Science.gov

Sample records for street landfill site

  1. Upper Ottawa street landfill site health study.

    PubMed

    Hertzman, C; Hayes, M; Singer, J; Highland, J

    1987-11-01

    This report describes the design and conduct of two sequential historical prospective morbidity surveys of workers and residents from the Upper Ottawa Street Landfill Site in Hamilton, Ontario. The workers study was carried out first and was a hypothesis-generating study. Workers and controls were administered a health questionnaire, which was followed by an assessment of recall bias through medical chart abstraction. Multiple criteria were used to identify health problems associated with landfill site exposure. Those problems with highest credibility included clusters of respiratory, skin, narcotic, and mood disorders. These formed the hypothesis base in the subsequent health study of residents living adjacent to the landfill site. In that study, the association between mood, narcotic, skin, and respiratory conditions with landfill site exposure was confirmed using the following criteria: strength of association; consistency with the workers study; risk gradient by duration of residence and proximity to the landfill; absence of evidence that less healthy people moved to the area; specificity; and the absence of recall bias. The validity of these associations were reduced by three principal problems: the high refusal rate among the control population; socioeconomic status differences between the study groups; and the fact that the conditions found in excess were imprecisely defined and potentially interchangeable with other conditions. Offsetting these problems were the multiple criteria used to assess each hypothesis, which were applied according to present rules. Evidence is presented that supports the hypothesis that vapors, fumes, or particulate matter emanating from the landfill site, as well as direct skin exposure, may have lead to the health problems found in excess. Evidence is also presented supporting the hypothesis that perception of exposure and, therefore, of risk, may explain the results of the study. However, based on the analyses performed, it is the conclusion of the authors that the adverse effects seen were more likely the result of chemical exposure than of perception of risk. PMID:3691438

  2. Upper Ottawa street landfill site health study.

    PubMed Central

    Hertzman, C; Hayes, M; Singer, J; Highland, J

    1987-01-01

    This report describes the design and conduct of two sequential historical prospective morbidity surveys of workers and residents from the Upper Ottawa Street Landfill Site in Hamilton, Ontario. The workers study was carried out first and was a hypothesis-generating study. Workers and controls were administered a health questionnaire, which was followed by an assessment of recall bias through medical chart abstraction. Multiple criteria were used to identify health problems associated with landfill site exposure. Those problems with highest credibility included clusters of respiratory, skin, narcotic, and mood disorders. These formed the hypothesis base in the subsequent health study of residents living adjacent to the landfill site. In that study, the association between mood, narcotic, skin, and respiratory conditions with landfill site exposure was confirmed using the following criteria: strength of association; consistency with the workers study; risk gradient by duration of residence and proximity to the landfill; absence of evidence that less healthy people moved to the area; specificity; and the absence of recall bias. The validity of these associations were reduced by three principal problems: the high refusal rate among the control population; socioeconomic status differences between the study groups; and the fact that the conditions found in excess were imprecisely defined and potentially interchangeable with other conditions. Offsetting these problems were the multiple criteria used to assess each hypothesis, which were applied according to present rules. Evidence is presented that supports the hypothesis that vapors, fumes, or particulate matter emanating from the landfill site, as well as direct skin exposure, may have lead to the health problems found in excess. Evidence is also presented supporting the hypothesis that perception of exposure and, therefore, of risk, may explain the results of the study. However, based on the analyses performed, it is the conclusion of the authors that the adverse effects seen were more likely the result of chemical exposure than of perception of risk. PMID:3691438

  3. Environmental geophysics at Kings Creek Disposal Site and 30th Street Landfill, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Davies, B.E.; Miller, S.F.; McGinnis, L.D.; Daudt, C.R.; Thompson, M.D.; Stefanov, J.E.; Benson, M.A.; Padar, C.A.

    1995-01-01

    Geophysical studies on the Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland, delineate landfill areas and provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low seal levels resulted in a complex pattern of shallow channel-fill deposits in the Kings Creek area. Ground-penetrating radar studies reveal a paleochannel greater than 50 ft deep, with a thalweg trending offshore in a southwest direction into Kings Creek. Onshore, the ground-penetrating radar data indicate a 35-ft-deep branch to the main channel, trending to the north-northwest directly beneath the 30th Street Landfill. Other branches are suspected to meet the offshore paleochannel in the wetlands south and east of the 30th Street Landfill. This paleochannel depositional system is environmentally significant because it may control the shallow groundwater flow regime beneath the site. Electromagnetic surveys have delineated the pre-fill lowland area currently occupied by the 30th Street Landfill. Magnetic and conductive anomalies outline surficial and buried debris throughout the study area. On the basis of geophysical data, large-scale dumping has not occurred north of the Kings Creek Disposal Site or east of the 30th Street Landfill.

  4. Health assessment for Hooker Chemical (102nd Street Landfill), Niagara Falls, New York, Region 2. CERCLIS No. NYD980506810. Preliminary report

    SciTech Connect

    Not Available

    1989-06-01

    The 102nd Street Landfill is two sites that comprise 22 acres. Occidental Chemical Corporation (OCC) and its predecessor, the Oldbury Electrochemical Company, deposited approximately 23,500 tons of mixed organic solvents, organic and inorganic phosphates, and related chemicals. Included in the site are approximately 300 tons of hexachlorocyclohexane process cake, including lindane. In addition, brine sludge, fly ash, electrochemical cell parts and related equipment in unknown quantities were dumped at the site. On-site contamination of the 102nd Street Landfill includes soils contaminated with non-aqueous phase liquids on both portions of the Landfill. Off-site contamination, based on current studies, results from contaminated ground-water leaching into the Niagara River which causes contamination of the river water, sediments, and aquatic organisms, including fish. The 102nd Street Landfill continues to represent a potential public health threat.

  5. Superfund record of decision amendment (EPA Region 2): Hooker (102nd Street Landfill), Niagara Falls, NY, June 9, 1995

    SciTech Connect

    1995-08-01

    This decision document presents the selected modification to the original remedial action (PB91-921417) for the 102nd Street Landfill Site (the `Site`), located in Niagara Falls, New York. The modification to the selected remedy addresses the river sediments within the shallow embayment of the Niagara River adjacent to the Site. The major components of the modification to the selected remedy include: dredging the Niagara River sediments to the `clean line` with respect to Site-related contamination. These sediments, after dewatering, will NOT be incinerated, but will be consolidated on the landfill. Any NAPL found within these sediments will be extracted, and will be incinerated at an off-site facility.

  6. Public health assessment for Agriculture Street Landfill, New Orleans, Orleans Parish, Louisiana, Region 6: CERCLIS number LAD981056997. Final report

    SciTech Connect

    Not Available

    1999-06-02

    Agriculture Street Landfill (ASL) is a former landfill that has been developed in part for residential use. Site contaminants have been detected in soil, dust, air, and garden produce. Residents may be exposed to site contaminants through ingestion, skin contact, or breathing. The primary contaminants are metals, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds, and pesticides. The undeveloped area of the site has been classified as a public health hazard. The highest levels of contaminants have been detected in the undeveloped area. The majority of the residential area and the Press Park Community Center have been classified as no apparent public health hazard since the levels of contaminants in the soil are generally below levels of health concern. Based on the data reviewed, it is recommended that measures be taken to limit residents' exposure to areas where soil is contaminated at levels of health concern.

  7. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    SciTech Connect

    Not Available

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  8. 11. VIEW OF SITE B FROM HOWE STREET, FACING SOUTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF SITE B FROM HOWE STREET, FACING SOUTHEAST. (BUILDINGS 131, 130, 129, AND 128 ARE VISIBLE.) - Fort McPherson, World War II Station Hospital, Structures, Bordered by Hardee & Thorne Avenues & Howe Street, Atlanta, Fulton County, GA

  9. 10 CFR 861.4 - Use of site streets.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Use of site streets. 861.4 Section 861.4 Energy DEPARTMENT OF ENERGY CONTROL OF TRAFFIC AT NEVADA TEST SITE § 861.4 Use of site streets. All persons using the streets of the Nevada Test Site shall do so in a careful and safe manner. (a) The Nevada Test Site Traffic Regulations supplement this section...

  10. 10 CFR 861.4 - Use of site streets.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Use of site streets. 861.4 Section 861.4 Energy DEPARTMENT OF ENERGY CONTROL OF TRAFFIC AT NEVADA TEST SITE § 861.4 Use of site streets. All persons using the streets of the Nevada Test Site shall do so in a careful and safe manner. (a) The Nevada Test Site Traffic Regulations supplement this section...

  11. Optimizing landfill site selection by using land classification maps.

    PubMed

    Eskandari, M; Homaee, M; Mahmoodi, S; Pazira, E; Van Genuchten, M Th

    2015-05-01

    Municipal solid waste disposal is a major environmental concern throughout the world. Proper landfill siting involves many environmental, economic, technical, and sociocultural challenges. In this study, a new quantitative method for landfill siting that reduces the number of evaluation criteria, simplifies siting procedures, and enhances the utility of available land evaluation maps was proposed. The method is demonstrated by selecting a suitable landfill site near the city of Marvdasht in Iran. The approach involves two separate stages. First, necessary criteria for preliminary landfill siting using four constraints and eight factors were obtained from a land classification map initially prepared for irrigation purposes. Thereafter, the criteria were standardized using a rating approach and then weighted to obtain a suitability map for landfill siting, with ratings in a 0-1 domain and divided into five suitability classes. Results were almost identical to those obtained with a more traditional environmental landfill siting approach. Because of far fewer evaluation criteria, the proposed weighting method was much easier to implement while producing a more convincing database for landfill siting. The classification map also considered land productivity. In the second stage, the six best alternative sites were evaluated for final landfill siting using four additional criteria. Sensitivity analyses were furthermore conducted to assess the stability of the obtained ranking. Results indicate that the method provides a precise siting procedure that should convince all pertinent stakeholders. PMID:25666474

  12. 10 CFR 861.4 - Use of site streets.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF ENERGY CONTROL OF TRAFFIC AT NEVADA TEST SITE 861.4 Use of site streets. All persons using the streets of the Nevada Test Site shall do so in a careful and safe manner. (a) The Nevada Test Site Traffic Regulations supplement this section by identifying the specific traffic requirements relating to such...

  13. 10 CFR 861.4 - Use of site streets.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Use of site streets. 861.4 Section 861.4 Energy DEPARTMENT OF ENERGY CONTROL OF TRAFFIC AT NEVADA TEST SITE § 861.4 Use of site streets. All persons using the... Regulations supplement this section by identifying the specific traffic requirements relating to such...

  14. Factors concerned with sanitary landfill site selection: General discussion

    NASA Technical Reports Server (NTRS)

    Graff, W. J.; Stone, L. J.

    1972-01-01

    A general view of factors affecting site selection for sanitary landfill sites is presented. Examinations were made of operational methods, possible environment pollution, types of waste to be disposed, base and cover materials, and the economics involved in the operation.

  15. Superfund Record of Decision (EPA Region 2): Hooker-102nd Street Landfill, Niagara Falls, NY. (First remedial action), September 1990. Final report

    SciTech Connect

    Not Available

    1990-09-26

    The 22-acre Hooker-102nd Street site is a former industrial landfill in the city of Niagara Falls, Niagara County, New York. The site is adjacent to, and partially within the Niagara River's 100-year floodplain. These studies and the Remedial Investigation (RI) initiated in 1984, identified contamination in ground water, onsite and offsite soil, rivershore sediment, and within a storm sewer. Additionally, the presence of a leachate plume of non-aqueous phase liquids (NAPLs) was discovered emanating from the landfill area. The Record of Decision (ROD) is the final remedy which addresses all of the contaminated media. The primary contaminants of concern affecting the soil, sediment, and ground water are VOCs including benzene, TCE, and toluene; other organics including PCBs and phenols; and metals including arsenic.

  16. Assessment of soil-gas contamination at the 17th Street landfill, Fort Gordon, Georgia, 2011

    USGS Publications Warehouse

    Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir G.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2012-01-01

    Assessments of contaminants in soil gas were conducted in two study areas at Fort Gordon, Georgia, in July and August of 2011 to supplement environmental contaminant data for previous studies at the 17th Street landfill. The two study areas include northern and eastern parts of the 17th Street landfill and the adjacent wooded areas to the north and east of the landfill. These study areas were chosen because of their close proximity to the surface water in Wilkerson Lake and McCoys Creek. A total of 48 soil-gas samplers were deployed for the July 28 to August 3, 2011, assessment in the eastern study area. The assessment mostly identified detections of total petroleum hydrocarbons (TPH), and gasoline- and diesel-range compounds, but also identified the presence of chlorinated solvents in six samplers, chloroform in three samplers, 2-methyl naphthalene in one sampler, and trimethylbenzene in one sampler. The TPH masses exceeded 0.02 microgram (μg) in all 48 samplers and exceeded 0.9 μg in 24 samplers. Undecane, one of the three diesel-range compounds used to calculate the combined mass for diesel-range compounds, was detected in 17 samplers and is the second most commonly detected compound in the eastern study area, exceeded only by the number of TPH detections. Six samplers had detections of toluene, but other gasoline compounds were detected with toluene in three of the samplers, including detections of ethylbenzene, meta- and para-xylene, and octane. All detections of chlorinated organic compounds had soil-gas masses equal to or less than 0.08 μg, including three detections of trichloroethene, three detections of perchloroethene, three chloroform detections, one 1,4-dichlorobenzene detection, and one 1,1,2-trichloroethane detection. Three methylated compounds were detected in the eastern study area, but were detected at or below method detection levels. A total of 32 soil-gas samplers were deployed for the August 11–24, 2011, assessment in the northern study area. All samplers in the survey had detections of TPH, but only eight of the samplers had detections of TPH greater than 0.9 mg. Four samplers had TPH detections greater than 9 mg; the only other fuel-related compounds detected in these four samplers included toluene in three of the samplers and undecane in the fourth sampler. Three samplers deployed along the western margin of the northern landfill had detections of both diesel-and gasoline-related compounds; however, the diesel-related compounds were detected at or below method detection levels. Seven samplers in the northern study area had detections of chlorinated compounds, including three perchloroethene detections, three chloroform detections, and one 1,4-dichloro-benzene detection. One sampler on the western margin of the landfill had detections of 1,2,4-trimethylbenzene and 1,3,5-tr-methylbenene below method detection levels.

  17. Site hydrogeologic/geotechnical characterization report for Site B new municipal solid waste landfill

    SciTech Connect

    Reynolds, R.; Nowacki, P.

    1991-04-01

    This Site Hydrogeologic/Geotechnical Characterization Report (SHCR) presents the results of a comprehensive study conducted on a proposed solid waste landfill site, identified herein as Site B, at the Savannah River Site (SRS). This report is intended to satisfy all requirements of the South Carolina Department of Health and Environmental Control (SCDHEC) with regard to landfill siting requirements and ground water and environmental protection. In addition, this report provides substantial geotechnical data pertinent to the landfill design process.

  18. Municipal solid waste landfill siting using intelligent system

    SciTech Connect

    Al-Jarrah, Omar . E-mail: aljarrah@just.edu.jo; Abu-Qdais, Hani . E-mail: hqdais@just.edu.jo

    2006-07-01

    Historically, landfills have been the dominant alternative for the ultimate disposal of municipal solid waste. This paper addresses the problem of siting a new landfill using an intelligent system based on fuzzy inference. The proposed system can accommodate new information on the landfill site selection by updating its knowledge base. Several factors are considered in the siting process including topography and geology, natural resources, socio-cultural aspects, and economy and safety. The system will rank sites on a scale of 0-100%, with 100% being the most appropriate one. A weighting system is used for all of the considered factors. The results from testing the system using different sites show the effectiveness of the system in the selection process.

  19. Bacterial community diversity in municipal waste landfill sites.

    PubMed

    Song, Liyan; Wang, Yangqing; Tang, Wei; Lei, Yu

    2015-09-01

    Little is known about the bacterial diversity of landfills and how environmental factors impact the diversity. In this study, PCR-based 454 pyrosequencing was used to investigate the bacterial communities of ten landfill leachate samples from five landfill sites in China. A total of 137 K useable sequences from the V3-V6 regions of the 16S rRNA gene were retrieved from 205 K reads. These sequences revealed the presence of a large number of operational taxonomic units (OTUs) in the landfills (709-1599 OTUs per sample). The most predominant bacterial representatives in the landfills investigated, regardless of geographic area, included Gammaproteobacteria, Firmicutes, and Bacteroidetes. The phyla Fusobacteria and Tenericutes were also found for the first time to be predominant in the landfills. The phylum Fusobacteria predominated (51.5 and 48.8%) in two semi-arid landfills, and the phylum Tenericutes dominated (30.6%) at one humid, subtropical landfill. Further, a large number of Pseudomonas was detected in most samples, comprising the dominant group and accounting for 40.9 to 92.4% of the total abundance. Principal component analysis (PCA) and cluster analysis based on OTU abundance showed that the abundant taxa separated the bacterial community. Canonical correlation analysis (CCA) suggested that precipitation and landfilling age significantly impact on the bacterial community structure. The bacterial community function (e.g., cellulolytic bacteria, sulfate-reducing bacteria (SRB), sulfate-oxidizing bacteria, and xenobiotic organic compound (XOC)-degrading bacteria) was also diverse, but the pattern is unclear. PMID:25981996

  20. Site-specific criteria for the completion of landfill aftercare.

    PubMed

    Laner, David; Fellner, Johann; Brunner, Paul H

    2012-09-01

    Municipal solid waste (MSW) landfills need to be managed after closure to assure long-term environmental compatibility. Aftercare can be completed when the authorities consider the landfill not likely to pose a threat to humans and the environment. In this work, a methodology for deriving site-specific aftercare completion criteria is presented and its application is illustrated via a case study. The evaluation method combines models addressing waste emission behavior, long-term barrier performance, and pollutant migration to assess the potential impact of landfill emissions on the environment. Based on the definition of acceptable impact levels at certain points of compliance, scenario- and pollutant-specific aftercare completion criteria are derived. The methodology was applied to a closed MSW landfill in Austria and potential aftercare durations were determined. While landfill gas emissions may become environmentally tolerable within decades at the site, leachate-related aftercare measures were expected to be necessary for centuries (primarily as a result of ammonium). Although the evaluation comes with large uncertainties, it allows for linking aftercare intensity and duration with respect to an environmentally compatible state of the landfill in the absence of aftercare. However, further case studies including regulatory review and acceptance are needed to use the methodology in a decision support tool on aftercare completion. PMID:22993138

  1. The economic and social aspects of sanitary landfill site selection

    NASA Technical Reports Server (NTRS)

    Graff, W. J.; Rogers, J. R.

    1972-01-01

    The factors involved in the selection of suitable sites for sanitary land fills are discussed. The economic considerations and problems of social acceptance are considered the most important. The subjects discussed are: (1) accessibility of land, (2) availability of cover material, (3) expected capacity of site, (4) cover material and compaction, (5) fire protection, (6) site location with respect to residential and industrial areas, and (7) land usage after landfill completion.

  2. Risk assessment of landfill disposal sites - State of the art

    SciTech Connect

    Butt, Talib E. Lockley, Elaine; Oduyemi, Kehinde O.K.

    2008-07-01

    A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

  3. Hazardous waste site assessment: Inactive landfill, Site 300, Lawrence Livermore National Laboratory

    SciTech Connect

    Not Available

    1985-01-01

    This report presents the results of an investigation of an inactive landfill (Pit 6) at Lawrence Livermore National Laboratory's (LLNL) Site 300. The primary objectives were to: collect and review background information pertaining to past waste disposal practices and previous environmental characterization studies; conduct a geophysical survey of the landfill area to locate the buried wastes; conduct a hydrogeologic investigation to provide additional data on the rate and direction of groundwater flow, the extent of any groundwater contamination, and to investigate the connection, if any, of the shallow groundwater beneath the landfill with the local drinking water supply; conduct a risk assessment to identify the degree of threat posed by the landfill to the public health and environment; compile a preliminary list of feasible long-term remedial action alternatives for the landfill; and develop a list of recommendations for any interim measures necessary at the landfill should the long-term remedial action plan be needed.

  4. Geotechnical hazards associated with closed municipal solid waste landfill sites

    NASA Astrophysics Data System (ADS)

    Powrie, W.; Richards, D.; Beaven, R.

    2015-09-01

    As pressure for new infrastructure and development grows, it is inevitable that building projects will encounter some of the c20,000 closed former solid waste landfills in the UK, many of which will have accepted municipal solid wastes (MSW). Construction on or across these sites brings a special set of geohazards associated with the potential for large and difficult to predict settlements, gas (and odour) release or generation, contaminated leachate and the breach of containment systems and other environmental controls. The presentation will discuss these issues with reference to recent research into understanding and predicting settlements in municipal solid waste landfills; assessing the total, current and residual gas potential of biodegradable wastes; the role of the hydraulic regime in the flushing of contaminants from the waste and the quality of leachate; and the need or otherwise for the long term integrity of engineered barriers and controls.

  5. Sanitary landfill groundwater quality assessment plan Savannah River Site

    SciTech Connect

    Wells, D.G.; Cook, J.W.

    1990-06-01

    This assessment monitoring plan has been prepared in accordance with the guidance provided by the SCDHEC in a letter dated December 7, 1989 from Pearson to Wright and a letter dated October 9, 1989 from Keisler to Lindler. The letters are included a Appendix A, for informational purposes. Included in the plan are all of the monitoring data from the landfill monitoring wells for 1989, and a description of the present monitoring well network. The plan proposes thirty-two new wells and an extensive coring project that includes eleven soil borings. Locations of the proposed wells attempt to follow the SCDHEC guidelines and are downgradient, sidegradient and in the heart of suspected contaminant plumes. Also included in the plan is the current Savannah River Site Sampling and Analysis Plan and the well construction records for all of the existing monitoring wells around the sanitary landfill.

  6. Choosing a municipal landfill site by analytic network process

    NASA Astrophysics Data System (ADS)

    Banar, Mufide; Kose, Barbaros Murat; Ozkan, Aysun; Poyraz Acar, Ilgin

    2007-04-01

    In this study, analytic network process (ANP), one of the multi-criteria decision making (MCDM) tools has been used to choose one of the four alternative landfill sites for the city of Eskisehir, Turkey. For this purpose, Super Decision Software has been used and benefit opportunity cost and risk (BOCR) analysis has been done to apply ANP. In BOCR analysis, each alternative site has been evaluated in terms of its benefits, costs and risks; the opportunity cluster has been examined under the benefit cluster. In this context, technical, economical and social assessments have been done for the site selection of sanitary landfill. Also, results have been compared with analytic hierarchy process (AHP) which is another MCDM technique used in the study conducted before. Finally, the current site has been determined as the most appropriate site in both methods. These methods have not been commonly used in the discipline of environmental engineering but it is believed to be an important contribution for decision makers.

  7. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    USGS Publications Warehouse

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-01-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, ?2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  8. Measurements of particulate matter concentrations at a landfill site (Crete, Greece)

    SciTech Connect

    Chalvatzaki, E.; Kopanakis, I.; Kontaksakis, M.; Glytsos, T.; Kalogerakis, N.; Lazaridis, M.

    2010-11-15

    Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM{sub 10}) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM{sub 10} concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM{sub 10} concentrations. Comparison between the PM{sub 10} concentrations at the landfill and at a PM{sub 10} background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.

  9. Landfill mining: Development of a theoretical method for a preliminary estimate of the raw material potential of landfill sites.

    PubMed

    Wolfsberger, Tanja; Nispel, Jrg; Sarc, Renato; Aldrian, Alexia; Hermann, Robert; Hllen, Daniel; Pomberger, Roland; Budischowsky, Andreas; Ragossnig, Arne

    2015-07-01

    In recent years, the rising need for raw materials by emerging economies (e.g. China) has led to a change in the availability of certain primary raw materials, such as ores or coal. The accompanying rising demand for secondary raw materials as possible substitutes for primary resources, the soaring prices and the global lack of specific (e.g. metallic) raw materials pique the interest of science and economy to consider landfills as possible secondary sources of raw materials. These sites often contain substantial amounts of materials that can be potentially utilised materially or energetically. To investigate the raw material potential of a landfill, boreholes and excavations, as well as subsequent hand sorting have proven quite successful. These procedures, however, are expensive and time consuming as they frequently require extensive construction measures on the landfill body or waste mass. For this reason, this article introduces a newly developed, affordable, theoretical method for the estimation of landfill contents. The article summarises the individual calculation steps of the method and demonstrates this using the example of a selected Austrian sanitary landfill. To assess the practicality and plausibility, the mathematically determined raw material potential is compared with the actual results from experimental studies of excavated waste from the same landfill (actual raw material potential). PMID:26185166

  10. Empirical approach to predict leached nutrients from landfill site.

    PubMed

    Barman, Pranab Jyoti; Kartha, Suresh A; Pradhan, Bulu

    2015-05-01

    An empirical approach is made in this investigation to predict the leached concentrations of sodium (Na), calcium (Ca), and potassium (K) in the effluents from a landfill site. Water at certain predetermined inflow filling rate is applied to a specific ponding depth, at the top of an experimental column filled with landfill refuse soil at the top (upper layer) and normal local soil at the bottom (base layer). The water infiltrates into the upper layer soil, percolates through the pores in upper and base layers, and in the process leaches the nutrients from the soils that are collected at the bottom of the column. The experimentations were for different combinations of heights of upper and base layer soils, water ponding depth, and inflow filling rates. The nutrient concentrations in the outflow leachates are measured using flame photometer. The observations showed mixed responses of leaching and trapping of nutrients in the soil layers for the various combinations. The experimental observations also inferred that the nutrient leaching is more for cases involving higher ponding depths and higher inflow filling rates. Empirical relationships with respect to the geometrical parameters, to predict the leached concentrations of Na, Ca, and K, are developed from the experimental observations using nonlinear least squares regressive techniques. Exponential equations gave the best empirical fit among various nonlinear relations in the regression technique. The empirical models also predicted well for each subcategory of independent variables that are substantiated by high correlation coefficients. PMID:25410312

  11. Assessment of soil-gas, soil, and water contamination at the former 19th Street landfill, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    Soil gas, soil, and water were assessed for organic and inorganic constituents at the former 19th Street landfill at Fort Gordon, Georgia, from February to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone and flood plain of a creek and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. The passive soil-gas samplers deployed in the water-saturated hyporheic zone and flood plain of the creek adjacent to the former landfill indicated the presence of total petroleum hydrocarbon (TPH) and octane above method detection levels in groundwater beneath the creek bed and flood plain at all 12 soil-gas sampler locations. The TPH concentrations ranged from 51.4 to 81.4 micrograms per liter. Octane concentrations ranged from 1.78 to 2.63 micrograms per liter. These detections do not clearly identify specific source areas in the former landfill; moreover, detections of TPH and octane in a soil-gas sampler installed at a seep on the western bank of the creek indicated the potential for these constituents to be derived from source areas outside the estimated boundaries of the former landfill. A passive soil-gas sampler survey was conducted in the former landfill from June 30 to July 5, 2010, and involved 56 soil-gas samplers that were analyzed for petroleum and halogenated compounds not classified as chemical agents or explosives. The TPH soil-gas mass exceeded 2.0 micrograms in 21 samplers. Most noticeable are the two sites with TPH detections which are located in and near the hyporheic zone and are likely to affect the creek. However, most TPH detections were located in and immediately adjacent to a debris field located within the former landfill and in areas where debris was not visible, including the northwestern and southeastern parts of the study area. Two of the four soil-gas samplers installed within a former military training area adjacent to the landfill also had TPH detections above the method detection level. Benzene, toluene, ethylbenzene, and xylene (as combined BTEX mass) were detected at 0.02 microgram or greater in three soil-gas samplers installed at the northwestern boundary and in five samplers installed in the southeastern part of the study area. There was no BTEX mass detected above the method detection level in samplers installed in the debris field. Toluene was the most frequently detected BTEX compound. Compounds indicative of diesel-range organics were detected above 0.04 microgram in 12 soil-gas samplers and had a distribution similar to that of TPH, including being detected in the debris field. Undecane was the most frequently detected diesel compound. Chloroform and naphthalene were detected in eight and two soil-gas samplers, respectively. Five soil-gas samplers deployed during September 2010 were analyzed for organic compounds classified as chemical agents and explosives, but none exceeded the method detection levels. Five composite soil samples collected from within the estimated boundaries of the former landfill were analyzed for 35 inorganic constituents, but none of the constituents detected exceeded regional screening levels for industrial soils. The sample collected in the debris field exceeded background levels for aluminum, barium, calcium, chromium, lead, nickel, potassium, sodium, and zinc. Three surface-water samples were collected in September 2010 from a stormwater outfall culvert that drains to the creek and from the open channel of the creek at upstream and downstream locations relative to the outfall. Toluene was detected at 0.661 mi

  12. TECHNICAL APPROACHES TO CHARACTERIZING AND REDEVELOPING BROWNFIELDS SITES: MUNICIPAL LANDFILLS AND ILLEGAL DUMPS

    EPA Science Inventory

    The guidance document gives assistance to communities, decision-makers, states and municipalities, academia, and the private sector to address issues related to the redevelopment of Brownfields sites, specifically, municipal landfill and illegal dump sites. The document helps use...

  13. Addressing environmental health concerns near Trecatti landfill site, United Kingdom.

    PubMed

    Fielder, H M; Palmer, S R; Poon-King, C; Moss, N; Coleman, G

    2001-01-01

    Residents near the Trecatti landfill site located in South Wales, United Kingdom, expressed concern about odors and health effects they attributed to site emissions. The authors compared routinely collected, population-based, health data from potentially exposed electoral wards (i.e., United Kingdom electoral tracts) with data from both wards nearby, matched for socioeconomic deprivation scores, and with wards where residents were likely to attend the same hospital. Mortality rates were higher for all causes and neoplastic diseases (but not respiratory disease) in the exposed wards, but there was no change in rates after the site opened. Hospital data revealed a transient increase in admissions for asthma during the 3 yr that preceded the peak in odor complaints. The birth prevalence of congenital malformations was raised in the exposed wards, but the authors could not exclude a possible artifact resulting from differences in reporting practices between hospitals. The absence of environmental monitoring in the community during the period of public concern was a significant weakness of this study. PMID:11958553

  14. 24 CFR 242.50 - Funds and finances: off-site utilities and streets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Funds and finances: off-site utilities and streets. 242.50 Section 242.50 Housing and Urban Development Regulations Relating to Housing... finances: off-site utilities and streets. The Commissioner shall require assurance of completion of...

  15. 24 CFR 242.50 - Funds and finances: off-site utilities and streets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Funds and finances: off-site utilities and streets. 242.50 Section 242.50 Housing and Urban Development Regulations Relating to Housing... finances: off-site utilities and streets. The Commissioner shall require assurance of completion of...

  16. Brownfields and health risks--air dispersion modeling and health risk assessment at landfill redevelopment sites.

    PubMed

    Ofungwu, Joseph; Eget, Steven

    2006-07-01

    Redevelopment of landfill sites in the New Jersey-New York metropolitan area for recreational (golf courses), commercial, and even residential purposes seems to be gaining acceptance among municipal planners and developers. Landfill gas generation, which includes methane and potentially toxic nonmethane compounds usually continues long after closure of the landfill exercise phase. It is therefore prudent to evaluate potential health risks associated with exposure to gas emissions before redevelopment of the landfill sites as recreational, commercial, and, especially, residential properties. Unacceptably high health risks would call for risk management measures such as limiting the development to commercial/recreational rather than residential uses, stringent gas control mechanisms, interior air filtration, etc. A methodology is presented for applying existing models to estimate residual landfill hazardous compounds emissions and to quantify associated health risks. Besides the toxic gas constituents of landfill emissions, other risk-related issues concerning buried waste, landfill leachate, and explosive gases were qualitatively evaluated. Five contiguously located landfill sites in New Jersey intended for residential and recreational redevelopment were used to exemplify the approach. PMID:16869439

  17. Landfill site suitability assessment by means of geographic information system analysis

    NASA Astrophysics Data System (ADS)

    Yazdani, M.; Monavari, S. M.; Omrani, G. A.; Shariat, M.; Hosseini, S. M.

    2015-07-01

    Open dumping is the common procedure for final disposal of municipal solid waste (MSW) in Iran. Several environmental pollution and soil degradation problems were found as a consequence of poor planning of landfills. So recognition of the MSW landfill state is required to prevent environmental problems. The objective of this research was to study the suitability of existing municipal landfill sites using geographic information system methods. Tonekabon city in the west area of Mazandaran province, northern Iran, along the southern coast of the Caspian Sea, was chosen as a case study. In order to carry out this evaluation, two guidelines were used: Minnesota Pollution Control Agency (MPCA) and regional screening guidelines. The results indicate that the landfills were not located in suitable sites and also that there are few suitable locations to install the landfills.

  18. Does Disposing of Construction and Demolition Debris in Unlined Landfills Impact Groundwater Quality? Evidence from 91 Landfill Sites in Florida.

    PubMed

    Powell, Jon T; Jain, Pradeep; Smith, Justin; Townsend, Timothy G; Tolaymat, Thabet M

    2015-08-01

    More than 1,500 construction and demolition debris (CDD) landfills operate in the United States (U.S.), and U.S. federal regulations do not require containment features such as low-permeability liners and leachate collection systems for these facilities. Here we evaluate groundwater quality from samples collected in groundwater monitoring networks at 91 unlined, permitted CDD landfills in Florida, U.S. A total of 460,504 groundwater sample results were analyzed, with a median of 10 years of quarterly or semiannual monitoring data per site including more than 400 different chemical constituents. Downgradient concentrations of total dissolved solids, sulfate, chloride, iron, ammonia-nitrogen, and aluminum were greater than upgradient concentrations (p < 0.05). At downgradient wells where sulfate concentrations were greater than 150 mg/L (approximately 10% of the maximum dissolved sulfate concentration in water, which suggests the presence of leachate from the landfill), iron and arsenic were detected in 91% and 43% of samples, with median concentrations of 1,900 μg/L and 11 μg/L, respectively. These results show that although health-based standards can be exceeded at unlined CDD landfills, the magnitude of detected chemical concentrations is generally small and reflective of leached minerals from components (wood, concrete, and gypsum drywall) that comprise the bulk of discarded CDD by mass. PMID:26130423

  19. Health effects of residence near hazardous waste landfill sites: a review of epidemiologic literature.

    PubMed Central

    Vrijheid, M

    2000-01-01

    This review evaluates current epidemiologic literature on health effects in relation to residence near landfill sites. Increases in risk of adverse health effects (low birth weight, birth defects, certain types of cancers) have been reported near individual landfill sites and in some multisite studies, and although biases and confounding factors cannot be excluded as explanations for these findings, they may indicate real risks associated with residence near certain landfill sites. A general weakness in the reviewed studies is the lack of direct exposure measurement. An increased prevalence of self-reported health symptoms such as fatigue, sleepiness, and headaches among residents near waste sites has consistently been reported in more than 10 of the reviewed papers. It is difficult to conclude whether these symptoms are an effect of direct toxicologic action of chemicals present in waste sites, an effect of stress and fears related to the waste site, or an effect of reporting bias. Although a substantial number of studies have been conducted, risks to health from landfill sites are hard to quantify. There is insufficient exposure information and effects of low-level environmental exposure in the general population are by their nature difficult to establish. More interdisciplinary research can improve levels of knowledge on risks to human health of waste disposal in landfill sites. Research needs include epidemiologic and toxicologic studies on individual chemicals and chemical mixtures, well-designed single- and multisite landfill studies, development of biomarkers, and research on risk perception and sociologic determinants of ill health. PMID:10698726

  20. Study on detecting leachate leakage of municipal solid waste landfill site.

    PubMed

    Liu, Jiangang; Cao, Xianxian; Ai, Yingbo; Zhou, Dongdong; Han, Qiting

    2015-06-01

    The article studies the detection of the leakage passage of leachate in a waste landfill dam. The leachate of waste landfill has its own features, like high conductivity, high chroma and an increasing temperature, also, the horizontal flow velocity of groundwater on the leakage site increases. This article proposes a comprehensive tracing method to identify the leakage site of an impermeable membrane by using these features. This method has been applied to determine two leakage sites of the Yahu municipal solid waste landfill site in Pingshan District, Shenzhen, China, which shows that there are two leachate leakage passages in the waste landfill dam A between NZK-2 and NZK-3, and between NZK-6 and NZK-7. PMID:25911065

  1. LINERS FOR SANITARY LANDFILLS AND CHEMICAL AND HAZARDOUS WASTE DISPOSAL SITES

    EPA Science Inventory

    This report lists addresses of sanitary landfills and chemical and hazardous waste disposal sites and holding ponds with some form of impermeable lining. Liners included are polyethylene, polyvinyl chloride, Hypalon R, ethylene propylene diene monomer, butyl rubber, conventional ...

  2. Superfund Record of Decision (EPA Region 3): Moyer Landfill Site, Collegeville, Pennsylvania, September 1985. Final report

    SciTech Connect

    Not Available

    1985-09-30

    The Moyer Landfill is an inactive privately owned landfill located in Lower Providence Township in Montgomery County, Pennsylvania. The site was operated as a municipal landfill from the 1940's until April 1981, during which time it received municipal refuse and sewage sludges. According to local Federal Bureau of Investigation (FBI) officials, the landfill accepted a variety of solid and liquid hazardous wastes, including polychlorinated biphenyls (PCBs), solvents, paints, low-level radioactive wastes, and incinerated materials in bulk form and/or containerized in drums. In 1972, when the Pennsylvania Dept. of Environmental Resources (PADER) rules and regulations became more restrictive, this landfill was cited, and finally in 1981, it was closed and brought into receivership of the U.S. District Court.

  3. Ground-water quality in the vicinity of landfill sites, southern Franklin County, Ohio

    USGS Publications Warehouse

    De Roche, J.T.; Razem, A.C.

    1981-01-01

    The hydrogeology and ground-water quality in the vicinity of five landfills in southern Franklin County, Ohio, were investigated by use of data obtained from 46 existing wells, 1 seep, 1 surface-water site, and 1 leachate-collection site. Interpretation was based on data from the wells, a potentiometric-surface map, and chemical analyses. Four of the five landfills are in abandoned sand and gravel pits. Pumping of water from a quarry near the landfills has modified the local ground-water flow pattern, increased the hydraulic gradient, and lowered the water table. Ground water unaffected by the landfills is a hard, calcium bicarbonate type with concentrations of dissolved iron and dissolved sulfate as great as 3.0 milligrams per liter and 200 milligrams per liter, respectively. Water sampled from wells downgradient from two landfills shows an increase in sodium, chloride, and other constituents. The change in water quality cannot be traced directly to the landfills, however, because of well location and the presence of other potential sources of contamination. Chemical analysis of leachate from a collection unit at one landfill shows significant amounts of zinc, chromium, copper, and nickel, in addition to high total organic carbon, biochemical oxygen demand, and organic nitrogen. Concentrations of chloride, iron, lead, manganese and phenolic compounds exceed Ohio Environmental Protection Agency Water Quality Standards for drinking water. Water from unaffected wells within the study area have relatively small amounts of these constituents. (USGS)

  4. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    SciTech Connect

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  5. Archaeal community diversity in municipal waste landfill sites.

    PubMed

    Song, Liyan; Wang, Yangqing; Tang, Wei; Lei, Yu

    2015-07-01

    Despite the pivotal role of archaea in methane production in landfills, the identity, ecology, and functional diversity of these microorganisms and their link to environmental factors remain largely unknown. We collected 11 landfill leachate samples from six geographically distinct landfills of different ages in China and analyzed the archaeal community by bar-coded 454 pyrosequencing. We retrieved 121,797 sequences from a total of 167,583 sequences (average length of 464 bp). The archaeal community was geographically structured, and nonabundant taxa primarily contributed to the observed dissimilarities. Canonical correlation analysis (CCA) suggested that the total phosphorous (TP), nitrate, and conductivity are important drivers for shaping the archaeal community. The hydrogenotrophic methanogens Methanomicrobiales and Methanobacteriales greatly dominated 9 of 11 samples, ranging from 83.7 to 99.5 %. These methanogens also dominated the remaining two samples, accounting for 70.3 and 58.8 %, respectively. Interestingly, for all of the studied Chinese landfills, 16S rRNA analysis indicated the predominance of hydrogenotrophic methanogens. PMID:25758957

  6. LANDFILL RESEARCH AT THE BOONE COUNTY FIELD SITE

    EPA Science Inventory

    Sanitary landfills presently play a significant role in the disposal of solid wastes, and they will probably continue to do so in many areas because of their economic advantages over other methods. However, justifiable concern exists about the environmental effects of sanitary la...

  7. Polybrominated diphenyl ethers (PBDEs) in leachates from selected landfill sites in South Africa

    SciTech Connect

    Odusanya, David O.; Okonkwo, Jonathan O. Botha, Ben

    2009-01-15

    The last few decades have seen dramatic growth in the scale of production and the use of polybrominated diphenyl ethers (PBDEs) as flame retardants. Consequently, PBDEs such as BDE -28, -47, -66, -71, -75, -77, -85, -99, -100, -119, -138, -153, -154, and -183 have been detected in various environmental matrices. Generally, in South Africa, once the products containing these chemicals have outlived their usefulness, they are discarded into landfill sites. Consequently, the levels of PBDEs in leachates from landfill sites may give an indication of the general exposure and use of these compounds. The present study was aimed at determining the occurrence and concentrations of most common PBDEs in leachates from selected landfill sites. The extraction capacities of the solvents were also tested. Spiked landfill leachate samples were used for the recovery tests. Separation and determination of the PBDE congeners were carried out with a gas chromatograph equipped with Ni{sup 63} electron capture detector. The mean percentage recoveries ranged from 63% to 108% (n = 3) for landfill leachate samples with petroleum ether giving the highest percentage extraction. The mean concentrations of PBDEs obtained ranged from ND to 2670 pg l{sup -1}, ND to 6638 pg l{sup -1}, ND to 7230 pg l{sup -1}, 41 to 4009 pg l{sup -1}, 90 to 9793 pg l{sup -1} for the Garankuwa, Hatherly, Kwaggarsrand, Soshanguve and Temba landfill sites, respectively. Also BDE -28, -47, -71 and BDE-77 were detected in the leachate samples from all the landfill sites; and all the congeners were detected in two of the oldest landfill sites. The peak concentrations were recorded for BDE-47 at three sites and BDE-71 and BDE-75 at two sites. The highest concentration, 9793 {+-} 1.5 pg l{sup -1}, was obtained for the Temba landfill site with the highest BOD value. This may suggest some influence of organics on the level of PBDEs. Considering the leaching characteristics of brominated flame retardants, there is a high possibility that with time these compounds may infiltrate into the groundwater around the sites since most of the sites are not adequately lined.

  8. Limited site investigation of Landfills 1 and 4, Fort Lewis, Washington

    SciTech Connect

    Last, G.V.; Eddy, P.A.; Airhart, S.P.; Olsen, K.R.; Raymond, J.R.; Dahl, D.R.

