These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Playlist: Sedimentology and Stratigraphy  

NSDL National Science Digital Library

A YouTube playlist created by Dr. Dawn Sumner of the University of California - Davis. This videos include short pieces from her lectures on sedimentology and stratigraphy as well as other videos she has found on YouTube about the subject.

Dawn Sumner

2

Lunar stratigraphy and sedimentology  

Microsoft Academic Search

The moon is examined as a planet, taking into account the crust, the upper mantle, the middle mantle, the lower mantle, the core, the moon's magnetic field, and the hypotheses concerning the origin of the moon. The energy at the lunar surface is considered along with cratering mechanisms, aspects of crater shape, energy partitioning during impact, the stratigraphy and chronology

J. F. Lindsay

1976-01-01

3

Integrated Field Project in Structural Geology and Sedimentology/Stratigraphy  

NSDL National Science Digital Library

The field project described in the Big Horn Basin is a capstone experience for our innovative full-year course sequence that combines two geologic disciplines traditionally taught separately (in "silos") sedimentology/stratigraphy and structural geology. We feel that a holistic approach that combines an understanding of the processes involved in both disciplines allows students to more easily develop the geologic history of an area from collected field data. The result is a two-semester course sequence that integrates the concepts of the two disciplines through a full year of study. While we have more than ten different field projects during the year, these are simply "snapshots" that allow the student to only see a piece of the geologic puzzle. These exercises do develop skills that the student will use in the capstone experience the geologic synthesis of a specific region currently the Sheep Mountain region of the Big Horn Basin. The field-mapping project in the Big Horn Basin is followed by five weeks of sequenced work that allows each student to synthesize a complete geologic (sedimetologic and structural) history of the region. This includes the construction of a geologic map and cross-sections, understanding the depositional history (including environments of deposition), the syn- or post-depositional deformation of the region and an attempt to put the local geologic history into the context of regional deformation and tectonics. We believe that by integrating the disciplines into the two-semester sequence capped with the field mapping and synthesis better prepares students to "think like a geologist".

Lawrence Malinconico

4

The Jurassic of Svalbard, Sedimentology, Stratigraphy and Paleontology  

NASA Astrophysics Data System (ADS)

During the Mesozoic the landmass now known as Svalbard drifted from 45oN to 65oN. The average global temperature was significantly higher, disabling the formation of icecaps at the poles, resulting in a higher sea-level. At the time the location now known as Svalbard was covered by a shallow ocean and mostly marine, organic rich, black shales, interrupted by possibly deltaic sediments were deposited. These sediments are rich in invertebrate fossils. A general description of the Agardhfjellet formation, spanning the middle to upper Jurassic, was made by Dypvik in 1991. Wierzbowski (1989) described some ammonites in detail from the Kimmeridgian. It is not known if the fauna extends further up or down in the formation. Since 2004 the Museum of Natural History of Oslo has been active in Spitsbergen Svalbard. Extensive and detailed sedimentological and stratigraphic research was never conducted as the focus lay on vertebrate fossils. A detailed sedimentological analysis, description and correlation to other Jurassic Formations (such as the Kimmeridge Shales, Hekkingen Formation and draupne Formation) is essential to better understand the circumstances where the black organic-rich shales (a highly potential source rock) were deposited in and to be able to predict their occurrences. Included in this description is taxonomy, taphonomy and the stratigraphic development of invertebrate fauna to pinpoint the age of the sediments.

Koevoets, Maayke; Hammer, Øyvind

2014-05-01

5

Lower Palaeozoic sedimentology and stratigraphy of the Kerman region, East-Central Iran  

Microsoft Academic Search

The Kerman-Tabas region of East-Central Iran contains the thickest and most complete sequence of Early Palaeozoic (Cambrian to Silurian) rocks in Iran and the Middle East, but the stratigraphy is complex.\\u000aDetailed reassessment of stratigraphic relationships between the Early Palaeozoic strata, together with new sedimentological, petrological and palaeontological data, indicate that the Kerman-Tabas region was tectonically active during this period,

Mir Alireza Hamedi

1995-01-01

6

Formation of mega-scale glacial lineations on the Dubawnt Lake Ice Stream bed: 2. Sedimentology and stratigraphy  

NASA Astrophysics Data System (ADS)

Mega-scale glacial lineations (MSGLs) are highly elongate, subglacial landforms produced beneath zones of fast-flowing ice. While qualitative data on their morphology have existed for several decades, studies of their composition and sedimentology are comparatively rare. Sediment exposures along the course of the Finnie River in Nunavut, northern Canada, provide a window into the internal stratigraphy and sedimentology of MSGLs formed by the Dubawnt Lake Palaeo-Ice Stream during regional deglaciation of the Laurentide Ice Sheet. Stratigraphic sections record evidence for an initial advance of ice into the study area followed by ice sheet recession and deposition of glacifluvial and glacilacustrine outwash. Subsequently, the Dubawnt Lake Palaeo-Ice Stream overrode and reworked this outwash subglacially forming an 'MSGL till'. This till comprises a sandy, red diamicton facies, forming the core of the MSGL ridges and containing variably deformed lenses, stringers and rafts of outwash. The sedimentology of this diamicton is consistent with an origin as a glacitectonite and hybrid till formed by a combination of non-pervasive subglacial sediment deformation and lodgement. Facies variations from stratified to massive diamicton reflect, in turn, variations in strain and subglacial transport distance. The occurrence of stratified glacifluvial sediments within these ridges and the well-preserved nature of many of the sandy inclusions within the diamicton imply relatively short transport distances and incomplete mixing. MSGLs under the Dubawnt Lake Palaeo-Ice Stream formed through a combination of subglacial erosion and deposition. This included non-pervasive, subglacial sediment deformation and the reworking of pre-existing sediment depocentres during streaming flow. These results highlight the importance of sediment supply to MSGL formation with the presence of abundant pre-existing sediments which were subsequently overridden being critical to lineation formation.

Ó Cofaigh, C.; Stokes, C. R.; Lian, O. B.; Clark, C. D.; Tulacyzk, S.

2013-10-01

7

Basin Evolution and Exhumation of the Xigaze Forearc, Southern Tibet: Insight from Sedimentology, Stratigraphy, and Geo-Thermochronology  

NASA Astrophysics Data System (ADS)

Forearc basins are important data archives for understanding continental dynamics because they preserve the tectono-erosional record of continental margins before collision. This study focuses on the Cretaceous-Eocene Xigaze forearc basin in southern Tibet, which is exposed along ~600 km of the Indus-Yarlung Suture Zone between the Indian craton to the south and the Asian Lhasa terrane to the north. From late Cretaceous to early Cenozoic time, subduction of Neo-Tethyan oceanic crust beneath the southern margin of Asia accommodated the northward motion of the Indian craton and formed the Xigaze forearc basin. Following collision with India in the early Cenozoic, the basin transitioned from predominantly marine to non-marine sedimentation and was subsequently uplifted to a mean elevation of 5000 m. How this transition occurred remains unresolved. This study's overall objective is to decipher forearc-basin and Indo-Asia continental-margin development from field sedimentology and stratigraphy, and detrital geo-thermochronology. We present new stratigraphic sections, totaling 8 km thick, from a previously unexplored ~60 km segment of the Xigaze forearc, ~50 km north-northwest of Saga. These sections are quite different from those known farther east. Sedimentary facies of mid-Cretaceous to early Eocene deposits indicate a shoaling-upward trend consistent with other ancient forearc basins (e.g., Great Valley forearc, California). Middle to late Cretaceous deposits indicate a variety of facies and depositional environments along strike in the study area. Facies include distal marine turbidites, shelf limestones, estuarine siliciclastics, and brown paleosols. In contrast, Eocene depositional environments are transitional from nearshore marine to pericontinental. Facies consist of dirty limestones, packstones, and wackestones, interbedded with terrigenous conglomerates and red-green paleosols. Eocene fauna include abundant foraminifera such as Nummulites-Discocyclina and Miscellanea-Daviesina. The along-strike variability of the Cretaceous strata suggests that, prior to collision, the diverse and irregular paleogeography of Asia's southern margin greatly influenced the three-dimensional nature and distribution of time-equivalent facies. In order to determine the timing of exhumation of Xigaze forearc strata, we utilize zircon (U-Th)/He thermochronology coupled with U-Pb geochronology. Preliminary U-Pb detrital geochronology indicates that the primary source of forearc detritus is the Gangdese magmatic arc which was active from ~150 Ma to 50 Ma. Preliminary double-dated (U-Th/He and U-Pb) zircon crystals from eight samples in ~80 Ma deposits suggest basin exhumation from 30 to 10 Ma. This time span corresponds to ages determined independently for movements occurring along the basin-bounding Great Counter Thrust system. Therefore, we postulate that this fault system was responsible for erosional exhumation of the Xigaze forearc.

Orme, D. A.; Carrapa, B.; Abbey, A. L.; Kapp, P. A.; Ding, L.

2012-12-01

8

The Mud Hills, Mojave Desert, California: Structure, stratigraphy and sedimentology of a rapidly extended terrane  

SciTech Connect

The Mud Hills exposes synorogenic breccia (Mud Hills Fm.) deposited during the final stages of crustal extension of the upper plate above the Waterman Hills detachment (20--18 Ma). Previous workers have misinterpreted fault contacts as stratigraphic contacts, and have developed intricate pseudostratigraphy to explain their observations. The authors' detailed mapping, combined with stratigraphic and sedimentologic data, documents that the volcaniclastic Pickhandle Fm. is conformably overlain by the plutoniclastic Mud Hills Fm., with no interfingering. Repetition of these south-dipping lithologic units is due to imbricate, north-dipping listric faults. These relations are demonstrated by the systematic northward v''ing of fault contacts and southward v''ing of stratigraphic contacts. Stratigraphic dip decreases upsection, which is consistent with incremental rotation of basinal strata simultaneously with deposition. Most of the Mud Hills Fm. consists of rock-avalanche breccia and megabreccia derived from granodiorite, which is identical to basement exposed beneath the Pickhandle and Jackhammer Fms. to the north. The Mud Hills Fm. was derived from now-buried granodiorite of a stranded upper-plate block to the south, as demonstrated by northward paleocurrents, facies relations and the presence of fine-grained units close to the presumed master fault (as is typical of half-graben sedimentation). Unconformably overlying the Mud Hills Fm. is the Owl Conglomerate (Barstow Fm.), which has mixed provenance with southward paleocurrents; the Owl Conglomerate was derived from residual highlands after extension ceased. Integration of structural, stratigraphic and sedimentologic information is essential for correct reconstruction of highly extended terranes.

Ingersoll, R.V.; Devaney, K.A.; Geslin, J.K.; Cavazza, W.; Diamond, D.S.; Jagiello, K.J.; Marsaglia, K.M.; Paylor, E.D. II; Short, P.F. (Univ. of California, Los Angeles, CA (United States). Dept. of Earth and Space Sciences)

1993-04-01

9

Stratigraphy, sedimentology and tectonic evolution of the Upper Cretaceous/Paleogene succession in north Eastern Desert, Egypt  

NASA Astrophysics Data System (ADS)

The stratigraphy, sedimentology and syn-depositional tectonic events (SdTEs) of the Upper Cretaceous/Paleogene (K-P) succession at four localities in north Eastern Desert (NED) of Egypt have been studied. These localities are distributed from south-southwest to north-northeast at Gebel Millaha, at North Wadi Qena, at Wadi El Dakhal, and at Saint Paul Monastery. Lithostratigraphically, four rock units have been recorded: Sudr Formation (Campanian-Maastrichtian); Dakhla Formation (Danian-Selandian); Tarawan Formation (Selandian-Thanetian) and Esna Formation (Thanetian-Ypresian). These rock units are not completely represented all over the study area because some of them are absent at certain sites and others have variable thicknesses. Biostratigrapgically, 18 planktonic foraminiferal zones have been recorded. These are in stratigraphic order: Globotruncana ventricosa Zone (Campanian); Gansserina gansseri, Contusotruncana contusa, Recimguembelina fructicosa, Pseudohastigerina hariaensis, Pseudohastigerina palpebra and Plummerita hantkenenoides zones (Maastrichtian); Praemurica incostans, Praemurica uncinata, Morozovella angulata and Praemurica carinata/Igorina albeari zones (Danian); Igorina albeari, Globanomanlina pseudomenradii/Parasubbotina variospira, Acarinina subsphaerica, Acarinina soldadoensis/Globanomanlina pseudomenardii and Morozovella velascoensis zones (Selandian/Thantian); and Acarinina sibaiyaensis, Pseudohastigerina wilcoxensis/Morozovella velascoensis zones (earliest Ypresian). Sedimentologically, four sedimentary facies belts forming southwest gently-dipping slope to basin transect have been detected. They include tidal flats, outer shelf, slumped continental slope and open marine hemipelagic facies. This transect can be subdivided into a stable basin plain plus outer shelf in the extreme southwestern parts; and an unstable slope shelf platform in the northeastern parts. The unstable slope shelf platform is characterized by open marine hemipelagic, fine-grained limestones and fine siliciclastic shales (Sudr, Dakhla, Tarawan and Esna formations). The northeastern parts are marked by little contents of planktonic foraminifera and dolomitized, slumped carbonates, intercalated with basinal facies. Tectonically, four remarkable syn-depositional tectonic events (SdTEs) controlled the evolution of the studied succession. These events took place strongly within the Campanian-Ypresian time interval and were still active till Late Eocene. These events took place at: the Santonian/Campanian (S/C) boundary; the Campanian/Maastrichtian (C/M) boundary; the Cretaceous/Paleogene (K/P) boundary; and the Middle Paleocene-Early Eocene interval. These tectonic events are four pronounced phases in the tectonic history of the Syrian Arc System (SAS), the collision of the Afro-Arabian and Eurasian plates as well as the closure of the Tethys Sea.

El Ayyat, Abdalla M.; Obaidalla, Nageh A.

2013-05-01

10

Stratigraphy, sedimentology and structure of the Numidian Flysch thrust belt in northern Tunisia  

Microsoft Academic Search

The Oligo-Miocene Numidian Flysch of northern Tunisia has long been divided into three distinct lithostratigraphic units considered as vertically superimposed: the lower unit or the “Zouza member”, the middle unit or the “Kroumirie member” and the upper unit or the “Babouch member”. According to this reconstruction the two first members are mostly Oligocene in age and only the third member

Riahi Sami; Mohamed Soussi; Boukhalfa Kamel; Ben Ismail Lattrache Kmar; Dorrik Stow; Khomsi Sami; Bedir Mourad

2010-01-01

11

Stratigraphy, sedimentology and structure of the Numidian Flysch thrust belt in northern Tunisia  

NASA Astrophysics Data System (ADS)

The Oligo-Miocene Numidian Flysch of northern Tunisia has long been divided into three distinct lithostratigraphic units considered as vertically superimposed: the lower unit or the "Zouza member", the middle unit or the "Kroumirie member" and the upper unit or the "Babouch member". According to this reconstruction the two first members are mostly Oligocene in age and only the third member was assigned as early Miocene in age. In this study, we present new biostratigraphic data, based on planktonic foraminiferal analysis, demonstrating that both the Zouza and the Kroumirie members are Oligocene-early Miocene in age and are, therefore, coeval. Four distinct facies associations have been identified within the Numidian Flysch including: (a) massive sandstones; (b) conglomerate; (c) an interbedded mudstone-sandstone association; and (d) a mudstone facies association. Slide-slump units and injectionite sands occur within the more mud-rich associations. The likely depositional setting is a muddy slope-apron system, cut locally by sand-rich channels, which fed channel-terminal lobe deposits. Paleocurrent data support strongly a flow from N and NW. Modal analysis, demonstrates that the Numidian sandstones are quartz-arenite type (QFL, 97.25:1.25:1.5) derived from middle to high grade-metamorphic and granitic rocks. Zircon geochronology, yielding ages of 514 ± 19 Ma from Tunisia and 550 ± 28 Ma from Sicily, would support the basement terrain that crops out along the Algerian coast and forms part of Calabro-Peloritani-Kabylian zone, as the most likely parental source of the Numidian Flysch for both Sicily and Tunisia. Zircon data from the Fortuna Formation yields ages of 1698 ± 67 Ma, which is more compatible with an African craton source ( Fildes et al., 2009). Structural consideration of the basal contact of the Numidian Flysch with the underlying Tellian rocks, as well as newly interpreted seismic data; confirm the allochthounous position of the Numidian complex and its displacement southward. Facies comparison with the equivalent Oligo-Miocene Bejaoua siliciclastic deposits outcropping towards the south shows that the Numidian complex is an "out-of-sequence thrust unit" and that the two Oligo-Miocene sedimentary systems are quite distinct and were sourced from wholly different source regions.

Sami, Riahi; Soussi, Mohamed; Kamel, Boukhalfa; Kmar, Ben Ismail Lattrache; Stow, Dorrik; Sami, Khomsi; Mourad, Bedir

2010-04-01

12

Sequence stratigraphy and sedimentology of a shelf-margin lowstand wedge in the deep Wilcox flexture trend of south Texas  

SciTech Connect

An integrated sedimentologic and biostratigraphic study of 15 wells and over 1400 ft (430 m) of core facilitated establishment of a sequence stratigraphic framework for the deep Wilcox Group of south Texas. This analysis also revealed the presence of a dip-restricted, sand-prone sediment wedge that produces hydrocarbons in growth-fault structures. A sequence stratigraphic framework for the Wilcox was constructed via the use of faunal-increase markers, thin intervals present in well cuttings characterized by rises in the relative abundance of planktonic foraminifera. These marine flooding horizons can be utilized to subdivide the Wilcox Group into four depositional sequences termed P(aleogene)-8, P-7, P-4, and P-3, in descending order. Identification of standard sequence-bounding unconformities is hampered by the poor seismic expression of the Wilcox and the structural complexity of the area.

Snedden, J.W. (Mobil Exploration Norway, Inc., Stavanger (Norway)); Cooke, J.C. (Mobil Exploration and Producing Services, Inc., Dallas, TX (United States)); Johnson, R.K.; Conrad, K.T. (Mobil Exploration and Producing, US, Houston, TX (United States))

1991-03-01

13

Late Quaternary stratigraphy, sedimentology, and geochemistry of an underfilled lake basin in the Puna (north-west Argentina)  

USGS Publications Warehouse

Depositional models of ancient lakes in thin-skinned retroarc foreland basins rarely benefit from appropriate Quaternary analogues. To address this, we present new stratigraphic, sedimentological and geochemical analyses of four radiocarbon-dated sediment cores from the Pozuelos Basin (PB; northwest Argentina) that capture the evolution of this low-accommodation Puna basin over the past ca. 43 cal kyr. Strata from the PB are interpreted as accumulations of a highly variable, underfilled lake system represented by lake-plain/littoral, profundal, palustrine, saline lake and playa facies associations. The vertical stacking of facies is asymmetric, with transgressive and thin organic-rich highstand deposits underlying thicker, organic-poor regressive deposits. The major controls on depositional architecture and basin palaeogeography are tectonics and climate. Accommodation space was derived from piggyback basin-forming flexural subsidence and Miocene-Quaternary normal faulting associated with incorporation of the basin into the Andean hinterland. Sediment and water supply was modulated by variability in the South American summer monsoon, and perennial lake deposits correlate in time with several well-known late Pleistocene wet periods on the Altiplano/Puna plateau. Our results shed new light on lake expansion–contraction dynamics in the PB in particular and provide a deeper understanding of Puna basin lakes in general.

McGlue, Michael M.; Cohen, Andrew S.; Ellis, Geoffrey S.; Kowler, Andrew L.

2013-01-01

14

Sedimentology and Stratigraphy Architecture of the late Pleistocene-Holocene Succession of the Gargaresh Formation, Subratah Basin, NW Libya  

NASA Astrophysics Data System (ADS)

Gargaresh Formation outcrops is comprises the outcrops between the Misurata (N32o22'18'' E15o12'03'') to the Tripoli(N32o 51'10'' E13o 03'22'') areas is represented by prominent carbonate aeolianite exposed in extensive outcrops along the NW Libyan shoreline. Gargaresh Formation outcrops comprises two Members an upper Kaam Member of Aeolian origin and a lower Karrot Member of marine origin. The study of the Gargaresh Formation can provide useful information on reconstructions of Late Pleistocene-Holocene history of NW Libya and new insights on palaeogeography. It is forming low ridges and cliffs along the coastline of NW Libya and occurs as cliffs continuously attached to the sea tide, and occasionally interrupted by broad wadis or deep-cut embayment. The Gargaresh Formation sediments are dominated by calcarenites with skeletal marine fauna and non-skeletal grains of lithoclasts, aggregate, with oolites. In addition, these rocks are characterized by very well aeolian controlling factors represented by wind blown sediments such as large scale cross lamination (aeolianite) . The majority of palaeocurrent direction was to SE, on the other hand the dune migration was SE also. The sediments of Gargaresh Formation outcrops from Misurata to Tripoli NW Libya mostly allochthonous except the paleosols red-brown unit. Most of its fossils are thanatoconoses. Gargaresh Formation sediments shows that the original aragonite composition of pelecypoda and gastropods fragments are mostly preserved, but partly transformed into granular calcite as pendulous (meniscus) cement texture in response to meteoric fresh-water. Keywords: Sedimentology; Stratigraphic architecture; Aeolian origin; marine origin; Calcarenites; Late Pleistocene-Holocene

Hlal, Osama; Bennur, Sami

2014-05-01

15

Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System  

Microsoft Academic Search

The absolute ages of cratered surfaces in the inner solar system, including Mars, are derived by extrapolation from the impact flux curve for the Moon which has been calibrated on the basis of absolute ages of lunar samples. We reevaluate the lunar flux curve using isotope ages of lunar samples and the latest views on the lunar stratigraphy and the

D. Stöffler; G. Ryder

2001-01-01

16

Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum  

E-print Network

Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare July 2003. [1] Accurate estimates of mare basalt ages are necessary to place constraints on the duration and the flux of lunar volcanism as well as on the petrogenesis of lunar mare basalts

Head III, James William

17

Stratigraphy and age of the Cappadocia ignimbrites, Turkey: reconciling field constraints with paleontologic,  

E-print Network

Stratigraphy and age of the Cappadocia ignimbrites, Turkey: reconciling field constraints Cappadocia ignimbrites (Central Turkey) have been inferred in previous studies from fieldwork and K­Ar age of mammalian remains recovered in the continental sediments interbedded with the Cappadocia ignimbrites. Using

18

Origin and paleoclimatic significance of late Quaternary loess in Nebraska: Evidence from stratigraphy, chronology, sedimentology, and geochemistry  

USGS Publications Warehouse

Loess is one of the most extensive surficial geologic deposits in midcontinental North America, particularly in the central Great Plains region of Nebraska. Last-glacial-age loess (Peoria Loess) reaches its greatest known thickness in the world in this area. New stratigraphic, geochronologic, mineralogic, and geochemical data yield information about the age and provenance of Peoria Loess, as well as evaluation of recent climate models. Sixteen new radiocarbon ages and recently acquired optically stimulated luminescence ages indicate that Peoria Loess deposition in Nebraska occurred between ca. 25,000 cal yr B.P. and ca. 13,000 cal yr B.P. After ca. 13,000 cal yr B.P. a period of pedogenesis began, represented by the dark, prominent Brady Soil. At some localities, further loess deposition was minimal. At other localities, sometime after ca. 11,000 cal yr B.P., there were additional episodes of loess deposition (Bignell Loess) intermittently throughout the Holocene. The spatial variability of particle size abundances in Peoria Loess shows a northwest-to-southeast fining in Nebraska, consistent with maps of previous workers that show a northwest-to-southeast thinning of loess. These observations indicate that paleowinds that deposited the loess were from the west or northwest and that the source or sources of Peoria Loess lay to the west or northwest. New mineralogical and geochemical data indicate that the most important sources of loess were likely Tertiary siltstones of the White River and Arikaree Groups, silt facies of Pliocene eolian sediments, and small contributions from Pierre Shale. It is likely that fine-grained silts were transported episodically through the Nebraska Sand Hills from Tertiary and Cretaceous bedrock sources to the north, in agreement with a model presented recently. The identification of Tertiary siltstones and silts as the primary sources of loess is consistent with isotopic data presented in a companion paper. Contributions of glaciogenic silt from the Platte and Missouri Rivers were limited to loess zones close to the valleys of those drainages. An earlier computer-based model of global dust generation during the last glacial period did not identify the Great Plains of North America as a significant source of nonglaciogenic eolian silt. However, a refined version of this model does simulate this region as a significant non-glacial dust source during the last glacial period, in good agreement with the results presented here.

Muhs, Daniel R.; Bettis, E. Arthur, III; Aleinikoff, John N.; McGeehin, John P.; Beann, Jossh; Skipp, Gary; Marshall, Brian D.; Roberts, Helen M.; Johnson, William C.; Benton, Rachel

2008-01-01

19

Mars north polar deposits: stratigraphy, age, and geodynamical response  

USGS Publications Warehouse

The Shallow Radar (SHARAD) on the Mars Reconnaissance Orbiter has imaged the internal stratigraphy of the north polar layered deposits of Mars. Radar reflections within the deposits reveal a laterally continuous deposition of layers, which typically consist of four packets of finely spaced reflectors separated by homogeneous interpacket regions of nearly pure ice. The packet/interpacket structure can be explained by approximately million-year periodicities in Mars' obliquity or orbital eccentricity. The observed ???100-meter maximum deflection of the underlying substrate in response to the ice load implies that the present-day thickness of an equilibrium elastic lithosphere is greater than 300 kilometers. Alternatively, the response to the load may be in a transient state controlled by mantle viscosity. Both scenarios probably require that Mars has a subchondritic abundance of heat-producing elements.

Phillips, R.J.; Zuber, M.T.; Smrekar, S.E.; Mellon, M.T.; Head, J.W.; Tanaka, K.L.; Putzig, N.E.; Milkovich, S.M.; Campbell, B.A.; Plaut, J.J.; Safaeinili, A.; Seu, R.; Biccari, D.; Carter, L.M.; Picardi, G.; Orosei, R.; Surdas, Mohit P.; Heggy, E.; Zurek, R.W.; Egan, A.F.; Giacomoni, E.; Russo, F.; Cutigni, M.; Pettinelli, E.; Holt, J.W.; Leuschen, C.J.; Marinangeli, L.

2008-01-01

20

Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy  

SciTech Connect

Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled.

Dilley, Lorie M.; Norman, David; Owens, Lara

2008-06-30

21

Lunar impact basins: Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data  

E-print Network

Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the ...

Fassett, C. I.

22

Sedimentology and sequence stratigraphy from outcrops of the Kribi-Campo sub-basin: Lower Mundeck Formation (Lower Cretaceous, southern Cameroon)  

NASA Astrophysics Data System (ADS)

The Kribi-Campo sub-basin is composed of an Early to Mid Cretaceous series from West Africa's Atlantic coast and is located in southern Cameroon in the Central African equatorial rain forest. It is the smallest coastal basin in Cameroon and forms the southern part of the Douala/Kribi-Campo basin known as Douala basin ( s.l.). Until now, no detailed sedimentological studies have been carried out on the outcrops of this basin located in the Campo area. The aim of this study was to characterise the depositional environments, vertical evolution and tectonic context of these Lower Cretaceous series in order to make a comparison with adjacent basins and replace them in the geodynamic context. Facies analysis of the Lower Mundeck Formation (Lower Cretaceous) indicates the presence of four major, interfigered facies associations, that are inferred to represent elements of an alluvial to lacustrine-fan delta system. The clast lithologies suggest proximity of relief supplying coarse-grained sediment during the deposition of the Lower Mundeck Formation at Campo. The general dip and direction of the bedding is approximately 10°-12°NW, which also corresponds to the orientation of the foliations in the underlying metamorphic basement. The main sedimentary succession is characterised by a major retrogradational/progradational cycle of Late Aptian age, evaluated at about 3 Ma, with a well-developed progradational trend characterised by fluctuations of the recognised depositional environments. Fluctuations in lake level and sediment supply were possibly controlled by active faults at the basin margin, although climatic changes may have also played a role. The consistently W-WNW palaeoflow of sediments suggests that the palaeorelief was located to the east and could be oriented in a NNE-SSW direction, downthrown to the west. Local outcrops dated as Albian, both north and south of the main outcrop, display some marine influence. These deposits are cut by 040-060 faults parallel to the oceanic transform. Similarly, the Lower Mundeck Formation of the Campo outcrops is considered to be associated mainly with the early drift period of Late Aptian-Albian age. This study is also the first step of knowledge of these African margin deposits, to realise in the future the correlations between outcrops and offshore data.

Ntamak-Nida, Marie Joseph; Bourquin, Sylvie; Makong, Jean-Claude; Baudin, François; Mpesse, Jean Engelbert; Ngouem, Christophe Itjoko; Komguem, Paul Bertrand; Abolo, Guy Martin

2010-08-01

23

Stratigraphy, sedimentology and diagenetic evolution of the Lapur Sandstone in northern Kenya: Implications for oil exploration of the Meso-Cenozoic Turkana depression  

NASA Astrophysics Data System (ADS)

The northern Turkana region of northwestern Kenya forms the intersection between two major rift systems in Africa, the Cretaceous-Paleogene Central African Rift System (CARS), and the eastern arm of the Paleogene-Present East African Rift System (EARS). The southern Sudanese oil-rich rift basins form part of the CARS, and their extension into the Anza Rift in northeastern Kenya makes the area of northern Turkana an important target for oil exploration. Limited past exploration activity in the area leaves the study of surface outcrops as the main avenue for understanding the reservoir potential of the fluvial deposits of these rift systems. The outcrops of these potential reservoirs, collectively referred to as "Turkana Grits" in the past, are represented on the western side of Lake Turkana by the Lapur Sandstone in the north, and by other grit formations in the central and southern parts of the basin. Isotopic age determinations on the basal parts of the "Turkana Volcanics" that overlie the Lapur Sandstone have enabled the precise dating of the upper parts of the LS at between 35 and 37 Ma, while the lower part of the formation near the contact with the underlying Precambrian basement is estimated as Upper Cretaceous (Turonian-early Campanian), based on the discovery of dinosaur and other reptilian fauna. Detailed lithological logging, coupled with subsequent petrographic and sedimentological studies, have enabled the determination of the depositional environments and the diagenetic evolution of the Lapur Sandstone. The basal and uppermost parts of the formation are interpreted as distal alluvial fan environments possibly connected to the last stages of rifting characterizing the Central African Rift System. The middle part of the Lapur Sandstone corresponds to a wide braided fluvial system that can be compared to fluvial episodes of Late Cretaceous age in the Sudan region, associated to major palaeogeographical changes in northern Africa. The nearly abrupt disappearance of the Lapur upper fan system relates to the deposition of the "Turkana Volcanics" from Late Eocene, possibly as a consequence of the emplacement of the Afar Plume at 45-35 Ma. In terms of diagenesis, the main cement material at the base of the Lapur Sandstone is calcite, whereas at the middle of the formation, hematite becomes the dominant cement, and at the topmost section, kaolin cement dominates. The diagenetic evolution of the sandstones has been favourable to the retention of adequate primary intergranular porosity and the creation of secondary intragranular dissolution porosity, mainly through feldspar dissolution, and thus preserving the reservoir potential of the Lapur Sandstone. The reservoir characteristics, such as the porosity and cementation style, of the Lapur Sandstone are comparable to those of the fluvial sandstone reservoirs of the southern Sudan oil fields and this should positively contribute to the overall petroleum potential of the northern Turkana region. Though the northern Turkana area has remained largely unexplored, it is hoped that the demonstration of the presence of reasonably good reservoir quality sandstones in the Lapur Sandstone will serve to encourage further interest in hydrocarbon exploration in the Turkana area.

Tiercelin, Jean-Jacques; Potdevin, Jean-Luc; Thuo, Peter Kinyua; Abdelfettah, Yassine; Schuster, Mathieu; Bourquin, Sylvie; Bellon, Hervé; Clément, Jean-Philippe; Guillou, Hervé; Nalpas, Thierry; Ruffet, Gilles

2012-08-01

24

Radiocarbon ages of bones from Vistulian (Weichselian) cave deposits in Poland and their stratigraphy  

NASA Astrophysics Data System (ADS)

Twenty-six bone samples from cave sediments mainly of Vistulian (Weichselian) age were radiocarbon (AMS) dated. The material comes from seven localities in the Krakow-Cz?stochowa Upland and in Podhale (southern Poland). These are: the Komarowa Cave, the Deszczowa Cave, the Upper Rock Shelter of the Deszczowa Cave, the cave in Dziadowa Ska?a, the S?spowska Zachodnia Cave, the Mamutowa Cave and the Ob?azowa Cave. The obtained radiocarbon ages of most of the samples differs from their stratigraphy as formerly proposed. The reasons for this discrepancy are discussed. Also examined were the radiocarbon ages of bones from other caves in the study area. Most of the dated bones are shown to have come from relatively short time periods. The existing data on radiocarbon age of bones from Vistulian cave deposits of the Krakow-Cz?stochowa Upland and Podhale are summarized.

Lorenc, Micha?

2013-09-01

25

A re-evaluation of the stratigraphy and sedimentology of the Day Point Formation (Chazy Group): A new look at old reefs  

SciTech Connect

The Day Point Formation (Chazy Group, Middle Ordovician) outcrops in the Champlain Valley of New York and Vermont. The stratigraphy of the Day Point Formation is complex, containing lithologic sequences that are unique at different localities around the Champlain Valley. The formation exhibits complex lateral interfingering of seven lithofacies: (1) Highly bioturbated sandstone with symmetrical and bifurcating ripples. (2) Bioturbated, brachiopod rich, wackestone facies. (3) Planar cross-bedded, interlayered sand and sandy packstone. (4) Interlayered sand and shale grading into sand and limestone layers. (5) Grainstone which, at some localities, contains mound-shaped bryozoan reefs, at other localities thin non-reefal sheet-like layers are present. The grainstone also has planar laminated and cross stratified beds. (6) Fine-grained, calcareous sandstone with planar and herringbone cross bedding, which in places contains small bryozoan reefs and thin sheet-reefs. (7) Planar cross bedded packstone containing bryozoan reefs and thin sheet-like non-reefal layers. The thin reefal layers are found where the mound-shaped reefs are absent. The sand units are found only in the lower portion of the Day Point Formation. The bryozoan reefs and non-reefal layers are associated with the sand beds in the lower portion of the Day Point Formation, and either live within the sand or on top of it. The bryozoans that form the non-reefal layers, found in the limestones, are contained within thin layers of sand. In contrast, no sand is found in the upper section of the Day Point Formation, yet the bryozoan reefs flourish.

Falkenberg, J.; Mehrtens, C.J. (Vermont Univ., Burlington, VT (United States). Dept. of Geology)

1993-03-01

26

Revised stratigraphy of the Trenton Group in its type area, central New York State: sedimentology and tectonics of a Middle Ordovician shelf-to-basin succession  

NASA Astrophysics Data System (ADS)

This paper presents new stratigraphic correlations of the middle and upper parts of the Trenton Group in the type area, near Trenton Falls, New York, based on detailed bed by bed matching, of all outcrop sections. This work, in conjunction with newly revised biostratigraphy and geochemical fingerprinting of K-bentonites, has been used to establish a high resolution chronology for these deposits. Our revised correlations reveal that published stratigraphic-geochronologic schemes are largely in error, resolve several long-standing dilemmas, and have important implications for interpreting sedimentological and tectonic history of the Taconic foreland basin. Key new conclusions/revisions include: (1) The lowermost part of the Trenton type section at Trenton Falls is laterally equivalent to the Rathbun Member of the Sugar River Limestone (lower Shermanian) in the Newport-Herkimer, New York area. (2) The medial Trenton (Denley Formation), dated primarily within the Corynoides americanus graptolite Zone, can be divided in ascending order into two distinctive units, the Poland, Russia members, each of which is further subdivisible into component shallowing-upward cycles and condensed beds. As such, the Poland is completely exposed at Trenton Gorge (contrary to assertions by previous authors) and is about 10.5 m-thick. At its type section, also Trenton Gorge, the overlying Russia Member, comprising four shallowing-upward cycles, extends upward from the Kuyahoora K-bentonites for about 24 m to its sharp upper contact with another distinctive and fingerprinted K-bentonite, the High Falls ash bed. (3) Both the Poland and Russia members thin southeastward from Trenton Falls and become condensed in downslope sections near Middleville. However, the Poland section then thickens and passes eastward into basinal dark gray shales (lower-medial part of the Flat Creek Formation) in central Mohawk Valley sections, whereas the Russia remains thin and relatively carbonate-rich throughout this area. (4) A third unit, the Rust Limestone is elevated to formation status and subdivided into members. The lower part of the Rust Formation (Mill Dam Member) thins dramatically to the southeast from about 12 m at Trenton Falls to 1.5-2 m in the Middleville-Herkimer area before thickening again into basinal black shale facies. (5) The upper Rust and Steuben formations (coarse skeletal pack-to grainstone facies) of the Trenton Falls area apparently thin by condensation into the Newport area before expanding again into turbiditic slope facies of the Dolgeville Formation (essentially corresponding to the Orthograptus ruedemanni graptolite zone) beginning in the Middleville-Herkimer area. The new correlations imply that the lower-middle Rust interval belongs to the Corynoides americanus graptolite Zone, and that the upper Rust-Steuben interval probably belongs in the O. ruedemanni Zone, rather than the Climacograptus spiniferus or even to the lower Geniculograptus pygmaeus Zone, as previously inferred. (6) The Dolgeville carbonate turbidite facies is found to extend eastward to the vicinity of the Hoffmans Fault, east of Amsterdam. (7) Slumped breccia-filled channels in shelf-margin facies of the upper Rust and Steuben limestones may have served as feeder conduits to submarine fans now represented by the Dolgeville Formation. These observations indicate that a sediment-starved east-facing submarine ramp was developed across the study area during Shermanian time. Regional lithospheric flexure coupled with westward retreat of the shelf, explains the distribution of condensed facies and discontinuities. The widespread distribution of many marker beds plus the observation of spectral facies gradations at many levels, suggests that submarine faulting was usually a minor process superimposed on larger-scale diastrophic and eustatic patterns.

Brett, Carlton E.; Baird, Gordon C.

2002-01-01

27

Stratigraphy, pollen history and geochronology of tidal marshes in a Gulf of Maine estuarine system: Climatic and relative sea level impacts  

E-print Network

Stratigraphy, pollen history and geochronology of tidal marshes in a Gulf of Maine estuarine system stratigraphy pollen accretion relative sea level climate effects Sedimentologic and stratigraphic environments, pollen analyses, and radiocarbon dating. Modern marsh sequences in Great Bay Estuary initiated

New Hampshire, University of

28

Mars Stratigraphy Mission  

NASA Technical Reports Server (NTRS)

The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

Budney, C. J.; Miller, S. L.; Cutts, J. A.

2000-01-01

29

Stratigraphy and Magnetostratigraphic\\/Faunal Constraints for the Age of Sauropod Embryo-Bearing Rocks in the Neuquén Group (Late Cretaceous, Neuquén Province, Argentina)  

Microsoft Academic Search

The stratigraphy and age of a sauropod nesting ground containing the first definitive em- bryonic remains of sauropods preserved inside their eggs is analyzed. The fossil locality, called Auca Mahuevo, occurs in the Anacleto Member of the Rio Colorado Formation in Neuquen Province, Argentina. The 5 m thick interval of overbank mudstones containing the fossilized eggs and embryos occurs near

LOWELL DINGUS; JULIA CLARKE; GARY R. SCOTT; CARL C. SWISHER; LUIS M. CHIAPPE; RODOLFO A. CORIA

2000-01-01

30

Stratigraphy and wiggle-matching-based age-depth model of late Holocene marine sediments in Beppu Bay, southwest Japan  

NASA Astrophysics Data System (ADS)

We analyzed the lithology, magnetic susceptibility, bulk density, and X-ray radiographs of 14 sediment cores (1-9 m long) from Beppu Bay in the western Seto Inland Sea, Japan, to establish the late Holocene stratigraphy in the deepest part of the bay and to develop an age-depth model for the sediments there. The cores contained 18 thick (major event) high-density layers (16 turbidites and two volcanic ash; >1 cm thick), and both lithological observations and density variations in the hemipelagic mud that is dominant in the cores revealed a further 55 thin (minor event) high-density layers (<1 cm thick). Analyses of color properties and opal and sand contents of the hemipelagic mud defined nine lithological units. After stratigraphic correlation of the event layers among cores, we projected 14C dates onto a single composite core. Forty-two AMS 14C dates from bivalve mollusk shells were used to construct a wiggle-matching-based age-depth model for the late Holocene sequence and to determine the local reservoir effect (?R). The age-depth model showed a sedimentation rate of 0.23-0.30 cm/yr for a 7.8 m-long composite core and an age of ˜2800 cal yr BP at the base. Wiggle-matching provided ?R values of 115-155 yr for late Holocene bivalve samples from Beppu Bay, which is consistent with previous estimates reported from coastal areas near the Kuroshio Front. Comparison of wiggle-matching-derived ages of thick turbidites with the ages of historical earthquakes showed differences within ±25 yr. Our study demonstrated that wiggle matching with optimal fitting based on either the weighted least-squares or maximum likelihood method can minimize the effect of scatter of age data due to reworking and burrowing of bivalves and thus improve the accuracy of age-depth models.

Kuwae, Michinobu; Yamamoto, Masanobu; Ikehara, Ken; Irino, Tomohisa; Takemura, Keiji; Sagawa, Takuya; Sakamoto, Tatsuhiko; Ikehara, Minoru; Takeoka, Hidetaka

2013-06-01

31

Ochoan (upper Permian) stratigraphy and age determinations, southeastern New Mexico and west Texas  

SciTech Connect

Upper Permian strata, which are the stratotype of the Ochoan State (Series), have an extensive subsurface distribution and limited outcrop area in southeastern New Mexico and west Texas. The oldest strata are alternating laminae of anhydrite and calcite of the Castile Formation and are as much as 700 m thick. The closely related and overlying Salado Formation is a much as 600 m thick and is mostly halite and argillaceous halite with minor anhydrite. The overlying Rustler Formation is as much as 150 m thick and consists of anhydrite, red silty shale and magnesian limestone. Overlying red beds are the Quartermaster Formation (Dewey Lake Formation is a synonym, as is the term Pierce Canyon red beds), which is as much as 106 m thick and consist of fine sandstones, siltstones, and minor gypsum. The Castile rests disconformably on the Capitanian (middle Permian) Lamar Limestone Member of the Bell Canyon Formation and its equivalent, the Tansill Formation of the Artesia Group. Counting of Castile-Salado laminae and their posited relationship to astronomical cycles suggests that Castile-Salado deposition took only 200,000-300,000 yr. Limited assemblages of brachiopods and conodonts from the Rustler Formation indicate a Late Permian age, but are no more precise age indicators. A small assemblage of bivalves, K-Ar ages and magnetostratigraphy indicate a late Permian age for the Quartermaster Formation. There is no evidence to support a Triassic age assignment for the Quarter-master; it is disconformably overlain by the Upper Triassic (Carnian) Chinle group. Most workers us the Ochoan as a Late Permian Stage-Age, although its typical strata generally lack good age indicators and may represent relatively short and sporadic intervals of the Late Permian. We prefer recognition of the Ochoan as a lithostratigraphic unit (group) without regional or global geochronologial significance.

Lucas, S.G. (New Mexico Museum of Natural History, Albuquerque, NM (United States)); Anderson, O.R. (New Mexico Bureau of Mines Mineral Resources, Socorro, NM (United States))

1994-03-01

32

Stratigraphy, correlation, and age estimates for fossils from Area 123, Koobi Fora.  

PubMed

Geological data from the Bura Hasuma region at Koobi Fora provide important constraints for estimating the ages of hominin fossils recovered there, including the cranium KNM-ER 1813. Strata of the upper Burgi, KBS, and Okote members in this part of Koobi Fora reflect three depositional regimes driven by changing paleogeography through time. The upper Burgi and lowermost KBS sequence in the southern Bura Hasuma region accumulated in a lacustrine to delta front setting, with highly localized depositional patterns, limiting the lateral extent of lithostratigraphic markers. Farther north, uppermost upper Burgi through KBS member strata document a fluctuating lake margin, with complex facies patterns. This interval is marked by laterally extensive lithostratigraphic markers, including molluscan packstones, beach sandstones, and stromatolite beds. The uppermost KBS and Okote members show a transition to dominantly fluvial character, with localized and discontinuous accumulation. An age model for the richly fossiliferous Area 123 sequence demonstrates the complexity of terrestrial accumulation patterns. Early lacustrine and delta front accumulation is marked by fairly continuous sedimentation, and high accumulation rates (up to ca. 91 cm/k.yr.). The fluctuating lake margin interval reflects lower sedimentation rates coupled with intervals of exposure, decreasing accumulation significantly (to ca. 13 cm/k.yr.). The capping fluvial interval is marked by significant erosion surfaces, breaks which may drop the overall accumulation rate even lower (ca. 0.3 cm/k.yr.). The data provided here establish a geological framework at odds with a recent proposal of ages considerably younger (by ca. 250 k.yr.) for many of the fossils from Area 123 and elsewhere. Tests of age models demonstrate that the younger ages are not possible. While minor refinements to age estimates for fossils are indicated by improved chronostratigraphic control, in the case of KNM-ER 1813, an age of younger than 1.78 Ma is precluded on magnetostratigraphic grounds. PMID:19604540

Feibel, Craig S; Lepre, Christopher J; Quinn, Rhonda L

2009-08-01

33

Nonmarine stratigraphy of latest Cretaceous and early Tertiary age, southwestern New Mexico  

SciTech Connect

Recent fossil collections from nonmarine strata at localities in southwestern New Mexico indicate that the Ringbone formation, as originally defined, comprises units separated by a major hiatus that is represented in the field by an angular unconformity. The lower unit has yielded (NMMNH locality 298) two anterior caudal vertebral centra, morphologically and metrically indistinguishable from those of the Late Cretaceous tyrannosaurids Albertosaurus and Daspletosaurus. These dinosaur fossils establish a late Campanian or Maastrichtian age for the unit, indicating its equivalence with the McRae Formation of south-central New Mexico and the Fort Crittenden Formation of southeastern Arizona. The unit is composed of approximately 1,000 m of sedimentary-clast conglomerate, arkose, volcanic litharenite, and gray shale; it thus appears to contain detritus from several different source areas. The younger unit has yielded a low-diversity ostracod fauna of Paleocene to early Eocene age. Diagnostic taxa from the assemblage include Pseudoeocypris pagei and Cypridea arvadensis. The age of this fauna suggests equivalence with the Love Ranch and Lobo Formations of southern New Mexico. The unit consists of approximately 350 m of interbedded red siltstone and boulder conglomerate derived from Lower Cretaceous strata overlain by a sequence of laminated shale and subordinate sandstone with a preserved thickness of 150 m.

Lawton, T.F.; Mack, G.H.; Lucas, S.G.; Kietzke, K.K. (New Mexico State Univ., Las Cruces (USA))

1989-09-01

34

Lunar Impact Basins: Stratigraphy, Sequence and Ages from Superposed Impact Crater Populations Measured from Lunar Orbiter Laser Altimeter (LOLA) Data  

NASA Technical Reports Server (NTRS)

Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the superposed impact crater size-frequency distributions for 30 lunar basins (D = 300 km). These data generally support the widely used Wilhelms sequence of lunar basins, although we find significantly higher densities of superposed craters on many lunar basins than derived by Wilhelms (50% higher densities). Our data also provide new insight into the timing of the transition between distinct crater populations characteristic of ancient and young lunar terrains. The transition from a lunar impact flux dominated by Population 1 to Population 2 occurred before the mid-Nectarian. This is before the end of the period of rapid cratering, and potentially before the end of the hypothesized Late Heavy Bombardment. LOLA-derived crater densities also suggest that many Pre-Nectarian basins, such as South Pole-Aitken, have been cratered to saturation equilibrium. Finally, both crater counts and stratigraphic observations based on LOLA data are applicable to specific basin stratigraphic problems of interest; for example, using these data, we suggest that Serenitatis is older than Nectaris, and Humboldtianum is younger than Crisium. Sample return missions to specific basins can anchor these measurements to a Pre-Imbrian absolute chronology.

Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

2012-01-01

35

Little ice age as recorded in the stratigraphy of the tropical quelccaya ice cap  

SciTech Connect

The analyses of two ice cores from a southern tropical ice cap provide a record of climatic conditions over 1000 years for a region where other proxy records are nearly absent. Annual variations in visible dust layers, oxygen isotopes, microparticle concentrations, conductivity, and identification of the historical (A.D. 1600) Huaynaputina ash permit accurate dating and time-scale verification. The fact that the Little Ice Age (about A.D. 1500 to 1900) stands out as a significant climatic event in the oxygen isotope and electrical condutivity records confirms the worldwide character of this event.

Thompson, L.G.; Mosley-Thompson, E.; Dansgaard, W.; Grootes, P.M.

1986-10-17

36

Age, Stratigraphy, and Correlations of the Late Neogene Purisima Formation, Central California Coast Ranges  

USGS Publications Warehouse

The Purisima Formation is an important upper Miocene and Pliocene stratigraphic unit in central California, cropping out from the coast at Point Reyes north of San Francisco to more extensive exposures in the Santa Cruz Mountains to the south. The fine-grained rocks in the lower parts of the Purisima Formation record a latest Miocene transgressive event, whereas the middle and upper parts of the formation consist of increasingly clastic-rich siltstones and sandstones resulting from uplift of adjacent coastal regions and the Sierra Nevada during Pliocene transgressive and regressive sea-level events. Exposures of the Purisima occur in three different, fault-bounded, structural blocks - the Santa Cruz, Pigeon Point, and Point Reyes tectonic blocks - that complicate correlations and regional age assignments. We summarize and compare published and new biostratigraphic and geochronologic data for various exposures of the Purisima Formation on the basis of mollusks, diatoms, radiometric dating, magnetostratigraphy, tephrochronology, and strontium isotope dating. On the basis of these data, we conclude that the Purisima Formation ranges in age from the latest Miocene (about 7 Ma) to the late Pliocene (about 2.6 Ma). The Purisima Formation of Santa Cruz County, exposed in the sea cliffs from Santa Cruz to Rio del Mar, is here designated a supplementary reference section because it is the most complete and well studied Purisima section in central California.

Powell, Charles L.; Barron, John A.; Sarna-Wojcicki, Andrei M.; Clark, Joseph C.; Perry, Frank A.; Brabb, Earl E.; Fleck, Robert J.

2007-01-01

37

Constraints on the age of the Great Sand Dunes, Colorado, from subsurface stratigraphy and OSL dates  

USGS Publications Warehouse

The age of the Great Sand Dunes has been debated for nearly 150 yr. Seven ages ranging from Miocene to late Holocene have been proposed for them. This paper presents new information—chiefly subsurface stratigraphic data, OSL dates, and geomorphic evidence—that indicates that the Great Sand Dunes began to form in the latter part of the middle Pleistocene. The dunes overlie a thick wedge of piedmont-slope deposits, which in turn overlies sediment of Lake Alamosa, a paleolake that began to drain about 440 ka. The wedge of piedmont-slope deposits extends westward for at least 23 km and is as much as 60 m thick at a distance of 10 km from the Sangre de Cristo Range. Ostracodes from one well indicate that the eastern shoreline of Lake Alamosa extended to within 4.3 km of where the Great Sand Dunes eventually formed. The time represented by the wedge of piedmont-slope deposits is not known exactly, but the wedge post-dates 440 ka and was in place prior to 130 ka because by then the dunes overlying it were sufficiently close and tall enough to obstruct streams draining from the Sangre de Cristo Range.

Madole, Richard F.; Mahan, Shannon A.; Romig, Joe H.; Havens, Jeremy C.

2013-01-01

38

Late Quaternary sedimentological and climate changes at Lake Bosumtwi Ghana: new constraints from laminae analysis and radiocarbon age modeling  

USGS Publications Warehouse

The Lake Bosumtwi sediment record represents one of the longest and highest-resolution terrestrial records of paleoclimate change available from sub-Saharan Africa. Here we report a new sediment age model framework for the last ~ 45 cal kyr of sedimentation using a combination of high-resolution radiocarbon dating, Bayesian age-depth modeling and lamination counting. Our results highlight the practical limits of these methods for reducing age model uncertainties and suggest that even with very high sampling densities, radiocarbon uncertainties of at least a few hundred years are unavoidable. Age model uncertainties are smallest during the Holocene (205 yr) and the glacial (360 yr) but are large at the base of the record (1660 yr), due to a combination of decreasing sample density, larger calibration uncertainties and increases in radiocarbon age scatter. For portions of the chronology older than ~ 35 cal kyr, additional considerations, such as the use of a low-blank graphitization system and more rigorous sample pretreatment were necessary to generate a reliable age depth model because of the incorporation of small amounts of younger carbon. A comparison of radiocarbon age model results and lamination counts over the time interval ~ 15–30 cal kyr agree with an overall discrepancy of ~ 10% and display similar changes in sedimentation rate, supporting the annual nature of sediment laminations in the early part of the record. Changes in sedimentation rates reconstructed from the age-depth model indicate that intervals of enhanced sediment delivery occurred at 16–19, 24 and 29–31 cal kyr, broadly synchronous with reconstructed drought episodes elsewhere in northern West Africa and potentially, with changes in Atlantic meridional heat transport during North Atlantic Heinrich events. These data suggest that millennial-scale drought events in the West African monsoon region were latitudinally extensive, reaching within several hundred kilometers of the Guinea coast. This is inconsistent with a simple southward shift in the mean position of the monsoon rainbelt, and requires changes in moisture convergence as a result of either a reduction in the moisture content of the tropical rainbelt, decreased convection, or both.

Shanahan, Timothy M.; Beck, J. Warren; Overpeck, Jonathan T.; McKay, Nicholas P.; Pigati, Jeffrey S.; Peck, John A.; Scholz, Christopher A.; Heil, Clifford W., Jr.; King, John W.

2012-01-01

39

Characterizing avulsion stratigraphy in ancient alluvial deposits  

NASA Astrophysics Data System (ADS)

Guidelines for identifying ancient avulsion deposits were set forth by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268], building on the study by Smith et al. [Smith, N.D., Cross, T.A., Dufficy, J.P., Clough, S.R., 1989. Anatomy of an avulsion. Sedimentology 36, 1-23] of the modern Saskatchewan River system (Cumberland Marshes, central Canada), and serve to characterize avulsion depositional sequences in the ancient Willwood and Fort Union Formations (Paleogene, Bighorn Basin, NW Wyoming, USA). We recognize, however, that the model is not universally applicable to avulsion-dominated successions, specifically systems which lack defining "heterolithic avulsion deposits", set forth by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268]. Observations in several fluvial intervals suggest that the avulsion stratigraphy outlined by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268] represents one category of avulsion stratigraphy found in the rock record, but does not capture the nature of avulsion deposits everywhere. Based on observations (using measured sections, outcrop photo-panels, and aerial photographs) in the Willwood Formation (Eocene, Wyoming) and Ferris Formation (Cretaceous/Paleogene, Wyoming), we present two end-member categories of avulsion stratigraphy in ancient deposits; stratigraphically abrupt, when a main paleochannel is stratigraphically juxtaposed directly atop floodplain/overbank deposits, and stratigraphically transitional, where crevasse splays and other non-floodplain/-overbank deposits stratigraphically precede a main paleochannel. This characterization provides a broader, more inclusive way to recognize and describe avulsion stratigraphy in ancient deposits and may be an important factor to consider when modeling connectivity in fluvial reservoirs. Furthermore, our observations show that one type of avulsion channel stratigraphy may prevail over another within an ancient basin, suggesting that system-wide factors such as splay-proneness or avulsion style (i.e. aggradational, incisional, etc.; [Slingerland, R., Smith, N.D., 2004. River avulsions and their deposits. Annual Review of Earth and Planetary Sciences 32, 257-285]) may be primary controls on the type of avulsion stratigraphy deposited and preserved in ancient basin-fills.

Jones, H. L.; Hajek, E. A.

2007-11-01

40

STRATIGRAPHY OF COUNTER-POINT-BAR AND EDDY-ACCRETION DEPOSITS IN LOW-ENERGY MEANDER BELTS OF THE PEACE-ATHABASCA  

E-print Network

OF THE PEACE-ATHABASCA DELTA, NORTHEAST ALBERTA, CANADA DERALD G. SMITH Department of Geography, University-point-bar deposits (CPBD) (Smith et al., 2009). Smith et al. (2009) examined the stratigraphy, sedimentology

41

Practical sedimentology, Second edition  

SciTech Connect

This book is for technical professionals in mineral exploration, environmental management, agriculture or forestry, this new edition takes an interdisciplinary approach to provide a lively and detailed overview of practical sedimentology. Emphasizing application over theory, the text is streamlined for comprehension, and it features many summary tables and graphs. The ideal companion to Analytical Sedimentology, this volume updates both methodology and applications, incorporates software information and extensively covers new technical developments. Specifically designed for students and cross-functional practitioners, it requires minimal geological background.

Lewis, D.W. (Univ. of Canterbury, Christchurch (New Zealand). Dept. of Geology); McConchie, D.M. (Southern Cross Univ., New South Wales (Australia). Centre for Coastal Management)

1994-01-01

42

Sedimentology of the Pennsylvanian and Permian Strathearn Formation, Northern Carlin Trend, Nevada; with a section on microfossil controls on the age of the Strathearn Formation  

USGS Publications Warehouse

Two framework-supported, poorly bedded conglomerate units of the middle Upper Pennsylvanian and middle Lower Permian Strathearn Formation belonging to the overlap assemblage of the Antler orogen are prominent in the northern Carlin trend. These horizons stratigraphically and temporally bracket thrust emplacement of a major allochthonous thrust plate of mainly quartzarenite of the Ordovician Vinini Formation. Lithologic and shape-ratio data from approximately 4,200 pebbles and cobbles at 17 sites as well as biostratigraphic data in the Strathearn, and their geologic implications, are included in this report. Conodont biofacies throughout the Strathearn Formation are normal marine and suggest middle shelf or deeper depositional environments. The conglomerate units roughly are similar in that they contain only chert and quartzarenite pebbles, but they differ in compositional proportions of the two lithologies. The relative proportion of quartzarenite pebbles increases sixfold in the middle Lower Permian upper conglomerate unit versus its content in the middle Upper Pennsylvanian lower unit, whereas chert pebbles predominate in both units. Various roundness categories of chert pebbles in both conglomerate units of the Strathearn show that the equant pebble class (B/A) = 1 clearly is represented strongly even in the subangular category, the lowest roundness categories for the pebbles. Thus, development of equant pebbles cannot be ascribed totally to a rounding process during predeposition transport. The equant character of many pebbles might, in part, be an original feature inherited from pre-erosion rock fractures and (or) bedding that control overall form of the fragments prior to their release to the transport environment. The allochthon of the Coyote thrust has been thrust above the lower conglomerate unit of the Strathearn during a regionally extensive contractional event in the late Paleozoic. The middle Lower Permian upper conglomerate unit, highest unit recognized in the Strathearn Formation, as well as similarly-aged dolomitic siltstone, onlap directly onto quartzarenite that comprises the allochthon of the Coyote thrust. The conglomerate units thus represent submarine fanglomerates whose quartz grains and quartzarenite fragments of variable roundness and shape were derived from a sedimentologically restored largely southeastward advancing late Paleozoic allochthonous lobe of mostly quartzarenite of the Ordovician Vinini Formation. Chert fragments in the conglomerates probably were derived mostly from Devonian Slaven Chert, including a widespread thick melange unit of the Slaven in the footwall of the Coyote thrust. Some chert pebbles may have been derived from the Ordovician Vinini Formation.

Berger, Vladimir I.; Singer, Donald A.; Theodore, Ted G.; Harris, Anita G.; Stevens, Calvin H.

2001-01-01

43

New radiometric age of volcanic rocks in the central Eritrean plateau (from Asmara to Adi Quala): Considerations on stratigraphy and correlations  

NASA Astrophysics Data System (ADS)

New radiometric data have recently been acquired on basalt and rhyolite sampled at various levels of the volcanic sequence occurring in the central Eritrean plateau, confirming the stratigraphic reconstruction suggested in a previous paper [Zanettin, B., Bellieni, G., Justin Visentin, E., Haile, T., 1999. The volcanic rocks of the Eritrean plateau: stratigraphy and evolution. Acta Volcanologica 11(1), 183-193]. New considerations indicate the tholeiitic, not alkaline, nature of the Asmara basalt. Doubts about the relative age of the Aiba/Alaji and Asmara basalts have now been clarified: they are, at least partly, coeval (about 30 Ma old). The Serae rhyolite intercalated in the Adi Ugri basalt turns out to be about 24 Ma old, like the more abundant ignimbrite outcropping in the Senafe area, of which it is the westernmost extension. Its age confirms that it does not correspond to the trachyte intercalated in the Oligocene stratoid basalt of the Adwa-Axum area (where the Adi Ugri basalt probably also occurs, intercalated with the Serae trachyte and rhyolite). The upper part of the Adi Ugri basalt is 22 Ma old (an age consistent with the finding of a Deinotherium tooth). The radiometric age of these rocks also confirms already indicated correlations between Eritrean and Ethiopian volcanic formations.

Zanettin, B.; Bellieni, G.; Visentin, E. Justin

2006-06-01

44

First Clarkforkian Equivalent Land Mammal Age in the Latest Paleocene Basal Sparnacian Facies of Europe: Fauna, Flora, Paleoenvironment and (Bio)stratigraphy  

PubMed Central

The Paleocene-Eocene Thermal Maximum (PETM) is correlated with the first occurrences of earliest modern mammals in the Northern Hemisphere. The latest Paleocene Clarkforkian North American Land Mammal Age, that has yielded rodents and carnivorans, is the only exception to this rule. However, until now no pre-PETM localities have yielded modern mammals in Europe or Asia. We report the first Clarkforkian equivalent Land Mammal Age in the latest Paleocene deposits of the basal Sparnacian facies at Rivecourt, in the north-central part of the Paris Basin. The new terrestrial vertebrate and macroflora assemblages are analyzed through a multidisciplinary study including sedimentologic, stratigraphic, isotopic, and palynological aspects in order to reconstruct the paleoenvironment and to evaluate biochronologic and paleogeographic implications. The mammals are moderately diverse and not abundant, contrary to turtles and champsosaurs. The macroflora is exceptional in preservation and diversity with numerous angiosperms represented by flowers, fruits, seeds and wood preserved as lignite material, revealing an abundance of Arecaceae, Betulaceae, Icacinaceae, Menispermaceae, Vitaceae and probably Cornaceae. Results indicate a Late Paleocene age based on carbon isotope data, palynology and vertebrate occurrences such as the choristoderan Champsosaurus, the arctocyonid Arctocyon, and the plesiadapid Plesiadapis tricuspidens. However, several mammal species compare better with the earliest Eocene. Among these, the particular louisinid Teilhardimys musculus, also recorded from the latest Paleocene of the Spanish Pyrenees, suggests a younger age than the typical MP6 reference level. Nevertheless, the most important aspect of the Rivecourt fauna is the presence of dental remains of a rodent and a “miacid” carnivoran, attesting to the presence of two modern mammalian orders in the latest Paleocene of Europe. Interestingly, these two groups are also the only modern groups recorded from the latest Paleocene of North America, making Rivecourt the first direct equivalent to the Clarkforkian Land Mammal Age outside of North America. PMID:24489703

Smith, Thierry; Quesnel, Florence; De Plöeg, Gaël; De Franceschi, Dario; Métais, Grégoire; De Bast, Eric; Solé, Floréal; Folie, Annelise; Boura, Anaïs; Claude, Julien; Dupuis, Christian; Gagnaison, Cyril; Iakovleva, Alina; Martin, Jeremy; Maubert, François; Prieur, Judicaël; Roche, Emile; Storme, Jean-Yves; Thomas, Romain; Tong, Haiyan; Yans, Johan; Buffetaut, Eric

2014-01-01

45

First Clarkforkian equivalent Land Mammal Age in the latest Paleocene basal Sparnacian facies of Europe: fauna, flora, paleoenvironment and (bio)stratigraphy.  

PubMed

The Paleocene-Eocene Thermal Maximum (PETM) is correlated with the first occurrences of earliest modern mammals in the Northern Hemisphere. The latest Paleocene Clarkforkian North American Land Mammal Age, that has yielded rodents and carnivorans, is the only exception to this rule. However, until now no pre-PETM localities have yielded modern mammals in Europe or Asia. We report the first Clarkforkian equivalent Land Mammal Age in the latest Paleocene deposits of the basal Sparnacian facies at Rivecourt, in the north-central part of the Paris Basin. The new terrestrial vertebrate and macroflora assemblages are analyzed through a multidisciplinary study including sedimentologic, stratigraphic, isotopic, and palynological aspects in order to reconstruct the paleoenvironment and to evaluate biochronologic and paleogeographic implications. The mammals are moderately diverse and not abundant, contrary to turtles and champsosaurs. The macroflora is exceptional in preservation and diversity with numerous angiosperms represented by flowers, fruits, seeds and wood preserved as lignite material, revealing an abundance of Arecaceae, Betulaceae, Icacinaceae, Menispermaceae, Vitaceae and probably Cornaceae. Results indicate a Late Paleocene age based on carbon isotope data, palynology and vertebrate occurrences such as the choristoderan Champsosaurus, the arctocyonid Arctocyon, and the plesiadapid Plesiadapis tricuspidens. However, several mammal species compare better with the earliest Eocene. Among these, the particular louisinid Teilhardimys musculus, also recorded from the latest Paleocene of the Spanish Pyrenees, suggests a younger age than the typical MP6 reference level. Nevertheless, the most important aspect of the Rivecourt fauna is the presence of dental remains of a rodent and a "miacid" carnivoran, attesting to the presence of two modern mammalian orders in the latest Paleocene of Europe. Interestingly, these two groups are also the only modern groups recorded from the latest Paleocene of North America, making Rivecourt the first direct equivalent to the Clarkforkian Land Mammal Age outside of North America. PMID:24489703

Smith, Thierry; Quesnel, Florence; De Plöeg, Gaël; De Franceschi, Dario; Métais, Grégoire; De Bast, Eric; Solé, Floréal; Folie, Annelise; Boura, Anaïs; Claude, Julien; Dupuis, Christian; Gagnaison, Cyril; Iakovleva, Alina; Martin, Jeremy; Maubert, François; Prieur, Judicaël; Roche, Emile; Storme, Jean-Yves; Thomas, Romain; Tong, Haiyan; Yans, Johan; Buffetaut, Eric

2014-01-01

46

Recent Trends and Advances in Sedimentology.  

