Nevertheless, the local manager remains the single most important factor in local group performance. A local manager whose work group shows suboptimal performance should be encouraged to conduct interventions, such as targeted training, performance reviews, action learning, and individual coaching. PMID:16028821

  6. Electromagnetic corrections to baryon masses

    SciTech Connect

    Durand, Loyal; Ha, Phuoc

    2005-04-01

    We analyze the electromagnetic contributions to the octet and decuplet baryon masses using the heavy-baryon approximation in chiral effective field theory and methods we developed in earlier analyses of the baryon masses and magnetic moments. Our methods connect simply to Morpurgo's general parametrization of the electromagnetic contributions and to semirelativistic quark models. Our calculations are carried out including the one-loop mesonic corrections to the basic electromagnetic interactions, so to two loops overall. We find that to this order in the chiral loop expansion there are no three-body contributions. The Coleman-Glashow relation and other sum rules derived in quark models with only two-body terms therefore continue to hold, and violations involve at least three-loop processes and can be expected to be quite small. We present the complete formal results and some estimates of the matrix elements here. Numerical calculations will be presented separately.

  7. 1/Nc Countings in Baryons

    SciTech Connect

    Jose Goity

    2004-05-01

    The 1/N{sub c} power countings for baryon decays and configuration mixings are determined by means of a non-relativistic quark picture. Such countings are expected to be robust as the quark masses are decreased towards the chiral limit. It is shown that excited baryons have natural widths of {Omicron}(N{sub c}{sup 0}). These dominant widths are due to the decays that proceed directly to the ground state baryons, with cascade decays being suppressed to {Omicron}(1/N{sub c}). Configuration mixings, defined as mixings between states belonging to different O(3) x SU(2N{sub f}) multiplets, are shown to be sub-leading in an expansion in 1/{radical}N{sub c}, except for certain mixings between excited multiplets belonging to the mixed-symmetric spin-flavor representation and different O(3) representations, where the mixings are of zeroth order in 1/N{sub c}.

  8. Strange particle production in p+p collisions at {radical}(s)=200 GeV

    SciTech Connect

    Abelev, B. I.; Bielcik, J.; Bielcikova, J.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Lamont, M. A. C.; Lin, G.; Majka, R.; Nattrass, C.; Salur, S.; Sandweiss, J.; Smirnov, N.; Witt, R.; Adams, J.; Barnby, L. S.

    2007-06-15

    We present strange particle spectra and yields measured at midrapidity in {radical}(s)=200 GeV proton-proton (p+p) collisions at the BNL Relativistic Heavy Ion Collider (RHIC). We find that the previously observed universal transverse mass (m{sub T}{identical_to}{radical}(p{sub T}{sup 2}+m{sup 2})) scaling of hadron production in p+p collisions seems to break down at higher m{sub T} and that there is a difference in the shape of the m{sub T} spectrum between baryons and mesons. We observe midrapidity antibaryon to baryon ratios near unity for {lambda} and {xi} baryons and no dependence of the ratio on transverse momentum, indicating that our data do not yet reach the quark-jet dominated region. We show the dependence of the mean transverse momentum on measured charged particle multiplicity and on particle mass and infer that these trends are consistent with gluon-jet dominated particle production. The data are compared with previous measurements made at the CERN Super Proton Synchrotron and Intersecting Storage Rings and in Fermilab experiments and with leading-order and next-to-leading-order string fragmentation model predictions. We infer from these comparisons that the spectral shapes and particle yields from p+p collisions at RHIC energies have large contributions from gluon jets rather than from quark jets.