    1990-08-01

    The information presented in this report was collected during limited site investigation activities conducted in the vicinity of Landfills 1 and 4 at Fort Lewis. The purpose of this work was to provide a means of detecting and evaluating the impacts of these inactive landfills on ground-water quality and adjacent lands. This effort included the design and construction of ground-water monitoring systems for compliance with applicable federal and state regulations governing Resource Conservation and Recovery Act (RCRA)-type landfills. Ground-water samples were collected from both existing (1981 and 1984) wells and the newly installed (1988) wells. The analytical results from the water samples indicate that the ground water in and around Landfill 1 contains limited contamination. Contaminants may include volatile organic compounds and nitrate. The primary concern in the area around Landfill 1 was the determination that ground water from two wells may contain cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. Nitrate levels in the downgradient wells were greater than those in upgradient wells and exceeded drinking water standards in some of the less-representative samples. Analyses of ground-water samples from wells in and around Landfill 4 indicate several contaminants may be present. These include volatile organic compounds (principally cis-1,2-dichloroethylene and 1,1,1-trichloroethylene), coliform, oil and grease, and perhaps some metals (iron and magnesium). The primary concern in the area around Landfill 4 was the determination that ground water from five wells contained cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. The source of contaminants beneath either landfill cannot yet be identified. Insufficient data exist to disprove or confirm either landfill as possible contributors. 19 refs., 32 figs., 17 tabs.

  9. Characterization and control of odorous gases at a landfill site: a case study in Hangzhou, China.

    PubMed

    Ying, Ding; Chuanyu, Cai; Bin, Hu; Yueen, Xu; Xuejuan, Zheng; Yingxu, Chen; Weixiang, Wu

    2012-02-01

    Municipal solid waste (MSW) landfills are one of the major sources of offensive odors potentially creating annoyance in adjacent communities. At the end of May 2007, an odor pollution incident occurred at the Tianziling landfill site, Hangzhou, China, where the residents lodged complaints about the intense odor from the landfill, which drew a significant attention from the government. In this study, ambient air monitoring was conducted at the Tianziling landfill site. The main odor composition of the gas samples collected on June 1st 2007 and the reduction of various odorous gases from the samples collected on June 1st 2009 due to the applied odor control techniques were determined using gas chromatography-mass spectrometry (GC-MS). In addition, variations of primary odorous gaseous (NH(3) and H(2)S) concentrations at different locations in the landfill site from July 2007 to June 2009 were also investigated by using classical spectrophotometric methods. Results showed that a total of 68 volatile compounds were identified among which H(2)S (56.58-579.84 ?g/m(3)) and NH(3) (520-4460 ?g/m(3)) were the notable odor components contributing to 4.47-10.92% and 83.91-93.94% of total concentrations, respectively. Similar spatial and temporal shifts of H(2)S and NH(3) concentrations were observed and were significantly affected by environmental factors including temperature, air pressure and wind direction. Odor pollution was worse when high temperature, high humidity, low air pressure, and southeast, northeast or east wind appeared. Moreover, the environmental sampling points of the dumping area and the leachate treatment plant were found to be the main odor sources at the Tianziling landfill site. The odor control technologies used in this project had a good mitigating effect on the primary odorous compounds. This study provides long-term valuable information concerning the characteristics and control of odors at landfill sites in a long run. PMID:22137772

  10. The seasonal distribution of bioaerosols in municipal landfill sites: a 3-yr study

    NASA Astrophysics Data System (ADS)

    Huang, Chu-Yun; Lee, Ching-Chang; Li, Fang-Chun; Ma, Yu-Pei; Su, Huey-Jen Jenny

    Landfill is the most common way to dispose waste in many countries, and most landfill sites after closure are often considered for public recreation purposes. It is important that the pollutant levels of closed landfill areas are free of adverse health concerns. However, only limited studies have investigated the airborne biological contamination in closed landfill sites. The objective of this study was to document the bioaerosol levels in a closed landfill site while the temporal, seasonal, and meteorological effects were also taken into accounts. Study site was at one sanitary landfill, taking mostly municipal wastes, in southern Taiwan. Airborne bacteria and fungi were collected on tryptic soy agar (Difco) and malt extract agar (Difco) by a Burkard impactor (Burkard Manufacturing Co. Ltd.) operating at about 10 l m -3 for 30 s. Air samples were collected sequentially in winter, spring, summer and fall in 1998, winter, spring, summer in 1999, as well as summer and fall in 2000. In addition, sampling was conducted in the morning, at noon, in the evening and the following morning during each field assessment. Levels of airborne bacteria and fungi were all far above 10 3 CFU m -3. The concentrations of culturable bacteria and fungi were higher in winter than in other seasons. The difference of bioaerosol level and fungal percentages between the undergoing-closure and closed areas was obvious, and the concentrations were higher in closed area. We therefore recommend that before any complete investigation can be conducted to assure the safety, the closed area of landfill site is probably not ready for immediate public use.

  11. Changing face of the landfill

    SciTech Connect

    1995-10-01

    Integrated approach at Oregon landfill diverts wood and yard trimmings, while turning methane into power for 1,800 homes. Opened in the 1940`s as an open burn dump, Coffin Butte has evolved over the years into a sophisticated waste management facility incorporating ambitious recovery programs. While some of this change has been driven by regulatory demands, many of Valley Landfill`s innovations have come in response to market opportunities. Valley Landfill`s Processing and Recovery Center (PRC) is located a half mile down the road from the landfill site. Opened in 1990, the facility recycles urban wood waste, yard trimmings and street sweepings. The heart of this operation is a 500 hp horizontal feed, fixed-hammer grinder. Although this machine is typically used only for wood grinding, PRC was able to adapt it to handle both wood and yard trimmings by installing special feed roll assembly to compress green waste passing over the infeed belt. The facility handles approximately 40,000 cubic yards of loose green material and produces 15,000 to 18,000 yards of compost. The finished product is run through a trommel with a 5/8 inch mesh screen. Most of the compost is sold in bulk to area garden centers. A portion is processed through a 3/8 inch shaker screen and sold to a local company for use in bagged soil products. Valley Landfill is a partner in an ambitious project to generate electricity from landfill biogas.

  12. Applying Fuzzy logic and the point count system to select landfill sites.

    PubMed

    Ojha, C S P; Goyal, Manish Kumar; Kumar, Sunil

    2007-12-01

    The treatment of solid waste is currently one of the major environmental problems facing municipalities. Thousands of tonnes of waste are generated each day, requiring a large area for disposal purposes. It is difficult to find suitable areas for the construction of such sanitary landfills as numerous criteria must be met, and landfill sites vary considerably in terms of their sophistication. The selection criteria for landfill sites should be as simple as possible, and with this in mind, we have evaluated a large number of random cases for the suitability of the site for landfill purposes using the recently advocated fuzzy approach. Using the fuzzy classification, we have attempted to develop a simple classification which uses only certain point values for available attributes. A normalized average of such attributes based on the proposed classifier is further evaluated using additionally generated random data sets. The results appear to be encouraging and indicate that the present classifier can be used as a substitute for the fuzzy-based ranking of landfill sites. PMID:17564807

  13. Sanitary landfill local-scale flow and transport modeling in support of alternative concentrations limit demonstrations, Savannah River Site

    SciTech Connect

    Kelly, V.A.; Beach, J.A.; Statham, W.H.; Pickens, J.F.

    1993-02-19

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina which is currently operated and managed by Westinghouse Savannah River Company (WSRC). The Sanitary Landfill (Sanitary Landfill) at the SRS is located approximately 2,000 feet Northwest of Upper Three Runs Creek (UTRC) on an approximately 70 acre site located south of Road C between the SRS B-Area and UTRC. The Sanitary Landfill has been receiving wastes since 1974 and operates as an unlined trench and fill operation. The original landfill site was 32 acres. This area reached its capacity around 1987 and a Northern Expansion of 16 acres and a Southern Expansion of 22 acres were added in 1987. The Northern Expansion has not been used for waste disposal to date and the Southern Expansion is expected to reach capacity in 1992 or 1993. The waste received at the Sanitary Landfill is predominantly paper, plastics, rubber, wood, metal, cardboard, rags saturated with degreasing solvents, pesticide bags, empty cans, and asbestos in bags. The landfill is not supposed to receive any radioactive wastes. However, tritium has been detected in the groundwater at the site. Gross alpha and gross beta are also evaluated at the landfill. The objectives of this modeling study are twofold: (1) to create a local scale Sanitary Landfill flow model to study hydraulic effects resulting from capping the Sanitary Landfill; and (2) to create a Sanitary Landfill local scale transport model to support ACL Demonstrations for a RCRA Part B Permit Renewal.

  14. GIS-based approach for optimized siting of municipal solid waste landfill

    SciTech Connect

    Sumathi, V.R. Natesan, Usha; Sarkar, Chinmoy

    2008-11-15

    The exponential rise in the urban population of the developing countries in the past few decades and the resulting accelerated urbanization phenomenon has brought to the fore the necessity to develop environmentally sustainable and efficient waste management systems. Sanitary landfill constitutes one of the primary methods of municipal solid waste disposal. Optimized siting decisions have gained considerable importance in order to ensure minimum damage to the various environmental sub-components as well as reduce the stigma associated with the residents living in its vicinity, thereby enhancing the overall sustainability associated with the life cycle of a landfill. This paper addresses the siting of a new landfill using a multi-criteria decision analysis (MCDA) and overlay analysis using a geographic information system (GIS). The proposed system can accommodate new information on the landfill site selection by updating its knowledge base. Several factors are considered in the siting process including geology, water supply resources, land use, sensitive sites, air quality and groundwater quality. Weightings were assigned to each criterion depending upon their relative importance and ratings in accordance with the relative magnitude of impact. The results from testing the system using different sites show the effectiveness of the system in the selection process.

  15. GIS-based approach for optimized siting of municipal solid waste landfill.

    TOXLINE Toxicology Bibliographic Information

    Sumathi VR; Natesan U; Sarkar C

    2008-11-01

    The exponential rise in the urban population of the developing countries in the past few decades and the resulting accelerated urbanization phenomenon has brought to the fore the necessity to develop environmentally sustainable and efficient waste management systems. Sanitary landfill constitutes one of the primary methods of municipal solid waste disposal. Optimized siting decisions have gained considerable importance in order to ensure minimum damage to the various environmental sub-components as well as reduce the stigma associated with the residents living in its vicinity, thereby enhancing the overall sustainability associated with the life cycle of a landfill. This paper addresses the siting of a new landfill using a multi-criteria decision analysis (MCDA) and overlay analysis using a geographic information system (GIS). The proposed system can accommodate new information on the landfill site selection by updating its knowledge base. Several factors are considered in the siting process including geology, water supply resources, land use, sensitive sites, air quality and groundwater quality. Weightings were assigned to each criterion depending upon their relative importance and ratings in accordance with the relative magnitude of impact. The results from testing the system using different sites show the effectiveness of the system in the selection process.

  16. GIS-based approach for optimized siting of municipal solid waste landfill.

    PubMed

    Sumathi, V R; Natesan, Usha; Sarkar, Chinmoy

    2008-11-01

    The exponential rise in the urban population of the developing countries in the past few decades and the resulting accelerated urbanization phenomenon has brought to the fore the necessity to develop environmentally sustainable and efficient waste management systems. Sanitary landfill constitutes one of the primary methods of municipal solid waste disposal. Optimized siting decisions have gained considerable importance in order to ensure minimum damage to the various environmental sub-components as well as reduce the stigma associated with the residents living in its vicinity, thereby enhancing the overall sustainability associated with the life cycle of a landfill. This paper addresses the siting of a new landfill using a multi-criteria decision analysis (MCDA) and overlay analysis using a geographic information system (GIS). The proposed system can accommodate new information on the landfill site selection by updating its knowledge base. Several factors are considered in the siting process including geology, water supply resources, land use, sensitive sites, air quality and groundwater quality. Weightings were assigned to each criterion depending upon their relative importance and ratings in accordance with the relative magnitude of impact. The results from testing the system using different sites show the effectiveness of the system in the selection process. PMID:18060759

  17. Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma

    USGS Publications Warehouse

    Zume, J.T.; Tarhule, A.; Christenson, S.

    2006-01-01

    Leachate plume emanating from an old unlined municipal landfill site near the city of Norman, Oklahoma, is discharging into the underlying alluvial aquifer. Subsurface imaging techniques, electrical resistivity tomography and electrical conductivity (EC) logging, were used on the site to detect and map the position of the leachate plume. Anomalous EC zones, delineated with the two methods, correlated with the occurrence of the plume detected by water chemistry analyses from multilevel monitoring wells. Specific conductance, a potential indicator of leachate contamination, ranged from 1861 to 7710 ??S/cm in contaminated zones and from 465 to 2180 ??S/cm in uncontaminated ground water. Results are in agreement with those from earlier studies that the leachate plume emerges from the landfill along preferential pathways. Additionally, there are indications that the leading edge of the plume has migrated, at least, 200 m away from the landfill in the direction of ground water flow. ?? 2006 National Ground Water Association.

  18. Factors influencing the establishment of floristically rich grasslands on a restored landfill site

    SciTech Connect

    Ireland, E.M.

    1991-01-01

    Natural revegetation on landfill sites often results in a species poor sward dominated by Elymus repens (Shaw, 1983; Davis, 1988; Wong, 1988). The aim of this study was primarily to investigate the mechanism by which E.repens achieved such apparent domination and secondly to investigate various methods to establish floristically rich grasslands on a restored landfill site. Low rates of germination and survival were recorded from seeds of Plantago lanceolata, Centaureau nigrand Leucanthemum vulgare sown into a sward of E.repens on a restored landfill site in Essex, even during periods with adequate soil water. Plants of P.lanceolata, C.nigra and L. vulgare were grown in pots and transplanted into the sward of E.repens. Over the following two years a significant decrease in crown cover of these species was recorded. In areas where E.repens had been treated with herbicide or mown, seedlings and introduced plants of P.lanceolata, C.nigra and L.vulgare increased in cover over two years. Stomatal conductance of P.lanceolata, C.nigra and L.vulgare was reduced when these species were growing with E.repens even during periods with adequate soil water. P.lanceolata, C.nigra and L.vulgare growing with E.repens on restored landfill has been shown experimentally to result in reduced cover. It is suggested that this is due to competition in combination potentially, with allelochemical effects of E.repens. Successful establishment of a floristically rich grass mix was achieved by the reduction in cover of E.repens by herbicide or mowing. On newly restored landfill a careful balance between soil treatments, fertilizer levels and subsequent management in the form of mowing must be attained in order to establish floristically rich grasslands. The results from this study show that by utilizing various management techniques a floristically rich grass mix could be established on a restored landfill site.

  19. Spatial effect of new municipal solid waste landfill siting using different guidelines.

    PubMed

    Ahmad, Siti Zubaidah; Ahamad, Mohd Sanusi S; Yusoff, Mohd Suffian

    2014-01-01

    Proper implementation of landfill siting with the right regulations and constraints can prevent undesirable long-term effects. Different countries have respective guidelines on criteria for new landfill sites. In this article, we perform a comparative study of municipal solid waste landfill siting criteria stated in the policies and guidelines of eight different constitutional bodies from Malaysia, Australia, India, U.S.A., Europe, China and the Middle East, and the World Bank. Subsequently, a geographic information system (GIS) multi-criteria evaluation model was applied to determine new suitable landfill sites using different criterion parameters using a constraint mapping technique and weighted linear combination. Application of Macro Modeler provided in the GIS-IDRISI Andes software helps in building and executing multi-step models. In addition, the analytic hierarchy process technique was included to determine the criterion weight of the decision maker's preferences as part of the weighted linear combination procedure. The differences in spatial results of suitable sites obtained signifies that dissimilarity in guideline specifications and requirements will have an effect on the decision-making process. PMID:24241167

  20. Seismic characterization and dynamic site response of a municipal solid waste landfill in Bangalore, India.

    PubMed

    Anbazhagan, P; SivakumarBabu, G L; Lakshmikanthan, P; VivekAnand, K S

    2016-03-01

    Seismic design of landfills requires an understanding of the dynamic properties of municipal solid waste (MSW) and the dynamic site response of landfill waste during seismic events. The dynamic response of the Mavallipura landfill situated in Bangalore, India, is investigated using field measurements, laboratory studies and recorded ground motions from the intraplate region. The dynamic shear modulus values for the MSW were established on the basis of field measurements of shear wave velocities. Cyclic triaxial testing was performed on reconstituted MSW samples and the shear modulus reduction and damping characteristics of MSW were studied. Ten ground motions were selected based on regional seismicity and site response parameters have been obtained considering one-dimensional non-linear analysis in the DEEPSOIL program. The surface spectral response varied from 0.6 to 2 g and persisted only for a period of 1 s for most of the ground motions. The maximum peak ground acceleration (PGA) obtained was 0.5 g and the minimum and maximum amplifications are 1.35 and 4.05. Amplification of the base acceleration was observed at the top surface of the landfill underlined by a composite soil layer and bedrock for all ground motions. Dynamic seismic properties with amplification and site response parameters for MSW landfill in Bangalore, India, are presented in this paper. This study shows that MSW has less shear stiffness and more amplification due to loose filling and damping, which need to be accounted for seismic design of MSW landfills in India. PMID:26759434

  1. Streamlining the RI/FS for CERCLA municipal landfill sites. Fact sheet

    SciTech Connect

    Not Available

    1990-09-01

    Approximately 20 percent of the sites on the National Priorities List (NPL) are municipal landfills which typically share similar characteristics. Because of the similarity the Superfund Program anticipates that their remediation will involve similar waste management approaches. As stated in the National Contingency Plan, EPA expects that containment technologies will generally be appropriate for waste that poses a relatively low long-term threat or where treatment is impracticable (Sec. 300.430(a)(1)(iii)(B),55FR8846(March 8, 1990)). In addition, EPA expects treatment to be considered for identifiable areas of highly toxic and/or mobile material that constitute the principal threat(s) posed by the site (Sec. 300.430(a)(1)(iii)(A)). The similarity in landfill characteristics and the NCP expectations make it possible to streamline the RI/FS for municipal landfills with respect to site characterization, risk assessment, and the development of remedial action alternatives. The fact sheet outlines available streamlining techniques for each of these three phases of an RI/FS. Additional information, including tools to assist in scoping activities, will be included in the document Conducting Remedial Investigations/Feasibility Studies for CERCLA Municipal Landfill Sites (November 1990, Directive No. 9355.3-11). The document will be available from the Center for Environmental Research Information (FTS 684-7562 or 513-569-7562).

  2. 75 FR 30831 - Cooksey Brothers Landfill Fire Superfund Site; Ashland, Boyd County, KY; Notice of Settlement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ...Under Section 122(h)(1) of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), the United States Environmental Protection Agency has entered into a settlement for reimbursement of past response costs concerning the Cooksey Brothers Landfill Fire Superfund Site located in Ashland, Boyd County, Kentucky for...

  3. Raster-based outranking method: a new approach for municipal solid waste landfill (MSW) siting.

    PubMed

    Hamzeh, Mohamad; Abbaspour, Rahim Ali; Davalou, Romina

    2015-08-01

    MSW landfill siting is a complicated process because it requires integration of several factors. In this paper, geographic information system (GIS) and multiple criteria decision analysis (MCDA) were combined to handle the municipal solid waste (MSW) landfill siting. For this purpose, first, 16 input data layers were prepared in GIS environment. Then, the exclusionary lands were eliminated and potentially suitable areas for the MSW disposal were identified. These potentially suitable areas, in an innovative approach, were further examined by deploying Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) II and analytic network process (ANP), which are two of the most recent MCDA methods, in order to determine land suitability for landfilling. PROMETHEE II was used to determine a complete ranking of the alternatives, while ANP was employed to quantify the subjective judgments of evaluators as criteria weights. The resulting land suitability was reported on a grading scale of 1-5 from 1 to 5, which is the least to the most suitable area, respectively. Finally, three optimal sites were selected by taking into consideration the local conditions of 15 sites, which were candidates for MSW landfilling. Research findings show that the raster-based method yields effective results. PMID:25903176

  4. Risk assessment of landfill disposal sites--State of the art.

    PubMed

    Butt, Talib E; Lockley, Elaine; Oduyemi, Kehinde O K

    2008-01-01

    A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches. PMID:17977707

  5. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  6. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    SciTech Connect

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  7. Superfund record of decision (EPA Region 2): Barceloneta Landfill Site (Florida Afuera Ward), Barceloneta, PR, July 5, 1996

    SciTech Connect

    1996-12-01

    This Record of Decision (ROD) documents the U.S. Environmental Protection Agency`s (EPA`s) selection of the remedial action for the Barceloneta Landfill Site. The primary objective of this remedy is to control the source of contamination at the Site and to reduce and minimize the migration of contaminants into Site media thereby minimizing any health and environmental impacts. The major component of the selected remedy includes installing a low permeability cover system for the three landfill cells meeting the requirements of the Resource Conservation and Recovery Act Subtitle D and Puerto Rico`s Regulations Governing Landfill Closure. This cover system or landfill cap(s) will further reduce infiltration of precipitation water into the landfill and reduce leachate generation thus mitigating impacts to ground water.

  8. 24 CFR 242.50 - Funds and finances: off-site utilities and streets.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Funds and finances: off-site utilities and streets. 242.50 Section 242.50 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND URBAN...

  9. Derivation of cesium-137 residual radioactive material guidelines for the Peek Street site, Schenectady, New York

    SciTech Connect

    Jones, L.; Nimmagadda, M.; Yu, C.

    1992-01-01

    Residual radioactive material guidelines for cesium-137 were derived for the Peek rk. The derivation was based on the requirement that the Street site in Schenectady, New York. The derivation was based on the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the Peek Street site should not exceed a dose of 100 mrem/yr following remedial action. The US Department of Energy (DOE) residual radioactive material guideline computer code, RESRAD was used in this evaluation. Three potential scenarios were considered for the site on the assumption that for a period of 1,000 years following remedial action, the site wig be utilized without radiological restrictions. The scenarios vary with regard to use of the site, time spent at the site, and sources of food consumed. Results indicate that the basic dose limit of 100 mrem/yr will not be exceeded for cesium-137 within 1,000 years, provided that the soil concentration of cesium-137 at the Peek Street site does not exceed the following levels: 98 pCi/g for Scenario A (industrial worker: the expected scenario), 240 pCi/g for Scenario B (recreationist: a plausible scenario), and 34 pCi/g for Scenario C (resident farmer ingesting food produced in the decontaminated area: a plausible scenario).

  10. Landfill bioreactor design and operation

    SciTech Connect

    Reinhart, D.R.; Townsend, T.

    1998-12-31

    Landfill Bioreactor Design and Operation covers the history and background of landfill technology, research studies of actual bioreactor landfills, expected leachate and gas yields, specific design criteria, operation guidelines, and reuse of landfill sites to avoid having to establish new sites. For anyone looking for an alternative to large, wasteful landfill sites, this book provides a practical alternative to the problem.

  11. Estimation of methane emission rate changes using age-defined waste in a landfill site.

    PubMed

    Ishii, Kazuei; Furuichi, Toru

    2013-09-01

    Long term methane emissions from landfill sites are often predicted by first-order decay (FOD) models, in which the default coefficients of the methane generation potential and the methane generation rate given by the Intergovernmental Panel on Climate Change (IPCC) are usually used. However, previous studies have demonstrated the large uncertainty in these coefficients because they are derived from a calibration procedure under ideal steady-state conditions, not actual landfill site conditions. In this study, the coefficients in the FOD model were estimated by a new approach to predict more precise long term methane generation by considering region-specific conditions. In the new approach, age-defined waste samples, which had been under the actual landfill site conditions, were collected in Hokkaido, Japan (in cold region), and the time series data on the age-defined waste sample's methane generation potential was used to estimate the coefficients in the FOD model. The degradation coefficients were 0.0501/y and 0.0621/y for paper and food waste, and the methane generation potentials were 214.4 mL/g-wet waste and 126.7 mL/g-wet waste for paper and food waste, respectively. These coefficients were compared with the default coefficients given by the IPCC. Although the degradation coefficient for food waste was smaller than the default value, the other coefficients were within the range of the default coefficients. With these new coefficients to calculate methane generation, the long term methane emissions from the landfill site was estimated at 1.3510(4)m(3)-CH(4), which corresponds to approximately 2.53% of the total carbon dioxide emissions in the city (5.3410(5)t-CO(2)/y). PMID:23786989

  12. Wastewater disposal to landfill-sites: a synergistic solution for centralized management of olive mill wastewater and enhanced production of landfill gas.

    PubMed

    Diamantis, Vasileios; Erguder, Tuba H; Aivasidis, Alexandros; Verstraete, Willy; Voudrias, Evangelos

    2013-10-15

    The present paper focuses on a largely unexplored field of landfill-site valorization in combination with the construction and operation of a centralized olive mill wastewater (OMW) treatment facility. The latter consists of a wastewater storage lagoon, a compact anaerobic digester operated all year round and a landfill-based final disposal system. Key elements for process design, such as wastewater pre-treatment, application method and rate, and the potential effects on leachate quantity and quality, are discussed based on a comprehensive literature review. Furthermore, a case-study for eight (8) olive mill enterprises generating 8700m(3) of wastewater per year, was conceptually designed in order to calculate the capital and operational costs of the facility (transportation, storage, treatment, final disposal). The proposed facility was found to be economically self-sufficient, as long as the transportation costs of the OMW were maintained at ?4.0/m(3). Despite that EU Landfill Directive prohibits wastewater disposal to landfills, controlled application, based on appropriately designed pre-treatment system and specific loading rates, may provide improved landfill stabilization and a sustainable (environmentally and economically) solution for effluents generated by numerous small- and medium-size olive mill enterprises dispersed in the Mediterranean region. PMID:23792820

  13. Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate

    SciTech Connect

    Al Yaqout, Anwar F

    2003-07-01

    Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14{+-}1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85{+-}0.19 million t representing 37.22{+-}6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.

  14. Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate.

    PubMed

    Al Yaqout, Anwar F

    2003-01-01

    Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14+/-1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85+/-0.19 million t representing 37.22+/-6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait. PMID:14583244

  15. Construction quality assurance for Pit 6 landfill closure, Lawrence Livermore National Laboratory, Site 300

    SciTech Connect

    1997-10-30

    Golder Construction Services, Inc. (GCS), under contract to the Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), provided the construction quality assurance (CQA) observation and testing during the construction of the Site 300, Pit 6 landfill closure cover. The cap construction was performed as a CERCLA non-time-critical removal action from June 2 to August 29, 1997. the project site is located 18 miles east of Livermore on Tesla Road and approximately 10 miles southwest of Tracy on Corral Hollow Road in San Joaquin County, California. This report certifies that the LLNL, Site 300, Pit 6, Landfill Closure was constructed in accordance with the construction specifications and design drawings. This report documents construction activities and CQA monitoring and testing for construction of the Pit 6 Landfill Closure. Golder Associates, Inc. of Oakland, California was the design engineering firm responsible for preparation of the drawings and specifications. CQA services were provided by GCS, of Roseville, California, under supervision of a California registered civil Engineer.

  16. Decision Making on Regional Landfill Site Selection in Hormozgan Province Using Smce

    NASA Astrophysics Data System (ADS)

    Majedi, A. S.; Kamali, B. M.; Maghsoudi, R.

    2015-12-01

    Landfill site selection and suitable conditions to bury hazardous wastes are among the most critical issues in modern societies. Taking several factors and limitations into account along with true decision making requires application of different decision techniques. To this end, current paper aims to make decisions about regional landfill site selection in Hormozgan province and utilizes SMCE technique combined with qualitative and quantitative criteria to select the final alternatives. To this respect, we first will describe the existing environmental situation in our study area and set the goals of our study in the framework of SMCE and will analyze the effective factors in regional landfill site selection. Then, methodological procedure of research was conducted using Delphi approach and questionnaires (in order to determine research validity, Chronbach Alpha (0.94) method was used). Spatial multi-criteria analysis model was designed in the form of criteria tree in SMCE using IL WIS software. Prioritization of respective spatial alternatives included: Bandar Abbas city with total 4 spatial alternatives (one zone with 1st priority, one zone with 3rd priority and two zones with 4thpriority) was considered the first priority, Bastak city with total 3 spatial alternatives (one zone with 2nd priority, one zone with 3rdpriorit and one zone with 4th priority) was the second priority and Bandar Abbas, Minab, Jask and Haji Abad cities were considered as the third priority.

  17. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    SciTech Connect

    MacDonnell, B.A.; Obenauf, K.S.

    1996-08-01

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  18. A comprehensive study on landfill site selection for Kolkata City, India.

    PubMed

    Paul, Koushik; Dutta, Amit; Krishna, A P

    2014-07-01

    Kolkata is one of the four major metropolitan cities in India and the capital city of the state of West Bengal. With an area of 187.33 km2 and a population of about 10 million (including a floating population of about 6 million), the city generates about 3500 Metric Ton (MT) of solid waste per day. Currently, Kolkata Municipal Corporation (KMC) disposes its waste at Dhapa (21.47 ha), where the disposal rate exceeds 3000 MT/day, and at Garden Reach (3.52 ha), where the disposal rate is 100 MT/day. Considering the exhaustion of Dhapa land space, city planners are urgently searching for an alternate disposal ground. National Environmental Engineering Research Institute (NEERI), under the sponsorship of Central Pollution Control Board (CPCB), has brought out literature developing the site selection criteria for municipal solid waste disposal ground to suit Indian conditions. The developed criteria encompass environmental conditions, accessibility, geological and hydrogeological conditions, and ecological and societal effects. This paper attempts to locate the most suitable site for disposal of KMC area solid waste using the multicriterion decision analysis as stipulated in CPCB 2003 guidelines and the overlay analysis of geographic information system (GIS). Implications: The paper is based on landfill site selection for dumping of solid waste generated within Kolkata Municipal Corporation (KMC) area. The methodology uses GIS/remote sensing, Site Sensitivity Index (an offshoot of pairwise comparison technique developed in CPCB 2003 guidelines, Government of India), and the Delphi technique. Dhapa landfill site, where solid waste of KMC area is currently being disposed, is exhausted; the authors of this article thus found it relevant to carry out a research on the selection of an alternative landfill site. The study undertaken was comprehensive, yet presented in a lucid way so that policymakers will find easy to comprehend. PMID:25122958

  19. Telomere shortening in women resident close to waste landfill sites.

    PubMed

    De Felice, Bruna; Nappi, Carmine; Zizolfi, Brunella; Guida, Marco; Di Spiezio Sardo, Attilio; Bifulco, Giuseppe; Guida, Maurizio

    2012-05-25

    Several studies demonstrate links between environmental stress and index of reduced health, including risk factors for cardiovascular disease, reduced immune function and cancer risks. We investigated the hypothesis that pollution, as an environmental stress, impacts health by modulating the rate of cellular aging in healthy pregnant women. Our research looked at the effects that illegal waste sites have on the localized population of pregnant women in Campania, Italy. As is often the case in illegal dumping, the effects on the population are often seen well before knowing what specific agents in the soil and water are responsible. Here we provide evidence that the pollution in this region is significantly associated with higher oxidative stress, shorter telomere length and lower telomerase activity, which are known determinants of cell senescence and aging-related meiotic dysfunction in women, in peripheral blood mononuclear cells from healthy pregnant women, subjected to therapeutic abortion in the second trimester of pregnancy. These findings may have implications for understanding how, at the cellular level, environmental stress may promote earlier onset of age-related diseases. PMID:22465532

  20. Health assessment for Pigeon Point Landfill Site (New Castle City Landfill), New Castle, Delaware, Region 3. CERCLIS No. DED980494603. Preliminary report

    SciTech Connect

    Not Available

    1988-05-11

    The Pigeon Point Landfill 180-acre site includes a former municipal landfill that reportedly received industrial wastes during the period from 1968 to 1985. Initial sampling of groundwater and leachate revealed inorganic and organic chemicals at levels of health concern; however, per anecdotal information received from EPA, subsequent sampling has not confirmed initial sampling results. Only the original sampling data were available for this health assessment and since the data are questionable, they are not reported here. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via groundwater and leachate. However, information available on the site at present is of questionable validity. Additional information on contaminants released, populations potentially exposed, and environmental pathways through which the contaminants can reach these populations is needed.

  1. Feasibility of direct on-site conversion of landfill gas to electrical energy at Scholl Canyon landfill, California

    NASA Astrophysics Data System (ADS)

    Lofy, R. J.

    1981-06-01

    The technical and economic feasibility of direct onsite conversion of landfill gas into electrical energy for distribution through the municipal company's distribution grid is described. The various approaches are evaluated. Each system looked at the preliminary collection system layout, type of processing, and conversion equipment required, conversion efficiencies, total system costs, total energy output per input landfill gas, and overall economic comparisons between alternatives. This led to the selection of the internal combustion engine. The legal constraints on interdepartmental transfers of money and resources, city procedures for coordination between the public works department and public services, procedures for facility operation, and an environmental assessment of each alternative were investigated.

  2. Combining geographic information system, multicriteria evaluation techniques and fuzzy logic in siting MSW landfills

    NASA Astrophysics Data System (ADS)

    Gemitzi, Alexandra; Tsihrintzis, Vassilios A.; Voudrias, Evangelos; Petalas, Christos; Stravodimos, George

    2007-01-01

    This study presents a methodology for siting municipal solid waste landfills, coupling geographic information systems (GIS), fuzzy logic, and multicriteria evaluation techniques. Both exclusionary and non-exclusionary criteria are used. Factors, i.e., non-exclusionary criteria, are divided in two distinct groups which do not have the same level of trade off. The first group comprises factors related to the physical environment, which cannot be expressed in terms of monetary cost and, therefore, they do not easily trade off. The second group includes those factors related to human activities, i.e., socioeconomic factors, which can be expressed as financial cost, thus showing a high level of trade off. GIS are used for geographic data acquisition and processing. The analytical hierarchy process (AHP) is the multicriteria evaluation technique used, enhanced with fuzzy factor standardization. Besides assigning weights to factors through the AHP, control over the level of risk and trade off in the siting process is achieved through a second set of weights, i.e., order weights, applied to factors in each factor group, on a pixel-by-pixel basis, thus taking into account the local site characteristics. The method has been applied to Evros prefecture (NE Greece), an area of approximately 4,000 km2. The siting methodology results in two intermediate suitability maps, one related to environmental and the other to socioeconomic criteria. Combination of the two intermediate maps results in the final composite suitability map for landfill siting.

  3. An Evaluation of Techniques to Control Problem Bird Species on Landfill Sites

    NASA Astrophysics Data System (ADS)

    Cook, Aonghais; Rushton, Steven; Allan, John; Baxter, Andrew

    2008-06-01

    Birds feeding on landfill sites cause problems in terms of nuisance to neighbors, flight safety, a threat to public health, and affecting the day to day site operation. A number of control measures exist to deter problem species; however, research into their effectiveness across sites and for multiple species has been limited. We use a modeling approach in order to assess the effectiveness of nine techniques — pyrotechnics, hand-held distress calls, static distress calls, blank ammunition, a combination of blank and lethal use of ammunition, the use of falcons, the use of hawks, wailers and helium-filled bird-scaring kites — at deterring three commonly recorded species — the Black-headed Gull ( Larus ridibundus), the Herring Gull ( Larus argentatus) and the Lesser Black-backed Gull ( Larus fuscus) — from six landfill sites across the United Kingdom. The use of distress calls, falconry, and combinations of lethal and nonlethal use of ammunition were the most effective techniques for initially deterring birds from these sites. However, when habituation is considered, there is a clear difference between techniques such as falconry, which have a lethal aspect and may act to reinforce the deterrence, and the use of techniques such as distress calls, which do not. However there are problems related to legislation and public perception when lethal techniques are used.

  4. Application of GIS/AHP in siting sanitary landfill: a case study in Northern Cyprus.

    PubMed

    Kara, Can; Doratli, Naciye

    2012-09-01

    The present study utilized a multi-criteria evaluation (MCE) method in a geographical information systems (GIS) environment to evaluate the suitability of potential landfill sites in Northern Cyprus. To determine the most suitable landfill site, one of the MCE techniques, called analytical hierarchy process (AHP), was combined with a GIS to examine 12 criteria: distance from waste generation centres; distance from roads; slope; distance from surface waters; distance from groundwater areas; distance from environmentally sensitive areas; vegetation types; soil productivity; soil permeability; distance from settlements; distance from cultural sites; distance from stone quarries. The relative importance weights of these criteria were estimated using AHP and criteria maps were developed by using GIS spatial analysis. At the final stage two different suitability maps were produced using two different groups of weights. The first group suitability map had 11 052 (ha) with high suitability class, whereas the high suitability areas decreased to 5982 (ha) in the second group. Moreover, the seven potential sites identified within the first group decreased to four in the second suitability map. However, potential sites such as Gungor, Degirmenlik, Kirklar and Cayonu had similarities with higher suitability values and these same locations were regarded as suitable according to the both first and second suitability map results. PMID:22843350

  5. Superfund record of decision (EPA Region 2): Juncos Landfill Site (operable unit 2), Juncos, PR, October 1993

    SciTech Connect

    Not Available

    1994-07-01

    The decision document presents the selected remedial action for Operable Unit Two (OU-II) of the Juncos Landfill located in the Municipality of Juncos, Puerto Rico. This decision document explains the factual and legal basis for selecting the remedy for this site. The operable unit is the second of two operable units for the Juncos Landfill Site. It focuses on groundwater contamination, resulting from contaminant migration from the landfill. The key components of the OU-II remedy include the following: Natural attenuation or no action for the groundwater; and Recommendation that institutional controls consisting of restrictions on groundwater withdrawal in the area north of the landfill be implemented by the Commonwealth. The implementation of this selected remedy in conjunction with the OU-I remedy will minimize or eliminate the potential carcinogenic and noncarcinogenic impacts.

  6. Contamination valuation of soil and groundwater source at anaerobic municipal solid waste landfill site.

    PubMed

    Aziz, Shuokr Qarani; Maulood, Yousif Ismael

    2015-12-01

    The present work aimed to determine the risks that formed landfill leachate from anaerobic Erbil Landfill Site (ELS) poses on groundwater source and to observe the effects of disposed municipal solid waste (MSW) on soil properties. The study further aims to fill the gap in studies on the effects of disposed MSW and produced leachate on the groundwater characteristics and soil quality at ELS, Iraq. Soil, leachate, and groundwater samples were collected from ELS for use as samples in this study. Unpolluted groundwater samples were collected from an area outside of the landfill. Field and laboratory experiments for the soil samples were conducted. Chemical analyses for the soil samples such as organic matter, total salts, and SO4 (=) were also performed. Raw leachate and groundwater samples were analyzed using physical and chemical experiments. The yields for sorptivity, steady-state infiltration rate, and hydraulic conductivity of the soil samples were 0.0006 m/?s, 0.00004 m/s, and 2.17 10(-5) m/s, respectively. The soil at ELS was found to be light brown clayey gravel with sand and light brown gravely lean clay layers with low permeability. Unprocessed leachate analysis identified the leachate as stabilized. Findings showed that the soil and groundwater at the anaerobic ELS were contaminated. PMID:26577215

  7. Seismic refraction studies at the Painter Street bridge site, Rio Dell, California

    SciTech Connect

    Heuze, F.E.; Swift, R.P.

    1991-09-01

    This report summarizes the results of seismic refraction P- and S-wave measurements, at the site of the Painter Street bridge, in Rio Dell, California. The bridge is spanning highway US 101, 4 miles south of Fortuna, in northwestern California. This study was performed to provide an estimate of material properties for the foundation of the bridge, in support of a seismic stability analysis of the bridge performed at LLNL by D. McCallen. The Rio Dell region is seismically active and the Painter Street bridge is one of only 2 bridges of its type in California, instrumented for strong motion recordings. Measurements were made using a 12-channel Geometric/Nimbus ES 1210 Signal Enhancement Seismograph. 3 refs., 21 figs., 1 tab.

  8. Siting MSW landfills using MCE methodology in GIS environment (Case study: Birjand plain, Iran).

    PubMed

    Motlagh, Zeynab Karimzadeh; Sayadi, Mohammad Hossein

    2015-12-01

    The rapid municipal solid waste growth of Birjand plain causes to find an appropriate site selection for the landfill. In order to reduce the negative impacts of waste, the use of novel tools and technologies to gain a suitable site for landfill seems imperative. The present paper aimed to exhibits the Multi Criteria Evaluation (MCE) for the landfill site selection of the Birjand plain because till date a suitable action has not been implicated. In the present research, the parameters such as environmental and socio-economical factors have been used. The factors like slope, water resources, soil parameters, landuse, fault and protected areas in the model of effective environmental criteria and the factors viz. distance from road, urban areas, village, airport, historical place, and industries in the model of socio-economic criteria were investigated and with the use of Weighted Linear Combination (WLC) and Analytical Network Process (ANP) models were compounded and according to the Ordered Weighted Averaging (OWA) and Fuzzy Linguistic Quantifier (LQ) were aggregated. The paper focuses on the OWA method as well as an approach for integrating Geographic Information System (GIS) and OWA. OWA has been developed as a generalization of multi-criteria combination. In this study we attained comparable data via the technique of ANP and five scenarios of OWA method were used. The results of field studies, fifth scenario for the study area proposed. Based on the research findings, OWA method had a great potential and flexibility in the modeling of the complex decision-making problems. PMID:26321380

  9. Basic hydrogeologic and remote sensing data for selection of sanitary landfill sites

    NASA Technical Reports Server (NTRS)

    Brooks, H. K.; Ruth, B. E.; Degner, J. D.

    1977-01-01

    Solid waste disposal were studied in Volusia County to protect the water supply in the area. Highlands in this County are of limited areal extent and, most significantly, the sand hills and ridges are in areas where recharge of the Floridan aquifer occurs. This study proves that well drained soils meeting the current State requirements are of limited areal extent. These areas should not be utilized as sanitary landfill sites! Rather, it is recommended that the Tomoka Farm Road site into the adjacent wetlands be extended. The County site on Rima Ridge recommended by Greenleaf-Telesca as the primary waste burial site in the County should be re-evaluated because of potential danger to the Daytona Beach water supply.

  10. Assessing the impact of historical coastal landfill sites on sensitive ecosystems: A case study from Dorset, Southern England

    NASA Astrophysics Data System (ADS)

    Njue, C. N.; Cundy, A. B.; Smith, M.; Green, I. D.; Tomlinson, N.

    2012-12-01

    Uncontrolled landfill disposal can cause the release of significant contamination. In Southern England and in other parts of the UK, historical landfills are located along many coastal and estuarine marshes and mudflats. At these sites waste, often significantly contaminated with heavy metals and other contaminants, was dumped with little engineering control and without regard to the surrounding environment. The aim of this study is to investigate the degree to which heavy metals from these historical sites may have contaminated adjacent marshes and mudflats, using the Lodmoor marsh, Dorset, UK as a test site. Surface and sediment core samples were collected from brackish marsh and mudflat areas around the former landfill at Lodmoor, which was operational between 1949 and 1990. Sediment samples were investigated for metallic pollutants, grain size, and mineralogy, and core samples dated via 137Cs and 210Pb. To examine the transfer of heavy metals through the food chain, Phragmites australis leaves were analysed for metallic pollutants. Geochemical data revealed that sediments from the Lodmoor marsh are probably contaminated with Pb. 137Cs dating indicates that concentration maxima for heavy metals correlate to the 1950s and 1960s when landfill activities commenced in Lodmoor. Shallow electromagnetic surveys indicate potential continued leaching from the historic landfill complex. This study indicates the potential for possible landfill-derived contaminants to persist in coastal systems for decades after landfill closure. Over the longer term, it is possible that salinisation and enhanced coastal erosion may cause significant metal release from the landfills and their surrounding sedimentary systems into adjacent ecosystems.