ERIC Educational Resources Information Center

Briefly surveys recent trends and developments in sedimentology. Includes Clastic sedimentary petrology, petrology of argillaceous rocks, terrigenous depositional environments, and chemical sedimentology. (MA)

Suttner, Lee J.

1979-01-01

47

Sequence stratigraphy in Proterozoic successions  

SciTech Connect

Sedimentological logging and facies mapping have been used to identify depositional sequences bounded by subtle but regionally persistent unconformities in rocks of Proterozoic age in the western US, South Australia, and northwestern Canada. The authors conclude from these studies that the sequence stratigraphic approach is of considerable importance for intrabasinal time correlation in the Proterozoic and for facies interpretation and basin analysis in Proterozoic rocks.

Christie-Blick, N.; Grotzinger, J.P.; von der Borch, C.C.

1988-02-01

48

Young age bias of radiocarbon dates in pre-holocene marine deposits of Hong Kong and implications for Pleistocene stratigraphy  

Microsoft Academic Search

Radiocarbon dates of pre-Holocene marine deposits in Hong Kong ranging from 21.580±1.210 to 45.700±2.000 years BP are found to be younger than uranium-series dates of mollusks and other indirect age evidence. Two mollusk samples yielded last interglacial ages of 130.500±5.300 and 142.000±20.000 years BP. respectively. Palynological and oxygen-isotope evidence shows that the marine deposits containing the mollusks were formed under

W. W.-S. Yim; M. Ivanovich; K.-F. Yu

1990-01-01

49

Stratigraphy, structure, absolute age, and paleontology of the upper Pleistocene deposits at Sankaty Head, Nantucket Island, Massachusetts  

USGS Publications Warehouse

The Sankaty Head cliff exposes drift of at least two glaciations and interglacial marine deposits. Radiocarbon, amino-acid- racemization, and uranium-thorium analyses were used to determine the absolute ages of the beds. The results indicate that 1) the Sankaty Sand correlates with oxygen-isotope stage 5 (Sangamonian), 2) the underlying drift is older than stage 5 (Illinoian or older) , and 3) the overlying drift is Wisconsinan in age. -from Authors

Oldale, Robert N.; Valentine, Page C.; Cronin, T. M.; Spiker, E. C.; Blackwelder, B. W.; Belknap, D.F.; Wehmiller, J. F.; Szabo, B. J.

1982-01-01

50

Sequence stratigraphy, structural style, and age of deformation of the Malaita accretionary prism (Solomon arc-Ontong Java Plateau convergent zone)  

NASA Astrophysics Data System (ADS)

Possibilities for the fate of oceanic plateaus at subduction zones range from complete subduction of the plateau beneath the arc to complete plateau-arc accretion and resulting collisional orogenesis. Deep penetration, multi-channel seismic reflection (MCS) data from the northern flank of the Solomon Islands reveal the sequence stratigraphy, structural style, and age of deformation of an accretionary prism formed during late Neogene (5-0 Ma) convergence between the ˜33-km-thick crust of the Ontong Java oceanic plateau and the ˜15-km-thick Solomon island arc. Correlation of MCS data with the satellite-derived, free-air gravity field defines the tectonic boundaries and internal structure of the 800-km-long, 140-km-wide accretionary prism. We name this prism the "Malaita accretionary prism" or "MAP" after Malaita, the largest and best-studied island exposure of the accretionary prism in the Solomon Islands. MCS data, gravity data, and stratigraphic correlations to islands and ODP sites on the Ontong Java Plateau (OJP) reveal that the offshore MAP is composed of folded and thrust faulted sedimentary rocks and upper crystalline crust offscraped from the Solomon the subducting Ontong Java Plateau (Pacific plate) and transferred to the Solomon arc. With the exception of an upper, sequence of Quaternary? island-derived terrigenous sediments, the deformed stratigraphy of the MAP is identical to that of the incoming Ontong Java Plateau in the North Solomon trench. We divide the MAP into four distinct, folded and thrust fault-bounded structural domains interpreted to have formed by diachronous, southeast-to-northwest, and highly oblique entry of the Ontong Java Plateau into a former trench now marked by the Kia-Kaipito-Korigole (KKK) left-lateral strike-slip fault zone along the suture between the Solomon arc and the MAP. The structural style within each of the four structural domains consists of a parallel series of three to four fault propagation folds formed by the seaward propagation of thrust faults roughly parallel to sub-horizontal layering in the upper crystalline part of the OJP. Thrust fault offsets, spacing between thrusts, and the amplitude of related fault propagation folds progressively decrease to the west in the youngest zone of active MAP accretion (Choiseul structural domain). Surficial faulting and folding in the most recently deformed, northwestern domain show active accretion of greater than 1 km of sedimentary rock and 6 km, or about 20%, of the upper crystalline part of the OJP. The eastern MAP (Malaita and Ulawa domains) underwent an earlier, similar style of partial plateau accretion. A pre-late Pliocene age of accretion (˜3.4 Ma) is constrained by an onshore and offshore major angular unconformity separating Pliocene reefal limestone and conglomerate from folded and faulted pelagic limestone of Cretaceous to Miocene age. The lower 80% of the Ontong Java Plateau crust beneath the MAP thrust decollement appears unfaulted and unfolded and is continuous with a southwestward-dipping subducted slab of presumably denser plateau material beneath most of the MAP, and is traceable to depths >200 km in the mantle beneath the Solomon Islands.

Phinney, Eric J.; Mann, Paul; Coffin, Millard F.; Shipley, Thomas H.

2004-10-01

51

Global stratigraphy. [of planet Mars  

NASA Technical Reports Server (NTRS)

Attention is given to recent major advances in the definition and documentation of Martian stratigraphy and geology. Mariner 9 provided the images for the first global geologic mapping program, resulting in the recognition of the major geologic processes that have operated on the planet, and in the definition of the three major chronostratigraphic divisions: the Noachian, Hesperian, and Amazonian Systems. Viking Orbiter images permitted the recognition of additional geologic units and the formal naming of many formations. Epochs are assigned absolute ages based on the densities of superposed craters and crater-flux models. Recommendations are made with regard to future areas of study, namely, crustal stratigraphy and structure, the highland-lowland boundary, the Tharsis Rise, Valles Marineris, channels and valley networks, and possible Martian oceans, lakes, and ponds.

Tanaka, Kenneth L.; Scott, David H.; Greeley, Ronald

1992-01-01

52

Cretaceous Tethyan Stratigraphy  

NSDL National Science Digital Library

The objective of this site is to construct a database for Cretaceous Tethyan stratigraphy. Stratigraphic information, photos and charts are arranged by geologic stage in a vertical menu. The types of information found in this site include basin reference sections, basin or platform control sections, biostratigraphic and sequence stratigraphic data, as well as other data that support and refine correlations. Access to scientific forums about Tethyan stratigraphy and a list of relevant links are also provided.

Granier Bruno

53

Workshop on the Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution  

NASA Technical Reports Server (NTRS)

Papers that have been accepted for presentation at the Workshop on the Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution, on 12-14 Aug. 1993 in Fairbanks, Alaska are included. Topics covered include: hydrological consequences of ponded water on Mars; morphological and morphometric studies of impact craters in the Northern Plains of Mars; a wet-geology and cold-climate Mars model: punctuation of a slow dynamics approach to equilibrium; the distribution of ground ice on Mars; and stratigraphy of the Martian Northern Plains.

Kargel, Jeffrey S. (editor); Moore, Jeffrey (editor); Parker, Timothy (editor)

1993-01-01

54

Volcanic stratigraphy of a high-altitude Mammuthus columbi (Tlacotenco, Sierra Chichinautzin), Central México  

NASA Astrophysics Data System (ADS)

The discovery of a near complete skeleton of Mammuthus columbi in a cornfield located on the northern slopes of the Sierra Chichinautzin volcanic field south of Mexico City sparked the interest of the scientific and public community. Although remains of this species of mammoth are frequently discovered in central Mexico, this new find is at the southernmost and highest (ca. 2770 m asl) location yet within the Mexico Basin. In addition, the bones were found embedded in dark volcanic ash, raising the possibility of a relationship between the death of the animal and explosive activity at a neighboring scoria cone, as the site is located <10 km from several young volcanoes. Stratigraphic, sedimentological, geochemical, and geochronological studies were conducted at the discovery site and within a 5-km radius to determine the tephra stratigraphy in the area and constrain the source of the " mammoth ash" and the age and taphonomy of the fossil remains. Results show that the mammoth was buried after death by stream-flows (dilute lahars) that were triggered by torrential rain that remobilized loose scoriaceous ash ejected by the San Miguel cone some time after its eruption ca. 17,000 BP.

Guilbaud, Marie-Noelle; Arana-Salinas, Lilia; Siebe, Claus; Barba-Pingarrón, Luis Alberto; Ortiz, Agustín

2015-03-01

55

USC Sequence Stratigraphy Web  

NSDL National Science Digital Library

Sequence stratigraphy is a technique used to subdivide the sedimentary section into packages that are defined by bounding unconformities and internal surfaces, and are the products of changes in relative sea level and rates of sedimentation. Sequence stratigraphic analyses are made from seismic cross-sections, well logs, and outcrop studies of sedimentary rocks to infer changes of relative sea level and rates of sedimentation, and predict the continuity and extent of their lithology. This University of South Carolina website provides: animated cartoons demonstrating how gross sedimentary geometric relationships develop in response to varying rates of change of sedimentation, eustasy, and tectonic movement; movies of sedimentary simulations; video narration; films on location; 3D perspectives; simple interactive exercises on chronostratigraphy; fact sheets on world petroleum; historical perspectives about stratigraphy; the potential to simulate the development of geometric relationships on-line; links; references; and on-line papers.

Christopher Kendall

56

A luminescence dating study of the sediment stratigraphy of the Lajia Ruins in the upper Yellow River valley, China  

NASA Astrophysics Data System (ADS)

Pedo-sedimentological fieldwork were carried out in the Lajia Ruins within the Guanting Basin along the upper Yellow River valley. In the eolian loess-soil sections on the second river terrace in the Lajia Ruins, we find that the land of the Qijia Culture (4.20-3.95 ka BP) are fractured by several sets of earthquake fissures. A conglomerated red clay covers the ground of the Qijia Culture and also fills in the earthquake fissures. The clay was deposited by enormous mudflows in association with catastrophic earthquakes and rainstorms. The aim of this study is to provide a luminescence chronology of the sediment stratigraphy of the Lajia Ruins. Eight samples were taken from an eolian loess-soil section (Xialajia section) in the ruins for optically stimulated luminescence (OSL) dating. The OSL ages are in stratigraphic order and range from (31.94 ± 1.99) ka to (0.76 ± 0.02) ka. Combined OSL and 14C ages with additional stratigraphic correlations, a chronological framework is established. We conclude that: (1) the second terrace of the upper part of Yellow River formed 35.00 ka ago, which was followed by the accumulation of the eolian loess-soil section; and (2) the eolian loess-soil section is composed of the Malan Loess of the late last glacial (MIS-2) and Holocene loess-soil sequences.

Zhang, Yuzhu; Huang, Chun Chang; Pang, Jiangli; Zhou, Yali; Zha, Xiaochun; Wang, Longsheng; Zhou, Liang; Guo, Yongqiang; Wang, Leibin

2014-06-01

57

Stratigraphy of the Martian northern plains  

NASA Technical Reports Server (NTRS)

The northern plains of Mars are roughly defined as the large continuous region of lowlands that lies below Martian datum, plus higher areas within the region that were built up by volcanism, sedimentation, tectonism, and impacts. These northern lowlands span about 50 x 10(exp 6) km(sup 2) or 35 percent of the planet's surface. The age and origin of the lowlands continue to be debated by proponents of impact and tectonic explanations. Geologic mapping and topical studies indicate that volcanic, fluvial, and eolian deposition have played major roles in the infilling of this vast depression. Periglacial, glacial, fluvial, eolian, tectonic, and impact processes have locally modified the surface. Because of the northern plains' complex history of sedimentation and modification, much of their stratigraphy was obscured. Thus the stratigraphy developed is necessarily vague and provisional: it is based on various clues from within the lowlands as well as from highland areas within and bordering the plains. The results are summarized.

Tanaka, K. L.

1993-01-01

58

Snow Pit Stratigraphy  

NSDL National Science Digital Library

The student understands that snow leads to avalanches, but is often very inexperienced in the observation of the snow pack. This exercise provides the opportunity to learn about snow stratigraphy, observation, and measurement from a detailed observational perspective. The students work in small groups in 3-6 pits (depends on the class size). By working on a transect from the trees out into the opening, they discover (usually) that the snow depth is different and that the descriptions in the pits differ as one proceeds out from the trees into the opening. (Different stratigraphic units, different thickness, different temperature, different density, different crystals.)

Stephan Custer

59

Sedimentological Evidence of the 1812 Santa Barbara Tsunami in Carpinteria Marsh, CA  

NASA Astrophysics Data System (ADS)

The Santa Barbara coast is at risk for tsunamis generated from tectonic movement in areas of compression and extension associated with the San Andreas Fault, as well as from submarine landslide movement in the Santa Barbara channel. Historical documents and other records indicate Santa Barbara has experienced approximately sixteen historical tsunamis, the largest of which may have occurred on Dec 21, 1812, following a magnitude ~7.1 earthquake. We propose that an anomalous sand deposit, Sand Facies One (SF1), which is found within the first meter of sediment throughout Carpinteria Marsh in Carpinteria, CA, may represent deposition related to this event. We have collected 23 vibracores, up to 4.1 m in length, and three Geoprobe cores to ~14 m depth in Carpinteria Marsh. SF1 occurs in 20 of the 23 vibracores and exhibits sedimentological characteristics associated with a tsunami genesis such as: fining upward grain size, sharp or erosional basal contact, and thinning of the deposit landward. Mineralogy, deposit geometry, and X-Ray Florescence (XRF) data are used to determine a marine versus terrestrial origin for the layer. It is difficult, however, to differentiate between storm and tsunami deposits based purely on the sedimentary characteristics of a deposit. We show that an improved age chronology which includes exotic pollen stratigraphy and radiocarbon data indicates an age range appropriate for the 1812 event but does not exclude regional flooding events documented in the 1860s. We use the characteristics of SF1 to determine if similar layers occur at other depths in the Geoprobe cores. Preliminary core descriptions indicate that there is at least one layer which exhibits characteristics similar to SF1and may indicate the occurrence of a similar inundation event. We conclude that tsunami deposition related to the 1812 event is a possible explanation for SF1, but additional analyses are needed to rule out other flooding events. Whether storm or tsunami, the deposit's characteristics imply inundation at a scale and intensity that would be detrimental to the low lying areas of the Santa Barbara coast--the presence of similar layers at greater depths imply this degree of inundation has recurred over time and is an important process to understand for risk assessment for the Santa Barbara coast.

Reynolds, L.; Simms, A.; King, B. L.; Rockwell, T. K.; Ejarque, A.; Anderson, R.; Peters, R. B.

2013-12-01

60

Long-Term Sedimentology Projects Using Local Geological and Environmental Problems  

NSDL National Science Digital Library

The goal of long-term laboratory projects is to allow students to apply newly learned concepts and methods to real-world problems and thereby add value to the laboratory learning experience. Effective projects are those that are carefully planned, have clearly defined learning objectives and reasonable workload and final product expectations. Exercises vary in length and content depending upon learning goals, class size, available resources, methodology and scheduling concerns (e.g. beginning or end of course, available class time or time of year). Each project begins with an introduction in which a geological question is posed and students are presented with background information, published reference material and guidelines for effective scientific writing. The introductory presentations are followed by group discussions to formulate the hypothesis(es) to be tested and determine the experimental design, with due consideration to the constraints listed above. It is important that students understand their individual responsibilities and their role in the larger group effort. In the following weeks, students are provided with the materials and methods they need to conduct each phase of the project. Students collect and process their own data whenever possible. Preferably this phase involves field description and collection of samples for later lab analysis but previously collected sediment or rock cores or samples may also be used. Data analysis is a class-wide effort with each student or student team contributing a component to a larger class-wide database. Workload expectations must be clearly defined and students must conform to a tight timeframe during the analysis portion of the exercise so that the final database is complete and available on schedule. Interim deadlines for data components generally help students stay on schedule during this phase. Data synthesis and final report preparation are individual efforts. Students are encouraged to be creative in the interpretation and presentation of their results but are warned not to draw conclusions that cannot be supported by their data. Examples of long-term projects that have been used for sedimentology at SUNY Plattsburgh include: Particle shape analysis of beach and fluvial gravel in the Champlain Valley Provenance of glacial till in the Champlain Valley and northeastern Adirondack Mountain region Sedimentology, stratigraphy and landslide susceptibility of proglacial lake and marine deposits on the Lake Champlain lakeshore in Plattsburgh, NY Sedimentology and stratigraphy of the Potsdam Sandstone in the Champlain Valley Sedimentological evidence for breakout floods in proglacial lake and marine deposits in the Champlain Valley

David Franzi

61

Continental margin sedimentation: from sediment transport to sequence stratigraphy  

USGS Publications Warehouse

This volume on continental margin sedimentation brings together an expert editorial and contributor team to create a state-of-the-art resource. Taking a global perspective, the book spans a range of timescales and content, ranging from how oceans transport particles, to how thick rock sequences are formed on continental margins. - Summarizes and integrates our understanding of sedimentary processes and strata associated with fluvial dispersal systems on continental shelves and slopes - Explores timescales ranging from particle transport at one extreme, to deep burial at the other - Insights are presented for margins in general, and with focus on a tectonically active margin (northern California) and a passive margin (New Jersey), enabling detailed examination of the intricate relationships between a wide suite of sedimentary processes and their preserved stratigraphy - Includes observational studies which document the processes and strata found on particular margins, in addition to numerical models and laboratory experimentation, which provide a quantitative basis for extrapolation in time and space of insights about continental-margin sedimentation - Provides a research resource for scientists studying modern and ancient margins, and an educational text for advanced students in sedimentology and stratigraphy

Nittrouer, Charles A., (Edited By); Austin, James A.; Field, Michael E.; Kravitz, Joseph H.; Syvitski, James P.M.; Wiberg, Patricia L.

2007-01-01

62

New high precision U-Pb ages for the Vinchina Formation: Implications for the stratigraphy of the Bermejo Andean foreland basin (La Rioja province, western Argentina)  

NASA Astrophysics Data System (ADS)

The Vinchina Formation is one of the thickest Cenozoic units related to the Andean orogeny in Argentina totaling more than 5100 m in thickness. Different ages, from Eocene to latest Miocene, have been postulated for this red-bed succession based on fission track, magnetostratigraphy and whole rock isotopic analyses. Two new high precision U-Pb zircon ages are reported herein for this unit. A maximum U-Pb age of 15.6 ± 0.4 Ma was obtained from detritic zircons collected from a thick tuffaceous interval of the Lower Member of the Vinchina Formation at La Cueva (Precordillera), while a depositional U-Pb age of 9.24 ± 0.034 Ma was derived from volcanic zircons collected from a thin tuff bed in the Upper Member at Quebrada de Los Pozuelos (Northwestern Sierras Pampeanas). At La Cueva, the Vinchina Formation unconformably overlies eolian sandstones of the Vallecito Formation and was divided into four units representing 1) deposits of high-sinuosity ephemeral rivers associated with 2) a playa-lake passing upwards to 3) low-sinuosity sandy ephemeral rivers and finally, 4) a gravelly-sandy braided plain. The tuffaceous level corresponding to unit 1 is located 280 m above the base of the formation. At Quebrada de Los Pozuelos, the Vinchina Formation unconformably overlies the Vallecito Formation and is covered by a deeply incised surface at the base of the Toro Negro Formation. We divided the Vinchina Formation into four units. Unit 1 represents sedimentation in shallow fluvial channels with sandy to muddy floodplains. Units 2 and 3 record sedimentation in braided, meandering and anastomosing rivers. Finally unit 4 represents deposition in braided and wandering fluvial systems. The sampled tuff is located within unit 4 at ?3470 m above the base of the formation. The new ages indicate that the bulk of the Vinchina Formation is Miocene in age but they do not preclude a longer time span for the sedimentation of the whole unit. Ages of the sampled volcanic zircons match an important episode of volcanism recorded in the Cerro Las Tórtolas Formation, located ?90 km to the west in the Andean Cordillera, but also the upper tuff could be related to the late Miocene Puna volcanism. Comparison of the new ages with previous chronological data suggests coetaneous sedimentation along different depocenters of the Bermejo basin (e.g., Vinchina and Talampaya depocenters in Western Sierras Pampeanas and La Troya depocenter and Huaco-Mogna sections in Precordillera) and strenghten the need for correlation among them. In addition the age of 15.6 ± 0.4 Ma constrains the end of the severe arid conditions recorded in the Sierras Pampeanas and Precordillera region.

Ciccioli, P. L.; Limarino, C. O.; Friedman, R.; Marenssi, S. A.

2014-12-01

63

The Utility of Proximal-Accretion Stratigraphy in Lateral Moraines  

Microsoft Academic Search

Lateral-moraine stratigraphy is a valuable tool that can be used to constrain the timing and magnitude of alpine glacier fluctuations. Numerous lateral moraines, conventionally thought to have been constructed during the Little Ice Age (LIA), have been shown to be composite landforms that contain multiple till layers deposited by successively larger glacier advances. Organic matter and\\/or tephra sandwiched between the

M. A. Samolczyk; G. Osborn

2010-01-01

64

Lower Cretaceous nannofossil stratigraphy of the Great Valley sequence  

Microsoft Academic Search

The calcareous nannofossil stratigraphy of four sections in the Great Valley Sequence of the Sacramento Valley, California, has been investigated in detail. These sections include Grindstone and Stony Creeks (Glenn County) and McCarty Creek and the Vestal Road segment of Dry Creek (both in Tehama County). The ages of the sections investigated, which have independently been studied by ammonite, pelecypod,

Bralower

1990-01-01

65

Sedimentology of gas-bearing Devonian shales of the Appalachian Basin  

SciTech Connect

The Eastern Gas Shales Project (1976-1981) of the US DOE has generated a large amount of information on Devonian shale, especially in the western and central parts of the Appalachian Basin (Morgantown Energy Technology Center, 1980). This report summarizes this information, emphasizing the sedimentology of the shales and how it is related to gas, oil, and uranium. This information is reported in a series of statements each followed by a brief summary of supporting evidence or discussion and, where interpretations differ from our own, we include them. We believe this format is the most efficient way to learn about the gas-bearing Devonian shales of the Appalachian Basin and have organized our statements as follows: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas, oil, and uranium.

Potter, P.E.; Maynard, J.B.; Pryor, W.A.

1981-01-01

66

Pollen stratigraphy of coal-bearing deposits in the Neogene Jidong Basin, Heilongjiang Province, NE China: New insights on palaeoenvironment and age  

Microsoft Academic Search

The palaeoenvironment and age of coal-bearing lacustrine deposits in the Jidong Basin, Heilongjiang Province, is poorly understood. New pollen data from the Yongqing Formation and the overlying lower part of the Daqingshan Formation recovered in borehole 91-205 revealed a rich and diverse palynoflora representing approximately 70 taxa at the genus\\/family level. Of these taxa, Ulmus, Quercus, Carya, Liquidambar, Pinus, Tilia,

Jun-Wu Shu; Wei-Ming Wang; Estella B. Leopold; Jin-Shan Wang; De-Shun Yin

2008-01-01

67

Sedimentology of polar carbonate systems  

NASA Astrophysics Data System (ADS)

The key attributes, processes, and products associated with carbonate accumulation and diagenesis at tropical and temperate latitudes are well known. Comparatively little work has concentrated on carbonate deposition at the coldest end of the depositional spectrum, the polar shelves. Such deposits are not abundant, but they have the potential to provide unique insights into paleoceanographic and paleoclimatic conditions in regions of the planet that are arguably the most sensitive to global change. We examined skeletal assemblages, facies, stratigraphy, petrography, geochemistry, and diagenesis of Quaternary deposits from the Ross Sea, Antarctica and Permian counterparts from Gondwana (now eastern Australia). These modern and ancient polar carbonate factories possess several unique characteristics that set them apart from better-known systems of the temperate and tropical latitudes. All production is biogenic and there are no significant calcareous phototrophs. Carbonate communities are not capable of building rigid frameworks, and thus their deposits are prone to winnowing and reworking by waves and bottom currents. The seawater, although frigid, is isothermal, and thus deep-water benthic communities can exist near the surface. Carbonate saturation, which is at or below solubility for both aragonite and high-Mg calcite, plays a key role in determining the dominant mineralogy of benthos as well as the preservation potential of skeletal debris. As many taxa precipitate low-Mg calcite in isotopic equilibrium, deposits have potential to provide geochemical proxy information for use in paleoceanographic and paleoclimatic reconstructions. More than any other type of carbonate system, the slow biogenic carbonate production and accumulation in cold waters is achieved firstly by arresting siliciclastic sedimentation and secondly by increasing nutrient availability. Thus, carbonate deposition may occur during the coldest of times, such as during glacial advance when terrigenous clastics are sequestered inboard and invigorated ocean circulation enhances upwelling. Radiocarbon data from Quaternary deposits in the Ross Sea indicate that short windows of accumulation during favorable conditions are followed by longer intervals of non-productivity, during which skeletal debris undergoes dissolution and infestation by endolithic borers, carbonate sediments are reworked by bottom currents, and glacigene siliciclastic facies are deposited. Similar patterns are evident in Permian deposits. We interpret the post-carbonate depositional periods as not only due to increased terrigenous input but also dramatically reduced trophic resources. The foregoing hypothesis is at odds with most current thinking about carbonate deposition and points to an evolving paradigm within which polar carbonate deposition is dramatically different than that in temperate and tropical settings.

Frank, T. D.; James, N. P.

2013-12-01

68

6 The morphology and sedimentology of landforms  

E-print Network

6 The morphology and sedimentology of landforms created by subglacial megafloods MANDY J. MUNRO, CLAIRE L. BEANEY and BRUCE B. RAINS Summary Subglacial landforms across various scales preserve of many of these landforms is, however, contentious. In this chapter these forms are described both

Brennand, Tracy

69

Lithostratigraphy, petrography, biostratigraphy, and strontium-isotope stratigraphy of the surficial aquifer system of western Collier County, Florida  

USGS Publications Warehouse

In 1996, seven cores were recovered in western Collier County, southwestern Florida, to acquire subsurface geologic and hydrologic data to support ground-water modeling efforts. This report presents the lithostratigraphy, X-ray diffraction analyses, petrography, biostratigraphy, and strontium-isotope stratigraphy of these cores. The oldest unit encountered in the study cores is an unnamed formation that is late Miocene. At least four depositional sequences are present within this formation. Calculated age of the formation, based on strontium-isotope stratigraphy, ranges from 9.5 to 5.7 Ma (million years ago). An unconformity within this formation that represents a hiatus of at least 2 million years is indicated in the Old Pump Road core. In two cores, Collier-Seminole and Old Pump Road, the uppermost sediments of the unnamed formation are not dated by strontium isotopes, and, based on the fossils present, these sediments could be as young as Pliocene. In another core (Fakahatchee Strand-Ranger Station), the upper part of the unnamed formation is dated by mollusks as Pliocene. The Tamiami Formation overlies the unnamed formation throughout the study area and is represented by the Ochopee Limestone Member. The unit is Pliocene and probably includes the interval of time near the early/late Pliocene boundary. Strontium-isotope analysis indicates an early Pliocene age (calculated ages range from 5.1 to 3.5 Ma), but the margin of error includes the latest Miocene and the late Pliocene. The dinocyst assemblages in the Ochopee typically are not age-diagnostic, but, near the base of the unit in the Collier-Seminole, Jones Grade, and Fakahatchee Strand State Forest cores, they indicate an age of late Miocene or Pliocene. The molluscan assemblages indicate a Pliocene age for the Ochopee, and a distinctive assemblage of Carditimera arata and Chione cortinaria in several of the cores specifically indicates an age near the early/late Pliocene boundary. Undifferentiated sands overlie the Pliocene limestones in two cores in the southern part of the study area. Artificial fill occurs at the top of most of the cores. The hydrologic confining units penetrated by these cores are different in different parts of the study area. To the west, a hard tightly cemented dolostone forms the first major confining unit below the water table. In the eastern part of the study area, confinement is more difficult to determine. A tightly cemented sandstone, much younger than the dolostones to the west and probably not laterally connected to them, forms a slight confining unit in one core. Thick zones of poorly sorted muddy unconsolidated sands form a slight confining unit in other cores; these probably are not correlative to either the sandstone or the dolostones to the west. The age and sedimentologic observations suggest a complex compartmentalization of the surficial aquifer system in southwestern Florida. The calibrations of dinocyst and molluscan occurrences with strontium-isotope stratigraphy allows us to expand and document the reported ranges of many taxa. This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Edwards, L.E.; Weedman, S.D.; Simmons, R.; Scott, T.M.; Brewster-Wingard, G. L.; Ishman, S.E.; Carlin, N.M.

1998-01-01

70

New magnetic Polarity Stratigraphy of the Mae Moh Basin in northern Thailand, and Implications for the Age of the First Miocene Hominoids  

NASA Astrophysics Data System (ADS)

This magnetostratigraphic study has been conducted on the Miocene Mae Moh basin, in the Lampang province, Northern Thailand. 194 paleomagnetic samples were collected from 65 stratigraphics levels from Na Khaem and Huai Luang formations. The studied sections are mainly composed of clay, sandstone and lignite. Rock magnetic experiments revealed that titanomagnetite, magnetite and hematite are the mains carriers of magnetisation. Samples subjected to progressive thermal or alternating field demagnetization procedures exhibit a low stability and a high stability component, with either normal and reversed polarities. The reversal test is positive and indicates that the characteristic remnant magnetization directions correspond to the primary magnetization directions (McFadden and Mc Elhinny, 1990). The mean direction calculated for section 1 are: incl : 23.24 and decl. : 5.01 and incl. : 31.22 et decl. : 7.01 for section 2. These results don't document any rotation with respect to previous study (Benammi et al., 2002). In total, nine polarity zones (four normal and five reverse), that can be reliably be correlated the geomagnetic polarity time scale developed by Gradstein et al, 2004, are recognized from the studied sections. Based on the biochronological constraints, the magnetostartigraphic column of the Mae Moh formations correlates best with chron C5ACr-C5r.3r, between 14.1and 12 Ma. This correlaton revealed a mean sedimentation rate of approximately 21 cm/ky, and a age of 12.7 et 13.2 for for the fossilferous levels (J5, K1, K2) where the mammals remains were found. The analysis of the elements traces spectrum of two ash levels coming from the basins of Mae Moh and Chiang Muan made it possible to establish a new correlation of the Chiang Muan sequence with the GPTS. This correlation prove that the age of the Chiang Muan sequence would be between 13.1 and 12 Ma, and the fossiliferous levels with hominoid (Khoratpithecus Chiangmuanensis) would be dated between 12.2 and 12.4 Ma for the upper lignite and between 13 and 12.8 My for the lower lignite.

Benammi, M.; Coster, P.; Jaeger, J.; Chaimanee, Y.

2007-05-01

71

The stratigraphy of the Middle Stone Age sediments at Pinnacle Point Cave 13B (Mossel Bay, Western Cape Province, South Africa).  

PubMed

Pinnacle Point Cave 13B (PP13B) has provided the earliest archaeological evidence for the exploitation of marine shellfish, along with very early evidence for use and modification of pigments and the production of bladelets, all dated to approximately 164 ka (Marean et al., 2007). This makes PP13B a key site in studies of the origins of modern humans, one of a handful of sites in Africa dating to Marine Isotope Stage 6 (MIS 6), and the only site on the coast of South Africa with human occupation confidently dated to MIS 6. Along with this MIS 6 occupation there are rich archaeological sediments dated to MIS 5, and together these sediments are differentially preserved in three different areas of the cave. The sediments represent a complex palimpsest of geogenic, biogenic, and anthropogenic input and alteration that are described and interpreted through the use of a variety of macrostratigraphic, micromorphologic, and geochemical techniques. Three independent dating techniques allow us to constrain the age range of these sediments and together provide the stratigraphic context for the analyses of the material that follow in this special issue. PMID:20934084

Marean, Curtis W; Bar-Matthews, Miryam; Fisher, Erich; Goldberg, Paul; Herries, Andy; Karkanas, Panagiotis; Nilssen, Peter J; Thompson, Erin

2010-01-01

72

Sedimentology and Holocene stratigraphy of a carbonate mangrove buildup, Twin Cays, Belize, Central America  

E-print Network

Bow Cut ss Curlew Bank Curlew Cut 0 k . (!i 't, . . . 'WeeWeeCay '. ', :;:::. : P. ; d ~r Barrier Reef Q Coys ~n Shoals ~&i: Sand Bores & Patch Reefs Fig. 2 ? Index Map showing the harrier reef complex in the vicinity of Twin Cays... of Lighty et al. (1982). Coulombe and Bloom ) UJ I R IZ Q. 0 UJ ffi N K W Z Z I 0 4 6 8 10 12 14 16 18 20 22 24 26 / / / / / / / / j / / / / ? CURRAY et al (1969) ? ? MOSLOW and HERON (1981) ? ? NEUMANN (Revised 1971...

Bond, Gregor Benton

1988-01-01

73

Relationships among sedimentology, stratigraphy, and diagenesis in the Proterozoic Thelon Basin, Nunavut, Canada: implications for  

E-print Network

to extensive U, Pb, Zn, Cu, Ag, and Au deposits, they have been best studied and described on the North, Nunavut, Canada: implications for paleoaquifers and sedimentary-hosted mineral deposits Eric E. Hiatta-type uranium mineralisation and has the potential to host other economic deposits. The Thelon Formation (ca

Hiatt, Eric E.

74

Sedimentology, stratigraphy and tectonics of evolving wedge-top depozone: Ariano Basin, southern Apennines, Italy  

NASA Astrophysics Data System (ADS)

The late Zanclean wedge-top Ariano Basin, located in the external sector of the southern Apennines, was initially characterized by alluvial and fan-delta environments and successively, southward of the Benevento-Buonalbergo fault, by a gradual drowning with coastal and alluvial plains evolving to shelf and marine coastal settings, respectively. Basin evolution continued with a synsedimentary uplift of different sectors resulting in variations in the drainage pattern and basin shape, and ultimately leading to complete basin closure and transition to continental depositional environments. Early Pliocene paleogeography, prior to the Ariano Basin activity, is due to regional subsidence and subsequent differential uplifts that resulted from geodynamic processes related to both the downgoing Apulian slab and the allochthonous orogenic wedge. Slab break off and the migration of a tear in the southeastward Apulian slab occurred, producing a strong subsidence in the external sectors of the southern Apennines recorded by the development of the Ariano Basin. Subsequently out-of-sequence synsedimentary thrusting, related to thin-skinned tectonics, occurred in the allochthonous units and unconformably overlying wedge-top basin deposits, producing northeastward migration of the main depocenters in the Ariano Basin. Finally renewed thrusting, related to the inversion of pre-existing normal faults located in the buried Apulian Platform and enhanced by regional uplift, affected the whole tectonic and sedimentary pile, as recorded by deformation of the overlying Pliocene deposits.

Ciarcia, Sabatino; Vitale, Stefano

2013-05-01

75

The Heidelberg Basin Drilling Project - Sedimentology and Stratigraphy of the Quaternary succession  

NASA Astrophysics Data System (ADS)

Within the context of the Heidelberg Basin Drilling Project (Gabriel et al. 2008), a detailed sediment succession is presented here based upon deep drillings taken at Heidelberg UniNord and Mannheim Käfertal. Sediment structures, and micromorphological and pollen analyses were conducted and used to reconsider some of the climate transitions within the lower Pleistocene. A new and novel scenario is postulated regarding the preservation of Quaternary sediment packages within the Cenozoic Graben environment of the Heidelberg basin. The palynological evidence comprises the periods of warm climate of the Holsteinian (mainly Abies (fir), some Fagus (beech), Pterocarya & Azolla); the Cromerian (Pinus-Picea-QM (pine-spruce-QM)); the Bavelian (Abies, Tsuga (hemlock fir), QM & phases of increased NAP including Pinus); the Waalian (Abies, Tsuga, QM); and the Tiglian (Fagus & early Pleistocene taxa especially Sciadopytis, downward increasing Tertiary taxa). The sediment package was studied both macroscopically and microscopically. Both techniques provide evidence of fluvial, lacustrine and mass movement sedimentary processes. Some include evidence of periglacial processes (silt droplets within fine grained sands indicative of frozen ground conditions). The periglacial structures are often, not always, accompanied by pollen spectra dominated by pine and NAP. E.g. the Tiglian part of the succession shows periglacial sediment structures at its base and top but not in its middle sections. I.e. it appears not as a series of warm and cold phases but rather as a constant warm period with warm-cold-alternations at its bottom and top. All results illustrate sediment preservation in the Heidelberg basin almost throughout the Quaternary. This may be due to tectonic subsidence, but also to compaction by sediment loading of underlying fine sediments (Oligocene to Quaternary) leading to incomplete but virtually continuous sediment preservation (Tanner et al. 2009). References Gabriel, G., Ellwanger, D., Hoselmann, C. & Weidenfeller, M. (2008): The Heidelberg Basin Drilling Project. - Eiszeitalter u. Gegenwart (Quaternary Science Journal), 57, 3-4, 253-260, Hannover. Tanner, D.C., Martini, N., Buness, H. & Krawczyk, C.M. (2009): The 3D Geometry of the Quaternary and Tertiary strata in the Heidelberg Basin, as defined by reflection seismics. - DGG Tagung, Dresden, 30.9-02.10.09, Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 63, 58.

Ellwanger, Dietrich; Gabriel, Gerald; Hahne, Jürgen; Hoselmann, Christian; Menzies, John; Simon, Theo; Weidenfeller, Michael; Wielandt-Schuster, Ulrike

2010-05-01

76

Stratigraphy, sedimentology, and structural style of the Wilson Island Group, Northwest Territories  

SciTech Connect

The lower Proterozoic Wilson Island Group is exposed in a NE-trending belt in the East Arm of Great Slave Lake, Northwest Territories. The lower part of the 6 km thick succession outcrops on Wilson Island and adjacent islands, south of the McDonald-Wilson fault. Deposition of intercalated basalt flows, felsic flows and related intrusions, volcaniclastics, and braided alluvial arkose and conglomerate occurred in a tectonically active basin, probably a continental rift. Overlying the volcanic assemblage is a debris flow paraconglomerate, which grades vertically into fluvial to marginal marine or lacustrine arkose and dolostone. Several km further east, and north of the McDonald-Wilson fault, similar arkoses and dolostones are overlain by fine-grained subarkose, argillaceous siltstone, quartz granulestone, and concretionary dolomitic ironstone. These lithologies represent mixed fluvial, tidal flat, and shallow water facies. The remainder of the section consists of arkosic arenite/mudstone cycles (turbidites.), gradational upward into laminated mudstone with minor intercalated basalt. Rocks of the Wilson Island Group have been metamorphosed in greenschist to lower amphibolite facies, and deformed into eastward- to northeastward-plunging folds. Folds in the lower part of the section are open, whereas the finer-grained sediments of the upper part are isoclinally folded. These structures have been dissected by dextral transcurrent faults of the McDonald fault system.

Johnson, B.J.

1985-01-01

77

Sedimentology, Stratigraphy, and Depositional History of the Lower Cretaceous Viking Formation at Willesden Green, Alberta, Canada  

Microsoft Academic Search

The Lower Cretaceous Viking Formation is a complex stratigraphic unit containing a variety of geographically separated sand bodies of varying orientation, thickness and lithology. Many of these sand bodies are prolific hydrocarbon reservoirs which have been extensively drilled by industry. Despite this fact, their origins and interelationships are largely unknown. Establishment of a Viking Allostratigraphy in the Willesden Green area

BoreenThomasDaleHons

1989-01-01

78

Sedimentology and sequence stratigraphy of upper Pleistocene carbonates of southeastern Barbardos, West Indies  

SciTech Connect

Upper Pleistocene reef-associated carbonates of southeastern Barbados have been studied in outcrop and core. Reef terraces, formed during glacio-eustatic sea level highstands and subsequently uplifted, are characterized by thick and areally extensive sequences of allochthonous and autochthonous fore-reef calcarenites. Depositional textures are primarily packstones, and grainstones, wackestones, and coral floatstones are volumetrically less significant. Sediments are coarse- to fine-grained reef-derived allochems and micrite, and autochthonous benthic foraminifera and coralline red algae. Rates of sediment accumulation of fore-reef calcarenites range from about 1 to 4 m/1,000 yr. Although of relatively small scale, the carbonate terraces of southeastern Barbados provide excellent analogs for sequence stratigraphic concepts in carbonate settings. The terraces are primarily highstand systems tract deposits separated by type 1 unconformities. These highstand deposits are characterized by reef development and the progradation of fore-reef calcarenites. Extensive fore-reef deposits resulted from mechanical erosion of the reef framework on this high-energy, windward coastline. Type 1 unconformities are characterized by thin caliche layers developed during lowstand subaerial exposure. Thin basal transgressive systems tract deposits are characterized by incorporation of extraformational clasts derived from the underlying sequence during sea level rise. Slope-front erosion, vertical shift in the position of freshwater lens, and shift in the position of coastal onlap are all consequences of the interplay between eustasy and tectonics. These effects and the development of facies geometries on Barbados are primarily controlled by the glacio-eustatic component, inasmuch as rates of eustatic changes of sea level are at least two orders of magnitude greater than the maximum average rates of tectonic uplift. 12 figs.

Humphrey, J.D.; Kimbell, T.N. (Univ. of Texas, Richardson (USA))

1990-11-01

79

Sedimentology, stratigraphy, and depositional environment of the Crystal Geyser Dinosaur Quarry, east-central Utah  

USGS Publications Warehouse

The Crystal Geyser Dinosaur Quarry, near Green River, Utah, is located at the base of the Lower Cretaceous (Barremian) Yellow Cat Member of the Cedar Mountain Formation. The quarry preserves a nearly monospecific accumulation of a new basal therizinosauroid, Falcarius utahensis. We used field descriptions and petrographic analysis to determine the depositional environment and development of the quarry strata. Results of these analyses suggest that the quarry represents multiple episodes of bone accumulation buried by spring and overbank flood deposits. Evidence for these previously undescribed spring deposits includes calcite macroscopic structures within the quarry strata - such as pisolites and travertine fragments - and calcite micromorphologies - including radial-fibrous, feather, and scandulitic dendrite morphologies and tufa clasts. At least two episodes of bone incorporation are preserved in the quarry based on their stratigraphic position and lithologic associations. The unique depositional setting in and around the Crystal Geyser Dinosaur Quarry appears to have been favorable for the preservation of vertebrate fossils and provides insight into early Cretaceous environments in North America. Copyright ?? 2007, SEPM (Society for Sedimentary Geology).

Suarez, M.B.; Suarez, C.A.; Kirkland, J.I.; Gonzalez, L.A.; Grandstaff, D.E.; Terry, D.O., Jr.

2007-01-01

80

Sedimentology and stratigraphy of the Kanayut Conglomerate, central Brooks Range, Alaska; report of 1980 field season  

USGS Publications Warehouse

The Upper Devonian Kanayut Conglomerate crops out along the crest of the Brooks Range of northern Alaska for a distance of almost 1000 km. It ranges in thickness from 2600 m in the Atigun River area to 700 m south of Anaktuvuk Pass and has been subdivided into four regionally persistent members: (a) the basal sandstone member, consisting of marine sandstone and shale with some conglomerate; (b) the lower shale member, consisting of nonmarine quartzite, conglomerate and shale; (c) the middle conglomerate member, consisting of nonmarine pebble and cobble conglomerate and quartzite; and (d) the Stuver Member, consisting of nonmarine sandstone and shale. The Kanayut conformably overlies the Upper Devonian marine Hunt Fork Shale and is conformably overlain by the Mississippian marine Kayak Shale. The Kanayut is wholly allochthonous and has probably been transported northward on a series of thrust plates. The basal sandstone member of the Kanayut Conglomerate, which overlies prodelta turbidites of the Hunt Fork Shale, contains marginal-marine coarsening-upward channel-mouth bar sequences. It is conformably overlain by the lower shale member. Measured sections of the nonmarine members of the Kanayut show that the lower shale member ranges in thickness from 120 m to 1115 m and consists of fining-upward cycles interpreted to have been deposited by meandering streams on a broad floodplain. These cycles contain, in ascending order, channelized basal conglomerate, trough cross-stratified sandstone, and ripple-marked siltstone. The cycles are interpreted to be channel and point-bar deposits. Individual cycles average about 10 m in thickness and are separated by intervals of black, brown or maroon floodplain shale deposits. These typically contain thin coarsening-upward units that probably represent prograding levee sequences and irregular and ungraded sandstone bodies interpreted to be crevasse-splay deposits. In the Okokmilaga River area, the lower shale member contains a distinctive coarse-grained unit which is burrowed and interpreted to represent a widespread marine incursion. The middle conglomerate member, which ranges in thickness from 155 m to 525 m, consists of braidplain deposits. It contains fining-upward couplets of conglomerate and parallel-stratified or cross-stratified sandstone that average 2-7 m in thickness. The couplets record deposition in channels and on bars of braided streams. The middle conglomerate member contains the largest clasts, little or no shale, and represents the maximum progradation of nonmarine sedimentation in the Kanayut depositional system. The Stuver Member consists of fining-upward cycles that resemble those of the lower shale member. It ranges in thickness from 160 m to 1400 m and grades upward into tidal and marginal-marine deposits of the Kayak Shale. Conglomerate in the Kanayut is compositionally very mature, averaging 82 percent white, gray, black or red chert clasts, 14 percent vein quartz clasts, 3 percent quartzite clasts, and less than I percent other lithologies, mainly argillite. Although red chert is locally abundant in the Shainin Lake-Galbraith Lake area, there is little variation in conglomerate composition in the Kanayut, suggesting derivation from a single major source terrane.

Nilsen, T.H.; Moore, T.E.; Balin, D.F.; Johnson, S.Y.

1982-01-01

81

Stratigraphy, sedimentology, and petrology of Upper Cretaceous Horsethief and St. Mary River formations, western Montana  

SciTech Connect

The Horsethief and St. Mary River formations were deposited along the Late Cretaceous epicontinental seaway, which then covered much of the western interior. The Horsethief, lower of the two formations, is divided into two facies sequences. Facies sequence A consist of coarsening-upward sequences of sandstones and interbedded shales. These facies comprise a barrier island system consisting of shoreface, dune, tidal channel, and lagoonal environments. Facies sequence B, deposited along the depositional strike, consists of a coarsening-upward sequence of vertically stacked distributary channels that thicken and become more abundant upsection. The St. Mary River Formation is divided into a lower and upper member. The lower member consists of shales, sandstones, limestones, and coals deposited in a lagoon landward of the barrier island system. The upper member contains trough cross-bedded, channel sandstones, overbank sandstones, shales, and carbonate-nodule horizons indicative of fluvial plain sedimentation. Petrographic analysis indicates the detritus of these formations was derived from a magmatic are provenance. Statistically significant correlations document a decrease in grain size as the distance of sediment transport increases within the entire section and within distinct environments, including middle shoreface, upper shoreface, and dune facies. The high percentage of volcanic constituents decreases as the distance of sediment transport increases and the grain size decreases. The recognition of these facies is significant because of the potentially important application associated with hydrocarbon source and reservoir conditions, as well as heavy mineral assemblages.

Fairhurst, W.

1983-03-01

82

Workshop on quantitative dynamic stratigraphy  

SciTech Connect

This document discusses the development of quantitative simulation models for the investigation of geologic systems. The selection of variables, model verification, evaluation, and future directions in quantitative dynamic stratigraphy (QDS) models are detailed. Interdisciplinary applications, integration, implementation, and transfer of QDS are also discussed. (FI)

Cross, T.A.

1988-04-01

83

Lower Cretaceous nannofossil stratigraphy of the Great Valley sequence  

SciTech Connect

The calcareous nannofossil stratigraphy of four sections in the Great Valley Sequence of the Sacramento Valley, California, has been investigated in detail. These sections include Grindstone and Stony Creeks (Glenn County) and McCarty Creek and the Vestal Road segment of Dry Creek (both in Tehama County). The ages of the sections investigated, which have independently been studied by ammonite, pelecypod, and radiolaria biostratigraphers, range from Berriasian to Albian. Nannofossils occur rarely in these sediments and are restricted largely to mudstone deposited in the most distal portions of turbiditic sequences. Approximately 5% of the samples collected are nannofossiliferous. Assemblages contain some elements of Boreal floras but are dominated by Tethyan taxa. These assemblages are more directly comparable to those of stratotype sequences in Europe than are the other fossil groups, but the ages given are generally similar. However, two major discrepancies do exist. The results of this study indicate that the pelecypod, Buchia aff. B. okensis zone is Berriasian in age, not Tithonian as previously believed and the B. pacifica zone is not entirely Valanginian but partly Berriasian. Nannofossil data provide useful age calibrations for ammonite stratigraphy. The stratigraphy obtained supports structural interpretations based upon Buchia, in particular that the Paskenta fault zone remained active throughout the Early Cretaceous. The study illustrates that nannofossil biostratigraphy can be effectively used to date sediments deposited in convergent margin settings.

Bralower, T.J. (Florida International Univ., Miami, FL (USA))

1990-05-01

84

Amino acid racemization analysis (AAR) as a successful tool for dating Holocene coastal sediments: Stratigraphy of a barrier island spit (Southern Sylt/North Sea)  

NASA Astrophysics Data System (ADS)

Dating of Holocene sediments in shallow coastal areas of the German North Sea by conventional techniques is commonly problematic. In particular the marine reservoir effect of radiocarbon means that radiocarbon dating cannot be applied to sediments younger than about 400 years. Amino acid racemization dating (AAR) is a viable alternative for dating young sediments. The method is based on the determination of ratios of D and L amino acid enantiomers in organic matrices of biogenic carbonates. In this study we use AAR as a tool for dating Holocene barrier islands sediments. Based on an AAR derived chronological framework we develop a model of barrier spit accretion which describes the interaction between extreme events, fair weather coastal processes and sedimentary development that constrains the major episodes of barrier island evolution. The stratigraphy was defined using ground-penetrating radar (GPR) surveys complemented by sedimentological coring data. The stratigraphy is then conceptualised in a AAR chronostratigraphic framework to define a chronological order and allow the development of a stratigraphic model of the evolution of Southern Sylt. The AAR data provide high temporal resolution and have been used for dating stages of barrier spit accretion. The time lines are marked as storm surge generated erosion unconformities in the stratigraphic profile. Individual shells and shell fragments of Cerastoderma edule, Mya arenaria, Mytilus edulis and Scrobicularia plana have been accumulated by short-term storm events as shell layers associated with the erosion unconformities and have been dated by AAR. Time lines reveal that the barrier spit accretion occurred episodically, and is dependant on the provided rate of sand delivery. The general trend is that sequences young to the. South. The AAR derived time lines have been verified and correlated by historic maps and sea charts. It is apparent that spit enlargement at this site increased significantly during the Middle Ages (1593 - 1794) and was coupled with several intensive storm surges in this period. The findings indicate that when combined with GRR stratigraphy AAR provides useful results of high accuracy for dating stages of barrier spit progradation.

Tillmann, Tanja; Ziehe, Daniel

2014-05-01

85

Chicxulub Impact and the Stratigraphy, Nature and Origin of Near-K-T Breccia  

NASA Astrophysics Data System (ADS)

Breccias with altered impact glass and located at or near the K-T boundary in Texas (USA), northern and southern Mexico, Belize, Guatemala, Haiti and Brazil are investigated to determine their age, stratigraphy and origin. Ages are variable. The oldest breccia deposit is within the uppermost Maastrichtian in the southern USA (Brazos, Texas), NE Mexico (e.g., Loma Cerca, El Penon) and in the Chicxulub impact crater cores on Yucatan (e.g., cores Yaxcopoil-1, Y6, C1). In all these sections, the geochemistry of glass within the breccias is identical and consistent with Chicxulub impact ejecta. The K-T boundary, Ir anomaly and mass extinction is located well above these impact breccia layers. This strongly supports a pre-K-T age for the Chicxulub impact, as also determined based on sedimentology, stratigraphy and paleontology. In NE Mexico and Texas the oldest Chicxulub impact spherule ejecta layer is interbedded in normal marine sedimentation in the upper Maastrichtian (base of CF1 Zone), about 300'000 year prior to the K-T boundary. All stratigraphically younger spherule ejecta layers represent repeated episodes of reworking and transport of the original layer during a sea-level regression and re- deposition in incised valleys in shallow environments (e.g., Brazos, Texas, La Popa Basin NE Mexico) and submarine canyons in deeper environments via mass flows and turbidites (e.g. Mimbral, Penon, Loma Cerca and many other section throughout NE Mexico). In southern Mexico, Belize and eastern Guatemala, the widespread thick microspherule and larger spheroid deposits are interbedded with breccia, microbreccias and conglomerates in the early Danian as a result of erosion in shallow carbonate platform sediments. The presence of early Danian planktic foraminifera in the matrix of the breccia, as well as within spherule clasts, indicate that redeposition occurred during the early Danian Parvularugoglobigerina eugubina (P1a) zone. In Haiti (Beloc sections), spherule deposits and microbreccias are also reworked together with late Maastrichtian microfossils and redeposited during the early Danian zone P1a. In NE Brazil (Poty Quarry) and Argentina (Neuquen Basin), the breccia layers identified as K-T age are also younger and deposited in the early Danian P1a and P1c zones, respectively. No extraterrestrial markers, such as glass, glass spherules or shocked quartz are present. These breccia and sandstone deposits thus represent normal sedimentary processes with deposition primarily linked to sea-level changes. However, an Ir anomaly is detected in the Early Danian P1a(1) subzone (100-200ky after the KT boundary) in southern Mexico (Coxquihui, Bochil), Guatemala (Actela), Haiti (Beloc) and Brasil (Poty). This suggests that the K-T transition was a time comet showers with current evidence of two large impacts, the pre-K-T Chicxulub impact and K-T impact, and smaller impacts in the early Danian and late Maastrichtian (Boltysh crater). The distribution of the K-T impact breccia is consistent with a multi-impact scenario.

Adatte, T.; Keller, G.; Berner, Z.; Stüben, D.

2007-05-01

86

Les ongulés d'Atapuerca. Stratigraphie et biogéographie  

Microsoft Academic Search

The Ungulates from Atapuerca: Stratigraphy and Biogeography. The Sierra de Atapuerca, near Burgos (Spain), has various fissure fillings that yielded fossil animals, including fossil man, and archaeological remains, of late Early Pleistocene to Holocene age.Level TD6 in the locality Gran Dolina, which contained the type material of Homo antecessor as well as archaeological objects, and levels TDW4 and TDE5 yielded

Jan van der Made

2001-01-01

87

Lithostratigraphy, geophysics, biostratigraphy, and strontium-isotope stratigraphy of the surficial aquifer system of eastern Collier County and northern Monroe County, Florida  

USGS Publications Warehouse

In 1997, ten cores were drilled in eastern Collier County and northern Monroe County, within the limits of the Big Cypress National Preserve. These cores represent a continuation of the study of seven cores in western Collier County begun in 1996 and reported in Weedman and others (1997) and Edwards and others (1998). This joint U.S. Geological Survey and Florida Geological Survey project is designed to acquire subsurface geologic and hydrologic data in southwest Florida to extend current ground-water models, thereby expanding the utility of these models for land and water management. In this report we describe the lithostratigraphy, geophysical logging, sedimentological analysis, dinocyst biostratigraphy, and strontium-isotope stratigraphy of these ten cores. The three geophysical logs (natural gamma-ray, induction conductivity, and neutron porosity) assumed to be related to formation lithology and water quality show that a number of clay-rich zones are present in all of the boreholes, and that pore-water conductivity increases with depth. The clay-rich zones are confirmed by visual examination of core material and sedimentological analysis. The relative transmissivity calculated at 10-foot-thick intervals shows that in six of the boreholes, high values are associated with the shallow aquifer in the 0-40 ft interval. Two of the boreholes (the most northerly and the most easterly) showed relatively higher values of transmissivity in permeable zones at or somewhat below 100 ft in depth. Core geology and logs indicate that the deeper aquifers are not more permeable than similar deeper zones in the other boreholes, but rather that the shallow aquifer appears to be less permeable in these two coreholes. The Arcadia (?) Formation was only penetrated in the deepest core where it is late Miocene in age. The Peace River Formation was penetrated in all but the two westernmost cores. It yields a late Miocene age, based on both dinocysts and strontium-isotope stratigraphy. The top is an irregular surface. Age and stratigraphic relations suggest that the upper part of the Peace River and lower part of the unnamed formation are at least partially equivalent laterally. The unnamed formation was recovered in every core. It is thinnest in the northernmost core and thickest to the west. Ages calculated from strontium isotopes range from 6.9 to 4.6 million years ago (late Miocene to early Pliocene). The top of the unnamed formation is deepest to the north and it becomes shallower to the southwest. The Tamiami Formation also was recovered in every core and consistently yields early Pliocene ages; it yields late Pliocene ages near the top in two cores. The age and lateral relations strongly suggest that the lower part of the Tamiami Formation and the upper part of the unnamed formation are lateral facies of each other. The Fort Thompson (?) Formation, Miami Limestone, and undifferentiated siliciclastic sediments and limestone at the very top of the cores were not dated.

Weedman, S.D.; Paillet, F.L.; Edwards, L.E.; Simmons, K.R.; Scott, T.M.; Wardlaw, B.R.; Reese, R.S.; Blair, J.L.

1999-01-01

88

Integrating sequence stratigraphy and rock-physics to interpret seismic amplitudes and predict reservoir quality  

NASA Astrophysics Data System (ADS)

This dissertation focuses on the link between seismic amplitudes and reservoir properties. Prediction of reservoir properties, such as sorting, sand/shale ratio, and cement-volume from seismic amplitudes improves by integrating knowledge from multiple disciplines. The key contribution of this dissertation is to improve the prediction of reservoir properties by integrating sequence stratigraphy and rock physics. Sequence stratigraphy has been successfully used for qualitative interpretation of seismic amplitudes to predict reservoir properties. Rock physics modeling allows quantitative interpretation of seismic amplitudes. However, often there is uncertainty about selecting geologically appropriate rock physics model and its input parameters, away from the wells. In the present dissertation, we exploit the predictive power of sequence stratigraphy to extract the spatial trends of sedimentological parameters that control seismic amplitudes. These spatial trends of sedimentological parameters can serve as valuable constraints in rock physics modeling, especially away from the wells. Consequently, rock physics modeling, integrated with the trends from sequence stratigraphy, become useful for interpreting observed seismic amplitudes away from the wells in terms of underlying sedimentological parameters. We illustrate this methodology using a comprehensive dataset from channelized turbidite systems, deposited in minibasin settings in the offshore Equatorial Guinea, West Africa. First, we present a practical recipe for using closed-form expressions of effective medium models to predict seismic velocities in unconsolidated sandstones. We use an effective medium model that combines perfectly rough and smooth grains (the extended Walton model), and use that model to derive coordination number, porosity, and pressure relations for P and S wave velocities from experimental data. Our recipe provides reasonable fits to other experimental and borehole data, and specifically improves the predictions of shear wave velocities. In addition, we provide empirical relations on normal compaction depth trends of porosity, velocities, and VP/VS ratio for shale and clean sands in shallow, supra-salt sediments in the Gulf of Mexico. Next, we identify probable spatial trends of sand/shale ratio and sorting as predicted by the conventional sequence stratigraphic model in minibasin settings (spill-and-fill model). These spatial trends are evaluated using well data from offshore West Africa, and the same well data are used to calibrate rock physics models (modified soft-sand model) that provide links between P-impedance and quartz/clay ratio, and sorting. The spatial increase in sand/shale ratio and sorting corresponds to an overall increase in P-impedance, and AVO intercept and gradient. The results are used as a guide to interpret sedimentological parameters from seismic attributes, away from the well locations. We present a quantitative link between carbonate cement and seismic attributes by combining stratigraphie cycles and the rock physics model (modified differential effective medium model). The variation in carbonate cement volume in West Africa can be linked with two distinct stratigraphic cycles: the coarsening-upward cycles and the fining-upward cycles. Cemented sandstones associated with these cycles exhibit distinct signatures on P-impedance vs. porosity and AVO intercept vs. gradient crossplots. These observations are important for assessing reservoir properties in the West Africa as well as in other analogous depositional environments. Finally, we investigate the relationship between seismic velocities and time temperature index (TTI) using basin and petroleum system modeling at Rio Muni basin, West Africa. We find that both VP and VS increase exponentially with TTI. The results can be applied to predict TTI, and thereby thermal maturity, from observed velocities.

Dutta, Tanima

89

Applications of sequence stratigraphy to Pennsylvanian strata in the Illinois Basin  

USGS Publications Warehouse

Sequence stratigraphy concepts have been applied previously to the interpretation of Pennsylvanian strata in the Illinois Basin with the use of the 'cycle' by J.A. Udden in 1912 and the cyclothem by H. Wanless and J. Weller in 1932. The unconformity-bounded cyclothem was recognized in Pennsylvanian strata throughout the basin and is a small-scale version of the cratonic sequence of L.L. Sloss. Recent applications indicate that the transgressive-regressive unit, a genetic succession bounded by marine-flooding surfaces, is a more practical stratigraphic unit that has applications for stratigraphic control, structural control, sedimentology, and hydrostratigraphy. Transgressive-regressive units conveniently fit within a sequence stratigraphic framework.

Weibel, C.P.

1996-01-01

90

Eolian cover sands: a sedimentologic model and paleoenvironmental implications  

SciTech Connect

In periglacial areas, accumulations of eolian sand commonly form low-relief blankets without well-developed dunes. Internally, these sandsheet deposits exhibit subhorizontal lamination rather than high-angle cross-bedding. Such cover sands of late-Pleistocene age mantle extensive areas in northern Europe, but have been reported more rarely from North America. The processes by which cover sands, as opposed to dunes, accumulate have not yet been determined conclusively. Wind ripples and sand dunes do not form a continuum; flow separation and avalanching and negligible in the former and vital in the latter. Accretion of a sand patch into a mound sufficient to cause flow separation and dune growth requires a consistently available supply of loose sand. In cover-sand areas, sand may be immobilized prior to dune development by several factors: (1) a sparse vegetation cover, (2) moist ground conditions, (3) snow cover, and (4) a shallow permafrost table and/or an ice-cemented active layer. Detailed sedimentologic studies may allow discrimination among these various controls. The importance of the individual controlling factors can vary seasonally in a given deposit, as well as between deposits in different paleogeographic settings. However, all factors imply more mesic conditions than those associated with many dune deposits. The association of cover sands with paraboloid dunes is also consistent with somewhat moist conditions. The relatively mesic nature of cover sands controls their Pleistocene distribution; they become decreasingly important relative to dunes in maritime-to-continental transects across Alaska and northern Europe.

Lea, P.D.

1985-01-01

91

Sedimentology by satellite: Space age approach to the coastal zone  

SciTech Connect

Satellites such as LANDSAT (EOSAT) and SPOT, with a variety of spectral configurations, combined with computer interpretive systems will allow us to synoptically evaluate coastal systems at relatively short intervals. Resolution of satellite images measured in meters dictates concentration on large-scale changes and fluxes. In areas of relatively clear water, such as the Mediterranean Sea or the eastern Gulf of Mexico, some satellite spectra will allow us to map below the sea surface and hence determine how the innermost shelf changes with time. To illustrate these points, we studied the barrier island system of the central west Florida coastline (USA) before and after the 1985 hurricane season. Two major storms impacted this region during that period. By computer overlaying before and after images, we were able to map changes in the barrier islands and to quantify acreage gained and lost. We were also able to detect and map changes in the submarine portions of the system, especially in the ebb and flood tidal deltas associated with inlets. The third dimension can be added by surveying the submarine features with high-resolution geophysics. Applications of this kind hold the promise of a new era in investigating beach/barrier islands and their relationship with the inner continental shelf.

Doyle, L.J.; McGarry, G.

1988-08-01

92

Fluvial-deltaic sedimentation and stratigraphy of the ferron sandstone  

USGS Publications Warehouse

East-central Utah has world-class outcrops of dominantly fluvial-deltaic Turonian to Coniacian aged strata deposited in the Cretaceous foreland basin. The Ferron Sandstone Member of the Mancos Shale records the influences of both tidal and wave energy on fluvial-dominated deltas on the western margin of the Cretaceous western interior seaway. Revisions of the stratigraphy are proposed for the Ferron Sandstone. Facies representing a variety of environments of deposition are well exposed, including delta-front, strandline, marginal marine, and coastal-plain. Some of these facies are described in detail for use in petroleum reservoir characterization and include permeability structure.

Anderson, P.B.; Chidsey, T.C., Jr.; Ryer, T.A.

1997-01-01

93

Sequence stratigraphy, paleoclimate, and tectonics of coal-bearing strata  

SciTech Connect

The origin of coal-bearing strata has been debated vigorously for more than a century, and with the emergence of coalbed methane as a major energy resource and the possibility of sequestering greenhouse gas in coal, this debate has never been more relevant. This volume contains 10 chapters on coal-bearing strata of Carboniferous through Tertiary age and is based on a special session that was held at an AAPG Annual Meeting in New Orleans. Contributors have employed a multitude of approaches ranging from basin analysis to plant taphonomy to support a variety of views on the sequence stratigraphy, paleoclimate, and tectonics of coal-bearing strata.