  9. Strange Particle Production in $p+p$ Collisions at $\\sqrt{s}$= 200GeV

    SciTech Connect

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta,N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2006-07-31

    We present strange particle spectra and yields measured atmid-rapidity in sqrt text s=200 GeV proton-proton (p+p) collisions atRHIC. We find that the previously observed universal transverse mass(mathrm mT \\equiv\\sqrt mathrm p_T 2+\\mathrm m2) scaling of hadronproduction in p+p collisions seems to break down at higher \\mt and thatthere is a difference in the shape of the \\mt spectrum between baryonsand mesons. We observe mid-rapidity anti-baryon to baryon ratios nearunity for Lambda and Xi baryons and no dependence of the ratio ontransverse momentum, indicating that our data do not yet reach thequark-jet dominated region. We show the dependence of the mean transversemomentum (\\mpt) on measured charged particle multiplicity and on particlemass and infer that these trends are consistent with gluon-jet dominatedparticle production. The data are compared to previous measurements fromCERN-SPS, ISR and FNAL experiments and to Leading Order (LO) and Next toLeading order (NLO) string fragmentation model predictions. We infer fromthese comparisons that the spectral shapes and particle yields from $p+p$collisions at RHIC energies have large contributions from gluon jetsrather than quark jets.

  10. Strange particle production in p+p collisions at s=200 GeV

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D.; Anderson, M.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S.-L.; Bonner, B. E.; Botje, M.; Bouchet, J.; Brandin, A. V.; Bravar, A.; Burton, T. P.; Bystersky, M.; Cadman, R. V.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Castillo, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; Dash, S.; Daugherity, M.; Moura, M. M. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, W. J.; Dong, X.; Draper, J. E.; Du, F.; Dunin, V. B.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J. E.; Gorbunov, Y. G.; Gos, H.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gutierrez, T. D.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Horner, M. J.; Huang, H. Z.; Huang, S. L.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V. Yu.; Kim, B. C.; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klein, S. R.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kramer, M.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kuznetsov, A. A.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lehocka, S.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Liu, Z.; Ljubicic, T.; Llope, W. J.; Long, H.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Magestro, D.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Matis, H. S.; Matulenko, Yu. A.; McClain, C. J.; McShane, T. S.; Melnick, Yu.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mironov, C.; Mischke, A.; Mishra, D. K.; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, C. F.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Picha, R.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Putschke, J.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Razin, S. V.; Reinnarth, J.; Relyea, D.; Retiere, F.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schweda, K.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shen, W. Q.; Shimanskiy, S. S.; Sichtermann, E.; Simon, F.; Singaraju, R. N.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugarbaker, E.; Sumbera, M.; Sun, Z.; Surrow, B.; Swanger, M.; Symons, T. J. M.; Toledo, A. Szanto De; Tai, A.; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; Kolk, N. Van Der; Leeuwen, M. Van; Molen, A. M. Vander; Varma, R.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Vigdor, S. E.; Viyogi, V. P.; Vokal, S.; Voloshin, S. A.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, X. L.; Wang, Y.; Watson, J. W.; Webb, J. C.; Westfall, G. D.; Wetzler, A.; , C. Whitten, Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yurevich, V. I.; Zhan, W.; Zhang, H.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, A. N.; Zuo, J. X.

    2007-06-01

    We present strange particle spectra and yields measured at midrapidity in s=200 GeV proton-proton (p+p) collisions at the BNL Relativistic Heavy Ion Collider (RHIC). We find that the previously observed universal transverse mass (mT≡pT2+m2) scaling of hadron production in p+p collisions seems to break down at higher mT and that there is a difference in the shape of the mT spectrum between baryons and mesons. We observe midrapidity antibaryon to baryon ratios near unity for Λ and Ξ baryons and no dependence of the ratio on transverse momentum, indicating that our data do not yet reach the quark-jet dominated region. We show the dependence of the mean transverse momentum on measured charged particle multiplicity and on particle mass and infer that these trends are consistent with gluon-jet dominated particle production. The data are compared with previous measurements made at the CERN Super Proton Synchrotron and Intersecting Storage Rings and in Fermilab experiments and with leading-order and next-to-leading-order string fragmentation model predictions. We infer from these comparisons that the spectral shapes and particle yields from p+p collisions at RHIC energies have large contributions from gluon jets rather than from quark jets.