  11. Superfund Record of Decision (EPA Region 2): Grand Street Mercury Site, Hoboken, NJ, September 30, 1997

    SciTech Connect

    1998-01-01

    This Record of Decision presents the selected remedial action for the Grand Street Mercury Site. The major components of the selected remedy include: permanent relocation of the former residents of the Site; continuation of temporary relocation of the former residents until permanent relocation has been implemented; historic preservation mitigation measures for the buildings at the Site, as appropriate; gross mercury decontamination of the buildings at the Site including recovery of available mercury, whenever possible; identification and abatement of asbestos in the buildings at the Site; removal and recovery of reusable fixtures, appliances, and recyclable scrap metal and other building components; demolition of the two buildings at the Site using measures to minimize releases of mercury into the environment; removal and off-site disposal of all demolition debris at EPA-approved facilities; sampling of soils at the Site; excavation and off-site disposal of contaminated soils at EPA-approved facilities; sampling of soils at off-site adjacent locations; sampling of groundwater at the Site; and assessment of off-site soil and groundwater data to evaluate the need for future remedial action.

  12. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal

    SciTech Connect

    Feo, Giovanni De; Gisi, Sabino De

    2014-11-15

    Highlights: • Wasting land for the siting of hazardous waste landfills must be avoided. • The siting procedure is based on a land use map of potentially suitable areas. • All the waste facilities of the management system are simultaneously considered. • A case study is developed considering two multi-criteria techniques. • An innovative criteria weighting tool (PSW) is used in combination with the AHP. - Abstract: The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a “land use map of potentially suitable areas” for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the “Priority Scale”) in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method.

  13. Health assessment for Beacon Heights Landfill site, Beacon Falls, Connecticut, Region 1. CERCLIS No. CTD072122062. Addendum. Final report

    SciTech Connect

    Not Available

    1991-06-20

    The Beacon Heights Landfill National Priorities List (NPL) Site is located in Beacon Falls, Connecticut. From the 1920's to 1979, municipal and industrial wastes were disposed of at the landfill. Leachate from the landfill has migrated into the local groundwater aquifers. Two residential wells to the northwest of the site have been contaminated with site-related contaminants. This site is of potential public health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects. As noted in Human Exposure Pathways Section below, human exposure to benzene, chlorobenzene, chloroethane, and methylene chloride may have occurred via ingestion, inhalation, and direct dermal contact with contaminated groundwater. No health study follow-up is indicated at this time.

  14. Ground-water flow and solute transport at a municipal landfill site on Long Island, New York

    USGS Publications Warehouse

    Wexler, E.J.

    1988-01-01

    Hydrogeology and water quality in a 4 sq mi area surrounding the Brookhaven landfill site in the Town of Brookhaven, New York, were studied in 1981-83. The 60-acre sanitary landfill at the site was excavated in highly permeable glacial outwash that forms the upper glacial aquifer and is lined with a polyvinyl chloride membrane. Groundwater beneath the site is under water table conditions and flows southeast at approximately 1.1 ft/day. Samples from wells downgradient indicate that leachate has entered the aquifer despite the liner. A plume 3,700 ft long , 2,400 ft wide, and at least 90 ft thick was delineated based on specific conductance data. Water quality in the Magothy aquifer and in Beaverdam Creek, a groundwater fed stream 2,000 ft southeast of the landfill site, does not appear to be affected. (USGS)

  15. Factors affecting leachate and gas carbon loadings at the Vancouver landfill site at Burns Bog

    SciTech Connect

    Wreford, K.

    1995-12-31

    Landfill gas represents either a potential energy source when recovered and modified, or a significant contributor to the build-up of greenhouse gases in the troposphere when released. An analysis of short-term and long-term variation in landfill gas production and composition and leachate characteristics in response to fluctuations in temperature, barometric pressure and precipitation was undertaken at the Burns Bog Site located in Delta, B.C. Gas composition (%CH{sub 4}, %CO{sub 2}, %O{sub 2}, %C{sub 2}H{sub 4}) and production measurements were undertaken at individual wells spanning the entire active gas producing area of the site, in addition to measurements from the header lines. Leachate samples were obtained from the pumping station of the collection ditch, and analyzed for the parameters of interest (COD, VFA, TOC, pH, NH{sub 4}{sup +}{minus}N). Preliminary results indicate that precipitation is the predominant factor affecting gas composition, with high CH{sub 4} and relatively low CO{sub 2} production following periods of heavy rainfall. This is most likely due to increased methanogenesis under the enhanced anaerobic conditions, in addition to the dissolution of CO{sub 2} and release in the leachate. The relative production of the key parameters of the gas and leachate were analyzed in order to determine possible effects of the measured climatic factors on this balance. Spatial and temporal trends in the production and composition of the landfill gas are highlighted in order to augment present understanding of the decomposition process of the refuse following burial, and the management practices which may lead to its optimization.

  16. Work plan for the radiological survey for the David Witherspoon, Incorporated, Landfill-1630 site, Knoxville, Tennessee

    SciTech Connect

    1996-07-01

    This work plan establishes the methods and requirements for performing a radiological survey at the David Witherspoon, Incorporated, Landfill-1630 Site, Knoxville, Tennessee (DWI 1630 Site) in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The radiological survey will identify the radiological contamination level of the equipment and debris stored at the DWI 1630 Site. The data generated from the survey activities will support the decisions for characterization of the equipment/debris and aid in subsequent disposition and waste handling. The survey activities to be performed under this work plan include an equipment radiological survey, a walkover survey, and an immunoassay testing for polychlorinated biphenyls (PCBs). This work plan includes a quality assurance (QA)/quality control (QC) project plan, a health and safety (H&S) plan, and a waste management plan.

  17. Radiological survey results for the Peek Street site properties, Schenectady, New York

    SciTech Connect

    Foley, R.D.; Cottrell, W.D.; Carrier, R.F.

    1992-08-01

    The Peek Street Industrial Facility, located at 425 Peek Street, Schenectady, New York, was operated by the General Electric Company for the Atomic Energy Commission (AEC) between 1947 and 1955. A variety of operations using radioactive materials were conducted at the site, but the main activities were to design an intermediate breeder reactor and to develop a chemical process for the recovery of uranium and plutonium from spent reactor fuel. Nonradioactive beryllium metal was machined on the site for breeder reactor application. The 4.5-acre site was decommissioned and released in October 1955. A radiological survey was conducted by Oak Ridge National Laboratory in November 1989. The survey included scan and grid point measurements of direct radiation levels outdoors on the five properties and inside the factory building, and radionuclide analysis of samples collected from each property. Radionuclide concentrations were determined in outdoor surface and subsurface soil samples from each property and in dust, debris, and structural materials from inside the factory building. Auger holes were logged to assess location and extent of possible subsurface residual soil radioactivity. Radionuclide concentrations were deter-mined in both indoor and outdoor water samples and in selected samples of vegetation. The presence of fixed and transferable surface residual radioactivity was investigated inside the factory building and on discarded materials outdoors on the property. High-volume air samples as well as additional selected indoor and outdoor soil samples were analyzed to determine levels of elemental beryllium.

  18. An integrated multi criteria approach for landfill siting in a conflicting environmental, economical and socio-cultural area.

    PubMed

    Eskandari, Mahnaz; Homaee, Mehdi; Mahmodi, Shahla

    2012-08-01

    Landfill site selection is a complicated multi criteria land use planning that should convince all related stakeholders with different insights. This paper addresses an integrating approach for landfill siting based on conflicting opinions among environmental, economical and socio-cultural expertise. In order to gain optimized siting decision, the issue was investigated in different viewpoints. At first step based on opinion sampling and questionnaire results of 35 experts familiar with local situations, the national environmental legislations and international practices, 13 constraints and 15 factors were built in hierarchical structure. Factors divided into three environmental, economical and socio-cultural groups. In the next step, the GIS-database was developed based on the designated criteria. In the third stage, the criteria standardization and criteria weighting were accomplished. The relative importance weights of criteria and subcriteria were estimated, respectively, using analytical hierarchy process and rank ordering methods based on different experts opinions. Thereafter, by using simple additive weighting method, the suitability maps for landfill siting in Marvdasht, Iran, was evaluated in environmental, economical and socio-cultural visions. The importance of each group of criteria in its own vision was assigned to be higher than two other groups. In the fourth stage, the final suitability map was obtained after crossing three resulted maps in different visions and reported in five suitability classes for landfill construction. This map indicated that almost 1224 ha of the study area can be considered as best suitable class for landfill siting considering all visions. In the last stage, a comprehensive field visit was performed to verify the selected site obtained from the proposed model. This field inspection has confirmed the proposed integrating approach for the landfill siting. PMID:22503155

  19. EM induction and magnetic surveys at large landfill sites using GPS for postitional control

    SciTech Connect

    Hackworth, J.B.; Kirkpatrick, T.M.; Holtzclaw, D.R.

    1996-11-01

    Electromagnetic (EM) induction and magnetic surveys were conducted at two large landfill sites, totaling 76 acres, using a global positioning system (GPS) as the positional control method. The surveys were conducted at Tinker AFB in Oklahoma, as part of a Phase II Resource Conservation and Recovery Act (RCRA) facility investigation. The objectives of the investigation were to delineate the boundaries of known landfill trenches and determine whether features seen in aerial photographs represented previously unidentified trenches. The GPS method of survey control was chosen rather than the conventional local grid approach because site conditions included extremely rugged surface topography, thick vegetation, and several swampy areas that precluded the establishment of precisely spaced, straight lines. The alternative would have required civil surveying and extensive vegetation removal. The GPS allowed local navigation and re-orientation to avoid obstacles and field hazards while continuing to collect valid, accurately located geophysical data. The use of differentially corrected GPS data for this investigation proved to be an excellent way to obtain geophysical survey control at a reduced level of effort; however, it added complexity to the surveys that had to be planned for both in the field and during data processing. Specialized processing techniques were developed to overcome minor satellite signal {open_quote}dropouts,{close_quote} and to allow for proper time-synchronization and merging of the geophysical and GPS data.

  20. Soil chemistry and pollution study of a closed landfill site at Ampar Tenang, Selangor, Malaysia.

    PubMed

    Mohd Adnan, Siti Nur Syahirah Binti; Yusoff, Sumiani; Piaw, Chua Yan

    2013-06-01

    A total of 20 landfills are located in State of Selangor, Malaysia. This includes the Ampar Tenang landfill site, which was closed on 26 January 2010. It was reported that the landfill has been upgraded to a level I type of sanitary classification. However, the dumpsite area is not being covered according to the classification. In addition, municipal solid waste was dumped directly on top of the unlined natural alluvium formation. This does not only contaminate surface and subsurface soils, but also initiates the potential risk of groundwater pollution. Based on previous studies, the Ampar Tenang soil has been proven to no longer be capable of preventing pollution migration. In this study, metal concentrations of soil samples up to 30 m depth were analyzed based on statistical analysis. It is very significant because research of this type has not been carried out before. The subsurface soils were significantly polluted by arsenic (As), lead (Pb), iron (Fe), copper (Cu) and aluminium (Al). As and Pb exceeded the safe limit values of 5.90 mg/kg and 31.00 mg/kg, respectively, based on Provincial Sediment Quality Guidelines for Metals and the Interim Sediment Quality Values. Furthermore, only Cu concentrations showed a significantly decreasing trend with increasing depth. Most metals were found on clay-type soils based on the cluster analysis method. Moreover, the analysis also differentiates two clusters: cluster I-Pb, As, zinc, Cu, manganese, calcium, sodium, magnesium, potassium and Fe; cluster II-Al. Different clustering may suggest a different contamination source of metals. PMID:23528999

  1. Comparison of Candidate Sites for installation of Landfill facility at Ignalina NPP Site Using Fuzzy Logic Approach

    SciTech Connect

    Poskas, P.; Kilda, R.; Poskas, G.

    2008-07-01

    There is only one nuclear power plant in Lithuania - Ignalina NPP (Nuclear Power Plant). Two similar units with installed capacity of 1500 MW (each) were commissioned in 1983 and 1987 respectively. But the first Unit of Ignalina NPP was finally shutdown December 31, 2004, and second Unit is planned to be shutdown before 2010. Operational radioactive waste of different activities is generated at Ignalina NPP. After closure of INPP a waste from decommissioning should be managed also. According to Lithuanian regulatory requirements (1) the waste depending on the activity must be managed in different ways. In compliance with this Regulation very low-level radioactive waste (VLLW) could be disposed of in a Landfill facility. In such case very simple engineered barriers are required. A cap on the top of the repository is necessary from long-term safety point of view. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components: the site, the disposal facility and the waste form. The basic objective of the siting process is to select a suitable site for disposal and demonstrate that this site has characteristics which provide adequate isolation of radionuclides from the biosphere for desired periods of time. The methodology and results on evaluation and comparison of two candidate sites intended for construction of Landfill facility at Ignalina NPP site are presented in the paper. Criteria for comparison are based on the IAEA (International Atomic Energy Agency) recommendations (2). Modeling of the radionuclide releases has been performed using ISAM (Improving of Safety Assessment Methodologies for Near Surface Disposal facilities) methodology (3). For generalization of the information and elaboration of the recommendations Fuzzy Logic approach was used (4). (authors)

  2. Siting landfills and incinerators in areas of historic unpopularity: Surveying the views of the next generation

    SciTech Connect

    De Feo, Giovanni; Williams, Ian D.

    2013-12-15

    Highlights: • Opinions and knowledge of young people in Italy about waste were studied. • Historic opposition to construction of waste facilities is difficult to overcome. • Awareness of waste management develops with knowledge of environmental issues. • Many stakeholders’ views are needed when siting a new waste management facility. • Respondents’ opinions were influenced by their level of environmental knowledge. - Abstract: The Campania Region in Southern Italy has suffered many problems with municipal solid waste management since the mid-1990s, leading to significant public disturbances and subsequent media coverage. This paper reports on the current views and knowledge of young people (university students) in this region about waste management operations and facilities, specifically the siting of landfills and incinerators. By means of a structured questionnaire, opinion and knowledge were systematically examined by degree type and course year. The study took place in 2011 at the University of Salerno campus. A sample of 900 students, comprising 100 students for each of the nine considered faculties, and 20 students for every academic course year, was randomly selected. Only about a quarter of respondents were not opposed to the siting of a landfill or an incinerator in their city. This clearly highlights that historic opposition to the construction of waste facilities is difficult to overcome and that distrust for previous poor management or indiscretions is long-lived and transcends generations. Students from technical faculties expressed the most reasonable opinion; opinion and knowledge were statistically related (Chi-square test, p < 0.05) to the attended faculty, and the knowledge grew linearly with progression through the university. This suggests that awareness of waste management practices develops with experience and understanding of environmental issues. There is general acceptance that many stakeholders – technicians, politicians and citizens – all have to be part of the decision process when siting a new waste management facility. The opinions of the young respondents were significantly influenced by their level of environmental knowledge.

  3. Effects of ageing on elution behaviour of nitrogenous compounds in disposed wastes from landfill sites.

    PubMed

    Nishio, Takayuki

    2014-01-01

    Comparative studies of elution and cation exchange capacity (CEC) tests were applied to aged and fresh municipal and industrial solid wastes to examine the effects of ageing on the long-term elution behaviour of nitrogen on leachate in municipal and industrial solid waste landfill sites. Nitrogen in the leachate gradually eluted as organic nitrogen, but not upon transformation of organic nitrogen to elutable inorganic nitrogen compounds in the solid waste. Ammonium in the solid waste, retained similar to its interaction with clay minerals in soil, elutes when exposed to leachate by being replaced with highly concentrated cations or loses its positive charge in high pH in the leachate, which percolates down from the upper layer of the disposed waste. The quantity of ammonium adsorbed into the aged wastes through CEC measurement process by replacement with ammonium acetate was higher than that onto the fresh wastes. That difference in quantities can serve as an index of the ability of the solid waste to withhold ammonium in the leachate that percolates down the landfill layer. Those results demonstrate that ammonification of organic nitrogen in the waste is not the crucial step of the elution of nitrogenous compounds into leachate. PMID:25145199

  4. Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal.

    PubMed

    De Feo, Giovanni; De Gisi, Sabino

    2014-11-01

    The main aim of this study was to develop a procedure that minimizes the wasting of space for the siting of hazardous waste landfills as part of a solid waste management system. We wanted to tackle the shortage of land for waste disposal that is a serious and growing problem in most large urban regions. The procedure combines a multi-criteria decision analysis (MCDA) approach with a geographical information system (GIS). The GIS was utilised to obtain an initial screening in order to eliminate unsuitable areas, whereas the MCDA was developed to select the most suitable sites. The novelty of the proposed siting procedure is the introduction of a new screening phase before the macro-siting step aimed at producing a "land use map of potentially suitable areas" for the siting of solid waste facilities which simultaneously takes into consideration all plant types. The issue of obtaining sites evaluations of a specific facility was coupled with the issue of not wasting land appropriate to facilitate other types of waste management options. In the developed case study, the use of an innovative criteria weighting tool (the "Priority Scale") in combination with the Analytic Hierarchy Process was useful to easier define the priorities of the evaluation criteria in comparison with other classic methods such as the Paired Comparison Technique in combination with the Simple Additive Weighting method. PMID:25002369

  5. Evaluation of the attenuating properties of selected Greek clays for toxic inorganic elements in landfill sites.

    PubMed

    Mimides, T; Perraki, T

    2000-05-15

    Heavy metal attenuation properties of selected clay material collected from miscellaneous Greek sites is investigated and tested in the laboratory for their suitability, either as liners in hydrologically unsafe sites or as earth covers for sanitary landfill sites. Eleven potentially hazardous elements (As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Se, V, and Zn) generated by a co-disposal landfill leachate have been considered. Experimental column and static equilibrium methods for the determination of dispersion and adsorption are described. Molecular diffusion dominates the migration phenomena with a velocity range between 1.3 x 10(-5) and 3.5 x 10(-4) cm/s throughout the experiments. A simple way to evaluate dispersion coefficients from breakthrough curves gave values of between 3.90 x 10(-6) and 3.5 x 10(-4) cm2/s, with a mean value of 1.5 x 10(-5). Static adsorption equilibrium studies supported by column runs showed that Freundlich (F = kCn) isotherms express in a better way the assimilative capacities of the tested clays, with k and n values ranging from 0.06 to 1.99 and 0.55 to 1.48 correspondingly. Mathematical models involving non-linear parabolic equations are involved. The experimental data, together with finite difference techniques and some physical clay characteristics, produced trilinear textural diagrams and predictive flow transport convection-dispersion breakthrough curves for a quick estimation of the attenuating properties of clays for heavy metals. PMID:10843327

  6. Siting landfills and incinerators in areas of historic unpopularity: surveying the views of the next generation.

    PubMed

    Feo, Giovanni De; Williams, Ian D

    2013-12-01

    The Campania Region in Southern Italy has suffered many problems with municipal solid waste management since the mid-1990s, leading to significant public disturbances and subsequent media coverage. This paper reports on the current views and knowledge of young people (university students) in this region about waste management operations and facilities, specifically the siting of landfills and incinerators. By means of a structured questionnaire, opinion and knowledge were systematically examined by degree type and course year. The study took place in 2011 at the University of Salerno campus. A sample of 900 students, comprising 100 students for each of the nine considered faculties, and 20 students for every academic course year, was randomly selected. Only about a quarter of respondents were not opposed to the siting of a landfill or an incinerator in their city. This clearly highlights that historic opposition to the construction of waste facilities is difficult to overcome and that distrust for previous poor management or indiscretions is long-lived and transcends generations. Students from technical faculties expressed the most reasonable opinion; opinion and knowledge were statistically related (Chi-square test, p<0.05) to the attended faculty, and the knowledge grew linearly with progression through the university. This suggests that awareness of waste management practices develops with experience and understanding of environmental issues. There is general acceptance that many stakeholders - technicians, politicians and citizens - all have to be part of the decision process when siting a new waste management facility. The opinions of the young respondents were significantly influenced by their level of environmental knowledge. PMID:24054780

  7. Public concerns about and perceptions of solid waste dump sites and selection of sanitary landfill sites in the West Bank, Palestinian territory.

    PubMed

    Al-Khatib, Issam A; Abu Hammad, Ahmad; Sharkas, Othman A; Sato, Chikashi

    2015-04-01

    Palestinian inhabitants have disposed of their solid wastes at open dumpsites over the past 40 years without an adequate solid waste management (SWM) plans. Recently, the Palestinian Authority initiated SWM planning to establish controlled sanitary landfills, based on a participatory approach. The purpose of this study was to assess public concerns about existing solid waste dumpsites and public perceptions of sanitary landfill site selection. The study will also take into consideration the effect of diverse social, economic, and environmental related factors of the inhabitants on sitting suitable landfill sites in three Palestinian districts in the West Bank, namely, "Nablus," "Salfit," and "Ramallah and Al-Bireh." The results of this study showed that 64.9% of the sample population are aware of the problems and potential impacts associated with random dumpsites, and 41.6% think that they are suffering from the dumps. Among the environmental, socioeconomic, and political factors, the environmental factors, air pollution in particular, are thought be the most important consideration in selecting a landfill site. The "fairness in selecting a landfill site" was chosen to be one of the most important socioeconomic factors, possibly as a reaction to the Israeli occupation and subsequent land use restrictions in the West Bank, Palestinian territory. PMID:25784608

  8. Complete genome of Pandoraea pnomenusa RB-38, an oxalotrophic bacterium isolated from municipal solid waste landfill site.

    PubMed

    Lim, Yan-Lue; Ee, Robson; Yong, Delicia; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2015-11-20

    Pandoraea pnomenusa RB-38 is a bacterium isolated from a former sanitary landfill site. Here, we present the complete genome of P. pnomenusa RB38 in which an oxalate utilization pathway was identified. The genome analysis suggested the potential of this strain as an effective biocontrol agent against oxalate-producing phytopathogens. PMID:26393955

  9. Work plan for development of a data base on potential landfill-gas utilization sites in the United States

    SciTech Connect

    Not Available

    1982-02-01

    In an attempt to determine the effects of the criteria established by the Resource Conservation and Recovery Act (RCRA) Section 4004's Open Dump Inventory (ODI) upon the establishment of landfill gas utilization projects, a national survey of landfills was taken. The project, quantified the gas utilization potential for landfills of various types and sizes across the United States. Preliminary information was collected through telephone or mail surveys of people dealing with solid waste disposal in each of the Environmental Protection Agency (EPA) Regional Offices and in each of the 50 states. In addition, visits to eight states were conducted to gather more detailed information and assess the quality of information collected in the preliminary step. The surveys attempted to elicit the following information about the prospective ODI in each state: (1) size, age, and type of each landfill; (2) status of gas control and utilization projects; and (3) location of landfill gas problem sites. In addition, the quality of information in each state's files and the accessibility of those files were evaluated.

  10. School StreetMonroe Street Neighborhood, Bounded on north by Quincy & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    School Street-Monroe Street Neighborhood, Bounded on north by Quincy & Monroe Streets, on south by Jefferson Street, on west by Hope Avenue, & on east by Parker Avenue & site of Canal Street, Passaic, Passaic County, NJ

  11. ADVANTAGES AND DISADVANTAGES TO OPERATING AN ON-SITE LABORATORY AT THE SANDIA NATIONAL LABORATORIES CHEMICAL WASTE LANDFILL

    SciTech Connect

    Young, S.G.; Creech, M.N.

    2003-02-27

    During the excavation of the Sandia National Laboratories, New Mexico (SNL/NM) Chemical Waste Landfill (CWL), operations were realized by the presence of URS' (formerly known as United Research Services) On-site Mobile Laboratory (OSML) and the close proximity of the SNL/NM Environmental Restoration Chemical Laboratory (ERCL). The laboratory was located adjacent to the landfill in order to provide soil characterization, health and safety support, and waste management data. Although the cost of maintaining and operating an analytical laboratory can be higher than off-site analysis, there are many benefits to providing on site analytical services. This paper describes the synergies between the laboratory, as well as the advantages and disadvantages to having a laboratory on-site during the excavation of SNL/NM CWL.

  12. Field Performance of A Compacted Clay Landfill Final cover At A Humid Site

    SciTech Connect

    Albright, William H.; Benson, Craig H.; Gee, Glendon W.; Abichou, Tarek; Mcdonald, Eric V.; Tyler, Scott W.; Rock, Steven

    2006-11-01

    A study was conducted in southern Georgia, USA to evaluate how the hydraulic properties of the compacted clay barrier layer in a landfill final cover changed over a 4-yr service life. The cover was part of a test section constructed in a large drainage lysimeter that allowed CE Database subject headings: landfill, hydrogeology, compacted soils, lysimeters, desiccation continuous monitoring of the water balance. Patterns in the drainage (i.e., flow from the bottom of the cover) record suggest that preferential flow paths developed in the clay barrier soon after construction, apparently in response to desiccation cracking. After four years, the clay barrier was excavated and examined for changes in soil structure and hydraulic conductivity. Tests were conducted in situ with a sealed double-ring infiltrometer and two-stage borehole permeameters and in the laboratory on hand-carved blocks taken during construction and after four years of service. The in situ and laboratory tests indicated that the hydraulic conductivity increased approximately three orders of magnitude (from ? 10-7 to ? 10-4 cm s-1) during the service life. A dye tracer test and soil structure analysis showed that extensive cracking and root development occurred throughout the entire depth of the barrier layer. Laboratory tests on undisturbed specimens of the clay barrier indicated that the hydraulic conductivity of damaged clay barriers can be under-estimated significantly if small specimens (e.g., tube samples) are used for hydraulic conductivity assessment. The findings also indicate that clay barriers must be protected from desiccation and root intrusion if they are expected to function as intended, even at sites in warm, humid locations.

  13. Odour-impact assessment around a landfill site from weather-type classification, complaint inventory and numerical simulation.

    PubMed

    Chemel, C; Riesenmey, C; Batton-Hubert, M; Vaillant, H

    2012-01-01

    Gases released from landfill sites into the atmosphere have the potential to cause olfactory nuisances within the surrounding communities. Landfill sites are often located over complex topography for convenience mainly related to waste disposal and environmental masking. Dispersion of odours is strongly conditioned by local atmospheric dynamics. Assessment of odour impacts needs to take into account the variability of local atmospheric dynamics. In this study, we discuss a method to assess odour impacts around a landfill site located over complex terrain in order to provide information to be used subsequently to identify management strategies to reduce olfactory nuisances in the residential neighbourhoods. A weather-type classification is defined in order to identify meteorological conditions under which olfactory nuisances are to be expected. A non-steady state Gaussian model and a full-physics meteorological model are used to predict olfactory nuisances, for both the winter and summer scenarios that lead to the majority of complaints in neighbourhoods surrounding the landfill site. Simulating representative scenarios rather than full years make a high resolution simulation of local atmospheric dynamics in space and time possible. Results underline the key role of local atmospheric dynamics in driving the dispersion of odours. The odour concentration simulated by the full-physics meteorological model is combined with the density of the population in order to calculate an average population exposure for the two scenarios. Results of this study are expected to provide helpful information to develop technical solutions for an effective management of landfill operations, which would reduce odour impacts within the surrounding communities. PMID:22054574

  14. 76 FR 10028 - Settlement Agreement for Recovery of Past Response Costs 10,000 Havana Street Site, Commerce City...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Settlement Agreement for Recovery of Past Response Costs 10,000 Havana Street Site, Commerce City, Adams County, CO AGENCY: Environmental Protection Agency. ACTION: Notice and request for public...

  15. Indirect measurements of field-scale hydraulic conductivity of waste from two landfill sites.

    PubMed

    Fleming, I R

    2011-12-01

    Management and prediction of the movement and distribution of fluids in large landfills is important for various reasons. Bioreactor landfill technology shows promise, but in arid or semi-arid regions, the natural content of landfilled waste may be low, thus requiring addition of significant volumes of water. In more humid locations, landfills can become saturated, flooding gas collection systems and causing sideslope leachate seeps or other undesirable occurrences. This paper compares results from two different approaches to monitoring water in waste. At the Brock West Landfill in eastern Canada, positive pore pressures were measured at various depths in saturated waste. The downward seepage flux through the waste is known, thus the vertical saturated hydraulic conductivity of the waste at this landfill was determined to be 3 10(-7)cm/s. By comparison, the Spadina Landfill in western Canada is predominantly unsaturated. The infiltration of moisture into the waste was measured using moisture sensors installed in boreholes which determined arrival time for moisture fronts resulting from major precipitation events as well as longer-term change in moisture content resulting from unsaturated drainage during winter when frozen ground prevented infiltration. The unsaturated hydraulic conductivity calculated from these data ranged from approximately 10(-6)cm/s for the slow winter drainage in the absence of significant recharge to 10(-2)cm/s or higher for shallow waste subject to high infiltration through apparent preferential pathways. These two very different approaches to field-scale measurements of vertical hydraulic conductivity provide insight into the nature of fluid movement in saturated and unsaturated waste masses. It is suggested that the principles of unsaturated seepage apply reasonably well for landfilled waste and that the hydraulic behavior of waste is profoundly influenced by the nature and size of voids and by the degree of saturation prevailing in the landfill. PMID:21903374

  16. Aspergillus fumigatus and mesophilic moulds in air in the surrounding environment downwind of non-hazardous waste landfill sites.

    PubMed

    Schlosser, Olivier; Robert, Samuel; Debeaupuis, Catherine

    2016-05-01

    Non-hazardous waste landfilling has the potential to release biological agents into the air, notably mould spores. Some species, such as Aspergillus fumigatus, may be a cause of concern for at-risk nearby residents. However, air concentration in the surrounding environment of non-hazardous waste landfill sites is poorly documented. An extensive sampling programme was designed to investigate the relationship between culturable mesophilic moulds and A. fumigatus concentrations in air and distance downwind of non-hazardous waste landfill sites. On-site and off-site repeated measurements were performed at four landfill sites during cold and warm seasons. A high-flow air-sampler device was selected so as to allow peak concentration measurement. Linear mixed-effects models were used to explain variability in the concentrations in air over time and across sites, seasons, instantaneous meteorological conditions and discharged waste tonnage. Concentrations of mesophilic moulds and A. fumigatus at off-site upwind sampling locations were compared with concentrations at each of the downwind sampling locations. At the tipping face location, peak concentration reached 480,000CFUm(-3) for mesophilic moulds and 9300CFUm(-3) for A. fumigatus. Compared with upwind background levels, these concentrations were, on average, approximately 20 and 40 times higher respectively. A steep decline in the concentration of both mesophilic moulds and A. fumigatus was observed between the tipping face location and the downwind property boundary (reduction by 77% and 84% respectively), followed by a low decline leading to a 90% and 94% reduction in concentration at 200m from the property boundary and beyond. With the 200m and 500m downwind sampling point values added together, the 97.5th percentile of concentration was 6013CFUm(-3) and 87CFUm(-3) for mesophilic moulds and A. fumigatus, respectively. Other determining factors were the discharged waste tonnage, the season, instantaneous temperature and wind velocity for mesophilic mould, and instantaneous temperature for A. fumigatus. At 200m and 500 downwind from the property boundary, mesophilic moulds and A. fumigatus concentrations were still higher than the local background level. However, whilst statistically significant, this increase does not suggest an excess risk to nearby residents' health when compared with the wide range of outdoor background levels reported in literature. These findings suggest that moulds and A. fumigatus may be transported beyond 200m from the property boundary in concentrations above those found locally upwind of the landfill site. Nevertheless, for exposure assessment purposes, comparison should also be made with background levels in wider areas which are either residential or through which people travel to work for example. PMID:26915642

  17. Water-quality data from a landfill-leachate treatment and disposal site, Pinellas County, Florida, January 1979-August 1980

    USGS Publications Warehouse

    Barr, G.L.; Fernandez, Mario

    1981-01-01

    Water-quality data collected between January 1979 and August 1980 at the landfill leachate treatment site in Pinellas County, Fla., are presented. Data include field and laboratory measurements of physical properties, major chemical constituents , nitrogen and phosphorus species, chemical oxygen demand, trace metals, coliform bacteria, taxonomy of macroinvertebrates and phytoplankton, and chlorophyll analyses. Data were collected as part of a study to determine water-quality changes resulting from aeration and ponding of leachate pumped from landfill burial trenches and for use in determining the rate of movement and quality changes as the leachate migrates through the surficial aquifer. Samples were collected from 81 surficial-aquifer water-quality monitoring wells constructed in January 1975, February 1979, and March 1979, and 8 surface-water quality monitoring sites established in January 1975, February 1978, and November 1978. (USGS)

  18. Quorum Sensing Activity of Serratia fonticola Strain RB-25 Isolated from an Ex-landfill Site

    PubMed Central

    Ee, Robson; Lim, Yan-Lue; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing is a unique bacterial communication system which permits bacteria to synchronize their behaviour in accordance with the population density. The operation of this communication network involves the use of diffusible autoinducer molecules, termed N-acylhomoserine lactones (AHLs). Serratia spp. are well known for their use of quorum sensing to regulate the expression of various genes. In this study, we aimed to characterized the AHL production of a bacterium designated as strain RB-25 isolated from a former domestic waste landfill site. It was identified as Serratia fonticola using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis and this was confirmed by 16S ribosomal DNA sequencing. High resolution triple quadrupole liquid chromatography-mass spectrometry analysis of S. fonticola strain RB-25 spent culture supernatant indicated the existence of three AHLs namely: N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine-lactone (3-oxo-C6 HSL). This is the first report of the production of these AHLs in S. fonticola. PMID:24625739

  19. Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    Phelan, J.M.; Reavis, B.; Cheng, W.C.

    1995-05-01

    Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

  20. [On-site measurement of landfill gas yield and verification of IPCC model].

    PubMed

    Luo, Yu-Xiang; Wang, Wei; Gao, Xing-Bao

    2009-11-01

    In order to obtain the accurate yield of landfill gas in Yulongkeng Landfill, Shenzhen, improved pumping test was conducted. The methane production rates of the influence region were figured out as 14.67 x 10(-5), 9.46 x 10(-5), 9.55 x 10(-5), and 4.28 x 10(-5) m3/(t x h), respectively. According to the methane production rate, the whole methane yield of Yulongkeng Landfill in 2005 was 322 m3/h, which indicated that Yulongkeng Landfill had went into stationary phase and the recycle of landfill gas was not valuable. IPCC model was verified by the measured data. Degradation half life of the waste was the key parameter concerned to the prediction accuracy of IPCC model. In China, the degradable waste in municipal solid waste was mainly kitchen waste leading to a short degradation period, which caused the degradation half life was shorter than the proposed value in IPCC model. For the improvement in prediction accuracy of landfill gas yield, the model parameters should be adopted reasonably based on a full survey of waste characterization in China, which will boost the applicability of IPCC model. PMID:20063766

  1. Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems?

    PubMed

    Spokas, K; Bogner, J; Chanton, J P; Morcet, M; Aran, C; Graff, C; Golvan, Y Moreau-Le; Hebe, I

    2006-01-01

    Many developed countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings and the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. This paper presents the results of extensive field campaigns at three landfill sites to elucidate the total methane balance and provide field measurements to quantify these pathways. We assessed the overall methane mass balance in field cells with a variety of designs, cover materials, and gas management strategies. Sites included different cell configurations, including temporary clay cover, final clay cover, geosynthetic clay liners, and geomembrane composite covers, and cells with and without gas collection systems. Methane emission rates ranged from -2.2 to >10,000 mg CH(4) m(-2) d(-1). Total methane oxidation rates ranged from 4% to 50% of the methane flux through the cover at sites with positive emissions. Oxidation of atmospheric methane was occurring in vegetated soils above a geomembrane. The results of these studies were used as the basis for guidelines by the French environment agency (ADEME) for default values for percent recovery: 35% for an operating cell with an active landfill gas (LFG) recovery system, 65% for a temporary covered cell with an active LFG recovery system, 85% for a cell with clay final cover and active LFG recovery, and 90% for a cell with a geomembrane final cover and active LFG recovery. PMID:16198554

  2. Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems?

    SciTech Connect

    Spokas, K. . E-mail: spokas@morris.ars.usda.gov; Bogner, J.; Chanton, J.P.; Morcet, M.; Aran, C.; Graff, C.; Golvan, Y. Moreau-Le; Hebe, I.

    2006-07-01

    Many developed countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings and the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. This paper presents the results of extensive field campaigns at three landfill sites to elucidate the total methane balance and provide field measurements to quantify these pathways. We assessed the overall methane mass balance in field cells with a variety of designs, cover materials, and gas management strategies. Sites included different cell configurations, including temporary clay cover, final clay cover, geosynthetic clay liners, and geomembrane composite covers, and cells with and without gas collection systems. Methane emission rates ranged from -2.2 to >10,000 mg CH{sub 4} m{sup -2} d{sup -1}. Total methane oxidation rates ranged from 4% to 50% of the methane flux through the cover at sites with positive emissions. Oxidation of atmospheric methane was occurring in vegetated soils above a geomembrane. The results of these studies were used as the basis for guidelines by the French environment agency (ADEME) for default values for percent recovery: 35% for an operating cell with an active landfill gas (LFG) recovery system, 65% for a temporary covered cell with an active LFG recovery system, 85% for a cell with clay final cover and active LFG recovery, and 90% for a cell with a geomembrane final cover and active LFG recovery.

  3. Ground-water quality near a sewage-sludge recycling site and a landfill near Denver, Colorado

    USGS Publications Warehouse

    Robson, Stanley G.

    1977-01-01

    The Metropolitan Denver Sewage Disposal District and the city and county of Denver operate a sewage-sludge recycling site and a landfill in an area about 15 miles (24 kilometers) east of Denver. The assessment of the effects of these facilities on the ground-water system indicated that five wells perforated in alluvium were found to have markedly degradedd water quality. One well is located in the landfill and water that was analyzed was obtained from near the base of the buried refuse, two others are located downgradient and near sewage-sludge burial areas, and the remaining two are located near stagnant surface ponds. Concentrations of nitrate in wells downgradient from fields where sludge is plowed into the soil were higher than background concentrations due to the effects of the sludge disposal. No evidence of water-quality degradation was detected in deeper wells perforated in the bedrock formations. (Woodard-USGS)

  4. Carbon storage in a heavy clay soil landfill site after biosolid application.

    PubMed

    Bolan, N S; Kunhikrishnan, A; Naidu, R

    2013-11-01

    Applying organic amendments including biosolids and composts to agricultural land could increase carbon (C) storage in soils and contribute significantly to the reduction of greenhouse gas emissions. Although a number of studies have examined the potential value of biosolids as a soil conditioner and nutrient source, there has been only limited work on the impact of biosolid application on C sequestration in soils. The objective of this study was to examine the potential value of biosolids in C sequestration in soils. Two types of experiments were conducted to examine the effect of biosolid application on C sequestration. In the first laboratory incubation experiment, the rate of decomposition of a range of biosolid samples was compared with other organic amendments including composts and biochars. In the second field experiment, the effect of biosolids on the growth of two bioenergy crops, Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) on a landfill site was examined in relation to biomass production and C sequestration. The rate of decomposition varied amongst the organic amendments, and followed: composts>biosolids>biochar. There was a hundred fold difference in the rate of decomposition between biochar and other organic amendments. The rate of decomposition of biosolids decreased with increasing iron (Fe) and aluminum (Al) contents of biosolids. Biosolid application increased the dry matter yield of both plant species (by 2-2.5 fold), thereby increasing the biomass C input to soils. The rate of net C sequestration resulting from biosolid application (Mg C ha(-1) yr(-1) Mg(-1) biosolids) was higher for mustard (0.103) than sunflower (0.087). Biosolid application is likely to result in a higher level of C sequestration when compared to other management strategies including fertilizer application and conservation tillage, which is attributed to increased microbial biomass, and Fe and Al oxide-induced immobilization of C. PMID:23380138

  5. Superfund Record of Decision (EPA Region 1): Beacon Heights Landfill site, Beacon Falls, CT. (First remedial action), September 1990. (Supplemental). Final report

    SciTech Connect

    Not Available

    1990-09-28

    The 34-acre Beacon Heights Landfill site is on the northwest corner of an 82-acre property in Beacon Falls, Connecticut. The ROD supplements the 1985 ROD by resolving those determinations left open in the 1985 ROD, including the manner and locations of leachate treatment/disposal; cleanup levels for soil deemed impracticable to cap in areas contiguous to the landfill; and the need for air pollution controls on the landfill gas vents. The primary contaminants of concern affecting the soil, ground water, surface water, and air are VOCs, including benzene, toluene, and xylene.

  6. Health assessment for Hyde Park Landfill National Priorities List (NPL) site, Niagara Falls, New York, Region 2. CERCLIS No. NYD000831644. Final report

    SciTech Connect

    Not Available

    1989-02-07

    The Hyde Park Landfill National Priorities List Site was used by Hooker Chemical and Plastic Corporation, now Occidental Chemical Corporation, to dispose of approximately 80,000 tons of waste from 1953 to 1975. Significant amounts of 2,3,7,8-tetrachlorodibenzo-p-dioxin is believed to be in the landfill. Site-related contaminants have been detected in the overburden and bedrock aquifers. Analyses of samples taken from ground water seeps at the Niagara Gorge Face also show site-related contaminants. Leachate from the landfill appears to have entered Bloody Run Creek. Sediment sample analyses from the creek show site-related contaminants. The 1985 U.S. Environmental Protection Agency Enforcement Decision Document outlines remedial activities to be conducted at the site. The site without remediation is of potential public health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects.

  7. Evaluation of two solid waste landfills, a Superfund site, and strip mining on ground water quality in Portage County, Ohio

    SciTech Connect

    Hunt, D.L. ); Moody, J.B. ); Smith, G.W. . Dept. of Geology)

    1992-01-01

    The Willow Creek Landfill, the Jones Landfill, the Summit National Superfund Site, and Peterson Strip Mine are located in a 2 mi[sup 2] area in the SE portion of Portage County, OH. This study evaluated these potential sources of environmental pollution on ground water resources in 2 townships in Portage County, OH. The study area, comprising 15 mi[sup 2], is located in the glaciated portion of NE Ohio. The geology consists of alternating sandstones, siltstones, shales, and coal of the Pottsville Group of Pennsylvanian Age, overlain with glacial drift of the Wisconsin Glaciation of the Pleistocene Epoch. The Pottsville Formation was divided into 3 aquifers: shallow, intermediate, and deep for this study. 55 domestic wells in the study area and 13 monitoring wells at Willow Creek landfill were samples and analyzed for 23 inorganic chemical parameters. High concentrations of total dissolved solids, hardness, Cl, SO[sub 4], Ca, Fe, Mg, Mn, and Na were found in wells located to the SE and W of the potential contamination sources, from water in the shallow aquifer. The other two aquifers are inorganically uncontaminated at this time. The presence of a buried glacial valley is influencing the ground water flow patterns locally, which results in an increase in total dissolved solids with other inorganic geochemical parameters to the west of the four contamination sources.

  8. Results of the radiological and beryllium verification survey at the Peek Street Site, Schenectady, New York (SY001V)

    SciTech Connect

    Foley, R.D.; Johnson, C.A.; Carrier, R.F.; Allred, J.F.

    1994-10-01

    At the request of the U.S. Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted an independent verification radiological and non-radioactive beryllium survey at the Peek Street site, located at 425 Peek Street, Schenectady, New York. The purpose of the survey, conducted during 1993 and continuing through January 1994, was to confirm the success of the remedial actions performed to remove any beryllium concentrations or radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at one meter indoors and outdoors, alpha and beta scans inside the structure, and the collection of soil, dust and debris samples and smears for radionuclide and beryllium analyses. Results of the survey demonstrated that all radiological and beryllium measurements on the property were within applicable DOE guidelines. Based on all data collected, the industrial property at 425 Peek Street and the adjacent state-owned bike path in Schenectady, New York, conforms to all applicable radiological and non-radioactive beryllium guidelines established for this site by DOE and approved by the State of New York.