Jack C. Pashin; Robert A. Gastaldo (eds.)

2004-07-15

94

Stratigraphy and chronology of late Quaternary andesitic tephra deposits, Tongariro Volcanic Centre, New Zealand  

Microsoft Academic Search

A stratigraphy and chronology of andesitic tephras erupted from Mt Ruapehu, and other volcanoes of Tongariro Volcanic Centre, is constructed from the tephra record preserved on the southeastern Mt Ruapehu ring plain. Here, tephras of late Quaternary age (c. 22,500 years B.P. to present) are found interbedded with local laharic and fluvial deposits, and with distal rhyolitic tephras from Taupo

S. L. Donoghue; V. E. Neall; A. S. Palmer

1995-01-01

95

Sedimentological and paleoenvironmental constraints of the Statherian and Stenian Espinhaço rift system, Brazil  

NASA Astrophysics Data System (ADS)

The Espinhaço Basin in eastern Brazil contains depositional sequences developed in the São Francisco paleoplate and its margins. Detailed mapping was conducted and combined with U-Pb detrital zircon dating to determine the sedimentological-stratigraphic framework, provenance and minimum and maximum ages of the syn-rift-deposits. The two cycles have minimum ages of 1192 and 923 Ma and maximum ages of 1785 and 1685 Ma. The first depositional cycle, represented by the Bandeirinha and São João da Chapada formations, is marked by contributions of Neoarchean and Paleoproterozoic detrital zircons. The second cycle, the diamond-bearing Sopa-Brumadinho Formation, also contains Mesoproterozoic zircons formed between 1300 and 1190 Ma, which suggests an additional external source of Grenvillian age, that was not previously recorded in the São Francisco Craton. The investigation of such Mesoproterozoic intraplate sedimentary records, provides clues to understanding the history of the Rodinia active margins and, therefore, the kinematic reconstruction of its paleoplates.

Santos, M. N.; Chemale, F.; Dussin, I. A.; Martins, M.; Assis, T. A. R.; Jelinek, A. R.; Guadagnin, F.; Armstrong, R.

2013-05-01

96

Near coast sedimentary stratigraphy as a proxy for climatic instability  

NASA Astrophysics Data System (ADS)

Several studies have indicated a link between climatic deterioration and dune stability (Wilson 2002, Issar 2003, Dawson et al 2004). The frequency and magnitude of storms have been cited as a key variable in the stability of large dune systems. For the stratigraphy of dune systems to act as a regional climatic proxy there must be a good regional relationship between known climatic events and regionally correlated stratigraphic changes. Dunnet Bay in Caithness, Northern Scotland was chosen as a study site to look at the relationship between dune stability and climatic change during the late Holocene in Northern Scotland. Dunnet Bay was chosen for its physical attributes which make it an excellent natural sediment trap. Tucked in between headlands which act as barriers to long-shore transport the predominant movement of sediment there is straight onshore, with only minor amounts being lost to the sea. The immediate back-dune stratigraphy, colloquially known as "links", provided evidence of peat formation and dune stability. Stratigraphy was mapped using traditional field techniques and ground penetrating radar. The cores consisted mostly of massive layers of sand interleaved with peat. Sand layers were dated with optically stimulated luminescence (OSL) and interpreted as reflecting high wind energy regimes transporting sand inland. Peat layers were C14 dated and taken as representing climatic stability. Stratigraphy was mapped using hand auguring, percussion coring, and open sections. Ground penetrating radar was also used to look at the continuity of key layers. OSL dating in two open sections showed dates obtained from the first section (1790 AD ±70, 53 BC ± 100, 300 BC ± 100, 400 BC ± 100) mapped to the top of the second section (1800 AD ± 100, 1500 BC ± 200, 2900 BC ± 300) which was consistent with stratigraphy increasing sediment thickness towards the centre of the bay. The results were consistent with acquired C14 dates from selected peat layers. Taken collectively the results are consistent with some known episodes of climatic instability which occurred during the mid Holocene with instability phases occurring in Dunnet from approximately 6300- 4250 yrs BP, associated with climatic deterioration between 6000 - 5,200 Yrs BP (Lamb 1995) and dune instability between 2560 - 3900 Yrs BP, associated with an abrupt change of climate (Anderson 1995) In addition to the luminescence dates, 31 luminescence profiling dates were acquired in order to look at the continuity of the age vs. depth profile. Luminescence profile dates are small samples that require less preparation prior to luminescence measurement than full luminescence dating. Although larger errors are associated with luminescence profiling, it offered means of identifying at lesser cost the possible occurrence of mixing between eroded layers. The stratigraphic chronology was compared to other local and regional dune studies and periods of climatic deterioration found in other proxies. The GISP2 ice core (Greenland Ice Sheet Project) was found to provide chemical proxies for North Atlantic storminess which partially explained our observed stratigraphy (O`brien et al 1995). It is concluded that changes in dune stability at a regional scale are also influenced by local variables, so that one should be careful when attempting to draw stratigraphy to climate change. Key References: Issar, A. (2003) Climate changes during the Holocene and their impact on hydrological systems. Published by the Cambridge University Press 2003. Wilson, P. (2002) Holocene coastal dune development on the South Erridale peninsula, Wester Ross, Scotland. Scottish Journal of Geology, 38, 1, 5-13. Dawson, S., smith, D., Jordan, J., and Dawson D. G. (2004) Late Holocene coastal sand movements in the outer Hebrides N. W. Scotland. Marine Geology 210, 281-306 O`Brien, S. M. Mayewski, P.A. Meeker, L. D., Meese, D. A., Twickler, M. S. & Whitlow, S. I. (1995) Complexity of the Holocene Climate as reconstructed from a Greenland ice core. Science 270, pp 1962-1964 Lamb, H. (1995) Cl

McLivenny, J.

2009-04-01

97

ELSEVIER Earth and Planetary Science Letters 165 (1999) 287294 Aragonian stratigraphy reconsidered, and a re-evaluation of the middle  

E-print Network

). This leads to the revised age of 16.0 Ma for the Early­Middle Aragonian (MN 4=5) boundary. Our age estimateELSEVIER Earth and Planetary Science Letters 165 (1999) 287­294 Aragonian stratigraphy reconsidered, and a re-evaluation of the middle Miocene mammal biochronology in Europe R. Daams a , A.J. van der Meulen b

Utrecht, Universiteit

98

Seismic stratigraphy of the Bahamas  

SciTech Connect

Seismic reflection profiles from the Straits of Florida, Northwest Providence Channel, Tongue of the Ocean, and Exuma Sound reveal a seismic stratigraphy characterized by a series of prograding Upper Cretaceous and Tertiary seismic sequences with seismic velocities generally less than 4 km/sec overlying a Lower Cretaceous section of low-amplitude reflections which are more nearly horizontal than the overlying prograding clinoforms and have seismic velocities greater than 5 km/sec. The prograding units are detrital shallow-water carbonates shed from nearby carbonate banks into deep intrabank basins that were established in the Late Cretaceous. The Lower Cretaceous units are probably shallow-water carbonate banks that were drowned in the middle Cretaceous but which, during the Early Cretaceous, extended from Florida throughout the Bahamas region. The seismic reflection profiles reveal a sharp angular unconformity at 5-sec two-way traveltime in northwest Tongue of the Ocean, suggesting a rift-drift unconformity and deposition on thinned continental crust. No such unconformity is seen in central and southeast Tongue of the Ocean or in Exuma Sound, suggesting that these areas are built on oceanic crust.

Ladd, J.W.; Sheridan, R.E.

1987-06-01

99

CAMBRIAN STRATIGRAPHY AND PALEONTOLOGY OF NORTHERN ARIZONA AND SOUTHERN NEVADA  

E-print Network

#12;CAMBRIAN STRATIGRAPHY AND PALEONTOLOGY OF NORTHERN ARIZONA AND SOUTHERN NEVADA THE 16TH FIELD STRATIGRAPHY FLAGSTAFF, ARIZONA, AND SOUTHERN NEVADA, UNITED STATES Edited by J. Stewart Hollingsworth and Southern Nevada: Museum of Northern Arizona Bulletin 67, 321 p. #12;Cambrian Stratigraphy and Paleontology

Mateo, Jill M.

100

Stratigraphy of the south polar region of Ganymede  

NASA Technical Reports Server (NTRS)

A preliminary assessment is made of the stratigraphy and geology in the south polar region of the Jovian satellite, Ganymede. Geologic mapping is based on inspection of Voyager images and compilation on an airbrush base map at a scale of 1:5M. Illumination and resolution vary greatly in the region. Approximately half of the quadripole is beyond the terminator. Low angle illumination over a large part of the area precludes distinction of some units by albedo characteristics. Several types of grooved terrain and groove related terrain occur in the southern polar region. Grooves typically occur in straight to curvilinear sets or lanes. Bright lanes and grooved lanes intersect at high angles outlining polygons of dark cratered terrain. Groove sets exhibit a range of ages as shown by superposition or truncation and by crater superposition ages.

Dehon, R. A.

1987-01-01

101

Coastal oceanography and sedimentology in New Zealand, 1967–91  

Microsoft Academic Search

This paper reviews research that has taken place on physical oceanography and sedimentology on New Zealand's estuaries and the inner shelf since c. 1967. It includes estuarine sedimentation, tidal inlets, beach morphodynamics, nearshore and inner shelf sedimentation, tides and coastal currents, numerical modelling, short?period waves, tsunamis, and storm surges. An extensive reference list covering both published and unpublished material is

Terry M. Hume; Robert G. Bell; Willem P. de Lange; Terry R. Healy; D. Murray Hicks; R. M. Kirk

1992-01-01

102

Palynology, sedimentology and palaeoecology of the late Holocene Dead Sea  

Microsoft Academic Search

Palynological and sedimentological studies were performed at two Holocene profiles in erosion gullies (Ze’elim and Ein Feshkha) which dissect the retreating western shore of the Dead Sea. The aim of the project was to analyse possible links between climate, lithology, and vegetation development. The section in Ze’elim shows both lacustrine and fluvial sediments, whereas sedimentation at Ein Feshkha is predominantly

Frank Harald Neumann; Elisa J. Kagan; Markus J. Schwab; Mordechai Stein

2007-01-01

103

The Baja California peninsula borderland: structural and sedimentological characteristics  

Microsoft Academic Search

Structural and sedimentological data from three oceanographic cruises define the peninsular margin of the Gulf of California as a borderland similar to the California Continental Borderland. Bathymetric and high resolution seismic profiles show some active normal faults with a lateral strike slip component, which are parallel and oblique at low angle to the peninsular coast, and delimit horst and graben

Enrique H. Nava-Sánchez; Donn S. Gorsline; Adolfo Molina-Cruz

2001-01-01

104

Sedimentology and significance of an early syn-rift paleovalley, Wadi Tayiba, Suez Rift, Egypt  

NASA Astrophysics Data System (ADS)

Wadi Tayiba is located along the western margin of the Hammam Faraun fault block, western Sinai, Egypt and is generally thought to contain exposures of the 'type-section' for late pre-rift to early syn-rift stratigraphy associated with the Oligo-Miocene Suez Rift. Previous studies have suggested a complex vertical succession of sedimentary facies characterise the late pre-rift to early syn-rift and imply major and abrupt variations in relative sea-level during this time. Detailed sedimentological and stratigraphic analysis of the Wadi Tayiba type-section presented in this study identifies not only a far simpler vertical facies succession than previously suggested but also the development of a major paleovalley system at the base of the early syn-rift succession. It is suggested that this subtle but significant feature is the cause of the complex vertical facies succession previously interpreted. It is concluded that continuous marine sedimentation and only moderate amplitude variations in relative sea-level occurred during the Eocene to Early Oligocene within at least this part of the Suez Rift. A major relative sea-level fall occurred during the middle Oligocene and a regionally developed erosional surface associated with this event marks the contact between late pre-rift and early syn-rift strata. The results of this study have major implications for sub-regional correlations of late pre-rift to early syn-rift stratigraphic units and resultant palaeogeographic reconstructions of the late pre-rift to early syn-rift period.

Jackson, Christopher Aiden-Lee

2008-09-01

105

Sedimentology and stratigraphy of the Miocene to Pliocene Mona Reef Complex and its relation with relative sea-level fluctuations  

E-print Network

The Miocene to Pliocene Mona Reef complex was investigated to define facies distribution, identify corals, describe strata geometries, and provide insights on porosity distribution. Two units were identified on the platform separated by a Late...

Rodriguez Delgado, Alejandra Maria

2012-05-31

106

Sedimentology and stratigraphy of the Kanayut Conglomerate, central and western Brooks Range, Alaska; report of 1981 field season  

USGS Publications Warehouse

The Upper Devonian and Lower Mississippian(?) Kanayut Conglomerate forms a major stratigraphic unit along the crest of the Brooks Range of northern Alaska. It crops out for an east-west distance of about 900 km and a north-south distance of about 65 km. The Kanayut is wholly allochthonous and has probably been transported northward on a series of thrust plates. The Kanayut is as thick as 2,600 m in the east-central Brooks Range. It thins and fines to the south and west. The Kanayut forms the middle part of the allochthonous sequence of the Endicott Group, an Upper Devonian and Mississippian clastic sequence underlain by platform limestones of the Baird Group and overlain by platform limestone, carbonaceous shale, and black chert of the Lisburne Group. The Kanayut overlies the marine Upper Devonian Noatak Sandstone or, where it is missing, the marine Upper Devonian Hunt Fork Shale. It is overlain by the marine Mississippian Kayak Shale. The Kanayut Conglomerate forms the fluvial part of a large, coarse-grained delta that prograded to the southwest in Late Devonian time and retreated in Early Mississippian time. Four sections of the Kanayut Conglomerate in the central Brooks Range and five in the western Brooks Range were measured in 1981. The sections from the western Brooks Range document the presence of fluvial cycles in the Kanayut as far west as the shores of the Chukchi Sea. The Kanayut in this area is generally finer grained than it is in the central and eastern Brooks Range, having a maximum clast size of 3 cm. It is probably about 300 m thick. The upper and lower contacts of the Kanayut are gradational. The lower Kanayut contains calcareous, marine-influenced sandstone within channel deposits, and the upper Kanayut contains probable marine interdistributary-bay shale sequences. The members of the Kanayut Conglomerate cannot be differentiated in this region. In the central Brooks Range, sections of the Kanayut Conglomerate at Siavlat Mountain and Kakivilak Creek are typically organized into fining-upward fluvial cycles. The maximum clast size is about 3 cm in this area. The Kanayut in this region is 200-500 m thick and can be divided into the Ear Peak, Shainin Lake, and Stuver Members. The upper contact of the Kanayut with the Kayak Shale is very gradational at Kakivilak Creek and very abrupt at Siavlat Mountain. Paleocurrents from fluvial strata of the Kanayut indicate sediment transport toward the west and south in both the western and central Brooks Range. The maximum clast size distribution generally indicates westward fining from the Shainin Lake region.

Nilsen, T.H.; Moore, T.E.

1982-01-01

107

Sedimentology of mega-scale glacial lineations on the Dubawnt Lake Palaeo-Ice Stream bed, Canada and implications for lineation genesis  

NASA Astrophysics Data System (ADS)

Mega-scale glacial lineations (MSGLs) are highly elongate, subglacial landforms produced beneath zones of fast-flowing ice. While qualitative data on their morphology have existed for several decades, studies of their composition and sedimentology are comparatively rare. Sediment exposures along the course of the Finnie River in Nunavut, northern Canada, provide a window into the internal stratigraphy and sedimentology of MSGLs formed by the Dubawnt Lake Palaeo-Ice Stream during regional deglaciation of the Laurentide Ice Sheet. Stratigraphic sections record evidence for an initial advance of ice into the study area followed by ice sheet recession and deposition of glacifluvial and glacilacustrine outwash. Subsequently, the Dubawnt Lake Palaeo-Ice Stream overrode and reworked this outwash subglacially forming an 'MSGL till'. This till comprises a sandy, red diamicton facies, forming the core of the MSGL ridges and containing variably deformed lenses, stringers and rafts of outwash. The sedimentology of this diamicton is consistent with an origin as a glacitectonite and hybrid till formed by a combination of non-pervasive subglacial sediment deformation and lodgement. Facies variations from stratified to massive diamicton reflect, in turn, variations in strain and subglacial transport distance. The occurrence of stratified glacifluvial sediments within these ridges and the well-preserved nature of many of the sandy inclusions within the diamicton imply relatively short transport distances and incomplete mixing. MSGLs under the Dubawnt Lake Palaeo-Ice Stream formed through a combination of subglacial erosion and deposition. This included non-pervasive, subglacial sediment deformation and the reworking of pre-existing sediment depocentres during streaming flow. These results highlight the importance of sediment supply to MSGL formation with the presence of abundant pre-existing sediments which were subsequently overridden being critical to lineation formation.

O'Cofaigh, Colm; Stokes, Chris R.; Lian, Olav B.; Clark, Chris D.; Tulaczyk, Slawek

2014-05-01

108

The orbital record in stratigraphy  

NASA Astrophysics Data System (ADS)

Orbital signals are being discovered in pre-Pleistocene sediments. Due to their hierarchical nature these cycle patterns are complex, and the imprecision of geochronology generally makes the assignment of stratigraphic cycles to specific orbital cycles uncertain, but in sequences such as the limnic Newark Group under study by Olsen and pelagic Cretaceous sequence worked on by our Italo-American group the relative frequencies yield a definitive match to the Milankovitch hierarchy. Due to the multiple ways in which climate impinges on depositional systems, the orbital signals are recorded in a multiplicity of parameters, and affect different sedimentary facies in different ways. In platform carbonates, for example, the chief effect is via sea-level variations (possibly tied to fluctuating ice volume), resulting in cycles of emergence and submergence. In limnic systems it finds its most dramatic expression in alternations of lake and playa conditions. Biogenic pelagic oozes such as chalks and the limestones derived from them display variations in the carbonate supplied by planktonic organisms such as coccolithophores and foraminifera, and also record variations in the aeration of bottom waters. Whereas early studies of stratigraphic cyclicity relied mainly on bedding variations visible in the field, present studies are supplementing these with instrumental scans of geochemical, paleontological, and geophysical parameters which yield quantitative curves amenable to time-series analysis; such analysis is, however, limited by problems of distorted time-scales. My own work has been largely concentrated on pelagic systems. In these, the sensitivity of pelagic organisms to climatic-oceanic changes, combined with the sensitivity of botton life to changes in oxygen availability (commonly much more restricted in the Past than now) has left cyclic patterns related to orbital forcing. These systems are further attractive because (1) they tend to offer depositional continuity, and (2) presence of abundant microfossils yields close ties to geochronology. A tantalizing possibility that stratigraphy may yield a record of orbital signals unrelated to climate has turned up in magnetic studies of our Cretaceous core. Magnetic secular variations here carry a strong 39 ka periodicity, corresponding to the theoretical obliquity period of that time - Does the obliquity cycle perhaps have some direct influence on the magnetic field?

Fischer, Alfred G.

1992-12-01

109

The orbital record in stratigraphy  

NASA Technical Reports Server (NTRS)

Orbital signals are being discovered in pre-Pleistocene sediments. Due to their hierarchical nature these cycle patterns are complex, and the imprecision of geochronology generally makes the assignment of stratigraphic cycles to specific orbital cycles uncertain, but in sequences such as the limnic Newark Group under study by Olsen and pelagic Cretaceous sequence worked on by our Italo-American group the relative frequencies yield a definitive match to the Milankovitch hierarchy. Due to the multiple ways in which climate impinges on depositional systems, the orbital signals are recorded in a multiplicity of parameters, and affect different sedimentary facies in different ways. In platform carbonates, for example, the chief effect is via sea-level variations (possibly tied to fluctuating ice volume), resulting in cycles of emergence and submergence. In limnic systems it finds its most dramatic expression in alternations of lake and playa conditions. Biogenic pelagic oozes such as chalks and the limestones derived from them display variations in the carbonate supplied by planktonic organisms such as coccolithophores and foraminifera, and also record variations in the aeration of bottom waters. Whereas early studies of stratigraphic cyclicity relied mainly on bedding variations visible in the field, present studies are supplementing these with instrumental scans of geochemical, paleontological, and geophysical parameters which yield quantitative curves amenable to time-series analysis; such analysis is, however, limited by problems of distorted time-scales. My own work has been largely concentrated on pelagic systems. In these, the sensitivity of pelagic organisms to climatic-oceanic changes, combined with the sensitivity of botton life to changes in oxygen availability (commonly much more restricted in the Past than now) has left cyclic patterns related to orbital forcing. These systems are further attractive because (1) they tend to offer depositional continuity, and (2) presence of abundant microfossils yields close ties to geochronology. A tantalizing possibility that stratigraphy may yield a record of orbital signals unrelated to climate has turned up in magnetic studies of our Cretaceous core. Magnetic secular variations here carry a strong 39 ka periodicity, corresponding to the theoretical obliquity period of that time - Does the obliquity cycle perhaps have some direct influence on the magnetic field?

Fischer, Alfred G.

1992-01-01

110

Martian surface roughness and stratigraphy  

NASA Astrophysics Data System (ADS)

Orbital datasets can be combined and manipulated to learn about the three- dimensional structure of planetary surfaces, and the processes that have acted on them. The Mars Orbital Camera (MOC) is providing high-resolution images. These images allow qualitative inspection of features, and contain quantitative information about the shape of the surface. Using a photoclinometry technique derived from a lunar-Lambert photometric function, I am able to obtain estimates of the down-sun slope of each pixel in an image. This technique was calibrated against synthetic topography, compared to an area photoclinometry technique, and applied to the Viking and Pathfinder landing sites. It is a robust technique for obtaining the roughness and slope characteristics of large areas. It was applied to the potential landing sites for the Mars Exploration Rovers to evaluate site safety. The slopes from this point photoclinometry technique can be used to obtain a rough estimate of topography, which I used in a number of studies where topographic information was crucial. MOC images have shown that layering is pervasive on the martian surface. Mars Orbital Laser Altimeter (MOLA) data can be registered to MOC images to provide elevation constraints on layer outcrops. Such layers are observed in eastern Coprates Chasma both in the chasma rim and in a flat-topped massif. Observations indicate that the chasma stratigraphy consists of thin sequences of resistant layers and intervening thicker sequences of relatively less resistant layers. More resistant units cap the massif against erosion and result in steeper slopes than the weaker units would otherwise allow. These resistant layers can be used as stratigraphic markers which have allowed me to measure the subsidence and tilting of the massif relative to the chasma walls, providing evidence for tectonic motion in this portion of the Valles Marineris. These outcrops indicate that some of these layers may be analogus to terristrial flood basalts in both composition and extent. I have constrained the dip angle of finely layered sequences in Ganges and Hebes Mensae. These layers are either flat lying or dip shallowly, but do not dip steeply, which places some constraints on the origin of these mensae.

Beyer, Ross Alan

2004-12-01

111

New Perspectives on Orbitally Forced Stratigraphy  

Microsoft Academic Search

This survey of the current status of research into Earth's orbitally forced paleoclimatic record summarizes recent developments in the theory of Earth's orbital parameters, and reviews how various techniques of data collection and analysis have fared in the search and recovery of orbital signals in ancient stratigraphy. The emerging significance of the quasi-periodicity of Earth's orbital variations as a prin-

Linda A. Hinnov

2000-01-01

112

A revision of the structure and stratigraphy of pre-Green Tuff ignimbrites at Pantelleria (Strait of Sicily)  

E-print Network

1 A revision of the structure and stratigraphy of pre-Green Tuff ignimbrites at Pantelleria (Strait. In this paper we focus on the intermediate cycle of eruptive activity which is bracketed by ignimbrite units. This age interval (181 - 85 ka) was punctuated by six ignimbrite-forming eruptions (silicic and variably

Boyer, Edmond

113

Reverse engineering mother nature — Shale sedimentology from an experimental perspective  

NASA Astrophysics Data System (ADS)

Experimental study of the sedimentology of shales can take a variety of forms. At its simplest one can experiment with suspensions in a glass jar and try to understand their settling behavior, or one can manipulate mud in a tank or bucket to gain insights into its rheology. This approach was championed over a century ago by Sorby, and the insights gained can be quite profound. More recently, tank and settling tube experiments of animal-sediment interactions, compaction behavior, and sediment unmixing via re-suspension have proven to be highly informative in spite of their simplicity. Flumes can be used to obtain quantitative information about depositional and erosional parameters and to generate fundamental bedforms. In flume experiments, however, it is of critical importance that the flume be designed in a way that flocculated materials move under shear stress conditions that would be reasonable in natural environments. Although much flume work on muds has been conducted by hydraulic engineers, the transfer of that knowledge to sedimentology is hampered by the fact that engineers and sedimentologists are interested in different (though not mutually exclusive) products from such experiments. Engineers and hydrologists are commonly concerned with quantifying fluid flow properties, whereas sedimentogists are particularly interested in the sedimentary products that result from a variety of flow conditions. Recent sedimentologically oriented flume studies have shown that muds can form deposits at flow velocities and shear stresses that would suffice to transport and deposit medium grained sand. Mud suspensions are prone to flocculation and the resulting floccules travel in bedload and form ripples that accrete into beds. The latter finding suggests that many laminated shales were deposited from currents rather than by settling from slow moving or still water. There are many other sedimentary features in shales that can potentially be reproduced in flume studies and in the future serve to provide a quantitative basis for shale sedimentology.

Schieber, Juergen

2011-06-01

114

Process-sedimentological challenges in distinguishing paleo-tsunami deposits  

Microsoft Academic Search

There has been a lively debate since the 1980s on distinguishing between paleo-tsunami deposits and paleo-cyclone deposits\\u000a using sedimentological criteria. Tsunami waves not only cause erosion and deposition during inundation of coastlines in subaerial\\u000a environments, but also trigger backwash flows in submarine environments. These incoming waves and outgoing flows emplace sediment\\u000a in a wide range of environments, which include coastal

G. Shanmugam

115

Sedimentological and geophysical properties of a ca. 4000 year old tsunami deposit in southern Spain  

NASA Astrophysics Data System (ADS)

The coastlines around the Gulf of Cádiz were affected by numerous tsunami events damaging infrastructure and causing countless human losses. A tsunami deposit at Barbate-Zahara de los Atunes, Spain, is located at various heights above mean sea level and shows several characteristics indicative of high-energy event deposition. This study uses sedimentology, foraminifera assemblage, magnetic susceptibility, X-ray fluorescence analysis, ground penetrating radar (GPR) to support an interpretation of high-energy deposition and determine the deposit's transport mechanisms and sediment source. Radiocarbon and optically stimulated luminescence dating of the tsunami deposit reveals ages of ~ 4000 BP and does not support the AD 1755 Lisbon event as suggested in former publications.

Koster, Benjamin; Reicherter, Klaus

2014-12-01

116

SEDIMENTOLOGY AND GEOMORPHOLOGY OF QUATERNARY ALLUVIAL FANS WITH IMPLICATIONS TO GROWTH STRATA, LOST RIVER RANGE,  

E-print Network

SEDIMENTOLOGY AND GEOMORPHOLOGY OF QUATERNARY ALLUVIAL FANS WITH IMPLICATIONS TO GROWTH STRATA......................................................................................14 5. UPPER CEDAR CREEK ALLUVIAL FAN.............................................. 19 Surface 6. JONES CREEK ALLUVIAL FAN......................................................... 67 Surface

Lawrence, Rick L.

117

Lithofacies, palynofacies, and sequence stratigraphy of Palaeogene strata in Southeastern Nigeria  

NASA Astrophysics Data System (ADS)

Integrated sedimentologic, macrofossil, trace fossil, and palynofacies data from Paleocene-Middle Eocene outcrops document a comprehensive sequence stratigraphy in the Anambra Basin/Afikpo Syncline complex of southeastern Nigeria. Four lithofacies associations occur: (1) lithofacies association I is characterized by fluvial channel and/or tidally influenced fluvial channel sediments; (2) lithofacies association II ( Glossifungites and Skolithos ichnofacies) is estuarine and/or proximal lagoonal in origin; (3) lithofacies association III ( Skolithos and Cruziana ichnofacies) is from the distal lagoon to shallow shelf; and (4) shoreface and foreshore sediments ( Skolithos ichnofacies) comprise lithofacies association IV. Five depositional sequences, one in the Upper Nsukka Formation (Paleocene), two in the Imo Formation (Paleocene), and one each in the Ameki Group and Ogwashi-Asaba Formation (Eocene), are identified. Each sequence is bounded by a type-1 sequence boundary, and contains a basal fluvio-marine portion representing the transgressive systems tract, which is succeeded by shoreface and foreshore deposits of the highstand systems tract. In the study area, the outcropping Ogwashi-Asaba Formation is composed of non-marine/coastal aggradational deposits representing the early transgressive systems tract. The occurrence of the estuarine cycles in the Palaeogene succession is interpreted as evidence of significant relative sea level fluctuations, and the presence of type-1 sequence boundaries may well be the stratigraphic signature of major drops in relative sea level during the Paleocene and Eocene. Sequence architecture appears to have been tectono-eustatically controlled.

Oboh-Ikuenobe, Francisca E.; Obi, Chuks G.; Jaramillo, Carlos A.

2005-01-01

118

Jurassic sequence stratigraphy of the eastern Gulf Coastal Plain: Applications to hydrocarbon exploration  

SciTech Connect

Based on regional stratigraphic and sedimentologic data, three unconformity-bounded depositional sequences associated with cycles of relative sea-level change and coastal onlap are recognized for Jurassic strata in the eastern Gulf Coastal Plain area. These sequences are designated, in ascending order, the LZAGC (Lower Zuni A Gulf Coast)-3.1, the LZAGC-4.1, and the LZAGC-4.2 sequences and include Callovian through Kimmeridgian Stage strata. An understanding of the relationship of Jurassic reservoirs to sequence stratigraphy can serve as an aid to hydrocarbon exploration in the eastern gulf area. The most extensive and productive Jurassic hydrocarbon reservoirs in the study area occur within the progradational, regressive highstand deposits of the LZAGC-3.1 and LZAGC-4.1 depositional sequences. For example, the majority of Norphlet sandstone reservoirs in the onshore and offshore Alabama area are interpreted to have accumulated in eolian dune, interdune, and wadi (fluvial) depositional environments, which occurred in association with the highstand regressive system of the LZAGC-3.1 sequence. The most important Smackover reservoirs generally consist of partially to completely dolomitized ooid and peloid packstones and grainstones in the upper portion of the unit. These reservoirs occur in subtidal to supratidal, shoaling-upward carbonate mudstone to grainstone cycles in the highstand regressive system of the LZAGC-4.1 sequence. In addition, minor reservoirs that are discontinuous and not well developed are associated with the shelf margin and transgressive systems of the LZAGC-4.1.

Tew, B.H.; Mancini, E.A.; Mink, R.M. (Geological Survey of Alabama, Tuscaloosa (United States))

1991-03-01

119

The Utility of Proximal-Accretion Stratigraphy in Lateral Moraines  

NASA Astrophysics Data System (ADS)

Lateral-moraine stratigraphy is a valuable tool that can be used to constrain the timing and magnitude of alpine glacier fluctuations. Numerous lateral moraines, conventionally thought to have been constructed during the Little Ice Age (LIA), have been shown to be composite landforms that contain multiple till layers deposited by successively larger glacier advances. Organic matter and/or tephra sandwiched between the till layers constrain times of advance and retreat; wood fragments within till may provide the age of the till. Observation of contemporary lateral moraines has lead to the recognition of two means of lateral moraine construction: (1) accretion of tills onto the distal flank of the pre-existing lateral moraine, and (2) accretion or plastering of tills onto the proximal flank of the pre-existing moraine. In composite lateral moraines, distal and proximal accretion result in paleosurfaces that trend parallel to the current distal and proximal slope, respectively. Published work using lateral-moraine stratigraphy, for example at Bugaboo and Stutfield glaciers in the Canadian Rockies, has used evidence only from distal-accretion moraines. However, proximal-accretion moraines that provide chronological information have been found at Nisqually Glacier on Mount Rainier in Washington State, USA, and Columbia Glacier, an outlet of the Columbia Icefield in the Canadian Rockies. A gully cut into the left-lateral moraine at Nisqually Glacier exposes a sandy seam, with associated wood fragments, that runs parallel to the proximal moraine flank for ~20 m. Wood collected from different elevations along the seam have radiocarbon ages of 1715±15, 1700±15, and 1670±50 14C yr BP, indicating that the seam is similar in age along its extent and likely marks a paleosurface separating older till below and till of the First Millennium advance above. At Columbia Glacier, some till exposures in the prominent right-lateral moraine show a fissility dipping variably 40 to 50° toward the valley axis; this orientation is semi-parallel to the proximal flank of the moraine, which however is steeper due to ongoing erosion. Five wood fragments encased in the till over a broad area of the flank, and exposed by gullying, have ages ranging from 1920±70 to 2340±70 14C yr BP. This suggests that (1) most of what appears to be a LIA moraine was deposited in earlier Neoglacial time, and (2) that the glacier was nearly as extensive ca. 2400-1900 ka as it was during the LIA.

Samolczyk, M. A.; Osborn, G.

2010-12-01

120

The applicability of OSL as a sedimentological proxy: new avenues to distinguish extreme events  

NASA Astrophysics Data System (ADS)

Signature underwater tsunami deposits have been relatively recently found in the upper Mediterranean shelf offshore Israel. They have been attributed as a potential cause for the demise of the ancient Roman city of Caesarea Maritima and its artificial Herodian harbour of Sebastos. Present annual large winter storm activity (2010-2011; waves heights up to 14 m) has severely impacted the area, showing increased coastal erosion and rigorous movement of nearshore sands, complicating the stratigraphical histories of the near offshore record. Recent sedimentological and geoarchaeological studies conducted in and around the harbour have been aimed to investigate extreme event characterization by different means, using Optically Stimulated Luminescence (OSL). A comparative study of modern and palaeo-storm sediments was launched in order to obtain physical correlation between offshore sediments, enabling further comparison with historical tsunami deposits, as well as modern and ancient sands emplaced during normal marine conditions. A suite of previously collected and identified sediment samples was selected from the same area where the modern storm analogues were collected. The palaeo-samples came from long-vertical hydraulic percussion cores (14-30 m depths) and small horizontal tubes pushed into excavated underwater sediment walls (2-12 m depths). The uniqueness of OSL relays on its capacity to date the last time a mineral grain was effectively exposed to sunlight, just prior to its burial. It is intrinsically related to final depositional process, which should reflect the completeness of the OSL signal resetting (zeroing process), evidenced by the normality and modality of the Equivalent Dose (DE) distribution. In Optical Dating, DE over-dispersion values have been used as a measure of inhomogeneitiy in the natural palaeo-dose of sediments. Such heterogeneity can be due to an array of causes, including insufficient zeroing during transport and deposition, or turbation processes after burial. Environments where sediments are well exposed to daylight at deposition (e.g. aeolian and some coastal) do not show extreme over-dispersion values but rather well clustered DE's as noted by probability-distribution plots. The degrees of variance and skewness of Gaussian or relative-probability distributions are intrinsically related to the scatter factor. Hence, the latter could be used to differentiate between depositional mechanisms and/or environmental settings. In this study, the single-aliquot regenerative-dose (SAR) protocol was used to measure the OSL signals from single grains of quartz from tsunami, storm and normal marine conditions deposits. Over-dispersion analyses were conducted on all samples. Preliminary results suggest the possibility of differentiating between all three types of deposits based on pre-established over-dispersion values and representative single-dose population distributions. Further comparative OSL experiments are currently being carried out on other known tsunamigenic analogues to further evaluate OSL signal behaviours and constrain the findings (2011 Tohoku Tsunami; 1979 night Petatlán Tsunami). Rather than a dating tool, OSL was used to identify signal patterns exclusive to known depositional conditions, in hope of applying it as sedimentological proxy in event stratigraphy and palaeoseismic tsunami research.

Lopez, G. I.

2012-12-01

121

Principles of pleistocene stratigraphy, applied to the Gulf of Mexico  

Microsoft Academic Search

This study of one of the world's major oil provinces is an examination of advances made in the past decade in high resolution stratigraphy of Pleistocene marine sediments. Topics covered include magnetostratigraphy, planktonic foraminiferal biostratigraphy, oxygen isotope stratigraphy, tephrochronology and a review and updating of terrestrial-marine correlations during the Pleistocene. The emphasis is on the Gulf of Mexico, but the

R. H. Fillon; N. Healy-Williams; M. T. Ledbetter; R. C. Thunell; D. F. Williams

1984-01-01

122

Improved Osisotope stratigraphy of the Arctic Ocean Andr Poirier1  

E-print Network

Improved Osisotope stratigraphy of the Arctic Ocean André Poirier1 and Claude HillaireMarcel1 of the Arctic Ocean remained poorly known until the 2004 IODP coring of Lomonosov Ridge sediments. Early studies. Citation: Poirier,A., and C. HillaireMarcel (2011), Improved Osisotope stratigraphy of the Arctic Ocean

Long, Bernard

123

CAMBRIAN STRATIGRAPHY AND PALEONTOLOGY OF NORTHERN ARIZONA AND SOUTHERN NEVADA  

E-print Network

#12;CAMBRIAN STRATIGRAPHY AND PALEONTOLOGY OF NORTHERN ARIZONA AND SOUTHERN NEVADA THE 16TH FIELD STRATIGRAPHY FLAGSTAFF, ARIZONA, AND SOUTHERN NEVADA, UNITED STATES Edited by J. Stewart Hollingsworth and Southern Nevada: Museum of Northern Arizona Bulletin 67, 321 p. #12;Museum of Northern Arizona Bulletin 67

Mateo, Jill M.

124

Sedimentology of perennial ice-covered, meromictic Lake A, Ellesmere Island, at the  

E-print Network

Sedimentology of perennial ice-covered, meromictic Lake A, Ellesmere Island, at the northern Abstract: The sedimentology of coastal, meromictic Lake A, Ellesmere Island (83800'N, 75830'W on the northern coast of Ellesmere Island. These similarities and the important biogenic component identified

Vincent, Warwick F.

125

Lake Geneva Holocene delta seismic stratigraphy S11 High-resolution seismic stratigraphy of an Holocene lacustrine delta in  

E-print Network

Lake Geneva Holocene delta seismic stratigraphy S11 High-resolution seismic stratigraphy of an Holocene lacustrine delta in western Lake Geneva (Switzerland) IRA BASTER1, 2, STÃ?PHANIE GIRARDCLOS1, 3, ANDRÃ? PUGIN1, 4 & WALTER WILDI1 Key words: lacustrine delta, western Lake Geneva, Holocene, seismic

Gilli, Adrian

126

Geomorphic and sedimentologic evidence for the separation of Lake Superior from Lake Michigan and Huron  

USGS Publications Warehouse

A common break was recognized in four Lake Superior strandplain sequences using geomorphic and sedimentologic characteristics. Strandplains were divided into lakeward and landward sets of beach ridges using aerial photographs and topographic surveys to identify similar surficial features and core data to identify similar subsurface features. Cross-strandplain, elevation-trend changes from a lowering towards the lake in the landward set of beach ridges to a rise or reduction of slope towards the lake in the lakeward set of beach ridges indicates that the break is associated with an outlet change for Lake Superior. Correlation of this break between study sites and age model results for the strandplain sequences suggest that the outlet change occurred sometime after about 2,400 calendar years ago (after the Algoma phase). Age model results from one site (Grand Traverse Bay) suggest an alternate age closer to about 1,200 calendar years ago but age models need to be investigated further. The landward part of the strandplain was deposited when water levels were common in all three upper Great Lakes basins (Superior, Huron, and Michigan) and drained through the Port Huron/Sarnia outlet. The lakeward part was deposited after the Sault outlet started to help regulate water levels in the Lake Superior basin. The landward beach ridges are commonly better defined and continuous across the embayments, more numerous, larger in relief, wider, have greater vegetation density, and intervening swales contain more standing water and peat than the lakeward set. Changes in drainage patterns, foreshore sediment thickness and grain size help in identifying the break between sets in the strandplain sequences. Investigation of these breaks may help identify possible gaps in the record or missing ridges in strandplain sequences that may not be apparent when viewing age distributions and may justify the need for multiple age and glacial isostatic adjustment models. ?? 2006 Springer Science+Business Media B.V.

Johnston, J.W.; Thompson, T.A.; Wilcox, D.A.; Baedke, S.J.

2007-01-01

127

Valleys, facies, and sequence stratigraphy of the Ferron Notom Delta, Capital Reef, Utah  

NASA Astrophysics Data System (ADS)

The Turonian-Coniacian Ferron Sandstone is the first significant elastic tongue prograding from the thin-skinned Sevier Orogenic belts into the western interior foreland basin after the Greenhorn sea-level maxima. The Ferron Notom Delta, one of the Ferron wedges, is exposed three dimensionally in the Henry Mountains region, Utah. This dissertation attempts to: (1) subdivide the complex in a sequence stratigraphic perspective, and (2) evaluate the existing nonmarine sequence stratigraphic and delta asymmetry models. A large amount of integrated sedimentological and ichnological data shows that the 100-160 m thick complex consists of 6 sequences, 18 parasequence sets, and 43 parasequences. Without this extensive data control, this stratal complexity could not be resolved, resulting in huge correlations uncertainties. Incised valleys are developed in the younger two sequences. The youngest valley system within SQ1 is a compound incised valley, containing two nested valleys, each of which consists of amalgamated fluvial sandstones in the lower part, grading upward into heterolithic tidal/tidal-fluvial facies, and finally capped by more fluvial facies. There is a change in fluvial style from meandering into braided across the boundary of these two valleys. These observations support the existing nonmarine sequence stratigraphy models. Facies within the fluvial-deltaic complex are diverse, ranging from river-dominated to storm/wave-dominated. Sedimentological analysis within parasequence 6 recognized a clear along-strike facies transition from sandy shoreface in the north, into heterolithic river-dominated delta-front facies southeastward, and into wave/storm-reworked facies further southeastward. Ichnogenera correspondingly show distinct along-strike changes from a robust and healthy archetypal Cruziana to Skolithos ichnofacies in the north into a suite characterized by horizontal, morphologically simple, facies-crossing structures of the suppressed Skolithos and Cruziana ichnofacies to the SE. Further southeastward, suites show higher abundance and diversity, and in some cases reflect the archetypal ichnofacies. The overall facies types and their distribution within the parasequence suggest delta asymmetry, with net longshore transport from north to south. However, unlike the recent delta asymmetry models, paralic, lagoonal, and bay-fill facies are largely absent in the studied asymmetric delta. This presumably reflects lack of paralic accommodation, because of negative shoreline trajectory, as well as post-depositional erosion during subsequent transgression.

Li, Weiguo

128

Geomorphological and sedimentological characteristics of cyclone-generated landforms and washover deposits along the coasts of NW Australia  

NASA Astrophysics Data System (ADS)

Palaeotempestology, the study of prehistoric storms, uses sedimentary evidence to enlarge the temporal frame of storm occurrence patterns given by historical records. Different sedimentary archives storing traces of tropical cyclone impact (washover fans and sediments, beach ridge systems) were investigated along the coasts of the Exmouth Gulf and the NW Cape(W Australia) in order to evaluate their use for palaeotempestological research. (1) Along the W coast of the Exmouth Gulf, distinct lobate washover fans exhibit washover terraces, channel systems and delta-type sedimentation patterns. Their stratigraphy consists of shell debris layers, sand, coarse coral fragments and entire shells. Multiple reactivation of the washover fans is inferred from their complex pattern of accumulation and incision and a minimum of three palaeosols, each of them indicating one depositional event and a subsequent period of geomorphologic stability. (2) In Giralia Bay, S Exmouth Gulf, sandy chenier-like beach ridges characterize the landward boundary of extensive mud flats. Their geomorphology and stratigraphical architecture reflect the influence of intermittent phases of morphodynamic activity due to littoral-type processes and are assumed to record recurring cyclone impact. (3) Along the W coast of the NW Cape, subrecent tsunami sediments detected in back-barrier archives contain reworked foraminifers from the shelf and the littoral zone and are most likely related to the 1994 Java Tsunami. Below, several thin clastic sand layers intercalate carbonate mud sediments. In contrast to the mud units, most of the sandy layers are reflected by increased mean grain size and contain reworked foraminifers from the shelf and littoral zone. Underlying mud sediments and mangrove remains reflect coastal and palaeoenvironmental changes on Holocene time scales. Our preliminary findings suggest that the investigated sedimentary archives have a high potential for improving extreme wave histories (tsunamis, cyclone landfalls) of W Australia. Main challenges include dating (14C, OSL) and distinguishing between event and non-event processes, and between event types, based on sedimentology, microfauna, and shell taphonomy.

May, Simon Matthias; Engel, Max; Brückner, Helmut; Pint, Anna; Kelletat, Dieter; Scheffers, Anja; Squire, Peter

2013-04-01

129

Carbon isotope stratigraphy of an ancient (Ordovician) Bahamian-type carbonate platform: Implications for preservation of global seawater trends  

NASA Astrophysics Data System (ADS)

Carbon isotope stratigraphy has a unique role in the interpretation of Earth history as one of the few geochemical proxies that have been widely applied throughout the geologic time scale, from the Precambrian to the Recent, as both a global correlation tool and proxy for the carbon cycle. However, in addition to consideration of the role of diagenesis, numerous studies have raised awareness of the fact that C-isotope trends derived from ancient carbonate platforms may not be representative of dissolved inorganic carbon from a well-mixed global ocean reservoir. Furthermore, the larger carbon isotopic fractionation in the formation of aragonite versus calcite from seawater must be taken into account. All three of these variables (diagenesis, water mass residence time, % aragonite) may change in response to sea level, producing trends in C-isotopes on ancient carbonate platforms that are unrelated to the global carbon cycle. Global carbon cycle fluxes may also have a cause-effect relationship with sea level changes, further complicating interpretations of stratigraphic trends in carbon isotopes from ancient platform environments. Studies of C-isotopes in modern carbonate platform settings such as the Great Bahama Bank (GBB) provide important analogues in addressing whether or not ancient platforms are likely to preserve a record of carbon cycling in the global ocean. Swart et al. (2009) found that waters of the GBB had generally the same or elevated values (ranging from +0.5‰ to +2.5‰) compared to the global oceans, interpreted as reflecting differential photosynthetic fractionation and precipitation of calcium carbonate (which lowers pH and converts bicarbonate into 12-C enriched carbon dioxide, leaving residual bicarbonate heavier). Carbonate sediments of the GBB have elevated C-isotopes, not only because of the high C-isotope composition of the overlying waters, but also due to the greater fractionation associated with precipitation of aragonite versus calcite. Few studies of ancient carbonates have attempted to explicitly compare C-isotope trends in both restricted platform settings and open marine settings (e.g., Immenhauser et al. 2002). We studied a restricted Bahamian-type carbonate platform of Middle-Late Ordovician (Darriwilian-early Sandbian) age included in the St. Paul Group of Maryland, notable for sedimentologic evidence of severe restriction and a general lack of open marine macrofauna. We are able to correlate the C-isotope curve from the St. Paul Group to other sections globally by using a combination of conodont microfossils and measurement of Sr isotopes on conodont apatite. Coeval C-isotope trends from open marine settings in the western United States and Estonia are comparable to the restricted platform in Maryland. In our Ordovician example, local factors appear to have modified the magnitude of the global trends, but not the timing and direction. A remaining question is whether magnitude differences are a function of sedimentation rate and completeness. We continue to test hypotheses of global correlations of C-isotope trends in the Middle-Late Ordovician by utilizing the rapidly changing Sr isotope curve at that time.

Saltzman, M.; Leslie, S. A.; Edwards, C. T.; Diamond, C. W.; Trigg, C. R.; Sedlacek, A. R.

2013-12-01

130

Mesozoic stratigraphy of northwestern Australian and northern Himalayan margins  

SciTech Connect

The Mesozoic stratigraphies of the Himalayan margin, the Argo abyssal plain, and the Exmouth Plateau exhibit marked contrasts in their sedimentation histories. The sedimentary sequence on the northeastern Exmouth Plateau off Australia includes a Carnian to Rhaetian sequence of fluviodeltaic and marine clastics and carbonates, capped by a shallowing-upward sequence of platform carbonates overlain, with a major unconformity, by marine Aptian sediments deposited during rapid subsidence of the plateau. Argo abyssal plain basement is overlain by red-brown, bioturbated, inoceramid-rich quartzose claystones, bentonites, and quartz siltstones, dated by radiolarians and benthic foraminifera as lowest Cretaceous. This is overlain by red and green claystones and nannofossil chalks. The basal age indicates that sea-floor spreading began in the earliest Cretaceous, not Oxfordian as had been thought. In the Thakkola region of Nepal, uppermost Triassic through Lower Jurassic shelf and carbonate platform facies are capped by a ferruginous oolite deposit of latest Bathonian to earliest Callovian age. Sedimentation resumed in the middle Oxfordian with deposition of Berriasian( ) deep-water black organic-rich mud. Following a valanginian regression and progradation of terrigenous clastics, Aptian black shales were deposited. In geological studies of the northwestern Australian margin, the ubiquitous hiatus within the Callovian-Oxfordian has been termed the breakup unconformity. Existence of a similar-aged hiatus in the Himalayas on a margin which formed during the late Paleozoic, absence of any Jurassic on the Exmouth Plateau, and the apparent initiation of spreading in the Argo basin during the earliest Cretaceous suggest that this widespread unconformity is not associated with a continental breakup in these regions.

Ogg, J.; Kopaskamerkel, D.C.

1989-03-01

131

Osmium isotope stratigraphy of a marine ferromanganese crust  

USGS Publications Warehouse

Ferromanganese crusts provide records of long term change in ocean circulation and continental weathering. However, calibrating their age prior to 10 Ma has been entirely based on empirical growth rate models using Co concentrations, which have inherently large uncertainties and fail to detect hiatuses and erosional events. We present a new method for dating these crusts by measuring their osmium (Os) isotope record and matching it to the well-known marine Os isotope evolution of the past 80 Ma. The well-characterised crust CD29-2 from the central Pacific, was believed to define a record of paleooceanographic change from 50 Ma. Previous growth rate estimates based on the Co method are consistent with the new Os isotope stratigraphy but the dating was grossly inaccurate due to long hiatuses that are now detectable. The new chronology shows that it in fact started growing prior to 70 Ma in the late Cretaceous and stopped growing or was eroded between 13.5 and 47 Ma. With this new technique it is now possible to exploit the full potential of the oceanographic and climatic records stored in Fe-Mn crusts. ?? 2005 Elsevier B.V. All rights reserved.

Klemm, V.; Levasseur, S.; Frank, M.; Hein, J.R.; Halliday, A.N.

2005-01-01

132

The Pindiro Group (Triassic to Early Jurassic Mandawa Basin, southern coastal Tanzania): Definition, palaeoenvironment, and stratigraphy  

NASA Astrophysics Data System (ADS)

This paper defines the Pindiro Group of the Mandawa Basin, southern coastal Tanzania based on studies conducted between 2006 and 2009 with the objective of understanding the evolution of this basin. This work draws upon field data, hydrocarbon exploration data, unconventional literature, and the scant published materials available. The paper focuses on the evolution, depositional environments, and definition of the lowermost sedimentary package, which overlies unconformably the metamorphic basement of Precambrian age. The package is described here as the Pindiro Group and it forms the basal group of the Mandawa Basin stratigraphy.

Hudson, W. E.; Nicholas, C. J.

2014-04-01

133

Upper Triassic reef facies in the Asher-Atlit-1 borehole, Northern Israel: Microfacies, cement stratigraphy and paleogeographic implications  

Microsoft Academic Search

Summary  The late Triassic succession of the Asher-Atlit 1 borehole is over 1000 m thick, and is composed of reefal and associated\\u000a facies interbedded with volcanics of Norian age. Only borehole cuttings are available. Microfacies classification and cement\\u000a stratigraphy determined by optical and CL microscopy, allowed discrimination of six episodes of reef establishment, progradation,\\u000a shallowing, and termination. Organic buildups are constructed

Dorit Korngreen; Chaim Benjamini

2001-01-01

134

Sequential stratigraphy of Jurassic and Cretaceous in the central Saudi Arabian platform  

SciTech Connect

Depositional sequences and system tracts in the Jurassic and Cretaceous sedimentary rocks of the Central Saudi Arabian platform have been established on the basis of precise lithofacies analysis, detailed sedimentologic interpretation, and accurate age determination by ammonites, nautoli, brachipods, echinoids, and nannoflora. A eustatic depositional model integrated with accepted worldwide sequential stratigraphic data is proposed, and appears to correlate fairly well with the 1988 global sea level chart by Haq and others, particularly for the Lower and Middle Jurassic and the Middle and Upper Cretaceous. Ages determined by accurate biostratigraphic data enable time correlations to be made with third-order eustatic cycles from Vail's 1988 global chart. Eustatic changes therefore appear to be the main factors of sedimentary control during the Jurassic and Cretaceous on the Arabian platform.

Le Nindre, Y.M.; Manivit, J.; Vaslet, D. (Bureau de Recherches Geologiques et Minieres, Orleans (France)); Manivit, H. (Bureau de Recherches Geologiques et Minieres, Orleans (France) Univ. Pierre et Marie Curie, Paris (France))

1991-08-01

135

Sedimentology and origin of source rocks in the Tertiary Niger delta  

SciTech Connect

Organic matter in Tertiary strata of the Niger delta is mainly a mixture of types II and III, has a high pristane/phytane ratio (> 1.0), and is composed of the macerals vitrinite and minor liptinite. The main palynofacies are structured woody material, cuticles, pollen, spores, and opaque and minor amorphous organic matter. The distribution and abundance of the organic matter reflects the age and sedimentology of the strata. There is a progressive decline in mean total organic carbon (TOC) content from upper Eocene (2.2% TOC) to Pliocene strata (0.90% TOC) and an associated general decrease in hydrogen index (HI) and pristane/phytane ratio. The decrease in TOC and HI in younger strata mainly reflects increased dilution of a nearly constant supply of terrestrial organic matter associated with the generally higher sedimentation rates of younger strata. The low pristane/phytane ratio of younger strata may reflect less oxidizing depositional conditions. No rich source rocks occur in the Niger delta and, as conventionally measured, the strata have little or no oil generating potential. The poor quality of the source rocks has been compensated for by their greater volume and excellent migration routes. The Niger delta type of source rock - although an end member in terms of general source rock composition - appears to be relatively typical of Tertiary deltas.

Bustin, R.M.

1988-08-01

136

Sediment transport processes and their resulting stratigraphy: informing science and society  

NASA Astrophysics Data System (ADS)

Sediment transport physically shapes planetary surfaces by producing patterns of erosion and deposition, with the relative magnitudes of geomorphic actions varying according to environmental conditions. Where sediment fills accommodation space and generates accumulation, a stratigraphic archive develops that potentially harbors a trove of information documenting dynamic conditions during the periods of sediment production, transport and deposition. By investigating the stratigraphic record, it is possible to describe changes in surface environments, as well as hypothesize about the development of regional tectonic and climate regimes. Ultimately, information contained within the stratigraphic record is critical for evaluating the geological history of terrestrial planets. The enigma of stratigraphy, however, is that sediment deposition is finicky, there is no uninterrupted record, and while deposits may reflect only a brief temporal window, they may still be used to infer about conditions that encompass much longer periods of time. Consider a case where meter-scale dune foresets, deposited in a matter of minutes to hours, are in contact with sediments above and below that reflect entirely different depositional circumstances and are separated in time by a hiatus of thousands or perhaps millions of years. To effectively unlock the scientific trove bound in stratigraphy, it is first necessary to identify where such unconformities exist and the conditions that lead to their development. This challenge is made much simpler through scientific advances in understanding sediment transport processes -- the examination of how fluid and solids interact under modern conditions -- because this is precisely where sediment patterns first emerge to produce accumulation that builds a stratigraphic record. By advancing an understanding of process-based sedimentology, it is possible to enhance diagnostic evaluations of the stratigraphic record. Fortunately, over the past several decades, there have been numerous scientific advances pertaining to the coupling of sediment transport and hydrodynamics. This research has produced new theory about how sediments accumulating in many unique environments shape the stratigraphic record. Recent studies have taken advantage of novel methods for acquiring observational data, which in turn have been used to advance numerical modeling schemes as well as experimental designs. As an example, consider fluvial deltas: here, hydrodynamics are constantly evolving over space and time. Patterns of sediment deposition and erosion (from dune to delta-lobe scales), resolved using high-resolution 3-D acoustic data, are used as input data to construct models that further show how channel dynamics (e.g., avulsions) and kinematics (e.g., lateral migration) evolve due to sediment and hydrodynamic coupling. This information is used to propose new theories of delta stratigraphy, which are then tested by examining ancient fluvial-delta systems. Finally, research efforts evaluating modern sediment-transport and depositional processes offer significant benefits to society. For example, fluvial deltas are heavily relied upon for societal welfare and yet are among the most dynamic landscapes on Earth's surface. Therefore, research examining the evolution of these landscapes not only advances basic science, but also doubles as an exercise in applied geomorphology.

Nittrouer, J. A.

2013-12-01

137

Stratigraphy and textural characteristics of the 198283 tephra of Galunggung volcano (Indonesia): implications  

E-print Network

Stratigraphy and textural characteristics of the 1982­83 tephra of Galunggung volcano (Indonesia Orléans Cedex 2, France Abstract The Galunggung volcano in western Java (Indonesia) was the site; Galunggung volcano; stratigraphy; volcanic hazards; vulcanian; phreatomagmatism #12;1. Introduction

Paris-Sud XI, Université de

138

Sequence stratigraphy in frontier regions: An example from the Rebi Block, Arafura Sea, Eastern Indonesia  

SciTech Connect

The Rebi Block is currently in the early stages of hydrocarbon exploration. The subsurface geology of this area is only known from seismic reflection data. By applying seismic stratigraphy techniques, unconformities and condensed sections were recognized. These discontinuities were dated using paleontological information from the Kulka-1 well, Northwest Shelf of Australia. With these age constraints, seven unconformities and three condensed sections were dated and correlated to the Exxon global sea level curve. The chronostratigraphic charts for the Rebi Block and the Northwest Shelf of Australia have clarified the Mesozoic stratigraphy of the study area. The Exxon global sea level curve has refined the ages determined by conventional paleontological dating. The chart has also helped in predicting source, reservoir and seal potential within a time framework. Prospective stratigraphic traps were those related to the incised valleys at the southeastern part of the Rebi Block. Although basin floor fans were recognized on the seismic lines, these sand-prone depositional systems are buried too deeply for current exploitation Further projection of maturity data from Well Koba-1 indicated the source rock has reached maturity in the Rebi Block. By extrapolating the depth versus R[sub o] of Well Koba-1 to the study area, the oil window is predicted to occur at a depth of approximately 1829.27 meters and the gas window at 3,355 meters.

Siregar, P.H.; Baum, G.R.; Kendall, C.G. (Univ. of South Carolina, Columbia, SC (United States))

1996-01-01

139

Jurassic stratigraphy of the Wiggins Arch, Mississippi  

SciTech Connect

Mobil and Shell jointly explored the Wiggins arch area in southern Mississippi from 1985 to 1991. The effort concentrated on the Jurassic Norphlet and Smackover formations. Two wells were drilled into Paleozoic crystalline rocks and one well into the Pine Hill formation. Two of these wells were located on the southern side of the Wiggins arch and provide significant data for interpreting Jurassic stratigraphy. The Mobil No. 1 U.S.A. well encountered a complete Jurassic section, but with some significantly different facies than those encountered by wells to the north. A granite wash section is the equivalent to the Frisco City formation previously only found 100 mi to the north-northeast. All 300 ft of Smackover is crystalline dolomite. The Norphlet section is entirely granite wash. The Pine Hill anhydrite is unusually thick and interpreted to be equivalent to the Louann Salt. Correlations to other wells on the Wiggins arch, particularly the Conoco No. 1 Higgins, indicate that the Jurassic can be divided into three transgressive events separated by the Norphlet/Pine Hill and Frisco City/Buckner regressive events.

Rhodes, J.A.; Maxwell, G.B. (Mobil Oil Company, Houston, TX (United States))

1993-09-01

140

Eolian event stratigraphy - A conceptual framework  

SciTech Connect

A basis for eolian event stratigraphy is to distill the impact of events into fundamental processes and products. For accumulation (net deposit through time) to occur, the sediment budget must be positive. If the sediment budget becomes neutral or negative, accumulation ceases and a bypass or erosional super bounding surface, respectively, forms capping the genetic unit. Within the three types of eolian systems (dry, wet, stabilized), the mechanisms of accumulation and super-surface formation differ. In the dry system, accumulation occurs because of areal deceleration of sand-carrying winds. Because of dune-interdune flow conditions, accumulation begins when interdune flats are closed, requiring sand supply, time, and conditions for dune growth at the expense of interdune flats. In the wet system, accumulation of dune and interdune deposits occurs by trapping with a rising water table. Accumulations vary with the nature of the water table rise, proportion of dunes and interdune flats, and interdune topography. In the stabilized system, accumulation occurs with rapid stabilization of elements of active eolian systems; super surfaces form when the causes of stabilization cease. The eolian rock record consists of preserved accumulations and super surfaces. Accumulation space is distinct from preservation space. Preservation space is made by subsidence and water table rise. Without preservation space, an unconformity results. The dominance of subsidence versus water table rise is reflected in dry and wet accumulations respectively, such as the Jurassic Navajo and Entrada sandstones.

Kocurek, G.; Havholm, K.G. (Univ. of Texas, Austin (United States))

1991-03-01

141

Foraminiferal stratigraphy of Ranikot (Paleocene) of Pakistan  

SciTech Connect

The sedimentary deposits of Pakistan are divided into three distinct basins: the Lower Indus basin, the Upper Indus basin, and the Baluchistan basin. The Lower Indus basin is further divided into two parts; the northern part is the Sulaiman Province, and the southern part is known as Kirthar Province. The tertiary stratigraphy of Kirthar Province is conspicuous for its characteristic lithostratigraphic units. The Paleocene deposits of Kirthar Province are designated as Ranikot Group. The Ranikot Group was divided by Cheema et al in 1977 into three distinct lithostratigraphic units: the Khadro formation (Cardita beaumonti beds), Bara formation (Lower Ranikot), and Lakhra formation (Upper Ranikot). The Khadro and Lakhra formations are marine, characterized by foraminiferal assemblages. The characteristic planktonic forms are: Globigerina triloculinoides Plummer, Globorotalia pseudobulloids (Plummer), G. compressa (Plummer), G. valascoensis (Cushman), and G. pseudomenardii Bolli. The diagnostic forms of larger foraminifera are: Nummulites nuttalli Davies, Miscellanea (d'Archiac and Haime), Kathina major Smout, and Lockartia conditii (Nuttall). The planktonic foraminifera were assigned to Globorotali trinidadensis, G. pseudomenardii, and G. velasoensis zones of Kureshy in 1977, and larger foraminifera were assigned to Nummulities nuttalli zones of Kureshy in 1978.

Kureshy, A.A.

1983-03-01

142

Late quaternary sequence stratigraphy, South Florida margin  

SciTech Connect

Late Quaternary sea-level change and the Florida Current have combined to produce a progradational shelf-slope margin along the western portion of the south Florida Platform facing the Straits of Florida. Analysis of high resolution seismic reflection profiles suggest at least eight 5th order late Quaternary sequences downlap onto the Pourtales Terrace at 250 m water depth. Along most of the south Florida margin, this Late Quaternary section is very thin, and only where significant accumulations occur can the stratigraphic patterns produced by sea-level change be clearly observed. Recognition of systems tracts and their boundaries from high-resolution seismic data is important for prediction of sedimentary facies and stratigraphic development of margins. Many south Florida seismic boundaries can be fit to the Exxon sequence stratigraphy model. Others appear to reflect the added effect of bottom-current erosion that complicates the signal produced by sea-level change. Overall, the sea-level signal appears to dominate the stratigraphic record, especially from the 2-dimensional perspective of dip-oriented seismic profiles. However, the 3-dimensional geometry of deposits are strongly influenced by along slope accumulation patterns controlled by the Florida Current. This study provides new insight on the importance of both geostrophic boundary currents and sea-level change in controlling stratigraphic development of a carbonate platform margin. Similar anomalously thick slope deposits in ancient sequences may indicate similar controls on accumulation and could lend to predictions of related paleo-platform configurations.

Locker, S.D.; Hine, A.C. [Univ. of South Florida, St. Petersburg, FL (United States). Dept. of Marine Science

1995-12-01

143

Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan  

USGS Publications Warehouse

This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions - vertical (x), lateral (y), and down-the-basin (z). A flood basin fills in as landforms vertically (x) and laterally accrete (y), and prograde down-the-basin (z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution. ?? 2001 Elsevier Science B.V. All rights reserved.

Farrell, K.M.

2001-01-01

144

Quaternary high-resolution stratigraphy and its application in studies of the Canary basin  

SciTech Connect

The Quaternary nannofossil stratigraphy has three zones based on the last appearance datum of Pseudoemillania lacunosa and the first appearance datum of Emiliania buxleyi. Other first and last occurrences can be added to this to give a conventional stratigraphy with zones a few hundred thousand years long. The calcareous nannofossil flora however is frequently dominated by a single species which allows acme zones to be identified giving a resolution of a few tens of thousands of years (individual oxygen isotope stages). The acmes are not controlled by climate since they span both cold and warm stages through a range of latitude. This high-resolution stratigraphy has been used in two ways to study sedimentation in the Canary basin off West Africa. First, it has been combined with the lithostratigraphy to identify particular oxygen isotope stages in sediments from the Madeira Abyssal Plain. Second, it has been used to identify the age range of material included in each turbidite by comparing coccolith mixtures in each turbidite with calculated synthetic mixtures based on the proportions of particular species in each oxygen isotope stage. The results show that each turbidite contains a mixture of sediment representing a few hundred thousand years. Since the author knows the volume of each turbidite and the rate of sediment accumulation in the source areas, he can calculate the depth and area of erosion of each flow. The calculated values tie in with the knowledge of recent erosion in the area off West Africa and suggest that areas of the margin have periodically failed removing 50-100 m thick units. The focus of this erosion has varied with time.

Weaver, P.P.E. (Inst. of Oceanographic Sciences Deacon Lab., Surrey (United Kingdom))

1991-08-01

145

Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris  

USGS Publications Warehouse

New high-resolution spectral and morphologic imaging of deposits on walls and floor of Ius Chasma extend previous geomorphic mapping, and permit a new interpretation of aqueous processes that occurred during the development of Valles Marineris. We identify hydrated mineralogy based on visible-near infrared (VNIR) absorptions. We map the extents of these units with CRISM spectral data as well as morphologies in CTX and HiRISE imagery. Three cross-sections across Ius Chasma illustrate the interpreted mineral stratigraphy. Multiple episodes formed and transported hydrated minerals within Ius Chasma. Polyhydrated sulfate and kieserite are found within a closed basin at the lowest elevations in the chasma. They may have been precipitates in a closed basin or diagenetically altered after deposition. Fluvial or aeolian processes then deposited layered Fe/Mg smectite and hydrated silicate on the chasma floor, postdating the sulfates. The smectite apparently was weathered out of Noachian-age wallrock and transported to the depositional sites. The overlying hydrated silicate is interpreted to be an acid-leached phyllosilicate transformed from the underlying smectite unit, or a smectite/jarosite mixture. The finely layered smectite and massive hydrated silicate units have an erosional unconformity between them, that marks a change in surface water chemistry. Landslides transported large blocks of wallrock, some altered to contain Fe/Mg smectite, to the chasma floor. After the last episode of normal faulting and subsequent landslides, opal was transported short distances into the chasma from a few m-thick light-toned layer near the top of the wallrock, by sapping channels in Louros Valles. Alternatively, the material was transported into the chasma and then altered to opal. The superposition of different types of hydrated minerals and the different fluvial morphologies of the units containing them indicate sequential, distinct aqueous environments, characterized by alkaline, then circum-neutral, and finally very acidic surface or groundwater chemistry. ?? 2009 Elsevier Inc. All rights reserved.

Roach, L.H.; Mustard, J.F.; Swayze, G.; Milliken, R.E.; Bishop, J.L.; Murchie, S.L.; Lichtenberg, K.

2010-01-01

146

Middle Jurassic stratigraphy in the southwestern part of the Republic of Tatarstan  

NASA Astrophysics Data System (ADS)

Data on the structure of the Middle Jurassic marine deposits in the vicinity of Ulyanovsk (sections of the Tarkhanovskaya Pristan-Dolinovka profile) are generalized with due regard for ammonites, bivalves, and microfossils occurring in sediments. Outcrops of the Tarkhanovskaya Pristan site represent the northernmost Bajocian section of the Russian Platform, where ammonites of Tethyan origin are identified. As is established, the pre-Callovian sand-clay sequence formerly attributed to the Bathonian includes the Garantiana beds of the upper Bajocian in its middle part. The multidisciplinary biostratigraphic-sedimentological research showed that downwarping of the Ulyanovsk-Saratov basin and origin of the Simbirsk Bay of the Tethyan marginal sea commenced in the Bajocian Age. The identified fossils of the upper Bajocian and lower and upper Callovian are cited in paleontological plates of this work.

Mitta, V. V.; Kostyleva, V. V.; Glinskikh, L. A.; Shurygin, B. N.; Starodubtseva, I. A.

2014-01-01

147

Sedimentation studies relevant to low level radioactive effluent dispersal in the Irish Sea. Part 2. Sea bed morphology, sediments and shallow sub-bottom stratigraphy of the eastern Irish Sea  

SciTech Connect

A detailed survey of the Eastern Irish Sea between the Isle of Man and the Cumbrian coast was carried out during 1979-80 using sidescan sonar, pinger and echo sounder seismic equipment supplemented by box cores, gravity cores and grab samples. The objective of the study was to provide a firm sedimentological basis for any further work concerning the horizontal and vertical distributions of radionuclides discharged from the Windscale nuclear fuel reprocessing plant within the sea bed sediments. The sidescan data were used to map the distribution of surface sediments and infer net sand transport paths, whilst the continous seismic profile records were used to study the sub-bottom stratigraphy and geological structures. The sediment samples were analyzed for faunal content and evidence of animal-sediment interaction.

Williams, S.J.; Kirby, R.; Smith, T.J.; Parker, W.R.

1981-01-01

148

Seismic stratigraphy of Lake Van, eastern Turkey  

NASA Astrophysics Data System (ADS)

More than 1500 km of multi-channel seismic reflection profiles combined with ICDP (International Continental Scientific Drilling Program) drilling data, provide important insights into the stratigraphic evolution of Lake Van, eastern Turkey. Three major basins (Tatvan, Northern and the Deveboynu basins) comprise the main lake basin and are separated by morphological highs (Ahlat ridge and Northern ridge). Moreover, NE-SW faults, parallel to the general tectonic lineament of the area, dominate the entire basin and are in charge of creating graben and half-graben structures. Well-developed prograding deltaic sequences on top of the basement were recognized by seismic stratigraphy analysis. Most likely, they formed during the initial flooding of Lake Van ?600 ka. The Tatvan basin sediments are dominated by mass-flow deposits of various origins alternating with undisturbed lacustrine sediments including distinct tephra layers. Faulting along the Tatvan basin margins may have triggered margin-wide slope failures. Ahlat ridge started to form between ca 340 ka-290 ka. Since then, Ahlat ridge was sheltered from major mass-flows due to its elevation. Hence, slow lacustrine sedimentation has prevailed throughout lake history on Ahlat ridge, which was the location of the main drill site during the ICDP. Several lake level fluctuations are evident on the eastern slope area but the deep basins were permanently covered by water. A significant lake-level low stand (ca 600 ka BP) was found at ?610 m below present lake level. The setting of the lake changed at about 30 ka. Tectonic activity appears to have waned significantly as the mass-transport deposition decreased across the Tatvan basin while normal undisturbed lacustrine sedimentation prevailed. A different setting is found in the Northern basin from ca 90 ka to Present, especially due to the strong influx of mostly volcaniclastic turbidites causing sedimentation rates to be about 3.5 times higher (drill Site 1), than at Site 2 (Ahlat ridge).

Cukur, Deniz; Krastel, Sebastian; Schmincke, Hans-Ulrich; Sumita, Mari; Ça?atay, M. Nam?k; Meydan, Aysegül Feray; Damc?, Emre; Stockhecke, Mona

2014-11-01

149

The Baja California peninsula borderland: structural and sedimentological characteristics  

NASA Astrophysics Data System (ADS)

Structural and sedimentological data from three oceanographic cruises define the peninsular margin of the Gulf of California as a borderland similar to the California Continental Borderland. Bathymetric and high resolution seismic profiles show some active normal faults with a lateral strike slip component, which are parallel and oblique at low angle to the peninsular coast, and delimit horst and graben structures. Preliminary conclusions are that, active faults are related to the movement of the peninsular block towards the northwest. As part of the opening of the Gulf (circa 6.5 my ago), grabens and half-grabens, separated by highlands, islands and banks have formed. Some of the basins are now inland, such as Santa Rosal?´a, Loreto and San Jose del Cabo, and are filled with Pliocene and possibly Miocene marine rocks. Other basins are modern shallow bays, like Concepción (30 m deep); others are slope basins with a range of depths, such as Alfonso and Cochimie basins at about 400 m; and La Giganta and La Paz basins at 500 and 700 m, respectively. Sedimentation in these basins is varied. Inland basins (Pliocene) are filled with shallow marine sedimentary rocks, clastics and evaporites; Concepción is a starved basin filled with some terrigenous, but mainly biogenic sediments; the modern deep basins (Alfonso, La Giganta and La Paz) are filled with terrigenous sediments on their peninsular margin, biogenic if they are limited by islands, and laminated sediments if they are stagnant or have slopes or sills intersecting the oxygen minimum layer of the water column.

Nava-Sánchez, Enrique H.; Gorsline, Donn S.; Molina-Cruz, Adolfo

2001-10-01

150

Sedimentology of Martian Gravels from Mardi Twilight Imaging: Techniques  

NASA Technical Reports Server (NTRS)

Quantitative sedimentologic analysis of gravel surfaces dominated by pebble-sized clasts has been employed in an effort to untangle aspects of the provenance of surface sediments on Mars using Curiosity's MARDI nadir-viewing camera operated at twilight Images have been systematically acquired since sol 310 providing a representative sample of gravel-covered surfaces since the rover departed the Shaler region. The MARDI Twilight imaging dataset offers approximately 1 millimeter spatial resolution (slightly out of focus) for patches beneath the rover that cover just under 1 m2 in area, under illumination that makes clast size and inter-clast spacing analysis relatively straightforward using semi- automated codes developed for use with nadir images. Twilight images are utilized for these analyses in order to reduce light scattering off dust deposited on the front MARDI lens element during the terminal stages of Curiosity's entry, descent and landing. Such scattering is worse when imaging bright, directly-illuminated surfaces; twilight imaging times yield diffusely-illuminated surfaces that improve the clarity of the resulting MARDI product. Twilight images are obtained between 10-30 minutes after local sunset, governed by the timing of the end of the no-heat window for the camera. Techniques were also utilized to examine data terrestrial locations (the Kau Desert in Hawaii and near Askja Caldera in Iceland). Methods employed include log hyperbolic size distribution (LHD) analysis and Delauney Triangulation (DT) inter-clast spacing analysis. This work extends the initial results reported in Yingst et al., that covered the initial landing zone, to the Rapid-Transit Route (RTR) towards Mount Sharp.

Garvin, James B.; Malin, Michael C.; Minitti, M. E.

2014-01-01

151

A sedimentologic and 14C dating study of five eastern Australian upper continental slope submarine landslides  

NASA Astrophysics Data System (ADS)

Sedimentologic and AMS 14C age data are reported for calcareous hemipelagic mud samples taken from gravity cores collected at sites within, or adjacent to five submarine landslides identified with multibeam bathymetry data on the Nerrang Plateau segment and surrounding canyons of eastern Australia's continental slope (Bribie Bowl, Coolangatta-2, Coolangatta-1, Cudgen and Byron). Sediments are comprised of mixtures of calcareous and terrigenous clay (10-20%), silt (50-65%) and sand (15-40%) and are generally uniform in appearance. Their carbonate contents vary between and 17% and 22% by weight while organic carbon contents are less than 10% by weight. Dating of conformably deposited material identified in ten of the twelve cores indicates a range of sediment accumulation rates between 0.017mka-1 and 0.2 mka-1 which are consistent with previous estimates reported for this area. One slide-adjacent core, and four within-landslide cores present depositional hiatus surfaces located at depths of 0.8 to 2.2 meters below the present-day seafloor and identified by a sharp, colour-change boundary; discernable but small increases in sediment stiffness; and a slight increase in sediment bulk density of 0.1 gcm-3. Distinct gaps in AMS 14C age of at least 20ka are recorded across these boundary surfaces. Examination of sub-bottom profiler records of transects through three of the within-slide core-sites and their nearby landslide scarps available for the Coolangatta-1 and Cudgen slides indicate that: 1) the youngest identifiable sediment layer reflectors upslope of these slides, terminate on and are truncated by slide rupture surfaces; and 2) there is no obvious evidence in the sub-bottom profiles for a post-slide sediment layer draped over or otherwise burying slide ruptures or exposed slide detachment surfaces. This suggests that both these submarine landslides are geologically recent and suggests that the hiatus surfaces identified in Coolangatta-1's and Cudgen's within-slide cores are either: a) erosional features that developed after the occurrence of the landslide in which case the hiatus surface age provides a minimum age for landslide occurrence or b) detachment surfaces from which slabs of near-surface sediment were removed during landsliding in which case the post-hiatus sediment dates indicates approximately when landsliding occurred. In either case, it is reasonable to suggest that these two spatially adjacent slides occurred penecontemporaneously approximately 20,000 years ago.

Clarke, S. L.; Hubble, T.; Webster, J.; Airey, D.; De Carli, E.; Ferraz, C.; Reimer, P. J.; Boyd, R.; Keene, J.

2013-12-01

152

Aragats stratovolcano in Armenia - volcano-stratigraphy and petrology  

NASA Astrophysics Data System (ADS)

In this contribution we discuss the geological structure and volcano-stratigraphy of the Quaternary Aragats stratovolcano in Armenia based on recent age determinations as well as petrological and geochemical features of magma generation processes specific for collision zones. Armenia is situated in the NE part of the Anatolian-Armenian-Iranian plateau, an intensely deformed segment of the Alpine-Himalayan belt. The complex geological structure of the region is represented by a mosaic of tectonic blocks comprising fragments of volcanic arcs, continental crust and exhumed oceanic crust. Collision of the Arabian plate with the Eurasian margin in early Miocene resulted in orogenic uplift associated with intense volcanism. Aragats (4090m) is one the largest volcanoes in the entire region and produced central vent (inc. Plinian VEI>4) and monogenetic type flank eruptions and periphery plateaus within a total area greater than 5000 km2, known as Aragats volcanic province (AVP). The Aragats volcanic province (AVP) comprises the composite cone of Aragats volcano, the peak of which is built on a summit plateau, ~45 km in diameter shield structure with dozens of flank vents, scattered monogenetic cinder cones on the adjacent volcanic plateaus as well as the neighboring stratovolcano Arailer. New K-Ar and 40Ar/39Ar age determinations of groundmass and separated plagioclase samples indicate that volcanism at AVP began ~2.5 Ma, while most recent volcanic activity is 0.49 Ma for Plinian eruption of dacites from Irind flank vent and basaltic trachyandesite lava flows from Tirinkatar (0.48-0.61 Ma), Kakavasar, (0.52-0.54 Ma) and Ashtarak (0.58 Ma) monogenetic flank centers, as well as trachyandesites of Jrbazhan volcano on the summit plateau of Aragats (0.52 Ma). Based on bulk rock geochemical data (major, minor and low abundance trace elements, Sr and Nd isotopes) and mineral chemistry, we conclude that volcanic rocks of AVP are largely recording a complex mixing between deep asthenospheric mantle and remnants of subduction-modified and metasomatically enriched mantle sources, followed by fractionation in large magma chamber(s). Mineral-melt equilibria studies reveal dry (<1%H2O) and very hot source, fluid inclusions study reveal pronounced enrichment with CO2 over H2O in fluid phase. Noteworthy are high eruption temperatures compared to global volcanic arcs, explaining the very long (up to 25 km) and thick (>200m) trachydacitic lava flows.

Meliksetian, Khachatur; Savov, Ivan; Connor, Charles; Halama, Ralf; Jrbashyan, Ruben; Navasardyan, Gevorg; Ghukasyan, Yura; Gevorgyan, Hripsime; Manucharyan, Davit; Ishizuka, Osamu; Quidelleur, Xavier; Germa, Aurélie

2014-05-01

153

Stratigraphy of Late Pleistocene formations of the Mezen river valley  

NASA Astrophysics Data System (ADS)

Stratigraphy of Late Pleistocene formations of the Mezen river valley A.V. Maksimov, L.R. Semenova A.P. Karpinski All-Russian Geological Research Institute (VSEGEI), St.-Petersburg, Russia In recent years received extensive and contradictory evidence on the genesis, age and area of spreading of quaternary formations in NW Russia. The reason for this - the heterogeneity of investigated objects and methods of research. Within a valley of the river Mezen quaternary sediments are distributed everywhere. In outcrops opened sediments relating to the fifth and sixth stages of Middle Pleistocene, Upper Pleistocene and Holocene. Thickness of the quaternary sediments varies over a wide range, generally increasing from west to east. The authors have studied quaternary formations, opened in outcrops in valley of river Mezen (downstream) and its right tributary Peza, as well as in marine coastal cliffs. The aim of the study was to demonstrate specific features of the lithological composition of quaternary sediments from various (in age and origin) moraine complexes of the Russian NW and to reconstruction of paleogeographic sedimentary environments in the Late Pleistocene. Such attention to glacial sediments was dictated by the fact that they bear the most valuable information pertaining to the type and composition of provenances and to the geodynamic settings of feeding and sedimentation zones. To achieve these goals following tasks were set: 1. Lithostratigraphic subdivision of the section of Quaternary sediments. 2. Correlation of local stratigraphic units with stratigraphic scheme adjacent areas using the geochronological, paleontological and paleoclimatic data. 3. Reconstruction of the main geological events Late Pleistocene NW European part of Russia. First for glacial sediments in valley of the river Mezen applied lithological method, for determining the origin of formations. Was studied lithological composition of the sediments and were correlated geological sections. Also was conducted geochronological research. Based on these results, it was found that: - the glaciers of the Baltic Shield and the Czech lip penetrated into the valley of the river Mezen in Valdai time, forming moraines of different lithology; - sea waters penetrated to the valley of the river Mezen in Leningrad and Mikulino time. In Mikulino time the basin was deeper.

Maksimov, Anton; Semenova, Ljudmila

2014-05-01

154

Morphologic and sedimentologic characteristics of continental slope box slides offshore Fraser Island, Queensland, Australia  

NASA Astrophysics Data System (ADS)

The Fraser Island Slide complex is located on eastern Australia's continental slope offshore Fraser Island in southern Queensland. Morphologic, sedimentologic and geomechanical properties data for two submarine landslides, the 'North Fraser Island Upper Slope Slide' (upper slope slide) and the 'Fraser Island Middle Slope Slide' (middle slope slide) are described. Both of these features are box-shaped, slide scars from which rectangular slabs of material have been shed. The upper slope slide is situated at a water depth of approximately 750 m at the northern end of the Fraser Canyon. The head of this slide has apparently detached from a structural surface comprised of a Miocene reef complex located beneath the continental shelf edge; this slide is estimated to be 25 square kilometres in area and an average of 100m thick. The middle slope slide is situated in 1500 m of water at the southern end of the Fraser Canyon. It estimated to be 12 square kilometres in area and 50 m thick. Cores taken in the continental slope within both slides are long (upper slope 5.65 m, middle slope 3.64 m) and are dominantly comprised of hemipelagic mud. Cores taken adjacent to both slides are short (upper slope 1.33m, middle slope 0.43m) and terminate in stiff muds of suspected Miocene or Pliocene age. Additionally, the 1.33 m core on the slope adjacent to the upper slide presents a near surface layer of upper-fining of coarse to fine shelly sand which we interpret to be a turbidite deposit, this layer was deposited within hemipelagic muds which are ubiquitously present on the upper eastern Australian Continental Slope in New South Wales and Southern Queensland.

Fletcher, Melissa; Hubble, Thomas; Clarke, Samantha; Airey, David; Yu, Phyllis; Southern Surveyor V01-2013, Scientific Party RV

2014-05-01

155

Pleistocene stratigraphy in the southern Lower Mississippi Valley  

Microsoft Academic Search

Scientific inquiry into Pleistocene stratigraphy of the Lower Mississippi Valley (LMV) dates to early writings of European naturalists in the late 19th century. By the early 20th century, landscape evolution concepts, stratigraphic models, and regional syntheses had developed for most areas. The 1944 monograph of H.N. Fisk marks the advent of a predictive stratigraphic and landscape evolution model that links

Whitney J. Autin

1996-01-01

156

Workshop on quantitative dynamic stratigraphy. Final conference report  

SciTech Connect

This document discusses the development of quantitative simulation models for the investigation of geologic systems. The selection of variables, model verification, evaluation, and future directions in quantitative dynamic stratigraphy (QDS) models are detailed. Interdisciplinary applications, integration, implementation, and transfer of QDS are also discussed. (FI)

Cross, T.A.

1988-04-01

157

Sequence Stratigraphy of the Glenshaw Formation (MiddleLate  

E-print Network

Sequence Stratigraphy of the Glenshaw Formation (Middle­Late Pennsylvanian) in the Central and erosional disconformities, to develop a high-resolution sequence-statigraphic framework. The tops sequences. Allocycles in this framework correlate with similar allocycles described from the northern

Martino, Ronald L.

158

Sequence stratigraphy, biotic change, 87 record, paleoclimatic history, and sedimentation  

E-print Network

Sequence stratigraphy, biotic change, 87 Sr/86 Sr record, paleoclimatic history, and sedimentation Akpak Sequence. The hardground yields the benthic foraminifera Cibicides grossus, a regional marker-thick, Pliocene­Pleistocene Iperk Sequence and a 23-fold increase in sedimentation rates relative to the Early

159

Sedimentological Evidence For The Last Interglacial (Sensu Lato) From El'gygytgyn Crater Lake  

NASA Astrophysics Data System (ADS)

During May of 1998 a 13.0 m sediment core was retrieved from El'gygytgyn Crater Lake, located 100 km north of the Arctic Circle in northeast Siberia. The lake was formed by a 3.6 million year old meteorite impact, which generated a crater roughly 20 km in diameter. Geochronological age models of sediments from this core suggest that the upper 6.5 meters of the core represents ~150 ky of paleoenvironmental change from northeast Siberia (Nowaczyk et al., in press). The magnetic susceptibility record from the 1998 core shows a strong pattern of correlation with the Greenland Ice Sheet stable isotope record (GISP2) in the upper 6.0 meters of the core where significant age control exists, based upon optically stimulated luminescence ages (Forman and Pierson, unpublished data), magnetic events (Nowaczyk et al., in press), and significant shifts in pollen (Lozhkin et al., 2001). The marine isotopic stages derived from SPECMAP have been correlated to the magnetic susceptibility record of the 1998 core. Much of the current terrestrial study of marine isotopic stage 5 (MIS 5) and the Last Interglacial (LI, substage 5e) are confined to a few distinct long continental records predominately in Europe. The research presented here summarizes the LI signal from a key Arctic location. The climate signal contained within the sediments of the LI are particularly important, as the extensive length of the sediment record may provide a high resolution archive of interglacial climate patterns for comparison with the Holocene. As a result, a sedimentological record has been constructed for the interval spanning the LI. The core is almost entirely composed of silt and clay (25-85% silt and 20-75% clay) with a few intervals containing sand. Moreover, no significant correlation between grain size and magnetic susceptibility exists, as is the case in many lacustrine environments. Clay mineralogy analyses using x-ray diffraction show that the abundance of chlorite increases during colder periods within the upper 200 cm of the core, representing roughly the last 40ka (Asikainen, in progress). This work has been expanded to include the interstadial/stadial substages of MIS 4-6. The behavior of illite-smectite and chlorite during MIS 5 suggests that the warm/wet conditions associated with interglacials may not be as pronounced at high latitudes. An additional gravity core was recovered in 2000 and used for comparison with the LI sediments obtained in 1998. Detailed grain size measurements also yielded no significant correlation with magnetic susceptibilty. A high-resolution archive of petrographic thin sections has recently been constructed to explore changes on a much finer scale.

Apfelbaum, M. A.; Brigham-Grette, J.; Asikainen, C.

2002-12-01

160

Stratigraphy and structure of the western Kentucky fluorspar district  

USGS Publications Warehouse

The western Kentucky fluorspar district is part of the larger Illinois-Kentucky fluorspar district, the largest producer of fluorspar in the United States. This report is based largely on data gathered from 1960 to 1974 during the U.S. Geological Survey-Kentucky Geological Survey cooperative geologic mapping program of Kentucky. It deals chiefly with the stratigraphy and structure of the district and, to a lesser extent, with the fluorspar-zinc-lead-barite deposits. Sedimentary rocks exposed in the district range in age from Early Mississippian (Osagean) to Quaternary. Most rocks exposed at the surface are Mississippian in age; two-thirds are marine fossiliferous limestones, and the remainder are shales, siltstones, and sandstones. Osagean deep-water marine silty limestone and chert are present at the surface in the southwestern corner of the district. Meramecian marine limestone is exposed at the surface in about half the area. Chesterian marine and fluvial to fluviodeltaic clastic sedimentary rocks and marine limestone underlie about one-third of the area. The total sequence of Mississippian rocks is about 3,000 ft thick. Pennsylvanian rocks are dominantly fluvial clastic sedimentary rocks that change upward into younger fluviodeltaic strata. Pennsylvanian strata of Morrowan and Atokan age are locally thicker than 600 ft along the eastern and southeastern margin and in the major grabens of the district where they have been preserved from erosion. Cretaceous and Tertiary sediments of the Mississippi embayment truncate Paleozoic formations in and near the southwestern corner of the district and are preserved mostly as erosional outliers. The deposits are Gulfian nonmarine gravels, sands, and clays as much as 170 ft thick and upper Pliocene fluvial continental deposits as thick as 45 ft. Pleistocene loess deposits mantle the upland surface of the district, and Quaternary fluvial and fluviolacustrine deposits are common and widespread along the Ohio and Cumberland Rivers and their major tributaries. Many mafic dikes and a few mafic sills are present. The mafic rocks are mostly altered mica peridotites or lamprophyres that are composed of carbonate minerals, serpentine, chlorite, and biotite and contain some hornblende, pyroxene, and olivine. Most of the dikes are in a north-north west-trending belt 6 to 8 mi wide and strike N. 20 0 -30 0 W. The dikes dip from 80 0 to 90 0 and are commonly 5 to 10 ft wide. Radioisotopic study indicates that the dikes are Early Permian in age. The district is just southeast of the intersection of the east-trending Rough Creek-Shawneetown and northeast-trending New Madrid fault systems. The district's principal structural features are a northwest-trending domal anticline, the Tolu Arch, and a series of steeply dipping to nearly vertical normal faults and fault zones that trend dominantly northeastward and divide the area into elongated northeast-trending grabens and horsts. Formation of these grabens and horsts was one of the major tectonic events in the district. Vertical displacement may be as much as 3,000 ft but commonly ranges from a few feet to a few hundred feet; no substantial horizontal movement is believed to have taken place. Many cross faults having only a few feet of displacement trend northwestward and are occupied at places by mafic dikes. Faulting was mostly post-Early Permian to pre-middle Cretaceous in age. Many theories have been advanced to explain the structural history of the district. A generally acceptable overall hypothesis that would account for all the structural complexities, however, is still lacking. Useful structural data, such as the structural differences between the grabens and the horsts, have been obtained, however, from the recently completed geologic mapping. Mapping also has more clearly shown the alinement of the Tolu Arch, the belt of dikes, and an unusually deep graben (the Griffith Bluff graben); this alinement suggests that possibl

Trace, R.D.; Amos, D.H.

1984-01-01

161

The stratigraphy and palaeoenvironment of the Bathonian "Great Oolite Group" of Woodeaton Quarry, Oxfordshire.  

NASA Astrophysics Data System (ADS)

Woodeaton Quarry, Oxfordshire, represents the most continuously exposed section of the Upper Bathonian 'Great Oolite Group' in the United Kingdom. Like most of the British Bathonian, it is lacking in reliable ammonite zonation from which to define a chronostratigraphy. The sedimentology of the succession can be broken up into two broad facies types: A clay rich, brackish lagoonal environment with intermixed freshwater-influenced flora and fauna; A marginal marine calcareous succession of an oolitic nature with periodic mud-drape intervals. The marginal marine depositional setting, the completeness of the Upper Bathonian stratigraphy and lack of biostratigraphically important macrofauna has motivated this study into the micropalaeontology of Woodeaton. The primary aims of this study are to use foraminifera and ostracods to reconstruct the palaeoenvironments and to refine the biostratigraphy of the Upper Bathonian. The studied succession commences at the top of the Taynton Limestone Formation, which fines upwards into the clay-rich Rutland Formation. Several species of marine ostracods known from the Mid-Upper Bathonian are recovered from the base of the Rutland Formation, such as Praeschuleridea confossa and Angliaecytherldea calvata, as well as fragments of fish scales and elasmobranch teeth. Freshwater influence is evident further up the Rutland Formation where freshwater charophytes, nested bivalves and ostracods of the genus Bisulcocypris have been found. The progression from the Rutland Formation's marine base into the freshwater influenced clays is clear from the varied micropalaeontological fauna. A return to marine conditions in the overlying White Limestone Formation can be observed through the increasing number of benthic foraminiferal taxa - with Spirillina and Lenticulina the most abundant - compared to the Rutland Formation. Within the Shipton and Ardley Members there are also indicative marine ostracod taxa present (including Acanthocythere spiniscutulata and Terquemula robusta). The upper part of the section exposes the Bladon Member that displays a relative shallowing within the fimbriatus-waltoni beds preserving a number of in situ rootlets and exogenous carbonised logs. This unit contains a mixed assemblage of marine species of ostracods (e.g. Fossaterquemula blakeana) and foraminifera (e.g. Lenticulina tricarinella) in association with freshwater ostracod taxa such as Timiriasevia sp. The succession at Woodeaton Quarry of Upper Bathonian carbonates exhibits microfaunal assemblages that can be viewed as direct proxies to the palaeoenvironment. The assemblages of ostracods and foraminifera indicate marine conditions prevailed in the basal Rutland Formation before the evolution of a freshwater environment. A return to a marine dominated environment with freshwater fluctuations occurs throughout the White Limestone Formation. It is through the high-resolution micropalaeontological study that palaeoenvironmental analysis can be refined in the marginal marine settings of the Upper Bathonian in Oxfordshire.

Guthrie, Ronald; Stukins, Stephen; Raub, Tim

2014-05-01

162

Integrated stratigraphy of the Cenomanian-Turonian boundary interval: improving understanding of Oceanic Anoxic Events  

NASA Astrophysics Data System (ADS)

The Cenomanian-Turonian boundary (CTB) interval ~ 94 Ma represented a period of major global palaeoenvironmental change. Increasingly detailed multidisciplinary studies integrating sedimentological, palaeontological and geochemical data from multiple basins, are enabling the development of refined but complex models that aid understanding of the mechanisms driving changes in ocean productivity and climate. This paper reviews some of the exciting new developments in this field. Facies change characterizes the CTB interval in most areas. In the Chalk seas of northern Europe, a widespead hiatus was followed by the deposition of clay-rich organic-lean beds of the Plenus Marl and its equivalents, and then nodular chalks. In the North Sea basin and its onshore extension in eastern England and northern Germany, black shales of the Black Band (Blodøks Formation, Hasseltal Formation) occur. Similarly, in northern Tethys, a brief interval of black shale accumulation within a predominantly carbonate succession, is exemplified by the Niveau Thomel in the Vocontian Basin (SE France), and the Livello Bonarelli in Italy. Widespread deposition of organic-rich marine sediments during CTB times led to 12C depletion in surface carbon reservoirs (oceans, atmosphere, biosphere), and a large positive global ?13C excursion preserved in marine carbonates and both marine and terrestrial organic matter (Oceanic Anoxic Event 2). Significant biotic turnover characterises the boundary interval, and inter-regional correlation may be achieved at high resolution using integrated biostratigraphy employing macrofossils (ammonites, inoceramid bivalves), microfossils (planktonic foraminifera, dinoflagellate cysts) and calcareous nannofossils. Correlations can be tested against those based on comparison of ?13C profiles - carbon isotope chemostratigraphy, supplemented by oxygen isotope and elemental data. Interpretation of paired carbonate - organic matter ?13C data from multiple CTB sections implicates rising atmospheric pCO2 linked to volcanic outgassing as a major forcing mechanism for palaeoclimate warming and palaeoceanographic change accompanying OAE2. New marine 187Os/188Os isotope stratigraphy further reveals the interaction of volcanism and ocean circulation during OAE2, and provides a further chemostratigraphic tool. Li isotope (? 7Li) data may be interpreted as evidence that increased silicate weathering promoted by rising pCO2 acted as both a forcing and negative feedback mechanism driving OAE2 history. Neodymium and sulphur isotopes offer further insights into interactions between global biogeochemical cycles and ocean circulation changes.

Jarvis, Ian

2014-05-01

163

Loess, soil stratigraphy and Aokautere Ash on Late Pleistocene surfaces in south Westland, New Zealand: Interpretation and correlation with the glacial stratigraphy  

Microsoft Academic Search

The detailed stratigraphy and chronology for Late Pleistocene glaciations in north Westland have not previously been applied to glacial deposits and landforms of south Westland, in part because of lack of exposure. A stratigraphy for loess coverbeds offers the potential for discriminating and correlating landforms in this region. This study, in Saltwater Forest and surrounding areas in south Westland, confirms

P. C. Almond

1996-01-01

164

Stratigraphy and paleoenvironment of the Danish Eocene Azolla event  

NASA Astrophysics Data System (ADS)

Spores (massulae and megaspores) of the freshwater fern Azolla are recorded in several Danish Eocene outcrops and boreholes. The Azolla-bearing interval is 0.5 - ca. 3 m thick and occurs within the L2 Bed, a unit in the lower part of the hemipelagic, bathyal Lillebælt Clay Formation deposited in the central and eastern parts of the North Sea Basin. Intervals of organic-rich clay, usually including two distinctive, black sapropels, are present in the lower part of Bed L2, indicating a generally reduced oxygen content in the bottom waters during this time, with at least two episodes of severe, basinwide stagnation. The oxygen-deficit points to reduced circulation and/or enhanced marine productivity in the North Sea Basin. Azolla occurs in the upper part of this mainly organic-rich interval. The frequency of Azolla spores relative to marine dinoflagellate cysts fluctuates within the interval. The Azolla interval has previously been correlated to levels near the Ypresian/Lutetian transition in Belgium, based on dinoflagellate stratigraphy. Calibration of a new magnetostratigraphic study of the lower Lillebælt Clay with the dinoflagellate biostratigraphy suggests that Bed L2 spans the upper part of Chron 22r, C22n and lower part of C21r. The Azolla pulse spans the upper part of C22n and lowermost part of C21r. The combined bio-magnetostratigraphy from Denmark allows a detailed comparison with published data from the northern part of the Norwegian-Greenland Sea (ODP Hole 913B). The correlation confirms earlier assumptions, which were based on biostratigraphy alone, that the marine Azolla pulse in the two areas, and therefore probably over the whole Norwegian-Greenland Sea - North Sea region, is of the same age. An ongoing palynological study of the L2 Bed has so far revealed no indication for freshwater episodes or brackish waters in the basin during the Azolla pulse, except perhaps for Azolla itself. It is, therefore, suggested that the Azolla spores were transported to the sea by rivers from swamps and lakes in coastal areas of surrounding landmasses. Azolla habitats may have existed in Fennosarmatia 200-400 km away. It is noteworthy that the Azolla pulse coincided with a major, apparently eustatic, sea-level fall or the slow subsequent transgression, during which widespread swamps may have formed in the coastal areas. The combination of a low sea-level and a warm, humid climate may have led to increased productivity, both in Azolla-swamps and in the adjacent marine waters. This may explain the presence of organic-rich marine clays with Azolla spores.

Heilmann-Clausen, Claus; Beyer, Claus; Snowball, Ian

2010-05-01

165

Acoustic stratigraphy and hydrothermal activity within Epi Submarine Caldera, Vanuatu, New Hebrides Arc  

USGS Publications Warehouse

Geological and geophysical surveys of active submarine volcanoes offshore and southeast of Epi Island, Vanuatu, New Hebrides Arc, have delineated details of the structure and acoustic stratigraphy of three volcanic cones. These submarine cones, named Epia, Epib, and Epic, are aligned east-west and spaced 3.5 km apart on the rim of a submerged caldera. At least three acoustic sequences, of presumed Quaternary age, can be identified on single-channel seismic-reflection profiles. Rocks dredged from these cones include basalt, dacite, and cognate gabbroic inclusions with magmatic affinities similar to those of the Karua (an active submarine volcano off the southeastern tip of Epi) lavas. ?? 1988 Springer-Verlag New York Inc.

Greene, H. Gary; Exon, N.F.

1988-01-01

166

SEDIMENTOLOGICAL AND TECHNOLOGICAL STUDIES OF ABU TARTUR BLACK SHALES, WESTERN DESERT, EGYPT  

Microsoft Academic Search

Newly conventional combination of sedimentological and technological studies aid in estimation of the resource potential of the Upper Cretaceous clays of Duwi Formation Abu Tartur plateau Western Desert, Egypt. This formation consists of interbedded black to Grey shale, phosphatic and glauconitic sandstones. The granulometric, mineralogical, and geochemical analyses were carried out on the black clays, which provided detailed information about

Kadry N. SEDIEK; Ashraf M. AMER

2001-01-01

167

Channel Processes and Sedimentology of a Boulder-Bed Ephemeral Stream  

NASA Astrophysics Data System (ADS)

Very few papers report about the geomorphology and sedimentology of modern very coarse-grained, ephemeral streams. Other than the relevance of shedding some light on fluvial processes in dryland, boulder-bed rivers, this paper aims to provide some insight on their sedimentological characteristics as a diagnostic tool in the interpretation of old deposits. A field study on such topics is carried out on the Golina River, a sandy boulder-bed ephemeral stream of the Kobo basin in northern Ethiopia, subjected to intermittent flow generated by isolated, high intensity rainfall. Though the main gemorphological characteristics of the braid bars and channels are apparently similar to those of perennial counterparts, field investigations show the general physiographic setting and the sedimentology of the study reach result from very different depositional/erosion processes. A model based on the superimposition of coarse-grained bedload sheets, with the characteristics described by Whiting et la. (1988), and subsequent dissection during the receding flood flow is considered. This model was found to well explain the morphological and sedimentological features of the study river reach.

Billi, Paolo

2014-05-01

168

Clastic sedimentology and detrital geochronology: deciphering the growing phase of the Variscan belt  

Microsoft Academic Search

The late Palaeozoic Variscan Orogeny results from the convergence between two major plates: Laurussia and Gondwana. The relief created during the Variscan Orogeny has now been completely eroded away. However, the Devonian and Carboniferous sediments potentially record the birth of the relief and the exhumation of rocks during the early stages of this orogenesis. A multidisciplinary approach (structural, sedimentology and

Céline Ducassou; Michel Ballèvre; Marc Poujol; Gilles Ruffet; Kerry Gallagher

2010-01-01

169

Upper Permian vertebrates and their sedimentological context in the South Urals, Russia  

E-print Network

some 900,000 km2 of territory between Samara on the River Volga in the NW, and Orenburg and Sakmara­Triassic successions, especially in the zone from the River Volga to the plain south Upper Permian vertebrates and their sedimentological context in the South Urals, Russia Valentin P

Benton, Michael

170

Experimental observation of magnetosome chain collapse in magnetotactic bacteria: Sedimentological, paleomagnetic,  

E-print Network

Experimental observation of magnetosome chain collapse in magnetotactic bacteria: Sedimentological Magnetotactic bacteria precipitate intracellular crystals of single-domain magnetite (Fe3O4) and/or greigite (Fe their ability to preserve NRM in sediments. As the genomes of two magnetotactic bacteria contain several

171

Morphological and sedimentological responses of streams to human impact in the southern Blue Ridge Mountains, USA  

Microsoft Academic Search

Morphological and sedimentological responses of streams to basin-scale impact have been well documented for intensively agricultural or urban areas. Sensitivity thresholds of streams to modest levels of disturbance, however, are not well understood. This study addresses the influence of forest conversion on streams of the southern Blue Ridge Mountains, a region that has received little attention with respect to human

Katie Price; David S. Leigh

2006-01-01

172

DALHOUSIE UNIVERSITY, DEPARTMENT OF EARTH SCIENCES Assistant Professor -Geophysics, Sedimentology, or Geochemistry  

E-print Network

DALHOUSIE UNIVERSITY, DEPARTMENT OF EARTH SCIENCES Assistant Professor - Geophysics, Sedimentology, or Geochemistry The Department of Earth Sciences at Dalhousie University invites applications for a faculty research projects. Essential qualifications include a Ph.D. in Earth Sciences or closely related field

Brownstone, Rob

173

Lake Level Controlled Sedimentological I Heterogenity of Oil Shale, Upper Green River  

E-print Network

Chapter 3 Lake Level Controlled Sedimentological 1:'_i 'I I Heterogenity of Oil Shale, Upper Green email: mgani@uno.edu t",. The Green River Formation comprises the world's largest deposit of oil-shale characterization of these lacustrine oil-shale deposits in the subsurface is lacking. This study analyzed ~300 m

Gani, M. Royhan

174

OSL dating of Glacial Sediments from New Zealand and Olympic Mountains: Using Stratigraphy to our Advantage  

NASA Astrophysics Data System (ADS)

Optically stimulated luminescence (OSL) dating provides an age estimate for the last time sediment was exposed to light. In glacial environments solar resetting of the luminescence signal prior to deposition is not assured and can lead to significant age overestimates. Sediments derived from glacial settings also commonly have other deleterious properties such as weak quartz luminescence signals, feldspar contamination and high levels of electron thermal transfer. Despite these potential problems, OSL commonly provides the only means to date glacial deposits due to limited material for radiocarbon and/or surface exposure dating, discrepancies between the age of a landform and the targeted underlying sediment, or deposit age beyond the range for radiocarbon. As part of a larger project to reconstruct MIS 3/4 glacial chronologies, OSL samples were collected from the Rangitata and Clutha River basins along the eastern Southern Alps, New Zealand and from the Hoh and Queets River basins, western Olympic Mountains, Washington USA. Samples for quartz OSL dating were collected from carefully selected shallow-water and well-sorted facies of glaciofluvial and glaciolacustrine sediments to select sediments most likely to have been exposed to light prior to deposition. OSL dating is preferred over other dating methods in the study areas because evidence for multiple pre-LGM glaciations is commonly preserved as buried and over-run packages of diamicton, outwash and lacustrine sediment, excluding application of surface-exposure techniques. Further, where the sediments are in fact associated with surficial landforms, detailed description of the underlying stratigraphy permits interpretation of the glacial processes at work and thus provides a more thorough understanding of the relevance of the ages to the advance. Results indicate that while some samples contain evidence for partial bleaching, most show symmetric equivalent dose distributions, and ages are in stratigraphic order and are consistent with other age constraints. OSL results from both field areas indicate significant glacial advances during MIS 3/4 and MIS 2. Importantly, although OSL dating has been reported to be problematic in New Zealand due to poor luminescence characteristics related to source bedrock and sediment immaturity, our results indicate that sediment from eastern drainages of the southern Alps (Rangitata and Clutha River basins) contain quartz with good luminescence characteristics. Despite potential problems, recent advances in instrumentation and methodology have made OSL a viable method for dating many glacial sequences and we recommend that OSL dating be applied to more settings with buried glacial stratigraphy, although care is needed in appropriate sample selection.

Rittenour, T. M.; Thackray, G. D.; Shulmeister, J.

2012-12-01

175

Origin of shallow submarine mass movements and their glide planes—Sedimentological and geotechnical analyses from the continental slope off northern Norway  

NASA Astrophysics Data System (ADS)

Submarine landslides are often characterized by a basal surface of rupture parallel to the stratigraphy, in which downslope movement is initiated. However, little is known about the sedimentology and physical properties of the sediments within these surfaces. In this study, we present a multiproxy analysis of the sediments collected from a giant piston core penetrating a shallow submarine mass transport deposit, in combination with high-resolution seismoacoustic data to identify and characterize the basal glide plane and the weaker sediments in which movement was initiated. The initial phase of instability consists of a single fracture that formed due to the downslope movement of a mostly intact slab of sediments. The 16 m long core, comprising mostly undisturbed massive and laminated ice-rafted debris-rich clay penetrated this slab. The base of the slab is characterized by a high-amplitude semicontinuous reflection visible on the subbottom profiler data at about 12.5 m depth, interpreted to originate from the glide plane on top of a plumite deposit. This plumite has dilative behavior with pore pressure decrease with increasing shear strain and high undrained shear strength. Movement probably started within contouritic sediments immediately above the glide plane, characterized by higher sensitivities and higher water contents. The occurrence of the mass movements documented in this study are likely affected by the presence of a submarine landslide complex directly downslope. The slide scar of this landslide complex promoted retrogressive movement farther upslope and progressive spreading of strain softening along the slide base and in the slide mass. Numerical models (infinite slope, BING, and retrogressive slope models) illustrate that the present-day continental slope is essentially stable and allow reconstruction of the failure processes when initiated by an external trigger.

Baeten, Nicole J.; Laberg, Jan Sverre; Vanneste, Maarten; Forsberg, Carl Fredrik; Kvalstad, Tore J.; Forwick, Matthias; Vorren, Tore O.; Haflidason, Haflidi

2014-11-01

176

The deglaciation in Picos de Europa (area of Enol Glacier) based on geomorphological and sedimentological studies  

NASA Astrophysics Data System (ADS)

The chronology for the deglaciation in the Cantabrian Range is still poorly understood. Several papers have proposed a maximum advance well before the LGM (Jiménez and Farias, 2002; Moreno et al. 2010; Serrano et al. 2012). The Western massif of Picos de Europa held a ice field of 50 km2. In this communication we present two cores collected in two glacial depressions in the frontal area of Enol Glacier that allow reconstructing the environment since the deglaciation of the massif. The first core (5.6 m long) was collected in the kame terrace of Belbin. This terrace was dammed by a lateral moraine corresponding to the phase of maximum expansion of Enol Glacier. Three clear layers are observed: the basal 2.5 m consists of grey clay with small gravel limestones; the second is 2 m thick and is composed of grey clays; the upper 1.1 m shows several paleosoils with abundant organic matter and charcoals. The based was dated at 14,810 ± 70 yr BP. This age represents a minimum age for the maximum expansion of Enol Glacier. The second core was collected in the glaciokarst depression of Vega del Bricial, located within a moraine complex corresponding to LGM. The core is 8 m long and looks very homogeneous. It consists of a succession of organic layers and slope deposits. Two radiocarbon dates were performed on the sediments at 8 and 2.8 m depth, resulting in 9,690 ± 260 and 3,420 ± 95 yr BP, respectively. Based on sedimentological and geomorphological evidences, we propose a chronology for the environmental changes occurred in this massif since the last glacial period. References Jiménez, M. and Farias, P., 2002. New radiometric and geomorphologic evidences of a Last Glacial Maximum older than 18 ka in SW European mountains: the example of Redes Natural Park (Cantabrian Mountains, NW Spain). Geodinamica Acta, 15, 93-101. Moreno, A., Valero, B. L., Jiménez, M., Domínguez, M. J., Mata, M. P., Navas, A., González, P., Stoll, H., Farias, P., Morellón, M., Corella, J. P. and Rico, M., 2010. The last deglaciation in the Picos de Europa National Park (Cantabrian Mountains, Northern Spain). Journal of Quaternary Science, 25 (7), 1076-1091. Serrano, E., González-Trueba, J. J. and González-García, M., 2012. Mountain glaciation and paleoclimate reconstruction in the Picos de Europa (Iberian Peninsula, SW Europe). Quaternary Research, 78, 303-314.

Ruiz-Fernández, Jesus; Oliva, Marc; García, Cristina

2013-04-01

177

Sedimentology of the upper cretaceous red beds of Angostura Colorada formation in the western sector of the Northpatagonian Massif, Argentina  

NASA Astrophysics Data System (ADS)

Detailed sedimentological analysis of the Angostura Colorada Fm. (Upper Cretaceous) in the Comallo Jacobacci Gastre areas of the western sector of the North Patagonian Massif has enabled the definition of three members based on sedimentary structures, paleocurrents, grain size, compositional characteristics and lithofacies associations. These members are: lower (alluvial fan), middle (sandy braidplain) and upper (flood plain) developed within a rift sequence. Compositionally, two alternating source rocks are shown in the geological record, a continental block and recycled orogen provenance for the lower and middle members (Jacobacci area) and magmatic arc provenance for the middle (Gastre area) and upper members. This is interpreted as a progressive magmatism towards the K-T boundary during the rising of the Andean Cordillera to the west. The granitic provenance is attributed to igneous bodies of Paleozoic age to the N and SW of the study area. The smectite-zeolite rich clay mineral association of the upper member is interpreted as product of alteration of thick pyroclastic deposits. The paleogeography of this unit includes two different paleodepositional systems, to the SW an alluvial fan system running from the SW to the NE, to the NE a sandy braided river running from the NW to the SE, perpendicular to the previous one in a wide paleovalley. Later flood plain and lacustrine shaley deposits developed to the east which are equivalent to the Alamitos Fm. This distribution of paleodepositional systems is coherent with the main structural trends within the study area. A late Campanian age is assigned to this unit.

Manassero, Marcelo L.

1997-01-01

178

Archaeological sedimentology of overbank silt deposits on the floodplain of the Ohio river near Louisville, Kentucky  

USGS Publications Warehouse

The surface of the floodplain of the Ohio River about 20km southwest of Louisville, Kentucky, is a series of linear ridges and swales that are subparallel to the channel of the river, which here is relatively straight and flows southward. Numerous prehistoric occupational sites are located on these ridges. The sediments that underlie the ridges, which were examined in four archaeological excavations as deep as 8 m, are predominantly sandy silt and silty fine to very fine sand and appear to be mainly the product of overbank deposition from suspended load. Abundant cultural material and occupational sites dating as early as 10,000 years BP are found in the sediments at depths as great as 6??5 m. The fine sediments of the floodplain are underlain by sand and gravel. The context of the cultural materials and the stratigraphy and morphology of the deposits indicate that the ridged deposits began as linear riverside sand and gravel bars. These were succeeded upward by fine-grained overbank deposits in which the ridged morphology was maintained because the overbank silt and fine sand were deposited as prograding elongate bars at high water. As the floodplain ridge built upward, the sedimentation rate decreased and the sand content of the sediments diminished, and as the river channel occasionally shifted, the ridged deposits were built in successive subparallel sequences. Two archaeological consequences are implicit in this depositional model of orderly growth of the floodplain. First, available archaeological data from floodplain segments along other parts of the river should confirm the model; and second, the model should make it possible to search the floodplains of the Ohio River for stratified sites of any desired age. ?? 1984.

Gray, H.H.

1984-01-01

179

Detrital zircon and micropalaeontological ages as new constraints for the lowermost tectonic unit (Talea Ori unit) of Crete, Greece  

E-print Network

, higher up in the stratigraphy benthic foraminifers (miliolids) were found in clasts from a conglomerate), 61­91.], thus attributing a Late Triassic (Carnian­Norian?) maximal age to this conglomerate

Wetzel, Andreas

180

Summary of Quaternary Stratigraphy and history, Eastern Canada  

NASA Astrophysics Data System (ADS)

Deposits of three Wisconsinan substages, Sangamonian Stage, and older Quaternary stratigraphic units are recognized in Eastern Canada. The age assignment of these units is based on radiocarbon dating and correlation of events. Quaternary deposits older than Sangamonian are recognized locally in Eastern Canada. In southern Ontario glacial deposits directly underlie Sangamonian sediments and are referred to as Illinoian in age. In other areas the ages of older sediments are largely unknown. Offshore core stratigraphy suggests that a major glaciation took place about 436 ka and that the Illinoian (oxygen isotope stage 6) was also a time of extensive glaciation. In this report Sangamonian is used as the name for the chronostratigraphic stage that includes all of deep-sea oxygen isotope stage 5 and consequently, on a regional basis, it includes warm interglacial deposits, glacial deposits and cool interglacial deposits. In southern Ontario the warm interglacial deposits are represented by the Don Formation, the stadial deposits by the Scarborough Formation and the cool interglacial deposits by the Pottery Road Formation. Warm interglacial deposits have not been recognized in Quebec (unless they are part of the pre-Johnville Sediments); the Bécancour Till is included as glacial Sangamonian sediments, and the St. Pierre Sediments are recognized as cool interglacial sediments. The Early Wisconsinan appears to have been the time of maximum Wisconsinan glaciation in Eastern Canada with ice moving south of the International Boundary and well out onto the continental shelf. The Middle Wisconsinan was primarily a nonglacial period in southern Ontario and a glacial stade elsewhere in Eastern Canada. In southern Ontario the Middle Wisconsinan record has been subdivided into two interstades (Port Talbot and Plum Point), separated by a stade (Cherrytree). The Port Talbot Interstade began before the limit of radiocarbon dating (before 48 ka) and ended about 40 ka; glacial or near glacial conditions of the Cherrytree Stage lasted from about 40 to 35 ka ago, and the Plum Point Interstade was from about 35 to 23 ka ago. Central St. Lawrence Lowland was occupied by ice throughout the Middle Wisconsinan, but southeastern Quebec and the Montreal area were briefly deglaciated. Scattered evidence in Atlantic Canada suggests local deglaciation of coastal areas during Middle Wisconsinan but extensive ice remained on the continental shelf and ice from centres located on the shelf flowed onto land in at least two areas. Glacial conditions predominated throughout Eastern Canada during the Late Wisconsinan. At the Late Wisconsinan maximum, through-moving ice deposited the Catfish Creek Drift in southern Ontario but ice lobes, which developed in the basins of the Great Lakes after 15.5 ka, controlled ice flow during a period of ice margin oscillation and retreat. A calving bay developed in lower St. Lawrence valley, after the Late Wisconsinan maximum, causing a reversal of flow on the south shore of the St. Lawrence and replacing ice in the valley with the Champlain Sea about 12 ka. Late Wisconsinan glaciers were largely limited to land areas in Atlantic Canada. Local ice caps dominated with complicated patterns of flow and retreat developing as centres of accumulation shifted and competing ice centres achieved dominance. The period of Late Wisconsinan retreat in Atlantic Canada appears to have lasted from about 14 to 10 ka.

Fulton, R. J.; Karrow, P. F.; LaSalle, P.; Grant, D. R.

181

Stratigraphy of the Martian northern plains  

Microsoft Academic Search

The northern plains of Mars are roughly defined as the large continuous region of lowlands that lies below Martian datum, plus higher areas within the region that were built up by volcanism, sedimentation, tectonism, and impacts. These northern lowlands span about 50 x 106 km2 or 35 percent of the planet's surface. The age and origin of the lowlands continue

K. L. Tanaka

1993-01-01

182

Cenozoic stratigraphy of the northern Sakhalin shelf  

NASA Astrophysics Data System (ADS)

The analysis of diatom, palynofloral, and benthic foraminiferal assemblages made it possible to substantiate the age of Cenozoic sections recovered by wells on the northern and northeastern Sakhalin shelf. Biostratigraphic materials, lithological properties of stratigraphic units, and standard logs served as the basis for developing the first stratigraphic correlation scale of Cenozoic sequences on the Sakhalin shelf.

Zharov, A. E.; Mitrofanova, L. I.; Tuzov, V. P.

2013-09-01

183

Sequence stratigraphy of the Orange basin, western offshore South Africa  

Microsoft Academic Search

A seismic\\/sequence-stratigraphic framework for the siliciclastic fluvial to deepwater Cretaceous strata of the Orange basin has been constructed. Sequence-stratigraphic concepts developed by Exxon were used to interpret 10,000 km of seismic data and logs from 31 exploration boreholes within an area of 90,000 km². The sequence stratigraphy of the western margin exhibits 34 cyclical depositional sequences interpreted to document the

1991-01-01

184

Stratigraphy and palaeoenvironmental evolution of the mid- to upper Palaeozoic succession in Northwest Peninsular Malaysia  

NASA Astrophysics Data System (ADS)

The stratigraphy of the Devonian to Permian succession in Northwest Peninsular Malaysia is revised. The Timah Tasoh Formation consists of black mudstone containing graptolites and tentaculitids indicating a Pragian or earliest Emsian age. The Sanai Limestone overlies the Timah Tasoh Formation at Sanai Hill B and contains conodonts indicating a Late Devonian (Frasnian to possibly early Famennian) age. In other places, Late Tournaisian chert of the Telaga Jatoh Formation overlies the Timah Tasoh Formation. The overlying Kubang Pasu Formation is predominantly composed of mudstone and sandstone, and can be divided into 3 subunits, from oldest to youngest: (1) Chepor Member; (2) Undifferentiated Kubang Pasu Formation; (3) Uppermost Kubang Pasu Formation. The ammonoid Praedaraelites tuntungensis sp. nov. is reported and described from the Chepor Member of Bukit Tuntung, Pauh. The genus indicates a Late Viséan age for part of the subunit. Dropstones and diamictites from the Chepor Member indicate a glacial marine depositional environment. The Carbo-Permian, undifferentiated Kubang Pasu Formation consists of similar interbedded mudstone and sandstone. The uppermost Kubang Pasu Formation of Kungurian age consists of coarsening upward cycles of clastics, representing a shallow marine, wave- and storm-influenced shoreline. The Permian Chuping Limestone also represents shallow marine, wave- and storm-influenced deposits. A Mid-Palaeozoic Unconformity separating Early-Late Devonian rocks from overlying Late Devonian-Carboniferous deposits probably marks initiation of rifting on Sibumasu, which eventually led to the separation of Sibumasu from Australian Gondwana during the late Sakmarian (Early Permian).

Amir Hassan, Meor H.; Aung, Aye-Ko; Becker, R. T.; Abdul Rahman, Noor Atirah; Ng, Tham Fatt; Ghani, Azman A.; Shuib, Mustaffa Kamal

2014-04-01

185

Archaeological recording and chemical stratigraphy applied to contaminated land studies.  

PubMed

The method used by archaeologists for excavation and recording of the stratigraphic evidence, within trenches with or without archaeological remains, can potentially be useful to contaminated land consultants (CLCs). The implementation of archaeological practice in contaminated land assessments (CLAs) is not meant to be an exercise in data overkill; neither should it increase costs. Rather, we suggest, that if the excavation and recording, by a trained archaeologist, of the stratigraphy is followed by in-situ chemical characterisation then it is possible that much uncertainty associated with current field sampling practices, may be removed. This is because built into the chemical stratigraphy is the temporal and spatial relationship between different parts of the site reflecting the logic behind the distribution of contamination. An archaeological recording with chemical stratigraphy approach to sampling may possibly provide 'one method fits all' for potentially contaminated land sites (CLSs), just as archaeological characterisation of the stratigraphic record provides 'one method fits all' for all archaeological sites irrespective of period (prehistoric to modern) or type (rural, urban or industrial). We also suggest that there may be practical and financial benefits to be gained by pulling together expertise and resources stemming from different disciplines, not simply at the assessment phase, but also subsequent phases, in contaminated land improvement. PMID:21962595

Photos-Jones, Effie; Hall, Allan J

2011-11-15

186

Changes in Colorado Subalpine Fen Peat Stratigraphy and Humification During the Holocene  

NASA Astrophysics Data System (ADS)

This project focuses on the record of peat stratigraphy and decomposition preserved in cores taken from minerotrophic peatlands in Colorado. Subalpine peatlands in the Colorado Rocky Mountains and in the Colorado Plateau cover only about 2% of the state's land area, yet these wetlands provide important wildlife habitat and ecosystem services. The peatlands in Colorado are fens, and, while summer precipitation contributes to the local hydrology, the fens are only found in locations where winter snowpack persists long enough into the summers to maintain sufficiently high water tables to preserve the peat. We hypothesized that changes in summer precipitation and winter snowpack through the Holocene would be evident in the degree of peat humification and stratigraphy. We were interested in determining how warmer summer conditions early in the Holocene influenced precipitation, particularly summer monsoons, and thus, groundwater. In addition, our research using lake sediment cores in the region indicates that sediment organic content may fluctuate with paleotemperature. We sought to determine whether fens likewise preserve evidence of relatively low magnitude temperature changes, including those associated with the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Since fens persist in the region only under marginal conditions, they are very sensitive to fluctuations in climate and consequent hydrological responses. Nine fens were sampled in the study. Fen stratigraphy was studied at all of the sites. Humification analysis and bulk density and organic content determinations were conducted at one-centimeter intervals on cores from four of the fens. Core chronology was established using radiocarbon dating. Our results suggest that warmer summers in the early Holocene led to earlier snowmelt at lower elevations. Fens located near the lower margins of the subalpine zone (<3100 m elevation) ceased to accumulate peat during this period, changing to alluvial depositional environments, only returning to peat accumulation when cooler/moister conditions reestablished. This stratigraphic change is similar to that found by other researchers working in the Sierra Nevada, California. Higher elevation fens in Colorado persisted as peatlands throughout the Holocene, but warmer periods produced higher rates of peat accumulation and greater humification during these intervals. Peat humifiation and stratigraphic analyses indicate that the subalpine fens in Colorado preserve a sensitive record of Holocene climate change and ecohydrological conditions. Our results suggest that warmer summers over the next century will likely result in earlier snowmelt and the potential loss of lower elevation fens, and changes in peat accumulation in higher elevation fens in the subalpine zone. These changes will have significant impacts on water quality and hydrology in Colorado.

Sullivan, D. G.

2013-12-01

187

Hierarchy of sedimentary discontinuity surfaces and condensed beds from the middle Paleozoic of eastern North America: Implications for cratonic sequence stratigraphy  

USGS Publications Warehouse

Sedimentological analyses of middle Paleozoic epeiric sea successions in North America suggest a hierarchy of discontinuity surfaces and condensed beds of increasing complexity. Simple firmgrounds and hardgrounds, which are comparatively ephemeral features, form the base of the hierarchy. Composite hardgrounds, reworked concretions, authigenic mineral crusts and monomictic intraformational conglomerates indicate more complex histories. Polymictic intraformational conglomerates, ironstones and phosphorites form the most complex discontinuity surfaces and condensed beds. Complexity of discontinuities is closely linked to depositional environments duration of sediment starvation and degree of reworking which in turn show a relationship to stratigraphic cyclicity. A model of cratonic sequence stratigraphy is generated by combining data on the complexity and lateral distribution of discontinuities in the context of facies successions. Lowstand, early transgressive and late transgressive systems tracts are representative of sea-level rise. Early and late transgressive systems tracts are separated by the maximum starvation surface (typically a polymictic intraformational conglomerate or condensed phosphorite), deposited during the peak rate of sea-level rise. Conversely the maximum flooding surface, representing the highest stand of sea level, is marked by little to no break in sedimentation. The highstand and falling stage systems tracts are deposited during relative sea-level fall. They are separated by the forced-regression surface, a thin discontinuity surface or condensed bed developed during the most rapid rate of sea-level fall. The lowest stand of sea level is marked by the sequence boundary. In subaerially exposed areas it is occasionally modified as a rockground or composite hardground.

McLaughlin, P.I.; Brett, C.E.; Wilson, M.A.

2008-01-01

188

Stratigraphy in Apollo 16 drill section 60002  

NASA Technical Reports Server (NTRS)

Contacts in drill stem 60002 which indicate layers at least several centimeters thick and with one firm age of about 2.5 x 10 to the 7th yr are observed on the basis of characteristic patterns of track density variation with depth from the contact. The patterns can be observed primarily because the drill stem has a large immature component (path II soils).

Blanford, G. E.; Morrison, D. A.

1976-01-01

189

The story of landscape evolution in Lower Austria told by sedimentological analysis and luminescence dating  

NASA Astrophysics Data System (ADS)

Loess/palaeosol sequences contain detailed information about palaeoenvironmental changes during the Quaternary. Furthermore, because of its long distance aeolian transport, which resets the luminescence signal to zero prior to deposition, loess is highly suitable for luminescence dating. This allows the determination of geodynamic processes with time. The loess deposits in the Kremser Feld (Lower Austria) are up to 30 m thick. The loess/paleosol sequence of Stratzing is situated at the eastern margin of the west-east elongated hill of the ‘Galgenberg'; this location is famous for its archaeological finds, e.g. the sculpture "Fanny", one of the oldest identifiable representations of the human figure (Neugebauer-Maresch, 1993). The loess profile examined here has a total depth of 7.5 m and is subdivided into 19 prominent horizons. For each horizon the grain size distribution, pH-value, total carbonate content, total organic content and sulphur content was derived in order to reconstruct the environmental conditions leading to sedimentation and soil formation. To set up a geochronological framework for the loess deposition and the subsequent soil formation, nine samples were dated by means of elevated temperature post-IR IRSL (Thiel et al., submitted). Besides a general discussion about the sedimentological data we will discuss horizon 18 in more detail; this is a paleosol rich in clay and poor in mineralic carbonate. The sulphur content is relatively high and indicates higher humidity and warmer climate, all making the unexpectedly low organic carbon content of particular interest. The luminescence ages reveal an important hiatus above this well-developed palaeosol (from ~ 100 to ~ at least 200 ka) clearly showing that this loess/palaeosol sequence is not a continuous record. This implies either significant erosion or lack of loess deposition in this area. Neugebauer-Maresch, C., 1993. Kunst und geistige Welt. - In: Neugebauer-Maresch, C., (ed): Altsteinzeit im Osten Österreichs. Wissenschaftliche Schriftenreihe Niederösterreich 95/96/97 (St. Pölten). Thiel, C., Buylaert, J. P., Terhorst, B., Murray, A. S., Hofer, I., Tsukamoto, S., Frechen, M., submitted. Luminescence dating of the Stratzing loess profile (Austria) - Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International.

Hofer, Ingo; Thiel, Christine; Terhorst, Birgit; Jaburova, Iva; Buylaert, Jan-Pieter; Murray, Andrew; Frechen, Manfred

2010-05-01

190

Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments  

NASA Astrophysics Data System (ADS)

An interdisciplinary study was conducted to evaluate the relationship between geological and paleoenvironmental parameters and the bacterial and archaeal community structure of two contrasting subseafloor sites in the Western Mediterranean Sea (Ligurian Sea and Gulf of Lion). Both depositional environments in this area are well-documented from paleoclimatic and paleooceanographic point of views. Available data sets allowed us to calibrate the investigated cores with reference and dated cores previously collected in the same area, and notably correlated to Quaternary climate variations. DNA-based fingerprints showed that the archaeal diversity was composed by one group, Miscellaneous Crenarchaeotic Group (MCG), within the Gulf of Lion sediments and of nine different lineages (dominated by MCG, South African Gold Mine Euryarchaeotal Group (SAGMEG) and Halobacteria) within the Ligurian Sea sediments. Bacterial molecular diversity at both sites revealed mostly the presence of the classes Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria within Proteobacteria phylum, and also members of Bacteroidetes phylum. The second most abundant lineages were Actinobacteria and Firmicutes at the Gulf of Lion site and Chloroflexi at the Ligurian Sea site. Various substrates and cultivation conditions allowed us to isolate 75 strains belonging to four lineages: Alpha-, Gammaproteobacteria, Firmicutes and Actinobacteria. In molecular surveys, the Betaproteobacteria group was consistently detected in the Ligurian Sea sediments, characterized by a heterolithic facies with numerous turbidites from a deep-sea levee. Analysis of relative betaproteobacterial abundances and turbidite frequency suggested that the microbial diversity was a result of main climatic changes occurring during the last 20 ka. Statistical direct multivariate canonical correspondence analyses (CCA) showed that the availability of electron acceptors and the quality of electron donors (indicated by age) strongly influenced the community structure. In contrast, within the Gulf of Lion core, characterized by a homogeneous lithological structure of upper-slope environment, most detected groups were Bacteroidetes and, to a lesser extent, Betaproteobacteria. At both site, the detection of Betaproteobacteria coincided with increased terrestrial inputs, as confirmed by the geochemical measurements (Si, Sr, Ti and Ca). In the Gulf of Lion, geochemical parameters were also found to drive microbial community composition. Taken together, our data suggest that the palaeoenvironmental history of erosion and deposition recorded in the Western Mediterranean Sea sediments has left its imprint on the sedimentological context for microbial habitability, and then indirectly on structure and composition of the microbial communities during the late Quaternary.