  9. Field Performance Of A Compacted Clay Landfill Final Cover At A Humid Site

    EPA Science Inventory

    A study was conducted in southern Georgia, USA, to evalaute how the hydraulic properties of the compacted clay barrier layer in a final landfill cover changed over a 4-year service life. The cover was part of a test section constructed in a large drainage lysimeter that allowed ...

  10. Contaminant transport in the sub-surface soil of an uncontrolled landfill site in China: site investigation and two-dimensional numerical analysis.

    PubMed

    Xie, Haijian; Chen, Yunmin; Thomas, Hywel R; Sedighi, Majid; Masum, Shakil A; Ran, Qihua

    2016-02-01

    A field investigation of contaminant transport beneath and around an uncontrolled landfill site in Huainan in China is presented in this paper. The research aimed at studying the migration of some chemicals present in the landfill leachate into the surrounding clayey soils after 17 years of landfill operation. The concentrations of chloride and sodium ions in the pore water of soil samples collected at depths up to 15 m were obtained through an extensive site investigation. The contents of organic matter in the soil samples were also determined. A two-dimensional numerical study of the reactive transport of sodium and chloride ion in the soil strata beneath and outside the landfill is also presented. The numerical modelling approach adopted is based on finite element/finite difference techniques. The domain size of approximately 300 × 30 m has been analysed and major chemical transport parameters/mechanisms are established via a series of calibration exercises. Numerical simulations were then performed to predict the long-term behaviour of the landfill in relation to the chemicals studied. The lateral migration distance of the chloride ions was more than 40 m which indicates that the advection and mechanical dispersion are the dominant mechanism controlling the contaminant transport at this site. The results obtained from the analysis of chloride and sodium migration also indicated a non-uniform advective flow regime of ions with depth, which were localised in the first few metres of the soil beneath the disposal site. The results of long-term simulations of contaminant transport indicated that the concentrations of ions can be 10 to 30 times larger than that related to the allowable limit of concentration values. The results of this study may be of application and interest in the assessment of potential groundwater and soil contamination at this site with a late Pleistocene clayey soil. The obtained transport properties of the soils and the contaminant transport mechanisms can also be used for the design of engineered barriers for the control of the long-term pollution of the site. PMID:26429140

  11. Demonstration Assessment of Light-Emitting Diode (LED) Street Lighting Host Site: Lija Loop, Portland, Oregon

    SciTech Connect

    Kinzey, Bruce R.; Myer, Michael

    2009-11-01

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a residential street lighting application, under the U.S. Department of Energy GATEWAY Solid-State Lighting Technology Demonstration Program. In this project, eight 100W (nominal) high-pressure sodium cobra head fixtures were replaced with a like number of LED street light luminaires manufactured by Leotek, Inc. The Leotek product achieved an estimated payback in the Lija Loop installation of about 20 years for replacement scenarios and a much shorter 7.6 years for new installations. Much of the associated energy savings (55%) supporting these payback periods, however, were achieved by reducing average horizontal photopic illuminance a similar amount (53%). Examined from a different perspective, the measured performance suggests that the Leotek product is at approximate parity with the HPS cobra head in terms of average delivered photopic illumination for a given power consumption. HPS comprises the second most efficacious street lighting technology available, exceeded only by low pressure sodium (LPS). LPS technology is not considered suitable for most street lighting applications due to its monochromatic spectral output and poor color rendering ability; therefore, this LED product is performing at an efficiency level comparable to its primary competition in this application.

  12. Identification and assessment of water pollution as a consequence of a leachate plume migration from a municipal landfill site (Tucumn, Argentina).

    PubMed

    Fernndez, Diego S; Puchulu, Mara E; Georgieff, Sergio M

    2014-06-01

    Landfills constitute potential sources of different pollutants that could generate human health and environmental problems. While some landfills currently work under the protection of a bottom liner with leachate collection, it was demonstrated that migration could take place even yet with these cautions. The purpose of this paper is to assess the pollution caused by a leachate plume from a municipal landfill that is affecting both groundwater and surface waters. The research was carried out at Pacar Pintado landfill in northwestern Argentina. Analysis of water samples indicates that leachate is affecting groundwater under the landfill area and an abandoned river channel hydraulically connected. In the center of the landfill area, the plume is anoxic and sulfate, nitrate, iron and manganese reduction zones were identified. Leachate plume presented high concentration of organic matter, Fe, Mn, NH(4)(+), Cl(-) and Cr reaching an extension of 900 m. The presence of a leachate plume in a landfill site with a single liner system implies that the use of this groundwater pollution control method alone is not enough especially if permeable sediments are present below. PMID:24142186

  13. Landfill disposal systems

    PubMed Central

    Slimak, Karen M.

    1978-01-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated. A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual inspections and any repairs can be made without disturbing the waste. The surface seal landfill does not employ a subsurface barrier. The surface seal landfill successfully addresses each of the four environmental problems listed above, provided that this landfill design is utilized for dry wastes only and is located at a site which provides protection from groundwater and temporary perched water tables. ImagesFIGURE 3.FIGURE 4.FIGURE 7.FIGURE 7. PMID:738247

  14. Hydrological Perturbations Drive Biogeochemical Processes in Experimental Soil Columns from the Norman Landfill Site

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2010-12-01

    Fate and transport of contaminants in saturated and unsaturated zones is governed by biogeochemical processes that are complex and non-linearly coupled to each other. A fundamental understanding of the interactions between transport and reaction processes is essential to better characterize contaminant movement in the subsurface. The objectives of this study are to: i) develop quantitative relationships between hydrological (initial and boundary conditions, hydraulic conductivity ratio, and soil layering), geochemical (mineralogy, surface area, redox potential, and organic matter) and microbiological factors (MPN) that alter the biogeochemical processes, and ii) characterize the effect of hydrologic perturbations on coupled processes occurring at the column scale. The perturbations correspond to rainfall intensity, duration of wet and dry conditions, and water chemistry (pH). Soils collected from two locations with significantly different geochemistry at the Norman landfill site are used in this study. Controlled flow experiments were conducted on: i) two homogeneous soil columns, ii) a layered soil column, iii) a soil column with embedded clay lenses, and iv) a soil column with embedded clay lenses and one central macropore. Experimental observations showed enhanced biogeochemical activity at the interface of the layered and lensed columns over the texturally homogeneous soil columns. Multivariate statistical analysis showed that the most important processes were microbial reduction of Fe(III) and SO42-, and oxidation of reduced products in the columns. Modeling results from HP1 indicate least redox activity in the homogeneous sand column while the structurally heterogeneous columns utilize oxygen and nitrate from recharge as well as iron sulfide minerals already present in the columns as electron acceptors. Furthermore, the interface of the layered and lensed soil columns acts as a hotspot of biogeochemical activity due to increased transport timescale as a result of reduced hydraulic conductivity of loam and clay in these columns. Although the coupled HP1 model was able to effectively capture redox dynamics in the experimental soil columns, findings suggest the need to incorporate: i) reduction in hydraulic conductivity due to the formation of iron sulfide precipitates, and ii) transport of aqueous iron sulfide clusters observed in all columns except homogeneous sand in such contaminant fate and transport models. Results indicate that textural differences across the layered, lensed, and macropore columns were directly responsible for redox gradient across these interfaces. Also, quantitative relationships observed between pH and total carbon, pe and redox couples, etc. are most significantly affected by wetting and drying cycles of the soil moisture regime for the different soil columns.

  15. Wintertime Correlation Between Black Carbon and Particle Size in a Street and Rural Site in Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Gramsch, E. V.; Reyes, F.; Oyola, P.

    2013-05-01

    We have studied the correlation between black carbon and particle size in three sites in the Metropolitan area of Santiago de Chile in the winter of 2009 and performed a detailed comparison. Two of the sites are located near busy streets in Santiago de Chile. The other site was located in a rural area about 30 km upwind from downtown with little influence from vehicles, but large influence from wood burning. The particle size distribution was measured with a DMPS (Whalin, 2001) in the range from 10 to 700 nm. Simultaneously, black carbon was measured with an optical monitor developed at the University of Santiago (Gramsch, 2004). It is well known that the smaller particles (~ 10 - 40 nm ) are emitted directly by the engines of vehicles, which later condensate or coagulate in the atmosphere to form larger particles. In our measurements, the street site is mostly influenced by diesel vehicles which emit large amounts of black carbon. We have divided the particle size measurements in four groups (10 - 40 nm, 41- 69 nm, 79 - 157 nm and 190 - 700 nm) in order to compare with the carbon monitor. The highest correlation (0.98) in the site near the street between black carbon and the particles was obtained with the 190 - 700 nm. The correlation with the 79 - 157 nm group was slightly less (0.93). A comparison between the hourly average curves for black carbon and the 190 - 700 nm group show a similar shape during the whole day. In the rural site, the number of particles in the 10 - 40 nm group was 10 times lower than in the street, but the number of particles in the 190 - 700 nm group was only two times smaller. This fact is an indication that wood burning does not generate particles smaller than ~ 80 - 100 nm. The best correlation in the rural site between the black carbon and the particles was also with the 190 - 700 nm group. However, the correlation was lower (0.86) than in the street site. The hourly average curves for black carbon and the 190 - 700 nm group show a similar shape during the night (10 PM - 6 AM), but differ during the day. These measurements indicate that black carbon measurements may be more sensitive to emission from diesel vehicles than wood burning. This work was supported by the University of Santiago (Dicyt), the National Commission for the Environment (CONAMA) and the Regional Government of the Metropolitan Region (GORE).. Gramsch, E., Cereceda-Balic, F., Ormeño, I., Palma, G., Oyola, P., 2004. Use of the light absorption coefficient to monitor elemental carbon and PM2.5. Example of Santiago de Chile. Journal of the Air and Waste Management Association 54, 799-808 Wahlin, P., Palmgren, F., Van Dingenen, R., 2001. Experimental studies of ultrafine particles in streets and the relationship to traffic. Atmospheric Environment 35 (Suppl. 1), 63-69..

  16. Landfills in the year 2000

    SciTech Connect

    Glebs, B. )

    1994-03-01

    The 21st century landfill will have the proper public and customer image from the environmental standpoint. The landfill of the 21st century will provide diverse services right at the landfill. You will not only have burial of waste, but a bioremediation pad for handling certain petro-chemical soils and a reuse area for concrete and rubble. Landfills will reuse special wastes. The industry now has more than seven specialized industrial wastes approved for landfill cover. So, instead of spending money for landfill cover or alternative cover like foam, landfills will actually get paid for the landfill cover. The landfill of the 21st century will have some level of recycling and composting. The sites will broaden their service base to make sure that the customer will be able to bring the wide variety of waste to one place. All of this technology will be designed to function at the landfill to keep waste out of the landfill. From a regulatory standpoint, obviously 21st century landfills will exceed all of the standards. It will be a given that the landfill will have liners, leachate collection, leachate treatment, and gas recovery and, probably, reuse. The 21st century landfill will receive a very different waste type. It will have less municipal solid waste and a greater volume of special waste-compatible, nonhazardous waste.

  17. Health assessment for Beacon Heights Landfill National Priorities List (NPL) Site, Beacon Falls, Connecticut, Region 1. CERCLIS No. CTD001145671. Final report

    SciTech Connect

    Not Available

    1989-01-26

    The Beacon Heights Landfill National Priorities List (NPL) Site is located in Beacon Falls, Connecticut. From the 1920's to 1979, municipal and industrial wastes were disposed of at the landfill. Leachate from the landfill has migrated into the local groundwater aquifers. Two residential wells to the northwest of the site have been contaminated with site-related contaminants. This site is of potential public health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects. Human exposure to benzene, chlorobenzene, chloroethane, and methylene chloride may have occurred via ingestion, inhalation, and direct dermal contact with contaminated groundwater. No health study follow-up is indicated at this time.

  18. Leaky Landfills.

    ERIC Educational Resources Information Center

    Jones, Linda L. Cronin

    1992-01-01

    Provides background information on landfills and describes an activity where students learn how a modern landfill is constructed and develop an understanding of the reasons for several regulations regarding modern landfill construction. Students design and construct working models of three types of landfills. (PR)

  19. Suitability analysis for siting MSW landfills and its multicriteria spatial decision support system: method, implementation and case study.

    PubMed

    Demesouka, O E; Vavatsikos, A P; Anagnostopoulos, K P

    2013-05-01

    Multicriteria spatial decision support systems (MC-SDSS) have emerged as an integration of geographical information systems (GIS) and multiple criteria decision analysis (MCDA) methods for incorporating conflicting objectives and decision makers' (DMs') preferences into spatial decision models. This article presents a raster-based MC-SDSS that combines the analytic hierarchy process (AHP) and compromise programming methods, such as TOPSIS (technique for order preference by similarity to the ideal solution) and Ideal Point Methods. To the best of our knowledge it is the first time that a synergy of AHP and compromise programming methods is implemented in raster-driven GIS-based landfill suitability analysis. This procedure is supported by a spatial decision support system (SDSS) that was developed within a widely used commercial GIS software package. A real case study in the Thrace region in northeast Greece serves as a guide on how to conduct a suitability analysis for a MSW landfill site with the proposed MC-SDSS. Moreover, the procedure for identifying MSW disposal sites is accomplished by performing four computational models for synthesizing the DMs per criterion preferential system. Based on the case study results, a comparison analysis is performed according to suitability index estimations. According to them Euclidean distance metric and TOPSIS present strong similarities. When compared with Euclidean distance metric, TOPSIS seems to generate results closer to that derived by Manhattan distance metric. The comparison of Chebychev distance metric with all the other approaches revealed the greatest deviations. PMID:23453354

  20. Priorities determination using novel analytic hierarchy process and median ranked sample set, case study of landfill siting criteria

    NASA Astrophysics Data System (ADS)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, N. E. Ahmad; Basri, H.

    2015-02-01

    Integrating environmental, social, political, and economical attributes enhances the decision making process. Multi criteria decision making (MCDM) involves ambiguity and uncertainty due to various preferences. This study presents a model to minimize the uncertainty and ambiguity of human judgments by means of integrating the counter stakeholders with median ranked sample set (MRSS) and Analytic hierarchy process (AHP). The model uses landfill site selection as a MCDM problem. Sixteen experts belong to four clusters that are government, private, institution, and non-governmental organisations participated and their preferences were ranked in four by four matrix. Then the MRSS and the AHP were used to obtain the priorities of landfill siting criteria. Environmental criteria have the highest priority that equals to 48.1% and the distance from surface water, and the faults zones are the most important factors with priorities equal to 18% and 13.7% respectively. In conclusion, the hybrid approach that integrates counter stakeholders MRSS, and AHP is capable of being applied to complex decision making process and its outputs are justified.

  1. Ox Mountain sanitary landfill: Apanolio Canyon expansion site, San Mateo County, California. Volume 2. Appendix. Final report

    SciTech Connect

    Not Available

    1989-04-01

    Further studies include: plants Observed in Apanolio Canyon; Animals Expected or Observed in Apanolio Canyon; Marbled Murrelet Survey; Review of Available Scientific Information on Six Candidate Insects; Update on Status of Candidate Insects; Apanolio Canyon Sensitive Plant Investigation; Fisheries Resources of Upper Apanolio, Benthic Invertebrate Survey of Apanolio, Corinda Los Trancos, and Pilarcitos Creeks, San Mateo County, California; Streamflows and Velocity of Flows at the Bongard diversion Dam in Apanolio Canyon; A Spring Survey to Determine the Presence or Absence of the San Francisco Garter Snake (Thamnophis sirtalis tetrataenis) in Two Tributaries of Pilarcitos Creek, Half Moon Bay, CA; Wildlife and Fisheries Mitigation Plan, Ox Mountain Sanitary Landfill, Apanolio Canyon Expansion Site; Correspondence Site Selection Criteria Information; Draft Contingency Remedial Action Plan; Leachate Collection and Removal System (LCRS) and Leachate/Contaminated Groundwater Treatment Systems; Apanolio Creek Streamflow Augmentation Plan; Apanolio Canyon Lower Aquifer Recharge Plan; Application for Exemptions - Technical Informations; Geotechnical Study and Specifications, Subgrade Barrier and Clay Liner System; Apanolio Canyon Boring Logs; Potentiometric Surface Maps, Apanolio Canyon; Geologic Cross Sections - Apanolio Canyon; Interim Report on Leachate Exposure Test Program, Apanolio Canyon Landfill Expansion.

  2. Reconnaissance survey of site 7 of the proposed Three Rivers Regional Landfill and Technology Center, Savannah River Site, Aiken County, South Carolina

    SciTech Connect

    Cabak, M.A.; Beck, M.L.; Gillam, C.; Sassaman, K.E.

    1996-02-01

    This report documents the archaeological investigation of Site 7 of the proposed Three Rivers Regional Landfill and Technology Center in Aiken County on the United States Department of Energy`s Savannah River Site (SRS) in Aiken and Barnwell Counties, South Carolina. Pedestrian and subsurface survey techniques were used to investigate the 1,403-acre project area. Survey resulted in the discovery of 23 previously unrecorded sites and 11 occurrences; six previously recorded sites were also investigated. These sites consist of six prehistoric sites, nine historic sites, and 14 sites with both prehistoric and historic components. Sites locations and project area boundaries are provided on a facsimile of a USGS 7.5 topographic map. The prehistoric components consist of very small, low-density lithic and ceramic scatters; most contain less than 10 artifacts. Six of the prehistoric components are of unknown cultural affiliation, the remaining prehistoric sites were occupied predominately in the Woodland period. The historic sites are dominated by postbellum/modem home places of tenant and yeoman farmers but four historic sites were locations of antebellum house sites (38AK136, 38AK613, 38AK660, and 38AK674). The historic sites also include an African-American school (38AK677).

  3. Superfund Record of Decision (EPA Region 5): Hunts Disposal Landfill site, Town of Caledonia, WI. (First remedial action), September 1990. Final report

    SciTech Connect

    Not Available

    1990-09-29

    The 84-acre Hunts Disposal site is an inactive landfill in Caledonia Township, Racine County, Wisconsin. Onsite features include a 35-acre landfill surrounded by woodlands, wetlands, agricultural areas, and a lake. Part of the site that includes the landfill is within the 100-year floodplain of the Root River. The site overlies a contaminated surficial sand and gravel aquifer. By 1961, municipal and industrial wastes were dumped and burned in an onsite open pit. Specific wastes disposed of onsite included waste newspaper ink, spent solvents, tannery wastes, chromic acids, arsenic acid, and beryllium. The Record of Decision (ROD) addresses both source control and management of contaminant migration. The primary contaminants of concern affecting the soil, sediment, debris, and ground water are VOCs including benzene, TCE, and xylenes; acids; and metals including arsenic and chromium.

  4. Spectroscopic and wet chemical characterization of solid waste organic matter of different age in landfill sites, southern Germany.

    PubMed

    Bumler, Rupert; Kgel-Knabner, Ingrid

    2008-01-01

    Landfill sites are potential sources of hazardous emissions by degradation and transformation processes of waste organic matter. Its chemical composition and microbial degradability are key factors for risk management, after-care, and estimation of potential emissions. The aim of the study is to provide information about composition and extent of transformation of waste organic matter in four landfill sites in Bavaria, Southern Germany by means of (13)C NMR spectroscopy, acid-hydrolyzable carbohydrates, chloroform-methanol extractable lipids, acid-hydrolyzable proteins, and lignin compounds after CuO oxidation. Ten samples of about 20 to 25 yr, 15 to 20 yr, and 5 to 10 yr of deposition each were taken at 2 m depth intervals by grab drilling till 10-m depth. Increasing temperatures from about 15 degrees C at 2-m depth to >40 degrees C at 10-m depth are found at some of the sites, representing optimum conditions for mesophile methane bacteria. Moisture contents of 160 to 310 g kg(-1) (oven dry), however, provide limiting conditions for anaerobic biodecay. Spectroscopic and chemical variables generally indicate a low extent of biodegradation and transformation at all sites despite a considerable heterogeneity of the samples. Independent of the time and depth of deposition more than 50% of the carbohydrate fraction of the waste organic matter provide a high potential for methane emissions and on-site energy production. There was no significant accumulation of long-chain organic and aromatic compounds, and of lignin degradation products even after more than 25 yr of rotting indicating higher extent of decomposition or stabilization of the waste organic matter. Installation of seepage water cleaning and recirculation systems are recommended to increase suboptimal moisture contents with respect to microbial methanogenesis, energy production, and long-term stabilization of municipal solid waste. PMID:18178887

  5. Beneficial use of landfill gas at the Burnsville sanitary landfill

    SciTech Connect

    Michels, M.; Morely, J.; Kitts, S.

    1995-08-01

    A beneficial use study was conducted to determine the most economical method of converting landfill gas to energy at the Burnsville Sanitary Landfill. The existing 98.5-acre landfill is permitted for nine million cubic yards of municipal solid waste and estimated to generate significant quantities of landfill gas. The beneficial use study reviewed four options to utilize the landfill gas, as follows; generate electric power and utilize on site; generate electric power and sell to local utility; clean up the landfill gas and sell to natural gas company; and sell landfill gas to nearby asphalt and concrete plants in the summer months, then to 15 commercial businesses for heat in the winter months. The study concluded that it is most economical to generate electricity and sell power to the local utility. Since May 1994, 3.2 megawatts of power have been generated. Upon site closure, the potential for 4.8 megawatts of power generation may exist.

  6. State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site

    SciTech Connect

    Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

    1992-12-31

    This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 {times} 10{sup {minus}7} cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to ``self-heal`` if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

  7. State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site

    SciTech Connect

    Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

    1992-01-01

    This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 [times] 10[sup [minus]7] cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to self-heal'' if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

  8. The landfill reinjection of concentrated leachate: findings from a monitoring study at an Italian site.

    PubMed

    Calabr, Paolo S; Sbaffoni, Silvia; Orsi, Sirio; Gentili, Emiliano; Meoni, Carlo

    2010-09-15

    The membrane-based processes are among the most used techniques for leachate treatment in modern landfills but its environmental, technical and economical sustainability strongly depends on the disposal of concentrated leachate that is produced there. This paper presents the monitoring study of the landfill of the municipality of Monsummano Terme (Pistoia province, Tuscany, Italy) named "Il Fossetto" where concentrated leachate obtained during membrane treatment is recirculated. The findings resulting from the first 30 months of monitoring of concentrated leachate recirculation show that leachate production did not increase significantly and that only a few quality parameters (i.e. COD, Nickel and Zinc) presented a moderate increase. Moreover, the latest data on biogas composition seem to indicate a reduction in methane content that, if confirmed, could be related to the partial inhibition of methanogens due to the competition of sulphate reducing bacteria. The non-accumulation of other conservative pollutants such as Ammonia Nitrogen and Chloride in the leachate is still under investigation and needs to be better clarified. The overall sustainability of the reinjection as a means of disposing of the concentrated leachate produced by membrane treatment should be further analysed and evaluated in the long term. PMID:20554388

  9. The landfill reinjection of concentrated leachate: findings from a monitoring study at an Italian site.

    TOXLINE Toxicology Bibliographic Information

    Calabrò PS; Sbaffoni S; Orsi S; Gentili E; Meoni C

    2010-09-15

    The membrane-based processes are among the most used techniques for leachate treatment in modern landfills but its environmental, technical and economical sustainability strongly depends on the disposal of concentrated leachate that is produced there. This paper presents the monitoring study of the landfill of the municipality of Monsummano Terme (Pistoia province, Tuscany, Italy) named "Il Fossetto" where concentrated leachate obtained during membrane treatment is recirculated. The findings resulting from the first 30 months of monitoring of concentrated leachate recirculation show that leachate production did not increase significantly and that only a few quality parameters (i.e. COD, Nickel and Zinc) presented a moderate increase. Moreover, the latest data on biogas composition seem to indicate a reduction in methane content that, if confirmed, could be related to the partial inhibition of methanogens due to the competition of sulphate reducing bacteria. The non-accumulation of other conservative pollutants such as Ammonia Nitrogen and Chloride in the leachate is still under investigation and needs to be better clarified. The overall sustainability of the reinjection as a means of disposing of the concentrated leachate produced by membrane treatment should be further analysed and evaluated in the long term.

  10. Health assessment for Mason County Landfill National Priorities List (NPL) Site, Pere Marquette Township, Mason County, Michigan, Region 5. CERCLIS No. MID980794465. Final report

    SciTech Connect

    Not Available

    1989-04-10

    The Mason County Landfill Site is located approximately three miles south of the City of Ludington and one mile east of Lake Michigan in Pere Marquette Township, Mason County, Michigan. The landfill received general refuse, garbage, industrial refuse, liquids and sludges, and industrial wastes. The landfill was closed to further dumping and disposal in August 1978. Surface-soil contaminants of concern are lead and arsenic. Ground water contaminants of concern are benzene, 1,1-dichloroethene, bis(2-ethylhexyl)phthalate, acetone, sodium, lead, zinc, and manganese. Surface-water contaminants of concern are cadmium, chromium, manganese, selenium, silver, sodium, beryllium and antimony. Sediment contaminant of concern is arsenic. The site is of potential health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects. Human exposure to VOCs, inorganics, and metals may occur/be occurring/have occurred via ingestion, inhalation, and dermal absorption.

  11. Site Specific Landfill CH4 Emissions: Shortcomings of National GHG Inventory Guidelines and a New Process-Based Approach Linked to Climate and Soil Microclimate

    NASA Astrophysics Data System (ADS)

    Bogner, J. E.; Spokas, K.; Corcoran, M.

    2012-12-01

    Current (2006) IPCC national GHG inventory guidelines for landfill CH4, which estimate CH4 generation from the mass of waste in place, have high uncertainties, cannot be reliably related to measured emissions at specific sites, and lack comprehensive field validation. Moreover, measured landfill CH4 emissions vary over a wide range from >1000 g/m2/d down to negative values (uptake of atmospheric CH4). Literature over the last decade has emphasized that the major factors controlling emissions in these highly managed soil systems are gaseous transport rates as affected by the thickness and physical properties of cover soils, methanotrophic CH4 oxidation in cover materials as a function of seasonal soil microclimate. and the presence or absence of engineered gas extraction. Thus we developed and field validated a new site specific annual inventory model that incorporates specific soil profile properties and soil microclimate modeling coupled to 0.5° scale global climatic models. Based on 1D diffusion, CALMIM (California Landfill Methane Inventory Model) is a freely available JAVA tool which models a typical annual cycle for CH4 emissions from site specific daily, intermediate, and final landfill cover designs. This new approach, which is compliant with IPCC Tier III criteria, was originally field validated at two California sites (Monterey County; Los Angeles County), with limited field validation at three additional California sites. In addition to regional defaults for inventory purposes, CALMIM permits user selectable parameters and boundary conditions for more rigorous site specific applications where detailed CH4 emissions, meteorological, and soil microclimate data exist. We report here on improvements and expanded international field validation for CALMIM 5.2 in collaboration with research groups in the U.S., Europe, Africa, Asia, and Australia.odeled and measured annual cycle of landfill CH4 emissions for Austrian site. Cover consists of 50 cm sand & gravel overlain by 110 cm loam & sandy loam. No gas recovery. Site 100% vegetated.

  12. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    SciTech Connect

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  13. 77 FR 67399 - State Street Corporation, Putnam Cash Reconciliations Team, Including On-Site Leased Workers From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... Employment and Training Administration State Street Corporation, Putnam Cash Reconciliations Team, Including..., applicable to workers and former workers of State Street Corporation, Putnam Cash Reconciliation Team, Quincy... Reconciliation Team, Quincy, Massachusetts. The Department has determined that these workers were...

  14. Landfill Methane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landfill methane (CH4) accounts for approximately 1.3% (0.6 Gt) of global anthropogenic greenhouse gas emissions relative to total emissions from all sectors of about 49 Gt CO2-eq yr-1. For countries with a history of controlled landfilling, landfills can be one of the larger national sources of ant...

  15. Surface- and ground-water quality data at selected landfill sites in Mecklenburg County, North Carolina, 1980-86

    USGS Publications Warehouse

    Eddins, W.H.; Cardinell, A.P.

    1987-01-01

    The U.S. Geological Survey initiated an urban water quality study in 1979 in cooperation with the City of Charlotte and Mecklenburg County, North Carolina, to study, among other things, the effects of solid waste disposal on the water quality in Mecklenburg County. Water quality samples (747 inorganic and 168 organic) were collected at 20 surface water sites and 53 monitoring wells at four selected landfills from 1980 to 1986. Samples were analyzed for 142 selected physical and biological parameters, major ions, nutrients, trace metals, and (or) organic compounds. Results from all analyses are presented in tabular form in the appendices. Each appendix is divided into a surface water and a groundwater section. Within each water quality table the data is presented in the following order: field measurements, physical properties, biological constituents (if analyzed), major cations, major anions, dissolved and total solids, nutrients, trace inorganic constituents, and organic constituents.

  16. Superfund Record of Decision (EPA region 3): Keystone Sanitation Landfill site, Adams County, Union Township, PA. (First remedial action), September 1990

    SciTech Connect

    Not Available

    1990-09-30

    The 40-acre Keystone Sanitation Landfill site, an inactive, privately owned landfill, is in Union Township, Adams County, Pennsylvania. Surrounding land use is primarily agricultural with scattered residences. From 1966 to 1990, the unlined landfill accepted household and municipal wastes as well as industrial and construction debris, including phosphorus-contaminated sand, potato sludge, resin sludge, incineration ash, and dried latex paint. In 1982, State investigations revealed onsite ground water contamination and a contaminated onsite residential well. In 1984, EPA found low-level contamination in nearby residential wells. The Record of Decision (ROD) addresses Operable Unit 1, the containment of onsite source area and remediation of onsite contaminated ground water. A subsequent ROD will address offsite ground water contamination in monitoring and residential wells. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, PCE, TCE, vinyl chloride; other organics including acids, and phenols; and metals including chromium and lead.

  17. Necessity for Establishment of Inventories for Persistent Organic Pollutants (POPs) in Landfills and Contaminated Sites for an Evaluation of Mobilisation Risk by Climate Change

    NASA Astrophysics Data System (ADS)

    Weber, Roland; Watson, Alan; Forter, Martin

    2010-05-01

    The landfilling of persistent hazardous compounds with a tendency to migrate, such as Hexachlorocyclohexane (HCH), polychlorinated biphenyls (PCBs), Hexachlorobenzene (HCB) or Hexachlorobutadiene (HCBD) is a major pollution challenge. Historic dumping and landfilling in badly engineered and unsuitably located sites has resulted in widespread contamination from the landfilling of HCH, HCB and PCB wastes around former production sites. In the case of PCBs this has been exacerbated by subsequent landfilling of contaminated products (oils, capacitors, sealants and other building residues). In most cases locations and amounts are not or vaguely known but impacts are increasingly discovered by monitoring in the most advanced countries with sophisticated monitoring schemes in place. These reveal that entire river systems are being contaminated by these old dumps and contaminated sites and that expensive remediation work is required for to reduce further contamination. In addition more recently other (halogenated) chemicals exhibiting the characteristics of POPs have emerged including e.g. brominated aromatic compounds (e.g. Polybrominated diphenylethers (PBDEs) and other brominated flame retardants) widely used as flame retardants for electronics; textiles, furniture; upholstery; insulation foam etc.) and fluorinated organic pollutants (e.g. PFOS or PFOA used in carpets, textiles, furniture, paper coating etc.). As products containing these chemicals reach the end of their life these hazardous compounds increasingly ended and end up in the waste stream. In most countries a large proportion of these wastes are disposed to landfills. In developing countries and those with economies in transition almost all this waste is landfilled. Consequently the quantities of POPs in municipal waste landfills have increased the last two decades. Therefore in addition to chemical landfills also municipal landfills increasingly become POPs deposits and sources. Because of their persistence and relative mobility, these compounds will persist in landfills for many decades and probably centuries. Over these extended time frames landfill engineering systems, including basal and capping liners, gas and leachate collection systems will inevitably degrade and loose their abilities to contain contamination. Furthermore consideration must now be given to the impacts of climate change and extreme weather events. This is likely to result in higher temperatures with increased volatalisation of semi-volatile compounds; longer dry periods with drying of surface caps; together with higher intensity rainfall events and increased flooding risks. These effects will impact on the integrity of the containment systems. It is therefore inevitable that more of the deposited POPs will leach into rivers, lakes and the larger environment via escaping leachate, ground or surface water as well as escaping to atmosphere by volatilisation. At the same time our reliance on water resources is likely to increase. In order to evaluate the associated risks for human exposure and biodiversity, inventories of deposited POPs and other PBTs need to be established, their locations comprehensively mapped and linked to future flooding scenarios for prediction of contamination of the precious water resources. This interdisciplinary task will require the cooperation between POPs experts, geotechnical engineers, contaminated site/landfill experts, water management specialists and geoscientists working on climate change and flooding.

  18. Environmental monitoring report, 1980, 1981, 1982 for the former Middlesex Sampling Plant and Middlesex Municipal Landfill Sites

    SciTech Connect

    Not Available

    1984-10-01

    During periods of remedial action activities conducted in 1980 and 1981 at designated sites in the Borough of Middlesex, New Jersey, air, water, and sediments were sampled and analyzed to verify the adequacy of contamination control and compliance with applicable standards. Analytical results show that remedial action activities at the Middlesex Sampling Plant (MSP) and vicinity properties were conducted, with few exceptions, within applicable standards. During 1982, a surveillance monitoring program was initiated at the MSP and at the former Middlesex Municipal Landfill (MML) site. Radioactivity was measured in air and water to allow calculation of radiation doses to the public. The resulting dose from external gamma radiation at the MSP site boundary in 1982 was approximately twice natural background and less than 40% (background included) of the Department of Energy (DOE) standard. The highest continuous occupancy dose to the bronchial epithelium (lungs) from radon exposure at the MML boundary was approximately twice the background value or about 60% (background included) of the DOE standard. 12 references, 15 figures, 28 tables.

  19. Hydrogeologic framework, arsenic distribution, and groundwater geochemistry of the glacial-sediment aquifer at the Auburn Road landfill superfund site, Londonderry, New Hampshire

    USGS Publications Warehouse

    Degnan, James R.; Harte, Philip T.

    2013-01-01

    Leachate continues to be generated from landfills at the Auburn Road Landfill Superfund Site in Londonderry, New Hampshire. Impermeable caps on the three landfills at the site inhibit direct infiltration of precipitation; however, high water-table conditions allow groundwater to interact with landfill materials from below, creating leachate and ultimately reducing conditions in downgradient groundwater. Reducing conditions can facilitate arsenic transport by allowing it to stay in solution or by liberating arsenic adsorbed to surfaces and from geologic sources, such as glacial sediments and bedrock. The site occupies a 180-acre parcel of land containing streams, ponds, wetlands, and former gravel pits located in glacial sediment. Four areas, totaling 14 acres, including three landfills and one septage lagoon, were used for waste disposal. The site was closed in 1980 after volatile organic compounds associated with industrial waste dumping were detected. The site was added to the U.S. Environmental Protection Agency National Priority List in 1982, and the landfills were capped in 1996. Although volatile organic compound concentrations in groundwater have declined substantially, some measurable concentrations remain. Temporally variable and persistent elevated arsenic concentrations have been measured in groundwater affected by the landfill leachate. Microbial consumption of carbon found in leachate is a driver of reducing conditions that liberate arsenic at the site. In addition to sources of carbon in landfill leachate, wetland areas throughout the site also could contribute carbon to groundwater, but it is currently unknown if any of the wetland areas have downward or reversing gradients that could allow the infiltration of surface water to groundwater. Red-stained sediments and water indicate iron-rich groundwater discharge to surface water and are also associated with elevated concentrations of arsenic in sediment and groundwater. Ironrich groundwater seeps have been observed in the wetland, streams, and pond downgradient of the landfills. Piezometers were installed in some of these locations to confirm groundwater discharge, measure vertical-flow gradients, and to provide a way to sample the discharging groundwater. Understanding the movement of leachate in groundwater is complicated by the presence of preferential flow paths through aquifer materials with differing hydraulic properties; these preferential flow paths can affect rates of recharge, geochemical conditions, and contaminant fluxes. In areas adjacent to the three capped landfills, infiltration of precipitation containing oxygenated water through permeable deltaic sediments in the former gravel pit area causes increases in dissolved oxygen concentrations and decreases in arsenic concentrations. Layered deltaic sediments produce anisotropic hydraulic characteristics and zones of high hydraulic conductivity. The glacial-sediment aquifer also includes glaciolacustrine sediments that have low permeability and limit infiltration at the surface Discharge of leachate-affected groundwater may be limited in areas of organic muck on the bottom of Whispering Pines Pond because the muck may act as a semiconfining layer. Geophysical survey results were used to identify several areas with continuous beds of muck and an underlying highresistivity layer on top of a layer of low resistivity that may represent leachate-affected groundwater. The high-resistivity layer is likely groundwater associated with oxygenated recharge, which would cause arsenic to adsorb onto aquifer sediments and reduce concentrations of dissolved arsenic in groundwater. Surface and borehole geophysical data collected in 2011 were used to identify potentially high-permeability or contaminated zones in the aquifer (preferential flowpaths) as well as low-permeability zones that may promote contamination through back diffusion. Some groundwater in parts of the glacial-sediment aquifer where the leachate plumes were present had low electrical resistivity, low dissolved oxygen, and high concentrations of a

  20. Superfund Record of Decision (EPA Region 4): Munisport Landfill site, Dade County, North Miami, FL. (First remedial action), July 1990. Final report

    SciTech Connect

    Not Available

    1990-07-26

    The 291-acre Munisport Landfill site, including a 170-acre, inactive municipal landfill, is within the city of North Miami, Dade County, Florida. The city of North Miami leased 291 acres to Munisport for recreational development in 1971 which began filling low-lying areas of the site with clean fill and construction debris. In 1975, a temporary permit allowed solid waste to be used as fill above the water table. However, in 1976, a State inspection found twelve 55-gallon drums that were leaking wastes onsite; a violation was issued, and these drums were removed offsite by the city. Landfilling operations ceased in 1981, but closure has not yet taken place. Leachate from the landfill waste still poses a significant threat to the aquatic organisms in the Mangrove Preserve. The ground water is no longer used for potable purposes as a result of salt water intrusion. The contaminants of concern affecting the ground water include VOCs such as benzene and toluene; other organics; metals, such as arsenic, chromium, and lead; and other inorganics.

  1. Application of Remote Sensing and GIS in Landfill (waste Disposal) Site Selection and Environmental Impacts Assessment around Mysore City, Karnataka, India

    NASA Astrophysics Data System (ADS)

    Basavarajappa, T. H.

    2012-07-01

    Landfill site selection is a complex process involving geological, hydrological, environmental and technical parameters as well as government regulations. As such, it requires the processing of a good amount of geospatial data. Landfill site selection techniques have been analyzed for identifying their suitability. Application of Geographic Information System (GIS) is suitable to find best locations for such installations which use multiple criteria analysis. The use of Artificial intelligence methods, such as expert systems, can also be very helpful in solid waste planning and management. The waste disposal and its pollution around major cities in Karnataka are important problems affecting the environment. The Mysore is one of the major cities in Karnataka. The landfill site selection is the best way to control of pollution from any region. The main aim is to develop geographic information system to study the Landuse/ Landcover, natural drainage system, water bodies, and extents of villages around Mysore city, transportation, topography, geomorphology, lithology, structures, vegetation and forest information for landfill site selection. GIS combines spatial data (maps, aerial photographs, and satellite images) with quantitative, qualitative, and descriptive information database, which can support a wide range of spatial queries. For the Site Selection of an industrial waste and normal daily urban waste of a city town or a village, combining GIS with Analytical Hierarchy Process (AHP) will be more appropriate. This method is innovative because it establishes general indices to quantify overall environmental impact as well as individual indices for specific environmental components (i.e. surface water, groundwater, atmosphere, soil and human health). Since this method requires processing large quantities of spatial data. To automate the processes of establishing composite evaluation criteria, performing multiple criteria analysis and carrying out spatial clustering a suitable methodology was developed. The feasibility of site selection in the study area based on different criteria was used to obtain the layered data by integrating Remote Sensing and GIS. This methodology is suitable for all practical applications in other cities, also.

  2. Greenhouse gas emissions from municipal solid waste management in Indian mega-cities: a case study of Chennai landfill sites.

    PubMed

    Jha, Arvind K; Sharma, C; Singh, Nahar; Ramesh, R; Purvaja, R; Gupta, Prabhat K

    2008-03-01

    Municipal solid waste generation rate is over-riding the population growth rate in all mega-cities in India. Greenhouse gas emission inventory from landfills of Chennai has been generated by measuring the site specific emission factors in conjunction with relevant activity data as well as using the IPCC methodologies for CH4 inventory preparation. In Chennai, emission flux ranged from 1.0 to 23.5mg CH4m(-2)h(-1), 6 to 460microg N2Om(-2)h(-1) and 39 to 906mg CO2m(2)h(-1) at Kodungaiyur and 0.9 to 433mg CH4m(-2)h(-1), 2.7 to 1200microg N2Om(-2)h(-1) and 12.3 to 964.4mg CO2m(-2)h(-1) at Perungudi. CH4 emission estimates were found to be about 0.12Gg in Chennai from municipal solid waste management for the year 2000 which is lower than the value computed using IPCC, 1996 [IPCC, 1996. Report of the 12th session of the intergovernmental panel of climate change, Mexico City, 1996] methodologies. PMID:18068211

  3. Evaluation of borehole geophysical and video logs, at Butz Landfill Superfund Site, Jackson Township, Monroe County, Pennsylvania

    USGS Publications Warehouse

    Low, D.J.; Conger, R.W.

    2001-01-01

    Between February 1996 and November 2000, geophysical logging was conducted in 27 open borehole wells in and adjacent to the Butz Landfill Superfund Site, Jackson Township, Monroe County, Pa., to determine casing depth and depths of water-producing zones, water-receiving zones, and zones of vertical borehole flow. The wells range in depth from 57 to 319 feet below land surface. The geophysical logging determined the placement of well screens and packers, which allow monitoring and sampling of water-bearing zones in the fractured bedrock so that the horizontal and vertical distribution of contaminated ground water migrating from known sources could be determined. Geophysical logging included collection of caliper, natural-gamma, single-point-resistance, fluid-resistivity, fluid-temperature, and video logs. Caliper and video logs were used to locate fractures, joints, and weathered zones. Inflections on single-point-resistance, fluid-temperature, and fluid-resistivity logs indicated possible water-bearing fractures, and heatpulse-flowmeter measurements verified these locations. Natural-gamma logs provided information on stratigraphy.