Ciobanu, M.-C.; Rabineau, M.; Droz, L.; Révillon, S.; Ghiglione, J.-F.; Dennielou, B.; Jorry, S.-J.; Kallmeyer, J.; Etoubleau, J.; Pignet, P.; Crassous, P.; Vandenabeele-Trambouze, O.; Laugier, J.; Guégan, M.; Godfroy, A.; Alain, K.

2012-09-01

191

Stratigraphy and geochemistry of an early Aptian carbonate platform: interactions between relative sea level and environmental changes (Prebetic Zone, Spain)  

NASA Astrophysics Data System (ADS)

The Early Aptian was a time of development of large shallow carbonate platforms, punctuated with phases of growth crises and platform demise. Much research has been done over the past few years, focussed on characterizing the stratigraphic architecture of carbonate platforms and elucidating the possible link between platform demise and oceanic anoxic events. To explore this, we are investigating the Mariola stratigraphic section (Prebetic Zone, Betic Cordillera), deposited in the Southern Iberian Palaeomargin during the Mesozoic. The Lower Aptian of this section records the installation, development and demise of a carbonate platform, and the subsequent imprint of the OAE 1a. An integrated approach including sedimentology, biostratigraphy, and sequence stratigraphy, along with isotope stratigraphy, biomarker analysis and elemental geochemistry has been carried out. The studied section is located in the Sierra de Mariola, where the early Aptian succession is composed of three units: (1) The Llopis Fm., made of shallow platform carbonates with rudists, which is organized in a succession of shallowing-upwards parasequences defining a progradational-retrogradational cycle; (2) the Agres bed, formed by bioclastic calcarenites and marls, which represents a significant lithological and biotic change and is interpreted as deposited during a transgressive pulse coeval to a notable terrigenous input into the platform, and (3) the Almadich Fm., made of an alternation of marls and marlstones with planktonic foraminifers and ammonites, interpreted as the result of the drowning of the carbonate platform. The C-isotope curve shows a negative trend in the upper part of the Llopis Fm. with lowest values within the basal part of the Almadich Fm. This negative peak is followed by a positive shift, recorded within a level of organic-rich marls, considered to be the local record of the OAE1a. Finally, the values decrease through the upper part of the Almadich Fm. TOC values in the organic rich level vary between 0.2-0.6 wt.%. The biomarker characterization of the organic rich level has revealed that the organic matter is very immature and well preserved, and dominated by n-alkanes, with an important contribution of hopanes and minor amount of steranes. The analysis of the distribution of biomarkers suggests that the origin of the organic matter is dominated by terrestrial and marine plants, with a lower contribution of bacteria. The integration of stratigraphy and geochemistry suggests that the evolution of the early Aptian carbonate platform studied was the result of a combination of relative sea-level changes, leading to the initial progradational phase and the subsequent deposition of parasequences and, on the other hand, environmental changes reflected in the demise of the carbonate platform and the facies and faunal change recorded in the Agres bed. The OEA 1a took place after the drowning event, suggesting that the main environmental changes recorded in this section might be related to a combination of regional processes and the global changes predating and probably triggering the OAE1a. Acknowledgements: This work is a contribution of the research project CGL2009-10329.

Castro, J. M.; de Gea, G. A.; Ruiz-Ortiz, P. A.; Quijano, M. L.; Pancost, R. D.; Jimenez de Cisneros, C.; Caballero, E.

2012-04-01

192

Sedimentology and cyclicity in the Lower Permian De Chelly Sandstone on the Defiance Plateau: eastern Arizona  

USGS Publications Warehouse

The Lower Permian (Leonardian) De Chelly Sandstone crops out along a north-south trend on the Defiance Plateau of eastern Arizona. It is divided into lower and upper members separated by a tongue of the Supai Formation that pinches out to the north. Stratigraphy, and lateral and vertical facies relations within the lower and upper members, are discussed. -from Author

Stanesco, J.D.

1991-01-01

193

Sedimentologic and diagenetic controls on reservoir development at Rosevear gas field, Swan Hills Formation (upper Devonian), central Alberta  

SciTech Connect

Carbonate strata at the Rosevear gas field consist of three major sedimentological packages: (1) basal platform, (2) platform reef, and (3) capping platform. Gas production is localized within two narrow trends of porous, massive, replacive dolostone occurring in the platform-reef sequence; tight limestones updip form the reservoir seal. Porosity trends are primarily restricted to the margins of a marine channel developed through the platform reef, but not the basal platform. Channel-margin strata consist mostly of dolomitized branching-stromatoporoid floatstones and rudstones. Massive replacive dolostone is composed of inclusion-rich coarsely crystalline nonferroan euhedral to anhedral rhombs that show a red cathodoluminescence. This dolomite has selectively replaced the limemud matrix; fossils were replaced to a much lesser extent. Fossils not dolomitized were selectively leached, resulting in well-developed biomoldic and vuggy porosity that forms the reservoir. Dolomitization occurred after cementation by clear, equant calcite and after early pressure solution. Secondary porosity in the dolostone trends was only partially reduced during later diagenesis, which consisted of, in order of decreasing age, precipitation of saddle dolomite, anhydrite, and coarsely crystalline calcite. Hydrocarbon migration occurred after the saddle dolomites, but before some late-stage calcite cement.

Kaufman, J.; Hanson, G.N.; Meyers, W.J.

1988-02-01

194

Late Quaternary stratigraphy and luminescence geochronology of the northeastern Mojave Desert  

USGS Publications Warehouse

The chronology of the Holocene and late Pleistocene deposits of the northeastern Mojave Desert have been largely obtained using radiocarbon ages. Our study refines and extends this framework using optically stimulated luminescence (OSL) to date deposits from Valjean Valley, Silurian Lake Playa, Red Pass, and California Valley. Of particular interest are eolian fine silts incorporated in ground-water discharge (GWD) deposits bracketed at 185-140 and 20-50 ka. Alluvial fan deposits proved amenable for OSL by dating both eolian sand lenses and reworked eolian sand in a matrix of gravel that occurs within the fan stratigraphy. Lacustrine sand in spits and bars also yielded acceptable OSL ages. These OSL ages fill gaps in the geochronology of desert deposits, which can provide data relevant to understanding the responses of several depositional systems to regional changes in climate. This study identifies the most promising deposits for future luminescence dating and suggests that for several regions of the Mojave Desert, sediments from previously undated landforms can be more accurately placed within correct geologic map units.

Mahan, S.A.; Miller, D.M.; Menges, C.M.; Yount, J.C.

2007-01-01

195

Stratigraphy of Atlantic coastal margin of United States north of Cape Hatteras; brief survey  

USGS Publications Warehouse

A synthesis of studies of sea-floor outcrops of the sedimentary wedge beneath the northeastern United States continental shelf and slope and a reassessment of coastal plain Mesozoic stratigraphy, particularly of the coastal margin, provide insight for estimating the oil and gas potential and provide geologic control for marine seismic investigations of the Atlantic continental margin. The oldest strata known to crop out on the continental slope are late Campanian in age. The Cretaceous-Tertiary contact along the slope ranges from a water depth of 0.6 to 1.5 km south of Georges Bank to 1.8 km in Hudson Canyon. Few samples are available from Tertiary and Late Cretaceous outcrops along the slope. Sediments of the Potomac Group, chiefly of Early Cretaceous age, constitute a major deltaic sequence in the emerged coastal plain. This thick sequence lies under coastal Virginia, Maryland, Delaware, southeastern New Jersey, and the adjacent continental shelf. Marine sands associated with this deltaic sequence may be present seaward under the outer continental shelf. South of the Norfolk arch, under coastal North Carolina, carbonate rocks interfinger with Lower Cretaceous clastic strata. From all available data, Mesozoic correlations in coastal wells between coastal Virginia and Long Island have been revised. The Upper-Lower Cretaceous boundary is placed at the transition between Albian and Cenomanian floras. Potential hydrocarbon source beds are present along the coast in the subsurface sediments of Cretaceous age. Potential reservoir sandstones are abundant in this sequence.

Perry, W.J.; Minard, J.P.; Weed, E.G.A.; Robbins, E.I.; Rhodehamel, E.C.

1975-01-01

196

A carbon isotopic and sedimentological record of the latest Devonian (Famennian) from the Western U.S. and Germany  

USGS Publications Warehouse

New carbon isotopic data from upper Famennian deposits in the western United States reveal two previously unrecognized major positive isotopic excursions. The first is an abrupt ~. 3??? positive excursion, herein referred to as ALFIE (A Late Famennian Isotopic Excursion), recorded in two sections of the Pinyon Peak Limestone of north-central Utah. Integration of detailed chemostratigraphic and biostratigraphic data suggests that ALFIE is the Laurentian record of the Dasberg Event, which has been linked to transgression in Europe and Morocco. Sedimentological data from the Chaffee Group of western Colorado also record transgression at a similar biostratigraphic position, with a shift from restricted to open-marine lithofacies. ALFIE is not evident in chemostratigraphic data from age-equivalent strata in Germany studied herein and in southern Europe, either because it is a uniquely North American phenomenon, or because the German sections are too condensed relative to those in Laurentia. A second positive carbon isotopic excursion from the upper Chaffee Group of Colorado is recorded in transgressive strata deposited directly above a previously unrecognized paleokarst interval. The age of this excursion, and the duration of the associated paleokarst hiatus, are not well constrained, although the events occurred sometime after the Late Famennian Middle expansa Zone. The high positive values recorded in this excursion are consistent with those associated with the youngest Famennian Middle to Late praesulcata Hangenberg Isotopic Excursion in Europe, the isotopic expression of the Hangenberg Event, which included mass extinction, widespread black shale deposition, and a glacio-eustatic fall and rise. If correct, this would considerably revise the age of the Upper Chaffee Group strata of western Colorado. ?? 2011 Elsevier B.V.

Myrow, P.M.; Strauss, J.V.; Creveling, J.R.; Sicard, K.R.; Ripperdan, R.; Sandberg, C.A.; Hartenfels, S.

2011-01-01

197

Sedimentology of the Wapiabi Formation and Equivalents (Upper Cretaceous), Central and Northern Foothills, Alberta  

Microsoft Academic Search

This thesis provides detailed sedimentological descriptions and interpretations for the Upper Cretaceous Wapiabi Formation of the central and northern Alberta Foothills. The Wapiabi Formation is made up at seven members (Muskiki, Marshybank, Dowling, Thistle, Hanson, Chungo, and Nomad) which form a thick sequence (up to 700 m) of predominantly marine shales, siltstones, and sandstones.\\u000aDuring Muskiki time (late Turonian to

G. Scott Ferguson

1984-01-01

198

Sedimentological characteristics of regional-scale washover deposits caused by Hurricane Ivan  

Microsoft Academic Search

Washover deposits induced by Hurricane Ivan are examined along a 260-km stretch of northern Florida coast. Initial response to the overwash event is dominated by dramatic nearshore, beach, and dune erosion. Eroded sediment is in-turn redistributed landward across the barrier-island profile. Distinct sedimentological characteristics of the washover deposits are recognized in different barrier-island sub-environments. Deposits on the beach are bound

Mark H. Horwitz; Ping Wang

2007-01-01

199

GEOMORPHOLOGY, STRATIGRAPHY,AND RADIOCARBON CHRONOLOGY OF LLANQUIHUE DRIFT IN THEAREA OF Geograska Annaler 81 A (1999) 2 167  

E-print Network

GEOMORPHOLOGY, STRATIGRAPHY,AND RADIOCARBON CHRONOLOGY OF LLANQUIHUE DRIFT IN THEAREA OF GeograÞska Annaler á 81 A (1999) á 2 167 GEOMORPHOLOGY, STRATIGRAPHY, AND RADIOCARBON CHRONOLOGY OF LLANQUIHUE DRIFT: Geomorphology, stratigraphy, and radiocarbon chro- nology of Llanquihue drift in the area of the southern Lake

Marchant, David R.

1999-01-01

200

The "Continental Intercalaire" of southern Tunisia: Stratigraphy, paleontology, and paleoecology  

NASA Astrophysics Data System (ADS)

The "Continental Intercalaire" deposits of southern Tunisia preserve one of the most diverse Early Cretaceous vertebrate fauna from Africa, consisting of elasmobranchs, actinopterygians, sarcopterygians, turtles, crocodyliforms, pterosaurs, and non-avian dinosaurs. Vertebrate remains representative of both marine and fluvial environments have been historically referred to a specific bonebed within the Chenini Member, which crops out extensively in the Tataouine region. A stratigraphic revision of the mainly siliciclastic deposits of the Douiret and the Aïn El Guettar formations in the area based on new sedimentological and paleontological data is presented. Data collected indicate the presence of multiple fossil-bearing strata encompassing the stratigraphic interval from the Berriasian to the Albian and document faunal variation through time as well as major environmental and climatic changes. Detailed sedimentological analysis combined with biostratigraphic correlation performed at a basin scale indicate lateral facies variability within each formation as a result of tectonically and climatically driven zonations within the Tataouine Basin in the Early Cretaceous. Furthermore, proposed stratigraphic correlations indicate that vertebrate remains previously referred to the fluvial Chenini Member (and in particular theropod and sauropod dinosaurs) are instead representative of a transgressive deposit which mark the base of the overlying Oum ed Diab Member.

Fanti, Federico; Contessi, Michela; Franchi, Fulvio

2012-09-01

201

PermophilesInternational Commission on Stratigraphy International Union of Geological Sciences  

E-print Network

Setting 17 Carbonate Depositional Models 23 Famennian Stratigraphy And Depositional Environments 26 Biostratigraphy 30 Uppermost Devonian (Upper Famennian) And Carboniferous Stratigraphy And Depositional the eastern side of the railroad cut 100 Stop 4-5. Exshaw Formation and lower Banff Formation along

202

MAGNETIC POLARITY STRATIGRAPHY AND PALEOCENE-EOCENE BIOSTRATIGRAPHY OF POLECAT BENCH,  

E-print Network

Formation in the San Juan Basin of New Mexico. The paleomagnetic stratigraphy of these beds has been studied basins. Here we present a preliminary report on the paleo- magnetic stratigraphy of late Paleocene of Geological Sciences and Museum of Paleontol- ogy. The University of Michigan, Ann Arbor. Michigan 48109

Gingerich, Philip D.

203

Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean Leonid Polyak a,  

E-print Network

Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean Leonid Polyak a Article history: Accepted 17 March 2009 Available online xxxx Keywords: Arctic Ocean sediment stratigraphy sedimentary environments Late Quaternary glaciations Sediment cores from the western Arctic Ocean obtained

Howat, Ian M.

204

Origin and Evolution of the Western Snake River Plain: Implications From Stratigraphy,  

E-print Network

Origin and Evolution of the Western Snake River Plain: Implications From Stratigraphy, Faulting.J. McGee, 2002, Origin and evolution of the western Snake River Plain: Implications from stratigraphy, and Michael McCurry, eds., Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province: Idaho

Shervais, John W.

205

A consistent magnetic polarity stratigraphy of Plio-Pleistocene fluvial sediments from the Heidelberg Basin (Germany)  

NASA Astrophysics Data System (ADS)

Deep drillings in the Heidelberg Basins provide access to one of the thickest and most complete successions of Quaternary and Upper Pliocene continental sediments in Central-Europe [1]. In absence of any comprehensive chronostratigraphic model, these sediments are so far classified by lithological and hydrogeological criteria. Therefore the age of this sequence is still controversially discussed ([1], [2]). In spite of the fact that fluvial sediments are a fundamental challenge for the application of magnetic polarity stratigraphy we performed a thorough study on four drilling cores (from Heidelberg, Ludwigshafen and nearby Viernheim). Here, we present the results from the analyses of these cores, which yield to a consistent chronostratigraphic framework. The components of natural remanent magnetisation (NRM) were separated by alternating field and thermal demagnetisation techniques and the characteristic remanent magnetisations (ChRM) were isolated by principle component analysis [3]. Due to the coring technique solely inclination data of the ChRM is used for the determination of the magnetic polarity stratigraphy. Rock magnetic proxies were applied to identify the carriers of the remanent magnetisation. The investigations prove the NRM as a stable, largely primary magnetisation acquired shortly after deposition (PDRM). The Matuyama-Gauss boundary is clearly defined by a polarity change in each core, as suggested in previous work [4]. These findings are in good agreement with the biostratigraphic definition of the base of the Quaternary ([5], [6], [7]). The Brunhes-Matuyama boundary could be identified in core Heidelberg UniNord 1 and 2 only. Consequently, the position of the Jaramillo and Olduvai subchron can be inferred from the lithostratigraphy and the development of fluvial facies architecture in the Rhine system. The continuation of the magnetic polarity stratigraphy into the Gilbert chron (Upper Pliocene) allows alternative correlation schemes for the cores Viernheim and Heidelberg. All things considered, the application of magnetic polarity stratigraphy on Pliocene and Pleistocene fluvial sediments from the Heidelberg Basin provides a consistent and independent chronology and opens the perspective for global correlations where other approaches hardly come to results. [1] GABRIEL, G., ELLWANGER, D., HOSELMANN, C. & WEIDENFELLER, M. 2008. Preface: The HeidelbergBasin Drilling Project. E & G (Quaternary Science Journal), 57, 253-260. [2] ELLWANGER, D. & WIELAND-SCHUSTER, U. 2012. Fotodokumentation und Schichtenverzeichnis der Forschungsbohrungen Heidelberg UniNord I und II. LGRB-Informationen, 26, 25-86. [3] KIRSCHVINK, J. L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal, Royal Astronomical Society, 62, 699-718. [4] ROLF, C., HAMBACH, U. & WEIDENFELLER, M. 2008. Rock and palaeomagnetic evidence for the Plio-/Pleistocene palaeoclimatic change recorded in Upper Rhine Graben sediments (Core Ludwigshafen-Parkinsel), Neth. J. Geosci., 87 (1), 41-50. [5] KNIPPING, M. 2008. Early and Middle Pleistocene pollen assemblages of deep core drillings in the northern Upper Rhine Graben, Germany, Neth. J. Geosci., 87(1), 51-65. [6] HEUMANN, G., pers. Comm. [7] HAHNE, J., pers. Comm.

Scheidt, Stephanie; Hambach, Ulrich; Rolf, Christian

2014-05-01

206

Wasatch fossils in so-called Fort Union beds of the Powder River Basin, Wyoming, and their bearing on the stratigraphy of the region  

USGS Publications Warehouse

Northeastern Wyoming is occupied by a broad structural basin opening to the north and bounded on the east, south, and west by three mountain uplifts - the Black Hills, the Laramie Mountains, and the Big Horn Mountains. (See fig. 16.) Throughout much of this basin the surface rocks are of Tertiary age. They contain the principal coal beds of the region and have been classified in all the most recent Survey reports as Fort Union. The true age of these rocks and the general stratigraphy of the fresh-water beds that underlie them are the theme of this paper.

Wegemann, Carroll H.

1917-01-01

207

Plio-Pleistocene cliff-bound, wedge-shaped, warm-temperate carbonate deposits from Rhodes (Greece): Sedimentology and facies  

NASA Astrophysics Data System (ADS)

The Pliocene to Pleistocene temperate carbonates of Rhodes were deposited in a tectonically active region, strongly influenced by a complicated and rapidly changing topography, provided by the highly tectonised late Cretaceous Lindos Limestone as basement rock. Deposition on this basement took place in accommodation loci restricted to micrograbens and their downslope extension, to the foot of steep submarine cliffs, to basement neptunian dykes and depressions in the basement rock. Consequently the sediments comprise a high degree of facies variability, and are typically thin and laterally discontinuous. The integration of several outcrops is necessary for the reconstruction of the stratigraphy and the relative sea-level changes. The sediments were deposited during a large-scale, tectonically driven transgressive-regressive cycle in water depths changing from zero to several hundreds of metres. At the studied Lindos-Pefkos Road cutting the Kolymbia Limestone, bound to the foot of Lindos Limestone cliffs, marks the onset of the marine deposition in the late Pliocene. Its fabric is a rudstone consisting of unsorted angular Lindos Limestone clasts (up to boulder-size) with a matrix dominated by molluscs and coralline algae. The overlying Plio-Pleistocene St. Paul's Bay Limestone consists of deep-water float- and rudstones containing the 'white coral community' dominated by the coral Lophelia pertusa. Its matrix shows a complex fabric of up to five sediment zones separated by differing states of lithification. In this maximum flooding phase, mineralised hardgrounds indicate depositional hiati. The subsequent shallowing phase is represented by the Cape Arkhangelos Calcarenite, a series of distinctive facies of very patchy distribution. They are characterised by the Bryozoan-Brachiopod Facies, overlain by a facies heavily dominated by the bivalve Mytilaster sp. ( Mytilaster Facies). Conspicuous for the Mytilaster Facies is the inverse, concave-up, stacking pattern of shelly material. This facies is followed by a serpulid framestone and associated serpulid rudstone. Neptunian dykes cut through the first two facies and are filled with an intraformational breccia grading into a breccia with abundant Mytilaster Facies clasts (Neptunian Dyke Facies). The sedimentology and interpretation of each facies include a description of the ichnology, in particular the bioerosion peculiar to each facies. The separation of different gravity transport processes in steep submarine environments is rarely described and most of the literature concentrates on siliciclastic-dominated coarse-grained, sandy or gravely sand delta environments. For a classification of the transport processes of the examined deposits, the following criteria were evaluated: sediment body symmetry, inclination of the palaeorelief, sediment constituents, fabric complexity, sedimentary structures and availability of fine matrix. Sedimentary structures and grading can be camouflaged in carbonates due to density differences of bioclasts; however bioclast-orientations such as bivalve stacking patterns can give information about the sedimentary process. We suggest the inverse, concave-up, stacking pattern of bivalve shells to be a texture potentially indicative for debris falls. Because of the above-mentioned criteria we classified the Kolymbia Limestone as rock-fall deposits and the St. Paul's Bay Limestone as well as the Mytilaster Facies of the Cape Arkhangelos Calcarenite as debris-fall deposits. The Bryozoan-Brachiopod Facies could not be classified with certainty because of the lack of sedimentary structures and bioclast-orientation. However, a grain-flow or most likely a debris-fall transport process seems probable.

Titschack, Jürgen; Bromley, Richard G.; Freiwald, André

2005-10-01

208

Petroacoustic Modelling of Heterolithic Sandstone Reservoirs: A Novel Approach to Gassmann Modelling Incorporating Sedimentological Constraints and NMR Porosity data  

NASA Astrophysics Data System (ADS)

Heterolithic or 'shaly' sandstone reservoirs constitute a significant proportion of hydrocarbon resources. Petroacoustic models (a combination of petrophysics and rock physics) enhance the ability to extract reservoir properties from seismic data, providing a connection between seismic and fine-scale rock properties. By incorporating sedimentological observations these models can be better constrained and improved. Petroacoustic modelling is complicated by the unpredictable effects of clay minerals and clay-sized particles on geophysical properties. Such effects are responsible for erroneous results when models developed for "clean" reservoirs - such as Gassmann's equation (Gassmann, 1951) - are applied to heterolithic sandstone reservoirs. Gassmann's equation is arguably the most popular petroacoustic modelling technique in the hydrocarbon industry and is used to model elastic effects of changing reservoir fluid saturations. Successful implementation of Gassmann's equation requires well-constrained drained rock frame properties, which in heterolithic sandstones are heavily influenced by reservoir sedimentology, particularly clay distribution. The prevalent approach to categorising clay distribution is based on the Thomas - Stieber model (Thomas & Stieber, 1975), this approach is inconsistent with current understanding of 'shaly sand' sedimentology and omits properties such as sorting and grain size. The novel approach presented here demonstrates that characterising reservoir sedimentology constitutes an important modelling phase. As well as incorporating sedimentological constraints, this novel approach also aims to improve drained frame moduli estimates through more careful consideration of Gassmann's model assumptions and limitations. A key assumption of Gassmann's equation is a pore space in total communication with movable fluids. This assumption is often violated by conventional applications in heterolithic sandstone reservoirs where effective porosity, which includes a capillary bound water porosity component, is used. The novel approach attempts to better address this assumption through incorporation of NMR porosity data which distinguishes between bound water and free (movable) fluid components of porosity. The simplistic approach to heterolithic sandstone sedimentology, with poor linkage between petrophysical and sedimentological analyses and ignorance of model caveats, compounds petroacoustic modelling issues. This research uses a single well dataset comprising a log suite including NMR and OBMI data, together with extensive core data including core-NMR, SEM images and detailed sedimentological analysis. Integration of log and core data enables better insight to the key sedimentological properties influencing reservoir elastic properties. This approach improves understanding of key sedimentological properties affecting acoustic propagation in heterolithic sandstones and in turn provides better models for describing these important reservoirs. This contributes to enhanced seismic data interpretation of reservoir properties, including fluid saturations, during exploration and development phases.

Matthews, S.; Lovell, M.; Davies, S. J.; Pritchard, T.; Sirju, C.; Abdelkarim, A.

2012-12-01

209

Sequence stratigraphy: Fact, fantasy, or work in progress  

SciTech Connect

Sequence stratigraphy has been hailed as a magic elixir to cure exploration problems in mature and frontier basins. Yet, like most cure-alls, analyses of modern depositional systems show that critical assumptions regarding sequence stratigraphy merit further review. An example from the modern Canterbury Plains, New Zealand, demonstrates some of the potential pit- falls of sequence stratigraphy and its application to hydrocarbon exploration. The Canterbury Plains, New Zealand, bounded by the Southern Alps and Pacific Ocean, are 60 km wide and 185 km long, and traversed by four large gravel rivers. The Canterbury basin is up to 750 m deep, filled primarily with gravel. The coastline is wave dominated and microtidal, with high rates of north-directed longshore drift. The southern coast is transgressive with 22 in wave-cut cliffs in Pleistocene gravel. Beaches are gravel and sand. Coastal erosion at approximately 1 m/yr steepens the fluvial gradient, causing the rivers to incise 1.5-4.2 mm/yr during the present highstand. River headwaters in the Southern Alps are uplifting, tectonically causing incision, which decreases seaward. Thus, fluvial incision takes place in the west due to mountain uplift and in the east due to the transgressing shoreline. A zone of null valley incision occurs 8-15 km from the coast. Existing sequence stratigraphic models suggest that downcutting should occur during falling sea level, not during transgression. The southern coastline is separated from the northern coast-line by Banks Peninsula, a resistant volcanic complex that acts as a large groyne to southerly waves. The northern coastline progrades approximately I m/yr and is largely sandy. Thus, the coastline within the same basin during the present sea level highstand is at one locale progradational and elsewhere transgressive. Gravel reaches the transgressive coast, where a steep gradient is maintained by downcutting.

Leckie, D.A. [Geological survey of Canada, Calgary, Alberta (Canada)

1995-11-01

210

Elastic-Wavefield Seismic Stratigraphy: A New Seismic Imaging Technology  

SciTech Connect

The purpose of our research has been to develop and demonstrate a seismic technology that will provide the oil and gas industry a better methodology for understanding reservoir and seal architectures and for improving interpretations of hydrocarbon systems. Our research goal was to expand the valuable science of seismic stratigraphy beyond the constraints of compressional (P-P) seismic data by using all modes (P-P, P-SV, SH-SH, SV-SV, SV-P) of a seismic elastic wavefield to define depositional sequences and facies. Our objective was to demonstrate that one or more modes of an elastic wavefield may image stratal surfaces across some stratigraphic intervals that are not seen by companion wave modes and thus provide different, but equally valid, information regarding depositional sequences and sedimentary facies within that interval. We use the term elastic wavefield stratigraphy to describe the methodology we use to integrate seismic sequences and seismic facies from all modes of an elastic wavefield into a seismic interpretation. We interpreted both onshore and marine multicomponent seismic surveys to select the data examples that we use to document the principles of elastic wavefield stratigraphy. We have also used examples from published papers that illustrate some concepts better than did the multicomponent seismic data that were available for our analysis. In each interpretation study, we used rock physics modeling to explain how and why certain geological conditions caused differences in P and S reflectivities that resulted in P-wave seismic sequences and facies being different from depth-equivalent S-wave sequences and facies across the targets we studied.

Bob A. Hardage; Milo M. Backus; Michael V. DeAngelo; Sergey Fomel; Khaled Fouad; Robert J. Graebner; Paul E. Murray; Randy Remington; Diana Sava

2006-07-31

211

Stratigraphy and Observations of Nepthys Mons Quadrangle (V54), Venus  

NASA Technical Reports Server (NTRS)

Initial mapping has begun in Venus' Nepthys Mons Quadrangle (V54, 300-330 deg. E, 25-50 deg. S). Major research areas addressed are how the styles of volcanism and tectonism have changed with time, the evolution of shield volcanoes, the evolution of coronae, the characteristics of plains volcanism, and what these observations tell us about the general geologic history of Venus. Reported here is a preliminary general stratigraphy and several intriguing findings. Additional information is contained in the original extended abstract.

Bridges, N. T.

2001-01-01

212

Geoacoustic character, sedimentology and chronology of a cross-shelf Holocene sediment deposit off Cabo Frio, Brazil (southwest Atlantic Ocean)  

NASA Astrophysics Data System (ADS)

The Cabo Frio region in the state of Rio de Janeiro, southeast coast of Brazil, is characterized by a local coastal upwelling system and converging littoral sediment transport systems that are deflected offshore at Cabo Frio, as a consequence of which a thick cross-shelf sediment deposit has developed over time. To investigate the evolution of this muddy deposit, geophysical, sedimentological and geochemical data from four sediment cores (3.8-4.1 m in length) recovered in water depths between 88 and 141 m were analyzed. The high-resolution seismic data show variable sediment thicknesses ranging from 1 to 20 m, comprising two sedimentary units separated by a high-impedance layer at a depth of about 10 m below the seafloor at the coring sites. According to the available age datings, the upper sedimentary unit is late Pleistocene to Holocene in age, whereas the lower unit (not dated) must, by implication, be entirely Pleistocene in age. The boomer-seismic reflection signal can be divided into three echo-types, namely transparent (inner shelf), stratified (middle shelf) and reflective (outer shelf), each type seemingly related to the local sediment composition. The upper 4 m of the upper sedimentary unit is dominated by silty sediment on the middle shelf, and by upward-fining sediments (silty sand to sandy silt) on the inner and outer shelf. The downcore trends of P-wave velocity, gamma-ray density and acoustic impedance are largely similar, but generally reversed to those of water and organic carbon contents. Total organic carbon contents increase with decreasing mean grain size, periodic fluctuations suggesting temporal changes in the regional hydrodynamics and primary productivity fuelled by the local upwelling system. The reconstruction of sedimentation rates in the course of the Holocene is based on 35 AMS age datings of organic material recovered from variable downcore depths. These range from a maximum of 13.3 cm/decade near the base of the inner shelf core (7.73-7.70 ka BP) to generally very low values (<0.11 cm/century) over the last thousand years in all cores. Over the last 6 ka there appear to have been three distinct sedimentation peaks, one between 6 and 5 ka BP, another between 4 and 3 ka PB, and one around 1 ka BP. Due to different time intervals between dates, not every peak is equally well resolved in all four cores. Based on the similar sedimentology of the inner and outer shelf cores, an essentially identical sedimentation model is proposed to have been active in both cases, albeit at different times. Thus, already during the last glacial maximum, alongshore sediment transport was deflected offshore by a change in shoreline orientation caused by the Cabo Frio structural high. The source of terrigenous material was probably a barrier-island complex that was subsequently displaced landward in the course of sea-level rise until it stabilized some 6.5 ka BP along the modern coast.

Mendoza, Ursula; Ayres Neto, Arthur; C. Abuchacra, Rodrigo; Fernandes Barbosa, Cátia; G. Figueiredo, Alberto; C. Gomes, Manoela; Belem, Andre L.; Capilla, Ramsés; S. Albuquerque, Ana Luiza

2014-08-01

213

Pleistocene pollen stratigraphy from borehole 81/34, devil's hole area, central north sea  

NASA Astrophysics Data System (ADS)

Twelve pollen assemblage zones are identified in a 229 m deep borehole (BH 81/34) from the Devil's Hole area in the central North Sea (British sector). The sediment from this borehole is Early to Late Pleistocene in age and the observation of massulae from Azolla filiculoides in sediment with reversed polarity indicates an age younger than the Olduvai geomagnetic event for the entire sequence. The Early Pleistocene sediments were at least partly deposited in the vicinity of a river outlet and can be correlated either with the Eburonian or the Menapian cold stage and with the Bavel interglacial and the Linge glacial within the Bavelian stage in the Dutch stratigraphy. The Middle Pleistocene sequence contains an interval rich in Abies, Picea and Pinus, probably deposited during the end of either Cromerian Complex interglacial IV (Noordbergum) or possibly the Holsteinian. The uppermost 80 m of the core contains high frequencies of pre-Quaternary and deteriorated palynomorphs indicating extensive glacial or glaciofluvially reworked sediment.

Ekman, Sten R.

1998-09-01

214

The Middle to Upper Paleolithic transition: dating, stratigraphy, and isochronous markers.  

PubMed

Accurate and precise dating is vital to our understanding of the Middle to Upper Paleolithic transition. There are, however, a number of uncertainties in the chronologies currently available for this period. We attempt to examine these uncertainties by utilizing a number of recent developments in the field. These include: the precise dating of the Campanian Ignimbrite (CI) tephra by 40Ar/39Ar; the tracing of this tephra to a number of deposits that are radiocarbon dated; the publication of revised radiocarbon calibration data for the period, showing a much better convergence with other available data than during the recent IntCal comparison; and a layer-counted ice-core chronology extending beyond 40,000cal BP. Our data comparisons suggest that a reasonable overall convergence between calibrated radiocarbon ages and calendar dates is possible using the new curves. Additionally, we suggest that charcoal-based radiocarbon ages, as well as bone-based radiocarbon determinations, require cautious interpretation in this period. Potentially, these issues extend far beyond the sites in this study and should be of serious concern to archaeologists studying the Middle to Upper Paleolithic. We conclude by outlining a strategy for moving the science forward by a closer integration of archaeology, chronology, and stratigraphy. PMID:18926557

Blockley, S P E; Ramsey, C Bronk; Higham, T F G

2008-11-01

215

Cenozoic stratigraphy of the Sahara, Northern Africa  

USGS Publications Warehouse

This paper presents an overview of the Cenozoic stratigraphic record in the Sahara, and shows that the strata display some remarkably similar characteristics across much of the region. In fact, some lithologies of certain ages are exceptionally widespread and persistent, and many of the changes from one lithology to another appear to have been relatively synchronous across the Sahara. The general stratigraphic succession is that of a transition from early Cenozoic carbonate strata to late Cenozoic siliciclastic strata. This transition in lithology coincides with a long-term eustatic fall in sea level since the middle Cretaceous and with a global climate transition from a Late Cretaceous–Early Eocene “warm mode” to a Late Eocene–Quaternary “cool mode”. Much of the shorter-term stratigraphic variability in the Sahara (and even the regional unconformities) also can be correlated with specific changes in sea level, climate, and tectonic activity during the Cenozoic. Specifically, Paleocene and Eocene carbonate strata and phosphate are suggestive of a warm and humid climate, whereas latest Eocene evaporitic strata (and an end-Eocene regional unconformity) are correlated with a eustatic fall in sea level, the build-up of ice in Antarctica, and the appearance of relatively arid climates in the Sahara. The absence of Oligocene strata throughout much of the Sahara is attributed to the effects of generally low eustatic sea level during the Oligocene and tectonic uplift in certain areas during the Late Eocene and Oligocene. Miocene sandstone and conglomerate are attributed to the effects of continued tectonic uplift around the Sahara, generally low eustatic sea level, and enough rainfall to support the development of extensive fluvial systems. Middle–Upper Miocene carbonate strata accumulated in northern Libya in response to a eustatic rise in sea level, whereas Upper Miocene mudstone accumulated along the south side of the Atlas Mountains because uplift of the mountains blocked fluvial access to the Mediterranean Sea. Uppermost Miocene evaporites (and an end-Miocene regional unconformity) in the northern Sahara are correlated with the Messinian desiccation of the Mediterranean Sea. Abundant and widespread Pliocene paleosols are attributed to the onset of relatively arid climate conditions and (or) greater variability of climate conditions, and the appearance of persistent and widespread eolian sediments in the Sahara is coincident with the major glaciation in the northern hemisphere during the Pliocene.

Swezey, Christopher S.

2009-01-01

216

Cosmogenic dating of rock avalanches constraining Quaternary stratigraphy and regional neotectonics in the Argentine Central Andes (32° S)  

NASA Astrophysics Data System (ADS)

This paper provides a comprehensive review of the chronostratigraphy of six rock avalanches clustered in the northern extreme of the Cordon del Plata range. These rock avalanches are stratigraphically related to Pleistocene glacial drifts and valley-fill deposits documenting the regional neotectonic activity. We used cosmogenic dating (TCN) to directly date block surfaces of rock-avalanche deposits, as well as optically stimulated luminescence dating (OSL) of paleo-lakes dammed by these rock avalanches. Our new direct dates (17 TCN and 4 OSL) determine the Middle-to-Late Pleistocene age of these collapses. These are in contrast to the previously established chronostratigraphy based on relative dating techniques, paleontological context, and tephrochronology. These new data help to redefine the geomorphological evolution of the Mendoza River valley. Especially, the new data indicate that the glacial stratigraphy earlier proposed must be reconsidered. We redefine this stratigraphy as far as possible with our data and discuss the data in relation with other recently published results. However, it becomes clear that the glacial history of the Mendoza valley has to be studied anew by using modern dating techniques. In addition, our data suggest that the Carrera Fault system bounding the valleys of the Cordillera del Plata has been active more recently than proposed earlier.

Moreiras, Stella M.; Hermanns, Reginald L.; Fauqué, Luis

2015-03-01

217

The Statistical Signal of Morphological Process in Stratigraphy  

NASA Astrophysics Data System (ADS)

The most widely used classification of river delta morphologies, Galloway's ternary diagram, holds that the surface characteristics of a delta, including the distribution of depositional environments, and shoreline shape, can be predicted by the relative strengths of the fluvial and marine processes that influence the delta. Though almost 40 years old, Galloway's diagram of wave, river, and tide dominated deltas is still widely referred to in textbooks and in literature as a way of describing the relationship between morphological processes and the distribution of depositional environments over a single delta 'event' such as the progradation of one delta lobe. However, there is no complimentary classification scheme that addresses the ways in which deltaic stratigraphy under varying forcing conditions is preserved over sequences of many such events. Such sequences operating over a range of time scales set the architecture of sedimentary basins, so a method of classifying the stratigraphic result is an important goal. In this study, we use Delft3D to examine the autogenic behavior of thick packages of simulated deltaic stratigraphy (>10 channel depths) under the influence of a range of wave, tide, and flood-dominated conditions, as well as a variety of sedimentary inputs. We quantify the strength and type of autogenic behavior by measuring stratigraphic completeness and compensation index. Both metrics have been observed to vary systematically in field scale systems, and in experimental deltas deposited under a range of river dominated conditions. This work will extend that range into deltas with significant wave, tide, and flood influence.

Esposito, C. R.; Straub, K. M.

2013-12-01

218

North polar region of Mars: Advances in stratigraphy, structure, and erosional modification  

USGS Publications Warehouse

We have remapped the geology of the north polar plateau on Mars, Planum Boreum, and the surrounding plains of Vastitas Borealis using altimetry and image data along with thematic maps resulting from observations made by the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter spacecraft. New and revised geographic and geologic terminologies assist with effectively discussing the various features of this region. We identify 7 geologic units making up Planum Boreum and at least 3 for the circumpolar plains, which collectively span the entire Amazonian Period. The Planum Boreum units resolve at least 6 distinct depositional and 5 erosional episodes. The first major stage of activity includes the Early Amazonian (???3 to 1 Ga) deposition (and subsequent erosion) of the thick (locally exceeding 1000 m) and evenly-layered Rupes Tenuis unit (Abrt), which ultimately formed approximately half of the base of Planum Boreum. As previously suggested, this unit may be sourced by materials derived from the nearby Scandia region, and we interpret that it may correlate with the deposits that regionally underlie pedestal craters in the surrounding lowland plains. The second major episode of activity during the Middle to Late Amazonian (??? <1 Ga) began with a section of dark, sand-rich and light-toned ice-rich irregularly-bedded sequences (Planum Boreum cavi unit, Abbc) along with deposition of evenly-bedded light-toned ice- and moderate-toned dust-rich layers (Planum Boreum 1 unit, Abb1). These units have transgressive and gradational stratigraphic relationships. Materials in Olympia Planum underlying the dunes of Olympia Undae are interpreted to consist mostly of the Planum Boreum cavi unit (Abbc). Planum Boreum materials were then deeply eroded to form spiral troughs, Chasma Boreale, and marginal scarps that define the major aspects of the polar plateau's current regional topography. Locally- to regionally-extensive (though vertically minor) episodes of deposition of evenly-bedded, light- and dark-toned layered materials and subsequent erosion of these materials persisted throughout the Late Amazonian. Sand saltation, including dune migration, is likely to account for much of the erosion of Planum Boreum, particularly at its margin, alluding to the lengthy sedimentological history of the circum-polar dune fields. Such erosion has been controlled largely by topographic effects on wind patterns and the variable resistance to erosion of materials (fresh and altered) and physiographic features. Some present-day dune fields may be hundreds of kilometers removed from possible sources along the margins of Planum Boreum, and dark materials, comprised of sand sheets, extend even farther downwind. These deposits also attest to the lengthy period of erosion following emplacement of the Planum Boreum 1 unit. We find no evidence for extensive glacial flow, topographic relaxation, or basal melting of Planum Boreum materials. However, minor development of normal faults and wrinkle ridges may suggest differential compaction of materials across buried scarps. Timing relations are poorly-defined mostly because resurfacing and other uncertainties prohibit precise determinations of surface impact crater densities. The majority of the stratigraphic record may predate the recent (<20 Ma) part of the orbitally-driven climate record that can be reliably calculated. Given the strong stratigraphic but loose temporal constraints of the north polar geologic record, a comparison of north and south polar stratigraphy permits a speculative scenario in which major Amazonian depositional and erosional episodes driven by global climate activity is plausible. ?? 2008 Elsevier Inc. All rights reserved.

Tanaka, K.L.; Rodriguez, J.A.P.; Skinner, J.A., Jr.; Bourke, M.C.; Fortezzo, C.M.; Herkenhoff, K.E.; Kolb, E.J.; Okubo, C.H.

2008-01-01

219

Sedimentologic and stratigraphic constraints on emplacement of the Star Kimberlite, east-central Saskatchewan  

NASA Astrophysics Data System (ADS)

Diamond-bearing kimberlites in the Fort à la Corne region, east-central Saskatchewan, consist primarily of extra-crater pyroclastic deposits which are interstratified with Lower Cretaceous (Albian and Cenomanian) marine, marginal marine and continental sediments. Approximately 70 individual kimberlite occurrences have been documented. The Star Kimberlite, occurring at the southeastern end of the main Fort à la Corne trend, has been identified as being of economic interest, and is characterized by an excellent drill core database. Integration of multi-disciplinary data-sets has helped to refine and resolve models for emplacement of the Star Kimberlite. Detailed core logging has provided the foundation for sedimentological and volcanological studies and for construction of a regionally consistent stratigraphic and architectural framework for the kimberlite complex. Micropaleontologic and biostratigraphic analysis of selected sedimentary rocks, and U-Pb perovskite geochronology on kimberlite samples have been integrated to define periods of kimberlite emplacement. Radiometric age determination and micropaleontologic evidence support the hypothesis that multiple kimberlite eruptive phases occurred at Star. The oldest kimberlite in the Star body erupted during deposition of the predominantly continental strata of the lower Mannville Group (Cantuar Formation). Kimberlites within the Cantuar Formation include terrestrial airfall deposits as well as fluvially transported kimberlitic sandstone and conglomerate. Successive eruptive events occurred contemporaneous with deposition of the marginal marine upper Mannville Group (Pense Formation). Kimberlites within the Pense Formation consist primarily of terrestrial airfall deposits. Fine- to medium-grained cross-stratified kimberlitic (olivine-dominated) sandstone in this interval reflects reworking of airfall deposits during a regional marine transgression. The location of the source feeder vents of the Cantuar and Pense kimberlite deposits has not been identified. The youngest and volumetrically most significant eruptive events associated with the Star Kimberlite occur within the predominantly marine Lower Colorado Group (Joli Fou and Viking Formations). Kimberlite beds, which occur at several horizons within these units, consist of subaerial and marine fall deposits, the latter commonly exhibiting evidence of wave-reworking. Black shale-encased resedimented kimberlite beds, likely deposited as subaqueous debris flows and turbidites, are particularly common in the Lower Colorado Group. During its multi-eruptive history, the Star Kimberlite body is interpreted to have evolved from a feeder vent and overlying positive-relief tephra ring, into a tephra cone. Initial early Joli Fou volcanism resulted in formation of a feeder vent (˜200 m diameter) and tephra ring. Subsequent eruptions, dominated by subaerial deposits, partly infilled the crater and constructed a tephra cone. A late Joli Fou eruption formed a small (˜70 m diameter) feeder pipe slightly offset to the NW of the early Joli Fou feeder vent. Deposits from this event further infilled the crater, and were deposited on top of early Joli Fou kimberlite (proximal to the vent) and sediments of the Joli Fou Formation (distal to the vent). The shape of the tephra cone was modified during multiple marine transgression and regression cycles coeval with deposition of the Lower Colorado Group, resulting in wave-reworked kimberlite sand along the fringes of the cone and kimberlitic event deposits (tempestites, turbidites, debris flows) in more distal settings.

Zonneveld, John-Paul; Kjarsgaard, Bruce A.; Harvey, Shawn E.; Heaman, Larry M.; McNeil, David H.; Marcia, Kirsten Y.

2004-09-01

220

Sedimentology of cores recovered from the Canada Basin of the Arctic Ocean  

NASA Astrophysics Data System (ADS)

Researchers from the United States and Canada are collaborating to understand the tectonic and sedimentary history of the Arctic Ocean between Canada and Alaska. As part of this on-going study, a joint US-Canadian ice breaker expedition operated in parts of the Canada Basin during August 2010. Occasional interruptions of the seismic data acquisition provided the ship time to collect gravity and piston cores at five sites-of-opportunity throughout the basin. High-resolution multibeam bathymetry and chirp sub-bottom profiler data collected immediately prior to coring reveal the fine-scale morphology of each site. Core photographs, X-ray radiographs, and physical property data support the following descriptions. Two piston cores were collected from the Beaufort Sea continental margin in a region of known bottom simulating reflectors (BSRs). Site 1 (2538 m water depth): This core recovered 5.72 m of gas-charged, gray sticky clay and silty-clay from an approximately 1100 m diameter, 130 m high conical mound overlying the crest of a buried anticline. Gas hydrate recovered in the core catcher combined with cracks and voids, methane and other hydrocarbon gasses, pyrite concretions, chemosynthetic clams, carbonate nodules, and soft carbonate masses indicate the likely upward migration of deep-seated fluids. Site 2 (1157 m water depth): This core, positioned 40 km upslope from the gas hydrate core, recovered 3 m of gray sticky silty clay and clayey silt near the base of an erosional scarp. Some voids and fracturing are apparent but carbonate masses and pyrite concretions are absent. Site 3 (3070 m water depth): This core from the top of a seamount discovered in 2009 in the north-central part of the Canada Basin recovered 4.94 m of sediment. More than 3 m of dark brown to yellowish brown, massive interbedded silty clays with sands and matrix-supported gravels (ice rafted debris [IRD]) occur in abrupt contact with underlying reddish yellow to brownish yellow silty clay and gravelly sandy clay interpreted to be altered hydrothermally. Successions of IRD layers create a thinly- to medium-bedded sequence throughout the lower section. Site 4 (3700 m water depth; central Canada Basin): This core recovered 3.4 m of sediment typified by decimeter-thick sequences of stacked graded beds with erosional basal contacts (Bouma sequences) characteristic of turbidite deposition. Site 5 (2081 m water depth; continental slope west of the Canadian archipelago): This core recovered 4.96 m of sediment of which the upper 2 m is silty clay to clayey silt with dispersed sand and granules. This upper section has an irregular, sharp basal contact with an underlying 16-cm-thick clast-supported massive gravel. The gravel has a scoured basal contact and overlies a monotonous gray clayey silt containing dispersed granules of IRD. Sparse and poorly preserved fauna throughout all the cores make age determination difficult; however, given the paucity of sediment cores in the Arctic Ocean, these samples provide vital geophysical groundtruth and sedimentological information about the basin.

Edwards, B. D.; Saint-Ange, F.; Pohlman, J.; Higgins, J.; Mosher, D. C.; Lorenson, T. D.; Hart, P.

2011-12-01

221

Geomorphological and sedimentological record of accelerated deglaciation of small mountain glacier, Ragnarbreen, Svalbard  

NASA Astrophysics Data System (ADS)

Most of the Svalbrad glaciers have been in retreat since the end of the Little Ice Age (LIA). Hence, they give a good opportunity to study the geomorphological and sedimentological record of deglaciation. The aim of the study is to describe main landsystem elements of Ragnar glacier and relate them to different stages of the glacier recession. The Ragnar glacier is located in the Svalbard archipelago, in the central part of the West Spitsbergen Isle, in the north branch of Billefjorden. Ragnar is a small (~ 6 km2), outlet glacier, which current clean ice edge has retreated ca. 1500 m from the position related to the maximum LIA extent. Fieldworks of the study comprised detailed geomorphological mapping and sedimentary works. Four main elements of the landsystem of the Ragnar glacier can be distinguished: 1) Clean glacier surface. Currently, the ice surface of Ragnar glacier is almost completely debris-free and with only several supraglacial streams. 2) Ice-marginal lake. The lake started to form after 1980 year. Since that time, its length has reached 1000 m. Distant (from the ice-edge) part of the lake is shallow (< 2 m) with several small islands. Part proximal to the current ice edge is deeper (up to 16 m) and devoid of islands. At the bottom of the lake some ice (probable of glacier origin) was detected. 3) Lateral moraines - were developed along the both valley sides, from frontal moraine complex - to ca. 2 km upward the glacier valley. 4) Frontal moraine complex. This complex comprises of several chains of ridges and depressions and is relatively distinct - elevated about 35 m above the valley bottom. The elements of the landsystem of the Ragnar glacier have undergone several transformations since the LIA maximum: 1) Formation of the frontal moraine complex can be related to the state of dynamic equilibrium of the glacier during the LIA maximum. During formation of the complex and shortly after it the main depositional agents were intense debris flows, which are recorded by thick covers of the old debris flow deposits. Nowadays, despite of ice-cores, frontal moraine complex is much more stable than the lateral moraines or ice-marginal lake. 2) As a consequence of lowering of the clean glacier surface and formation of the distinct lateral moraines, the debris delivering from the valley sides is limited only to very narrow zone of the glacier (i.e. only to the lateral moraine). 3) Accelerated recession of the ice mouth and limitation in delivery of debris from sides of the valley caused that amount of deposits released in the ice front is small. 4) Increasing amount of water flowing from the glacier was blocked by frontal moraine complex and the ice marginal lake was created. 5) The debris cover on the lateral moraines is relatively thin. In addition, as a consequence of the clean ice surface lowering, slopes of the lateral moraines are very steep. It causes that mass movement processes (especially debris flows) are ubiquitous. Contemporary, lateral moraines are the elements undergoing the most intense transformations. Observations made in the Ragnar marginal zone revealed spatial-temporal changes in distribution of the sediments and landforms. They also add some premises that in the first stage of deglaciation debris flow and other mass wasting processes are most common. In the later phase glaciolacustrine and glaciofluvial deposition also plays important role in transformation of landforms and sediments.

Ewertowski, Marek

2010-05-01

222

Controls on links between geomorphical and surface sedimentological variability: Aitutaki and Maupiti atolls, South Pacific Ocean  

E-print Network

. SEDIMENTOLOGY OF HOLOCENE CARBONATE PLATFORMS, SOUTH PACIFIC 893J S R 894 E.C. RANKEY ET AL. J S R between the apron–hoa and the lagoon (Fig. 8J, K), broadly analogous to the ooids on Aitutaki (Rankey and Reeder 2009). Collectively, apron and hoa sediments....0001) 0.70 ( p = 0.0001) 896 E.C. RANKEY ET AL. J S R over 90% of the grains across vast expanses (Purdy 1963; Reijmer et al. 2009; Rankey and Reeder 2010). Yet, these types of grains are extremely rare in Holocene sediments from atolls across the Pacific...

Rankey, Gene C.; Reeder, S.L.; Garza-Perez, J.R.

2011-12-21

223

Use of ground-penetrating radar for 3-D sedimentological characterization of clastic reservoir analogs  

SciTech Connect

Clastic reservoir analogs based on 2-D outcrop studies provide valuable definitions of geometric and petrophysical heterogeneities at interwell scales. Integration of 3-D ground-penetrating radar (GPR) surveys with sedimentological and stratigraphic data provides information on the internal heterogeneities of sedimentary sequences at scales that allow dissection of the 3-D anatomy of clastic depositional systems. Two 3-D GPR data volumes were acquired in the Ferron sandstone of east-central Utah. The data show prominent lenticular features, a variety of lithologies, and structural elements such as channels and shale drapes that match well with those seen at the same stratigraphic levels in adjacent cliff faces.

McMechan, G.A.; Szerbiak, R.B. [Univ. of Texas, Richardson, TX (United States). Center for Lithospheric Studies] [Univ. of Texas, Richardson, TX (United States). Center for Lithospheric Studies; Gaynor, G.C. [Reservoir Geosystems, Inc., Dallas, TX (United States)] [Reservoir Geosystems, Inc., Dallas, TX (United States)

1997-05-01

224

Intrusive origin of the Sudbury Igneous Complex: Structural and sedimentological evidence  

NASA Technical Reports Server (NTRS)

In recent years, many geoscientists have come to believe that the Sudbury event was exogenic rather than endogenic. Critical to a recent exogenic hypothesis is the impact melt origin of the Sudbury Igneous Complex (SIC). Such origin implies that the SIC was emplaced before deposition of the Whitewater Group, in contrast to origins in which the SIC postdates the lithification of the Onaping Formation. Structural and sedimentological evidence is summarized herein that supports an intrusion of the SIC after lithification of all Whitewater Group strata, and conflicts with the hypothesis advanced by other researchers.

Cowan, E. J.; Schwerdtner, W. M.

1992-01-01

225

Sedimentology and diagenesis of windward-facing fore-reef calcarenites, Late Pleistocene of Barbados, West Indies  

SciTech Connect

Late Pleistocene reef terraces in southeastern Barbardos developed extensive fore-reef sand facies during deposition in response to high-energy windward-facing conditions. Sedimentology and diagenesis of these deposits illustrate significant contrasts with previous studies from the leeward west coast. These calcarenites are dominantly skeletal packstones with less common grainstones and wackestones present. The fore-reef sand facies occurs within progradational reef sequences, being conformably overlain by deep-water head coral facies. Medium-bedded, laterally continuous sand sheets retain original depositional slopes, dipping seaward at 10/degrees/-15/degrees/. These fore-reef deposits, in places, are over 30 m thick (average 20 m) and developed rapidly during late Pleistocene glacio-eustatic sea level highstands. Sedimentation rate ranges from 2 to 5 m/1000 years. Areal extent of fore-reef calcarenites in southeastern Barbados is estimated to be 8-10 km/sup 2/. Lithologically, the packstones are composed of an abundance of coralline red algae and the benthic foraminifer Amphistegina sp. Other volumetrically significant allochems include echinoids, mollusks, rhodoliths, peloids, and micritized grains. Micrite in the wackestone and packstone lithologies is likely derived from intense physical/mechanical abrasion of shoal-water reef facies. Diagenesis of these lithologies reflects a complex interplay of meteoric, mixing zone, and marine environments as a result of glacio-eustasy. Differences in diagenetic character are derived from differences in terrace ages, terrace geometry, a paleotopographic control on meteoric ground-water distribution, and high-energy coastal conditions. Diagenetic fabrics include equant, blocky meteoric phreatic calcite; limpid dolomite of mixing zone origin: and peloidal and isopachous fibrous cements from marine precipitation.

Humphrey, J.D.; Kimbell, T.N.

1989-03-01

226

Relation of sequence stratigraphy to modern sedimentary environments  

SciTech Connect

One method of testing the concept of sequence stratigraphy is to compare it to Quaternary sediments in which chronology, stratigraphic relations, and facies geometry are more clearly understood than in older rocks. Rapid deposition rates during Quaternary glacial-eustatic cycles in large deltaic depocenters generate sequences comparable to those in the ancient stratigraphic record. In the northern Gulf of Mexico, the late Wisconsinan-Holocene Mississippi River has deposited a Type 1 sequence that includes lowstand, transgressive, and high-stand systems tracts. Characteristics of modern Mississippi River sedimentary environments support the methodology used in sequence analysis, but the short time taken for sequence generation here raises important questions about sequence time scales, correlation, and driving mechanisms.

Boyd, R. (Dalhousie Univ., Halifax, Nova Scotia (Canada)); Suter, J.; Penland, S. (Louisiana Geological Survey, Baton Rouge (USA))

1989-10-01

227

Mars North Polar Layered Deposit Stratigraphy near Gemini Lingula from HiRISE Imagery and DTMs  

Microsoft Academic Search

A new HiRISE DTM, in conjunction with nearby images, are analyzed in order to establish consistencies and variability of NPLD stratigraphy in a region chosen to optimize eventual linking of visible and SHARAD radar layers.

P. S. Russell; S. Byrne; S. Mattson; S. Christian; J. W. Holt; S. M. Milkovich; N. E. Putzig

2011-01-01

228

PermophilesInternational Commission on Stratigraphy International Union of Geological Sciences  

E-print Network

PermophilesInternational Commission on Stratigraphy International Union of Geological Sciences, Paleontology, Paleogeography and Paleoclimatology of the Calingasta-Uspallata Subbasin (western Argentina, Paleogeography And Paleoclimatology of the Calingasta-Uspallata Subbasin (Western Argentina) and Tepuel

229

Knob fields in the Terra Cimmeria/Terra Sirenum region of Mars: Stratigraphy, mineralogy and morphology  

NASA Astrophysics Data System (ADS)

We investigate the stratigraphy, morphology and mineralogy of five major knob fields in the region between Terra Cimmeria and Terra Sirenum on Mars based on HRSC, CTX, MOC and HiRISE imagery together with hyperspectral data from CRISM. The knob fields comprise Ariadnes Colles, Atlantis Chaos and Gorgonum Chaos and further, unnamed fields of mounds. They have been mapped in previous studies as Hesperian or Amazonian units and are located within the shoreline of the proposed "Eridania lake", the putative source of Ma'adim Vallis. The mounds contain Mg/Fe-bearing phyllosilicates and locally Al-rich phyllosilicates. Our geological mapping shows that the knob fields have a late Noachian age, which indicates later phyllosilicate formation than typically observed on Mars. The knob fields formed by alteration of the "Electris deposit", an airfall deposit possibly rich in basaltic glass (Grant, J.A., Schultz, P.H. [1990]. Icarus 84, 166-195), in local depressions, possibly in the Eridania lake. The spectroscopic detection of phyllosilicates here may indicate that liquid water persisted longer in this region than elsewhere on Mars. The knob fields are embayed by the Hesperian ridged plains. Numerous valleys carve into the ridged plains and document that the aqueous history of this region continued into the Hesperian and Amazonian. The study area is traversed by the Sirenum Fossae. These graben appear to post-date the aqueous activity in the study area except in the Gorgonum basin, where a lake developed after their formation.

Wendt, Lorenz; Bishop, Janice L.; Neukum, Gerhard

2013-07-01

230

Postglacial transgressive stratigraphy of the Durban continental shelf, South Africa  

NASA Astrophysics Data System (ADS)

This paper examines the geomorphology and seismic stratigraphy of the high-energy KwaZulu-Natal shelf offshore Durban, South Africa. Particular attention is paid to a laterally persistent (30 km) Holocene submerged shoreline located at 60 m water depth. Five major seismic units are identified (Units 1-5). Unit 1 comprises a series of infilled incised valleys that formed during the sea level lowering towards the Last Glacial Maximum. Unit 2 comprises a calcarenite core that forms the -60 m postglacial barrier complex. Unit 3 comprises lake-lagoon depressions in the back-barrier that formed simultaneously with the barrier system. These are backed to landward by several relict parabolic dunes preserved in Unit 2. Several relict weathering features (Unit 4) are associated with the barrier and reflect similar processes observed in contemporary aeolianite/beachrock outcrops on the adjacent coastline. These are draped by a thin veneer of post-transgressive Holocene sediment that caps the shelf stratigraphy (Unit 5). The development of the barrier and associated features occurred during a period of stillstand or slowstand associated with the Younger Dryas Cold Period (~12.7-11.6 Ka BP). Shoreline preservation in such a high-energy environment is considered unlikely as a result of the intense ravinement processes experienced during shoreline translation, coupled with the relatively low gradient setting of the KwaZulu-Natal shelf. The preservation of both the 100 m and 60 m shorelines was fostered by overstepping of the paleo-landscape, whereby preservation was promoted by a particularly rapid phase of relative sea-level rise associated with meltwater pulse 1B. This was further aided by early subtropical diagenesis during stillstand.

Green, Andrew; Salzmann, Leslee; Cooper, Andrew

2014-05-01

231

Stratigraphy and Hydrologic Conditions in the HSDP II Borehole: Implications for Ocean Island Stability  

NASA Astrophysics Data System (ADS)

The Hawaii Scientific Drilling Project has recently extended the HSDP II borehole to a depth of 3340 m. The borehole has been (nearly) continuously cored from the surface and provides a uniquely detailed record of the subsurface stratigraphy and hydrology of an ocean island volcano. The first kilometer of the stratigraphic section is dominated by subaerial pahoehoe and a`a lava flows along with rare soil and ash intervals and confirms subsidence of this portion of Hawaii Island by more than 1 km. The next kilometer of section comprises hyaloclastites (fragmental lavas that have been formed by interaction of lava flows with shallow seawater) that have undergone progressive induration with age and depth. Temperature surveys show a low temperature gradient in the first 500 m of this interval, consistent with high rates of fluid circulation, whereas the bottom-most 500 m shows a conductive temperature gradient with minimal circulation. At 1980 m, the first interval of pillow lavas was encountered and, from this depth to bottom-hole, the section consisted of alternating intervals of multiple pillow units inter-layered with progressively thinner hyaloclastite intervals. Throughout this section, the pillow units were found to be highly fractured with variable amounts of fracture filling secondary minerals whereas the hyaloclastites were fully indurated with clays and zeolites filling the pores of the compacted primary fragmental deposits. The complex stratigraphy hosts an equally complex hydrologic system. The surface basal freshwater lens gives way to seawater saturated rocks within a few tens of meters of the surface. However, the interface between Mauna Loa and Mauna Kea rocks at 300 m depth, shows a second 150 m thick freshwater layer beneath a soil and ash horizon that marks this interface. This is underlain by a cold circulating seawater system that is gradually choked off by induration of the hyaloclastites at depths below 1500 m. Temperature and pressure spikes at the pillow intervals below 2000 m show, however, that the fractured pillow layers are serving as water bearing formations. Wellhead pressure measurements show that artesian pressures within these formations exceed local hydrostatic pressure by more than 10 bars and fluid compositions indicate that these are confined aquifers that are isolated from the ocean and are in communication with surface freshwater systems. These findings suggest that the fresh ground water system within ocean island volcanoes may be substantially larger than has been generally recognized and that atypical hydrostatic pressures, arising from intense rainfall events or long-term climatic changes, could propagate to substantial depths within ocean island volcanoes and contribute to edifice instability.

Thomas, D. M.

2005-12-01

232

Effects of sequence stratigraphy on distribution of Cambro-Ordovician siliciclastic hydrocarbon reservoirs in Michigan basin  

Microsoft Academic Search

The lateral and vertical distribution of Cambrian-Ordovician siliciclastic reservoir-potential rock types in the Michigan basin is governed by the sequence stratigraphy. The sequence stratigraphy is controlled primarily by the interaction of four variables: subsidence, eustasy, volume of sediments, and climate. Seven sequential stratigraphic intervals can be defined in the pre-Utica, Cambrian-Ordovician deposits of the Michigan basin. Each of these unconformity-bounded

J. C. Horne; C. L. Reel; G. D. Cummins

1989-01-01

233

Use of sedimentological information for geometric simulation of natural porous media structure  

NASA Astrophysics Data System (ADS)

A geometric simulation method was used to develop a three-dimensional, highly detailed synthetic representation of point bar sediments in the Wabash River system. Geometric simulation methods, in comparison to well-known second-order stochastic methods, offer the advantage of being more closely related to depositional processes, which are often similarly conceptualized (i.e., described in terms of shapes of discrete bed forms, trends in grain size, and spatial relationships of defined geologic facies). Multiple scales of geometric variation were defined within a sedimentologically prescribed framework, and shapes of discrete geometric elements were established at each scale. The selected shapes were based on published field studies including sedimentological bed form studies and trench studies in active point bar sediments. The parameterization of the shapes allowed for random variability of the shape descriptors; discrete shapes were then generated and assimilated by computer. Hydraulic conductivity values were assigned to the discrete elements based on reports of observed variations in grain size and field measurements of hydraulic conductivity. The synthetic model, referred to as a numerical aquifer, is being used as the basis for extensive numerical experimentation to study the relationship between natural spatial structure and subsurface flow and transport.

Scheibe, Timothy D.; Freyberg, David L.

234

Sedimentology of resedimented carbonates: Facies and geometrical characterisation of an upper Cretaceous calciturbidite system in Albania  

NASA Astrophysics Data System (ADS)

Carbonate turbidite systems are not as well studied as their siliciclastic counterparts, resulting in a lack of knowledge on their vertical and lateral organisation. Thus, a preliminary detailed sedimentological study was undertaken in the upper Cretaceous limestones of Albania, which have been described as brecciated limestones and, more recently, as calciturbidites. The sedimentological study of three outcrops (Piluri, Vanister and Muzina) allows the definition of different lithologies grading from fine- to coarse-grained sequences representing the calciturbidites, intercalated with debris flow deposits and thick slumped levels. The thin-section examination of several facies defined in the field shows a dominance of mud-rich microfacies with variable granulometry, texture (mainly wackestone to packstone and floatstone), and the mixing of bioclastic and lithoclastic grains from both shallow-water (intertidal/infratidal) and deep-water settings (slope/basin). The microfacies description and fauna determination support the gravity origin of these calciclastic limestones. According to previous studies of the Ionian Basin and the surrounding platforms, the upper Cretaceous calciturbidite system could be reasonably linked to regional tectonic instabilities in relation to the beginning of the convergence between the Africa and Eurasian plates. The lateral and vertical organisation of these carbonate gravity deposits favours a depositional model over the apron model and that these deposits were fed by material derived from either the Apulian or the Kruja platform, through faulted shelf breaks.

Rubert, Yolaine; Jati, Mohamed; Loisy, Corinne; Cerepi, Adrian; Foto, Gjergji; Muska, Kristaq

2012-06-01

235

Geoarchaeology of Ancient Karnak's harbour (Upper Egypt) : preliminary results derived from sedimentological analyses  

NASA Astrophysics Data System (ADS)

This paper aims to detail the first results of a geomorphological study, led in the western part of the Karnak Temple, Upper Egypt. The geoarchaeological approach privileged here helps to better understand the Nile River dynamics in the neighbourhood of the ancient harbour and of the jetty identified by archaeologists. Based on the study of six stratigraphical profiles, realized by the Egyptian Supreme Council of Antiquities and sixteen manual auger boreholes (up to a maximum depth of 3.50m) drilled in November 2008, the results clearly indicate the continuous presence of Nile River westward of the first Pylon. The boreholes were drilled westward and eastward of the ancient fluvial harbour. Fluvial dynamics characterized by flood events, sandy accretions and large Nile silts depositions are presented and discussed here for later palaeoenvironmental reconstruction. The accurate levelling of the different profiles and boreholes, with the help a topographic survey, allow us to get long sedimentological sequences and to correlate the different sedimentary units. Perspectives of research are introduced with the possibility to realize sedimentological analyses which include the grain-size distribution (sieving method employed) and a magnetic susceptibility study of the different sediments described. Finally, in order to obtain chronostratigraphic sequences, it is also proposed to perform radiocarbon dating on charcoal samples.

Ghilardi, M.

2009-04-01

236

Integrated sequence stratigraphy of the postimpact sediments from the Eyreville core holes, Chesapeake Bay impact structure inner basin  

USGS Publications Warehouse

The Eyreville core holes provide the first continuously cored record of postimpact sequences from within the deepest part of the central Chesapeake Bay impact crater. We analyzed the upper Eocene to Pliocene postimpact sediments from the Eyreville A and C core holes for lithology (semiquantitative measurements of grain size and composition), sequence stratigraphy, and chronostratigraphy. Age is based primarily on Sr isotope stratigraphy supplemented by biostratigraphy (dinocysts, nannofossils, and planktonic foraminifers); age resolution is approximately ??0.5 Ma for early Miocene sequences and approximately ??1.0 Ma for younger and older sequences. Eocene-lower Miocene sequences are subtle, upper middle to lower upper Miocene sequences are more clearly distinguished, and upper Miocene- Pliocene sequences display a distinct facies pattern within sequences. We recognize two upper Eocene, two Oligocene, nine Miocene, three Pliocene, and one Pleistocene sequence and correlate them with those in New Jersey and Delaware. The upper Eocene through Pleistocene strata at Eyreville record changes from: (1) rapidly deposited, extremely fi ne-grained Eocene strata that probably represent two sequences deposited in a deep (>200 m) basin; to (2) highly dissected Oligocene (two very thin sequences) to lower Miocene (three thin sequences) with a long hiatus; to (3) a thick, rapidly deposited (43-73 m/Ma), very fi ne-grained, biosiliceous middle Miocene (16.5-14 Ma) section divided into three sequences (V5-V3) deposited in middle neritic paleoenvironments; to (4) a 4.5-Ma-long hiatus (12.8-8.3 Ma); to (5) sandy, shelly upper Miocene to Pliocene strata (8.3-2.0 Ma) divided into six sequences deposited in shelf and shoreface environments; and, last, to (6) a sandy middle Pleistocene paralic sequence (~400 ka). The Eyreville cores thus record the fi lling of a deep impact-generated basin where the timing of sequence boundaries is heavily infl uenced by eustasy. ?? 2009 The Geological Society of America.

Browning, J.V.; Miller, K.G.; McLaughlin, P.P., Jr.; Edwards, L.E.; Kulpecz, A.A.; Powars, D.S.; Wade, B.S.; Feigenson, M.D.; Wright, J.D.

2009-01-01

237

The Paleogene pre-rift to syn-rift succession in the Dhofar margin (northeastern Gulf of Aden): Stratigraphy and depositional environments  

NASA Astrophysics Data System (ADS)

The Paleogene deposits on the northern passive margin of the Gulf of Aden record the transition from the pre-rift to the syn-rift stages of the southern Arabian plate margin. In southern Oman (Dhofar Region), the relative continuity of the sedimentary record offers the possibility to investigate the early deformation phases of the Aden rift system. A new detailed sedimentological and biostratigraphic analysis of the Cuisian to Rupelian deposits of the Dhofar region allows to define a second-order transgressive-regressive cycle, that can be further subdivided into four third-order sequences between the Late Cuisian and the Early Rupelian time. The sequence stratigraphy established in this study has major implications for the understanding of the time equivalent deposits described in the eastern Arabian plate and illustrates the polyphased history of the initiation of the Aden Gulf rift system. The first two depositional sequences are controlled by a phase of deformation that only affects the eastern Oman margin, in relation with the tectonic activity at the Arabian-Indian plate boundary, during the Late Cuisian-Middle Lutetian. The last two depositional sequences record a westward migration of the deformation within the eastern realm of the proto-Gulf of Aden from the Bartonian. Priabonian uplift resulted in the basinward shift of the depositional system followed by a phase of tectonic subsidence that is recorded by the aggradation of lacustrine deposits in localized fault bounded basins. A subsequent major regional relative sea level fall related to domal uplift is recorded by terrigenous deposits (lower part of the Ashawq Formation) prior to the main phase of syn-rift tectonic subsidence (upper part of the Ashawq and Mughsayl formations) in Rupelian-Chattian times.

Robinet, J.; Razin, P.; Serra-Kiel, J.; Gallardo-Garcia, A.; Leroy, S.; Roger, J.; Grelaud, C.

2013-11-01

238

Late Quaternary Provenance and Flow Regime Reconstruction through Sedimentologic and Geochemical Evidence from the Bering/Chukchi Seas  

NASA Astrophysics Data System (ADS)

The last 20 kyr have been marked by great changes in the Arctic, as the Laurentide Ice Sheet melted and led to the submergence of the Bering Land Bridge and the re-opening of the Bering Strait (BS). The BS is a narrow connection (about 85 km wide) between the Arctic and Pacific Oceans averaging less than 50 m in depth, with present-day flow of seawater northward through the BS, from the Pacific to the Arctic. This flow is of vital importance to global ocean circulation through its role in formation and stability of North Atlantic Deep Water (NADW). An open BS is believed to speed dispersal of North Atlantic freshwater anomalies, both by keeping thermohaline circulation strong, and through reversals of flow through the BS when the North Atlantic is hosed with freshwater. When the BS is closed, these anomalies cannot efficiently dissipate and thermohaline circulation is weakened, which is considered a factor in climate perturbations outside of orbital forcing. Given the period of flux and transition in the Arctic following the Last Glacial Maximum (LGM), the paleoceanographic history of the Bering and Chukchi Seas post-LGM, is important to an understanding of Arctic Ocean circulation, and consequent climate impacts. Today the Arctic is in a period of rapid change, multi-year sea ice is disappearing, and the continuation of climatic stability of the Holocene appears to be at an end. Comprehension of the functioning of the Arctic as a dynamic system is essential to predict future response of the system to change, such as seawater salinity-density changes, lowered sea and land albedo, and rising temperatures. Changes in BS throughflow intensity and direction during deglaciation and submergence of the Bering Land Bridge are proposed and supported in modeling simulations, and are thought to occur during millennial-scale climate changes. We have conducted a coupled sedimentological and geochemical investigation of a suite of marine sediment cores from the Bering and Chukchi Seas. Elemental, isotopic, and grain size shifts correspond to changes in sediment routing, identifying changes in the magnitude and direction of throughflow in the BS. Major and trace element geochemistry spanning the past ~30 kyr was derived using an ITRAX XRF core scanner. Age control is well established by previous studies for a majority of the cores, primarily radiocarbon dates on diatoms. Elemental XRF data indicate significant change during the Bølling-Allerød warming around 15 kyr, and the opening of the BS at 11 kyr. During both of these periods there is a drop in Ti, Fe, K, and Ba with a corresponding rise in Cl, Ca, and Br. These data, in concert with the other sedimentologic data, infer shifts in paleo-flow conditions and sediment provenance during this time period. A key goal is the identification of how variations in geochemical properties correspond to bulk biogeochemical or biomarker variability, in comparison to sea ice proxies. The data being collected will add to a growing understanding of the Arctic as a dynamic system and answer questions concerning the post-glacial and Holocene evolution of changes that took place across the marine portion of the Bering Land Bridge.

Pelto, B. M.; Brigham-Grette, J.; Kocis, J. J.; Petsch, S.

2013-12-01

239

From Grains to Basin: An Example of a Project-Based Sedimentology Exercise  

NSDL National Science Digital Library

To prepare for this project, students have gained familiarity with thin-section preparation and the use of analytical equipment such as the XRD. The students have also learnt how to measure and interpret paleocurrent data. They have read background articles on the basin of study. In the field, students learn how to measure a stratigraphic section and the application of Walther's Law. The goal is to combine the skills acquired earlier in the class to interpret the stratigraphy, facies, depositional history and paleogeography of an outcrop in the field. This exercise also links sedimentation and tectonics.

Frederika Harmsen

240

Sedimentology, geochemistry and palaeogeographic implications of volcanic rocks in the Upper Archaean Campbell Group, western Kaapvaal craton, South Africa  

Microsoft Academic Search

Tuffs and lava interbedded in Campbell Group carbonates and shales are investigated for their sedimentological and geochemical properties. The most proximal tuffs occur at the southwestern margin of the Kaapvaal craton, in Griqualand West. They were deposited in a shallow-marine to tidal carbonate environment from hydroclastic eruptions. The tuffs along this margin are subdivided into two main facies types: (1)

Wladyslaw Altermann

1996-01-01

241

Stratigraphy and paleogeography of the Cretaceous in Arabian Peninsula  

SciTech Connect

The Cretaceous of the Arabian Peninsula is divided into three major units by regional unconformities: Lower Cretaceous Thamama Group (Berriasian-middle Aptian), middle Cretaceous Wasia Group (Albian-Turonian), and Upper Cretaceous Aruma Group (Coniacian-Maestrichtian). The profusion of named stratigraphic units in the area reflects not only the lithologic variation resulting from facies changes, but also terminologies adopted by different companies. The authors provide a stratigraphic nomenclature defining standard type sections and indicate synonymies, which follow the recommendation of 10th Geological Liaison Meeting and hence are acceptable to operators in the area. The sedimentologic history of the area was presented in a series of paleogeographic maps, which they relate to the regional tectonic framework. The maps show a predominantly carbonate shelf ramp bordering a land area to the north and west. The principal change in depositional environment occurs during the Upper Cretaceous, as a result of tectonic activity. Less significant changes are attributed to eustatic sea level fluctuations, on which tilting caused by tectonic movement may be superposed during the Lower and middle Cretaceous. The major producing horizons lie below the regional unconformities; secondary porosity in the shelf reefal buildups was developed during subaerial exposure in the Shuaiba Formation (early-middle Aptian), in the Mishrif Formation (late Cenomanian), and in the Simsima Formation (Maestrichtian).

Alsharhan, A.S.; Nairn, A.E.M.

1986-05-01

242

Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction  

NASA Astrophysics Data System (ADS)

A 40 cm deep Sphagnum-dominated peat monolith from Bolton Fell Moss in Northern England was systematically investigated by lipid molecular stratigraphy and compound-specific ? 13C and ?D analysis using gas chromatography (GC), GC-mass spectrometry (GC-MS), GC-combustion-isotope ratio-MS (GC-C-IRMS) and GC-thermal conversion-IRMS (GC-TC-IRMS) techniques. 210Pb dating showed the monolith accumulated during the last ca. 220 yr, a period encompassing the second part of Little Ice Age. While the distributions of lipids, including n-alkan-1-ols, n-alkan-2-ones, wax esters, sterols, n-alkanoic acids, ?,?-alkandioic acids and ?-hydroxy acids, display relatively minor changes with depth, the cooler climate event was recorded in the concentrations of n-alkanes and organic carbon, CPI values of n-alkanes and n-alkanoic acids, and the ratio of 5- n-alkylresorcinols/sterols. Superimposed on the fossil fuel effect, the relatively cooler climate event was also recorded by ? 13C values of individual hydrocarbons, especially the C 23n-alkane, a major compound in certain Sphagnum spp. The ?D values of the C 29 and C 33n-alkanes correlated mainly with plant composition and were relatively insensitive to climatic change. In contrast the C 23n-alkane displayed variation that correlated strongly with recorded temperature for the period represented by the monolith, agreeing with previously reported deuterium records in tree ring cellulose spanning the same period in Scotland, Germany and the USA, with more negative values occurring during the second part of Little Ice Age. These biomarker characteristics, including the compound-specific ? 13C and ?D records, provide a new set of proxies of climatic change, potentially independent of preserved macrofossils which will be of value in deeper sections of the bog where the documentary records of climate are unavailable and humification is well advanced.

Xie, Shucheng; Nott, Chris J.; Avsejs, Luke A.; Maddy, Darrel; Chambers, Frank M.; Evershed, Richard P.

2004-07-01

243

Sedimentological controls on gold in a late Pleistocene glacial placer deposit, Cariboo Mining District, British Columbia, Canada  

NASA Astrophysics Data System (ADS)

It is a widely perceived notion that glaciation results in dispersal of mineralized bedrock and that sedimentary concentrates of economic minerals (placers) rarely occur in glaciated basins. This paper describes economic gold placers within late Pleistocene glacial and related fluvial sediments of the Cariboo Mining District in central British Columbia, Canada. The area has been defined as a "giant" gold placer; total production since 1858 is over 93,000 kg. The oldest and volumetrically largest placers occur in fluvial gravels and valley-side fan deposits deposited during a long non-glacial interval from as early as 125,000 to 30,000years B.P. The richest placers are found along bedrock "gutters" in the deepest parts of valleys, indicating repeated fluvial reworking of the valley infills. Braided and "wandering gravel bed" fluvial facies can be identified. Glacial placers, that overlie the fluvial placers, occur within lodgement till complexes deposited below the late Wisconsin Cordilleran ice sheet after 30,000 years B.P. The basal portions of lodgement tills are commonly enriched in gold as a result of incorporation from older gravels. Subglacial meltwaters created a highly effective sluicing system and left lucrative pay zones along meltwater-cut channels on bedrock benches, within intraformational gravels in lodgement till and within "lee-side" deposits down-ice of bedrock highs. "Lee-side" deposits are essentially water-worked talus slopes that accumulated in subglacial cavities. Finally, postglacial "wandering gravel-bed rivers" have repeatedly reworked older placers resulting in rich pay zones at the base of extensive bar platform deposits. Similar sedimentological controls on gold distribution can be identified in other glacial placers of late Cenozoic and Paleozoic age in North America, southern Africa and Australia. A distinction is drawn between these placers, all characterized by coarse-grained, nuggety gold, and the more well-known Precambrian and Paleozoic placers where finely-comminuted gold is dispersed through large thicknesses of rock. Episodes of glaciation typically occur after long periods of tropical and subtropical weathering when supergene processes were active and glaciers were able to remove and concentrate coarse gold. In contrast, gold in non-glacial placers of Precambrian and Paleozoic age has been through many cycles of erosion and transport and coarse gold is uncommon.

Eyles, Nicholas; Kocsis, Stephen P.

1989-11-01

244

Morphological and sedimentological responses of streams to human impact in the southern Blue Ridge Mountains, USA  

NASA Astrophysics Data System (ADS)

Morphological and sedimentological responses of streams to basin-scale impact have been well documented for intensively agricultural or urban areas. Sensitivity thresholds of streams to modest levels of disturbance, however, are not well understood. This study addresses the influence of forest conversion on streams of the southern Blue Ridge Mountains, a region that has received little attention with respect to human impact on stream channels. Basins were chosen for this study to represent the end members of the range of human impact in the area, with the forest cover of the basin used as a proxy for level of impact (ranging from about 70-100% regionally). Two pairs of lightly impacted (> 90% forest) and moderately impacted (70-80% forest) sub-basins of the upper Little Tennessee River were identified for comparison. Reach characteristics (e.g., slope, drainage area, and riparian cover) were aligned in each pair to isolate contrasting forest cover as the primary driver of any detected differences in morphology and sedimentology. A suite of standard cross-sectional and longitudinal data was collected for each reach for characterization of the sedimentology and morphology of the streams. Difference of means tests were conducted to identify parameters significantly differing between the lightly and moderately impacted streams in both pairs. Consistent and significant differences within both pairs were demonstrated in bankfull width/depth ratios, baseflow wetted width, and particle size on the stream bed both in the thalweg and throughout the channel bed. The moderately impacted streams are narrower than the lightly impacted streams, and the bed texture of the moderately impacted streams is finer than that of the lightly impacted streams. The moderately impacted streams contain a higher percentage of < 2 mm particles in riffles, a metric which has been shown to be highly correlated with biotic integrity in the southern Appalachian Highlands. Although this study has shown that human impact in these basins has resulted in an overall fining of bed texture, few conclusions can be drawn regarding the morphological response of the streams to the levels of impact affecting the upper Little Tennessee River basin. Levels of disturbance in the southern Blue Ridge Mountains may be below the thresholds of morphological sensitivity or have not persisted for sufficient duration for morphological response to be evident. Additionally, morphological adjustment to disturbance may be more effectively addressed system-wide, as opposed to at the reach scale.

Price, Katie; Leigh, David S.

2006-08-01

245

Sedimentology 001 What is sedimentology?  

E-print Network

compares these observations to studies of ancient sedimentary rocks.[5] Sedimentologists apply their understanding of modern processes to historically formed sedimentary rocks, allowing them to understand how of sedimentary rock? There are four basic types of sedimentary rocks. 1) Clastic ­ consist of rock pieces

Frank, Tracy D.

246

Sedimentology and depositional environment of the Touchet Beds, Walla Walla River Basin, Washington  

SciTech Connect

The study provides more detailed information, quantitative as well as qualitative, on the sedimentary structure, grain size distribution, and mineralogy in the Touchet Beds. In addition, an attempt is made to reconstruct the environment of deposition based on the sedimentological data. The Touchet Beds are restricted to the slack-water environments of the Columbia Plateau where water accumulated in backflooded valleys associated with Pleistocene catastrophic flooding. Grain size analysis reveals Touchet Beds, also referred to as rhythmites, to be fine-skewed, leptokurtic, graded mixtures of silt and sand. Lower beds in Touchet Bed cyclic sequences often contain coarser flood gravel and sand. Sorting within rhythmites generally decreases upward with the grain size. Mineralogical analysis indicates that the foreign non-basalt fraction in Touchet Beds was transported from areas north and east of the Columbia Plateau, consistent with the inferred flood directions.

Bjornstad, B.N.

1980-06-01

247

Soil sedimentology at Gusev Crater from Columbia Memorial Station to Winter Haven  

USGS Publications Warehouse

A total of 3140 individual particles were examined in 31 soils along Spirit's traverse. Their size, shape, and texture were quantified and classified. They represent a unique record of 3 years of sedimentologic exploration from landing to sol 1085 covering the Plains Unit to Winter Haven where Spirit spent the Martian winter of 2006. Samples in the Plains Unit and Columbia Hills appear as reflecting contrasting textural domains. One is heterogeneous, with a continuum of angular-to-round particles of fine sand to pebble sizes that are generally dust covered and locally cemented in place. The second shows the effect of a dominant and ongoing dynamic aeolian process that redistributes a uniform population of medium-size sand. The texture of particles observed in the samples at Gusev Crater results from volcanic, aeolian, impact, and water-related processes. Copyright 2008 by the American Geophysical Union.

Cabrol, N.A.; Herkenhoff, K.E.; Greeley, R.; Grin, E.A.; Schroder, C.; d'Uston, C.; Weitz, C.; Yingst, R.A.; Cohen, B.A.; Moore, J.; Knudson, A.; Franklin, B.; Anderson, R.C.; Li, R.

2008-01-01

248

Sedimentological data indicate greater range of water depths for Costistricklandia lirata in the Southern Appalachians  

SciTech Connect

Two distinct horizons of the pentamerid brachiopod Costistricklandia lirata occur in the upper part of the Red Mountain Formation (Lower Silurian) in northern Alabama. Stratigraphic and sedimentologic characteristics of the rocks associated with the brachiopods suggest water depths of 15-150 m during times of low rates of terrigenous influx. Costistricklandid assemblages from the lower horizon are composed of extremely large individuals in association with a diverse population of large corals. They are interpreted to have lived in a protected environment. In an overlying horizon, costistricklandids occur in growth position at the base of a thick siliciclastic interval. These brachiopods lived in a storm-dominated environment and were buried in situ by the rapid influx of sediment associated with a passing storm.

Bolton, J.C. (Univ. of Tennessee, Knoxville (USA))

1990-08-01

249

A martian case study of segmenting images automatically for granulometry and sedimentology, Part 1: Algorithm  

NASA Astrophysics Data System (ADS)

In planetary exploration, delineating individual grains in images via segmentation is a key path to sedimentological comparisons with the extensive terrestrial literature. Samples that contain a substantial fine grain component, common at Meridiani and Gusev at Mars, would involve prohibitive effort if attempted manually. Unavailability of physical samples also precludes standard terrestrial methods such as sieving. Furthermore, planetary scientists have been thwarted by the dearth of segmentation algorithms customized for planetary applications, including Mars, and often rely on sub-optimal solutions adapted from medical software. We address this with an original algorithm optimized to segment whole images from the Microscopic Imager of the Mars Exploration Rovers. While our code operates with minimal human guidance, its default parameters can be modified easily for different geologic settings and imagers on Earth and other planets, such as the Curiosity Rover’s Mars Hand Lens Instrument. We assess the algorithm’s robustness in a companion work.

Karunatillake, Suniti; McLennan, Scott M.; Herkenhoff, Kenneth E.; Husch, Jonathan M.; Hardgrove, Craig; Skok, J. R.

2014-02-01

250

First ERTS-1 results in southeastern France: Geology, sedimentology, pollution at sea  

NASA Technical Reports Server (NTRS)

Results obtained by four ERTS projects in southeastern France are summarized. With regard to geology, ERTS photos of Western Alps are very useful for tectonic interpretation because large features are clearly visible on these photographs even though they are often hidden by small complicated structures if studied on large scale documents. The 18-day repetition coverage was not obtained, and time-varying sedimentological surveys were impossible. Nevertheless, it was possible to delineate the variations of the shorelines in the Rhone Delta for a period covering the least 8,000 years. Some instances of industries discharging pollutant products at sea were detected, as well as very large anomalies of unknown origin. Some examples of coherent optical processing have been made in order to bring out tectonic features in the Alps mountains.

Fontanel, A.; Guillemot, J.; Guy, M.

1973-01-01

251

The February 27, 2010 Chile Tsunami - Sedimentology of runup and backflow deposits at Isla Mocha  

NASA Astrophysics Data System (ADS)

On February 27, 2010, at 3:34 am local time, an earthquake with Mw 8.8 occurred off the town of Constitución in Central Chile and caused a major tsunami beween Valaparaiso (c. 33°S) and Tirua (c. 38°S). Maximum runup heights of up to 10 m were measured on coastal plains. The cliff coast at Tirua recorded a runup height between 30 m and 40 m. Considering past tsunami events, respective deposits may be the only observable evidence, even though their preservation potential is limited. To understand how tsunami deposits form and how they can be identified in the geological record, it is of paramount importance to undertake detailed studies in the wake of such events. Here we report initial field data of a sedimentological post-tsunami field survey undertaken in Central Chile between March 31 and April 18, 2010. At selected localities we measured detailed topographic profiles including runup heights and inundation distances, and recorded the thickness, distribution and sedimentological features of the respective tsunami deposits, as well as erosional features caused by the tsunami. We found the most instructive and complete sedimentological record of the February 27, 2010 tsunami at the northern tip of Isla Mocha, a small island off the Chilean coast at c. 28.15°S. Runup distances vary between 400 m and 600 m, the flow depth exceeded 3 m at ca. 100 m from the coast. Runup heights reached up to 21 m above sea level. In a rare sedimentological case, deposits of tsunami runup and backwash could be distinguished. The runup phase was mainly documented by fields of boulders extending c. 360 m inland. Boulders had maximum weights of 12 t. They were oriented with their long axis parallel to the coast and the wave front. Algal veneers and barnacles on the boulder faces give evidence of entrainment in intertidal water depths. The boulders are now embedded in mostly structureless coarse shelly sand. These sands were originally entrained during near shore supratidal erosion of coastal plain terraces by the tsunami and transported inland during runup. Flow structures indicate that the sands were then re-deposited during backwash. Downcurrent of terrace steps the tsunami backwash produced large erosional gullies. The backwash deposits occur either as widespread covers blanketing microtopography consisting of dark pre-tsunami soils, or as depositional fans which prograde seaward over soils free of a sediment cover. The coarse to very coarse shell debris is comprised of fragmented or entire mollusk and crab cascs. Some coarser deposits also contain significant amounts of Tertiary sandstone bedrock gravels in parts freshly eroded by the tsunami. The deposits are either massive or imbricated, the imbrication identifying them as a product of backflow currents. The deposit thickness is commonly c. 10 to 15 cm. Around large boulders backflow partitioning and associated erosion and deposition permitted the generation of 0.8 m deep scours and accumulation of up to 80 cm thick backflow sands. The depositional angles at the fan fronts vary between 27° and 36°. Backflow fan surfaces are characterized by channel and overbank regions and flow structures like current ripples. Clusters of bedrock pebbles and mollusk cascs are distributed irregularly over the fan surfaces.

Bahlburg, H.; Spiske, M.

2010-12-01

252

Sedimentological and geochemical characterization of the Cretaceous strata of Calabar Flank, southeastern Nigeria  

NASA Astrophysics Data System (ADS)

An integrated sedimentological and geochemical evaluation has been carried out on the Cretaceous sediments of the Calabar Flank. This study is to characterize the provenance, depositional environments and hydrocarbon potentials. The techniques involved field descriptions, textural parameters, petrographic analysis and biostratigraphic studies using standard sedimentological methods. The geochemical studies involved the determination of major oxides and trace elements using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS); Total Organic Carbon (TOC) and Rock Eval Pyrolysis. Results show that sandstone from Awi Formation have elongation ratio ranging from 0.4b to 0.9, oblate-prolate index and maximum sphericity index range from 9.6 to 9.7 and 0.5 to 0.9 respectively. The sandstone units are arkosic and mineralogically immature (MI = 3); ZTR indexes range from 54.6% to 82.5%, with tourmaline, zircon, staurolite, garnet, apatite, augite and rutile grains being angular-sub-angular. This suggests nearness to source, and that Awi Formation was deposited in a fluvial environment. The limestone deposit of Mfamosing Formation is predominantly bioclastic consisting of algal stromatolites, oolitic and pelloidal grainstones/packstones with high carbonate content. The dark grey fissile shales of Nkporo and Ekenkpon Formations indicate deposition in quiet oxic and/or anoxic conditions. Average TOC suggests good source rocks. Predominance of Type III kerogen, Tmax and hydrocarbon source potential of Mfamosing, Ekenkpon, New Netim Marl and Nkporo Formations suggest marginal mature to mature source rocks deposited in shallow continental to open marine setting that some gas may have been generated. The sediments are derived from passive continental margin in plutonic humid palaeoclimatic setting of continental block province.

Boboye, O. A.; Okon, E. E.

2014-11-01

253

Stratigraphy of the Jurassic system in northern Egypt  

SciTech Connect

A regional synthesis is presented of the stratigraphy of Jurassic strata in Egypt north of 30/degree/N, based on the study of about 80 wells and outcrops from northeastern Egypt. Almost all fossil groups have been investigated for biostratigraphic control. Published work on ammonite faunas from Gebel el Maghara (north Sinai) is integrated with extensive original work on palynofloras (and, to a lesser extent, ostracod/foraminiferal faunas) recovered from marine rocks in the subsurface. The recovery of rich dinocyst assemblages enables the recognition of a ten-fold zonation scheme, largely within the Middle-Late Jurassic sedimentary package. The upper limit of this package is marked by the Cimmerian erosional event; strata younger than Oxfordian are rarely preserved. Only east of 30/degree/E is significant sedimentation known to have occurred immediately prior to the major early Bajocian transgressive event. Thereafter mean sea level rose steadily. The Lower Triassic-Lower Jurassic sedimentary package is poorly understood, largely the result of scanty and ambiguous stratigraphic evidence. However, regional correlations suggest that only very thin earliest Jurassic (Hettangian ) clastic deposition succeeded a sequence of Upper Triassic carbonates and evaporites (Wadi en Natrun Formation) in the north. Arising from these studies is a standard lithostratigraphical scheme. The upper sedimentary package, the Gebel el Maghara Group, comprises three formations (Masajid, Khatatba, and Inmar) and seven members; new units are defined and old units redefined.

Keeley, M.L.; Shaw, D.; Forbes, G.A.

1988-08-01

254

SHARAD radar stratigraphy of the Martian North Pole  

NASA Astrophysics Data System (ADS)

SHARAD (SHAllow RADar) is a nadir looking synthetic aperture subsurface sounding radar and altimeter provided by the Italian Space Agency (ASI) to NASA's Mars Reconnaissance Orbiter (MRO). The primary objective of SHARAD is the investigation of the subsurface at shallow depth to detect geological signatures for water reservoirs. The Mars polar regions and their ice caps are among the highest priority targets for SHARAD. In its first several months of data acquisition, SHARAD made many successful observations of the Martian north pole, detecting the diverse stratification of the polar layer deposits (NPLD) down to hundreds of meters. Some spacecraft-rolled observations resulted in increased performance, allowing identification of even more complex stratigraphy in the NPLD and variable depth of the basal unit. One major north polar campaign of SHARAD observations targeted the Gemina Lingula region of Mars. In addition to establishing the context for these observations, this paper presents a detailed reconstruction of the subsurface layers as a function of location and geometrical setting based on several crossing groundtracks above Gemina Lingula. This allows a three dimensional view of the sequences revealed by the radar to be compared with surface information. Moreover, these orbit crossovers permit the systematic removal of clutter and noise, yielding more precise measurements of the subsurface layer depths.

Biccari, D.; Marinangeli, L.; Cutigni, M.; Giacomoni, E.; Fuga, O.; Russo, F.; Pettinelli, E.; Seu, R.; Putzig, N.; Holt, J.; Phillips, R.; Flamini, E.

2007-12-01

255

Subsurface sequence stratigraphy of Devonian carbonates, Canning basin, Western Australia  

SciTech Connect

The Canning basin of Western Australia is best known for its Devonian reef complexes. in 1990 the Australian Bureau of Mineral Resources (BMR) began a sequence stratigraphic study of key parts of the basin. This work integrates industry seismic and well data with two deep-crustal, regional seismic lines acquired by BMR in 1988. Initial work on the Lennard Shelf and adjacent Fitzroy trough has established a new sequence stratigraphy. At the margin of the Fitzroy trough, the most prominent features on seismic sections are alternating wedge-shaped and tabular bodies up to 150 m and 50 m thick, respectively. Internal reflections in the wedge-shaped bodies show downlap toward the basin and onlap toward the platform margin. On strike lines these wedges exhibit complex lensoidal geometries. Drillcore indicates that the wedges comprise basement-derived conglomerates with a sandy calcareous matrix. Seismic and well data suggest five Late Devonian sequences. The wedges and oblique prograding units are thickest and most easily recognized in the upper three sequences (Late Frasnian-Famennian ). The underlying thinner sequences probably correlate with the classic back-stepping Frasnian reefs identified in outcrop by Playford. Recognition of lowstand deposits in the Devonian reef complexes represent a new hydrocarbon exploration play.

Southgate, P.N.; Jackson, J.; Kennard, J.M.; O'Brien, P.E.; Passmore, V.L.; Lindsay, J.F. (Bureau of Mineral Resources, Canberra (Australia)); Holmes, A.E.; Christie-Blick, N. (Lamont-Doherty Geological Observatory, Palisades, NY (United States))

1991-03-01

256

Yucatán subsurface stratigraphy: Implications and constraints for the Chicxulub impact  

NASA Astrophysics Data System (ADS)

Much of the discussion about the effects of an end-of-Cretaceous impact by a large extraterrestrial body in northwestern Yucatán has been done in the context of limited and partly erroneous published data on the Mesozoic stratigraphy of that area. Reexamination of cores and geophysical logs taken in several Pemex wells has produced improved lithologic and biostratigraphic correlation of the Jurassic to Maastrichtian section across the northern Yucatán peninsula. These data suggest that major disturbance of strata by an impact would have been confined to within about 100 km of the proposed impact center near Chicxulub. The only unusual lithologic unit is polymict breccia, which apparently was penetrated at or near the top of the Cretaceous section in all the deep wells of northern Yucatán. This breccia in Pemex wells Yucatán 1, 2, 4, 5A, and 6 is composed predominantly of detrital dolomite, limestone, and anhydrite clasts set in dolomitized carbonate mud matrix, which contains upper Maastrichtian foraminifers. These constituents, mixed with fragments of altered glass or melt rock, shocked quartz and feldspar, and basement rock, suggest an impact as the most likely origin for the breccia. The timing of brecciation is poorly constrained by biostratigraphic data. There is some evidence, however, that the breccia unit is overlain by about 18 m of uppermost Maastrichtian marls, suggesting an impact before the Cretaceous-Tertiary boundary. In addition, there may have been more than one episode of breccia deposition.

Ward, W. C.; Keller, G.; Stinnesbeck, W.; Adatte, T.

1995-10-01

257

Acoustic stratigraphy of Bear Lake, Utah-Idaho: late Quaternary sedimentation patterns in a simple half-graben  

USGS Publications Warehouse

A 277-km network of high-resolution seismic-reflection profiles, supplemented with a sidescan-sonar mosaic of the lake floor, was collected in Bear Lake, Utah–Idaho, in order to explore the sedimentary framework of the lake's paleoclimate record. The acoustic stratigraphy is tied to a 120 m deep, continuously cored drill hole in the lake. Based on the age model for the drill core, the oldest continuously mapped acoustic reflector in the data set has an age of about 100 ka, although older sediments were locally imaged. The acoustic stratigraphy of the sediments below the lake indicates that the basin developed primarily as a simple half-graben, with a steep normal-fault margin on the east and a flexural margin on the west. As expected for a basin controlled by a listric master fault, seismic reflections steepen and diverge toward the fault, bounding eastward-thickening sediment wedges. Secondary normal faults west of the master fault were imaged beneath the lake and many of these faults show progressively increasing offset with depth and age. Several faults cut the youngest sediments in the lake as well as the modern lake floor. The relative simplicity of the sedimentary sequence is interrupted in the northwestern part of the basin by a unit that is interpreted as a large (4 × 10 km) paleodelta of the Bear River. The delta overlies a horizon with an age of about 97 ka, outcrops at the lake floor and is onlapped by much of the uppermost sequence of lake sediments. A feature interpreted as a wave-cut bench occurs in many places on the western side of the lake. The base of this bench occurs at a depth (22–24 m) similar to that (20–25 m) of the distal surface of the paleodelta. Pinch-outs of sedimentary units are common in relatively shallow water on the gentle western margin of the basin and little Holocene sediment has accumulated in water depths of less than 30 m. On the steep eastern margin of the basin, sediments commonly onlap the hanging wall of the East Bear Lake Fault. However, no major erosional or depositional features suggestive of shoreline processes were observed on acoustic profiles in water deeper than about 20–25 m.

Colman, Steven M.

2006-01-01

258

Lithofacies, depositional environments, and regional stratigraphy of the lower Eocene Ghazij Formation, Balochistan, Pakistan  

USGS Publications Warehouse

A regional stratigraphic investigation of one of the most important coal-bearing lithostratigraphic units in Pakistan, the report includes sedimentologic observations taken from outcrops and measured sections, information derived from petrographic and paleontologic analyses, depositional interpretations, and descriptions of regional trends.

Johnson, Edward A.; Warwick, P.D.; Roberts, S.B.; Khan, I.H.

1999-01-01

259

FROM LITTLE THINGS BIG THINGS GROW: RECONSTRUCTING PAST ENVIRONMENTS FROM QUATERNARY DESERT DUNE SEDIMENTS AND STRATIGRAPHY  

Microsoft Academic Search

This research contributes to an understanding of the history of aridity in Australia by investigating the geomorphology of the desert dunefields within the southern Lake Eyre Basin in South Australia. The interaction of dunes with other landforms such as floodplains, creeks and playas influences their sedimentary composition, stratigraphic evolution and morphology. This abstract contains some of the sedimentological and stratigraphic

Kathryn E. Fitzsimmons

260

Merguerian, Charles, 1984, Revised stratigraphy of the Manhattan Schist, New York City. Field and petrographic data indicate that the "type" Manhattan Schist of Manhattan Island  

E-print Network

Merguerian, Charles, 1984, Revised stratigraphy of the Manhattan Schist, New York City. Field of the stratigraphy is in progress. Merguerian, Charles, 1984, Revised stratigraphy of the Manhattan Schist, New York City (abs.): Empire State Geogram, v. 20, p. 28-29. Filename: CM1984.doc #12;

Merguerian, Charles

261

Sedimentological and Geophysical Signatures of a Relict Tidal Inlet along a Wave-Dominated Barrier, Assateague Island, Maryland, USA  

NASA Astrophysics Data System (ADS)

Assateague Island is a classic example of a retrograding barrier island, with its recent geological history punctuated by episodes of overwash and breaching. However, in addition to a number of historical inlets, parts of the island may owe their origin to relict (pre-historic) channels. The present study was conducted north of the Virginia-Maryland border, focusing on a narrow segment of the island fronting the Green Run Bay. The site lies north of the historical Green Run Inlet that was active until 1880, however, there is no geological evidence that it migrated southward from the Green Run Bay. More than 4 km of high-resolution ground-penetrating radar (GPR) images, complemented with sediment cores and multi-dating techniques, were used to reconstruct the geological legacy of this older barrier segment. Our findings suggest that a backbarrier paleo-channel still visible within the Green Run Bay corresponds to a large (>380 m wide, 3.0-3.5 m thick) channel cut-and-fill structure revealed in GPR images. The channel fill consists of tangential- to sigmoidal-oblique, southward-dipping reflections downlapping onto channel lag facies, which overlie subhorizontal bay-fill strata. Hummocky reflections in a shore-normal channel transect suggest partial preservation of inlet-related bedforms, believed to be associated with the channel closure. Radiocarbon samples of Mollusk shells from the bay fill yield radiocarbon ages of 4630-2400 cal BP (calibrated years before 1950). The paleo-channel facies overlying the bay deposits exhibits a fining-upward sequence, with a mean grain size range of 0.44-2.43 ?. The first set of optical dates indicates that the inlet fill is 660±70 cal BP (AD 1220-1360). The paleo-channel fill does not extend to the south and therefore is a separate relict feature that predates the historical Green Run Inlet. Based on geophysical and core data, the paleo-tidal prism of the relict channel is 17x106 m3. Following the closure of the inlet, a series of beach ridges have developed across the Green Run Bay segment and exhibit signatures of storm erosion in shore-normal GPR profiles. This punctuated barrier progradation took place during the historical period, with optical dates of beach ridge and dune generations ranging from AD 1680 to 1920. Our study demonstrates the need for integrating geomorphological, geophysical, sedimentological, and chronological databases to reconstruct the geological legacy of a relict inlet channel along a wave-dominated barrier coast.

Seminack, C. T.; Buynevich, I. V.; Grimes, Z. T.; Griffis, N.; Goble, R. J.

2010-12-01

262

Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean  

USGS Publications Warehouse

Sediment cores from the western Arctic Ocean obtained on the 2005 HOTRAX and some earlier expeditions have been analyzed to develop a stratigraphic correlation from the Alaskan Chukchi margin to the Northwind and Mendeleev-Alpha ridges. The correlation was primarily based on terrigenous sediment composition that is not affected by diagenetic processes as strongly as the biogenic component, and paleomagnetic inclination records. Chronostratigraphic control was provided by 14C dating and amino-acid racemization ages, as well as correlation to earlier established Arctic Ocean stratigraphies. Distribution of sedimentary units across the western Arctic indicates that sedimentation rates decrease from tens of centimeters per kyr on the Alaskan margin to a few centimeters on the southern ends of Northwind and Mendeleev ridges and just a few millimeters on the ridges in the interior of the Amerasia basin. This sedimentation pattern suggests that Late Quaternary sediment transport and deposition, except for turbidites at the basin bottom, were generally controlled by ice concentration (and thus melt-out rate) and transportation distance from sources, with local variances related to subsurface currents. In the long term, most sediment was probably delivered to the core sites by icebergs during glacial periods, with a significant contribution from sea ice. During glacial maxima very fine-grained sediment was deposited with sedimentation rates greatly reduced away from the margins to a hiatus of several kyr duration as shown for the Last Glacial Maximum. This sedimentary environment was possibly related to a very solid ice cover and reduced melt-out over a large part of the western Arctic Ocean.

Polyak, L.; Bischof, J.; Ortiz, J.D.; Darby, D.A.; Channell, J.E.T.; Xuan, C.; Kaufman, D.S.; Lovlie, R.; Schneider, D.A.; Eberl, D.D.; Adler, R.E.; Council, E.A.

2009-01-01

263

Characterising and modelling regolith stratigraphy using multiple geophysical techniques  

NASA Astrophysics Data System (ADS)

Regolith is the weathered, typically mineral-rich layer from fresh bedrock to land surface. It encompasses soil (A, E and B horizons) that has undergone pedogenesis. Below is the weathered C horizon that retains at least some of the original rocky fabric and structure. At the base of this is the lower regolith boundary of continuous hard bedrock (the R horizon). Regolith may be absent, e.g. at rocky outcrops, or may be many 10's of metres deep. Comparatively little is known about regolith, and critical questions remain regarding composition and characteristics - especially deeper where the challenge of collecting reliable data increases with depth. In Australia research is underway to characterise and map regolith using consistent methods at scales ranging from local (e.g. hillslope) to continental scales. These efforts are driven by many research needs, including Critical Zone modelling and simulation. Pilot research in South Australia using digitally-based environmental correlation techniques modelled the depth to bedrock to 9 m for an upland area of 128 000 ha. One finding was the inability to reliably model local scale depth variations over horizontal distances of 2 - 3 m and vertical distances of 1 - 2 m. The need to better characterise variations in regolith to strengthen models at these fine scales was discussed. Addressing this need, we describe high intensity, ground-based multi-sensor geophysical profiling of three hillslope transects in different regolith-landscape settings to characterise fine resolution (i.e. < 1 m) regolith stratigraphy. The geophysics included: ground penetrating radar collected at a number of frequencies; multiple frequency, multiple coil electromagnetic induction; and high resolution resistivity. These were accompanied by georeferenced, closely spaced deep cores to 9 m - or to core refusal. The intact cores were sub-sampled to standard depths and analysed for regolith properties to compile core datasets consisting of: water content; texture; electrical conductivity; and weathered state. After preprocessing (filtering, geo-registration, depth correction, etc.) each geophysical profile was evaluated by matching the core data. Applying traditional geophysical techniques, the best profiles were inverted using the core data creating two-dimensional (2-D) stratigraphic regolith models for each transect, and evaluated using independent validation. Next, in a test of an alternative method borrowed from digital soil mapping, the best preprocessed geophysical profiles were co-registered and stratigraphic models for each property created using multivariate environmental correlation. After independent validation, the qualities of the latest models were compared to the traditionally derived 2-D inverted models. Finally, the best overall stratigraphic models were used in conjunction with local environmental data (e.g. geology, geochemistry, terrain, soils) to create conceptual regolith hillslope models for each transect highlighting important features and processes, e.g. morphology, hydropedology and weathering characteristics. Results are presented with recommendations regarding the use of geophysics in modelling regolith stratigraphy at fine scales.

Thomas, M.; Cremasco, D.; Fotheringham, T.; Hatch, M. A.; Triantifillis, J.; Wilford, J.

2013-12-01

264

Bathymetry and seismic stratigraphy in St. Jonsfjorden, Spitsbergen  

NASA Astrophysics Data System (ADS)

St. Jonsfjorden is an approx. 21 km long and maximum ~5 km wide fjord on west Spitsbergen where modern sediment supply is glacifluvial and from tidewater glaciers. Its large-scale bathymetry is characterised by shoals and ridges as shallow as <30 m, as well as an outer and inner basin with up to 160 and 110 m water depths, respectively. Several large N-S oriented 'steps' of up to 50 m and slopes exceeding 30 degrees are most probably related to vertical movements along tectonic lineaments within the West Spitsbergen Fold-and-Thrust Belt. More detailed bathymetry reveals fjord-parallel linear features, most probably drumlinoid landforms providing evidence of fast ice flow through the fjord during the last glacial. Transverse, discontinuous, sinuous ridges are interpreted to be moraines deposited during temporal halts and/or re-advances of the ice front during the last deglaciation. A landform assemblage typical for most inner fjords on Svalbard has formed close to the fjord head. This includes large transverse ridges (terminal moraines) that were most probably deposited during relatively recent advances of one or several tidewater glaciers at the fjord head. Multiple sediment lobes, the largest being more than 4.5 km long and up to >20 m thick, were deposited beyond the outermost terminal moraine. Fjord parallel linear features overlain by multiple small transverse ridges characterise the seafloor between the innermost terminal moraine and the present glacier fronts. Whereas the linear features are interpreted to be glacial lineations providing evidence of one or several relatively rapid glacier advances, the small ridges are suggested to be 'annual retreat moraines' that were formed during halts and/or small re-advances during the retreat of the ice front(s) after its/their maximum extent(s). The heights of these ridges exceed rarely 2 meters and the distances between their crests indicate that the annual retreat rate of the ice front(s) was mainly in the order of 30-40 m. Apart from local variations, the general seismo-stratigraphy of the sub-seafloor in St. Jonsfjorden is similar to stratigraphies observed in other Spitsbergen fjords. It includes 1) a lowermost acoustically transparent to semi-transparent unit of glacigenic landforms and deposits above bedrock/acoustic basement, 2) acoustically stratified deposits reflecting frequently changing physical conditions in a glacier-proximal glacimarine environment during the last deglaciation, 3) an acoustically more transparent sequence with rare and discontinuous reflections that was deposited in a glacimarine environment with more stable physical conditions due to reduced glacial activity, and 4) an uppermost interval with strong and continuous reflections deposited during a time of increased glacial activity during the late Holocene. Crater-like features (pockmarks) of maximum 5 m depth and 110 m diameter occur. Whereas these features are almost absent in the inner fjord, they are relatively abundant close to the fjord mouth. This may reflect localised fluid flow along tectonic lineaments as observed in other Spitsbergen fjords.

Forwick, Matthias; Sverre Laberg, Jan; Husum, Katrine

2014-05-01

265

Depositional sequence analysis and sedimentologic modeling for improved prediction of Pennsylvanian reservoirs (Annex 1)  

SciTech Connect

Interdisciplinary studies of the Upper Pennsylvanian Lansing and Kansas City groups have been undertaken in order to improve the geologic characterization of petroleum reservoirs and to develop a quantitative understanding of the processes responsible for formation of associated depositional sequences. To this end, concepts and methods of sequence stratigraphy are being used to define and interpret the three-dimensional depositional framework of the Kansas City Group. The investigation includes characterization of reservoir rocks in oil fields in western Kansas, description of analog equivalents in near-surface and surface sites in southeastern Kansas, and construction of regional structural and stratigraphic framework to link the site specific studies. Geologic inverse and simulation models are being developed to integrate quantitative estimates of controls on sedimentation to produce reconstructions of reservoir-bearing strata in an attempt to enhance our ability to predict reservoir characteristics.

Watney, W.L.

1992-01-01

266

Bacterial community structure in aquifers corresponds to stratigraphy  

NASA Astrophysics Data System (ADS)

So far, groundwater microbiology with respect to different host rocks has not been well described in the literature. However, factors influencing the communities would be of interest to provide a tool for mapping groundwater paths. The Thuringian Basin (Germany) studied here, contains formations of the Permian (Zechstein) and also Triassic period of Buntsandstein, Muschelkalk and Keuper, all of which can be found to crop out at the surface in different regions. We analyzed the bacterial community of nine natural springs and sixteen groundwater wells of the respective rock formations as well as core material from the Zechstein salts. For that we sampled in a mine 3 differnet salt rock samples (carnallitite, halite and sylvinitite). To validate the different approaches, similar rock formations were compared and a consistent microbial community for Buntsandstein could be verified. Similary, for Zechstein, the presence of halophiles was seen with cultivation, isolation directly from the rock material and also in groundwater with DNA-dependent approaches. A higher overlap between sandstone- and limestone-derived communities was visible as if compared to the salt formations. Principal component analysis confirmed formation specific patterns for Muschelkalk, Buntsandstein and Zechstein for the bacterial taxa present, with some overlaps. Bacilli and Gammaproteobacteria were the major groups, with the genera Pseudomonas, Marinomonas, Bacillus, Marinobacter and Pseudoalteromonas representing the communities. The bacteria are well adapted to their respective environment with survival strategies including a wide range of salinity which makes them suitable as tracers for fluid movement below the ground. The results indicate the usefulness and robustness of the approach taken here to investigate aquifer community structures in dependence of the stratigraphy of the groundwater reservoir.

Beyer, Andrea; Möller, Silke; Neumann, Stefan; Burow, Katja; Gutmann, Falko; Lindner, Julia; Müsse, Steffen; Kothe, Erika; Büchel, Georg

2014-05-01

267

A laminated carbonate record of mid-continental climate during the late Glacial and Holocene from Martin Lake, northeastern Indiana: Initial sedimentological and chronological results  

NASA Astrophysics Data System (ADS)

Paleoclimate records from the mid-continental United States that span the late Glacial and Holocene with sub-decadal resolution are rare. This is especially true for geochemical records that capture the isotopic composition of precipitation or local precipitation/evaporation balances. As a result, many questions remain about the hydrologic expression of abrupt climate events in this region that today is one of the largest agricultural centers in the world. Here, we present preliminary limnological, sedimentological and chronologic data from a set of new sediment cores from Martin Lake in northeastern Indiana. Today, this kettle lake is hydrologically open with persistent water column stratification and bottom water anoxia. Imaging of the ~8 m composite sediment archive shows that mm-scale couplets composed of alternating layers of organic matter and carbonate minerals are present throughout the core. Ongoing radiometric dating of the cores will be used to determine the depositional significance of the couplets and their potential for additional chronologic constraint. Initial basal age estimates, however, suggest that the composite record may extend back as far as 19,000 cal yr B.P. The Martin Lake record therefore holds great potential for providing a carbonate d18O record of late Glacial and Holocene climate events at sub-decadal resolution.

Stamps, L. G.; Bird, B. W.; Gilhooly, W.

2011-12-01

268

A laminated carbonate record of mid-continental climate during the late Glacial and Holocene from Martin Lake, northeastern Indiana: Initial sedimentological and chronological results  

NASA Astrophysics Data System (ADS)

Paleoclimate records from the mid-continental United States that span the late Glacial and Holocene with sub-decadal resolution are rare. This is especially true for geochemical records that capture the isotopic composition of precipitation or local precipitation/evaporation balances. As a result, many questions remain about the hydrologic expression of abrupt climate events in this region that today is one of the largest agricultural centers in the world. Here, we present preliminary limnological, sedimentological and chronologic data from a set of new sediment cores from Martin Lake in northeastern Indiana. Today, this kettle lake is hydrologically open with persistent water column stratification and bottom water anoxia. Imaging of the ~8 m composite sediment archive shows that mm-scale couplets composed of alternating layers of organic matter and carbonate minerals are present throughout the core. Ongoing radiometric dating of the cores will be used to determine the depositional significance of the couplets and their potential for additional chronologic constraint. Initial basal age estimates, however, suggest that the composite record may extend back as far as 19,000 cal yr B.P. The Martin Lake record therefore holds great potential for providing a carbonate d18O record of late Glacial and Holocene climate events at sub-decadal resolution.

Stamps, L. G.; Bird, B. W.; Gilhooly, W.

2013-12-01

269

High-resolution palaeoecological and sedimentological records as a tool for understanding pre- and protohistoric settlement and land-use systems in Sandy Flanders (NW Belgium)  

NASA Astrophysics Data System (ADS)

The area of Sandy Flanders, situated between the North Sea coast and the lower course of the Scheldt River in NW Belgium, is a relatively flat and low-lying area situated at the southern limit of the lowland cover sand region of the NW European plain. During the Late Pleniglacial and the Late Glacial, numerous, generally small but elongated sand dunes, shallow lakes and wet depressions were formed. During the last three decades intense archaeological prospection has taken place in this region, which is now one of the most intensively surveyed areas of NW Europe. This has led to the production of archaeological distribution maps, which show a distinct pattern regarding the temporal and spatial distribution of these archaeological sites. Some areas with a presumed high ecological value, such as the large but shallow Late Glacial fossil lake of the Moevaart Depressie (ca. 15km long and 2,5km wide), seem to have been attractive settlement locations in Prehistory, given the high amount of close-lying sites along its borders and on the cover sand ridge on its northern border. Habitation however seems to have ‘moved' in time, and is completely absent in Protohistory and even the Roman Period. During the Late Glacial and Holocene the landscape in the Belgian area of Sandy Flanders was subjected to major changes due to climatic fluctuations, and besides human factors, environmental conditions such as topography, soil, vegetation, but also hydrology and climate, may have influenced settlement conditions throughout time and played a role in this change in site location and the occupational history of the region. In this light an inter-disciplinary project 'Prehistoric settlement and land-use systems in Sandy Flanders (NW Belgium): a diachronic and geoarchaeological approach' (GOA project, UGent), involving archaeology, geography, palaeoecology, sedimentology and geophysical survey, has been undertaken. The study of both "empty" and densely inhabited areas is ongoing and aims at analyzing the settlement dynamics of the area of Sandy Flanders in terms of environmental potentials (theory of "wandering farmsteads") and the human impact ("enculturation") on the landscape. Likewise, we seek to investigate the reasons why other areas, which were inhabited in previous periods (e.g. the Moervaart area) were apparently not attractive anymore from the Metal Ages onwards. Indeed, to determine the suitability of a certain land type for a certain activity, it is necessary to understand the different types of land use (hunting-gathering, farming, …), the soil characteristics and the environment at different time intervals. During a large field campaign, a 70m long trench was dug through the deepest part of the former Moervaart lake, revealing alternating layers of (organic) lake marl and peat(y clay) indicating warmer/colder and drier/wetter phases. In addition, 15 mechanical corings have been made at four different locations within the depression, in large palaeochannels that cross the palaeolake, and on its borders. Both trench and corings were extensively sampled for palaeoenvironmental and sedimentological analyses and for OSL and 14C-dating. We present here the first results of the palaeoecological (mainly palynology, but also plant macroremains, charcoal, diatoms, ostracods, mollusks, beetles and Chironomideae) and sedimentological (water content, LOI, magnetic susceptibility, gamma-density) approaches, which provide new insights in the palaeolandscape evolution of this area during the Late Glacial and the early Holocene, in order to evaluate in detail how and to which degree this evolution determined the pre- and protohistoric occupation and exploitation within Sandy Flanders. Furthermore, significant emphasis is placed on the impact of prehistoric populations on both regional and local landscapes.

Court-Picon, Mona; Polfliet, Tim; Serbruyns, Lynn; de Smedt, Phillippe; Zwertvaegher, Ann; Bats, Machteld; de Reu, Jeroen; Werbrouck, Ilke; Verniers, Jacques; Crombe, Philippe

2010-05-01

270

Little ice age as recorded in the stratigraphy of the tropical quelccaya ice cap  

Microsoft Academic Search

The analyses of two ice cores from a southern tropical ice cap provide a record of climatic conditions over 1000 years for a region where other proxy records are nearly absent. Annual variations in visible dust layers, oxygen isotopes, microparticle concentrations, conductivity, and identification of the historical (A.D. 1600) Huaynaputina ash permit accurate dating and time-scale verification. The fact that

L. G. Thompson; E. Mosley-Thompson; P. M. Grootes

1986-01-01

271

The Little Ice Age as Recorded in the Stratigraphy of the Tropical Quelccaya Ice Cap  

Microsoft Academic Search

The analyses of two ice cores from a southern tropical ice cap provide a record of climatic conditions over 1000 years for a region where other proxy records are nearly absent. Annual variations in visible dust layers, oxygen isotopes, microparticle concentrations, conductivity, and identification of the historical (A.D. 1600) Huaynaputina ash permit accurate dating and time-scale verification. The fact that

L. G. Thompson; E. Mosley-Thompson; W. Dansgaard; P. M. Grootes

1986-01-01

272

To determine the geomagnetic polarity stratigraphy and the duration and age of  

E-print Network

, and it can be used as an important tool for interpreting rates of biotic recovery after the K-T extinction the Cretaceous-Tertiary (K-T) boundary extinctions (e.g., Belt et al., 1984; Hicks et al., 2003; Hunter and- mating speciation rates and changes in biodi- versity of plants and mammals following the K-T extinctions

273

Stratigraphy, Structure, and Ore Deposits of the Southern Limb of the Midcontinent Rift System  

NSDL National Science Digital Library

This site features an overview of the Midcontinent Rift system of North America, an area that extends for more than 2000 km northeasterly from Kansas, through the Lake Superior region, and then southeasterly through lower Michigan. This summary of the stratigraphy, structure, and mineralization of rift rocks provides an overview of the geologic history in northern Wisconsin and upper Michigan. Separate sections describe the tectonic history and structural features of the area, the stratigraphy of volcanic and sedimentary deposits, and the mineralization that produced rich copper and silver deposits. Information is supported by numerous citations while maps and diagrams help illustrate the concepts.

T. Bornhorst

274

Reconstruction of Holocene coastal depositional environments based on sedimentological and palaeontological analyses, Zakynthos Island, Western Greece Mediterranean Sea  

NASA Astrophysics Data System (ADS)

Zakynthos Island is one of the most seismically active regions in Europe and the Holocene coastal depositional environments were influenced both by tectonic activity and sea level rise. In the present study detailed sedimentological, palaeontological and 14C dating analyses were used in order to reconstruct the Holocene coastal depositional environments as well as the different rates of sedimentation, based on data from three cores up to 30 m deep. The results of the analyses indicate changes in depositional environments from marine to brackish lagoonal and lagoon / barrier systems with temporary intrusions of marine water via storms or tsunamigenic events. High sedimentation rates in coastal areas of Zakynthos Island correspond well to the most widespread Holocene warm and humid phases. The interpretation of the sedimentological environments reveals that Zakynthos Island before 8300 BP was constituted by two islands, where the present southern part of the island was separated from the northern one by a shallow and narrow sea channel.

Avramidis, Pavlos; Iliopoulos, George; Papadopoulou, Penelope; Nikolaou, Konstantinos; Kontopoulos, Nikolaos; Wijngaarden, Gert

2014-05-01

275

Sedimentology, Petrography and Microfacies of the Paleogene Carbonate Sequence - Yaxcopoil-1 Borehole (Chicxulub, Yucatan)  

NASA Astrophysics Data System (ADS)

Chicxulub crater is one the three largest known impact craters on Earth, formed 66 Ma-old, with multi-ring basin morphology. Crater is located in northwestern Yucatan, southern Gulf of Mexico, with rim diameter of 200 km and crater center at Chicxulub Perto in the coastline. It is buried beneath the carbonate and evaporitic Cenozoic sequence. Study of the structure requires geophysics and drilling, with several boreholes drilled in the peninsula. The Yaxcopoil-1 borehole was drilled south of Merida, about 62 km from center, as part of the Chicxulub Scientific Drilling Program. One of the main objectives was to determine the role of the Chicxulub impact event in the K/Pg mass extinction and boundary events. We present a sedimentological and petrological study of the carbonate sequence in the interval from 404 m to 792 m overlying the K/Pg boundary. The well reached a depth of 1510.6 m. In this interval, we identified twelve units marked by different lithological and sedimentological changes, and supplemented by thin section analysis. Facies are composed mainly of marls, argillaceous, limestones, dolomitized limestones, calcareous breccias and calcarenites with shales thin beds. From the microfacies study we observed several major changes in the microfacies. From bottom of the sequence several textural changes cyclic from mudstone to bioclastic planktic foraminiferal wackestone, bioclastic packstone and some bioclastic grainstone. Two textures dominated in the calcareous sequence: bioclastic wackestone and packstone microfacies. From the microfacies study, we derived inferences on stable environmental conditions. We observed benthic and planktic foraminiferal layers. The benthic foraminifera strongly depend on environmental parameters, such as nutrient supply or oxygenation of the sea bottom water in the Paleocene and Eocene. Changes suggest occurrence of a progradational event, with a relative increase in sea level very slowly, with the sediment enough to overcome the elevation. In the last meters of Unit 2 (778-772 m), a series of thin layers of marl and calcareous shale interbedded with wackestone are interpreted as a transgressive event. In the first few meters of Unit 3 provides greater energy currents causing variations in the grain size. Petrographic observations show that planktonic and benthic facies are arranged as intermittent flows in parts of the unit, which points to flow currents. Predominance of coarse-grained facies rich in carbonates possibly indicates a prograding event into deep areas. In the sequence several possible changes in sea level are recorded, especially from Unit 5 to 8 Unit, where a possible limit between the Paleocene and Eocene is located between Unit 6 and Unit 7, at about 660 m. Biostratigraphy was obtained by zones corresponding to P4 and P5. In Unit 8 contains the first record of turbidite or storm deposits outer shelf environments that could be related to platform progradation. The Paleocene-Eocene thermal maximum represents a period of global warming and sea level rise. The sedimentological and micropaleontological changes may be correlated with the faunal turnover in the Gulf of Mexico, providing a complementary tool for biostratigraphic inferences.

Escobar-Sanchez, E.; Fucugauchi, J. U.

2013-05-01

276

Holocene erosion, sedimentation, and stratigraphy at Raven Fork, Southern Blue Ridge Mountains, USA  

NASA Astrophysics Data System (ADS)

Holocene colluvial and alluvial stratigraphy and a radiocarbon chronology are presented for the valley of the lower three kilometers of Raven Fork, a mountain stream draining 194 km 2 of high relief (1.3 km) terrain of the Southern Blue Ridge Mountains in western North Carolina, USA, which is in a region that lacks good chronological data. Lower hillslopes, alluvial/colluvial fans, alluvial bottomlands (first terrace and floodplain), and the modern stream channel are landforms described with respect to soils, stratigraphy, and sedimentary structures. Standard methods for subsurface investigations (core holes, excavation units, exposures) are used in conjunction with extensive archeological excavations and cultural chronologies. Radiocarbon ages from each landform are used to calculate long-term-average rates of sedimentation. Results indicate that the first half of the Holocene experienced somewhat more rapid rates of hillslope sedimentation (0.3 to 1.1 mm/yr) than the last half of the Holocene (0.1-0.2 mm/yr) on footslopes, toeslopes, and alluvial/colluvial fans prior to historic time. We suggest that these subtle differences in the rates of sedimentation were driven by changes in global paleoclimate that favored a high frequency of heavy rainfall, including tropical storms and/or severe thunderstorms and more (and possibly larger) floods during the first half of the Holocene. Prehistoric rates of vertical accretion on the first terrace (T1) ranged from 0.1 to 0.8 mm/yr between about 10,000 and 3000 calendar years ago, and incision below T1 formed the late Holocene floodplain beginning at about 6000 years ago. We suggest that this incision is linked to a reduction in the supply of sediment and a reduction in the magnitude of floods. Historical rates of sedimentation on all parts of the depositional landscape (2.0-2.7 mm/yr on hillslopes and fans and 5.8-6.5 mm/yr on floodplains) were about an order of magnitude greater than prehistoric rates. We attribute these rates to human impacts, such as timber harvest and land clearing, which caused accelerated erosion. We attribute the abundance of fine-grained sediment in streams of the Southern Blue Ridge province, which is atypical in many mountain streams around the world, to the regionally widespread mantle of saprolite as a source of sediment to the fluvial system. Holocene sedimentation on all depositional landforms in the valley led to sedimentary burial of archeological materials, which highlights the need to consider site burial on lower hillslopes and terraces for evaluation of the cultural resources in the Southern Blue Ridge Mountains. These findings show that the entrenched condition of the Raven Fork channel was inherited from the middle Holocene and can be considered a "natural" state for this mountain stream, casting doubt on the negative connotation that is often assigned to entrenched channels.