  4. Installation restoration program: Closure investigation report. Site 1: Former base landfill; Stewart Air National Guard Base, Newburgh, New York. Volume I. Final report

    SciTech Connect

    1997-04-01

    A Closure Investigation (Cl) of Site 1, the former Base Landfill at Stewart Air National Guard Base (the Base) located at the Stewart International Airport (lAP), was performed by Aneptek Corporation (ANEPTEK). Site 1 is located southeast of the airport complex. Site 1 and Site 2 (the former pesticide pit disposal area) have been the subject of several previous investigations by both the New York State Department of Environmental Conservation (NYSDEC) and the National Guard Bureau. Scope of Investigation. The CI field program included air monitoring and the sampling of subsurface soils, surface water and groundwater to provide data for an evaluation of site geology, hydrogeology, and potential environmental impacts from the Site 1 landfill. Ml groundwater and surface water samples submitted for off-site laboratory analysis were analyzed for the full list of Baseline Parameters provide in Chapter 6 of the New York Codes, Rules, and Regulations (6 NYCRR) Part 360-2.11. Physical characteristics of the fill and cover material were defined through the installation and monitoring of slope stability monuments and settlement pads. Test pits were excavated to determine the lateral extent of waste. Soil samples collected from the existing interim cover were submitted to an off-site laboratory for grain size analyses. Slug tests were performed on monitoring wells to provide estimates of formation hydraulic conductivity. In accordance with the requirements of 6 NYCRR Part 360-2.15, an explosive gas investigation was conducted using a slam-bar and monitoring gasses with a flame ionization detector (FID) and a meter capable of detecting percent oxygen, percent lower explosive limit (LEL), carbon monoxide, and hydrogen sulfide. A complete site walkover of the landfill was made to locate any areas of leachate outbreak; and a vector survey was conducted by a field biologist.

  5. Characterization of bacterial diversity at different depths in the Moravia Hill landfill site at Medellin, Colombia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A combination of culture-dependent and culture-independent methods was used to assess bacterial diversity at different depths within a former solid waste dump in Medelln, Colombia. Sampling sites included a densely populated area, which is built upon 40 m of solid waste (domestic, industrial, agric...

  6. Superfund record of decision (EPA Region 2): Syosset Landfill Site, operable unit 2, Town of Oyster Bay, Nassau County, NY, March 28, 1996

    SciTech Connect

    1996-11-01

    This decision document presents the selected remedy for the second operable unit (OU2) for the Syosset Landfill site (the Site), located in the Town of Oyster Bay, Nassau County, New York. This operable unit addresses the fate and transport of the contaminants in the groundwater emanating from the Site. EPA is consultation with the State of New York has determined that contamination is limited and does not pose a significant threat to human health or the environment; therefore, remediation is not appropriate. This determination is based on the OU2 Remedial Investigation and the expected successful implementation of the OU1 remedy.

  7. Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of erode city, Tamil Nadu, India

    PubMed Central

    2012-01-01

    Leachate and groundwater samples were collected from Vendipalayam, Semur and Vairapalayam landfill sites in Erode city, Tamil Nadu, India, to study the possible impact of leachate percolation on groundwater quality. Concentrations of various physicochemical parameters including heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Fe and Zn) were determined in leachate samples and are reported. The concentrations of Cl-, NO3-, SO42-, NH4+ were found to be in considerable levels in the groundwater samples particularly near to the landfill sites, likely indicating that groundwater quality is being significantly affected by leachate percolation. Further they were proved to be the tracers for groundwater contamination near Semur and Vendipalayam dumpyards. The presence of contaminants in groundwater particularly near the landfill sites warns its quality and thus renders the associated aquifer unreliable for domestic water supply and other uses. Although some remedial measures are suggested to reduce further groundwater contamination via leachate percolation, the present study demands for the proper management of waste in Erode city. PMID:23369323

  8. Superfund Record of Decision (EPA Region 5): Buckeye Reclamation Landfill Site, Belmont County, OH. (First remedial action), August 1991. Final report

    SciTech Connect

    Not Available

    1991-08-19

    The 658-acre Buckeye Reclamation site contains a 50-acre former landfill in Richland Township, Belmont County, Ohio. Land use in the area is predominantly agricultural, rural residential, and strip mining. A total of 46 domestic wells and springs are located within 1 mile of the site. The original topography of the valley has been altered by coal mining and landfill operations. Solid industrial wastes also were disposed of with municipal wastes elsewhere in the landfill. In 1980, the Waste Pit was filled with sludge, mine spoil, and overburden soil; covered with soil and garbage; and seeded. Results of the RI indicate various levels of contamination in all media sampled, except air. The Record of Decision (ROD) addresses the remediation of contaminated leachate and ground water and eliminates exposure to contaminated surface soil. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, TCE, and toluene; other organics including PAHs; and metals including arsenic, chromium, beryllium, and lead. The selected remedial action for the site is included.

  9. The metal-leaching and acid-neutralizing capacity of MSW incinerator ash co-disposed with MSW in landfill sites.

    PubMed

    Lo, Huang-Mu; Liao, Yuan-Lung

    2007-04-01

    Municipal solid waste (MSW) incinerator (MSWI) bottom ash and fly ash were used as landfill cover or were co-disposed with MSW to measure their potential metal-releasing and acid-neutralizing capacity (ANC) in landfill sites. Five lysimeters (height 1.2m, diameter 0.2m), simulating landfill conditions, were used in the experiment. Four contained either bottom ash (BA) or fly ash (FA) with BA:MSW ratios of 100 and 200 g L(-1) and FA:MSW ratios of 10 and 20 g L(-1), and the fifth was the control, which contained no ash. The lysimeters were arranged so as to contain four layers, with BA or FA placed on top of MSW within each layer. Each lysimeter was recirculated with 100mL leachate using peristaltic pumps, and 100mL of the leachate was collected weekly to measure the soluble metal concentrations. The results showed that the concentrations of soluble alkali metals measured in the leachate were in the order Ca>K>Na>Mg. In addition, the concentrations of soluble alkali metals of Ca and K collected from the lysimeters containing FA were found to be higher than the concentrations from the lysimeters containing BA. The concentrations of heavy metals (Cd, Cr, Cu, Ni, and Zn) were found to be <1 mg L(-1) except for Pb, which reached 2 mg L(-1). These results suggest that for alkali metals there might be an ANC consistent with the results of an acid titration curve, which would provide suitable conditions for anaerobic digestion of the MSW in the landfill. Furthermore, heavy metals and trace metals were found in concentrations, which were too low to exert inhibitory effects on anaerobic digestion, and thus they could serve as micronutrients to exert beneficial rather than detrimental effects on landfill biostabilization. PMID:17008003

  10. a New Framework for Geospatial Site Selection Using Artificial Neural Networks as Decision Rules: a Case Study on Landfill Sites

    NASA Astrophysics Data System (ADS)

    Abujayyab, S. K. M.; Ahamad, M. A. S.; Yahya, A. S.; Saad, A.-M. H. Y.

    2015-10-01

    This paper briefly introduced the theory and framework of geospatial site selection (GSS) and discussed the application and framework of artificial neural networks (ANNs). The related literature on the use of ANNs as decision rules in GSS is scarce from 2000 till 2015. As this study found, ANNs are not only adaptable to dynamic changes but also capable of improving the objectivity of acquisition in GSS, reducing time consumption, and providing high validation. ANNs make for a powerful tool for solving geospatial decision-making problems by enabling geospatial decision makers to implement their constraints and imprecise concepts. This tool offers a way to represent and handle uncertainty. Specifically, ANNs are decision rules implemented to enhance conventional GSS frameworks. The main assumption in implementing ANNs in GSS is that the current characteristics of existing sites are indicative of the degree of suitability of new locations with similar characteristics. GSS requires several input criteria that embody specific requirements and the desired site characteristics, which could contribute to geospatial sites. In this study, the proposed framework consists of four stages for implementing ANNs in GSS. A multilayer feed-forward network with a backpropagation algorithm was used to train the networks from prior sites to assess, generalize, and evaluate the outputs on the basis of the inputs for the new sites. Two metrics, namely, confusion matrix and receiver operating characteristic tests, were utilized to achieve high accuracy and validation. Results proved that ANNs provide reasonable and efficient results as an accurate and inexpensive quantitative technique for GSS.

  11. The use of GPR and VES in delineating a contamination plume in a landfill site: a case study in SE Brazil

    NASA Astrophysics Data System (ADS)

    Porsani, Jorge L.; Filho, Walter M.; Elis, Vagner R.; Shimeles, Fisseha; Dourado, João C.; Moura, Helyelson P.

    2004-03-01

    This paper presents the results of the application of the Ground Penetrating Radar (GPR) method, or Georadar, in outlining a zone of contamination due to solid residues at the waste burial site of Rio Claro in the state of São Paulo, SE Brazil. A total of eight GPR profiles with 50- and 100-MHz antennae were surveyed. Six profiles were located within the landfill site and the remaining two were outside. The main objective of the GPR survey was to evaluate the side extension of contamination. A Vertical Electric Sounding (VES) survey was performed at four points within the site in order to investigate the vertical extent of the contamination plume and to define the bottom of the landfill. Two additional VESs were done outside the landfill with the purpose of determining the top of the ground water table and the geoelectric stratigraphy of the background. From the interpretation of the GPR profiles, it was possible to locate the top of the contamination plume and to infer that it was migrating laterally beyond the limits of the waste disposal site. This was observed along the profile situated close to the highway SP-127, which was about 20 m from the limit of the site. The signature of the contaminant appears as a discontinuous reflector that is believed to be a shallow ground water table. The discontinuity is marked by a shadow zone, which is characteristic of conductive contaminant residues. The contamination did not move far enough to reach a sugar cane plantation located at approximately 100 m from the border of the site. In the regions free from contamination, the ground water table was mapped at approximately 10 m of depth, and it was characterized by a strong and continuous reflector. The radar signal penetrated deep enough and enabled the identification of a second reflector at approximately 14 m deep, interpreted as the contact between the Rio Claro and the Corumbataı´ formations. The contact is marked by the presence of gravel characterized by ferruginous concretes, which cause the strong amplitude reflection in the GPR profile. Within the landfill site, the quantitative interpretation of the VES results showed the contamination zone. The base of the landfill varies between 11 and 15 m deep. Outside the landfill site, the VES results showed no indication of contamination and allowed the determination of the top of the ground water table and the contact between the Rio Claro and the Corumbataı´ formations. The results of GPR and VES showed a good agreement and the integrated interpretations were supported by local geology and information from several boreholes, about 17 m depth, on average. The bottom of the landfill reaches a maximum of 14.5 m depth.

  12. Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: a case study using ordered weighted average.

    PubMed

    Gorsevski, Pece V; Donevska, Katerina R; Mitrovski, Cvetko D; Frizado, Joseph P

    2012-02-01

    This paper presents a GIS-based multi-criteria decision analysis approach for evaluating the suitability for landfill site selection in the Polog Region, Macedonia. The multi-criteria decision framework considers environmental and economic factors which are standardized by fuzzy membership functions and combined by integration of analytical hierarchy process (AHP) and ordered weighted average (OWA) techniques. The AHP is used for the elicitation of attribute weights while the OWA operator function is used to generate a wide range of decision alternatives for addressing uncertainty associated with interaction between multiple criteria. The usefulness of the approach is illustrated by different OWA scenarios that report landfill suitability on a scale between 0 and 1. The OWA scenarios are intended to quantify the level of risk taking (i.e., optimistic, pessimistic, and neutral) and to facilitate a better understanding of patterns that emerge from decision alternatives involved in the decision making process. PMID:22030279

  13. Mobile robots for localizing gas emission sources on landfill sites: is bio-inspiration the way to go?

    PubMed

    Hernandez Bennetts, Victor; Lilienthal, Achim J; Neumann, Patrick P; Trincavelli, Marco

    2011-01-01

    Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully "translated" into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms. PMID:22319493

  14. Mobile Robots for Localizing Gas Emission Sources on Landfill Sites: Is Bio-Inspiration the Way to Go?

    PubMed Central

    Hernandez Bennetts, Victor; Lilienthal, Achim J.; Neumann, Patrick P.; Trincavelli, Marco

    2011-01-01

    Roboticists often take inspiration from animals for designing sensors, actuators, or algorithms that control the behavior of robots. Bio-inspiration is motivated with the uncanny ability of animals to solve complex tasks like recognizing and manipulating objects, walking on uneven terrains, or navigating to the source of an odor plume. In particular the task of tracking an odor plume up to its source has nearly exclusively been addressed using biologically inspired algorithms and robots have been developed, for example, to mimic the behavior of moths, dung beetles, or lobsters. In this paper we argue that biomimetic approaches to gas source localization are of limited use, primarily because animals differ fundamentally in their sensing and actuation capabilities from state-of-the-art gas-sensitive mobile robots. To support our claim, we compare actuation and chemical sensing available to mobile robots to the corresponding capabilities of moths. We further characterize airflow and chemosensor measurements obtained with three different robot platforms (two wheeled robots and one flying micro-drone) in four prototypical environments and show that the assumption of a constant and unidirectional airflow, which is the basis of many gas source localization approaches, is usually far from being valid. This analysis should help to identify how underlying principles, which govern the gas source tracking behavior of animals, can be usefully translated into gas source localization approaches that fully take into account the capabilities of mobile robots. We also describe the requirements for a reference application, monitoring of gas emissions at landfill sites with mobile robots, and discuss an engineered gas source localization approach based on statistics as an alternative to biologically inspired algorithms. PMID:22319493

  15. Landfill reclamation attracts attention and questions

    SciTech Connect

    Aquino, J.T.

    1994-12-01

    Landfill mining or reclamation has fit neatly into the recycling/reuse mindset. In heralding the first California landfill reclamation project at the Caspar Landfill municipal solid waste (MSW) site in May 1994, a California state official described it as ''win-win. Nobody loses''. Speaking at a session at the annual meeting of the Solid Waste Management Association of North America (SWANA), held August 2--6, 1994, Joanne R. Guerriero, senior project engineer, Malcolm Pirnie, Inc. (White Plains, NY), said landfill reclamation--the excavation of a landfill using conventional mining technology to recover and reuse resources--can: extend the life of existing landfill sites and reduce the need for siting new landfills; decrease the area requiring closure; remediate an environmental concern by removing a contaminant source; reclaim marketable recyclables; and capture energy through waste combustion.

  16. ENGINEERING BULLETIN: LANDFILL COVERS

    EPA Science Inventory

    Landfill covers are used at Superfund sites to minimize surface water infiltration and control gas migration. In many cases covers are used in conjunction with other waste treatment technologies, such as slurry walls, ground water pump-and-treat systems, and gas collection. This ...

  17. Where Should the Landfill Go?

    ERIC Educational Resources Information Center

    Fazio, Rosario P.; McFaden, Dennis

    1993-01-01

    Describes a project where students were involved in finding the most suitable site for a landfill in their community. This two-month project was conducted using team teaching. Two twelfth grade geoscience classes were involved. (PR)

  18. Corrective Action Decision Document for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada: Revision No. 0 (with Record of Technical Change No. 1)

    SciTech Connect

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-10-24

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action (CAU) 5: Landfills, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 5, 6, 12, 20, and 23 of the NTS, CAU 5 is comprised of eight corrective action sites (CASs). The corrective action investigation (CAI) of CAU 5 was conducted from October 7, 2002 through January 30, 2003, with geophysical surveys completed from March 6 through May 8, 2002, and topographic surveys conducted from March 11 through April 29, 2003. Contaminants of concern (COCs) were identified only at CAS 12-15-01. Those COCs included total petroleum hydrocarbons and volatile organic compounds. Based on the evaluation of analytical data from the CAI, review of future and current operations in Areas 5, 6, 12, 20, and 23 of the Nevada Test Site, and the detailed and comparative analysis of the potential CAAs, the following single alternative was developed for consideration. Close in Place with Administrative Controls is the recommended alternative for all of the CASs in CAU 5. This alternative was judged to meet all requirements for the technical components evaluated. Additionally, the alternative meets all applicable state and federal regulations for closure of the sites and will eliminate inadvertent intrusion into landfills at CAU 5.

  19. Health assessment for Jones Sanitation Landfill (Jones Septic Site), Hyde Park, Dutchess County, New York, Region 2. CERCLIS No. NYD980534556. Preliminary report

    SciTech Connect

    Not Available

    1988-07-07

    The Jones Sanitation Landfill, also known as the Jones Septic Site, is listed on the National Priorities List. From the early 1960s through 1979 the site accepted industrial liquid wastes and sludges. The site now accepts only septic waste collected by commercial firms. Results of environmental sampling indicate that the contaminants of concern at the site include inorganics (e.g., chromium, copper, lead, cadmium, mercury), oil and grease wastes, and several volatile organic chemicals including: 1,1-dichloroethylene; trichloroethylene; trichloroethene, acetone; 1,2,4-trichlorobenzene; chloroform; methylene chloride; and perhaps pentachlorophenol. Based on the available information, the site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via the above-named human exposure pathways.

  20. Health assessment for North Cavalcade Street National Priorities List (NPL) Site, Houston, Texas, Region 6. CERCLIS No. TXD980873343. Final report

    SciTech Connect

    Not Available

    1988-08-24

    The North Cavalcade Street site is a National Priorities List site located in Houston, Texas. The site is the former location of a wood-treatment facility. There are approximately 4500 residents within a one-mile radius of the site. The site is contaminated with various chemicals including polynuclear aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and to some extent lead and arsenic. Exposures of public health concern to site contaminants may occur via dermal contact with and indirect ingestion of soil. There is a potential for ingestion exposure to contaminated ground water if remedial measures do not remove the contamination or are unsuccessful at controlling the migration of contamination. The public health threat posed by potential ingestion of contaminated food chain entities cannot be evaluated with the information provided.

  1. A New IPCC Tier 4 Site-Specific Model for Landfill Methane Emissions Inclusive of Seasonal Methane Oxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This project was initiated in the U.S. by the California Energy Commission (CEC) in cooperation with the California Integrated Waste Management Board and the California Air Resources Board to develop improved methods for landfill methane emissions for the California greenhouse gas inventory. This 3-...

  2. Ground-water flow and solute transport at a municipal landfill site on Long Island, New York; Part 2, Simulation of ground-water flow

    USGS Publications Warehouse

    Wexler, E.J.; Maus, P.E.

    1988-01-01

    Data on the hydrogeology of a 26-sq-mi area surrounding the Brookhaven landfill site in central Suffolk County were collected as part of a hydrologic investigation of solute transport from the site. These data were used to develop a steady-state groundwater flow model of the upper glacial (water table) aquifer in the area. The model accounts for the leakage through confining units underlying the aquifer, seepage to streams, recharge from precipitation, and pumpage and redistribution of water. Refined estimates of aquifer and confining-unit properties were obtained through model calibrations. Water table altitudes generated by the calibrated model were used to determine groundwater velocities and probable flow paths in the vicinity of the site under long-term average hydrologic conditions. Groundwater velocities and probable flow paths in the study area were calculated from simulated water table altitudes generated by the calibrated flow model. Groundwater at the center of the site flows southeastward at a velocity of 1.1 ft/d. The report is the second in a three part series describing the hydrologic conditions and groundwater quality, groundwater flow, and solute transport in the vicinity of the Brookhaven landfill. (USGS)

  3. 45. BUILDING AT CORNER OF EYE AND 11th STREETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. BUILDING AT CORNER OF EYE AND 11th STREETS - Convention Center Site, I Street, 900 & 1000 Block, Tenth Street, 800 & 900 Block, New York Avenue, 900 & 1000 Block, Washington, District of Columbia, DC

  4. 12. July, 1970 EAST SIDE OF ORANGE STREET LOOKING SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. July, 1970 EAST SIDE OF ORANGE STREET LOOKING SOUTH FROM GARDEN (FORMER SITE OF COL. BRAYTON HOUSE) OF #16 TO #18, #20 AND #22 ORANGE STREET - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  5. Health assessment for Burrows Sanitation Landfill National Priorities List (NPL) Site, Hartford, Van Buren County, Michigan, Region 5. CERCLIS No. MID980410617. Final report

    SciTech Connect

    Not Available

    1988-07-29

    The Burrows Sanitation Landfill is a National Priorities List site located in a rural area approximately one mile northeast of the City of Hartford, Van Buren County, Michigan. The contaminants found at the site consist of chromium, lead, and nickel in the ground water, surface soils, surface waters, and sediments. There are three residences within 300 feet of the site boundary. The site is of potential public health concern because of the risk to human health that could result from possible exposure to hazardous substances at levels that may result in adverse health effects over time. Human exposure to nickel and chromium may be occurring via ingestion of and direct contact with surface soils. However, proposed remediation measures should adequately prevent future exposure to these contaminants.

  6. Passive drainage and biofiltration of landfill gas: Australian field trial

    SciTech Connect

    Dever, S.A. . E-mail: stuart_dever@ghd.com.au; Swarbrick, G.E. . E-mail: g.swarbrick@unsw.edu.au; Stuetz, R.M. . E-mail: r.stuetz@unsw.edu.au

    2007-07-01

    In Australia a significant number of landfill waste disposal sites do not incorporate measures for the collection and treatment of landfill gas. This includes many old/former landfill sites, rural landfill sites, non-putrescible solid waste and inert waste landfill sites, where landfill gas generation is low and it is not commercially viable to extract and beneficially utilize the landfill gas. Previous research has demonstrated that biofiltration has the potential to degrade methane in landfill gas, however, the microbial processes can be affected by many local conditions and factors including moisture content, temperature, nutrient supply, including the availability of oxygen and methane, and the movement of gas (oxygen and methane) to/from the micro-organisms. A field scale trial is being undertaken at a landfill site in Sydney, Australia, to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions at low to moderate gas generation landfill sites. The design and construction of the trial is described and the experimental results will provide in-depth knowledge on the application of passive gas drainage and landfill gas biofiltration under Sydney (Australian) conditions, including the performance of recycled materials for the management of landfill gas emissions.

  7. New landfill technology for an old landfill`s problems: A case study

    SciTech Connect

    Bannister, T.A.; Warren, V.L.

    1996-11-01

    There are presently 111 solid waste sites in Indiana where groundwater is being monitored on a regular basis. Solid waste regulations passed in 1989 required leachate collection systems (LCS) in all new landfills. Of the 111 monitored solid waste facilities, only about 20 of them have an LCS, either built into the original design or retrofitted into an old design. Furthermore, 42 solid waste sites are presently under Phase 2 or assessment monitoring (suspected of causing groundwater contamination) and 8 are in corrective action with confirmed groundwater contamination. It is significant that none of these sites with suspected or confirmed groundwater contamination have leachate collection systems. It has been the authors` experience that many old landfills without LCSs have problems with leachate breakouts on sideslopes. However, these same landfills are found to have good natural base liners and a low chance of contaminating groundwater. On the other hand, if an old landfill has no LCS, yet is not experiencing leachate breakouts on the sideslopes, the base liner may be suspect and leachate may be exiting the landfill bottom and into underlying groundwater. This paper presents a case study of an old landfill that, until recently, had no leachate control system. The landfill had experienced significant leachate breakouts on sideslopes except for one particular corner of the fill area.

  8. Landfills in karst terrains

    SciTech Connect

    Hughes, T.H. ); Memon, B.A.; LaMoreaux, P.E. )

    1994-06-01

    State and Federal regulations have established restrictions for location of hazardous waste and municipal, solid waste landfills. Regulations require owners/operators to demonstrate that the hydrogeology has been completely characterized at proposed landfills, and that locations for monitoring wells have been properly selected. Owners/operators are also required to demonstrate that engineering measures have been incorporated in the design of the municipal solid waste landfills, so that the site is not subject to destabilizing events, as a result of location in unstable areas, such as karst terrains. Karst terrains are typically underlain by limestone or dolomite, and may contain a broad continuum of karst features and karst activity. Preliminary investigation of candidate sites will allow ranking of the sites, rejection of some unsuitable sites, and selection of a few sites for additional studies. The complexity of hydrogeologic systems, in karst terrains, mandates thorough hydrogeologic studies to determine whether a specific site is, or can be rendered, suitable for a land disposal facility. Important components of hydrogeologic studies are: field mapping of structural and stratigraphic units; interpretation of sequential aerial photographs; test drilling and geophysical analyses; fracture analyses; seasonal variation in water-levels; spatial variation of hydraulic characteristics of the aquifer and aquiclude; velocity and direction of movement of ground water within aquifers; determination of control for recharge, discharge, and local base level; and evaluation of the effects of man's activities, such as pumping, dewatering and construction.

  9. Formerly utilized MED/AEC sites remedial action program. Radiological survey of the Middlesex Municipal Landfill, Middlesex, New Jersey. Final report

    SciTech Connect

    Leggett, R W; Cottrell, W D; Goldsmith, W A; Christian, D J; Haywood, F F; Wagner, E B; Crawford, D J; Doane, R W; Shinpaugh, W H

    1980-04-01

    A radiological survey was conducted at the Middlesex Municipal Landfill in Middlesex, New Jersey. In 1948, dirt contaminated with pitchblende ores was brought to this site from a former ore sampling plant in Middlesex. This survey was conducted in order to characterize the present radiological condition of the site and to determine the extent to which contamination is being transported from the site by natural means such as by drainage. The survey included measurement of (1) radionuclide concentrations in surface and subsurface soil on the site; (2) radionuclide concentrations in surface and subsurface water on the site and in Bound Brook; (3) beta-gamma dose rates and external gamma radiation levels on and near the site; and (4) the rate of /sup 222/Rn emanation from the soil on the site. It was found that most of the contamination on the site is in the top 14 ft of soil; however, there is little contamination of surface soil on the site. Average radon emanation rates, average external gamma radiation levels, and average beta-gamma dose rates on the site do not appear to be significantly higher than background levels. Furthermore, radionuclide concentrations in water taken from Bound Brook near the site were far below guide values stated in federal guidelines.

  10. Sour landfill gas problem solved

    SciTech Connect

    Nagl, G.; Cantrall, R.

    1996-05-01

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  11. LETTER REPORT. INDEPENDENT CONFIRMATORY SURVEY RESULTS OF SOILS ASSOCIATED WITH THE ARGYLE STREET SEWER LINE AT THE UNITED NUCLEAR CORPORATION NAVAL PRODUCTS SITE, NEW HAVEN, CONNECTICUT

    SciTech Connect

    Adams, Wade C.

    2012-01-24

    Oak Ridge Institute for Science and Education (ORISE) personnel visited the United Nuclear Corporation (UNC) Naval Products site on three separate occasions during the months of October and November 2011. The purpose of these visits was to conduct confirmatory surveys of soils associated with the Argyle Street sewer line that was being removed. Soil samples were collected from six different, judgmentally determined locations in the Argyle Street sewer trench. In addition to the six soil samples collected by ORISE, four replicate soil samples were collected by Cabrera Services, Inc. (CSI) for analysis by the ORISE laboratory. Replicate samples S0010 and S0011 were final status survey (FSS) bias samples; S0012 was an FSS systematic sample; and S0015 was a waste characterization sample. Six soil samples were also collected for background determination. Uranium-235 and uranium-238 concentrations were determined via gamma spectroscopy; the spectra were also reviewed for other identifiable photopeaks. Radionuclide concentrations for these soil samples are provided. In addition to the replicate samples and the samples collected by ORISE, CSI submitted three soil samples for inter-laboratory comparison analyses. One sample was from the background reference area, one was from waste characterization efforts (material inside the sewer line), and one was a FSS sample. The inter-laboratory comparison analyses results between ORISE and CSI were in agreement, except for one sample collected in the reference area. Smear results For Argyle Street sewer pipes are tabulated.

  12. Corrective Action Investigation Plan for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada (Rev. No.: 0) includes Record of Technical Change No. 1 (dated 9/17/2002)

    SciTech Connect

    IT Corporation, Las Vegas, NV

    2002-05-28

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 5 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 5 consists of eight Corrective Action Sites (CASs): 05-15-01, Sanitary Landfill; 05-16-01, Landfill; 06-08-01, Landfill; 06-15-02, Sanitary Landfill; 06-15-03, Sanitary Landfill; 12-15-01, Sanitary Landfill; 20-15-01, Landfill; 23-15-03, Disposal Site. Located between Areas 5, 6, 12, 20, and 23 of the Nevada Test Site (NTS), CAU 5 consists of unlined landfills used in support of disposal operations between 1952 and 1992. Large volumes of solid waste were produced from the projects which used the CAU 5 landfills. Waste disposed in these landfills may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present at concentrations and locations that could potentially pose a threat to human health and/or the environment. During the 1992 to 1995 time frame, the NTS was used for various research and development projects including nuclear weapons testing. Instead of managing solid waste at one or two disposal sites, the practice on the NTS was to dispose of solid waste in the vicinity of the project. A review of historical documentation, process knowledge, personal interviews, and inferred activities associated with this CAU identified the following as potential contaminants of concern: volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, pesticides, petroleum hydrocarbons (diesel- and gasoline-range organics), Resource Conservation and Recovery Act Metals, plus nickel and zinc. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will concentrate on geophysical surveys to confirm the presence or absence of disposed waste within a CAS and verify the boundaries of disposal areas; penetrate disposal feature covers via excavation and/or drilling; perform geodetic surveys; and be used to collect both soil and environmental samples for laboratory analyses. Phase II will deal only with those CASs where a contaminant of concern has been identified. This phase will involve the collection of additional soil and/or environmental samples for laboratory analyses. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  13. Assessment of DNA Damage by RAPD in Paracentrotus lividus Embryos Exposed to Amniotic Fluid from Residents Living Close to Waste Landfill Sites

    PubMed Central

    Guida, Maurizio; Guida, Marco; De Felice, Bruna; Santafede, Daniela; D'Alessandro, Raffaella; Di Spiezio Sardo, Attilio; Scognamiglio, Marianna; Ferrara, Cinzia; Bifulco, Giuseppe; Nappi, Carmine

    2010-01-01

    The aim of this study was to assess the genotoxic effects of environmental chemicals on residents living near landfills. The study was based on samples of amniotic fluid from women living in the intensely polluted areas around the Campania region of Italy compared to a nonexposed control group. We evaluated the genetic effects that this amniotic fluids collected in contaminated sites had on Paracentrotus lividus embryos. DNA damage was detected through changes in RAPD (Random Amplified Polymorphism DNA) profiles. The absence of the amplified DNA fragments indicated deletions in Paracentrotus lividus DNA exposed to the contaminated amniotic fluids when compared to equal exposure to uncontaminated fluids. These results show the ability of RAPD-PCR to detect and isolate DNA sequences representing genetic alterations induced in P. lividus embryos. Using this method, we identified two candidate target regions for DNA alterations in the genome of P. lividus. Our research indicates that RAPD-PCR in P. lividus embryo DNA can provide a molecular approach for studying DNA damage from pollutants that can impact human health. To our knowledge, this is the first time that assessment of DNA damage in P. lividus embryos has been tested using the RAPD strategy after exposure to amniotic fluid from residents near waste landfill sites. PMID:20706694

  14. Ground-water flow and solute transport at a municipal landfill site on Long Island, New York; Part 3, Simulation of solute transport

    USGS Publications Warehouse

    Wexler, E.J.

    1988-01-01

    A solute transport model representing a 2.3-sq mi area surrounding and downgradient from a municipal landfill site in the Town of Brookhaven, N.Y. was used to simulate migration of a conservative solute (chloride) in the upper glacial aquifer. Aquifer values used in the model were: hydraulic conductivity, 200 ft/day; effective porosity, 0.30; longitudinal dispersivity, 100 ft; transverse dispersivity, 20 ft. Average concentration of chloride was set at 875.0 mg/L in leachate and 10 mg/L in recharge and in ambient groundwater. Entry of leachate into the aquifer was assumed to have begun in 1977. Chloride concentrations in the simulated plume after 6 years of travel matched reasonably well the chloride data collected in October-December 1982. After 12 years of travel, the simulated plume extended 6,200 ft and was 2,600 ft wide. Maximum predicted concentration at the site boundary was 160 mg/L. Additional simulations were made to test the model 's ability to predict the effect of several remedial strategies on the movement of solutes. These included capping the landfill with an impermeable surface, removal of contaminated groundwater through four recovery wells, and a combination of the first two actions. (USGS)

  15. Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: Comparison with biogases from municipal waste landfill site

    SciTech Connect

    Chiriac, R.; De Araujos Morais, J.; Carre, J.; Bayard, R.; Chovelon, J.M.; Gourdon, R.

    2011-11-15

    Highlights: > Follow-up of the emission of VOCs in a municipal waste pilot-scale cell during the acidogenesis and acetogenesis phases. > Study from the very start of waste storage leading to a better understanding of the decomposition/degradation of waste. > Comparison of the results obtained on the pilot-scale cell with those from 3 biogases coming from the same landfill site. > A methodology of characterization for the progression of the stabilization/maturation of waste is finally proposed. - Abstract: The emission of volatile organic compounds (VOCs) from municipal solid waste stored in a pilot-scale cell containing 6.4 tonnes of waste (storage facility which is left open during the first period (40 days) and then closed with recirculation of leachates during a second period (100 days)) was followed by dynamic sampling on activated carbon and analysed by GC-MS after solvent extraction. This was done in order to know the VOC emissions before the installation of a methanogenesis process for the entire waste mass. The results, expressed in reference to toluene, were exploited during the whole study on all the analyzable VOCs: alcohols, ketones and esters, alkanes, benzenic and cyclic compounds, chlorinated compounds, terpene, and organic sulphides. The results of this study on the pilot-scale cell are then compared with those concerning three biogases from a municipal waste landfill: biogas (1) coming from waste cells being filled or recently closed, biogas (2) from all the waste storage cells on site, and biogas (3) which is a residual gas from old storage cells without aspiration of the gas. The analysis of the results obtained revealed: (i) a high emission of VOCs, principally alcohols, ketones and esters during the acidogenesis; (ii) a decrease in the alkane content and an increase in the terpene content were observed in the VOCs emitted during the production of methane; (iii) the production of heavier alkanes and an increase in the average number of carbon atoms per molecule of alkane with the progression of the stabilisation/maturation process were also observed. Previous studies have concentrated almost on the analysis of biogases from landfills. Our research aimed at gaining a more complete understanding of the decomposition/degradation of municipal solid waste by measuring the VOCs emitted from the very start of the landfill process i.e. during the acidogenesis and acetogenesis phases.

  16. Mixed Waste Landfill Integrated Demonstration; Technology summary

    SciTech Connect

    1994-02-01

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID`s success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories` Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque`s and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ``dry`` soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater.

  17. Sanitary Conditions of Food Vending Sites and Food Handling Practices of Street Food Vendors in Benin City, Nigeria: Implication for Food Hygiene and Safety

    PubMed Central

    Okojie, P. W.; Isah, E. C.

    2014-01-01

    Objective. To determine the sanitary conditions of vending sites as well as food handling practices of street food vendors in Benin City, Nigeria. Methodology. A descriptive cross-sectional study was done using an observational checklist and researcher-administered questionnaire. 286 randomly selected vending units were surveyed, and their operators interviewed on their food handling practices. Results. A higher proportion, 259 (90.5%), of the observed vending sites appeared clean. The following sanitary facilities were observed in and around the respective food premises of the respondents: waste bin, 124 (43.4%), refuse dumpsite, 41 (14.3%), wash hand basin, 201 (71.2%), hand towel, 210 (73.4%), and soap, 220 (76.9%). There were also the presence of flies 118, (41.3%), and the presence of rats/cockroaches, 7 (2.4%). Respondents with tertiary education, 5 (38.5%), vended foods in environment with good hygiene status compared to those with secondary, 45 (31.7%), and primary education, 33 (27.3%). There was no statistically significant association between educational status and the hygiene status of food premise (P = 0.362). Conclusion. This study showed that street food vending sites in Benin City were sanitary and that food vendors had good food handling practices. PMID:25258630

  18. Methane emissions from MBT landfills

    SciTech Connect

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.

  19. Landfill gas collection system efficiencies - facts and fallacies

    SciTech Connect

    Mosher, F.A.; Yardley, J.R.

    1996-11-01

    Landfill gas collection and treatment systems are becoming one of the primary control systems necessary to effectively operate and maintain both active and, in a number of cases, closed landfill sites. The emphasis on the development and use of landfill gas collection systems over the last 20 years and specifically in the last 5 to 10 years relates to such items as: (1) the development of larger landfills; (2) the increase in the rate of waste acceptance at landfills; (3) the development of urban areas around existing landfills; (4) the siting of landfills closer to urban areas; and (5) the issues dealing with landfill gas release to the environment from both a global environmental perspective and a human health perspective. Over the last several years, the emphasis in landfill gas collection assessments has slowly been re-orienting from {open_quotes}How much landfill gas is collected?{close_quotes} to {open_quotes}How much landfill gas is released without treatment or use?{close_quotes}. Working on this premise, it is the rate and characteristics of the landfill gas (LFG) released that controls whether or not a landfill will have a LFG related issue. A range of LFG emissions from a landfill should be able to be estimated which represent emission rates at which released LFG has potential to become an issue at a site.

  20. Emergency landfill gas control at the Milwaukee County Landfill

    SciTech Connect

    Michels, M.S.; Boone, D.A.

    1996-11-01

    In October 1994, up to 55 percent methane concentrations by volume were found below 76th Street in Franklin, Wisconsin. Numerous utilities exist below 76th Street which service homes located only 100 feet east. The Milwaukee County Landfill, located immediately west of 76th Street, was the source of methane gas. With winter weather conditions approaching, Milwaukee County was concerned that landfill gas (LFG) could migrate along utilities or in sandy soil and enter basements of adjacent homes. The County declared an emergency to immediately release funds and authorized a design/build contract to remedy the gas migration. CDM Engineers and Constructors, Inc. was selected for the project. The Milwaukee County Department of Public Works, Environmental Services Division led the project team. Numerous activities occurred simultaneously, including: (1) Public Relations, (2) Notification to Wisconsin DNR, (3) Design and Permitting, (4) Ordering the Flare, (5) Installing Methane Detectors in 29 Basements. Public relations included public forums with local residences, monthly newsletters, meetings with the ski hill operator, television interviews, local newspaper interviews, briefing the County Alderman and City of Franklin officials. Cooperation from Wisconsin DNR provided a 10-day turnaround for approval of the design. A perimeter active gas collection and flare system was employed to mitigate LFG. The system included eight gas extraction wells drilled to the base of the landfill and one horizontal trench (approximately 40 feet long). Extraction wells and trench were connected together with a buried 6-inch HDPE header pipe. Condensate is collected in a 550-gallon double-walled steel tank.

  1. Movement of unlined landfill under preloading surcharge.

    PubMed

    Al-Yaqout, Anwar F; Hamoda, Mohamed F

    2007-01-01

    As organic solid waste is decomposed in a landfill and mass is lost due to gas and leachate formation, the landfill settles. Settlement of a landfill interferes with the rehabilitation and subsequent use of the landfill site after closure. This study examined the soil/solid waste movement at the Al-Qurain landfill in Kuwait after 15 years of closure as plans are underway for redevelopment of the landfill site that occupies about a km(2) with an average depth of 8-15m. Field experiments were conducted for 6 mo to measure soil/solid waste movement and water behavior within the landfill using two settlement plates with a level survey access, Casagrande-type piezometers, pneumatic piezometers, and magnetic probe extensometers. Previous results obtained indicated that biological decomposition of refuse continued after closure of the landfill site. The subsurface water rise enhanced the biological activities, which resulted in the production of increasing quantities of landfill gas. The refuse fill materials recorded a high movement rate under the imposed preloading as a result of an increase in the stress state. Up to 55% of the total movement was observed during the first 2 weeks of fill placement and increased to 80% within the first month of the 6-mo preloading test. Pneumatic piezometers showed an increase in water head, which is attributed to the developed pressure of gases escaping during the preloading period. PMID:16574394

  2. Results of the supplementary radiological survey at the former C. H. Schnoor and Company site, 644 Garfield Street, Springdale, Pennsylvania (CVP001)

    SciTech Connect

    Coleman, R.L.; Murray, M.E.; Brown, K.S.

    1995-04-01

    At the request of the U.S. Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted radiological surveys at the former C. H. Schnoor and Company site, 644 Garfield Street, Springdale, Pennsylvania. The surveys were performed on October 11-13 and November 14-17, 1993, in order to provide a complete characterization prior to site remediation. The surveys included a gamma scan and a scan for surface contamination from alpha and beta-gamma emitters; measurement of direct and removable alpha and beta-gamma levels; systematic FIDLER measurements at the surface of the concrete; and the collection of samples from boreholes for radionuclide analysis. Results of the surveys revealed radionuclide concentrations and surface contamination levels in excess of applicable DOE guidelines for {sup 238}U. Radionuclide distributions were higher than typical background levels for {sup 238}U in the Springdale, Pennsylvania area.

  3. Mill Seat Landfill Bioreactor Renewable Green Power (NY)

    SciTech Connect

    Barton & Loguidice, P.C.

    2010-01-07

    The project was implemented at the Mill Seat landfill located in the Town of Bergen, Monroe County, New York. The landfill was previously equipped with a landfill gas collection system to collect methane gas produced by the bioreactor landfill and transport it to a central location for end use. A landfill gas to energy facility was also previously constructed at the site, which utilized generator engines, designed to be powered with landfill methane gas, to produce electricity, to be utilized on site and to be sold to the utility grid. The landfill gas generation rate at the site had exceeded the capacity of the existing generators, and the excess landfill gas was therefore being burned at a candlestick flare for destruction. The funded project consisted of the procurement and installation of two (2) additional 800 KW Caterpillar 3516 generator engines, generator sets, switchgear and ancillary equipment.

  4. Landfills as a biorefinery to produce biomass and capture biogas.

    PubMed

    Bolan, N S; Thangarajan, R; Seshadri, B; Jena, U; Das, K C; Wang, H; Naidu, R

    2013-05-01

    While landfilling provides a simple and economic means of waste disposal, it causes environmental impacts including leachate generation and greenhouse gas (GHG) emissions. With the introduction of gas recovery systems, landfills provide a potential source of methane (CH4) as a fuel source. Increasingly revegetation is practiced on traditionally managed landfill sites to mitigate environmental degradation, which also provides a source of biomass for energy production. Combustion of landfill gas for energy production contributes to GHG emission reduction mainly by preventing the release of CH4 into the atmosphere. Biomass from landfill sites can be converted to bioenergy through various processes including pyrolysis, liquefaction and gasification. This review provides a comprehensive overview on the role of landfills as a biorefinery site by focusing on the potential volumes of CH4 and biomass produced from landfills, the various methods of biomass energy conversion, and the opportunities and limitations of energy capture from landfills. PMID:23069612

  5. Phytoremediation of landfill leachate

    SciTech Connect

    Jones, D.L. . E-mail: d.jones@bangor.ac.uk; Williamson, K.L.; Owen, A.G.

    2006-07-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m{sup 3} ha{sup -1} yr{sup -1}. However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  6. Phytoremediation of landfill leachate.

    PubMed

    Jones, D L; Williamson, K L; Owen, A G

    2006-01-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250m(3)ha(-1)yr(-1). However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios. PMID:16168631

  7. Provenance of white marbles from the nabatean sites of Qase Al Bint and colonnaded street baths at Petra, Jordan

    NASA Astrophysics Data System (ADS)

    Abu-Jaber, Nizar; al-Saad, Ziad; Shiyyab, Adnan; Degryse, Patrick

    Intercultural relations and trade are important components of understanding of historical interrelationships between regions and cultures. One of the most interesting objects of trade is stone, because of the expense and difficulty of its transport. Thus, the source of marble used in the Nabatean city of Petra was investigated using established petrological, geochemical and isotopic analyses. Specifically, marble from Qasr al Bint and the Colonnaded Street baths were sampled and investigated. The results of these analyses show that the marbles came from sources in Asia Minora and Greece. The most likely sources of the marble are the quarries of Thasos, Penteli, Prokennesos and Dokimeion. The choice of marble followed the desired utilitarian and aesthetic function of the stone. These results show that active trade in stone was part of the cultural interaction of the period.