Leigh, David S.; Webb, Paul A.

2006-08-01

277

Well-log seismic sequence stratigraphy of Aruba and its application to the hydrocarbon exploration in the Caribbean Area  

SciTech Connect

Several wells have recently been drilled in offshore Aruba approximately 12 degrees NOrth Latitude and 70 degrees West Longitude, just north of the Westernpart of Venezuela, South Central Caribbean. One of the wells, the Oxy Chuchubi No. 1 well penetrated a largely carbonate section that ranged in age from early Pliocene to early Oligocene to late Eocene at its total depth of 9,210 feet. High resolution biostratigraphy of benthic and planktonic foraminifers and calcareous nannofossils provided the abundance and diversity histograms necessary to recognized a series of maximum flooding surface condensed sections (MSF). Fourteen maximum flooding surfaces within the MFS condensed sections were identified on the well log and dated using the planktonic foraminifers and calcareous nannofossils. These maximum flooding surfaces range in age from 4.0 Ma or possibly 36.5 Ma. The paleobathymetry varies from middle to outer neritic in the upper portion of the well to lower bathyal to abyssal in the lower portion of the well. Fourteen third order sequences and their systems tracts were identified and annotated on a well log. These sequences were correlated with the Global Cycle Chart of Hag, 1987. The sequence stratigraphy provides a means of chronostratigraphic correlation to Venezuela and provides a direct tie to the geological history and hydrocarbon potential of the area.

Wornardt, W.W. (Micro-Strat Inc., Houston, TX (United States)); Vail, P.R. (Rice Univ., Houston, TX (United States))

1993-02-01

278

Great Salt Lake, and precursors, Utah: The last 30,000 years  

Microsoft Academic Search

Sediment cores up to 6.5 m in length from the South Arm of Great Salt Lake, Utah, have been correlated. Radiocarbon ages and volcanic tephra layers indicate a record of greater than 30,000 years. A variety of approaches have been employed to collect data used in stratigraphic correlation and lake elevation interpretation; these include acoustic stratigraphy, sedimentologic analyses, mineralogy, geochemistry

Ronald J. Spencer; M. J. Baedecker; H. P. Eugster; R. M. Forester; M. B. Goldhaber; B. F. Jones; K. Kelts; J. McKenzie; D. B. Madsen; S. L. Rettig; M. Rubin; C. J. Bowser

1984-01-01

279

A re-analysis of the Late Bronze Age eruption and tsunami of Santorini, Greece, and the implications for the volcano–tsunami hazard  

Microsoft Academic Search

The paroxysmal eruption of Santorini (ca. 3500 BP), referred to as the Late Bronze Age (LBA) eruption, probably generated multiple tsunami; their occurrence and impacts being cited frequently in scientific papers and articles. This paper examines what is known about any LBA tsunami, noting possible mechanisms of generation and identifying sedimentological traces. Firstly, the eruption sequence is outlined providing the

Dale Dominey-Howes

2004-01-01

280

Stratigraphy of a proposed wind farm site southeast of Block Island: Utilization of borehole samples, downhole logging, and seismic profiles  

NASA Astrophysics Data System (ADS)

Seismic stratigraphy, sedimentology, lithostratigraphy, downhole geophysical logging, mineralogy, and palynology were used to study and interpret the upper 70 meters of the inner continental shelf sediments within a proposed wind farm site located approximately two to three nautical miles to the southeast of Block Island, Rhode Island. Core samples and downhole logging collected from borings drilled for geotechnical purposes at proposed wind turbine sites along with seismic surveys in the surrounding area provide the data for this study. Cretaceous coastal plain sediments that consist of non-marine to marine sand, silt, and clay are found overlying bedrock at a contact depth beyond the sampling depth of this study. The upper Cretaceous sediments sampled in borings are correlated with the Magothy/Matawan formations described regionally from New Jersey to Nantucket. An unconformity formed through sub-aerial, fluvial, marine, and glacial erosion marks the upper strata of the Cretaceous sediments separating them from the overlying deposits. The majority of Quaternary deposits overlying the unconformity represent the advance, pulsing, and retreat of the Laurentide ice sheet that reached its southern terminus in the area of Block Island approximately 25,000 to 21,000 years before present. The sequence consists of a basal glacial till overlain by sediments deposited by meltwater environments ranging from deltaic to proglacial lakefloor. A late Pleistocene to early Holocene unconformity marks the top of the glacial sequence and was formed after glacial retreat through fluvial and subaerial erosion/deposition. Overlying the glacial sequence are sediments deposited during the late Pleistocene and Holocene consisting of interbedded gravel, sand, silt, and clay. Sampling of these sediments was limited and surficial reflectors in seismic profiles were masked due to a hard bottom return. However, two depositional periods are interpreted as representing fluvial and estuarine/marine environments respectively. One sample recovered at five meters contained shell fragments within a gray fine to coarse sand possibly representing a shallow estuarine to marine environment. A coarse near surface deposit described but not recovered in all borings may represent a transgressive unconformity and resulting lag deposit however due to lack of sampling and seismic resolution in the upper 5 meters, the nature of this deposit is merely speculation. In areas where depth to the glacial surface increased, sediments ranging from sand to fine-grained silt and clay were encountered in borings. In summary, the upper 70 meters of the inner continental shelf section within the study site consists of unconsolidated sediments spanning three major depositional periods. Sediments derived from glacial activity represent the bulk of samples collected. The glacial sequences represent various depositional environments, although most samples are interpreted to be the product of glacial meltwater deposition with distribution determined by source as well as highs and lows present in the antecedent topography. Finely laminated (varved) sediment to the south of Block Island indicates the presence of proglacial lakes in the area during the time of glacial retreat. Overlying sediments represent environments ranging from fluvial to marine.

Sheldon, Dane P. H.

281

After a century-Revised Paleogene coal stratigraphy, correlation, and deposition, Powder River Basin, Wyoming and Montana  

USGS Publications Warehouse

The stratigraphy, correlation, mapping, and depositional history of coal-bearing strata in the Paleogene Fort Union and Wasatch Formations in the Powder River Basin were mainly based on measurement and description of outcrops during the early 20th century. Subsequently, the quality and quantity of data improved with (1) exploration and development of oil, gas, and coal during the middle 20th century and (2) the onset of coalbed methane (CBM) development during the late 20th and early 21st centuries that resulted in the drilling of more than 26,000 closely spaced wells with accompanying geophysical logs. The closeness of the data control points, which average 0.5 mi (805 m) apart, made for better accuracy in the subsurface delineation and correlation of coal beds that greatly facilitated the construction of regional stratigraphic cross sections and the assessment of resources. The drillhole data show that coal beds previously mapped as merged coal zones, such as the Wyodak coal zone in the Wyoming part of the Powder River Basin, gradually thinned into several discontinuous beds and sequentially split into as many as 7 hierarchical orders westward and northward. The thinning and splitting of coal beds in these directions were accompanied by as much as a ten-fold increase in the thicknesses of sandstone-dominated intervals within the Wyodak coal zone. This probably resulted from thrust loading by the eastern front of the Bighorn uplift accompanied by vertical displacement along lineaments that caused subsidence of the western axial part of the Powder River Basin during Laramide deformation in Late Cretaceous and early Tertiary time. Accommodation space was thereby created for synsedimentary alluvial infilling that controlled thickening, thinning, splitting, pinching out, and areal distribution of coal beds. Equally important was differential subsidence between this main accommodation space and adjoining areas, which influenced the overlapping, for example, of the Dietz coal zone in Montana, over the Wyodak coal zone in Wyoming. Correlation in a circular track of the Wyodak coal zone in the southern part of the basin also demonstrates overlapping with lower coal zones. Recognition of this stratigraphic relationship has led to revision of the correlations and nomenclature of coal beds because of inconsistency within these zones as well as those below and above them, which have long been subjects of controversy. Also, it significantly changes the traditional coal bed-to-bed correlations, and estimates of coal and coalbed methane resources of these coal zones due to thinning and pinching out of beds. More notably, thickness isopach, orientation, and distribution of the merged Wyodak coal bodies in the south-southeast part of the basin suggest that differential movement of lineament zones active during the Cretaceous was not a major influence on coal accumulation during the Paleocene. Improved knowledge of alluvial depositional environments as influenced by external and internal paleotectonic conditions within the Powder River Basin permits more accurate correlation, mapping, and resource estimation of the Fort Union and Wasatch coal beds. The result is a better understanding of the sedimentology of the basin infill deposits in relation to peat bog accumulation.

Flores, Romeo M.; Spear, Brianne D.; Kinney, Scott A.; Purchase, Peter A.; Gallagher, Craig M.

2010-01-01

282

Magma chamber dynamics constrained by crystal isotope stratigraphy  

NASA Astrophysics Data System (ADS)

The architecture of subvolcanic magma plumbing systems controls the thermal regime transited by magmas in the lithosphere, and consequently influences the rates and processes by which magmas evolve. The resolution of current geophysical methods is unable to accurately define the shapes, sizes and crystallinity of small magma bodies. Exhumed fossil magma chambers may provide terminal or cumulative plumbing system assemblies but cannot provide snapshots of the system at a given time, and fail to identify ephemeral components such as dikes, which may open and close to transport magma. Petrographically-constrained in situ analysis of the components of volcanic rocks, including crystal isotope stratigraphy, has recently proved an important new approach to constraining the dynamics of magma storage systems. Core-to-rim decreases in 87Sr/86Sr accompanied by increases in Sr concentration for single plagioclase crystals seen at volcanoes such as El Chichon, Mexico, are explained by frequent recharge of a storage reservoir(s). The fact that high 87Sr/86Sr values are restricted to cores suggests that contamination occurs at the initial stages of injection and contact between magma and the crust. This in turn suggests that crystallization occurs at the margins of the magma body where the thermal gradient is strongest, volatiles are concentrated and epitaxial crystallization is promoted. The crystallized boundary zone then isolates the magma and prevents subsequent recharge magma from interacting directly with the crust. In cases such as Ngauruhoe volcano, New Zealand, 87Sr/86Sr increases from core-to-rim of plagioclase crystals suggest that the magma was not completely isolated from a crustal contaminant. In either case, changes in Sr isotope ratio are correlated with punctuated textural evidence for disequilibrium events, underscoring the importance of recharge. Recharge disaggregates and remobilizes much of the material crystallized from earlier events. Petrographic and geochemical observations from many volcanic systems suggest that the crystalline components are mechanical aggregates of crystals grown in different places and times in the magma storage and delivery system. Indeed the occurrence of true phenocrysts in volcanic rocks is arguably rare. Repeated remobilization of crystalline material by recharge magma indicates that the solids exist in a sufficiently weak state (as a crystal mush or framework) such that an injection of magma can cause disaggregation. This in turn limits the cooling time available for solidification between recharge episodes. The potential now exists for diffusional treatment of trace element and isotopic profiles from mineral phases to constrain effective residence times, and thereby determine crystallization and differentiation rates.

Davidson, J. P.; Tepley, F. J., III; Hora, J. M.

2003-04-01

283

Variation in sedimentology and architecture of Eocene alluvial strata, Wind River and Washakie basins, Wyoming  

SciTech Connect

Eocene continental, alluvial strata of the Wind River Formation (Wind River Basin) and the Cathedral Bluffs Member of the Wasatch Formation (Washakie basin) provide two examples of Laramide intermontane basin aggradation. These alluvial sediments primarily represent overbank flood deposits marginal to channel complexes. Their sedimentology and architecture, although grossly similar, appear to vary somewhat with proximity to Laramide uplifts. In both cases, repetitive sedimentation on the floodplain produced a succession of depositional couplets, each composed of a light-gray sand overlain by a red clay-rich silt or sand. The lower sands are tabular bodies that, near their distal margins, taper discernibly. They commonly display planar and ripple-drift laminations. Upper clay-rich layers, which are laminated, are also generally tabular. Those floodplain strata depositional proximal to Laramide uplifts show little evidence of scouring prior to deposition of the next, overlying couplet. Most of these sedimentary layers, therefore, are laterally continuous (up to 2 km). This alluvial architecture results in relatively uniform porosity laterally within depositional units but variable porosity stratigraphically through the sequence. In contrast, alluvial sediments deposited farther from the Laramide uplifts have undergone sporadic incision (either during rising flood stage or subsequently) followed by aggradation. As a result, many of these floodplain couplets are discontinuous laterally and, hence, exhibit large-scale lateral variability in porosity. Both alluvial sequences have undergone similar types and extents of burial diagenesis.

Patterson, P.E.; Larson, E.E. (Univ. of Colorado, Boulder (United States))

1991-03-01

284

High-resolution sedimentological and subsidence analysis of the Late Neogene, Pannonian Basin, Hungary  

USGS Publications Warehouse

Detailed sedimentological and paleontological analyses were carried out on more than 13,000 m of core from ten boreholes in the Late Neogene sediments of the Pannonian Basin, Hungary. These data provide the basis for determining the character of high-order depositional cycles and their stacking patterns. In the Late Neogene sediments of the Pannonian Basin there are two third-order sequences: the Late Miocene and the Pliocene ones. The Miocene sequence shows a regressive, upward-coarsening trend. There are four distinguishable sedimentary units in this sequence: the basal transgressive, the lower aggradational, the progradational and the upper aggradational units. The Pliocene sequence is also of aggradational character. The progradation does not coincide in time in the wells within the basin. The character of the relative water-level curves is similar throughout the basin but shows only very faint similarity to the sea-level curve. Therefore, it is unlikely that eustasy played any significant role in the pattern of basin filling. Rather, the dominant controls were the rapidly changing basin subsidence and high sedimentation rates, together with possible climatic factors.

Juhasz, E.; Muller, P.; Toth-Makk, A.; Hamor, T.; Farkas-Bulla, J.; Suto-Szentai, M.; Phillips, R.L.; Ricketts, B.

1996-01-01

285

Biostratigraphy, sedimentology and paleoenvironments of the northern Danube Basin: Ratkovce 1 well case study  

NASA Astrophysics Data System (ADS)

The Ratkovce 1 well, drilled in the Blatné depocenter of the northern Danube Basin penetrated the Miocene sedimentary record with a total thickness of 2000 m. Biostratigraphically, the NN4, NN5 and NN6 Zones of calcareous nannoplankton were documented; CPN7 and CPN8 foraminifer Zones (N9, 10, 11 of the global foraminiferal zonation; and MMi4a; MMi5 and MMi6 of the Mediterranean foraminiferal zonation were recognized. Sedimentology was based on description of well core material, and together with SP and RT logs, used to characterize paleoenvironmental conditions of the deposition. Five sedimentary facies were reconstructed: (1) fan-delta to onshore environment which developed during the Lower Badenian; (2) followed by the Lower Badenian proximal slope gravity currents sediments; (3) distal slope turbidites were deposited in the Lower and Upper Badenian; (4) at the very end of the Upper Badenian and during the Sarmatian a coastal plain of normal marine to brackish environment developed; (5) sedimentation finished with the Pannonian-Pliocene shallow lacustrine to alluvial plain deposits. The provenance analysis records that the sediment of the well-cores was derived from crystalline basement granitoides and gneisses and from the Permian to Lower Cretaceous sedimentary cover and nappe units of the Western Carpathians and the Eastern Alps. Moreover, the Lower Badenian volcanism was an important source of sediments in the lower part of the sequence.

Rybár, Samuel; Halásová, Eva; Hudá?ková, Natália; Ková?, Michal; Ková?ová, Marianna; Šarinová, Katarína; Šujan, Michal

2015-02-01

286

Workshop on the Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution, Part 2.  

NASA Astrophysics Data System (ADS)

The penultimate meeting in the Mars Surface and Atmosphere Through Time (MSATT) series of workshops was held on the campus of the University of Alaska in Fairbanks, Alaska, 12-13 Aug. 1993. This meeting, entitled 'The Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution,' hosted by the Geophysical Institute at the University of Alaska, was designed to help foster an exchange of ideas among researchers of the Mars science community and the terrestrial glacial and periglacial science community. The technical sessions of the workshop were complemented by field trips to the Alaska Range and to the Fairbanks area and a low-altitude chartered overflight to the Arctic Costal Plain, so that, including these trips, the meeting lasted from 9-14 Aug. 1993. The meeting, field trips, and overflight were organized and partially funded by the Lunar and Planetary Institute and the MSATT Study Group. The major share of logistical support was provided by the Publications and Program Services Department of the Lunar and Planetary Institute. The workshop site was selected to allow easy access to field exposures of active glaciers and glacial and periglacial landforms. In all, 25 scientists attended the workshop, 24 scientists (plus 4 guests and the meeting coordinator) participated in the field trips, and 18 took part in the overflight. This meeting reaffirmed the value of expertly led geologic field trips conducted in association with topical workshops.

Kargel, Jeffrey S.; Moore, Jeffrey; Parker, Timothy

287

Workshop on the Martian Northern Plains: Sedimentological, periglacial, and paleoclimatic evolution  

NASA Technical Reports Server (NTRS)

The penultimate meeting in the Mars Surface and Atmosphere Through Time (MSATT) series of workshops was held on the campus of the University of Alaska in Fairbanks, Alaska, 12-13 Aug. 1993. This meeting, entitled 'The Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution,' hosted by the Geophysical Institute at the University of Alaska, was designed to help foster an exchange of ideas among researchers of the Mars science community and the terrestrial glacial and periglacial science community. The technical sessions of the workshop were complemented by field trips to the Alaska Range and to the Fairbanks area and a low-altitude chartered overflight to the Arctic Costal Plain, so that, including these trips, the meeting lasted from 9-14 Aug. 1993. The meeting, field trips, and overflight were organized and partially funded by the Lunar and Planetary Institute and the MSATT Study Group. The major share of logistical support was provided by the Publications and Program Services Department of the Lunar and Planetary Institute. The workshop site was selected to allow easy access to field exposures of active glaciers and glacial and periglacial landforms. In all, 25 scientists attended the workshop, 24 scientists (plus 4 guests and the meeting coordinator) participated in the field trips, and 18 took part in the overflight. This meeting reaffirmed the value of expertly led geologic field trips conducted in association with topical workshops.

Kargel, J. S. (editor); Parker, T. J. (editor); Moore, J. M. (editor)

1993-01-01

288

Stratigraphic and sedimentologic controls of gas in shale - example from upper Devonian of northern Ohio  

SciTech Connect

The gas-bearing Devonian Ohio and Chagrin Shales along Lake Erie have produced marginally commercial volumes of gas for over 100 years. These shales thin depositionally westward from a maximum of 2000 ft (600 m) at the Pennsylvania-Ohio border to less than 500 ft (180 m) near Sandusky, Ohio. West of Sandusky, they have been truncated by Holocene and preglacial erosion on the Findlay arch. Westward thinning is accompanied by a facies change from gray shale and siltstone in the east to black shale in the west. The Late Devonian epeiric sea was at least 700 ft (215 m) deep and was poorly oxygenated. There are three major lithologies - black bituminous shale, greenish-gray shale, and siltstone. Black bituminous shale is most abundant in the west, whereas gray to greenish-gray shale and siltstone are most abundant in the east, where they constitute 75% of the section. Zones productive of natural gas occur most commonly in the greenish-gray shale and siltstone. Sedimentologic study helps explain the origin of both small- and large-scale interbedding of the greenish-gray and black bituminous shale and provides guides for improved gas exploration in the Appalachian basin.

Broadhead, R.F. (Univ. of Cincinnati, OH); Kepferle, R.C.; Potter, P.E.

1982-01-01

289

Sedimentological control on saturation distribution in Arctic gas-hydrate-bearing sands  

NASA Astrophysics Data System (ADS)

A mechanistic model is proposed to predict/explain hydrate saturation distribution in “converted free gas” hydrate reservoirs in sub-permafrost formations in the Arctic. This 1-D model assumes that a gas column accumulates and subsequently is converted to hydrate. The processes considered are the volume change during hydrate formation and consequent fluid phase transport within the column, the descent of the base of gas hydrate stability zone through the column, and sedimentological variations with depth. Crucially, the latter enable disconnection of the gas column during hydrate formation, which leads to substantial variation in hydrate saturation distribution. One form of variation observed in Arctic hydrate reservoirs is that zones of very low hydrate saturations are interspersed abruptly between zones of large hydrate saturations. The model was applied to data from Mount Elbert well, a gas hydrate stratigraphic test well drilled in the Milne Point area of the Alaska North Slope. The model is consistent with observations from the well log and interpretations of seismic anomalies in the area. The model also predicts that a considerable amount of fluid (of order one pore volume of gaseous and/or aqueous phases) must migrate within or into the gas column during hydrate formation. This paper offers the first explanatory model of its kind that addresses “converted free gas reservoirs” from a new angle: the effect of volume change during hydrate formation combined with capillary entry pressure variation versus depth.

Behseresht, Javad; Bryant, Steven L.

2012-08-01

290

C-Isotope stratigraphy, a monitor of paleoenvironmental change: A case study from the early cretaceous  

Microsoft Academic Search

Today's disturbance of the global carbon cycle induced by anthropogenic processes has raised new interest in the history of the global carbon cycle and its relationship to climate and other geochemical cycles. Carbon-isotope stratigraphy proves to be most useful as a monitor of the history of the carbon-cycle during the last 200 million years. In the introductory paragraphs of this

Helmut Weissert

1989-01-01

291

Contaminant Stratigraphy of the Ballville Reservoir, Sandusky River, NW Ohio: Implications for Dam Removal  

E-print Network

Contaminant Stratigraphy of the Ballville Reservoir, Sandusky River, NW Ohio: Implications for Dam Green, Ohio 43403 ABSTRACT. The Ballville Dam (Sandusky River) is one of the major structures in the Lake Erie water- shed, impounding 1.7 million m3 of water and sediment. Removal of the dam would open

Gottgens, Hans

292

Sequence stratigraphy of Torok and Nanushuk Formations, North Slope, Alaska: Integration of cores,  

E-print Network

1 Sequence stratigraphy of Torok and Nanushuk Formations, North Slope, Alaska: Integration of cores of North Slope, Alaska. Recently, USGS has rated highly the `bottomset and clinoform plays' of Torok and ichnological analysis of the selected key well cores in the North Slope. These cores are available to examine

Gani, M. Royhan

293

Stratigraphy of small shield volcanoes on Venus: Criteria for determining stratigraphic relationships and assessment of relative  

E-print Network

Stratigraphy of small shield volcanoes on Venus: Criteria for determining stratigraphic than about 20 km, are common and sometimes very abundant features on the plains of Venus. Typically plains of Venus. Did the eruption style of small shields occur repeatedly throughout the visible part

Head III, James William

294

Seasonal evolution of aerosol stratigraphy in Ürümqi glacier No. 1 percolation zone, eastern Tien Shan, China  

Microsoft Academic Search

The processes involved in the evolution of vertical profiles of Mg2+, Ca2+ and microparticle concentrations, as well as their seasonal variation in surface snow, were studied by weekly sampling from September 2003 to September 2004 of a snow pit on Ürümqi glacier No. 1, eastern Tien Shan, China. The development of the microparticle and Mg2+ and Ca2+ stratigraphy in the

Feiteng Wang; Zhongqin Li; Xiaoni You; Chuanjin Li; Huilin Li; Xiangying Li; Yuman Zhu

2006-01-01

295

Sequence stratigraphy and facies associations of Falher units C and D, lower Cretaceous, Alberta Basin, Canada  

Microsoft Academic Search

The Lower Cretaceous Falher Member (Spirit River Formation) in the Deep Basin of Alberta is composed of 5 units (A-E) comprising the reservoir of the giant Elmworth gas field. Using high resolution sequence stratigraphy, 333 well logs and 65 cores were integrated to understand the evolution of Falher C and D in the study area. Five major faces associations were

J. E. Casas; R. G. Walker

1996-01-01

296

Sequence-stratigraphic and mass-balance analysis of experimental stratigraphy  

NSDL National Science Digital Library

Sequence-stratigraphic and mass-balance analysis of experimental stratigraphy. Students are charged with evaluating how basin subsidence geometry influences depositional patterns. In addition to providing practice applying sequence-stratigraphic methods, this project builds quantitative data-analysis and writing skills.

Liz Hajek

297

Regional Stratigraphy and Petroleum Systems of the Michigan Basin, North America  

USGS Publications Warehouse

Although more than 100 years of research have gone into deciphering the stratigraphy of the Michigan basin of North America, it remains a challenge to visualize the basin stratigraphy on a regional scale and to describe stratigraphic relations within the basin. Similar difficulties exist for visualizing and describing the regional distribution of petroleum source rocks and reservoir rocks. This publication addresses these difficulties by combining data on Paleozoic and Mesozoic stratigraphy and petroleum geology of the Michigan basin. The areal extent of this structural basin is presented along with data in eight schematic chronostratigraphic sections arranged from north to south, with time denoted in equal increments along the sections. The stratigraphic data are modified from American Association of Petroleum Geologists (AAPG) (1984), Johnson and others (1992), Sanford (1993), and Cross (1998), and the time scale is taken from Harland and others (1990). Informal North American chronostratigraphic terms from AAPG (1984) are shown in parentheses. Stratigraphic sequences as defined by Sloss (1963, 1988) and Wheeler (1963) also are included, as well as the locations of major petroleum source rocks and major petroleum plays. The stratigraphic units are colored according to predominant lithology, in order to emphasize general lithologic patterns and to provide a broad overview of the Michigan basin. For purposes of comparison, schematic depictions of stratigraphy and interpreted events in the Michigan basin and adjacent Appalachian basin are shown. The paper version of this map is available for purchase from the USGS Store.

Swezey, Christopher S.

2008-01-01

298

Equivalent hydraulic conductivity of an experimental stratigraphy: Implications for basin-scale flow  

E-print Network

Equivalent hydraulic conductivity of an experimental stratigraphy: Implications for basin-scale groundwater flow models are the estimation of representative hydraulic conductivity for the model units. In this study, high-resolution, fully heterogeneous basin-scale hydraulic conductivity map is generated

Gable, Carl W.

299

The link between abrupt climate change and basin stratigraphy: a numerical approach  

Microsoft Academic Search

To use basin stratigraphy for studying past climate change, it is important to understand the influence of evolving boundary conditions (river discharge and sediment flux, initial bathymetry, sea level, subsidence) and the complex interplay of the redistribution processes (plumes, turbidity currents, debris flows). To provide understanding of this complexity, we have employed source to sink numerical models to evaluate which

Mark D. Morehead; James P. Syvitski; Eric W. H. Hutton

2001-01-01

300

Seismic stratigraphy and structure of the Barter Island sector of the Western Beaufort Sea  

E-print Network

GROUP &IGS EU It G SNOIC BAIRD GROUP '7 '7 Erosional Unconformity NERVOKPUK F 0 R M AT I 0 N KAVIK FM SADLE- ROCHIT Gr. ECHOOKA FM. PU Figure 7. Generalized stratigraphy of northeastern Alaska and the Beaufort Sea shelf. (IQuaternary...

Coffman, Jeffrey Dale

1988-01-01

301

Stratigraphy, structural geology and metamorphism of the Inwood Marble Formation, northern Manhattan, NYC, NY  

E-print Network

Stratigraphy, structural geology and metamorphism of the Inwood Marble Formation, northern, Hofstra University, Hempstead, NY 11549 Introduction Field studies of the Inwood Marble in the type of recrystallized dolomite and subordinate calcite marble the Inwood Marble was used for quarrying and mineral

Merguerian, Charles

302

A re-appraisal of the stratigraphy and volcanology of the Cerro Galán volcanic system, NW Argentina  

USGS Publications Warehouse

From detailed fieldwork and biotite 40Ar/39Ar dating correlated with paleomagnetic analyses of lithic clasts, we present a revision of the stratigraphy, areal extent and volume estimates of ignimbrites in the Cerro Galán volcanic complex. We find evidence for nine distinct outflow ignimbrites, including two newly identified ignimbrites in the Toconquis Group (the Pitas and Vega Ignimbrites). Toconquis Group Ignimbrites (~5.60–4.51 Ma biotite ages) have been discovered to the southwest and north of the caldera, increasing their spatial extents from previous estimates. Previously thought to be contemporaneous, we distinguish the Real Grande Ignimbrite (4.68?±?0.07 Ma biotite age) from the Cueva Negra Ignimbrite (3.77?±?0.08 Ma biotite age). The form and collapse processes of the Cerro Galán caldera are also reassessed. Based on re-interpretation of the margins of the caldera, we find evidence for a fault-bounded trapdoor collapse hinged along a regional N-S fault on the eastern side of the caldera and accommodated on a N-S fault on the western caldera margin. The collapsed area defines a roughly isosceles trapezoid shape elongated E-W and with maximum dimensions 27?×?16 km. The Cerro Galán Ignimbrite (CGI; 2.08?±?0.02 Ma sanidine age) outflow sheet extends to 40 km in all directions from the inferred structural margins, with a maximum runout distance of ~80 km to the north of the caldera. New deposit volume estimates confirm an increase in eruptive volume through time, wherein the Toconquis Group Ignimbrites increase in volume from the ~10 km3 Lower Merihuaca Ignimbrite to a maximum of ~390 km3 (Dense Rock Equivalent; DRE) with the Real Grande Ignimbrite. The climactic CGI has a revised volume of ~630 km3 (DRE), approximately two thirds of the commonly quoted value.

Folkes, Christopher B.; Wright, Heather M.; Cas, Ray A.F.; de Silva, Shanaka L.; Lesti, Chiara; Viramonte, Jose G.

2011-01-01

303

The International Subcommission on Stratigraphic Classification of the International Commission on Stratigraphy: The Knowledge  

NASA Astrophysics Data System (ADS)

The International Subcommission on Stratigraphic Classification (ISSC) was born in 1955 as an effort to promote awareness of stratigraphic principles and encourage worldwide standardization of stratigraphic approaches and terminology. The first major achievement of ISSC was the 1976 publication of the International Stratigraphic Guide. It was revised in 1994, with an abridged version appearing in 1999. These documents achieved their goals magnificently: cited innumerable times and forming the core of many national stratigraphic codes. As the discipline has evolved, particularly from technological advances and ocean drilling, new tools and methodologies have been developed and these have led to ever finer resolution of geological time and ever more exact correlation of stratigraphic units and events, thereby enhancing the understanding of the genesis of the geological record. Under the leadership of M. B. Cita, ISSC embarked in 2002 on a renewed initiative to disseminate to the global geological community these newer developments, and ultimately incorporate them into a third edition of the Guide. To this aim, traditional and new branches of stratigraphy are being treated: chemostratigraphy, cyclostratigraphy, magnetostratigraphy, lithostratigraphy, sequence stratigraphy, biostratigraphy, and chronostratigraphy. An open-access review paper is dedicated to each and published in Newsletters on Stratigraphy. The next edition of the Guide will be inclusive of all branches of stratigraphy and also embrace igneous and metamorphic rocks. It is envisaged that a textbook on stratigraphy based on these papers and the revised Guide could prove a timely contribution, especially to younger generations of practitioners, and aid global communication and understanding of stratigraphic principles and methods.

Pratt, Brian

2014-05-01

304

Seismic Stratigraphy Study in the Southern Sudanese Red Sea (Tokar Delta)  

NASA Astrophysics Data System (ADS)

The Red Sea is a rift or graben, which separates the Arabian and African plates. It extends from the Gulf of Aden in the south (lat 12° 40' N) to the Gulf of Suez and Aqaba in the north (lat 27° 50' N). The study area comprises about 2500sq.Kms. From the seismic data acquired by the Oil Companies (Chevron 1975-76 Total 1980 and IPC 1992), thirty-two seismic lines were selected to study he stratigraphy and sedimentation of the area. Synthetic seismograms of Suakin-1, Bashayer-1A and Bashayer-2A wells are also used to assistant the data interpretation. We have found that the stratigraphy and sedimentation of the Sudanese Red Sea can be placed into four major tectonic phases, namely, Pre-rifting stratigraphy, Syn-Rift Pre-Salt Stratigarphy, Salt Phase and Syn-Rift Post Salt Stratigraphy. According to our seismic stratigraphy interpretation, the lower most sequence (Mukawar, Hamamit and Mughersum group) overlying the basement complex is relatively uniform throughout the area. The evaporate sequence deposited during the cycle of sea level rise and fall, indicating a change in climate and prolonged period of desiccation. This sequence is composed of Belayim and Dungunab Formation. The Dungunab Formation is a lactic glide surface. The third sequence contains three system tracts. The lowermost is a low stand and the middle is a transgressive, while the upper is a high stand system tract. This sequence is known as the Zeit Formation. The uppermost sequence is a thick sedimentary unit, which is composed mainly of a mixture of clastic and carbonates of Abu Shagara Group. The region witness extensive studies concerning the behavior of the tectonism and the evolution of the Red Sea and its adjoining. Tokar Delta is a part of a NW-SE trending fault-controlled sedimentary basin.

Yagoub, A. M.; Tao, G.

2005-05-01

305

Sequence stratigraphy of the Upper Cretaceous of central-east Sinai, Egypt  

Microsoft Academic Search

Deposition of the Upper Cretaceous of central-east Sinai was controlled by a long-term transgressive phase and several higher order sea-level fluctuations. The paper gives a first sequence stratigraphic interpretation for this interval in the region, based on detailed sedimentological, biostratigraphical and palaeoecological investigations of 13 Turonian-Maastrichtian sections and a review of all published data. Six main facies zones have been

S. Lüning; A. M. Marzouk; A. M. Morsi; J. Kuss

1998-01-01

306

A review of Arbuckle Group strata in Kansas from a sedimentologic perspective: Insights for future research from past and recent studies  

USGS Publications Warehouse

Arbuckle Group and equivalent-age rocks (Cambrian and Lower Ordovician) represent an important record of sediment deposition in the history of the North American continent and they contain important accumulations of hydrocarbons (oil and gas) and base metal deposits. This is true for Kansas as well where Arbuckle strata account for approximately 40% of the volume of produced petroleum and known reserves. However, in comparison to their counterparts in other areas, such as the Ellenburger and Knox, Arbuckle rocks in Kansas remain relatively understudied, especially with respect to sedimentology and diagenesis. The Arbuckle is present in the subsurface in most of Kansas and is absent only in areas of northeastern and northwestern Kansas, and over ancient uplifts and buried Precambrian highs. Arbuckle rocks thicken from north to south and are up to 1,390 feet in the southeastern corner of Kansas. Arbuckle Group and equivalent-age rocks from Kansas and surrounding areas are similar, consisting of platform deposits dominated by ramp-type subtidal to peritidal carbonates (mostly dolomitized) which can be subdivided into cycles, less than 0.5 m to 40 m thick, based on facies type and depositional patterns. Recent studies from central Kansas show that major depositional facies consist of coarse-grained packstones/ grainstones, fine-grained packstones/wackestones/mudstones, stromatolites-thrombolites, intraclastic conglomerate and breccia, and shale. In addition, secondary features include dolomitization, breccia, fracture, and conglomerate related to early subaerial exposure and later karst, burial or structural processes, silicification, and local mineralization. Arbuckle and equivalent strata in the Midcontinent were affected by prolonged subaerial exposure that began immediately after Arbuckle deposition, forming the sub-Tippecanoe to sub-Absaroka unconformity. Favorable reservoir qualities generally are thought to be related directly to basement structural elements and karstic features from the post-Arbuckle subaerial exposure event. Although most production in Kansas is from the top of the Arbuckle, some early and recent studies indicate that the Arbuckle is not a simple homogeneous reservoir, that complex vertical and lateral heterogeneities exist including both nonporous and porous horizons in the formation, and that high probability exist of locating additional oil with improved reservoir characterization. Although fracture and vuggy porosity contribute importantly to the production of Arbuckle strata, recent observations indicate a significant amount of porosity (about 50%) in many cores is controlled by depositional facies and dolomitization. Studies of Arbuckle and equivalent-age strata from other areas indicate that Arbuckle strata and diagenetic processes are complex and that porosity/permeability patterns are related to a number of processes. These studies underscore the importance of continued study of Arbuckle rocks in Kansas for improved reservoir characterization. Ongoing and future geologic studies of Arbuckle rocks in Kansas are being directed toward: (1) Continued sedimentologic, stratigraphic, and sequence stratigraphic analyses incorporating core, well log, and seismic data; (2) petrophysical studies. Initial studies indicate that core plug petrophysical properties are controlled by matrix grain size and that upscalling from plug to whole-core and drill-stem test data can identify and quantify the relative contribution of karstic, fracture and matrix porosity and permeability: (3) Regional and local structural analyses and mapping of the upper Arbuckle surface to provide more details on the contribution of structural features and karst paleogeomorphology to reservoir character; and (4) diagenetic and geochemical studies focusing especially on the timing of, and processes associated with, dolomitization and karstification events and their contributions to creating or occluding porosity.

Franseen, E.K.

2000-01-01

307

Insights into the October-November 2010 Gunung Merapi eruption (Central Java, Indonesia) from the stratigraphy, volume and characteristics of its pyroclastic deposits  

NASA Astrophysics Data System (ADS)

The 2010 eruption of Merapi was the second most deadly in the historic record of this volcano, claiming over 380 lives. By relating the observations of this eruption with detailed examination of deposit distribution, stratigraphy and sedimentology, a reconstruction of the properties of the pyroclastic density currents (PDCs) is presented, including the valley controlled block-and-ash flows (BAFs) and widespread, energetic pyroclastic surges. The distribution, volume and mobility characteristics of all types of PDC during the eruption sequence show evidence for levels of intensity unseen since the large-scale 1872 and 1930 eruption phases, especially during the climactic events of October 26 and November 5. Many tephra falls interbedded with PDC units show that most dome-collapse events occurred along with and between explosive vulcanian eruptions. The 2010 eruption produced very long-runout BAFs, reaching 16.1 km in the Kali Gendol on November 5. This runout could be explained by its large-volume (20 million m3), around 10 times that of previous Merapi BAFs during the last 130 years. Major avulsion of these dense BAFs to form overbank deposits became more common through the eruptive sequence as the valley was progressively filled with successive PDC deposits. Spreading avulsed BAFs were a particular hazard downstream of ~ 10 km where the landscape is less dissected. Less clear, however, is why pyroclastic surges extended up to 10 km from the vent on November 5 and > 6.4 km on October 26. These expanded much farther from BAF margins (~ 2 km) than ever seen before at Merapi. In one location they were decoupled from valley-centered BAFs with high momentum, traveling initially laterally across steep valley systems, before draining downslope. At this site, on the western side of the upper Gendol at around 3 km from source, surge decoupling was apparently exacerbated by upstream collision and deflection of high-flux, hot and gas-rich BAFs against the cliffs of Gunung Kendil. The 1.4 km-long cliff face was impacted directly for the first time in 2010 events, and may have been responsible for the formation of larger than normal turbulent ash-rich clouds above BAFs. These results imply that future eruption events under the present summit and upper flow-path configuration are also highly likely to generate wide dispersal pyroclastic surges and extreme hazard, especially now that dense forest has been destroyed on the upper southern slopes of the volcano.

Cronin, Shane J.; Lube, Gert; Dayudi, Devi S.; Sumarti, Sri; Subrandiyo, S.; Surono

2013-07-01

308

Stratigraphy of the Arriaga Palaeolithic sites. Implications for the geomorphological evolution recorded by thickened fluvial sequences within the Manzanares River valley (Madrid Neogene Basin, Central Spain)  

NASA Astrophysics Data System (ADS)

The Arriaga Palaeolithic sites, located within the Middle-Late Pleistocene thickened terrace (TCMZ: + 18-22 m) of the Manzanares River valley (Madrid, Central Spain), were subject to intensive archaeological and palaeontological prospecting during the 1980s. Compilation of documents from these old excavations, together with new geoarchaeological, sedimentological, pedological and geophysical data, allow us to locate the morpho-stratigraphic position of the analysed sites within the overall stratigraphy of the TCMZ. This thickened terrace comprises two main fluvial sequences (Lower and Upper) topped by a thick (2.5-5 m) alluvial-colluvial formation. The fluvial sequences are stacked in the study site located in the lowermost reach of the valley, but display complex inset relationships upstream, where they are individualized in two different terrace levels at + 18-22 and + 12-15 m. Terrace thickening was primarily controlled by synsedimentary subsidence caused by dissolution of the evaporitic substratum and locally influenced and backfed by tectonic activity. The regional analysis of the dated (TL and OSL) fluvial sequences containing Palaeolithic sites within the TCMZ, together with new TL dates provided in this study, indicate that the three sedimentary sequences in the TCMZ are time-transgressive valley-fill bodies. Terrace thickening started before the Last Interglacial Period (MIS 6 or older) and continued during whole MIS 5 (lower fluvial sequence) and MIS 4 (upper fluvial sequence) reaching the MIS 3 (top alluvial formation), the latter characterized by the accumulation of alluvial-colluvial sequences derived from the main tributaries and valley slopes. The TCMZ records the Middle-Late Pleistocene boundary, but also the transition between the Lower and Middle Palaeolithic periods during the Late MIS 5 (ca. 96 to 74 ka). The studied Arriaga sites contain evolved Lower Palaeolithic industry (evolved Acheulean techno-complexes) and warm faunal assemblages located within the Lower fluvial sequence, but apparently well constrained Middle Palaeolithic sites are placed within the Upper fluvial sequence at other upstream locations. Deposition of the thickened alluvium was mainly controlled by the upstream advance of dissolution-induced subsidence phenomena, blurring the impact of Late Pleistocene climatic cycles and producing time-transgressive longitudinal valley-fill bodies (i.e. sedimentary sequences). Late Quaternary climatic changes only seem to control the incision/aggradation cycles after the termination of the TCMZ from the Late MIS 3. Dates related to the development of younger inset terraces indicate that they are apparently linked with cold Heinrich events H4 to H1. These younger inset terraces yield cold faunal assemblages and abundant Middle Palaeolithic "Mousterian" assemblages.

Silva, P. G.; López-Recio, M.; Tapias, F.; Roquero, E.; Morín, J.; Rus, I.; Carrasco-García, P.; Giner-Robles, J. L.; Rodríguez-Pascua, M. A.; Pérez-López, R.

2013-08-01

309

Role of mechanical stratigraphy on fracture development in carbonate reservoirs: Insights from outcropping shallow water carbonates in the Umbria Marche Apennines, Italy  

NASA Astrophysics Data System (ADS)

Studies on mechanical stratigraphy show that a link exists among facies, sedimentary cycles, diagenesis and fracturing. Understanding this link is fundamental for characterising fluid flow in natural reservoirs, especially carbonate ones. This work investigates the field of evidence through a case study in the Umbria-Marche Apennines: the Lower Jurassic shallow water carbonates of the Calcare Massiccio unit, a potential carbonate reservoir. A multidisciplinary approach is used, involving stratigraphy, sedimentology and structural geology. The studied succession crops out at the core of an ENE-verging anticline, located at Campolarzo, within the Umbria-Marche Apennines. The Calcare Massiccio here consists of high-frequency, metre-scale, shallowing upward, peritidal cycles. Three different cycles (thickness ranging from 0.3 to 3 m) have been recognised: type A (incomplete asymmetric cycle), type B (complete asymmetric cycle with sheet cracks) and type C (complete asymmetric cycle with tepees). Sedimentary textures vary according to the depositional environment. The subtidal facies is almost entirely mud-supported, with the exception of type A cycle, which locally can be grain-supported. The intertidal facies is from mud- to grain-supported and commonly laminated. The supratidal facies may be either absent (type A) or represented by vadose pisoid caliches, sheet cracks (type B) and tepees (type C). The overprinting of diagenetic facies (early diagenesis) is particularly evident in the supratidal intervals of type C cycle (tepee structures) and in the inter-supratidal intervals of type B cycle (sheet cracks). The fracture pattern within the Calcare Massiccio mainly consists of systematic joints organized in two prominent mutually perpendicular sets (orthogonal joints) and two subordinate non-perpendicular sets (diagonal joints). The orthogonal sets are interpreted as tensile joints developed sub-parallel (longitudinal joints) and sub-perpendicular (cross joints) to the NNW-SSE axial trend of the host anticline. The diagonal joints are interpreted as shear joints. In the study area, the fracture density is strongly controlled by heterogeneities of rock properties between and within facies, which in turn are determined by sedimentary textures and, dominantly, by the combination of sedimentary and diagenetic facies, e.g., by the petrofacies. The control played by the petrofacies distribution across the stratigraphic succession may justify strong variations in the fracture density (up to ca. 80% or more) within the same sedimentary cycle, as well as fracture terminations, independently from tectonic causes. A systematic decrease in fracture density going from subtidal to intertidal to inter-supratidal and tepee facies is evident. Minimum values are observed on tepee structures; fractures often terminate against supratidal intervals with tepee. The lowest fracture density characterises petrofacies where early diagenetic processes are more pronounced (i.e., the intertidal facies and the inter-supratidal facies with tepee, strongly affected by early dissolution cavities filled by early cements). No obvious correlation is observed between the fracture density and the thickness of the petrofacies layer.

Di Naccio, D.; Boncio, P.; Cirilli, S.; Casaglia, F.; Morettini, E.; Lavecchia, G.; Brozzetti, F.

2005-10-01

310

Bathymetry and seismic stratigraphy of East Greenland fjords and sounds  

NASA Astrophysics Data System (ADS)

Swath bathymetry and high-resolution penetration echo sounder (chirp) data from fjords and sounds between Kong Oscars Fjord (~72°30') and Bredefjord (~75°30'), East Greenland, reveal a variety of sedimentary processes related to glacial activity and mass wasting, as well as evidence of tectonic activity. The large-scale bathymetry of most fjords and sounds is characterized by sills that occasionally are shallower than 30 m, and basins reaching maximum water depths of more than 760 m. Multiple "steps", some more than 250 meters high and with gradients exceeding 60° (e.g. in Bredefjord) are most probably related to vertical movements along tectonic lineaments. The basin floors are typically smooth suggesting sedimentation predominantly from suspension settling. However, an approx. 100 m wide and 5 m deep channel in Kempefjord provides evidence of gravity-flow erosion sub-parallel to the fjord axis. Multiple sediment lobes along the fjord sides reflect repeated mass wasting. Relatively straight linear features oriented parallel to the fjord axes are interpreted to be glacial lineations that were formed beneath fast-flowing ice draining the Greenland Ice Sheet. They occur rarely on shallower plateaus and are often overlain by transverse ridges. In Youngsund, such ridges are typically 1-2 m high, 50 m wide and the distances between crests are most often approx. 100 m. The ridges are most probably 'retreat moraines' that were deposited during minor halts and/or re-advances during the last deglaciation. More curvilinear and randomly oriented furrows with raised rims are most probably iceberg ploughmarks that were formed from grounded icebergs calving off the Greenland Ice Sheet during the last deglaciation (e.g. in Rudis Bugt). Elongated to round, randomly distributed depressions of up to >10 m depth and >200 m width occur, e.g. in the inner parts of Tyrolerfjord. They are often filled with acoustically stratified sediments and we assume that they might have resulted from post-glacial tectonic activity. Up to 180 ms two-way travel time thick acoustically stratified sequences dominate the fjord-fill and sound-fill stratigraphies. These deposits are suggested to reflect repeatedly changing physical conditions in a glacimarine environment where deposition occurred from suspension fall-out, ice rafting from icebergs and sea ice, as well as smaller-scale mass wasting. An acoustically transparent drape overlies these deposits rarely (e.g. in Rudis Bugt). Multiple acoustically transparent bodies with irregular geometries intercalated within the stratified deposits are suggested to reflect repeated larger-scale mass wasting, either from slope failures along fjord sides or related to glacier advances (e.g. in Nordfjord). Occasional distortions and blanking of reflections (e.g. in Nordfjord and Kong Oscar Fjord) might be related to relatively recent tectonic activity and fluid flow/gas expansion.

Forwick, Matthias; Sverre Laberg, Jan; Husum, Katrine; Olsen, Ingrid L.

2014-05-01

311

GEOELECTRICAL STRATIGRAPHY AND ANALYSIS OF A HYDROCARBON IMPACTED AQUIFER  

EPA Science Inventory

A recently proposed geoelectrical model for hydrocarbon impacted sites predicts anomalously high conductivities coincident with aged contaminated zones. These high conductivities are attributed to an enhancement of mineral weathering resulting from byproducts of microbial redox p...

312

The Afragola settlement near Vesuvius, Italy: The destruction and abandonment of a Bronze Age village revealed by archaeology, volcanology and rock-magnetism  

NASA Astrophysics Data System (ADS)

Public works in progress in the Campanian plain north of Somma-Vesuvius recently encountered the remains of a prehistoric settlement close to the town of Afragola. Rescue excavations brought to light a Bronze Age village partially destroyed and buried by pyroclastic density currents (PDCs) of the Vesuvian Pomici di Avellino eruption (3.8 14C ka BP) and subsequently sealed by alluvial deposits. Volcanological and rock-magnetic investigations supplemented the excavations. Careful comparison between volcanological and archaeological stratigraphies led to an understanding of the timing of the damage the buildings suffered when they were struck by a series of PDCs. The first engulfed the village, located some 14 km to the north of the inferred vent, and penetrated into the dwellings without causing major damage. The buildings were able to withstand the weak dynamic pressure of the currents and deviate their path, as shown by the magnetic fabric analyses. Some later collapsed under the load of the deposits piled up by successive currents. Stepwise demagnetization of the thermal remanent magnetization (TRM) carried by potsherds embedded in the deposits yields deposition temperatures in the order of 260-320 °C, fully consistent with those derived from pottery and lithic fragments from other distal and proximal sites. The fairly uniform temperature of the deposits is here ascribed to the lack of pervasive air entrainment into the currents. This, in turn, resulted from the lack of major topographical obstacles along the flat plain. The coupling of structural damage and sedimentological analyses indicates that the currents were not destructive in the Afragola area, but TRM data indicate they were still hot enough to cause death or severe injury to humans and animals. The successful escape of the entire population is apparent from the lack of human remains and from thousands of human footprints on the surface of the deposits left by the first PDCs. People were thus able to walk barefoot across the already emplaced deposits and escape the subsequent PDCs. The rapid cooling of the deposits was probably due to both their thinness and heat dissipation due to condensation of water vapour released in the mixture by magma-water interaction.

Di Vito, Mauro A.; Zanella, Elena; Gurioli, Lucia; Lanza, Roberto; Sulpizio, Roberto; Bishop, Jim; Tema, Evdokia; Boenzi, Giuliana; Laforgia, Elena

2009-01-01

313

Revised geochronology of the Casamayoran South American Land Mammal Age: Climatic and biotic implications  

PubMed Central

Isotopic age determinations (40Ar/39Ar) and associated magnetic polarity stratigraphy for Casamayoran age fauna at Gran Barranca (Chubut, Argentina) indicate that the Barrancan “subage” of the Casamayoran South American Land Mammal “Age” is late Eocene, 18 to 20 million years younger than hitherto supposed. Correlations of the radioisotopically dated magnetic polarity stratigraphy at Gran Barranca with the Cenozoic geomagnetic polarity time scale indicate that Barrancan faunal levels at the Gran Barranca date to within the magnetochronologic interval from 35.34 to 36.62 megannums (Ma) or 35.69 to 37.60 Ma. This age revision constrains the timing of an adaptive shift in mammalian herbivores toward hypsodonty. Specifically, the appearance of large numbers of hypsodont taxa in South America occurred sometime between 36 and 32 Ma (late Eocene–early Oligocene), at approximately the same time that other biotic and geologic evidence has suggested the Southern high latitudes experienced climatic cooling associated with Antarctic glaciation. PMID:10557304

Kay, Richard F.; Madden, Richard H.; Vucetich, M. Guiomar; Carlini, Alfredo A.; Mazzoni, Mario M.; Re, Guillermo H.; Heizler, Matthew; Sandeman, Hamish

1999-01-01

314

Deciphering the Geochronological Framework of Serbian Loess Using Amino Acid Stratigraphy  

NASA Astrophysics Data System (ADS)

Serbian loess deposits preserve the most widespread, semi-continuous terrestrial records of glacial-interglacial climate variability in Europe. The sedimentary deposition, distribution, and thickness of loess in SE Europe are closely linked with major fluvial systems draining the continental interior. During glacial periods, under predominantly cold, semiarid climatic conditions, the extensive floodplain of the middle and lower Danube River was exposed to aeolian deflation, resulting in the accumulation of loess deposits up to 50 m thickness on adjacent fluvial terraces. The geomorphic setting of these loess formations, however, made them vulnerable to fluvial erosion and reworking, resulting in unconformities that may not be visually recognized in sedimentary sequences. Such unconformities, often of unknown duration and spatial extent, confound regional chronostratigraphic and paleoclimatic interpretations. Amino acid racemisation (AAR) geochronology, although primarily a relative dating method, offers an independent assessment of numerical age estimates when results are at or near their methodological limits and can assist in the chronostratigraphic evaluation of loess units beyond the applicable range of numerical dating methods. In this study we present the first comprehensive aminostratigraphic results measured on fossil gastropod shells of the genera Pupilla, Helicopsis, and Vallonia from the loess series at Stari Slankamen and Mosorin/Dukatar (Titel Plateau) in Vojvodina, Serbia, in order to verify the chronostratigraphic position of the upper stratigraphic units and to establish a reliable correlation between older loess-paleosol couplets. Given the interpreted stratigraphic continuity and the high sedimentation rates at Mosorin/Dukatar, we established this site as a chronostratigraphic reference for correlation with the long-studied loess profile Stari Slankamen, where at least two unconformities have led to ambiguous paleoclimatic and stratigraphic interpretation in previous studies. AAR analyses allow us to establish an independent chronostratigraphic framework for Serbian loess sequences correlated with marine oxygen-isotope stages 16-2. The results demonstrate the vast potential of amino acid stratigraphy to identify and constrain the extent, continuity, and duration of erosional discontinuities in long sedimentary sequences, such as those at Stari Slankamen. Ultimately, these results contribute to the development of a robust regional chronostratigraphic framework in support of paleoclimate reconstructions from high-resolution proxies, such as grain-size data, toward an improved understanding of the paleoenvironmental dynamics of SE Europe in an intra-hemispheric context.

Oches, E. A.; Machalett, B.; McCoy, W. D.; Markovic, S.

2010-12-01

315

Tephra stratigraphy and geochemistry from three Icelandic lake cores: a new method for determining source volcano of tepra layers   

E-print Network

At present there is no consistent method for the identification of source volcanoes for a tephra layer found in a stratigraphy. This has led to several studies misidentifying source volcanoes. Geochemical analysis of the ...

Jagan, Anna

2010-01-01

316

Abalos Mensa, Planum Boreum, Mars: A Constructional, Aeolian History Derived from Radar and Optical Stratigraphy, Reinforced by Atmospheric Modeling  

NASA Astrophysics Data System (ADS)

Radar and HiRISE data have unveiled a new formation scenario for Abalos Mensa only requiring observed atmospheric processes. Analysis of both radar and optical stratigraphy has revealed a constructional formation for Abalos Mensa.

Brothers, T. C.; Holt, J. W.; Spiga, A.

2012-03-01

317

Seismic stratigraphy of the Tyrrhenian Sea (western Mediterranean Sea) based on ODP leg results: Consequences for the basin evolution  

SciTech Connect

A revision of the seismic stratigraphy of the Tyrrehenian Sea is based on detailed calibrations between a dense network of single-channel seismic reflection lines, about 2,000 km of recent multichannel seismic profiles, and the seven sites drilled within the Tyrrhenian in 1986 during the Ocean Drilling Program Leg 107. These correlations substantiate that the basin has been submitted to a succession of short-lived rifting episodes progressively shifting toward the southeast and leading to the local creation of discrete oceanic crust floored basins. Most of the Tyr-rhenian basins and margins have been created in a very short time (between 8 and 2 m.y. in age) and are much younger than previously anticipated. Rifting processes have been acting on a very heterogeneous continental basement (including several suture zones); drifting has created small oceanic subbasins also floored by a very heterogeneous magmatic basement (including serpentinized peridotites). The hypothesis of an asymmetric evolution facilitated by one or several crustal detachment fault systems and driven by geodynamic mechanisms of the bordering collision/subduction is considered.

Mascle, J.; Rehault, J.

1988-08-01

318

A revised inoceramid biozonation for the Upper Cretaceous based on high-resolution carbon isotope stratigraphy in northwestern Hokkaido, Japan  

NASA Astrophysics Data System (ADS)

Hayakawa, T., Hirano, H. 2013. A revised inoceramid biozonation for the Upper Cretaceous based on high-resolution carbon isotope stratigraphy in northwestern Hokkaido, Japan. Acta Geologica Polonica, 63 (2), 239-263. Warszawa. Biostratigraphic correlations of inoceramid bivalves between the North Pacific and Euramerican provinces have been difficult because the inoceramid biostratigraphy of the Japanese strata has been based on endemic species of the northwest Pacific. In this study, carbon stable isotope fluctuations of terrestrial organic matter are assembled for the Upper Cretaceous Yezo Group in the Haboro and Obira areas, Hokkaido, Japan, in order to revise the chronology of the inoceramid biozonation in Japan. The carbon isotope curves are correlated with those of marine carbonates in English and German sections with the aid of age-diagnostic taxa. According to the correlations of the carbon isotope curves, 11 isotope events are recognised in the sections studied. As a result of these correlations, the chronology of the inoceramid biozones of the Northwest Pacific has been considerably revised. The revised inoceramid biozones suggest that the timing of the origination and extinction of the inoceramids in the North Pacific biotic province is different from the stage/substage boundaries defined by inoceramids, as used in Europe and North America.

Hayakawa, Tatsuya; Hirano, Hiromichi

2013-06-01

319

Site characterization using a portable optically stimulated luminescence reader: delineating disrupted stratigraphy in Holocene eolian deposits on the Canadian Great Plains  

NASA Astrophysics Data System (ADS)

The use of portable optically stimulated luminescence (POSL) readers to elucidate on complex depositional sequences has been demonstrated in a number of recent studies. POSL readers are robust versions of the traditional lab-bound luminescence readers and they can be used in the field, allowing for rapid decisions to be made when collecting samples for dating. Furthermore, in contrast with lab-bound readers, POSL readers can perform measurements on bulk samples, negating the need to carry out time-intensive mineralogical separations. The POSL reader is equipped with both infra-red and blue light (OSL) stimulating sources such that signal separation during measurement can be carried out by selectively exciting feldspar using the IR source (IRSL) after which a quartz dominant signal is obtained from the same sample using post-IR blue OSL. The signals obtained are then plotted to give luminescence profiles that depict the variation of the luminescence signal with depth. Signal intensities depend on mineralogical concentrations, grain luminescence sensitivities, dose rates as well as on burial ages of the grains. Where all these variables, apart from the burial age, are held constant up the depositional sequence the luminescence profile serves as a proxy for the chronostratigraphy. As a contribution to a growing archive of studies that have employed POSL readers to unravel complex depositional sequences, this study uses a POSL system developed by the Scottish Universities Environmental Research Centre to characterize the stratigraphy at an archaeological site that lies next to an oilfield plant located on a Holocene fossil dune landscape in southern Alberta, Canada. Oilfield activity was initiated at the site several decades ago and it involved the laying of pipelines below ground which disturbed considerable archaeological deposits. Subsequent work led to the discovery of the archeological site which was previously occupied by ancestral indigenous peoples at various times during the mid to late Holocene. Ongoing maintenance of the original pipelines is now carefully monitored to maximize the protection of the site's archaeological resources, and a critical part of this process is the ability to distinguish between previously disturbed deposits from areas of the site that have intact stratigraphy. The POSL reader was incorporated in this study to address this aspect. As a preliminary test, excavations were made at selected sites and samples collected at 5 cm intervals from four separate profiles. These were then analyzed with the POSL reader using both IRSL and post IR blue OSL stimulation. A portable gamma ray spectrometer was used to determine concentrations of elements responsible for environmental radiation. Constructed luminescence profiles show that areas with disrupted stratigraphy are identifiable by the fluctuating signals, a result of the mixing of strata of varying age. Conversely, zones that have undisturbed stratigraphy display luminescence profiles that have stable signals or show an increase with depth. The luminescence profiling also allows the approximation of relative ages of the undisturbed strata. The approach used in this study has potential for a broad range of applications within the earth sciences.

Munyikwa, K.; Gilliland, K.; Gibson, T.; Plumb, E.

2012-12-01

320

Sedimentological effects of tsunamis, with particular reference to impact-generated and volcanogenic waves  

NASA Technical Reports Server (NTRS)

Impulse-generated waves (tsunamis) may be produced, at varying scales and global recurrence intervals (RI), by several processes. Meteorite-water impacts will produce tsunamis, and asteroid-scale impacts with associated mega-tsunamis may occur. A bolide-water impact would undoubtedly produce a major tsunami, whose sedimentological effects should be recognizable. Even a bolide-land impact might trigger major submarine landslides and thus tsunamis. In all posulated scenarios for the K/T boundary event, then, tsunamis are expected, and where to look for them must be determined, and how to distinguish deposits from different tsunamis. Also, because tsunamis decrease in height as they move away from their source, the proximal effects will differ by perhaps orders of magnitude from distal effects. Data on the characteristics of tsunamis at their origin are scarce. Some observations exist for tsunamis generated by thermonuclear explosions and for seismogenic tsunamis, and experimental work was conducted on impact-generated tsunamis. All tsunamis of interest have wave-lengths of 0(100) km and thus behave as shallow-water waves in all ocean depths. Typical wave periods are 0(10 to 100) minutes. The effect of these tsunamis can be estimated in the marine and coastal realm by calculating boundary shear stresses (expressed as U*, the shear velocity). An event layer at the K/T boundary in Texas occurs in mid-shelf muds. Only a large, long-period wave with a wave height of 0(50) m, is deemed sufficient to have produced this layer. Such wave heights imply a nearby volcanic explosion on the scale of Krakatau or larger, or a nearby submarine landslide also of great size, or a bolide-water impact in the ocean.

Bourgeois, Joanne; Wiberg, Patricia L.

1988-01-01

321

Sedimentologic succession of uplifted coral community, Urvina Bay, Isabela Island, Galapagos Archipelago, Ecuador  

SciTech Connect

In March 1954, along the west-central coast of Isabela Island, an upward movement of magma suddenly raised Urvina Bay over 6 m and exposed several square kilometers of carbonate deposits covering a young aa lava flow (around 1000 years old). Results from 6 transect lines across the uplift, 30 cores, and 10 trenches describe the sedimentologic and ecologic transition from barren basalt to diverse carbonate sediments with small coral reefs. Along horizontal transects spanning from 0 to 7 m paleowater depth, there is a seaward progression from beaches, mangroves, and basalt to thick deposits (> 1.6 m) of carbonate sands and small coral reefs. Variation in water depth, degree of wave exposure, and irregularity of the aa lava topography provided many microhabitats where coral, calcareous algae, and mollusks settled and grew. Eight hermatypic coral species are found throughout the shelf, and three species (i.e., Pavona clavus, Pocillopora damicornis, and Porites lobata) produced five small, isolated, monospecific, coral-reef frameworks. The vertical section seen in cores and trenches shows that calcium carbonate increased upward, whereas volcanic sediments decreased; however, episodic layers occur with high concentrations of basaltic sands. In vertical samples from the central portion of the shelf, the coral population changed from small, isolated colonies of Psammocora (Plesioseris) superficalis near the basalt basement to large reef-forming colonies of Pocillopora damicornis farther upsection. Reefs of the Galapagos Islands are small and less diverse than most Pacific reefs. Nonetheless, understanding their temporal successional development should throw light on the origin and history of larger oceanic reefs in the Pacific.

Colgan, M.W.; Hollander, D.

1987-05-01

322

Sedimentological, biogeochemical and mineralogical facies of Northern and Central Western Adriatic Sea  

NASA Astrophysics Data System (ADS)

The aim of this work was to identify sedimentary facies, i.e. facies having similar biogeochemical, mineralogical and sedimentological properties, in present and recent fine sediments of the Northern and Central Adriatic Sea with their spatial and temporal variations. Further aims were to identify the transportation, dispersion and sedimentation processes and provenance areas of sediments belonging to the facies. A Q-mode factor analysis of mineralogical, granulometric, geochemical (major and trace elements) and biochemical (organic carbon and total nitrogen) properties of surficial and sub-surficial sediments sampled in the PRISMA 1 Project has been used to identify the sedimentary facies. On the whole, four facies were identified: 1) Padanic Facies, made up of fine siliciclastic sediments which reach the Adriatic Sea mainly from the Po River and are distributed by the Adriatic hydrodynamic in a parallel belt off the Italian coast. Southward, this facies gradually mixes with sediments from the Apennine rivers and with biogenic autochthonous particulate; 2) Dolomitic Facies, made up of dolomitic sediments coming from the eastern Alps. This facies is predominant north of the Po River outfalls and it mixes with Padanic Facies sediments in front of the Po River delta; 3) Mn-carbonate Facies, made up of very fine sediments, rich in coccolithophores and secondary Mn-oxy-hydroxides resulting from the reworking of surficial fine sediments in shallow areas and subsequent deposition in deeper areas; 4) Residual Facies, made up of coarse siliciclastic sediments and heavy minerals resulting from the action of waves and coastal currents; this facies is present mainly in inshore areas. The zoning of the facies, resulting from this study, will make possible the identification, through further investigation, on a greater scale, of more accurate facies borders and the recognition of sub-facies, resulting from secondary or weaker biogeochemical processes.