  8. In situ denitrification in controlled landfill systems

    SciTech Connect

    Onay, T.T.; Pohland, F.G.

    1996-11-01

    The characteristics of leachate from landfill disposal sites vary according to the operational stage of the landfill. Leachates from old landfills are often rich in ammonia nitrogen due to the hydrolysis and fermentation of nitrogenous fractions of biodegradable refuse substrates. The relative concentration accumulating as stabilization progresses is also influenced by washout as leachate is collected and removed for external treatment. However, in landfills operated as bioreactors with leachate containment, collection and in situ recirculation to accelerate decomposition of readily available organic fractions of the refuse, leachate ammonia nitrogen concentrations may accumulate to much higher levels. High leachate ammonia nitrogen concentrations in landfill leachate have been reported, resulting in separate treatment challenges if direct discharge to either land or receiving waters is practiced. External treatment options for landfill leachate may involve complex physical-chemical and/or biological processes for removal of both high-strength organic and inorganic fractions, including nitrogen. Such separate leachate treatment systems are often costly and difficult to control on a continuum. Therefore, this study focused on the investigation of landfill ammonia nitrogen generation patterns, and the potential for its in situ attenuation and conversion in landfills constructed to permit sequential nitrification and denitrification using leachate recirculation. Accordingly, the landfill is constructed and operated as a controlled bioreactor system, with opportunity to convert ammonia to nitrate by nitrification and nitrate to nitrogen gas by denitrification. The results presented in this paper focus on in situ landfill denitrification of nitrified ammonia.

  9. N. River Street, east side of street at Sound End ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    N. River Street, east side of street at Sound End - River Street Historic District, Bounded by West Saint James Street, West Santa Clara Street, Pleasant Street, & Guadalupe River, San Jose, Santa Clara County, CA

  10. Proximity of Florida sanitary landfills to wetlands and deepwater habitats. Data on individual landfills

    SciTech Connect

    Herndon, R.C.; Moerlins, J.E.; Lambou, V.W.; Gebhard, R.L.

    1990-01-01

    Sanitary landfills can cause considerable harm to sensitive ecosystems if they are not properly located, designed, and managed. The report documents the proximity of sanitary landfills included in the study in Florida to wetlands and deepwater habitats (i.e., rivers, lakes, streams, bays, etc.). The sanitary landfills were identified on U.S. Fish and Wildlife Service's National Wetlands Inventory maps. The nearness or proximity of the sanitary landfills to wetlands and deepwater habitats was determined by drawing three concentric regions around the point representing the location of each landfill. The radii of the concentric regions were: 1/4 mile, 1/2 mile, and 1 mile. A companion report summarizes the statewide results. The data on individual landfills include general facilities/site data and wetlands/deepwater habitat data. The facilities have the potential to adversely affect sensitive ecosystems, such as wetlands and deepwater habitats, either through habitat alterations or through the migration of contaminants from sanitary landfills.

  11. Proximity of Georgia sanitary landfills to wetlands and deepwater habitats. Data on individual landfills

    SciTech Connect

    Moerlins, J.E.; Herndon, R.C.; Lambou, V.W.; Gebhard, R.L.

    1989-12-01

    Sanitary landfills can cause considerable harm to sensitive ecosystems if they are not properly located, designed, and managed. This report documents the proximity of sanitary landfills included in the study in Georgia to wetlands and deepwater habitats (i.e., rivers, lakes, streams, bays, etc.). The sanitary landfills were identified on U.S. Fish and Wildlife Service's National Wetlands Inventory maps. The nearness or proximity of the sanitary landfills to wetlands and deepwater habitats was determined by drawing three concentric regions around the point representing the location of each landfill. The radii of the concentric regions were: 1/4 mile, 1/2 mile, and 1 mile. A companion report summarizes the statewide results. The data on individual landfills include general facility/site data and wetlands/deepwater habitat data. These facilities have the potential to adversely affect sensitive ecosystems, such as wetlands and deepwater habitats, either through habitat alterations or through the migration of contaminants from sanitary landfills.

  12. Proximity of Louisiana sanitary landfills to wetlands and deepwater habitats. Data on individual landfills

    SciTech Connect

    Lambou, V.W.; Herndon, R.C.; Moerlins, J.E.; Gebhard, R.L.

    1989-12-01

    Sanitary landfills can cause considerable harm to sensitive ecosystems if they are not properly located, designed, and managed. This report documents the proximity of sanitary landfills included in the study in Louisiana to wetlands and deepwater habitats (i.e., rivers, lakes, streams, bays, etc.). The sanitary landfills were identified on U.S. Fish and Wildlife Service's National Wetlands Inventory maps. The nearness or proximity of the sanitary landfills to wetlands and deepwater habitats was determined by drawing three concentric regions around the point representing the location of each landfill. The radii of the concentric regions were: 1/4 mile, 1/2 mile, and 1 mile. A companion report summarizes the statewide results. The data on individual landfills include general facility/site data and wetlands/deepwater habitat data. These facilities have the potential to adversely affect sensitive ecosystems, such as wetlands and deepwater habitats, either through habitat alterations or through the migration of contaminants from sanitary landfills.

  13. Cleaner Landfills

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Osmotek, Inc. developed the Direct Osmosis treatment system through SBIR funding from Ames Research Center. Using technology originally developed for flight aboard the Space Station, the company brought it to their commercial water purification treatment system, Direct Osmosis. This water purification system uses a direct osmosis process followed by a reverse osmosis treatment. Because the product extracts water from a waste product, Osmotek is marketing the unit for use in landfills. The system can treat leachate (toxic chemicals leached into a water source), by filtering the water and leaving behind the leahcate. The leachate then becomes solidified into substance that can not seep into water.

  14. Metal immobilization and soil amendment efficiency at a contaminated sediment landfill site: a field study focusing on plants, springtails, and bacteria.

    PubMed

    Bert, Valrie; Lors, Christine; Ponge, Jean-Franois; Caron, Lucie; Biaz, Asmaa; Dazy, Marc; Masfaraud, Jean-Franois

    2012-10-01

    Metal immobilization may contribute to the environmental management strategy of dredged sediment landfill sites contaminated by metals. In a field experiment, amendment effects and efficiency were investigated, focusing on plants, springtails and bacteria colonisation, metal extractability and sediment ecotoxicity. Conversely to hydroxylapatite (HA, 3% DW), the addition of Thomas Basic Slag (TBS, 5% DW) to a 5-yr deposited sediment contaminated with Zn, Cd, Cu, Pb and As resulted in a decrease in the 0.01 M Ca(NO(3))(2)-extractable concentrations of Cd and Zn. Shoot Cd and Zn concentration in Calamagrostis epigejos, the dominant plant species, also decreased in the presence of TBS. The addition of TBS and HA reduced sediment ecotoxicity and improved the growth of the total bacterial population. Hydroxylapatite improved plant species richness and diversity and decreased antioxidant enzymes in C. Epigejos and Urtica doica. Collembolan communities did not differ in abundance and diversity between the different treatments. PMID:22647548

  15. Engineered Municipal Waste Landfills: Climate Significance, Benefits, and some Landfill "Geophysics"

    NASA Astrophysics Data System (ADS)

    Augenstein, D.; Yazdani, R.

    2002-12-01

    Municipal Solid Waste (MSW) landfills have unique features: Wastes worldwide emit biogenic methane to the atmosphere of magnitude comparable to the total atmospheric buildup between 1980 and 1990. Carbon sequestered in landfills is large in geologic terms Management of decomposition in landfilled waste is desirable: (a) Control of waste decomposition and methane promises over tenfold cheaper greenhouse gas abatement compared to most other greenhouse gas abatement strategies. This is due in part to carbon sequestration and landfill gas energy offset of fossil fuel consumption (b) Landfill gas energy potential worldwide, is up to 1% of world energy. Use of landfill gas conserves a resource otherwise wasted (c) Monetary benefits of landfill life extension from decomposition and rapid volume reduction can be quite attractive This is a benefit for the US, where landfills are increasingly difficult and expensive to site. (d) Landfills containing mixed waste can be significant sources of atmospheric and groundwater pollutants needing control. Control is possible from advancing landfill management approaches (e) The stabilization of waste lessens pollutant risk and needs for costly long-term landfill aftercare. Greater control of landfill decomposition has been advocated in the form of "controlled" or "bioreactor" landfills. (SWANA, 1999; Reinhart and Townsend, 1996). Field trials are encouraging by several environmental/monetary criteria. Control of moisture and temperature have given fivefold or more acceleration of methane generation (Augenstein et al, 1998, 2000). There has been rapid volume loss of the landfilled waste as well, with conversion of waste organics to gas. Many trials over years have shown potential for abatement of pollutants in landfill leachate. Demonstration work by the solid waste management community attests to the benefits potential. Increasing field demonstrations, have been accompanied by observation and/or solution of several issues. As noted the heat generation in landfills may become controlling, Heat can be dissipated, but at energy and monetary cost. Increased waste liquid content, required for biological activity has been a concern. Offsetting risk is the accelerated treatment of many dissolved contaminants in landfill liquid with time. It has proven possible to manage liquid flows within environmental and regulatory constraints. There have been concerns about containment by chemosynthetic lining of leachate liquids draining from landfills. Yet molecular bonds of lining under anaerobic conditions could be expected to last for centuries (and in fact up to millenia). There is of course no landfill experience over millenia but analogous compounds of geologic relevance have shown very desirable long term stability. Two other areas being investigated are waste slope stability and the precipitation of carbonate salts The climate significance and geophysical issues with landfills will be discussed, and some experimental findings leading to conclusions will be reviewed

  16. First report of a lipopeptide biosurfactant from thermophilic bacterium Aneurinibacillus thermoaerophilus MK01 newly isolated from municipal landfill site.

    PubMed

    Sharafi, Hakimeh; Abdoli, Mahya; Hajfarajollah, Hamidreza; Samie, Nima; Alidoust, Leila; Abbasi, Habib; Fooladi, Jamshid; Zahiri, Hossein Shahbani; Noghabi, Kambiz Akbari

    2014-07-01

    A biosurfactant-producing thermophile was isolated from the Kahrizak landfill of Tehran and identified as a bacterium belonging to the genus Aneurinibacillus. A thermostable lipopeptide-type biosurfactant was purified from the culture medium of this bacterium and showed stability in the temperature range of 20-90 °C and pH range of 5-10. The produced biosurfactant could reduce the surface tension of water from 72 to 43 mN/m with a CMC of 1.21 mg/mL. The strain growing at a temperature of 45 °C produces a substantial amount of 5 g/L of biosurfactant in the medium supplemented with sunflower oil as the sole carbon source. Response surface methodology was employed to optimize the biosurfactant production using sunflower oil, sodium nitrate, and yeast extract as variables. The optimization resulted in 6.75 g/L biosurfactant production, i.e., 35% improved as compared to the unoptimized condition. Thin-layer chromatography, FTIR spectroscopy, 1H-NMR spectroscopy, and biochemical composition analysis confirmed the lipopeptide structure of the biosurfactant. PMID:24781982

  17. POSTCLOSURE GROUNDWATER REMEDIATION AND MONITORING AT THE SANITARY LANDFILL, SAVANNAH RIVER SITE TRANSITIONING TO MONITORED NATURAL ATTENUATION

    SciTech Connect

    Ross, J; Walt Kubilius, W; Thomas Kmetz, T; D Noffsinger, D; Karen M Adams, K

    2006-11-17

    Resource Conservation and Recovery Act (RCRA) requirements for hazardous waste facilities include 30 years of post-closure monitoring. The use of an objective-based monitoring strategy allows for a significant reduction in the amount of groundwater monitoring required, as the groundwater remediation transitions from an active biosparging system to monitored natural attenuation. The lifecycle of groundwater activities at the landfill has progressed from detection monitoring and plume characterization, to active groundwater remediation, and now to monitored natural attenuation and postclosure monitoring. Thus, the objectives of the groundwater monitoring have changed accordingly. Characterization monitoring evaluated what biogeochemical natural attenuation processes were occurring and determined that elevated levels of radium were naturally occurring. Process monitoring of the biosparging system required comprehensive sampling network up- and down-gradient of the horizontal wells to verify its effectiveness. Currently, the scope of monitoring and reporting can be significantly reduced as the objective is to demonstrate that the alternate concentration limits (ACL) are being met at the point of compliance wells and the maximum contaminant level (MCL) is being met at the surface water point of exposure. The proposed reduction is estimated to save about $2M over the course of the remaining 25 years of postclosure monitoring.

  18. Landfill to Learning Facility

    NASA Astrophysics Data System (ADS)

    Venner, L.; Lewicki, S.

    2008-11-01

    Engaging ``K-to-Gray'' audiences (children, families, and older adults) in scientific exploration and discovery is the main goal of the New Jersey Meadowlands Commission (NJMC) Center for Environmental and Scientific Education (CESE) and the William D. McDowell Observatory located in Lyndhurst, NJ and operated by Ramapo College of New Jersey. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED--certified building (certification pending) and William D. McDowell observatory brings hands-on scientific experiences to the ˜25,000 students and ˜15,000 visitors that come to our site from the NY/NJ region each year.

  19. 626628 North Eutaw Street (Commercial Building), 626628 North Eutaw Street ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    626-628 North Eutaw Street (Commercial Building), 626-628 North Eutaw Street & 400-412 Druid Hill Avenue on a block bounded by North Eutaw Street, George Street, Jaspar Street, & Druid Hill Avenue, Baltimore, Independent City, MD

  20. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Price Landfill Site in Pleasantville, New Jersey. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-05-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Price Landfill site in Pleasantville, New Jersey, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

  1. Numerical assessment of a landfill compliance limit

    USGS Publications Warehouse

    Hensel, Bruce R.; Keefer, Donald A.; Griffin, Robert A.; Berg, Richard C.

    1991-01-01

    The PLASM and Random Walk ground-water flow and contaminant transport models were used to assess the potential impact of various proposed regulatory compliance distances on landfill siting. Contaminant transport modeling was performed for 16 generalized geological sequences representative of hydrogeological conditions over an estimated 90 to 95 percent of Illinois. Results of this modeling indicate that about 50 percent of the state would be hydrogeologically suitable for landfilling of nonhazardous wastes if the compliance distance was 100 feet. With a compliance distance of 500 feet, about 55 percent of the state would be hydrogeologically suitable. This work demonstrates the utility of computer modeling in the development of regulations governing landfill siting.

  2. Geosynthetics conquer the landfill law

    SciTech Connect

    Derian, L.; Gharios, K.M. . Solid Waste Management Div.); Kavazanjian, E. Jr.; Snow, M.S. )

    1993-12-01

    Los Angeles' last operating landfill is undergoing a 4 million m[sup 3] expansion using innovative materials in the liner system to overcome difficult site conditions. The design represents the first approved alternative in California -- and perhaps in the nation -- to the Resource Conservation and Recovery Act's Subtitle D regulations for liner systems. This article examines the regulatory journey that led to approval and the liner's design and construction. Steep slopes at Los Angeles' only operating municipal solid-waste landfill (MSW) forced designers to use an innovative geosynthetic liner and leachate collection system. Its use sets a precedent for alternatives to the prescriptive regulations for liner systems present in Subtitle D of the Resource and Conservation Recovery Act (RCRA). To provide uninterrupted service at the landfill, design and construction proceeded concurrently with regulatory approval.

  3. Superfund Record of Decision (EPA Region 6): North Cavalcade Street site, Houston, Texas (first remedial action), June 1988. Final report

    SciTech Connect

    Not Available

    1988-06-28

    The 21-acre North Cavalcade site is located in northeast Houston, Texas. The surrounding areas are a mixture of residential, commercial, and industrial properties. Surface water is drained by three stormwater drainage ditches, a limited aquatic habitat as classified by Texas Water Quality Standards. The site was developed in 1946 when Houston Creosoting Company, Inc. (HCCI) established creosote wood-preserving operations. Around 1955, HCCI added pentachlorophenol (PCP), wood-preservation services, and other support facilities. The area of soil contamination corresponds to where creosote was historically stored, and the point of entry for the contaminants into the ground water. The primary contaminants of concerning affecting the ground water, soils, and sediments include: VOCs, benzene, toluene, xylene, and PAHs.

  4. Venice Park landfill: Working with the community

    SciTech Connect

    McAdams, C.L.

    1993-09-01

    Venice Park landfill was one of the first sites to be permitted under Michigan's proposed Public Act 641. PA 641 essentially changed the rules and regulations for landfills from the simple design of digging a hole and filling it. It also upgraded standards to those that are more sophisticated, including liners, leachate collection systems, and gas extraction systems. In 1992, methane gas from the landfill was collected into wells drilled into the trash varying in depth from 30-50 feet in depth. A vacuum pulls the gas from the trash into the wells, then through a piping system. The landfill uses about 80-100 kilowatts in-house. The remainder of the gas is sold to Consumers Power Co. which uses landfill gas to supply power to homes.

  5. Sanitary Landfill 1991 annual groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.; Norrell, G.T.; Bennett, C.B.

    1992-02-01

    The Savannah River Site (SRS) Sanitary Landfill is an approximately seventy acre site located just south of SRS Road C between the Savannah River Site`s B-Area and Upper Three Runs Creek. Results from the first through third quarter 1991 groundwater monitoring date continue to show evidence of elevated levels of several hazardous constituents beneath the Sanitary Landfill: tritium, vinyl chloride, total radium, cadmium, 1,1,1-trichloroethane, 1,2 dichloroethane, 1,4 dichlorobenzene, trichloroethylene (TCE), tetrachloroethylene, and 1,1 dichloroethylene in excess of the primary drinking water standards were observed in at least one well monitoring the Sanitary Landfill during the third quarter of 1991. All of these constituents, except radium, were observed in the lower half of the original thirty-two acre site or the southern expansion site. Trichloroethylene and vinyl chloride are the primary organic contaminants in groundwater beneath the Sanitary Landfill. Vinyl chloride has become the primary contaminant during 1991. Elevated levels of benzene were consistently detected in LFW 7 in the past, but were not present in any LFW wells during the third quarter of 1991. A minor tritium plume is present in the central part of original thirty-two acre landfill. Elevated levels of tritium above the PDWS were consistently present in LFW 10A through 1991. This well has exhibited elevated tritium activities since the second quarter of 1989. Contaminant concentrations in the Sanitary Landfill are presented and discussed in this report.

  6. Learning from Landfills.

    ERIC Educational Resources Information Center

    Galus, Pamela

    2000-01-01

    Describes a project in which students developed an all-class laboratory activity called "The Decomposition of Organic and Inorganic Substances in a Landfill". Explores what conditions are necessary to facilitate decomposition in a landfill. (SAH)

  7. 14. BUILDING AT SOUTHEAST CORNER OF 11th AND EYE STREETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. BUILDING AT SOUTHEAST CORNER OF 11th AND EYE STREETS - Convention Center Site, I Street, 900 & 1000 Block, Tenth Street, 800 & 900 Block, New York Avenue, 900 & 1000 Block, Washington, District of Columbia, DC

  8. Concentration of novel brominated flame retardants and HBCD in leachates and sediments from selected municipal solid waste landfill sites in Gauteng Province, South Africa.

    PubMed

    Olukunle, O I; Okonkwo, O J

    2015-09-01

    In this study leachate and sediment samples were collected from six municipal solid waste landfill sites across Gauteng Province in South Africa to determine the levels of 2-ethylhexyl 2,3,4,5 tetrabromobenzoate (EH-TBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP) and hexabromocyclododecane (HBCD). Soxhlet as well as liquid-liquid extraction were employed for sediment and leachates respectively followed by GC-EIMS analysis. Concentrations of novel brominated flame retardants (NBFRs) ranged from below detection (

  9. H2S removal and bacterial structure along a full-scale biofilter bed packed with polyurethane foam in a landfill site.

    PubMed

    Li, Lin; Han, Yunping; Yan, Xu; Liu, Junxin

    2013-11-01

    Hydrogen sulfide accumulated under a cover film in a landfill site was treated for 7 months by a full-scale biofilter packed with polyurethane foam cubes. Sampling ports were set along the biofilter bed to investigate H2S removal and microbial characteristics in the biofilter. The H2S was removed effectively by the biofilter, and over 90% removal efficiency was achieved in steady state. Average elimination capacity of H2S was 2.21 g m(-3) h(-1) in lower part (LPB) and 0.41 g m(-3) h(-1) in upper part (UPB) of the biofilter. Most H2S was eliminated in LPB. H2S concentration varied along the polyurethane foam packed bed, the structure of the bacterial communities showed spatial variation in the biofilter, and H2S removal as well as products distribution changed accordingly. The introduction of odorants into the biofilter shifted the distribution of the existing microbial populations toward a specific culture that could metabolize the target odors. PMID:23989036

  10. Sulfate and organic matter concentration in relation to hydrogen sulfide generation at inert solid waste landfill site - Limit value for gypsum.

    PubMed

    Asakura, Hiroshi

    2015-09-01

    In order to suggest a limit value for gypsum (CaSO4) for the suppression of hydrogen sulfide (H2S) generation at an inert solid waste landfill site, the relationship between raw material (SO4 and organic matter) for H2S generation and generated H2S concentration, and the balance of raw material (SO4) and product (H2S) considering generation and outflow were investigated. SO4 concentration should be less than approximately 100mg-SO4/L in order to suppress H2S generation to below 2000ppm. Total organic carbon (TOC) concentration should be less than approximately 200mg-C/L assuming a high SO4 concentration. The limit value for SO4 in the ground is 60mg-SO4/kg with 0.011wt% as gypsum dihydrate, i.e., approximately 1/10 of the limit value in inert waste as defined by the EU Council Decision (560mg-SO4/kg-waste). The limit value for SO4 in inert waste as defined by the EU Council Decision is high and TOC is strictly excluded. The cumulative amount of SO4 outflow through the liquid phase is much larger than that through the gas phase. SO4 concentration in pore water decreases with time, reaching half the initial concentration around day 100. SO4 reduction by rainfall can be expected in the long term. PMID:26123977

  11. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Sky Park Landfill Site in Eau Claire, Wisconsin. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Simon, J.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Sky Park Landfill site in Eau Claire, Wisconsin, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  12. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Crazy Horse Landfill Site in Salinas, California. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Stoltenberg, B.; Konz, C.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Crazy Horse Landfill site in Salinas, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) was contacted to provide technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, operation and maintenance requirements, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  13. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Snohomish County Cathcart Landfill Site in Snohomish County, Washington. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Olis, D.; Salasovich, J.; Mosey, G.; Healey, V.

    2013-04-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Snohomish County Cathcart Landfill Site in Snohomish County, Washington, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  14. LANDFILL GAS MEASUREMENT METHODS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methane from landfills contributes to greenhouse gas emissions. The development of cost-effective methods for measuring diffuse emissions from landfills remains a difficult issue for regulators and landfill operators. Currently, two major options are available: (1) above-ground methods which quantif...

  15. MUNICIPAL LANDFILL GAS CONDENSATE

    EPA Science Inventory

    New regulations relative to air emissions from municipal landfills may require the installation of gas collection systems at landfills. As landfill gas (LFG) is collected, water and other vapors in the gas condense in the system or are purposely removed in the normal treatment of...

  16. Sanitary Landfill 1991 annual groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.; Norrell, G.T.; Bennett, C.B.

    1992-02-01

    The Savannah River Site (SRS) Sanitary Landfill is an approximately seventy acre site located just south of SRS Road C between the Savannah River Site's B-Area and Upper Three Runs Creek. Results from the first through third quarter 1991 groundwater monitoring date continue to show evidence of elevated levels of several hazardous constituents beneath the Sanitary Landfill: tritium, vinyl chloride, total radium, cadmium, 1,1,1-trichloroethane, 1,2 dichloroethane, 1,4 dichlorobenzene, trichloroethylene (TCE), tetrachloroethylene, and 1,1 dichloroethylene in excess of the primary drinking water standards were observed in at least one well monitoring the Sanitary Landfill during the third quarter of 1991. All of these constituents, except radium, were observed in the lower half of the original thirty-two acre site or the southern expansion site. Trichloroethylene and vinyl chloride are the primary organic contaminants in groundwater beneath the Sanitary Landfill. Vinyl chloride has become the primary contaminant during 1991. Elevated levels of benzene were consistently detected in LFW 7 in the past, but were not present in any LFW wells during the third quarter of 1991. A minor tritium plume is present in the central part of original thirty-two acre landfill. Elevated levels of tritium above the PDWS were consistently present in LFW 10A through 1991. This well has exhibited elevated tritium activities since the second quarter of 1989. Contaminant concentrations in the Sanitary Landfill are presented and discussed in this report.

  17. Investigations of natural attenuation in groundwater near a landfill and implications for landfill post-closure.

    PubMed

    Hub, Daniel; Gourcy, Laurence; Gourry, Jean-Christophe; Guyonnet, Dominique

    2011-01-01

    The controlled landfill technology is now adopting passive attenuation techniques as an increasing number of landfill sites reach the post-closure phase. During the post-closure phase, landfill operators need to convince environmental authorities that landfills no longer pose a threat to health or the environment. The demonstration of acceptable risk should rely in particular on data collected during environmental monitoring in addition to modelling of possible future evolutions of environmental concentrations. One difficulty that is typically encountered in France is related to the fact that groundwater monitoring systems around landfills are often insufficiently detailed to provide conclusive evidence of natural attenuation mechanisms. This paper presents data on groundwater quality in the vicinity of an old landfill located in a complex aquifer system. While isotopic data show a signature of the landfill leachate in the groundwater in the vicinity of the landfill, chemical analyses do not suggest a strong influence, which could be indicative of natural attenuation mechanisms in the groundwater. However, the complexity of the groundwater system in this area is such that it cannot be excluded that a pollutant flux is being overlooked. Implications of demonstrating natural attenuation during the landfill post-closure phase, with respect to groundwater monitoring, are discussed. PMID:21078693

  18. Assessment of subsurface chlorinated solvent contamination using tree cores at the front street site and a former dry cleaning facility at the Riverfront Superfund site, New Haven, Missouri, 1999-2003

    USGS Publications Warehouse

    Schumacher, John G.; Struckhoff, Garrett C.; Burken, Joel G.

    2004-01-01

    Tree-core sampling has been a reliable and inexpensive tool to quickly assess the presence of shallow (less than about 30 feet deep) tetrachloroethene (PCE) and trichloroethene (TCE) contamination in soils and ground water at the Riverfront Superfund Site. This report presents the results of tree-core sampling that was successfully used to determine the presence and extent of chlorinated solvent contamination at two sites, the Front Street site (operable unit OU1) and the former dry cleaning facility, that are part of the overall Riverfront Superfund Site. Traditional soil and ground-water sampling at these two sites later confirmed the results from the tree-core sampling. Results obtained from the tree-core sampling were used to design and focus subsequent soil and ground-water investigations, resulting in substantial savings in time and site assessment costs. The Front Street site is a small (less than 1-acre) site located on the Missouri River alluvium in downtown New Haven, Missouri, about 500 feet from the south bank of the Missouri River. Tree-core sampling detected the presence of subsurface PCE contamination at the Front Street site and beneath residential property downgradient from the site. Core samples from trees at the site contained PCE concentrations as large as 3,850 mg-h/kg (micrograms in headspace per kilogram of wet core) and TCE concentrations as large as 249 mg-h/kg. Soils at the Front Street site contained PCE concentrations as large as 6,200,000 mg/kg (micrograms per kilogram) and ground-water samples contained PCE concentrations as large as 11,000 mg/L (micrograms per liter). The former dry cleaning facility is located at the base of the upland that forms the south bank of the Missouri River alluvial valley. Tree-core sampling did not indicate the presence of PCE or TCE contamination at the former dry cleaning facility, a finding that was later confirmed by the analyses of soil samples collected from the site. The lateral extent of PCE contamination in trees was in close agreement with the extent of subsurface PCE contamination determined using traditional soil and ground-water sampling methods. Trees growing in soils containing PCE concentrations of 60 to 5,700 mg/kg or larger or overlying ground water containing PCE concentrations from 5 to 11,000 mg/L generally contained detectable concentrations of PCE. The depth to contaminated ground water was about 20 to 25 feet below the land surface. Significant quantitative relations [probability (p) values of less than 0.05 and correlation coefficient (r2) values of 0.88 to 0.90] were found between PCE concentrations in trees and subsurface soils between 4 and 16 feet deep. The relation between PCE concentrations in trees and underlying ground water was less apparent (r2 value of 0.17) and the poor relation is thought to be the result of equilibrium with PCE concentrations in soil and vapor in the unsaturated zone. Based on PCE concentrations detected in trees at the Front Street site and trees growing along contaminated tributaries in other operable units, and from field hydroponic experiments using hybrid poplar cuttings, analysis of tree-core samples appears to be able to detect subsurface PCE contamination in soils at levels of several hundred micrograms per liter or less and PCE concentrations in the range of 8 to 30 mg/L in ground water in direct contact with the roots. Loss of PCE from tree trunks by diffusion resulted in an exponential decrease in PCE concentrations with increasing height above the land surface in most trees. The rate of loss also appeared to be a function of the size and growth characteristics of the tree as some trees exhibited a linear loss with increasing height. Diffusional loss of PCE in small (0.5-inch diameter) trees was observed to occur at a rate more than 10 times larger than in trees 6.5 inches in diameter. Concentrations of PCE also exhibited directional variability around the tree trunks and concentration differe

  19. Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

    SciTech Connect

    Waugh, W.J.; Kastens, M.K.; Sheader, L.R.L.; Benson, C.H.; Albright, W.H.; Mushovic, P.S.

    2008-07-01

    The U.S. Department of Energy Office of Legacy Management (DOE) and the U.S. Environmental Protection Agency (EPA) collaborated on the design and monitoring of an alternative cover for the Monticello uranium mill tailings disposal cell, a Superfund site in southeastern Utah. Ground-water recharge is naturally limited at sites like Monticello where thick, fine-textured soils store precipitation until evaporation and plant transpiration seasonally return it to the atmosphere. The cover at Monticello uses local soils and a native plant community to mimic the natural soil water balance. The cover is fundamentally an evapotranspiration (ET) design with a capillary barrier. A 3-hectare drainage lysimeter was embedded in the cover during construction of the disposal cell in 2000. The lysimeter consists of a geo-membrane liner below the capillary barrier that directs percolation water to a monitoring system. Soil water storage is determined by integration of point water content measurements. Meteorological parameters are measured nearby. Plant cover, shrub density, and leaf area index (LAI) are monitored annually. The cover performed well over the 7-year monitoring period (2000-2007). The cumulative percolation was 4.2 mm (0.6 mm yr{sup -1}), satisfying an EPA goal of an average percolation of <3.0 mm yr{sup -1}. Almost all percolation can be attributed to the exceptionally wet winter and spring of 2004-2005 when soil water content slightly exceeded the water storage capacity of the cover. The diversity, percent cover, and LAI of vegetation increased over the monitoring period, although the density of native shrubs that extract water from deeper in the cover has remained less than revegetation targets. DOE and EPA are applying the monitoring results to plan for long-term surveillance and maintenance and to evaluate alternative cover designs for other waste disposal sites. (authors)

  20. Assessing sanitary landfill stabilization using winter and summer waste streams in simulated landfill cells.

    PubMed

    Saint-Fort, R

    2002-01-01

    This study was undertaken to provide a better understanding and to further define the stabilization processes involved in a typical municipal landfill representative of the city of Calgary, Canada, area. The objectives of this study were: (1) to characterize the composition of the solid waste constituents entering the landfill site, (2) to assess the relative decomposition of various waste components in the simulated test cells, (3) to parametize selected chemical and physical changes occurring during the stabilization process and (4) to determine water absorptive capacity of the different waste constituents. The results of the long term landfill stabilization using simulated landfill cell systems filled with winter and summer waste streams, respectively, have illustrated the potential changes that may occur with time with such systems. Based on the results, it can be inferred that the seasonal variation in waste composition deposited in a landfill will likely effect the rate of decomposition and settlement, chemical and physical characteristics of the leachate, moisture sorbing capacity of the site as well as variation in seasonal contaminants. Assuming that the results from the simulated landfills used during this study can be extrapolated to larger-scale landfill operations, it seems that summer waste streams pose a higher pollution threat to the environment than winter waste streams. The several trends observed in this study and the conclusions reported herein would have wide applications in landfill management. PMID:11846282

  1. Photovoltaics on Landfills in Puerto Rico

    SciTech Connect

    Salasovich, J.; Mosey, G.

    2011-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the cost of electricity. Currently, PREPA has an average electric rate of $0.119/kWh. Based on past electric rate increases in Puerto Rico and other islands in the Caribbean, this rate could increase to $0.15/kWh or higher in a relatively short amount of time. In the coming years, increasing electrical rates and increased necessity for clean power will continue to improve the feasibility of implementing solar PV systems at these sites.

  2. Landfills in New York City: 1844--1994

    SciTech Connect

    Walsh, D.C.; LaFleur, R.G.

    1995-07-01

    Historic topographic maps are reviewed to locate landfills constructed within New York City during four time intervals between 1844 and 1994. A total of 184.75 km{sup 2} (45,650 acres) of landfill are identified (approximately 20% of the study area). Data are not available to determine the fill composition at most sites but literature sources indicate that municipal solid waste (MSW) has been an important source of fill since at least 1891. Qualitative temporal trends in the spatial distribution of landfills and the composition and thickness of MSW landfills are observed. The oldest landfills are clustered in the vicinity of the early urban center (southern New York County) but expand in spatial distribution after the turn of this century. Logs of borings through 10 MSW landfills show that waste landfills built prior to the mid-1950s contain abundant ash (coal ash is common in the oldest landfills) and are relatively thin (3--7 m) with no topographic mounding. In MSW landfills built since that time, uncombusted organic matter is abundant, thicknesses increase greatly (16--27 m), and pronounced topographic mounding is observed. Most landfills identified in this study were built on tidal wetlands. Fine-grained wetland deposits underlying the landfills and close proximity to large surface-water bodies favor lateral transport of leachate from MSW landfills in shallow ground water and local discharge to surface water. The wide distribution of historic landfills and common use of MSW for fill indicates that these sites should be considered in investigations of ground water, surface water, and sediment quality in New York City and other urban areas where extensive historic landfilling has occurred.

  3. Suitability analysis of wind energy development on brownfields, landfills and industrial sites in the city of Chicago

    NASA Astrophysics Data System (ADS)

    Fyodorova, Valeryia A.

    In 2011 renewable energy generated only about 5% of total U.S. electricity and 3% came from wind power. Wind power is the oldest and fastest growing renewable energy, and U.S. Department of Energy (DOE) anticipates that by 2030 the potential of the U.S. to generate wind power will rise up to 20% (National Renewable Energy Laboratory 2008). Currently, the rural areas serve as the primary choice of wind turbine installation because there are less wind obstacles that create wind turbulence, which in turn is disruptive for the proper functioning of the wind turbines, and allows more laminar (streamline) wind flow. However according to various literatures, the installation of wind turbines in rural areas has its drawbacks. The infrastructure is underdeveloped and usually the selected sites require the construction of new roads and transmission lines. The new construction and occasional deforestation lead to soil erosion and environmental degradation. On top of that transporting energy to cities that are the primary consumers of wind energy results in energy transmission loss. Urban areas, on the other hand, have well developed infrastructure, and the installation of turbines on abandoned and contaminated urban lands which are expensive to clean and rehabilitate for other uses would lower installation costs and would have little environmental degradation effect. The objective of this research was to provide a preliminary wind power suitability analysis for installing medium (100 -1000 kW) and large (1000 - 3000 kW) size wind turbines in urban areas, such as city of Chicago. Geographic Information Systems (GIS) and a multi attribute Weighted Linear Combination (WLC) method that is based on the concept of weighted average were primary tools utilized to conduct the analysis. The criteria that were used to select suitable sites were the same criteria used for rural wind farms, such as wind speeds, historic landmarks, avian and wildlife habitat, conservation lands, proximity to airports, roads, and transmission lines. The result of study showed that there is a range of 29 to 81 locations that are potentially feasible for the placement of large and medium-scale wind turbines in city of Chicago. Twenty nine of these sites were found to be most suitable. The study has limitations in that some of the data used were incomplete and some additional variables that needed to be considered, such as, the effects of passing trains on wind turbines and acceptance of urban dwellers of wind turbines in their city. Despite these limitations, the framework of this research can be applied to improve the study for the city of Chicago by considering additional variables and to extend it to other areas of study, and raise awareness of renewable energy, and the possibilities and flexibility of wind energy.

  4. CRITICAL FACTORS CONTROLLING VEGETATION GROWTH ON COMPLETED SANITARY LANDFILLS

    EPA Science Inventory

    This study identifies some of the critical factors that affect tree and shrub growth on reclaimed sanitary landfill sites and determines which woody species are adaptable to the adverse growth conditions of such sites. Trees planted at the Edgeboro Landfill, East Brunswick, New J...

  5. Astronomy on a Landfill

    NASA Astrophysics Data System (ADS)

    Venner, L.

    2008-11-01

    Engaging ``K-to-Gray'' audiences (children, families, and older adults) in astronomical activities is one of the main goals of the New Jersey Meadowlands Commission Center for Environmental and Scientific Education (CESE) and the William D. McDowell Observatory located in Lyndhurst, NJ, operated by Ramapo College of New Jersey. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED--certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of the International Year of Astronomy 2009 (IYA2009) to the ˜25,000 students and ˜15,000 visitors that visit our site from the NY/NJ region each year.

  6. Quality of life themes in Canadian adults and street youth who are homeless or hard-to-house: A multi-site focus group study

    PubMed Central

    2012-01-01

    Background The aim of this study was to identify what is most important to the quality of life (QoL) of those who experience homelessness by directly soliciting the views of homeless and hard-to-house Canadians themselves. These individuals live within a unique social context that differs considerably from that of the general population. To understand the life areas that are most important to them, it is critical to have direct input from target populations of homeless and hard-to-house persons. Methods Focus groups were conducted with 140 individuals aged 15 to 73 years who were homeless or hard-to-house to explore the circumstances in which they were living and to capture what they find to be important and relevant domains of QoL. Participants were recruited in Toronto, Ottawa, Montreal, and Vancouver. Content analysis was used to analyze the data. Results Six major content themes emerged: Health/health care; Living conditions; Financial situation; Employment situation; Relationships; and Recreational and leisure activities. These themes were linked to broader concepts that included having choices, stability, respect, and the same rights as other members of society. Conclusions These findings not only aid our understanding of QoL in this group, but may be used to develop measures that capture QoL in this population and help programs and policies become more effective in improving the life situation for persons who are homeless and hard-to-house. Quality of life themes in Canadian adults and street youth who are homeless or hard-to-house: A multi-site focus group study. PMID:22894551

  7. Corrective Action Plan for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect

    Bechtel Nevada

    1998-08-31

    This corrective action plan provides the closure implementation methods for the Area 3 Landfill Complex, Corrective Action Unit (CAU) 424, located at the Tonopah Test Range. The Area 3 Landfill Complex consists of 8 landfill sites, each designated as a separate corrective action site.

  8. Landfill mining: Development of a cost simulation model.

    PubMed

    Wolfsberger, Tanja; Pinkel, Michael; Polansek, Stephanie; Sarc, Renato; Hermann, Robert; Pomberger, Roland

    2016-04-01

    Landfill mining permits recovering secondary raw materials from landfills. Whether this purpose is economically feasible, however, is a matter of various aspects. One is the amount of recoverable secondary raw material (like metals) that can be exploited with a profit. Other influences are the costs for excavation, for processing the waste at the landfill site and for paying charges on the secondary disposal of waste. Depending on the objectives of a landfill mining project (like the recovery of a ferrous and/or a calorific fraction) these expenses and revenues are difficult to assess in advance. This situation complicates any previous assessment of the economic feasibility and is the reason why many landfills that might be suitable for landfill mining are continuingly operated as active landfills, generating aftercare costs and leaving potential hazards to later generations. This article presents a newly developed simulation model for landfill mining projects. It permits identifying the quantities and qualities of output flows that can be recovered by mining and by mobile on-site processing of the waste based on treatment equipment selected by the landfill operator. Thus, charges for disposal and expected revenues from secondary raw materials can be assessed. Furthermore, investment, personnel, operation, servicing and insurance costs are assessed and displayed, based on the selected mobile processing procedure and its throughput, among other things. For clarity, the simulation model is described in this article using the example of a real Austrian sanitary landfill. PMID:26858240

  9. Modelling flow to leachate wells in landfills

    SciTech Connect

    Al-Thani, A.A.; Beaven, R.P.; White, J.K

    2004-07-01

    Vertical wells are frequently used as a means of controlling leachate levels in landfills. They are often the only available dewatering option for both old landfills without any basal leachate collection layer and for newer sites where the installed drainage infrastructure has failed. When the well is pumped, a seepage face develops at the entry into the well so that the drawdown in the surrounding waste will not be as great as might be expected. The numerical groundwater flow model MODFLOW-SURFACT, which contains the functionality to model seepage surfaces, has been used to investigate the transient dewatering of a landfill. The study concludes that the position of the seepage face and information about the characteristics of the induced seepage flow field are important and should not be neglected when designing wells in landfills.

  10. Instrumentation of dredge spoil for landfill construction

    SciTech Connect

    Byle, M.J.; McCullough, M.L.; Alexander, R.; Vasuki, N.C.; Langer, J.A.

    1999-07-01

    The Delaware Solid Waste Authority's Northern Solid Waste Management Center is located outside of Wilmington Delaware at Cherry Island, a former dredge disposal site. Dredge spoils, of very low permeability, range in depths up to 30 m (100 feet) which form a natural liner and the foundation for the 140 ha (350-acre) municipal solid waste landfill. The soils beneath the landfill have been extensively instrumented to measure pore pressure, settlement and deflections, using inclinometer casings, standpipe piezometers, vibrating wire piezometers, pneumatic piezometers, settlement plates, liquid settlement gages, total pressure cells and thermistors. The nature of the existing waste and anticipated settlements (up to 6 m (19 feet)) have required some unique installation details. The instrumentation data has been integral in planning the landfilling sequence to maintain perimeter slope stability and has provided key geotechnical parameters needed for operation and construction of the landfill. The performance of the instrumentation and monitoring results are discussed.

  11. Environmental diagnosis methodology for municipal waste landfills.

    PubMed

    Calvo, F; Moreno, B; Zamorano, M; Szanto, M

    2005-01-01

    A large number of countries are involved in a process of transformation with regard to the management of municipal solid waste. This process is a consequence of environmental requirements that occasionally materialise in legislation, such as the European Council Directive 31/99/EC on waste release in the European Union. In some cases, the remediation of old landfills can be carried out in compliance with environmental requirements; in other cases, it is necessary to proceed with the closure of the landfill and to assimilate it into its own environment. In both cases, it is necessary to undertake a diagnosis and characterisation of the impacted areas in order to develop an adequate action plan. This study presents a new methodology by which environmental diagnosis of landfill sites may be carried out. The methodology involves the formulation of a series of environmental indeces which provide information concerning the potential environmental problems of the landfills and the particular impact on different environmental elements, as well as information related to location, design and operation. On the basis of these results, it would be possible to draw up action plans for the remediation or closure of the landfill site. By applying the methodology to several landfills in a specific area, it would be possible to prioritize the order of actions required. PMID:15905084

  12. Aerobic landfill bioreactor

    SciTech Connect

    Hudgins, M.P.; Bessette, B.J.; March, J.; McComb, S.T.

    2000-02-15

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120 F and 140 F in steady state.