Spagnoli, Federico; Dinelli, Enrico; Giordano, Patrizia; Marcaccio, Marco; Zaffagnini, Fabio; Frascari, Franca

2014-11-01

323

The Ardross reservoir gridblock analogue: Sedimentology, statistical representivity, and flow upscaling  

SciTech Connect

We have used a reservoir gridblock-sized outcrop (10m by 100m) of fluvio-deltaic sandstones to evaluate the importance of internal heterogeneity for a hypothetical waterflood displacement process. Using a dataset based on probe permeameter measurements taken from two vertical transacts representing {open_quotes}wells{close_quotes} (5cm sampling) and one {open_quotes}core{close_quotes} sample (exhaustive 1mm-spaced sampling), we evaluate the permeability variability at different lengthscales, the correlation characteristics (structure of the variogram, function), and larger-scale trends. We then relate these statistical measures to the sedimentology. We show how the sediment architecture influences the effective tensor permeability at the lamina and bed scale, and then calculate the effective relative permeability functions for a waterflood. We compare the degree of oil recovery from the formation: (a) using averaged borehole data and no geological structure, and (b) modelling the sediment architecture of the interwell volume using mixed stochastic/deterministic methods. We find that the sediment architecture has an important effect on flow performance, mainly due to bedscale capillary trapping and a consequent reduction in the effective oil mobility. The predicted oil recovery differs by 18% when these small-scale effects are included in the model. Traditional reservoir engineering methods, using averages permeability values, only prove acceptable in high-permeability and low-heterogeneity zones. The main outstanding challenge, represented by this illustration of sub-gridblock scale heterogeneity, is how to capture the relevant geological structure along with the inherent geo-statistical variability. An approach to this problem is proposed.

Ringrose, P.; Pickup, G.; Jensen, J. [Heriot-Watt Univ., Edinburgh (United Kingdom)] [and others

1997-08-01

324

Hydrological and sedimentological variability of the peri-fluvial wetlands of the middle Loire river (France)  

NASA Astrophysics Data System (ADS)

With a catchment basin of 112,120 km^2 and a length of 1012 km, the Loire River is one of the most important fluvial hydrosystems in France. Notwithstanding numerous modifications (dikes, dams, nuclear power plants, gravel extractions), the Loire River hydrology has been saved from a total regularisation. Therefore, the spatial diversity of fluvial landforms creates a patchwork of wetlands: ox-bow lakes, dewatered channels... As one aim of this work was to determine the hydrological and sedimentological processes in the various wetlands, in a context of spatial variability of the fluvial landforms, we used a pluridisciplinarity approach: geomorphology, hydrology, geochemistry. The present study has targeted the functioning between the various hydro-geomorphologic units of the floodplain (main and secondary active channels, abandoned branches and the riverbank [alluvial] and perched aquifers), with regard to the spatial heterogeneity of the different fluxes and the temporal variations of bottom water level, full-bank stage and overflow discharge. In the upper part of the study area, mobile meanders prevail. The meanders migration results in oxbow lakes and the connection between the lakes and the other water reservoirs (e.g. river- and groundwaters) induce a strong lateral variability and a time delayed water input by the river as evidenced by the different geochemical and isotopic signatures. Downstream, the Loire River develops a multiple-channels pattern, of which numerous are abandoned. They are often dewatered along the year, only reconnected to the main channel during the periods of overflow discharges and the influence of the Loire riverwater is progressively substituted by the input of groundwaters (alluvial and perched aquifers). It appears that the submersion duration and the type of connection between the wetlands and the various reservoirs (inlet or outlet connection with the river, connection with the aquifers.) strongly influence the sedimentation rate and granulometric features.

Gautier, E.; Kunesch, S.; Negrel, P.; Petelet-Giraud, E.

2003-04-01

325

The stratigraphy and environment of deposition of productive Wilcox clays in west central Freestone and southeast Limestone Counties, Texas  

E-print Network

THE STRATIGRAPHY AND ENVIRONMENT OF DEPOSITION OF PRODUCTIVE WILCOX CLAYS IN WEST CENTRAL FREESTONE AND SOUTHEAST LIMESTONE COUNTIES, TEXAS A Thesis by STEPHANIE ANNE SHELVEY Submitted to the Graduate College of Texas ARM University... in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1986 Major Subject: Geology THE STRATIGRAPHY AND ENVIRONMENT OF DEPOSITION OF PRODUCTIVE WILCOX CLAYS IN WEST CENTRAL FREESTONE AND SOUTHEAST LIMESTONE COUNTIES, TEXAS A...

Shelvey, Stephanie Anne

1986-01-01

326

Micropaleontology and sedimentology across the Cretaceous/Tertiary boundary at La Ceiba (Mexico): impact-generated sediment gravity flows  

NASA Astrophysics Data System (ADS)

A micropaleontological and sedimentological study across the Cretaceous/Tertiary boundary-officially Cretaceous/Paleogene (K/P) boundary from the La Ceiba section (Mexico) was performed to examine the K/P planktic foraminiferal biostratigraphy, the sedimentology of a controversial K/P clastic unit, and the benthic and planktic foraminiferal assemblages turnover across this boundary. The clastic unit is stratigraphically placed between two pelagic marly units (Méndez and Velasco Formations) and displays a fining-upward gradation similar to a turbidite sequence. This K/P clastic unit contains a basal subunit consisting of calcareous marls rich in millimeter-sized spherules (microtektites) altered to clay minerals, abundant detrital quartz, mica minerals, and shocked quartz. According to the K/P stratotype definition from El Kef (Tunisia), the K/P boundary at La Ceiba must be placed at the base of the clastic (microspherules) unit since it is equivalent to the base of the boundary clay at El Kef. A short hiatus affects the lower part of the Danian, including the Guembelitria cretacea and Parvularugoglobigerina eugubina biozones and the lower part of the Parasubbotina pseudobulloides biozone. Nearly all commonly recorded Maastrichtian planktic foraminiferal species were found in the uppermost Maastrichtian interval, and there was no support for a gradual mass extinction pattern in the terminal Cretaceous. Benthic foraminiferal assemblages suggest that the La Ceiba section was deposited at lower bathyal depths. Oscillating megatsunami waves and/or a sea-level lowstand cannot explain the nature of the clastic deposits because of the observed deposition paleodepth (more than 1000 m). There is also evidence that the clastic unit was deposited under a high-sedimentation rate in upper flow regimes and that was emplaced as a single-pulse event as turbidites. This datum and other sedimentological features support a sediment gravity flow genesis for the clastic unit. All these results are consistent with the K/P impact theory and the asteroid impact on the Yucatan Peninsula.

Arz, J. A.; Arenillas, I.; Soria, A. R.; Alegret, L.; Grajales-Nishimura, J. M.; Liesa, C. L.; Meléndez, A.; Molina, E.; Rosales, M. C.

2001-10-01

327

Neogene carbonate exploration play concepts for Northern New Guinea: New iteration from field work and seismic stratigraphy along the Northern New Guinea Fault Zone  

SciTech Connect

Recent field reconnaissance, petrography, nanno and foraminifera age determinations, and seismic stratigraphy of the Sepik and Piore subbasins of northern New Guinea reveal the existence of an extensive, tectonically unstable, Miocene-Pliocene carbonate shelf system. These findings represent the first recorded evidence of northern Papuan limestones coeval in age to those of the hydrocarbon productive Salawati Basin of Irian Jaya. Moreover, these observations also demonstrate the significance of episodic activities of the northern New Guinea fault zone upon the changes in carbonate sedimentation and diagenesis. During the Neogene, algal biosparites to foraminiferal biomicrites defined the clean portion of a mixed clastic-carbonate shelf system of the northern New Guinea basin, which began at the central New Guinea cordillera and deepened northward. This shelf was interrupted by coral-coralline algal boundstone fringing- to patch-reef buildups with associated skeletal grainstones. Clean carbonates were spatially and temporally restricted to basement blocks, which episodically underwent uplift while terrigenous dilutes carbonates were more common in adjacently subsiding basement block bathymetric lows. These tectonic expressions were caused by the spatially transient nature of constraining bends of the evolving north New Guinea faults. As shown by seismic stratigraphy, by the late Miocene to the early Pliocene the uplift of the Bewani-Torricelli Mountains sagittally divided the shelf of the northern New Guinea basin into the Ramu-Sepik and the Piore basins. Continued regional sinistral transpression between the Pacific and the New Guinea leading edge of the Indo-Australian plates led to the reverse tilting of the Piore basin, the shallowing of the former distal shelf with concomitant extensive biolithite development (e.g., on subsiding volcanic islands) eventual uplifting of the Oenake Range, and en echelon faulting of the Bewani-Torricelli Mountains.

Pigott, J.D.; Geiger, C. (Univ. of Oklahoma, Norman, OK (United States))

1994-07-01

328

The Late Holocene Stratigraphy of an Inlet-Dominated Barrier Island, Pea Island, North Carolina.  

NASA Astrophysics Data System (ADS)

Sedimentological, foraminiferal, geochemical, and geophysical data sets as well as aerial photographs have been used to investigate the natural processes (inlet dynamics, ocean/estuarine washover, and sea-level change) responsible for the late Holocene units preserved in the barrier island subsurface at Pea Island National Wildlife Refuge. Historic nautical charts indicate that three inlets characterized Pea Island between early European exploration (1590) and the late 19th century; aerial photographs show New Inlet open in 1932 and 1940. Vibracores (up to 5.5 m) collected along three transects across Pea Island extend our knowledge of the geological evolution of this region to pre-historic times. The section in the longest core (PI01S6) consists of four fining-upwards depositional sequences. The basal unit of each sequence is a bedded, medium to fine, clean quartz sand with increasing concentrations of organic matter (3-4 % detrital and 5-7 % in situ Spartina alterniflora roots) or irregular mud clasts (2-5 cm) to spherical mud balls (1-2 cm) up core. The clean sand units have so far proven to be barren of foraminifera except for a shelly unit at ca. 220 cm below MSL. The foraminiferal assemblage in this unit is of open shelf character (Elphidium excavatum, Hanzawaia strattoni, and Buccella inusitata). A 14C age on a disarticulated Chione cancellata valve from this unit is cal. 930+/-60 BP. The sand grades into a gray, tight mud in the first two sequences and into an inter-laminated mud and in situ peat in the third sequence. The peat contains leaf fragments and rhizomes of the marsh plants Juncus roemarianus, Spartina cynosuroides, and/or Phragmites spp. The peat and muddy sand units contain marsh foraminifera (Trochammina spp., Miliammina fusca, Arenoparrella mexicana), which are also found in modern marsh deposits. A peat sample from the third fining upward sequence (the only one to grade into a true peat) has a 14C age of cal. 395+/-35 BP, cal. 295+/-35 BP, or cal 180+/-40 BP. The four fining-upwards sequences have sharp erosional basal contacts. These deposits appear to reflect back-barrier processes including sequential deposition of flood-tide delta sands and/or sound sands adjacent to marshes. The shelly sands, containing open shelf foraminiferal assemblages, represent oceanic overwash, inlet deposits, or open embayment sands deposited behind a laterally extensive breach in the barrier island. The sequences are capped by the deposits of modern environments that include algal flats, tidal creeks, high and low marshes, back-barrier berms, overwash fans, and aeolian dunes. Several of the modern environments became covered with marsh vegetation after the construction of barrier dune ridges in the late 1930?s.

Smith, C. G.; Ames, D.; Corbett, D. R.; Culver, S.; Mallinson, D.; Riggs, S. R.; Vance, D.

2002-12-01

329

Improved method for correlating late Pleistocene/Holocene records from the Bering Sea: application of a biosiliceous/geochemical stratigraphy  

USGS Publications Warehouse

The combination of high-resolution siliceous biostratigraphy and radiocarbon dating provides a mechanism for detailed assessment of the depositional history in late Pleistocene sediments from the Bering Sea where average accumulation rates are uncharacteristically high compared to rates calculated for most other ocean basins. Vital to the development of this stratigraphy was the recognition that the abundance pattern of the radiolarian species Cycladophora davisiana in Bering Sea cores is quite similar to this species' previously correlated abundance curve in a late Pleistocene/Holocene record from the northwest Pacific. Comparison of this high-resolution stratigraphy with other recently developed floral and lithologic stratigraphies for late Pleistocene Bering Sea sediments shows that the various stratigraphies do not always yield identical results when applied to a particular sediment sequence. With this new stratigraphy based upon a combination of siliceous microfaunal abundance patterns and radiocarbon dating, one can identify reworking, discontinuities and other interruptions in the depositional sequence more precisely than with previously devised stratigraphies, thereby improving the correlation techniques for comparison of late Pleistocene/Holocene records from this marginal sea. ?? 1986.

Morley, J.J.; Robinson, S.W.

1986-01-01

330

Effect of explicit representation of detailed stratigraphy on brine and gas flow at the Waste Isolation Pilot Plant  

SciTech Connect

Stratigraphic units of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) disposal room horizon includes various layers of halite, polyhalitic halite, argillaceous halite, clay, and anhydrite. Current models, including those used in the WIPP Performance Assessment calculations, employ a ``composite stratigraphy`` approach in modeling. This study was initiated to evaluate the impact that an explicit representation of detailed stratigraphy around the repository may have on fluid flow compared to the simplified ``composite stratigraphy`` models currently employed. Sensitivity of model results to intrinsic permeability anisotropy, interbed fracturing, two-phase characteristic curves, and gas-generation rates were studied. The results of this study indicate that explicit representation of the stratigraphy maintains higher pressures and does not allow as much fluid to leave the disposal room as compared to the ``composite stratigraphy`` approach. However, the differences are relatively small. Gas migration distances are also different between the two approaches. However, for the two cases in which explicit layering results were considerably different than the composite model (anisotropic and vapor-limited), the gas-migration distances for both models were negligible. For the cases in which gas migration distances were considerable, van Genuchten/Parker and interbed fracture, the differences between the two models were fairly insignificant. Overall, this study suggests that explicit representation of the stratigraphy in the WIPP PA models is not required for the parameter variations modeled if ``global quantities`` (e.g., disposal room pressures, net brine and gas flux into and out of disposal rooms) are the only concern.

Christian-Frear, T.L.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.

1996-04-01

331

Climate variability of southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40°S)  

Microsoft Academic Search

This paper presents a multi-proxy climate record of an 11 m long core collected in Lago Puyehue (southern Chile, 40°S) and\\u000a extending back to 18,000 cal yr BP. The multi-proxy analyses include sedimentology, mineralogy, grain size, geochemistry,\\u000a loss-on-ignition, magnetic susceptibility and radiocarbon dating. Results demonstrate that sediment grain size is positively\\u000a correlated with the biogenic sediment content and can be used as

Sébastien Bertrand; François Charlet; Bernard Charlier; Virginie Renson; Nathalie Fagel

2008-01-01

332

Bayesian Uncertainty of Thwaites Glacier Catchment Radar Stratigraphy  

NASA Astrophysics Data System (ADS)

Information about the history and dynamics of ice sheets is contained in basin-scale radar sounding surveys. Englacial, isochronous radar horizons traced throughout the sampled domain of these basins can give a three-dimensional picture of past ice flow by revealing significant details of deformation within the ice column. We focus our efforts in the Thwaites Glacier catchment, West Antarctica, which previous studies have shown to be a bellwether in future WAIS deglaciation scenarios. Here we present a Bayesian determination of the age-depth profile at the Byrd ice core, Antarctica, based on robust uncertainty estimates in ice core ages and radar sounding depths. A simple ice flow model is used to determine the age-depth relationship in ice near the core and a Markov Chain Monte Carlo technique is used to sample a posterior distribution of age as a function of depth to within uncertainty. We propagate the age-depth information, including uncertainty, for several prominent radar reflectors from the Byrd ice-coring site in the Interior Ross Embayment across the ice divide and throughout the Thwaites Glacier catchment using airborne ice-penetrating radar data collected and processed by the University of Texas Institute for Geophysics.

Gutowski, G.; Jackson, C. S.; Blankenship, D. D.; Young, D. A.; Cavitte, M. G.

2013-12-01

333

Stratigraphy, sedimentology and petrology of neogene rocks in the Deschutes Basin, Central Oregon: a record of continental-margin volcanism and its influence on fluvial sedimentation in an arc-adjacent basin  

Microsoft Academic Search

Neogene rocks of the Deschutes basin include the middle Miocene Columbia River Basalt Group and Simtustus Formation, and late Miocene to early Pliocene Deschutes Formation. Assignment of Prineville chemical-type flows to the Grande Ronde Basalt of the Columbia River Basalt Group is based on correlation of these lavas from their type area through the Deschutes basin and onto the Columbia

1986-01-01

334

Sedimentology and stratigraphic development of the upper Nyalau Formation (Early Miocene), Sarawak, Malaysia: A mixed wave- and tide-influenced coastal system  

NASA Astrophysics Data System (ADS)

This work presents the first detailed facies analysis of the upper Nyalau Formation exposed around Bintulu, Sarawak, Malaysia. The Lower Miocene Nyalau Formation exposures in NW Sarawak represent one of the closest sedimentological outcrop analogues to the age equivalent, hydrocarbon-bearing, offshore deposits of the Balingian Province. Nine types of facies associations are recognised in the Nyalau Formation, which form elements of larger-scale facies successions. Wave-dominated shoreface facies successions display coarsening upward trends from Offshore, into Lower Shoreface and Upper Shoreface Facies Associations. Fluvio-tidal channel facies successions consist of multi-storey stacks of Fluvial-Dominated, Tide-Influenced and Tide-Dominated Channel Facies Associations interbedded with minor Bay and Mangrove Facies Associations. Estuarine bay facies successions are composed of Tidal Bar and Bay Facies Associations with minor Mangrove Facies Associations. Tide-dominated delta facies successions coarsen upward from an Offshore into the Tidal Bar Facies Association. The Nyalau Formation is interpreted as a mixed wave- and tide-influenced coastal depositional system, with an offshore wave-dominated barrier shoreface being incised by laterally migrating tidal channels and offshore migrating tidal bars. Stratigraphic successions in the Nyalau Formation form repetitive high frequency, regressive-transgressive cycles bounded by flooding surfaces, consisting of a basal coarsening upward, wave-dominated shoreface facies succession (representing a prograding barrier shoreface and/or beach-strandplain) which is sharply overlain by fluvio-tidal channel, estuarine bay or tide-dominated delta facies successions (representing more inshore, tide-influenced coastal depositional environments). An erosion surface separates the underlying wave-dominated facies succession from overlying tidal facies successions in each regressive-transgressive cycle. These erosion surfaces are interpreted as unconformities formed when base level fall resulted in deep incision of barrier shorefaces. Inshore, fluvio-tidal successions above the unconformity display upward increase in marine influence and are interpreted as transgressive incised valley fills.

Amir Hassan, Meor H.; Johnson, Howard D.; Allison, Peter A.; Abdullah, Wan Hasiah

2013-10-01

335

Sedimentology of the Neoproterozoic (c. 580 Ma) Squantum 'Tillite', Boston Basin, USA: Mass flow deposition in a deep-water arc basin lacking direct glacial influence  

NASA Astrophysics Data System (ADS)

The Squantum 'Tillite' (c. 593-570 Ma) consists of thick (up to 215 m) massive and crudely-stratified diamictites conformably interbedded with subaqueously-deposited conglomerates and sandstones within a thick (~ 7 km) Boston Basin fill which is dominated by argillite turbidites. The Squantum Tillite was first interpreted as being glacigenic in origin in 1914 because of the presence of diamictites; argillites were interpreted as glaciolacustrine 'varves' with rare ice-rafted debris, and conglomerates as glaciofluvial outwash. More recently these have been shown to be the product of deep marine mass flow processes with no glacial influence, yet because of its age equivalence with the deep marine, glacially-influenced Gaskiers Formation, the Squantum Tillite is still seen by some as supporting evidence for a widespread 'Snowball Earth' event at c. 580 Ma. New sedimentological work confirms that conglomerate and sandstone facies are deep marine sediment gravity flows genetically related to massive (homogeneous) and crudely-stratified (heterogeneous) diamictites produced subaqueously by downslope mixing of gravel and cobbles with muddy facies. Rare horizons of 'ice rafted debris' in thin-bedded and laminated turbidite facies interbedded with thick debrites show a weak but positive correlation of lamina thickness with grain size, suggesting these facies are non-glacial co-genetic 'debrite-turbidite' couplets. A significant volcanic influence on sedimentation is identified from reworked lapilli tuff beds and reworked ash in turbidites. The depositional setting of the Squantum 'Tillite' appears to be that of a submarine slope/fan setting in an open marine volcanic arc basin receiving large volumes of poorly-sorted sediment on the mid-latitude active margin of Gondwana. No direct glacial influence is apparent.

Carto, Shannon L.; Eyles, Nick

2012-08-01

336

Postglacial eruptive history of Laguna del Maule volcanic field in Chile, from fallout stratigraphy in Argentina  

NASA Astrophysics Data System (ADS)

The Laguna del Maule (LdM) volcanic field, which surrounds the 54-km2 lake of that name, covers ~500 km2 of rugged glaciated terrain with Quaternary lavas and tuffs that extend for 40 km westward from the Argentine frontier and 30 km N-S from the Rio Campanario to Laguna Fea in the Southern Volcanic Zone of Chile. Geologic mapping (Hildreth et al., 2010) shows that at least 130 separate vents are part of the LdM field, from which >350 km3 of products have erupted since 1.5 Ma. These include a ring of 36 postglacial rhyolite and rhyodacite coulees and domes that erupted from 24 separate vents and encircle the lake, suggesting a continued large magma reservoir. Because the units are young, glassy, and do not overlap, only a few ages had been determined and the sequence of most of the postglacial eruptions had not previously been established. However, most of these postglacial silicic eruptions were accompanied by explosive eruptions of pumice and ash. Recent investigations downwind in Argentina are combining stratigraphy, grain-size analysis, chemistry, and radiocarbon dating to correlate the tephra with eruptive units mapped in Chile, assess fallout distribution, and establish a time-stratigraphic framework for the postglacial eruptions at Laguna del Maule. Two austral summer field seasons with a tri-country collaboration among the geological surveys of the U.S., Chile, and Argentina, have now established that a wide area east of the volcanic field was blanketed by at least 3 large explosive eruptions from LdM sources, and by at least 3 more modest, but still significant, eruptions. In addition, an ignimbrite from the LdM Barrancas vent complex on the border in the SE corner of the lake traveled at least 15 km from source and now makes up a pyroclastic mesa that is at least 40 m thick. This ignimbrite (72-75% SiO2) preceded a series of fall deposits that are correlated with eruption of several lava flows that built the Barrancas complex. Recent 14C dates suggest that most of the preserved LdM fallout eruptions were between 7 ka and 2 ka. However, the oldest and perhaps largest fall unit yet recognized is correlated with the Los Espejos rhyolite lava flow that dammed the lake and yields a 40Ar/39Ar age of 23 ka. Pumice clasts as large as 8.5 cm and lithics to 4 cm were measured 32 km ENE of source. It is the only high-silica rhyolite (75.5-76% SiO2) fall layer yet found, correlates chemically with the Los Espejos rhyolite lava flow, and includes distinctive olivine-bearing lithics that are correlated with mafic lavas which underlie the Espejos vent. Extremely frothy pumice found near the vent is also consistent with the bubble-wall shards and reticulite pumice distinctive of the correlative fall deposit. Another large rhyolite fall deposit (74.5% SiO2), 4 m thick 22 km E of source, has pumice clasts to 9.5 cm and includes ubiquitous coherent clasts of fine, dense soil that suggests it erupted through wet ground; 14C dates (uncalibrated) yield ages ~7 ka. Stratigraphic details suggest that pulses of fallout were accompanied by small pyroclastic flows. Ongoing field and lab work continues to build the LdM postglacial eruptive story. The numerous postglacial explosive eruptions from the LdM field are of significant concern because of ongoing 33 cm/year uplift along the western lakeshore, as measured by InSAR and verified by GPS.

Fierstein, J.; Sruoga, P.; Amigo, A.; Elissondo, M.; Rosas, M.

2012-12-01

337

Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis  

SciTech Connect

This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

Suzette Payne

2007-08-01

338

Stratigraphy and erosional landforms of layered deposits in Valles Marineris, Mars  

NASA Astrophysics Data System (ADS)

Satellite imagery is used to identify stratigraphy and erosional landforms of 13 layered deposits in the Valles Marineris region of Mars (occurring, specifically, in Gangis, Juventae, Hebes, Ophir-Candor, Melas, and Capri-Eos Chasmata), based on albedo and erosional styles. Results of stratigraphic correlations show that the stratigraphy of layered deposits in the Hebes, Juventae, and Gangis Chasmata are not well correlated, indicating that at least these chasmata had isolated depositional environments resulting in different stratigraphic sequences. On the other hand, the layered deposits in Ophir-Candor and Melas Chasmata appear to have been connected in each chasma. Some of the layered deposits display complexities which indicate changes in space and time in the dominant source materials.

Komatsu, G.; Geissler, P. E.; Strom, R. G.; Singer, R. B.

1993-06-01

339

Modeling of the Sedimentary Interbedded Basalt Stratigraphy for the Idaho National Laboratory Probabilistic Seismic Hazard Analysis  

SciTech Connect

This report summarizes how the effects of the sedimentary interbedded basalt stratigraphy were modeled in the probabilistic seismic hazard analysis (PSHA) of the Idaho National Laboratory (INL). Drill holes indicate the bedrock beneath INL facilities is composed of about 1.1 km of alternating layers of basalt rock and loosely consolidated sediments. Alternating layers of hard rock and “soft” loose sediments tend to attenuate seismic energy greater than uniform rock due to scattering and damping. The INL PSHA incorporated the effects of the sedimentary interbedded basalt stratigraphy by developing site-specific shear (S) wave velocity profiles. The profiles were used in the PSHA to model the near-surface site response by developing site-specific stochastic attenuation relationships.

Suzette Payne

2006-04-01

340

Transgressive valley-fill sequences: Implications to sequence stratigraphy and petroleum exploration  

Microsoft Academic Search

Large amounts of hydrocarbons have been discovered in association with valley-fill deposits. The lateral and vertical distribution of siliciclastic rock types in transgressive valley-fill deposits is governed by the stratigraphic sequence. The sequence stratigraphy is controlled primarily by the interaction of subsidence, eustacy, and volume of sediments. Reservoir-potential siliciclastics accumulate in valley-fill, estuarine, and wave-reworked transgressive deposits. Differences in the

J. C. Horne; P. E. Devine; D. M. Wheeler; A. J. Scott

1990-01-01

341

Holocene erosion, sedimentation, and stratigraphy at Raven Fork, Southern Blue Ridge Mountains, USA  

Microsoft Academic Search

Holocene colluvial and alluvial stratigraphy and a radiocarbon chronology are presented for the valley of the lower three kilometers of Raven Fork, a mountain stream draining 194 km2 of high relief (1.3 km) terrain of the Southern Blue Ridge Mountains in western North Carolina, USA, which is in a region that lacks good chronological data. Lower hillslopes, alluvial\\/colluvial fans, alluvial

David S. Leigh; Paul A. Webb

2006-01-01

342

The stratigraphy and palaeontology of the Upper Weald Clay (Barremian) at Smokejacks Brickworks, Ockley, Surrey, England  

Microsoft Academic Search

The stratigraphy of the Weald Clay of Surrey is summarized. The Hauterivian\\/Barremian boundary is shown to correspond closely to the Lower Weald Clay\\/Upper Weald Clay boundary, which lies at the base of BGS (British Geological Survey) Bed 3a and is close to the Ewhurst\\/Capel ostracod faunicycle boundary. Detailed sections of the sediments exposed in the pit at Smokejacks Brickworks are

Andrew J. Ross; Elizabeth Cook

1995-01-01

343

Loess–paleosol stratigraphy of Dukso area, Namyangju City, Korea (South)  

Microsoft Academic Search

As Korea lies between China, with a drier climate, and the wetter Japanese Islands, the Korean loess–paleosol stratigraphy constitutes an important record of variations in the East Asian monsoon climate. The loess–paleosol sequence consists of three loess layers (L1LL1, L1LL2, and L2) and three paleosols (L1SS1, S1, and S2) in the study area. L1LL1 accumulated near the surface, and is

Kang-Min Yu; Jae-Bong Shin; Toshiro Naruse

2008-01-01

344

Improved Quaternary North Atlantic stratigraphy using relative paleointensity (RPI), oxygen isotopes, and magnetic excursions (Invited)  

NASA Astrophysics Data System (ADS)

Improving the resolution of Quaternary marine stratigraphy is one of the major challenges in paleoceanography. IODP Expedition 303/306, and ODP Legs 162 and 172, have yielded multiple high-resolution records (mean sedimentation rates in the 7-20 cm/kyr range) of relative paleointensity (RPI) that are accompanied by oxygen isotope data and extend through much of the Quaternary. Tandem fit of RPI and oxygen isotope data to calibrated templates (LR04 and PISO), using the Match protocol, yields largely consistent stratigraphies, implying that both RPI and oxygen isotope data are dominated by regional/global signals. Based on the recent geomagnetic field, RPI can be expected to be a global signal (i.e. dominated by the axial dipole field) when recorded at sedimentation rates less than several decimeters/kyr. Magnetic susceptibility, on the other hand, is a local/regional lithologic signal, and therefore less useful for long-distance correlation. Magnetic excursions are directional phenomena and, when adequately recorded, are manifest as paired reversals in which the virtual geomagnetic poles (VGPs) reach high latitudes in the opposite hemisphere, and they occupy minima in RPI records. Reversed VGPs imply that excursions are attributable to the main axial dipole, and therefore provide global stratigraphy. The so-called Iceland Basin excursion is recorded at many IODP/ODP sites and lies at the MIS 6/7 boundary at ~188 ka, with a duration of 2-3 kyr. Other excursions in the Brunhes chron are less commonly recorded because their duration (perhaps <~1 kyr) requires sedimentation rates >20 cm/kyr to be adequately recorded. On the other hand, several excursions within the Matuyama Chron are more commonly recorded in North Atlantic drift sediments due to relatively elevated durations. With some notable exceptions (e.g. Iberian Margin), high quality RPI records from North Atlantic sediments, together with magnetic excursions, can be used in tandem with oxygen isotope data to strengthen Quaternary (North Atlantic) stratigraphy.

Channell, J. E.

2013-12-01

345

Stratigraphy, composition and form of the Deccan Basalts, Western Ghats, India  

Microsoft Academic Search

In the Western Ghats between latitudes 18° 20' N and 19° 15' N, 7000 km2 of Deccan Basalt have been mapped with the primary objective of establishing a flow stratigraphy as a guide to the volcanic history of the flood basalts. Using over 70 measured vertical sections, major and trace element analyses of nearly 1200 samples, and rare-earth and87Sr\\/86Sr determinations

J. E. Beane; C. A. Turner; P. R. Hooper; K. V. Subbarao; J. N. Walsh

1986-01-01

346

The Cretaceous stratigraphy of the Western Cordillera Oriental, Columbia  

SciTech Connect

During 1987 and 1988, a major field project sponsored by Tenneco was undertaken along the west flank of the Cordillera Oriental of Colombia between Alpujarra (between the Neiva and Girardot Sub-Basins) and the Middle Magdalena Basin (Cimitarra area). An important result of this study was the documentation of pronounced regional variation in the age, thickness, and facies of the Cretaceous section. The maximum thickness estimated was 7 km for the Bogota-Villeta section, with ages as old as Berriasian. This section can be divided into 4 or 5 depositional sequences. A clastic source to the west or southwest is indicated for the lower sequence 1 (and 2 ), an eastern source dominated sequences 3 and 4, and eastern and western sources supplied the upper sequence. Toward the north the section thins to an estimated 3-5 km but still ranges in age throughout the Cretaceous. Southward, on the other hand, the Cretaceous thins to about 2 km and is restricted to Aptian-Albian and younger ages. The variations in ages, facies, and thickness are consistent with recent models of the evolution of the Cretaceous basin. During the Neocomian, the Bogata area formed the main depocenter of the basin and was characterized by restricted facies and turbidites, suggesting steep, possibly faulted basin margins. Facies to the north, near the Middle Magdalena Basin, indicate shallower water, possibly a platform. By the end of the Early Cretaceous, expansion of the marine basin out of the central Cordillera Oriental and regionally more constant facies indicate the onset of dominantly thermal subsidence. The end of the Cretaceous was marked by regression and asymmetric clastic input from east and west of the basin.

Allen, R.B.; Alfonso, C.A.; Ressetar, R.; Salazar, A. (Univ. of South Carolina, Columbia (United States)); Ballesteros, I.; Cardozo, E.; Laverde, F.; Ramirez, C. (Hocol-Shell, Cartegena (Colombia)); Moreno, J.M. (Universidad Nacional de Colombia, Bogota (Colombia)); Rubiano, J.; Sarmiento, L. (Instituto Colombiano de Petroleos, Bucaramanga (Colombia))

1993-02-01

347

40Ar/(39)Ar geochronology and paleomagnetic stratigraphy of the Lukeino and lower Chemeron Formations at Tabarin and Kapcheberek, Tugen Hills, Kenya.  

PubMed

(40)Ar/(39)Ar single-crystal laser-fusion dating, K-Ar dating, and paleomagnetic reversal stratigraphy have been used to determine the chronostratigraphy of the Kabarnet Trachyte, Lukeino Formation, Kaparaina Basalt Formation, and Chemeron Formation at the sites of Kapcheberek (BPRP#77) and Tabarin (BPRP#77) in the Tugen Hills, Kenya. The succession ranges in age from 6.56-3.8 Ma. The upper Lukeino Formation at Kapcherberek, including the fauna from the site BPRP#76, was deposited during chron C3r and can be constrained to the interval 5.88-5.72 Ma. The Chemeron Formation at Tabarin includes at the base an ignimbrite and associated basal air-fall tuff with a combined age of 5.31+/-0.03 Ma. Sedimentary and volcaniclastic rocks of the Chemeron Formation which unconformably overlie the ignimbrite record chrons C3n.2n through C2Ar. The combined(40)Ar/(39)Ar and paleomagnetic data constrain the age of this sequence to 4.63-3.837 Ma. The age of the Tabarin mandible fragment (KNM-TH 13150) and associated fauna at site BPRP#77 in the Chemeron Formation is 4.48-4.41 Ma, marginally older than similar early hominids from Aramis, Ethiopia. Basin subsidence appears to be defining an overall accumulation rate of about 17 cm/ka over the 2.7 Ma represented at Tabarin and Kapcheberek, despite episodes of rapid accumulation and hiatuses. PMID:11795971

Deino, Alan L; Tauxe, Lisa; Monaghan, Marc; Hill, Andrew

2002-01-01

348

Application of sequence stratigraphy to carbonate reservoir prediction, Early Palaeozoic eastern Warburton basin, South Australia  

SciTech Connect

The Early Palaeozoic Warburton Basin underlies the gas and oil producing Cooper and Eromanga Basins. Postdepositional tectonism created high potential fracture porosities, complicating the stratigraphy and making reservoir prediction difficult. Sequence stratigraphy integrating core, cuttings, well-log, seismic and biostratigraphic data has recognized a carbonate-dominated to mixed carbonate/siliciclastic supersequence comprising several depositional sequences. Biostratigraphy based on trilobites and conodonts ensures reliable well and seismic correlations across structurally complex areas. Lithofacies interpretation indicates sedimentary environments ranging from carbonate inner shelf, peritidal, shelf edge, deep outer shelf and slope to basin. Log facies show gradually upward shallowing trends or abrupt changes indicating possible sequence boundaries. With essential depositional models and sequence analysis from well data, seismic facies suggest general reflection configurations including parallel-continuous layered patterns indicating uniform neuritic shelf, and mounded structures suggesting carbonate build-ups and pre-existing volcanic relief. Seismic stratigraphy also reveals inclined slope and onlapping margins of a possibly isolated platform geometry. The potential reservoirs are dolomitized carbonates containing oomoldic, vuggy, intercrystalline and fracture porosities in lowstand systems tracts either on carbonate mounds and shelf crests or below shelf edge. The source rock is a deep basinal argillaceous mudstone, and the seal is fine-grained siltstone/shale of the transgressive system tract.

Xiaowen S.; Stuart, W.J.

1996-01-01

349

Comparison between experimental and numerical stratigraphy emplaced by a prograding delta  

NASA Astrophysics Data System (ADS)

A one-dimensional model that is able to store the stratigraphy emplaced by a prograding delta is validated against experimental results. The laboratory experiment describes the migration of a Gilbert delta on a sloping basement into standing water, i.e., a condition in which the stratigraphy emplaced by the delta front is entirely stored in the deposit. The migration of the delta front and the deposition on the delta top are modeled with total and grain-size-based mass conservation models. The vertical sorting on the delta front is modeled with a lee-face-sorting model as a function of the grain size distribution of the sediment deposited at the brinkpoint, i.e., at the downstream end of the delta top. Notwithstanding the errors associated with the grain-size-specific bedload transport formulation, the comparison between numerical and experimental results shows that the model is able to reasonably describe the progradation of the delta front, the frictional resistances on the delta top, and the overall grain size distribution of the delta top and delta front deposits. Further validation of the model in the case of variable base level is currently in progress to allow for future studies, at field and laboratory scale, on how the delta stratigraphy is affected by different changes of relative base level.

Viparelli, E.; Blom, A.; Ferrer-Boix, C.; Kuprenas, R.

2014-06-01

350

Coral Patch seamount (NE Atlantic) - a sedimentological and megafaunal reconnaissance based on video and hydroacoustic surveys  

NASA Astrophysics Data System (ADS)

The present study provides new knowledge about the so far largely unexplored Coral Patch seamount which is located in the NE Atlantic Ocean half-way between the Iberian Peninsula and Madeira. For the first time a detailed hydroacoustic mapping (MBES) in conjunction with video surveys (ROV, camera sled) were performed to describe the sedimentological and biological characteristics of this sub-elliptical ENE-WSW elongated seamount. Video observations were restricted to the southwestern summit area of Coral Patch seamount (water depth: 560-760 m) and revealed that this part of the summit is dominated by exposed hard substrate, whereas soft sediment is just a minor substrate component. Although exposed hardgrounds are dominant for this summit area and, thus, offer suitable habitat for settlement by benthic organisms, the benthic megafauna shows rather scarce occurrence. In particular, scleractinian framework-building cold-water corals are apparently rare with very few isolated and small-sized live occurrences of the species Lophelia pertusa and Madrepora oculata. In contrast, dead coral framework and coral rubble are more frequent pointing to a higher abundance of cold-water corals on Coral Patch during the recent past. This is even supported by the observation of fishing lines that got entangled with rather fresh-looking coral frameworks. Overall, long lines and various species of commercially important fish were frequently observed emphasising the potential of Coral Patch as an important target for fisheries that may have impacted the entire benthic community. Hydroacoustic seabed classification covered the entire summit of Coral Patch and its northern and southern flanks (water depth: 560-2660 m) and revealed extended areas dominated by mixed and soft sediments at the northern flank and to a minor degree at its easternmost summit and southern flank. Nevertheless, these data also predict most of the summit area to be dominated by exposed bedrock which would offer suitable habitat for benthic organisms. By comparing the locally restricted video observations and the broad-scale monitoring of a much larger and deeper seafloor area as derived by hydroacoustic seabed classification, it becomes obvious that habitat information obtained by in situ sampling may provide a rather scattered pattern about the entire seamount ecosystem. Solely with a combination of both methods, a satisfactory approach to describe the diverse characteristics of a seamount ecosystem can be derived which is in turn indispensable for future scientific monitoring campaigns as well as management and conservation purposes.

Wienberg, C.; Wintersteller, P.; Beuck, L.; Hebbeln, D.

2013-05-01

351

Coral Patch seamount (NE Atlantic) - a sedimentological and macrofaunal reconnaissance based on video and hydroacoustic surveys  

NASA Astrophysics Data System (ADS)

The present study provides new knowledge about the so far largely unexplored Coral Patch seamount which is located in the NE Atlantic Ocean half-way between the Iberian Peninsula and Madeira. For the first time a detailed hydroacoustic mapping (MBES) in conjunction with video surveys (ROV, camera sled) were performed to describe the sedimentological and biological characteristics of this sub-elliptical ENE-WSW elongated seamount. Video observations were restricted to the south-western summit area of Coral Patch seamount (area: ~ 8 km2, water depth: 560-760 m) and revealed that this part of the summit is dominated by exposed hard substrate, whereas soft sediment is just a minor substrate component. Although exposed hardgrounds are dominant for this summit area, and thus, offer suitable habitat for settlement by benthic organisms, the macrofauna shows rather low abundance and diversity. In particular, scleractinian framework-building cold-water corals are apparently rare with very few isolated and small-sized live occurrences of the species Lophelia pertusa and Madrepora oculata. In contrast, dead coral framework and coral rubble are more frequent pointing to a higher abundance of cold-water corals on Coral Patch during the recent past. This is even supported by the observation of fishing lines that got entangled with rather fresh-looking coral frameworks. Overall, long lines and various species of commercially important fish were frequently observed emphasising the potential of Coral Patch as an important target for fisheries that may have impacted the entire benthic community. Hydroacoustic seabed classification covered the entire summit of Coral Patch and its northern and southern flanks (area: 560 km2; water depth: 560-2660 m) and revealed extended areas dominated by mixed and soft sediments at the northern flank and to a minor degree at its easternmost summit and southern flank. Nevertheless, also these data predict most of the summit area to be dominated by exposed bedrock which would offer suitable habitat for benthic organisms. By comparing the locally restricted video observations and the broad-scale monitoring of a much larger and deeper seafloor area as derived by hydroacoustic seabed classification, it becomes obvious that habitat information obtained by in situ sampling may provide a rather scattered pattern about the entire seamount ecosystem. Solely with a combination of both methods, a satisfactory approach to describe the diverse characteristics of a seamount ecosystem can be derived which is in turn indispensable for future scientific monitoring campaigns as well as management and conservation purposes.

Wienberg, C.; Wintersteller, P.; Beuck, L.; Hebbeln, D.

2012-12-01

352

Sedimentology of box cores from the Cap-Ferret Canyon area (Bay of Biscay)  

NASA Astrophysics Data System (ADS)

Sedimentological and geochemical investigations of 45 box cores collected in various morphological settings of the Cap-Ferret Canyon (Bay of Biscay) are presented to document accurately present-day sedimentary processes on the eastern Atlantic continental slope. The magnitude and variations through time and space of the canyon's channelling or sinking effect on fine-grained particles behaviour in comparison with sediment flux across the continental margin was particularly considered and discussed: 1. All the parameters (grain-size, carbonate and water content, major and trace elements), measured both in surface sediment and downcore, demonstrate that the characteristics at the sediment interface vary with water depth and with the morphological setting. 2. Surface sediment is generally coarser-grained, more terrigenous and deposited at higher rate in the canyon than outside. The terrigenous particle supply must be preferentially directed and trapped within the canyon's depression due to present-day dynamic conditions. 3. The downcore gradients reflected in grain-size variations yield information on settling processes. The coarse-grained population has the characteristics of a winnowed sediment similar to those on the outer shelf, while the fine-grained population has grain-size spectra very similar to the present-day fine-grained suspensions. 4. The carbonate particles are partly derived from direct pelagic production (distinct grain-size distribution) and, like terrigenous grains, are partly reworked (similar downslope decrease in the coarse grained fraction). The relatively low CaCO 3 content observed in the canyon, and its downward increase up to values observed at shallower depths, may result from a channelling of terrigenous suspensions within the canyon. 5. At the present high sea-level stand, the canyon should become a trap for sediments without much gravity remobilisation, as indicated by a lack of sedimentary structures in box cores. However, a simple increase in sediment trapping can hardly account for the downcore gradients observed in the box cores. These trends, which are observed on other continental margins ( Monaco et al., 1993, Journées spécialisées de la Soc. Géol. France: Géosciences Marines, 16-17 December 1994, Abstract p. 83.), indicate a probable increase in terrigenous supplies and/or in settling energy.

Cremer, Michel; Weber, Olivier; Jouanneau, Jean-Marie

1999-10-01

353

Sedimentological, Mineralogical and Geochemical Characterization of Sand Dunes in Saudi Arabia  

NASA Astrophysics Data System (ADS)

Sedimentological, mineralogical, morphological and geochemical studies of sand dunes from ten locations in Saudi Arabia were conducted in order to determine the differences between them and to find out the provenance and tectonic setting of these sand dunes. Sixty seven samples were collected from different sand dunes types ranging in morphology from linear, barchans, parabolic to stars dunes. In overall, the sand dunes are fine to coarse grained mean grain size, moderately sorted, near symmetrical skewness with mesokurtic distribution characterized sand dunes in most locations. The sand dunes grains are subrounded in all locations except in the Red sea, Qassim, central Arabia and the eastern province which showed sub-angular grains. The main mineral compositions of studied aeolian sand dunes are quartz, feldspar, calcite, and mica. Quartz is the dominant mineral in locations with significant amount of feldspars and mica in Najran, Red sea and Central Arabia locations. Moreover, calcite is present in Sakaka and NW Empty Quarter (Jafurah). Basement related sand dunes in Najran, Central Arabia and Red sea locations are sub-mature in terms of their mineralogical maturity. Whereas, sand dunes in other locations are texturally mature except those from the Red sea which showed sub-mature sand. The sands are classified as quartz arenite, except in the basement related sand dunes in Najran, central Arabia and the Red sea are ranging from sub-arkose, sub-litharenite and lithraenite. Morphologically, parallel to sub-parallel sand ridges with NE-SW orientation occurred in east and north parts of Empty Quarter (Najran and Jafurah) and NW-SE orientation in Dahna and Nafud deserts in central and north regions of Saudi Arabia. Parabolic sand dunes characterized the Nafud desert (Hail, Sakaka, Tayma locations). Barchans and star sand dunes characterize the Empty Quarter (Jafurah). Major, trace, and rare earth elements studies were carried out to determine the composition, provenance and tectonic history of the sand dunes. Geochemical analysis indicated that most of sand dunes are quartz arenite type, except in the Red sea, basement related central Saudi Arabia and Najran areas, the sand dunes are sub-arkoses, sub-litharenite and litharenite. The concentration of major,trace and rare elements showed active continental margins as a tectonic setting of Red sea, basement related Najran and central Arabia sand dune. In contrast, passive continental margins for the other locations. The distribution of major, trace and rare earth elements showed similarity in chemical composition between basement related sand dunes in Red sea, Najran and central Arabia.

Benaafi, Mohammed; Abdullatif, Osman

2014-05-01

354

Sedimentology, diagenesis and ichnology of Cretaceous and Palaeogene calcretes and palustrine carbonates from Uruguay  

NASA Astrophysics Data System (ADS)

The Cretaceous (Mercedes Formation) and Paleogene (Queguay Formation) deposits cropping out in W and S Uruguay comprise two terrestrial limestone units that are very rich in trace fossils. The study of these units permits to propose a sedimentological model for palustrine limestones and calcretes in which the distribution of different types of trace fossils is considered. The study units include three main types of deposit: lacustrine limestones, palustrine limestones and calcretes. The lacustrine limestones are relatively homogeneous and contain gastropods, charophytes and ostracods, but no trace fossils. They were deposited in a relatively more perennial lacustrine environment. The palustrine limestones include four different facies: desiccated mudstones, nodular limestones, granular limestones and gravel-sheets. The desiccated mudstones indicate a lesser degree of pedogenic modification and the granular limestones a higher degree. The gravel-sheets are an indication of the reworking of previous limestones deposits during low lakewater levels. Most of the palustrine limestones (except the gravel sheets) contain the same bioclasts as the lacustrine limestones plus a variety of trace fossils such as Rebuffoichnus sciuttoi, Fictovichnus gobiensis and different ichnospecies of Celliforma. The calcretes are either massive (groundwater) or laminar. The massive calcretes are sandy limestones made up of a carbonate matrix and cements. The laminar calcretes (root mats), which contain alveolar septal structures, occur as centimetre-thick layers and can be seen in all types of deposit. They contain the same trace fossil association as the palustrine limestones; the massive calcretes are poorer in such fossils. The distribution of trace fossils in these environments is under strong facies control and provides good evidence of subaerial exposure and semi-arid climates. All the limestones are partially replaced and cemented by opal and quartz, but in all cases the primary structure is preserved. Silicification occurred under groundwater meteoric conditions. Overall, the limestones facies (calcretes, palustrine and lacustrine) and their lateral distribution likely reflect the existence of wetland environments in semiarid to sub-humid climates. These climatic conditions were interrupted by a period of increased precipitations, probably the Early Eocene Climatic Optimum.

Alonso-Zarza, Ana M.; Genise, Jorge F.; Verde, Mariano

2011-05-01

355

New Insights into the Long-Term Evolution of Planum Boreum, Mars from SHARAD Investigations of Internal Stratigraphy Combined with Modeling  

NASA Astrophysics Data System (ADS)

Data from several instruments on multiple Mars orbiting missions have shed new light on polar processes in recent years. In particular, orbital radar sounding has revealed the internal structure and stratigraphy of Planum Boreum. The Shallow Radar (SHARAD) instrument on Mars Reconnaissance Orbiter has proven itself particularly effective for mapping the north polar layered deposits (NPLD) and the contact of the NPLD with the underlying "basal unit" (BU). This has led to new insights regarding the relative age and processes leading to major features including Chasma Boreale and the spiral troughs. It has become evident that currently-observed processes are likely to be responsible for these landforms. Most recently, we have examined the overall growth/retreat history of Planum Boreum as recorded in stratigraphic sequences bounded by unconformities. Truncation surfaces associated with these unconformities have been previously observed within the NPLD at multiple stratigraphic levels, in both optical and radar data but have not been correlated over large areas. Our integrated, three-dimensional mapping of SHARAD stratigraphy, incorporating over 1,000 orbital tracks, reveals that the major unconformities were likely formed during just two or three regional erosional events mostly confined to the outer margins of Planum Boreum. These retreat events interrupted otherwise continuous deposition of the NPLD over a highly non-uniform upper surface of the BU. NPLD accumulation also can be quantified for specific stratigraphic intervals, indicating highly non-uniform accumulation during some intervals and essentially uniform in others. The radar stratigraphy further indicates a recent period of laterally extensive deposition combined locally with lateral transport associated with spiral trough migration. The overall sequence of deposition and erosion as derived from SHARAD data is consistent with results from orbitally-forced climate models that predict net polar ice accumulation only in the past 4 Ma, two or three significant retreat events during that period, and the most recent period as being dominated by deposition rather than erosion. Since internal reflectors are isochrones, we can also map paleotopography as it has evolved within Planum Boreum. Accumulation patterns are derived from the differencing of specific stratigraphic horizons. Comparisons of these results reveal clear feedbacks between topography and subsequent accumulation, indicating strong atmosphere-surface interactions. The role of winds is being evaluated with mesoscale models.

Holt, John; Phillips, Roger; Greve, Ralf; Spiga, Aymeric; Seu, Roberto

2013-04-01

356

Radiocarbon dates and late-Quaternary stratigraphy from Mamontova Gora, unglaciated central Yakutia, Siberia, U.S.S.R.  

USGS Publications Warehouse

A fine exposure of perennially frozen ice-rich silt and associated flora and vertebrate fauna of late-Quaternary age exists at Mamontova Gora along the Aldan River in central Yakutia, Siberia, U.S.S.R. The silt deposit caps a 50-m-high terrace and consists of three units. An upper layer 1-2 m thick overlies a 10-15-m-thick brownish to black silt layer. The lower silt layer is greenish to gray and about 15 m thick. All the silt is well sorted with 60% of the particles falling between 0.005 and 0.5 mm in diameter and is generally chemically and mineralogically homogeneous. The middle unit contains may extinct vertebrate mammal remains and ice wedges. The lower unit contains little vegetation and no ice wedges. The silt is widespread and exists as a loamy blanket on terraces at various elevations on both sides of the lower Aldan River. The origin of the silt blanket of late-Quaternary age in central Yakutia has long been controversial. Various hypotheses have been suggested, including lacustrine and alluvial, as well as frost-action origins. It is sometimes referred to as loess-like loam. Pe??we?? believes the silt at Mamontova Gora is loess, some of which has been retransported very short distances by water. The silt probably was blown from wide, braided, unvegetated flood plains of rivers draining nearby glaciers. The silt deposits are late Quaternary in age and probably associated with the Maximum glaciation (Samarov) and Sartan and Syryan glaciations of Wisconsinan age. On the basis of biostratigraphy, 10 radiocarbon dates, and their relation to the nearby glacial record, it is felt that the upper unit at Mamontova Gora is Holocene and the middle unit is Wisconsinan. The youngest date available from the middle unit at this particular location is 26,000 years. Dates greater than 56,000 years were obtained in the lower part of the middle unit. The lower unit is definitely beyond the range of radiocarbon dating and probably is older than the last interglacial. The sediment, fauna, ice wedges, stratigraphy, and age of perennially frozen slit deposits in central Alaska are remarkably similar to those of the deposits exposed in central Yakutia. Both areas consist of unglaciated rolling lowlands and river terraces surrounded by high mountains that were extensively glaciated in Pleistocene time. The glaciers extended from the high mountains to the edges of the ranges. In both regions, extensively braided, silt-charged rivers drained the mountains and flowed through the lowlands on their way to the sea. It follows that there should be a similar late-Quaternary history. ?? 1977.

Pewe, T.L.; Journaux, A.; Stuckenrath, R.

1977-01-01

357

Stratigraphy and depositional environments of the upper Pleistocene Chemehuevi Formation along the lower Colorado River  

USGS Publications Warehouse

The Chemehuevi Formation forms a conspicuous, widespread, and correlative set of nonmarine sediments lining the valleys of the Colorado River and several of its larger tributaries in the Basin and Range geologic province. These sediments have been examined by geologists since J. S. Newberry visited the region in 1857 and are widely cited in the geologic literature; however their origin remains unresolved and their stratigraphic context has been confused by inconsistent nomenclature and by conflicting interpretations of their origin. This is one of the most prominent stratigraphic units along the river below the Grand Canyon, and the formation records an important event or set of events in the history of the Colorado River. Here we summarize what is known about these deposits throughout their range, present new stratigraphic, sedimentologic, topographic, and tephrochronologic data, and formally define them as a lithostratigraphic unit. The Chemehuevi Formation consists primarily of a bluff-forming mud facies, consisting of gypsum-bearing, horizontally bedded sand, silt, and clay, and a slope-forming sand facies containing poorly bedded, well sorted, quartz rich sand and scattered gravel. The sedimentary characteristics and fossil assemblages of the two facies types suggest that they were deposited in flood plain and channel environments, respectively. In addition to these two primary facies, we identify three other mappable facies in the formation: a thick-bedded rhythmite facies, now drowned by Lake Mead; a valley-margin facies containing abundant locally derived sediment; and several tributary facies consisting of mixed fluvial and lacustrine deposits in the lower parts of major tributary valleys. Observations from the subsurface and at outcrops near the elevation of the modern flood plain suggest that the formation also contains a regional basal gravel member. Surveys of numerous outcrops using high-precision GPS demonstrate that although the sand facies commonly overlies the mud facies where the two are found together, contacts between the two occur over a range in elevation, and as a consequence, the sand and mud facies are similarly distributed both horizontally and vertically throughout the valley. Collectively, the outcrops of the formation lie below a smooth elevation envelope that slopes 50 percent more steeply than the historic (pre-Hoover Dam) valley, from nearly 150 m above the historic flood plain near the mouth of the Grand Canyon to less than 30 m above the flood plain at the head of the flood plain near Yuma, Arizona. The steepness of the valley at the peak of aggradation probably represents a depositional slope. Layers of fine grained volcanic tephra have been found below and within the Chemehuevi Formation at five widely separated sites, one of which is now submerged beneath Lake Mead. Major element geochemistry of glass shards from the four accessible tephra sites were analyzed. Three of the sampled tephra layers are interbedded within the Chemehuevi Formation, and a fourth tephra conformably underlies the formation. The three interbedded tephra layers are similar enough to one another that they are probably from the same eruptive unit, hereafter referred to as the Monkey Rock tephra bed. The other sample, which locally underlies the formation, is similar enough to the Monkey Rock tephra bed to suggest it is from the same volcanic source area; however, it may not be from the same eruption, and thus may not be the same age. On the basis of the stratigraphic contexts of chemically similar tephra layers found elsewhere in the Basin and Range, we suspect that the source area is the Mammoth Mountain dome complex in Long Valley, east-central California. Two samples of proximal Mammoth Mountain pumice were analyzed and produced geochemical signatures similar to all four of the Chemehuevi Formation tephra, supporting Mammoth Mountain as a possible source area. The Mammoth Mountain volcanic center produced eruptions between about 111±2 and 57±2 ka and was most active in the later part of this time

Malmon, Daniel V.; Howard, Keith A.; House, P. Kyle; Lundstrom, Scott C.; Pearthree, Philip A.; Sarna-Wojcicki, Andrei M.; Wan, Elmira; Wahl, David B.

2011-01-01

358

Turonian (Eaglefordian) stratigraphy of the Atlantic Coastal Plain and Texas  

NASA Astrophysics Data System (ADS)

A stratigraphic analysis of 14 localities from new England to Georgia and of 1 well from the type area of the Eaglefordian Stage at Dallas, Tex., has resulted in a reevaluation of the ages of both formal and informal stratigraphic units previously established for the Atlantic and eastern Gulf Coastal Plains. Lower Turonian strata, once thought to be absent beneath the Atlantic Coastal Plain, are present. The study focused on a stratigraphic interval that is characterized by the presence of distinctive calcareous nannofossil and pollen floras. The Complesiopollis-atlantopollis pollen assemblage zone, widespread throughout the Atlantic and Gulf Coastal Plains and previously dated as late Cenomanian, is now shown to be late Cenomanian-early Touronian on the Gulf Coast on the basis of its occurrence with calcareous nonfossils, planktic foraminifers, and mollusks of that age.

Valentine, P. C.

359

The missing delta in the Holocene sedimentological record at the mouth of the Zhuoshui River on the west coast of Taiwan: Preliminary findings  

NASA Astrophysics Data System (ADS)

Taiwan is located between the two colliding tectonic plates, and receives the impact from the monsoon and typhoons. All the factors contribute to the high sediment load delivered to the sea by small mountainous rivers on this island. The disproportionally large sediment load and the rising sea level constitute a suitable condition for the formation of river deltas. The sedimentary records of a fluvial system bear information of the changing depositional environment. This study aims to understand the deltaic developmental history keeping pace with the sea level rise. The FATES-HYPERS team drilled a bore hole (JRD core) on the upper part of the modern Zhuoshui River delta to study the history of land-sea interaction. The 100-m long core was dated using AMS C-14 method for over 70 samples. The age model shows that C-14 dating limit (50,000 BP) is reached at about -75 m. We estimate that the core deposition transcends the late Quaternary (100,000 BP) to the present. The preliminary results based on foraminifera assemblages and facies analysis indicate that there was a major shift from land to sea before 7,500 BP. According to the conditions of delta formation, Zhuoshui River mouth should have developed a delta during the last deglaciation with the rising sea-level. However, in our preliminary study we cannot identify the typical deltaic facies in the core. Why is the delta sedimentological record missing in the Holocene? We have to answer this question through the core and the adjacent seafloor topography. The global sea level rose after the last glacial maximum In 12,000-10,000 BP, the sea level was 60 - 40 m lower than present. The reconstructed sedimentary environments were river channels and floodplains during this time. The Zhuoshui River-generated deltaic deposits probably extended westward into the Taiwan Strait. In 10,000-8,000 BP, the sea level was 40 - 20 m lower than present. The Zhuoshui River paleao-delta gradually retreated eastward/landward due to the rising the sea level. At 8,000 BP, the sea level was 20 m lower than present. The seawater inundated the delta, and the sea intruded landward quickly. The tidal and wave energy affected the location where the JRD core was taken. Subsequently the JRD core recorded a major shift from fluvial facies to shoreface facies in this period. There was unconformity below the shoreface facies in the core, suggesting a hiatus during the period of shoreface facies. In 7,500-6,000 BP, the sea level reached the highest level. The JRD core records turned into offshore transitional facies. After 6,000 BP, the core shows facies of gradually shallowing sedimentary environments until the present day. The modern-day Zhuoshui River mouth is classified as a mixed energy with tidal dominatance, so we speculate that the past river mouth was in the same morphodynamic condition. We speculate that the paleao-Zhuoshui River Delta was affected by tides and waves when it was formed. This effect is enhanced when sea level inundated the delta around 8,000 BP, and causes the missing sedimentological record in the JDR core.

Yang, R.; Liu, J. T.; Fan, D.; Burr, G. S.; Lin, H.; Wu, L.

2013-12-01

360

Aging Skin  

MedlinePLUS

... email address Submit Home > Healthy Aging > Wellness Healthy Aging Aging skin More information on aging skin When it ... treated early. Return to top More information on Aging skin Read more from womenshealth.gov Varicose Veins ...

361

Paleosol architecture of a late Quaternary basin-margin sequence and its implications for high-resolution, non-marine sequence stratigraphy  

NASA Astrophysics Data System (ADS)

Paleosol stratigraphy, a technique commonly applied in basin-margin settings to depict cyclic alluvial architecture on time scales of 10-100 ky, can be consistent with regional accommodation trends at even higher temporal resolution (1-10 ky), having strong implications for the sequence stratigraphy of late Quaternary, non-marine deposits. Three closely-spaced late Pleistocene paleosols (P1-P3), dating back approximately to 42-39, 35-31, and 29-26 cal kyr BP, respectively, form prominent stratigraphic markers across a lithologically homogeneous interfluve succession in the subsurface of Bologna, close to the Apenninic foothills. These paleosols are weakly developed (Inceptisols) and can be tracked continuously for 6 km across the triangle-shaped interchannel zone between two gravel/sand-filled channel systems (Reno and Savena rivers). In particular, the thickest paleosol (P3) is a distinctive stiff horizon that can be traced into laterally extensive, erosional-based fluvial bodies. We infer the correlation between (P3) soil development (and channel downcutting) and the final stage of the stepwise Late Pleistocene sea-level fall that culminated at the marine isotope stage 3/2 transition around 29 cal kyr BP (low accommodation systems tract). A fourth laterally extensive Inceptisol, encompassing the Pleistocene-Holocene boundary (PH), represents the major phase of soil development since the Last Glacial Maximum and is inferred to be related to channel entrenchment at the onset of the Younger Dryas. With the exception of the Iron Age-Roman paleosol, which reflects a predominantly anthropogenic control, the Holocene paleosols are laterally discontinuous and invariably more immature (Entisols) than their Pleistocene counterparts. This trend of decreasing paleosol development (and correlatability) upsection is interpreted to reflect increasing (transgressive-equivalent) accommodation during sea-level rise, thus confirming the possible extension of models used to interpret the ancient rock record to short-term depositional cycles.

Amorosi, Alessandro; Bruno, Luigi; Rossi, Veronica; Severi, Paolo; Hajdas, Irka

2014-01-01

362

Time-stratigraphic reconstruction and integration of paleopedologic, sedimentologic, and biotic events (Willwood Formation, Lower Eocene, northwest Wyoming, USA)  

USGS Publications Warehouse

An empirically-based model is advanced using paleosol maturities to estimate the relative geologic time separating any stratigraphic levels within the lower Eocene Willwood Formation. The reviewed Willwood time stratigraphy from this analysis helps evaluate the nature, tempo, and possible causes of three major episodes of mammalian appearance and disappearance. These faunal events are directly correlated with certain apects of paleosol evolution in the Willwood Formation. That evolution is tied directly to climatic changes and to varying sediment accumulation rates in response to tectonism. -from Authors

Bown, T.M.; Kraus, M.J.

1993-01-01

363

Geomorphology and sedimentology of hummocky terrain, south-central Alberta, Canada  

NASA Astrophysics Data System (ADS)

The landscape in south-central Alberta, Canada, is dominated by a suite of landforms that formed beneath the Laurentide Ice Sheet. This thesis explores the origins of those landforms, specifically hummocky terrain. Sediments in the hummocks, hummock form, and associations with other landforms are examined to determine hummock genesis. Sediment was examined from over one hundred exposures through the "Buffalo Lake Moraine" at Travers Reservoir, McGregor Reservoir, and the Little Bow River. This belt of hummocky terrain (like most hummocky terrain regions) is traditionally interpreted as forming at, or near, the stagnating margins of the Laurentide Ice Sheet by supraglacial letdown. However, hummocks in south-central Alberta contain a complex variety of sediments and materials atypical of supraglacial letdown: in situ bedrock, thrust bedrock, lodgement till, melt-out till, sorted sand and gravel, rippled sand, rhythmically-bedded sand, silt, and clay, and pervasively sheared beds. All sediment types and deformation structures were deposited, or formed, subglacially. Also, the deposits make up in situ stratigraphies that record the history of initial Laurentide Ice Sheet advance into the area (lodgment till and thrust bedrock), the extensive accumulation of water at the bed (glaciolacustrine beds), and ice stagnation (melt-out till). Regardless of the genesis of sediments in hummocks, sedimentary units and structures are abruptly truncated by the surface that represents the hummock and trough morphology, demonstrating that the hummocks are erosional forms and that they represent a landscape unconformity. Subglacial sediments predating the erosion and subglacial eskers overlying the erosion surface strongly suggest that hummock erosion was subglacial. Also, hummock morphology, lithostratigraphy correlated from hummock to hummock, abrupt truncation at the land surface, and widespread boulder lags support meltwater erosion for hummocky terrain in the region. Well-developed longitudinal and transverse trends in hummocks suggest that these landforms are giant erosional bedforms. Palaeoflows determined from surface trends are approximately from the northwest to the southeast. These are transverse to the flow directions preserved in the youngest unit in the hummocks, a basal melt-out till, further supporting an erosional origin for the hummocks. Hummocks are transitional from fluted terrain and surface trends are the same for both landform types. Fluted terrain is also erosional as remnant ridges are composed of in situ bedrock and fluvial gravels deposited by rivers flowing from the Rocky Mountains before Laurentide Ice Sheet invasion of southern Alberta. Consistent trends in hummocky terrain and fluted terrain suggest that the meltwater flow responsible for eroding flutes and hummocks was about 120 km wide.

Munro-Stasiuk, Mandy J.