  13. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  14. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  15. The potential for aeration of MSW landfills to accelerate completion

    SciTech Connect

    Rich, Charlotte; Gronow, Jan; Voulvoulis, Nikolaos

    2008-07-01

    Landfilling is a popular waste disposal method, but, as it is practised currently, it is fundamentally unsustainable. The low short-term financial costs belie the potential long-term environmental costs, and traditional landfill sites require long-term management in order to mitigate any possible environmental damage. Old landfill sites might require aftercare for decades or even centuries, and in some cases remediation may be necessary. Biological stabilisation of a landfill is the key issue; completion criteria provide a yardstick by which the success of any new technology may be measured. In order for a site to achieve completion it must pose no risk to human health or the environment, meaning that attenuation of any emissions from the site must occur within the local environment without causing harm. Remediation of old landfill sites by aerating the waste has been undertaken in Germany, the United States, Italy and The Netherlands, with considerable success. At a pilot scale, aeration has also been used in newly emplaced waste to accelerate stabilisation. This paper reviews the use of aerobic landfill worldwide, and assesses the ways in which the use of aerobic landfill techniques can decrease the risks associated with current landfill practices, making landfill a more sustainable waste disposal option. It focuses on assessing ways to utilise aeration to enhance stabilisation. The results demonstrated that aeration of old landfill sites may be an efficient and cost-effective method of remediation and allow the date of completion to be brought forward by decades. Similarly, aeration of newly emplaced waste can be effective in enhancing degradation, assisting with completion and reducing environmental risks. However, further research is required to establish what procedure for adding air to a landfill would be most suitable for the UK and to investigate new risks that may arise, such as the possible emission of non-methane organic compounds.

  16. A new system for groundwater contamination hazard rating of landfills.

    PubMed

    Singh, Raj Kumar; Datta, Manoj; Nema, Arvind Kumar

    2009-01-01

    In developing countries, several unregulated landfills exist adjacent to large cities, releasing harmful contaminants to the underlying aquifer. Normally, landfills are constructed to hold three types of waste, namely hazardous waste, municipal solid waste, and construction and demolition waste. Hazardous waste and municipal solid waste landfills are of greater importance as these pose greater hazard to groundwater, in comparison with landfills holding waste from construction and demolition. The polluting landfills need to be prioritized to undertake necessary control and remedial measures. This paper assesses existing site hazard rating systems and presents a new groundwater contamination hazard rating system for landfills, which can be used for site prioritization. The proposed system is based on source-pathway-receptor relationships and evaluates different sites relative to one another. The system parameters have been selected based on literature. The Delphi technique is used to derive the relative importance weights of the system parameters. The proposed system is compared with nine existing systems. The comparison shows that the site hazard scores produced by the existing systems for hazardous waste, municipal solid waste, and construction and demolition waste landfills are of the same order of magnitude and tend to overlap each other but the scores produced by the proposed system for the three types of landfills vary almost by an order of magnitude, which shows that the proposed system is more sensitive to the type of waste. The comparison further shows that the proposed system exhibits greater sensitivity also to varied site conditions. The application of different systems to six old municipal solid waste landfills shows that whereas the existing systems produce clustered scores, the proposed system produces significantly differing scores for all the six landfills, which improves decision making in site ranking. This demonstrates that the proposed system makes a better tool for prioritization of landfills for adopting control measures and remediation. PMID:19836127

  17. Application of hydrogeology and groundwater-age estimates to assess the travel time of groundwater at the site of a landfill to the Mahomet Aquifer, near Clinton, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Buszka, Paul M.

    2016-01-01

    The U.S. Geological Survey used interpretations of hydrogeologic conditions and tritium-based groundwater age estimates to assess the travel time of groundwater at a landfill site near Clinton, Illinois (the “Clinton site”) where a chemical waste unit (CWU) was proposed to be within the Clinton landfill unit #3 (CLU#3). Glacial deposits beneath the CWU consist predominantly of low-permeability silt- and clay-rich till interspersed with thin (typically less than 2 feet in thickness) layers of more permeable deposits, including the Upper and Lower Radnor Till Sands and the Organic Soil unit. These glacial deposits are about 170 feet thick and overlie the Mahomet Sand Member of the Banner Formation. The Mahomet aquifer is composed of the Mahomet Sand Member and is used for water supply in much of east-central Illinois.Eight tritium analyses of water from seven wells were used to evaluate the overall age of recharge to aquifers beneath the Clinton site. Groundwater samples were collected from six monitoring wells on or adjacent to the CLU#3 that were open to glacial deposits above the Mahomet aquifer (the upper and lower parts of the Radnor Till Member and the Organic Soil unit) and one proximal production well (approximately 0.5 miles from the CLU#3) that is screened in the Mahomet aquifer. The tritium-based age estimates were computed with a simplifying, piston-flow assumption: that groundwater moves in discrete packets to the sampled interval by advection, without hydrodynamic dispersion or mixing.Tritium concentrations indicate a recharge age of at least 59 years (pre-1953 recharge) for water sampled from deposits below the upper part of the Radnor Till Member at the CLU#3, with older water expected at progressively greater depth in the tills. The largest tritium concentration from a well sampled by this study (well G53S; 0.32 ± 0.10 tritium units) was in groundwater from a sand deposit in the upper part of the Radnor Till Member; the shallowest permeable unit sampled by this study. That result indicated that nearly all groundwater sampled from well G53S entered the aquifer as recharge before 1953. Tritium was detected in a trace concentration in one sample from a second monitoring well open to the upper part of the Radnor Till Member (well G07S; 0.11 ± 0.09 tritium units), and not detected in samples collected from two monitoring wells open to a sand deposit in the lower part of the Radnor Till Member, from two samples collected from two monitoring wells open to the Organic Soil unit, and in two samples collected from a production well screened in the middle of the Mahomet aquifer (a groundwater sample and a sequential replicate sample). The lack of tritium in five of the six groundwater samples collected from the shallow permeable units beneath CLU#3 site and the two samples from the one Mahomet aquifer well indicates an absence of post-1952 recharge. Groundwater-flow paths that could contribute post-1952 recharge to the lower part of the Radnor Till Member, the Organic Soil unit, or the Mahomet aquifer at the CLU#3 are not indicated by these data.Hypothetical two-part mixtures of tritium-dead, pre-1953 recharge water and decay-corrected tritium concentrations in post-1952 recharge were computed and compared with tritium analyses in groundwater sampled from monitoring wells at the CLU#3 site to evaluate whether tritium concentrations in groundwater could be represented by mixtures involving some post-1952 recharge. Results from the hypothetical two-part mixtures indicate that groundwater from monitoring well (G53S) was predominantly composed of pre-1953 recharge and that if present, younger, post-1955 recharge, contributed less than 2.5 percent to that sample. The hypothetical two-part mixing results also indicated that very small amounts of post-1952 recharge composing less than about 2.5 percent of the sample volume could not be distinguished in groundwater samples with tritium concentrations less than about 0.15 TU.The piston-flow based age of recharge determined from the tritium concentration in the groundwater sample from monitoring well G53S yielded an estimated maximum vertical velocity from the land surface to the upper part of the Radnor Till Member of 0.85 feet per year or less. This velocity, ifassumed to apply to the remaining glacial till deposits above the Mahomet aquifer, indicates that recharge flows through the 170 feet of glacial deposits between the base of the proposed chemical waste unit and the top of the Mahomet aquifer in a minimum of 200 years or longer. Analysis of hydraulic data from the site, constrained by a tritium-age based maximum groundwater velocity estimate, computed minimum estimates of effective porosity that range from about 0.021 to 0.024 for the predominantly till deposits above the Mahomet aquifer.Estimated rates of transport of recharge from land surface to the Mahomet aquifer for the CLU#3 site computed using the Darcy velocity equation with site-specific data were about 260 years or longer. The Darcy velocity-based estimates were computed using values that were based on tritium data, estimates of vertical velocity and effective porosity and available site-specific data. Solution of the Darcy velocity equation indicated that maximum vertical groundwater velocities through the deposits above the aquifer were 0.41 or 0.61 feet per year, depending on the site-specific values of vertical hydraulic conductivity (laboratory triaxial test values) and effective porosity used for the computation. The resulting calculated minimum travel times for groundwater to flow from the top of the Berry Clay Member (at the base of the proposed chemical waste unit) to the top of the Mahomet aquifer ranged from about 260 to 370 years, depending on the velocity value used in the calculation. In comparison, plausible travel times calculated using vertical hydraulic conductivity values from a previously published regional groundwater flow model were either slightly less than or longer than those calculated using site data and ranged from 230 to 580 years.Tritium data from 1996 to 2011 USGS regional sampling of groundwater from domestic wells in the confined part of the Mahomet aquifer—which are 2.5 to about 40 miles from the Clinton site—were compared with site-specific data from a production well at the Clinton site. Tritium-based groundwater-age estimates indicated predominantly pre- 1953 recharge dates for USGS and other prior regional samples of groundwater from domestic wells in the Mahomet aquifer. These results agreed with the tritium-based, pre-1953 recharge age estimated for a groundwater sample and a sequential replicate sample from a production well in the confined part of the Mahomet aquifer beneath the Clinton site.The regional tritium-based groundwater age estimates also were compared with pesticide detections in samples from distal domestic wells in the USGS regional network that are about 2.5 to 40 miles from the Clinton site to identify whether very small amounts of post-1952 recharge have in places reached confined parts of the Mahomet aquifer at locations other than the Clinton site in an approximately 2,000 square mile area of the Mahomet aquifer. Very small amounts of post-1952 recharge were defined in this analysis as less than about 2.5 percent of the total recharge contributing to a groundwater sample, based on results from the two-part mixing analysis of tritium data from the Clinton site. Pesticide-based groundwater-age estimates based on 22 detections of pesticides (13 of these detections were estimated concentrations), including atrazine, deethylatrazine (2-Chloro-4-isopropylamino-6-amino- s-triazine), cyanazine, diazinon, metolachlor, molinate, prometon, and trifluralin in groundwater samples from 10 domestic wells 2.5 to about 40 miles distant from the Clinton site indicate that very small amounts of post-1956 to post-1992 recharge can in places reach the confined part of the Mahomet aquifer in other parts of central Illinois. The relative lack of tritium in these samples indicate that the amounts of post-1956 to post-1992 recharge contributing to the 10 domestic wells were a very small part of the overall older groundwater sampled from those wells.The flow process by which very small amounts of pesticide-bearing groundwater reached the screened intervals of the 10 domestic wells could not be distinguished between well-integrity related infiltration and natural hydrogeologic features. Potential explanations include: (1) infiltration through man-made avenues in or along the well, (2) flow of very small amounts of post-1956 to post-1992 recharge through sparsely distributed natural permeable aspects of the glacial till and diluted by mixing with older groundwater, or (3) a combination of both processes.Presuming the domestic wells sampled by the USGS in 1996–2011 in the regional study of the confined part of the Mahomet aquifer are adequately sealed and produce groundwater that is representative of aquifer conditions, the regional tritium and pesticide-based groundwater-age results indicate substantial heterogeneity in the glacial stratigraphy above the Mahomet aquifer. The pesticide-based groundwater-age estimates from the domestic wells distant from the Clinton site also indicate that parts of the Mahomet aquifer with the pesticide detections can be susceptible to contaminant sources at the land surface. The regional pesticide and tritium results from the domestic wells further indicate that a potential exists for possible contaminants from land surface to be transported through the glacial drift deposits that confine the Mahomet aquifer in other parts of central Illinois at faster rates than those computed for recharge at the Clinton site, including CLU#3. This analysis indicates the potential value of sub-microgram-per-liter level concentrations of land-use derived indicators of modern recharge to indicate the presence of very small amounts of modern, post-1952 age recharge in overall older, pre-1953 age groundwater.

  18. Hydrogeology of a landfill, Pinellas County, Florida

    USGS Publications Warehouse

    Fernandez, Mario, Jr.

    1983-01-01

    The Pinellas County landfill site is on a flat, coastal area characterized by a high water table is subject to tidal flooding. Altitudes within the study area range from 8 to 12 feet above sea level. Three geohydrologic units underlie the landfill site: a surficial aquifer about 19 feet thick composed of sand and shells; a confining bed about 35 feet thick composed of marl and clay; and the Floridan aquifer composed of limestone. The rate of lateral movement of ground water away from the site is about 1.2 feet per year; however, the rate of movement along the boundary of the landfill cells is about 20 feet per year. Vertical movement through the confining layer is about 0.005 foot per year. Landfill operations have not altered surface-water quality. Leachate migration downward into the Floridan aquifer is not indicated, but data do indicate leachate is migrating from the oldest section of the landfill site through the surficial aquifer. Peaks in concentration of selected chemical parameters and flow-rate analysis of water from trenches indicate the possibility of slug-flow leachate. (USGS)

  19. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Vincent Mullins Landfill in Tucson, Arizona. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Steen, M.; Lisell, L.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Vincent Mullins Landfill in Tucson, Arizona, for a feasibility study of renewable energy production. Under the RE-Powering America's Land initiative, the EPA provided funding to the National Renewable Energy Laboratory (NREL) to support the study. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this report is to assess the site for a possible PV installation and estimate the cost and performance of different PV configurations, as well as to recommend financing options that could assist in the implementation of a PV system. In addition to the Vincent Mullins site, four similar landfills in Tucson are included as part of this study.

  20. Estimation of municipal solid waste landfill settlement

    SciTech Connect

    Ling, H.I.; Leshchinsky, D.; Mohri, Yoshiyuki; Kawabata, Toshinori

    1998-01-01

    The municipal solid waste landfill suffers from large postclosure settlement that occurs over an extended period of time. A large differential settlement may impair foundations, utilities, and other associated facilities constructed on top of a landfill. It may also lead to breakage of the geomembrane and damage of the cover system in a modern municipal solid waste landfill. The waste material exhibits heterogeneous engineering properties that vary over locations and time within a landfill. These factors, combined with the fact that a landfill is not fully saturated, render a traditional soil mechanics approach less attractive for settlement prediction. An empirical approach of expressing settlement rate using logarithmic and power relationships is commonly used in conjunction with an observational procedure. In this paper, validity of these functions is reexamined based on published settlement results from three landfill sites. A hyperbolic function is proposed as an improved tool to simulate the settlement-time relationships, as well as to detect final settlement. The relationships between the parameters of these empirical functions and water content are examined.

  1. DEVELOPMENT OF AN EMPIRICAL MODEL OF METHANE EMISSIONS FROM LANDFILLS

    EPA Science Inventory

    The report gives results of a field study of 21 U.S. landfills with gas recovery systems, to gather information that can be used to develop an empirical model of methane (CH4) emissions. Site-specific information includes average CH4 recovery rate, landfill size, tons of refuse (...

  2. STANDARDIZED PROCEDURES FOR PLANTING VEGETATION ON COMPLETED SANITARY LANDFILLS

    EPA Science Inventory

    A manual was developed for those charged with establishing a vegetative cover on completed landfills. Special problems associated with growing plants on these sites are discussed, and step-by-step procedures are given for converting a closed landfill to a variety of end uses requ...

  3. OPTIONAL COST MODELS FOR LANDFILL DISPOSAL OF MUNICIPAL SOLID WASTE

    EPA Science Inventory

    This report presents findings from an analysis of 45 landfills and associated transfer stations, balers, shredders, and transportation networks. The analysis of the sites attempted to determine how much it costs to build and operate a landfill and which factors have the greatest ...

  4. ESTIMATING LEACHATE PRODUCTION FROM CLOSED HAZARDOUS WASTE LANDFILLS

    EPA Science Inventory

    Hazardous wastes disposed of in landfills may continue to drain for several years after site closure. The report presents suitable analytical methods for predicting the flow of leachate to underdrains from closed hazardous waste landfills. Leachate sources include waste fluids as...

  5. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Kolthoff Landfill in Cleveland, Ohio. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-06-01

    The U.S. Environmental Protection Agency (EPA), Region 5, in accordance with the RE-Powering America's Land initiative, selected the Kolthoff Landfill site in Cleveland, Ohio, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  6. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    SciTech Connect

    Mønster, Jacob; Samuelsson, Jerker; Scheutz, Charlotte

    2015-01-15

    Highlights: • Quantification of whole landfill site methane emission at 15 landfills. • Multiple on-site source identification and quantification. • Quantified methane emission from shredder waste and composting. • Large difference between measured and reported methane emissions. - Abstract: Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h{sup −1}, corresponding to 0.7–13.2 g m{sup −2} d{sup −1}, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41–81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y{sup −1}. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y{sup −1}, which is significantly lower than the 33,300 tons y{sup −1} estimated for the national greenhouse gas inventory for 2011.

  7. HENRY STREET SCHOOL, 1300 BLOCK BULL STREET, DETAIL OF NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HENRY STREET SCHOOL, 1300 BLOCK BULL STREET, DETAIL OF NORTH ELEVATION - Savannah Victorian Historic District, Bounded by Gwinnett, East Broad, West Broad Street & Anderson Lane, Savannah, Chatham County, GA

  8. Urban Street Gang Enforcement.

    ERIC Educational Resources Information Center

    Institute for Law and Justice, Inc., Alexandria, VA.

    Strategies to enhance prosecution of gang-related crimes are presented, with a focus on enforcement and prosecution targeting urban street gangs. The model programs introduced offer strategies largely based on the practical experiences of agencies that participated in a demonstration program, the Urban Street Gang Drug Trafficking Enforcement

  9. LANDFILL GAS PRODUCTION FROM LARGE LANDFILL SIMULATORS

    EPA Science Inventory

    Two sizes of landfill simulators or test cells; one set containing approximately 320 kg wet weight of municipal solid wastes (MSW) and the other set containing 2555 kg wet weight of MSW were used to measure the amount and composition of gases produced from MSW under typical landf...

  10. Emissions of Nonmethane Organic Compounds at an Illinois (USA) Landfill: Preliminary Field Measurements

    SciTech Connect

    Bogner, J.; Spokas, K.; Niemann, M.; Niemann, L.; Baker, J.

    1997-08-01

    Current US regulatory models for estimating emissions of nonmethane organic compounds (NMOCs) from municipal solid waste (MSW) landfills require field validation to determine if the models are realistic. A project was initiated to begin to develop a field method for direct measurement of landfill NMOC emissions and, concurrently, develop improved sampling and analysis methods for individual NMOCs in landfill gas matrices. Two contrasting field sites at the Greene Valley Landfill, DuPage County, Illinois, USA, were established.

  11. Characteristics of leachates from hazardous waste landfills

    SciTech Connect

    Ghassemi, M.; Quinlivan, S.

    1984-01-01

    A hazardous waste landfill leachate data base covering some thirty leachates from eleven disposal sites has been developed. The sites cover a range of sizes, liner designs, waste types and leachate collection systems and the leachate data cover a range of organic and inorganic constituents. For the cases included, the inorganic constituents appearing in highest concentrations in the leachate are iron, calcium, magnesium, cadmium, and arsenic, and the organic constituents appearing in highest concentrations are acetic acid, methylene chloride, butyric acid, 1,1-dichloroethane, and trichlorofluoromethane. The constituent concentrations in the leachate from hazardous waste landfills fall within the reported ranges for municipal landfill leachate. Based on preliminary data, only gross correlations could be made between leachate quality and waste input.

  12. A decision support system for assessing landfill performance

    SciTech Connect

    Celik, Basak; Girgin, Sertan; Yazici, Adnan; Unlue, Kahraman

    2010-01-15

    Designing environmentally sound landfills is a challenging engineering task due to complex interactions of numerous design variables; such as landfill size, waste characteristics, and site hydrogeology. Decision support systems (DSS) can be utilized to handle these complex interactions and to aid in a performance-based landfill design by coupling system simulation models (SSM). The aim of this paper is to present a decision support system developed for a performance-based landfill design. The developed DSS is called Landfill Design Decision Support System - LFDSS. A two-step DSS framework, composed of preliminary design and detailed design phases, is set to effectively couple and run the SSMs and calculation modules. In preliminary design phase, preliminary design alternatives are proposed using general site data. In detailed design phase, proposed design alternatives are further simulated under site-specific data using SSMs for performance evaluation. LFDSS calculates the required landfill volume, performs landfill base contour design, proposes preliminary design alternatives based on general site conditions, evaluates the performance of the proposed designs, calculates the factor of safety values for slope stability analyses, and performs major cost calculations. The DSS evaluates the results of all landfill design alternatives, and determines whether the design satisfies the predefined performance criteria. The DSS ultimately enables comparisons among different landfill designs based on their performances (i.e. leachate head stability, and groundwater contamination), constructional stability and costs. The developed DSS was applied to a real site, and the results demonstrated the strengths of the developed system on designing environmentally sound and feasible landfills.

  13. Landfills for the 21st century

    SciTech Connect

    Poland, R. )

    1994-01-01

    In the next 10 years, the role of landfills will not change significantly. Landfills are, and will continue to be, the cornerstone of any waste services system. A number of factors will, however, cause adjustments in the way landfills function. The character of the waste is also changing. Mankind will see more treated industrial residue in future years. Certain types of these materials have, in the past, gone to hazardous waste disposal sites. These are non-hazardous wastes, but generators found a certain comfort in sending them to hazardous waste facilities that had double composite liners, leachate collection, and financial assurance. With the new technical standards and environmental security of sanitary landfills, there will be a reluctance on the part of generators to pay a premium to send this waste to a hazardous waste site. There is also a growing interest in treating characteristic'' hazardous waste to a level where it is no longer hazardous and can be placed in a sanitary landfill.

  14. The biological impact of landfill leachate on nearby surface water

    SciTech Connect

    Geis, S.W.

    1994-12-31

    Five landfill sites were evaluated for their potential to adversely impact the biotic community of surface waters. Acute and chronic aquatic toxicity tests were used to determine the toxicity of water samples collected from landfill monitoring wells and the nearest surface water. Four of the five landfill sites exhibited acute or chronic toxicity to Ceriodaphnia dubia, Daphnia magna, or Pimephales promelas. Toxicity identification procedures performed on water samples revealed toxic responses to metals and one toxic response to organic compounds. Surface water toxicity at an industrial landfill is most likely due to zinc from a tire production facility. Iron and a surfactant were determined to be the probable causes for toxicity at two municipal solid waste landfills.

  15. Investigating landfill leachate as a source of trace organic pollutants.

    PubMed

    Clarke, Bradley O; Anumol, Tarun; Barlaz, Morton; Snyder, Shane A

    2015-05-01

    Landfill leachate samples (n=11) were collected from five USA municipal solid waste (MSW) landfills and analyzed for ten trace organic pollutants that are commonly detected in surface and municipal wastewater effluents (viz., carbamazepine, DEET, fluoxetine, gemfibrozil, PFOA, PFOS, primidone, sucralose, sulfamethoxazole and trimethoprim). Carbamazepine, DEET, PFOA and primidone were detected in all leachate samples analyzed and gemfibrozil was detected in samples from four of the five-landfill sites. The contaminants found in the highest concentrations were DEET (6900-143000 ng L(-1)) and sucralose (<10-621000 ng L(-1)). Several compounds were not detected (fluoxetine) or detected infrequently (sulfamethoxazole, trimethoprim and PFOS). Using the average mass of DEET in leachate amongst the five landfills and scaling the mass release from the five test landfills to the USA population of landfills, an order of magnitude estimate is that over 10000 kg DEET yr(-1) may be released in leachate. Some pharmaceuticals have similar annual mean discharges to one another, with the estimated annual discharge of carbamazepine, gemfibrozil, primidone equating to 53, 151 and 128 kg year(-1). To the authors knowledge, this is the first time that primidone has been included in a landfill leachate study. While the estimates developed in this study are order of magnitude, the values do suggest the need for further research to better quantify the amount of chemicals sent to wastewater treatment facilities with landfill leachate, potential impacts on treatment processes and the significance of landfill leachate as a source of surface water contamination. PMID:25753851

  16. Landfill to Learning Facility

    NASA Astrophysics Data System (ADS)

    Venner, Laura

    2008-05-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in scientific exploration and discovery is the main goal of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will bring hands-on scientific experiences to the 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Our programs adhere to the New Jersey Core Curriculum Content Standards and are modified for accessibility for the underserved communities that visit us, specifically those individuals that have mobility, sensory, and/or cognitive ability differences. The programs are conducted in a classroom setting and are designed to nourish the individual's inquisitive nature and provide an opportunity to function as a scientist by, making observations, performing experiments and recording data. We have an $850,000, three year NSF grant that targets adults with disabilities and older adults with age related limitations in vision, hearing, cognition and/or mobility. From dip netting in the marsh to astronomical investigation of the cosmos, the MEC/CESE remains committed to reaching the largest audience possible and leaving them with a truly exceptional scientific experience that serves to educate and inspire.

  17. Public health assessment for sanitary landfill (A/K/A Cardington Road Landfill), Dayton, Montgomery County, Ohio, Region 5. Cerclis No. OHD093895787. Final report

    SciTech Connect

    Not Available

    1994-05-16

    The Sanitary Landfill Site (also known as the Cardington Road Landfill Site) is within the municipal limits of the City of Moraine, approximately one mile south of the city of Dayton, in Montgomery County, Ohio. A broad spectrum of commercial, industrial, and municipal wastes were placed in the landfill. The Sanitary Landfill is a public health hazard because of the explosive levels of methane present in soil samples at the site. Methane was present in on-site and off-site soil gas samples and on-site vents at levels posing a risk of explosion or fire. There is also a potential for people to be exposed to toluene in ambient air and chemicals in soil gas. In addition, on-site and off-site soil gas contained high concentrations of volatile organic compounds. Exposure directly to chemicals in soil gas is not likely, however, chemicals may migrate into buildings bordering the landfill.

  18. BIOREACTOR LANDFILL DESIGN

    EPA Science Inventory

    Modern landfill design entails many elements including foundations, liner systems, leachate collection systems, stormwater control systems, slope stability considerations, leachate management systems, gas extraction systems, and capping and closure. The use of bioreactor technolo...

  19. Landfill stabilization focus area: Technology summary

    SciTech Connect

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  20. The new Waste Law: Challenging opportunity for future landfill operation in Indonesia.

    PubMed

    Meidiana, Christia; Gamse, Thomas

    2011-01-01

    The Waste Law No. 18/2008 Article 22 and 44 require the local governments to run environmentally sound landfill. Due to the widespread poor quality of waste management in Indonesia, this study aimed to identify the current situation by evaluating three selected landfills based on the ideal conditions of landfill practices, which are used to appraise the capability of local governments to adapt to the law. The results indicated that the local governments have problems of insufficient budget, inadequate equipment, uncollected waste and unplanned future landfill locations. All of the selected landfills were partially controlled landfills with open dumping practices predominating. In such inferior conditions the implementation of sanitary landfill is not necessarily appropriate. The controlled landfill is a more appropriate solution as it offers lower investment and operational costs, makes the selection of a new landfill site unnecessary and can operate with a minimum standard of infrastructure and equipment. The sustainability of future landfill capacity can be maintained by utilizing the old landfill as a profit-oriented landfill by implementing a landfill gas management or a clean development mechanism project. A collection fee system using the pay-as-you-throw principle could increase the waste income thereby financing municipal solid waste management. PMID:20935025

  1. FIELD VERIFICATION OF LINERS FROM SANITARY LANDFILLS

    EPA Science Inventory

    Liner specimens from three existing landfill sites were collected and examined to determine the changes in their physical properties over time and to validate data being developed through laboratory research. Samples examined included a 15-mil PVC liner from a sludge lagoon in Ne...

  2. BIOREACTOR DESIGN - OUTER LOOP LANDFILL, LOUISVILLE, KY

    EPA Science Inventory

    Bioreactor field demonstration projects are underway at the Outer Loop Landfill in Louisville, KY, USA. The research effort is a cooperative research effort between US EPA and Waste Management Inc. Two primary kinds of municipal waste bioreactors are under study at this site. ...

  3. Analysis of Street Drugs

    ERIC Educational Resources Information Center

    James, Stuart H.; Bhatt, Sudhir

    1972-01-01

    A study of the content of street drugs available to a college campus and a community is presented. Emphasis is given to the adulterants and substitutions encountered in the illicit preparations. (Author)

  4. Soil gas investigations at the Sanitary Landfill

    SciTech Connect

    Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

    1992-07-01

    A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C{sub 1}C{sub 4} hydrocarbons; the C{sub 5}-C{sub 10} normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

  5. Soil gas investigations at the Sanitary Landfill

    SciTech Connect

    Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

    1992-07-01

    A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C[sub 1]C[sub 4] hydrocarbons; the C[sub 5]-C[sub 10] normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

  6. 7. Historic photograph reproduction: 'Warren Street from State Street' ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic photograph reproduction: 'Warren Street from State Street' ca. 1893. Courtesy of Trenton Free Public Library. The tall, narrow building in the middle of the photo is 10 North Warren Street. Signs saying 'Saddlery,' 'Carriage,' and 'Hardware' on the building indicate that the photo was taken during the tenancy of Claffery & Slack (1888-1914). - 10 North Warren Street (Commercial Building), 10 North Warren Street, Trenton, Mercer County, NJ

  7. 18. THIRD STREET FROM ITS INTERSECTION WITH F STREET, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. THIRD STREET FROM ITS INTERSECTION WITH F STREET, LOOKING NORTH, For the purpose of clarity and simplicity, directions relate to the nearly north-south orientation of the Naval Supply Center, and not to true north. The alignment of streets and buildings in the NSC are roughly related to magnetic north, and are thus about 10 degrees clockwise from true north. WITH BUILDINGS 222 AND 221 ON LEFT. - Oakland Naval Supply Center, Maritime Street at Seventh Street, Oakland, Alameda County, CA

  8. Variability in the concentration of indicator bacteria in landfill leachate--a comparative study.

    PubMed

    Umar, Muhammad; Aziz, Hamidi Abdul; Yusoff, Mohd Suffian

    2015-03-01

    Leachate collected from the collection ponds of four landfill sites was investigated and compared for total coliforms and E. coli concentration as representatives of fecal pollution. Concentration of total coliforms and E. coli was comparable for leachate obtained from Kulim Landfill Site (KLS) and Ampang Landfill Site (ALS) with little variations. However, the level of indicator bacteria was significantly lower for Kuala Sepetang Landfill Site (KSLS), whereas Pulau Burung Landfill Site (PBLS) had the lowest concentration for both total coliforms and E. coli. Considering the landfills are currently operational, with the exception of ALS, the presence of indicator bacteria implies their inactivation prior to discharge. High concentration of indicator bacteria in ALS is attributed to the run-off entering the leachate pond. Greater concentration of ammonia and salinity level were partly responsible for lower concentration of indicator bacteria in leachate from KSLS and PBLS, indicating that salinty and ammonia could significantly affect the survival of indicator bacteria. PMID:25842532

  9. The Street and Its Image.

    ERIC Educational Resources Information Center

    Lucchini, Riccardo

    1996-01-01

    Studied development of identity as street children in Montevideo, Uruguay. Found that children without income-generating activity lack self-definition as street children but recognize the street as a place of apprenticeship, knowing they can return to institutions or to parents. Working children view the street as a workplace and meeting place,

  10. Sanitary landfill in situ bioremediation optimization test. Final report

    SciTech Connect

    1996-04-01

    This work was performed as part of a corrective action plan for the Savannah River Site Sanitary Landfill. This work was performed for the Westinghouse Savannah River Company Environmental Restoration Department as part of final implementation of a groundwater remediation system for the SRS Sanitary Landfill. Primary regulatory surveillance was provided by the South Carolina Department of Health and Environmental Control and the US Environmental Protection Agency (Region IV). The characterization, monitoring and remediation systems in the program generally consisted of a combination of innovative and baseline methods to allow comparison and evaluation. The results of these studies will be used to provide input for the full-scale groundwater remediation system for the SRS Sanitary Landfill. This report summarizes the performance of the Sanitary Landfill In Situ Optimization Test data, an evaluation of applicability, conclusions, recommendations, and related information for implementation of this remediation technology at the SRS Sanitary Landfill.

  11. Municipal landfill leachate management

    SciTech Connect

    Kusterer, T.; Willson, R.; Bruce, S.C.; Tissue, E. Lou, P.J.

    1998-12-31

    From 1995 to 1997, the Montgomery County Leachate Pretreatment Facility (MCLPF) has successfully pretreated in excess of 18,000,000 gallons of leachate generated by the county`s municipal solid waste landfill. The collection system directs leachate from the original landfill. The collection system directs leachate from the original landfill, the new lined section, and the ash cell to the leachate pump station. The leachate, prior to being pumped to the leachate pretreatment system, is equalized in two storage lagoons with a combined capacity of more than 5,000,000 gallons. The innovative leachate treatment system, incorporating a biological reactor system equipped with a submerged fixed-film reactor using a patented Matrix Biological Film (MBF) media, continues to provide excellent pretreatment results for the leachate generated at the Oaks Landfill in Montgomery County, Maryland. In 1995 and 1996, the system responded to the substantial challenges imposed by the changing characteristics of the material being landfilled and by the significant amounts of incinerator ash, received in 1995 from the county`s resource recovery facility (RRF), which influenced the influent leachate characteristics.

  12. Astronomy on a Landfill

    NASA Astrophysics Data System (ADS)

    Venner, Laura

    2008-09-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 15,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  13. Astronomy on a Landfill

    NASA Astrophysics Data System (ADS)

    Venner, Laura

    2008-05-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in astronomical activities is one of the main goals of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will assist in bringing the goals of IYA 2009 to the approximately 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Diversifying our traditional environmental science offerings, we have incorporated astronomy into our repertoire with "The Sun Through Time” module, which includes storytelling, cultural astronomy, telescope anatomy, and other activities that are based on the electromagnetic spectrum and our current knowledge of the sun. These lessons have also been modified to bring astronomy to underserved communities, specifically those individuals that have dexterity or cognitive ability differences. The program is conducted in a classroom setting and is designed to meet New Jersey Core Curriculum Content Standards. With the installation of our new 20” telescope, students and amateur astronomers will be given the opportunity to perform rudimentary research. In addition, a program is in development that will allow individuals to measure local sky brightness and understand the effects of light pollution on astronomical viewing. Teaching astronomy in an urban setting presents many challenges. All individuals, regardless of ability level or location, should be given the opportunity to be exposed to the wonders of the universe and the MEC/CESE has been successful in providing those opportunities.

  14. Closed landfills to solar energy power plants: Estimating the solar potential of closed landfills in California

    NASA Astrophysics Data System (ADS)

    Munsell, Devon R.

    Solar radiation is a promising source of renewable energy because it is abundant and the technologies to harvest it are quickly improving. An ongoing challenge is to find suitable and effective areas to implement solar energy technologies without causing ecological harm. In this regard, one type of land use that has been largely overlooked for siting solar technologies is closed or soon to be closed landfills. Utilizing Geographic Information System (GIS) based solar modeling; this study makes an inventory of solar generation potential for such sites in the state of California. The study takes account of various site characteristics in relation to the siting needs of photovoltaic (PV) geomembrane and dish-Stirling technologies (e.g., size, topography, closing date, solar insolation, presence of landfill gas recovery projects, and proximity to transmission grids and roads). This study reaches the three principal conclusions. First, with an estimated annual solar electricity generation potential of 3.7 million megawatt hours (MWh), closed or soon to be closed landfill sites could provide an amount of power significantly larger than California's current solar electric generation. Secondly, the possibility of combining PV geomembrane, dish-Stirling, and landfill gas (LFG) to energy technologies at particular sites deserves further investigation. Lastly, there are many assumptions, challenges, and limitations in conducting inventory studies of solar potential for specific sites, including the difficulty in finding accurate data regarding the location and attributes of potential landfills to be analyzed in the study. Furthermore, solar modeling necessarily simplifies a complex phenomenon, namely incoming solar radiation. Additionally, site visits, while necessary for finding details of the site, are largely impractical for a large scale study.

  15. Talking trash: the economic and environmental issues of landfills.

    PubMed Central

    Taylor, D

    1999-01-01

    The U.S. per-capita figure for garbage production has topped four pounds per person per day, and that amount is rising at roughly 5% per year. In the past, municipal solid waste was sent to the nearest local landfill or incinerator. But in 1988, the U.S. Environmental Protection Agency instituted the first federal standards for landfills, designed to make them safer. Over 10,000 small municipal landfills have since been consolidated into an estimated 3,500 newer, safer landfills, some of which are "megafills" that can handle up to 10,000 tons of waste a day. The new landfills are outfitted to prevent air and water pollution and limit the spread of disease by scavengers. Although the new landfills provide better controls against air and water pollution as well as an alternate source of municipal income, they are not entirely problem-free. Some experts believe the new landfill technology has not been properly tested and will therefore not provide protection in the long run. Others feel that poorer, less well-informed communities are targeted as sites for new landfills. In addition, many people that live near megafills, which may draw garbarge from several states, are unhappy about the noise, truck traffic, odors, and pests caused by the facilities. PMID:10417373

  16. Talking trash: the economic and environmental issues of landfills.

    PubMed

    Taylor, D

    1999-08-01

    The U.S. per-capita figure for garbage production has topped four pounds per person per day, and that amount is rising at roughly 5% per year. In the past, municipal solid waste was sent to the nearest local landfill or incinerator. But in 1988, the U.S. Environmental Protection Agency instituted the first federal standards for landfills, designed to make them safer. Over 10,000 small municipal landfills have since been consolidated into an estimated 3,500 newer, safer landfills, some of which are "megafills" that can handle up to 10,000 tons of waste a day. The new landfills are outfitted to prevent air and water pollution and limit the spread of disease by scavengers. Although the new landfills provide better controls against air and water pollution as well as an alternate source of municipal income, they are not entirely problem-free. Some experts believe the new landfill technology has not been properly tested and will therefore not provide protection in the long run. Others feel that poorer, less well-informed communities are targeted as sites for new landfills. In addition, many people that live near megafills, which may draw garbarge from several states, are unhappy about the noise, truck traffic, odors, and pests caused by the facilities. PMID:10417373

  17. Feasibility study for utilization of landfill gas at the Royalton Road Landfill, Broadview Heights, Ohio. Final report

    SciTech Connect

    1983-09-01

    The technical viability of landfill gas recovery has been previously demonstrated at numerous sites. However, the economics of a full scale utilization system are dependent on proper market conditions, appropriate technologies, landfill gas quantity and quality, and public/purchaser acceptance. The specific objectives of this feasibility study were to determine: The available markets which might purchase landfill gas or landfill gas derived energy products; An extraction system concept design and to perform an on-site pumping test program; The landfill gas utilization technologies most appropriate for the site; Any adverse environmental, health, safety, or socioeconomic impacts associated with the various proposed technologies; The optimum project economics, based on markets and processes examined. Findings and recommendations were presented which review the feasibility of a landfill gas utilization facility on the Royalton Road Landfill. The three identified utilization alternatives are indeed technically feasible. However, current market considerations indicate that installation of a full scale system is not economically advisable at this time. This final report encompasses work performed by SCS Engineers from late 1980 to the present. Monitoring data from several extraction and monitoring wells is presented, including pumping rates and gas quality and quantity analysis. The Market Analysis Data Form, local climatological data, and barometric pressure data are included in the appendix section. 33 figures, 25 tables.

  18. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    SciTech Connect

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  19. Developing and testing a street audit tool using Google Street View to measure environmental supportiveness for physical activity

    PubMed Central

    2013-01-01

    Background Walking for physical activity is associated with substantial health benefits for adults. Increasingly research has focused on associations between walking behaviours and neighbourhood environments including street characteristics such as pavement availability and aesthetics. Nevertheless, objective assessment of street-level data is challenging. This research investigates the reliability of a new street characteristic audit tool designed for use with Google Street View, and assesses levels of agreement between computer-based and on-site auditing. Methods The Forty Area STudy street VIEW (FASTVIEW) tool, a Google Street View based audit tool, was developed incorporating nine categories of street characteristics. Using the tool, desk-based audits were conducted by trained researchers across one large UK town during 2011. Both inter and intra-rater reliability were assessed. On-site street audits were also completed to test the criterion validity of the method. All reliability scores were assessed by percentage agreement and the kappa statistic. Results Within-rater agreement was high for each category of street characteristic (range: 66.7%-90.0%) and good to high between raters (range: 51.3%-89.1%). A high level of agreement was found between the Google Street View audits and those conducted in-person across the nine categories examined (range: 75.0%-96.7%). Conclusion The audit tool was found to provide a reliable and valid measure of street characteristics. The use of Google Street View to capture street characteristic data is recommended as an efficient method that could substantially increase potential for large-scale objective data collection. PMID:23972205

  20. LANDFILLS EFFLUENT LIMITATIONS GUIDELINES DATABASE

    EPA Science Inventory

    Resource Purpose:This resource served as the main information source for national characteristics of landfills for the landfills effluent guidelines. The database was developed based on responses to the "1994 Waste Treatment Industry Questionnaire: Phase II Landfills" and...

  1. "Street Love": How Street Life Oriented U. S. Born African Men Frame Giving Back to One Another and the Local Community

    ERIC Educational Resources Information Center

    Payne, Yasser Arafat; Hamdi, Hanaa A.

    2009-01-01

    This Participatory Action Research (PAR) project worked with four active street life oriented U. S. born African men, to document how a community sample of street life oriented U. S. born African men between the ages of 16-65, frame and use "street life" as a Site of Resiliency (Payne, Dissertation, 2005; "Journal of Black Psychology" 34(1):3-31,

  2. "Street Love": How Street Life Oriented U. S. Born African Men Frame Giving Back to One Another and the Local Community

    ERIC Educational Resources Information Center

    Payne, Yasser Arafat; Hamdi, Hanaa A.

    2009-01-01

    This Participatory Action Research (PAR) project worked with four active street life oriented U. S. born African men, to document how a community sample of street life oriented U. S. born African men between the ages of 16-65, frame and use "street life" as a Site of Resiliency (Payne, Dissertation, 2005; "Journal of Black Psychology" 34(1):3-31,…

  3. Landfill gas collection from an operating bioreactor landfill

    SciTech Connect

    Townsend, T.G.; Miller, W.L.; Reinhart, G.A.

    1995-08-01

    The operation of landfills as controlled bioreactors under wet conditions offers the potential for safer and more effective management of landfilled solid waste relative to traditional dry landfill systems. The effects of different environmental conditions on the degree and rate of landfill stabilization have been evaluated in a number of pilot-scale studies during the previous twenty years. These studies have demonstrated that increased levels of moisture in the waste and the recycle of leachate through the waste increase the rate of waste stabilization. Benefits of leachate recycle, including leachate hydrologic management and in-situ leachate treatment, make leachate recycle an attractive option for some landfill operators. A number of landfill currently practice leachate recycle throughout the United States. This paper reviews recent results regarding gas collection from an operating bioreactor landfill in Alachua County, Florida.

  4. 52. View looking northeast from Monroe Street and Acquackanonk Water ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View looking northeast from Monroe Street and Acquackanonk Water Company site, along covered Dundee Canal prism, toward Dayton Avenue and Botany Worsted Mills - Dundee Canal Industrial Historic District, Beginning at George Street in Passaic & extending north along Dundee Canal approximately 1.2 miles to Canal headgates opposite East Clifton Avenue in Clifton, Passaic, Passaic County, NJ

  5. 3. VIEW EAST OF MILL STREET BUILDINGS; 20 AT EXTREME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW EAST OF MILL STREET BUILDINGS; 20 AT EXTREME LEFT CENTER; 21 AT MID-LEFT CENTER; 4 AT LEFT CENTER; RUNDBOGENSTIL TOWER AT CENTER; BUILDING 3 RIGHT CENTER; BUILDING 2 AT EXTREME RIGHT CENTER; BUILDING 3 IS THE OLDEST BUILDING ON SITE AND WAS BUILT CIRCA 1850 - Scovill Brass Works, 59 Mill Street, Waterbury, New Haven County, CT

  6. 1. General oblique view from south side of Canal Street ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. General oblique view from south side of Canal Street showing Paper Machine Building at southwest corner of site; view to northeast. - Champion-International Paper Company, Paper Machine Building, West bank of Spicket River at Canal Street, Lawrence, Essex County, MA

  7. Methods of Sensing Land Pollution from Sanitary Landfills

    NASA Technical Reports Server (NTRS)

    Nosanov, Myron Ellis; Bowerman, Frank R.

    1971-01-01

    Major cities are congested and large sites suitable for landfill development are limited. Methane and other gases are produced at most sanitary landfills and dumps. These gases may migrate horizontally and vertically and have caused fatalities. Monitoring these gases provides data bases for design and construction of safe buildings on and adjacent to landfills. Methods of monitoring include: (1) a portable combustible gas indicator; and (2) glass flasks valved to allow simultaneous exhaust of the flask and aspiration of the sample into the flask. Samples are drawn through tubing from probes as deep as twenty-five feet below the surface.

  8. Radioactivity and elemental analysis in the Ruseifa municipal landfill, Jordan.

    PubMed

    Al-Jundi, J; Al-Tarazi, E

    2008-01-01

    In this study, a low background gamma-ray spectrometer based on a Hyper Pure Germanium detector was used to determine the activity concentrations of natural radionuclides in soil samples from various locations within the Ruseifa municipal landfill in Jordan. The chemical composition of the samples was also determined using a Wavelength Dispersive X-Ray Fluorescence Spectrometer. The maximum and minimum annual outdoor effective doses were found to be 103 and 36microSva(-1) in the old landfill and Abu-Sayaah village, respectively. The annual outdoor effective dose at the recent landfill site was found to be 91microSva(-1). The annual effective dose equivalents from outdoor terrestrial gamma radiation at the old landfill and the recent landfill were higher than the typical worldwide value of 70microSva(-1). Thus, some remediation of the soils on both old and recent landfills should be considered before any development for public activities. This could be achieved by mixing with clean soil from areas which are known to have lower radiation background. The concentration of heavy metals Zn, Cr, and Ba in the three sites included in this study were found to be higher than the background levels in the soil samples of the control area (Abu-Sayaah village). The enrichment factors for the above three elements were calculated and found to be: complex building site: Zn=2.52 and Ba=1.33; old landfill site: Cr=1.88, Zn=3.64, and Ba=1.26; and recent landfill site: Cr=1.57, Zn=2.19, and Ba=1.28. There was a strong negative correlation between the concentrations of the metallic elements (Mg, Al, Mn, Fe and Rb) and the concentrations of Zn, Ba, and Cr. Moreover, a strong positive correlation was found between Zn, Ba, and Cr. Thus these elements were enriched in the solid waste. PMID:18215446

  9. 1. West Street & High Street Bridges. Westerly, Washington Co., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West Street & High Street Bridges. Westerly, Washington Co., RI. sec. 4215, mp 141.67/.77. - Northeast Railroad Corridor, Amtrak route between CT & MA state lines, Providence, Providence County, RI

  10. Leachate treatment in landfills

    SciTech Connect

    Zolten, N.G. )

    1991-05-01

    This article describes the origins of sanitary landfill leachates, their potential for contamination of surrounding soil and groundwater, and characterization and techniques for treating this extremely high-strength municipal wastewater to required standards by biological processes. Topics include leachate characterization, effluent standards and treatment by two stage activated sludge process.

  11. MSW LANDFILL BIOREACTOR RESEARCH

    EPA Science Inventory

    MSW bioreactors offer an innovative way of optimizing existing landfill volume by actively degrading the waste mass within a waste containment system. Bioreactor leachate, gas, and solids monitoring is part of a 5 year CRADA between US EPA and Waste Mgt., Inc. at the Outer Loop ...

  12. HAZARDOUS WASTE LANDFILL RESEARCH

    EPA Science Inventory

    The hazardous waste land disposal research program is collecting data necessary to support implementation of disposal guidelines mandated by the 'Resource Conservation and Recovery Act of 1976' (RCRA) PL 94-580. This program relating to the categorical area of landfills, surface ...

  13. Landfill gas survey update

    SciTech Connect

    Not Available

    1989-03-01

    While mass-burn plants are the commonly conceived waste-to-energy facilities, landfill gas recovery projects have not been forgotten. This guide lists such projects throughout the United States. While many developers were not able to disclose all particulars for each installation, as much information as possible is provided.

  14. Controlling landfill closure costs

    SciTech Connect

    Millspaugh, M.P.; Ammerman, T.A.

    1995-05-01

    Landfill closure projects are significant undertakings typically costing well over $100,000/acre. Innovative designs, use of alternative grading and cover materials, and strong project management will substantially reduce the financial impact of a landfill closure project. This paper examines and evaluates the various elements of landfill closure projects and presents various measures which can be employed to reduce costs. Control measures evaluated include: the beneficial utilization of alternative materials such as coal ash, cement kiln dust, paper mill by-product, construction surplus soils, construction debris, and waste water treatment sludge; the appropriate application of Mandate Relief Variances to municipal landfill closures for reduced cover system requirements and reduced long-term post closure monitoring requirements; equivalent design opportunities; procurement of consulting and contractor services to maximize project value; long-term monitoring strategies; and grant loan programs. An analysis of closure costs under differing assumed closure designs based upon recently obtained bid data in New York State, is also provided as a means for presenting the potential savings which can be realized.

  15. Optimization of leachate treatment using persulfate/H2O2 based advanced oxidation process: case study: Deir El-Balah Landfill Site, Gaza Strip, Palestine.

    PubMed

    Hilles, Ahmed H; Abu Amr, Salem S; Hussein, Rim A; Arafa, Anwar I; El-Sebaie, Olfat D

    2016-01-01

    The objective of this study was to investigate the performance of employing H2O2 reagent in persulfate activation to treat stabilized landfill leachate. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as persulfate and H2O2 dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following two responses proved to be significant with very low probabilities (<0.0001): chemical oxygen demand (COD) and NH3-N removal. The obtained optimum conditions included a reaction time of 116 min, 4.97 g S2O8(2-), 7.29 g H2O2 dosage and pH 11. The experimental results were corresponding well with predicted models (COD and NH3-N removal rates of 81% and 83%, respectively). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as persulfate only and H2O2 only, to evaluate its effectiveness. The combined method (i.e., /S2O8(2-)/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with other studied applications. PMID:26744940

  16. Benjamin Franklin Street Academy.

    ERIC Educational Resources Information Center

    Wohl, Seth F.

    In this evaluation report of the sixth year of operation of the Benjamin Franklin-Urban League Street Academy in New York City, it is recommended that the program be continued for the seventh year despite the poorer than expected student gains in all studied components and the sporadic student attendance pattern and high dropout rate. Students

  17. Saving Mango Street

    ERIC Educational Resources Information Center

    Van Winkle, Katie

    2012-01-01

    The author first learned about cultural diversity and racial justice in Mr. Sanderson's middle school English class. They read a book called "The House on Mango Street" by Sandra Cisneros and learned about a different culture, but also about a community with striking similarities to their own. The main character in the novel, Esperanza, a…

  18. Quantification of Methane Emissions From Street Level Data

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Cambaliza, M. L.; Lavoie, T. N.; Salmon, O. E.; Shepson, P. B.; Lauvaux, T.; Davis, K. J.; Whetstone, J. R.

    2013-12-01

    The problem of identifying, attributing, and quantifying methane emissions from urban sources such as landfills, waste-water treatment facilities and natural gas distribution systems is an active area of research. This interest is fueled, in part, by recent measurements indicating that urban emissions are a significant source of methane (CH4, a potent greenhouse gas) and in fact may be substantially higher than current inventory estimates. As a result, developing methods for locating and quantifying emissions from urban methane sources is of great interest to industries such as landfill owners, and governmental agencies. In an attempt to identify major methane source locations and emissions in the city of Indianapolis, systematic measurements of CH4 concentrations and meteorology data were made at street level using multiple vehicles equipped with cavity ring-down spectrometers. A number of discrete sources were detected at methane molar ratios in excess of 15 times background levels. The street level data is analyzed with plume inversion models including Weather Research and Forecasting (WRF) software, Fire Dynamics Simulator (FDS) and backward Lagrangian Simulations (bLS) to identify source location and emission rates. The methodology for analyzing the street level data and our estimates of CH4 emissions from various sources in the city of Indianapolis will be presented.

  19. Attenuation of landfill leachate at two uncontrolled landfills

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Yong; Cheon, Jeong-Yong; Kwon, Hyung-Pyo; Yoon, Hee-Sung; Lee, Seong-Sun; Kim, Jong-Ho; Park, Joung-Ku; Kim, Chang-Gyun

    2006-12-01

    Attenuation characteristics of landfill leachate were examined for two uncontrolled landfills in Korea. The two landfills containing municipal wastes without appropriate bottom liner and leachate treatment system have different landfill age, waste volume, and most importantly different hydrogeologic settings. One landfill (Cheonan landfill) is situated in an open flat area while the other (Wonju landfill) is located in a valley. Variations of various parameters including dissolved organic carbon (DOC), dissolved oxygen (DO), alkalinity, pH, electrical conductivity (EC), redox potential (ORP), ammonia (NH3), nitrate (NO{3/-}), sulfate (SO{4/2-}), and chloride (Cl-) were examined along groundwater flow path. All these parameters were analyzed every month for a year. In the interior of the landfills, typical anaerobic conditions revealed by low DO and NO3 concentrations, negative ORP values, high NH3, alkalinity, and Cl- concentrations were observed. Generally, higher levels of contaminants (DOC, NH3, and Cl-) were detected in the dry season while they were greatly lowered in the wet season. Significantly, large decrease of Cl- concentration in the wet season indicates that the dilution or mixing is one of dominant attenuation mechanisms of leachate. But detailed variation behaviors in the two landfills are different and they were largely dependent on permeability of surface and subsurface layers. The intermediately permeable surface of the landfills receives part of direct rainfall infiltration but most rainwater is lost to fast runoff. The practically impermeable surface of clayey silt (paddy field) at immediately adjacent to the Cheonan landfill boundary prevented direct rainwater infiltration and hence redox condition of the ground waters were largely affected by that of the upper landfill and the less permeable materials beneath the paddy fields prohibited dispersion of the landfill leachate into down gradient area. In the Wonju landfill, there are three different permeability divisions, the landfill region, the sandy open field and the paddy field. Roles of the landfill and paddy regions are very similar to those at the Cheonan. The very permeable sandy field receiving a large amount of rainwater infiltration plays a key role in controlling redox condition of the down gradient area and contaminant migration. This paper reports details of the attenuation and redox conditions of the landfill leachates at the two uncontrolled landfills.

  20. Reductive Dechlorination of Chlorinated Ethenes Under Oxidation-Reduction Conditions and Potentiometric Surfaces in Two Trichloroethene-Contaminated Zones at the Double Eagle and Fourth Street Superfund Sites in Oklahoma City, Oklahoma

    USGS Publications Warehouse

    Braun, Christopher L.

    2004-01-01

    The Double Eagle Refining Superfund site and the Fourth Street Abandoned Refinery Superfund site are in northeast Oklahoma City, Oklahoma, adjacent to one another. The Double Eagle facility became a Superfund site on the basis of contamination from lead and volatile organic compounds; the Fourth Street facility on the basis of volatile organic compounds, pesticides, and acid-base neutral compounds. The study documented in this report was done to investigate whether reductive dechlorination of chlorinated ethenes under oxidation-reduction conditions is occurring in two zones of the Garber-Wellington aquifer (shallow zone 30?60 to 75 feet below land surface, deep zone 75 to 160 feet below land surface) at the sites; and to construct potentiometric surfaces of the two water-yielding zones to determine the directions of ground-water flow at the sites. The presence in some wells of intermediate products of reductive dechlorination, dichloroethene and vinyl chloride, is an indication that reductive dechlorination of trichloroethene is occurring. Dissolved oxygen concentrations (less than 0.5 milligram per liter) indicate that consumption of dissolved oxygen likely had occurred in the oxygen-reducing microbial process associated with reductive dechlorination. Concentrations of nitrate and nitrite nitrogen (generally less than 2.0 and 0.06 milligrams per liter, respectively) indicate that nitrate reduction probably is not a key process in either aquifer zone. Concentrations of ferrous iron greater than 1.00 milligram per liter in the majority of wells sampled indicate that iron reduction is probable. Concentrations of sulfide less than 0.05 milligram per liter in all wells indicate that sulfate reduction probably is not a key process in either zone. The presence of methane in ground water is an indication of strongly reducing conditions that facilitate reductive dechlorination. Methane was detected in all but one well. In the shallow zone in the eastern part of the study area, ground water flowing from the northwest and south coalesces in a potentiometric trough, then moves westward and ultimately northwestward. In the western part of the study area, ground water in the shallow zone flows northwest. In the deep zone in the eastern part of the study area, ground water generally flows northwestward; and in the western part of the study area, ground water in the deep zone generally flows northward.

  1. AGU Fall Meeting Street Pedestrians

    USGS Multimedia Gallery

    Pedestrians cross 4th Street outside the AGU Fall Meeting in San Francisco while traffic waits at a stoplight. In the foreground are street banners for the AGU Fall Meeting. In the background is the Moscone Convention Center - West building....

  2. Wet landfill decomposition rate determination using methane yield results for excavated waste samples.

    PubMed

    Kim, Hwidong; Townsend, Timothy G

    2012-07-01

    An increasing number of landfills are operated to accelerate waste decomposition through liquids addition (e.g., leachate recirculation) as a wet landfill. Landfill design and regulation often depend on utilizing landfill gas production models that require an estimate of a first-order gas generation rate constant, k. Consequently, several studies have estimated k using collected gas volumes from operating wet landfills. Research was conducted to examine an alternative approach in which k is estimated not from collected landfill gas but from solid waste samples collected over time and analyzed for remaining gas yield. To achieve this goal, waste samples were collected from 1990 through 2007 at two full-scale landfills in Florida that practiced liquids addition. Methane yields were measured from waste samples collected over time, including periods before and after leachate recirculation, and the results were applied to a first-order decay model to estimate rate constants for each of the sites. An initial, intensive processing step was conducted to exclude non-biodegradable components from the methane yield testing procedure. The resulting rate constants for the two landfills examined were 0.47 yr(-1) and 0.21 yr(-1). These results expectedly exceeded the United States Environmental Protection Agency's rate constants for dry and conventional landfills (0.02-0.05 yr(-1)), but they are comparable to wet landfill rate constants derived using landfill gas data (0.1-0.3 yr(-1)). PMID:22516100

  3. Street Children in Contemporary Greece

    ERIC Educational Resources Information Center

    Altanis, Panagiotis; Goddard, Jim

    2004-01-01

    This article gives an overview of the problem of street children in Greece, within the context of global research on street children. The article draws on preliminary findings from recent research on street children in the urban centre of Athens. This is an under-researched area, with weak policy responses to a problem associated with recent

  4. Landfill mining: Resource potential of Austrian landfills--Evaluation and quality assessment of recovered municipal solid waste by chemical analyses.

    PubMed

    Wolfsberger, Tanja; Aldrian, Alexia; Sarc, Renato; Hermann, Robert; Höllen, Daniel; Budischowsky, Andreas; Zöscher, Andreas; Ragoßnig, Arne; Pomberger, Roland

    2015-11-01

    Since the need for raw materials in countries undergoing industrialisation (like China) is rising, the availability of metal and fossil fuel energy resources (like ores or coal) has changed in recent years. Landfill sites can contain considerable amounts of recyclables and energy-recoverable materials, therefore, landfill mining is an option for exploiting dumped secondary raw materials, saving primary sources. For the purposes of this article, two sanitary landfill sites have been chosen for obtaining actual data to determine the resource potential of Austrian landfills. To evaluate how pretreating waste before disposal affects the resource potential of landfills, the first landfill site has been selected because it has received untreated waste, whereas mechanically-biologically treated waste was dumped in the second. The scope of this investigation comprised: (1) waste characterisation by sorting analyses of recovered waste; and (2) chemical analyses of specific waste fractions for quality assessment regarding potential energy recovery by using it as solid recovered fuels. The content of eight heavy metals and the net calorific values were determined for the chemical characterisation tests. PMID:26347181

  5. A heliospheric vortex street

    SciTech Connect

    Burlaga, L.F. )

    1990-04-01

    This paper presents the hypothesis that the periodic meridional (north-south) flows observed by Voyager 2 in the neighborhood of 20-25 AU were produced by a heliospheric vortex street. The separation of the vortices was approximately 6 AU in the radial direction, and the vortices were carried away from the sun at a speed of approximately 425 km/s. This hypothesis can account for the observed {plus minus}5{degree} deflections in the flow with a period of 25.5 days, and it predicts small amplitude fluctuations in the bulk speed with two maxima per solar rotation, which is consistent with the observations in 1986. A variety of meridional flow profiles is predicted, depending on the position of the spacecraft relative to the symmetry axis of the vortex street. A definitive test of this hypothesis would be provided by simultaneous observations from two spacecraft with a latitudinal separation of the order of the vortex diameter.

  6. Comparison between controlled landfill reactor and conditioned landfill bioreactor.

    PubMed

    Luo, Feng; Chen, Wan-Zhi; Song, Fu-Zhong; Li, Xiao-Peng; Zhang, Guo-Qing

    2004-01-01

    Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. The laboratory-scale simulators of landfill reactors treating municipal solid wastes were studied, the effect of solid waste size, leachate recirculation, nutrient balance, pH value, moisture content and temperature on the rate of municipal solid waste (MSW) biodegradation were determined, and it indicated the optimum pH value, moisture content and temperature decomposing MSW. The results of waste biodegradation were compared with that of the leachate-recirculated landfill simulator and conservative sanitary landfill simulator. In the control experiment the antitheses of a decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was shown. An obvious enhancement of effective disposal from conservative sanitary landfill (CSL) simulator, to the leachate-recirculated landfill (LRL) simulator and to the conditioned bioreactor landfill (CBL) simulator would be noted, through displaying the compared results of solid waste settlement, heavy metal concentration in leachate, methane production rate, biogas composition, BOD and COD as well as their ratio. PMID:15559832

  7. Corrective Action Plan for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada

    SciTech Connect

    Bechtel Nevada

    1998-09-30

    This corrective action plan proposes the closure method for the area 9 unexploded Ordnance landfill, corrective action unit 453 located at the Tonopah Test Range. The area 9 UXO landfill consists of corrective action site no. 09-55-001-0952 and is comprised of three individual landfill cells designated as A9-1, A9-2, and A9-3. The three landfill cells received wastes from daily operations at area 9 and from range cleanups which were performed after weapons testing. Cell locations and contents were not well documented due to the unregulated disposal practices commonly associated with early landfill operations. However, site process knowledge indicates that the landfill cells were used for solid waste disposal, including disposal of UXO.

  8. A case study: Environmental benefit plan for Blydenburgh Landfill

    SciTech Connect

    Hansen, J.M.; Druback, G.W.

    1995-12-31

    The Town of Islip, New York, encompasses 285 square kilometers (110 square miles) along the southern shore of Suffolk County, Long Island. The Town relied upon Blydenburgh Landfill for the disposal of its estimated 290 kilotonnes per year (320,000 tons per year) of municipal solid waste (MSW) without having to contract for off-Long Island hauling and disposal. In 1983, the Long Island Landfill Law was enacted and effectively banned landfilling of raw garbage on most of Long Island after December 18, 1990. The act precluded the economic development of new landfill capacity for the Town. Blydenburgh Landfill was projected to reach capacity in early 1987 and close. To conserve landfill capacity for residential use, the Town prohibited commercial haulers from the landfill in the fall of 1986. In response, the Mobro barge departed Long Island City on March 22, 1987 loaded with commercial MSW that was no longer accepted at the Blydenburgh site. Negative publicity surrounded the Mobro barge and the continuing need to provide for waste disposal. In response, the New York State Department of Environmental Conservation (NYSDEC) and the Town`s Resource Recovery Agency entered into an Order on Consent on May 12, 1987. This allowed for continued operations and a vertical MSW {open_quotes}piggyback{close_quotes} expansion on top of a closed and capped portion of the existing 181,000 square meter (44.8 acre) landfill mound. In addition, the Order on Consent permitted construction of a separate 12,000 square meter (3.0 acre) ash residue vertical piggyback expansion adjacent to the MSW piggyback expansion. Both expansions were designed for and constructed on top of existing landfilled MSW.

  9. 5. VIEW LOOKING SOUTH DOWN SIXTH STREET AT THE INTERSECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW LOOKING SOUTH DOWN SIXTH STREET AT THE INTERSECTION WITH CENTRAL AVENUE. AS PART OF THE INITIAL SITE DEVELOPMENT, A RAILROAD SPUR, ACCESS ROADS, POWER LINES, AND TELEPHONE LINES WERE BUILT. ALL FACILITIES WERE HEATED BY STEAM GENERATED IN BUILDING 443 AND PIPED THROUGHOUT THE SITE. THE BUILDING IN THE BACKGROUND OF THE PHOTOGRAPH IS BUILDING 664, A LOW - LEVEL WASTE STORAGE FACILITY. - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  10. Potential reductions of street solids and phosphorus in urban watersheds from street cleaning, Cambridge, Massachusetts, 2009-11

    USGS Publications Warehouse

    Sorenson, Jason R.

    2013-01-01

    Material accumulating and washing off urban street surfaces and ultimately into stormwater drainage systems represents a substantial nonpoint source of solids, phosphorus, and other constituent loading to waterways in urban areas. Cost and lack of usable space limit the type and number of structural stormwater source controls available to municipalities and other public managers. Non-structural source controls such as street cleaning are commonly used by cities and towns for construction, maintenance and aesthetics, and may reduce contaminant loading to waterways. Effectiveness of street cleaning is highly variable and potential improvements to water quality are not fully understood. In 2009, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, the U.S. Environmental Protection Agency, and the city of Cambridge, Massachusetts, and initiated a study to better understand the physical and chemical nature of the organic and inorganic solid material on street surfaces, evaluate the performance of a street cleaner at removing street solids, and make use of the Source Loading and Management Model (SLAMM) to estimate potential reductions in solid and phosphorus loading to the lower Charles River from various street-cleaning technologies and frequencies. Average yield of material on streets collected between May and December 2010, was determined to be about 740 pounds per curb-mile on streets in multifamily land use and about 522 pounds per curb-mile on commercial land-use streets. At the end-of-winter in March 2011, about 2,609 and 4,788 pounds per curb-mile on average were collected from streets in multifamily and commercial land-use types, respectively. About 86 percent of the total street-solid yield from multifamily and commercial land-use streets was greater than or equal to 0.125 millimeters in diameter (or very fine sand). Observations of street-solid distribution across the entire street width indicated that as much as 96 percent of total solids resided within 9 feet of the curb. Median accumulation rates of street solids and median washoff of street solids after rainstorms on multifamily and commercial land-use streets were also similar at about 33 and 22 pounds per curb-mile per day, and 35 and 40 percent, respectively. Results indicate that solids on the streets tested in Cambridge, Mass., can recover to pre-rainstorm yields within 1 to 3 days after washoff. The finer grain-size fractions tended to be more readily washed from the roadway surfaces during rainstorms. Street solids in the coarsest grain-size fraction on multifamily streets indicated an average net increase following rainstorms and are likely attributed to debris run-on from trees, lawns, and other plantings commonly found in residential areas. In seven experiments between May and December 2010, the median removal efficiency of solids from street surfaces following a single pass by a regenerative-air street cleaner was about 82 percent on study sites in the multifamily land-use streets and about 78 percent on the commercial land-use streets. Median street-solid removal efficiency increased with increasing grain size. This type of regenerative-air street cleaner left a median residual street-solid load on the street surface of about 100 pounds per curb-mile. Median concentrations of organic carbon and total phosphorus (P) on multifamily streets were about 35 and 29 percent greater, respectively, than those found on commercial streets. The median total mass of organic carbon and total P in street solids on multifamily streets was 68 and 75 percent greater, respectively, than those found on commercial streets. More than 87 percent of the mass of total P was determined to be in solids greater than or equal to 0.125 millimeters in diameter for both land-use types. The median total accumulation rate for total P on multifamily streets was about 5 times greater than on commercial streets. Total P accumulation in the medium grain-size fraction was nearly the same for streets within both land-use types at 0.004 pounds per curb-mile per day. Accumulation rates within the coarsest and finest grain-size fractions on multifamily streets were about 11 and 82 times greater than those on the commercial streets. Median washoff of total P was 58 and 48 percent from streets in multifamily and commercial land-use types, respectively, and generally increased with decreasing grain size. Total P median reductions resulting from a single pass of a regenerative-air street cleaner on streets in multifamily and commercial land-use types were about 82 and 62 percent, respectively, and were similar in terms of grain size between both land-use types. A Source Loading and Management Model for Microsoft Windows (WinSLAMM) was applied to a 21.8 acre subcatchment in Cambridge, Mass. The subcatchment area consists of mostly commercial and multifamily land-use types to evaluate the potential reductions of total and particulate solids, and P attributed to street cleaning. Rainwater runoff from rooftops represented between 20 and 50 percent of the total basin runoff. Street surfaces only accounted for about 20 percent of the total basin runoff. Monthly applications of mechanical-brush and vacuum-assisted street cleaners within the subcatchment as defined by SLAMM for areas with long-term (24-hour) on-street parking and monthly parking controls using five average climatic years resulted in total solid reductions of about 3 and 5 percent, respectively. Simulating the regenerative-air street cleaner tested as part of this study resulted in total solid reductions of about 16 percent. Increasing street cleaning frequency to three times weekly increased total solids removal for mechanical-brush, vacuum-assisted, and regenerative-air street cleaners to about 6, 14, and 19 percent, respectively. Monthly applications of mechanical-brush, vacuum-assisted, and regenerative-air street cleaners within the subcatchment resulted in total P reductions of about 1, 3, and 8 percent, respectively. A street cleaning frequency of three times each week for each of the three street-cleaner types increased total P removal to about 3, 7, and 9 percent, respectively.

  11. The Future Through the Past: The Use of Analog Sites for Design Criteria and Long Term Performance Assessment of Evapotranspiration Landfill Covers

    SciTech Connect

    Shafer, D. S.; Miller, J. J.; Young, M. H.; Edwards, S. C.; Rawlinson, S. E.

    2002-02-26

    There is growing support for using evapotranspiration (ET) covers for closure of low-level waste (LLW) and other types of waste disposal sites, particularly in the lower latitude arid regions of the western United States. At the Nevada Test Site (NTS), monolayer ET covers are the baseline technology for closure of LLW and mixed LLW cells. To better predict the long-term performance of monolayer ET covers, as well as to identify design criteria that will potentially improve their performance, the properties of, and processes occurring on, analog sites for ET covers on the NTS are being studied. The project is funded through the Subsurface Contaminants Focus Area of the U.S. Department of Energy. Four analog sites on the NTS have been selected to predict performance of ET covers over a 1,000-year compliance period. Two sites are relatively recently disturbed (within the last 50 years) and have been selected to evaluate processes and changes on ET covers for the early period after active cover maintenance is discontinued. Two other sites, late to mid-Holocene in age, are intended as analogs for the end of the compliance period (1,000 years or more); both surfaces are abandoned alluvial/colluvial deposits. The history of the early post-institutional control analog sites are being evaluated by an archaeologist to help determine when the sites were last disturbed or modified, and the mode of disturbance to help set baseline conditions. Similar to other ''landforms,'' ET covers will evolve over time because of pedogenic, biotic, and climatic processes. Properties of analog sites that could affect ET water balance performance will be evaluated to help understand ET cover performance over time.

  12. Geohydrologic site characterization of the municipal solid waste landfill facility, US Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.

    1996-01-01

    Geohydrologic conditions of the Municipal Solid Waste Landfill Facility (MSWLF) on the U.S. Army Air Defense Artillery Center and Fort Bliss, El Paso County, Texas, were evaluated by the U.S. Geological Survey in cooperation with the U.S. Army. The 106.03-acre MSWLF has been in operation since January 1974. The landfill contains household refuse, Post solid wastes, bulky items, grass and tree trimmings from family housing, refuse from litter cans, construction debris, classified waste (dry), dead animals, asbestos, and empty oil cans. The MSWLF, located about 1,200 feet east of the nearest occupied structure, is estimated to receive an average of approximately 56 tons of municipal solid waste per day and, at a fill rate of 1-4 acres per year, is expected to reach its capacity by the year 2004. The MSWLF is located in the Hueco Bolson, 4 miles east of the Franklin Mountains. Elevations at the MSWLF range from 3,907 to 3,937 feet above sea level. The climate at the MSWLF and vicinity is arid continental, characterized by an abundance of sunny days, high summer temperatures, relatively cool winters typical of arid areas, scanty rainfall, and very low humidity throughout the year. Average annual temperature near the MSWLF and vicinity is 63.3 degrees Fahrenheit and annual precipitation is 7.8 inches. Potential evaporation in the El Paso area was estimated to be 65 inches per year. Soils at and adjacent to the MSWLF are nearly level to gently sloping, have a fine sandy loam subsoil, and are moderately deep over caliche. The MSWLF is underlain by Hueco Bolson deposits of Tertiary age and typically are composed of unconsolidated to slightly consolidated interbedded sands, clay, silt, gravel, and caliche. Individual beds are not well defined and range in thickness from a fraction of an inch to about 100 feet. The primary source of ground water in the MSWLF area is in the deposits of the Hueco Bolson. A relatively thick vadose zone of approximately 300 feet overlies the aquifer of the Hueco Bolson deposits in the vicinity of the MSWLF. A deep water table prevails for all of the study area. Whether any perched water zones exist below the MSWLF is unknown. Under current conditions, extensive ground-water development by the City of El Paso encompasses the MSWLF. Hydraulic characteristics of the Hueco Bolson vary significantly as a result of the nonuniform nature of the individual beds. Wells in the vicinity of the MSWLF range in depth from about 600 feet to greater than 1,200 feet. Recharge resulting from direct infiltration of precipitation is minor due to the high evaporation and low precipitation rates. The hydraulic gradient in the vicinity of the MSWLF is generally to the south but may vary due to pumpage of a well located on the northeast corner of the perimeter boundary. Ground-water monitoring data for the MSWLF vicinity show a water-level decline of 55.65 feet from November 1958 to December 1987. Depth to water at the northeast corner of the MSWLF as of July 26, 1994, was 325.8 feet below land surface. The city-operated Shearman Well Field, located north of the MSWLF, is a primary source of ground water for the City of El Paso. The test-pumping rate of well JL-49-05-914 (the well nearest to the MSWLF having test-pumping data) was 1,972 gallons per minute on July 20, 1992; the static water level prior to pumping was 317.54 feet below land surface. El Paso Water Utilities reports that the pumping level after 8 hours of pumping was 367.80 feet below land surface, resulting in a drawdown of 50.26 feet, transmissivity of 22,200 feet squared per day (166,000 gallons per day per foot), and specific capacity of 39.2 gallons per minute per foot of drawdown. After the well was shut off, the well recovered to a static water level of 317.46 feet below land surface on July 21, 1992. Ground wat

  13. Development of computer simulations for landfill methane recovery

    SciTech Connect

    Massmann, J.W.; Moore, C.A.; Sykes, R.M.

    1981-12-01

    Two- and three-dimensional finite-difference computer programs simulating methane recovery systems in landfills have been developed. These computer programs model multicomponent combined pressure and diffusional flow in porous media. Each program and the processes it models are described in this report. Examples of the capabilities of each program are also presented. The two-dimensional program was used to simulate methane recovery systems in a cylindrically shaped landfill. The effects of various pump locations, geometries, and extraction rates were determined. The three-dimensional program was used to model the Puente Hills landfill, a field test site in southern California. The biochemical and microbiological details of methane generation in landfills are also given. Effects of environmental factors, such as moisture, oxygen, temperature, and nutrients on methane generation are discussed and an analytical representation of the gas generation rate is developed.

  14. INVESTIGATION OF HOLOCENE FAULTING PROPOSED C-746-U LANDFILL EXPANSION

    SciTech Connect

    Lettis, William

    2006-07-01

    This report presents the findings of a fault hazard investigation for the C-746-U landfill's proposed expansion located at the Department of Energy's (DOE) Paducah Gaseous Diffusion Plant (PGDP), in Paducah, Kentucky. The planned expansion is located directly north of the present-day C-746-U landfill. Previous geophysical studies within the PGDP site vicinity interpret possible northeast-striking faults beneath the proposed landfill expansion, although prior to this investigation the existence, locations, and ages of these inferred faults have not been confirmed through independent subsurface exploration. The purpose of this investigation is to assess whether or not Holocene-active fault displacement is present beneath the footprint of the proposed landfill expansion.

  15. Installation of geosynthetic clay liners at California MSW landfills

    SciTech Connect

    Snow, M.; Jesionek, K.S.; Dunn, R.J.; Kavazanjian, E. Jr.

    1997-11-01

    The California regulations for liner systems at municipal solid waste (MSW) landfills require that alternatives to the prescriptive federal Subtitle D liner system have a containment capability greater than that of the prescriptive system. Regulators may also require a demonstration that use of the prescriptive system is burdensome prior to approval of an alternative liner design. This paper presents seven case histories of the design and installation of geosynthetic clay liners (GCL) as an alternative to the low-permeability soil component of the prescriptive Subtitle D composite liner system at MSW landfills in California. These case histories cover GCLs from different manufacturers and landfill sites with a wide range of conditions including canyon landfills with slopes as steep as 1H:1V.

  16. The future through the past: The use of analog sites for design criteria and long-term performance assessment of evapotranspiration landfill covers.

    SciTech Connect

    David Shafer; Julianne Miller; Susan Edwards; Stuart Rawlinson

    2001-10-18

    There is growing support for using evapotranspiration (ET) covers for closure of low-level waste (LLW) and other types of waste disposal sites, particularly in the lower latitude arid regions of the western United States. For the Nevada Test Site (NTS), monolayer ET covers is the baseline technology for closure of LLW and mixed LLW cells. To better predict the long-term performance of monolayer ET covers, as well as to identify design criteria that will potentially improve their performance, the properties of, and processes occurring on, analog sites for ET covers on the NTS are being studied. Four analog sites on the NTS have been selected to predict performance of ET covers over a 1,000-year compliance period. Two are relatively recently disturbed sites (within the last 50 years) and have been selected for the evaluation of processes and changes on ET covers for the early period of post-institutional controls when cover maintenance would be discontinued. Two other sites, late to mid-Holocene in age, are intended as analogs for the end (1,000 years or more) of the compliance period. The late to mid-Holocene surfaces are both abandoned alluvial/colluvial deposits, dated by thermoluminescence analysis. The history of the early post-institutional control analog sites is being evaluated by an archaeologist to help determine when the sites were last disturbed or modified and the mode of disturbance, to help set baseline conditions. Similar to the other ''landforms,'' ET covers will evolve over time because of pedogenic, biotic, and climatic processes. Properties of analog sites that could affect ET water-balance performance will be evaluated to help understand ET cover performance over time. Results of analog site work and resultant modifications to design, monitoring and maintenance of ET covers on the NTS will be compared with results of a similar study being done at Sandia National Laboratories (SNL), where ET cover closures are planned as well. The comparison will help to distinguish potential regional differences needed in ET cover design. Although both sites are at similar latitudes, the NTS is located in a transition zone between the Mojave and southern Great Basin deserts, while SNL is located in the northern Chihuahuan desert. Differences in vegetation and seasonality of precipitation between the sites are significant.

  17. Air emissions assessment and air quality permitting for a municipal waste landfill treating municipal sewage sludge

    SciTech Connect

    Koehler, J.

    1998-12-31

    This paper presents a case study into the air quality permitting of a municipal solid waste (MSW) landfill in the San Francisco Bay Area undergoing a proposed expansion in operations to increase the life of the landfill. The operations of this facility include MSW landfilling, the treatment and disposal of municipal sewage sludge, the aeration of petroleum-contaminated soils, the construction of a new on-site plant to manufacture soil amendment products from waste wood and other organic material diverted from the landfill, and the installation of a vaporator to create steam from leachate for injection into the landfill gas flare. The emissions assessment for each project component relied upon interpretation of source tests from similar operations, incorporation of on-site measurements into emissions models and mass balances, and use of AP-42 procedures for emissions sources such as wind-blown dust, material handling and transfer operations, and fugitive landfill gas. Air permitting issues included best available control technology (BACT), emission offset thresholds, new source performance standards (NSPS), potential air toxics health risk impacts, and compliance with federal Title V operating permit requirements. With the increasing difficulties of siting new landfills, increasing pressures to reduce the rate of waste placement into existing landfills, and expanding regulatory requirements on landfill operations, experiences similar to those described in this paper are likely to increase in the future as permitting scenarios become more complex.

  18. Perpetual landfilling through aeration of the waste mass; lessons from test cells in Georgia (USA).

    PubMed

    Read, A D; Hudgins, M; Phillips, P

    2001-01-01

    Municipal solid waste (MSW) landfills worldwide are experiencing the consequences of conventional landfilling techniques, whereby anaerobic conditions are created within the landfilled waste. Under anaerobic conditions within a landfill site slow stabilization of the waste mass occurs, producing methane, (an explosive 'green house' gas) and leachate (which can pollute groundwater) over long periods of time. As a potential solution, it was demonstrated that the aerobic degradation of MSW within a landfill can significantly increase the rate of waste decomposition and settlement, decrease the methane production and leachate leaving the system, and potentially increase the operational life of the site. Readily integrated into the existing landfill infrastructure, this approach can safely and cost-effectively convert a MSW landfill from anaerobic to aerobic degradation processes, thereby effectively composting much of the organic portions (one of the potentially polluting elements in a conventional landfill site) of the waste. This paper summarizes the successful results of two separate aerobic landfill projects located in Georgia (USA) and discusses the potential economic and environmental impacts to worldwide solid waste management practices. PMID:11530917

  19. Ecological risk assessment of the impact of a landfill associated with karst terrain

    SciTech Connect

    Farmer, J.J.; Bailey, F.C.; Hollyday, E.F.; Byle, T.D.

    1995-12-31

    An ecological risk assessment is underway on an active sanitary landfill in Bedford County, Tennessee. The overall objective is to determine the probability of risk from landfill-associated toxicants to both the aquatic ecological communities and to human health through drinking water contamination. During the problem formulation phase, an EPA Rapid Bioassessment (Protocol I) of streams around the landfill indicated a lower diversity and abundance of benthic macroinvertebrates in streams adjacent to the landfill compared to reference streams. During the analysis phase, water chemistry analyses were conducted on samples from 176 sites around the landfill, including seeps and springs, and the direction of movement of ground water under the site was determined by potentiometric mapping. Water flowing into Anderton Branch from landfill-associated tributaries, seeps and springs showed elevated specific conductance and elevated levels of chloride, manganese, iron, and nickel. GC-FID analysis indicated the presence of unidentified organic compounds in a small seep adjacent to the landfill. From these data it was concluded that there is potential for exposure of aquatic ecological communities and drinking water supplies to landfill-associated chemicals. In order to more thoroughly characterize ecological and human health risk associated with the landfill, more intensive analyses are underway, including quantitative seasonal macroinvertebrate biomonitoring, laboratory toxicity tests with Daphnia magna using water from selected monitoring sites, and monitoring of drinking water wells.

  20. Aerobic in situ stabilization of Landfill Konstanz Dorfweiher: leachate quality after 1 year of operation.

    PubMed

    nc, G; Reiser, M; Kranert, M

    2012-12-01

    Modern landfill understanding points out controlled operation of landfills. Emissions from landfills are caused mainly by anaerobic biodegradation processes which continue for very long time periods after landfill closure. In situ landfill stabilization aims controlled reduction of emissions towards reduced expenditures as well as aftercare measures. Since April 2010, a new in situ stabilization technique is being applied at a pilot scale landfill (BAIV) within Landfill Konstanz Dorfweiher. This new method utilizes intermittent aeration and leachate recirculation for waste stabilization. In this study, influence of this technique on leachate quality is investigated. Among many other parameters, leachate analyses were conducted for COD, BOD(5), NH(4)-N, NO(2)-N, NO(3)-N, TKN and chloride besides continuously on site recorded pH, electrical conductivity and oxidation-reduction potential (ORP). Results from leachate quality analyses showed that biological activity in the landfill was accelerated resulting in initial higher leachate strength and reduced emission potential of landfill. During full scale in situ aeration, ambient conditions differ from optimized laboratory scale conditions which mainly concern temperature increase and deficient aeration of some landfill parts (Ritzkowski and Stegmann, 2005). Thus, as a field application results of this study have major importance on further process optimization and application. PMID:22938814

  1. Assessment of groundwater contamination by landfill leachate: a case in Mxico.

    PubMed

    Reyes-Lpez, Jaime A; Ramrez-Hernndez, Jorge; Lzaro-Mancilla, Octavio; Carren-Diazconti, Concepcin; Garrido, Miguel Martn-Loeches

    2008-01-01

    In Mxico, uncontrolled landfills or open-dumps are regularly used as "sanitary landfills". Interactions between landfills/open-dumps and shallow unconfined aquifers have been widely documented. Therefore, evidence showing the occurrence of aquifer contamination may encourage Mexican decision makers to enforce environmental regulations. Traditional methods such as chemical analysis of groundwater, hydrological descriptions, and geophysical studies including vertical electrical sounding (VES) and ground penetrating radar (GPR) were used for the identification and delineation of a contaminant plume in a shallow aquifer. The Guadalupe Victoria landfill located in Mexicali is used as a model study site. This landfill has a shallow aquifer of approximately 1m deep and constituted by silty sandy soil that may favor the transport of landfill leachate. Geophysical studies show a landfill leachate contaminant plume that extends for 20 and 40 m from the SE and NW edges of the landfill, respectively. However, the zone of the leachate's influence stretches for approximately 80 m on both sides of the landfill. Geochemical data corroborates the effects of landfill leachate on groundwater. PMID:18595685

  2. A heliospheric vortex street?

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1990-01-01

    This paper presents the hypothesis that the periodic meridional (north-south) flow observed by Voyager 2 in the neighborhood of 20-25 AU were produced by a heliospheric vortex street. The separation of the vortices was approximately 6 AU in the radial direction, and the vortices were carried away from the sun at a speed of approximately 425 km/s. This hypothesis can account for the observed + or - 5 degree deflections in the flow with a period of 25.5 days, and it predicts small amplitude fluctuations in the bulk speed with two maxima per solar rotation, which is consistent with observations in 1986.

  3. Stabilizing Waste Materials for Landfills

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1977

    1977-01-01

    The test procedures used to evaluate the suitability of landfilled materials of varying stability and to determine the leachate from such materials are reviewed. A process for stabilizing a mixture of sulfur dioxide sludge, fly ash, and bottom ash with lime and other additives for deposition in landfills is detailed. (BT)

  4. MONITORING GUIDANCE FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  5. OUTER LOOP LANDFILL CASE STUDY

    EPA Science Inventory

    This presentation will describe the interim data reaulting from a CRADA between USEPA and Waste Management, Inc. at the outer Loop Landfill Bioreactor research project located in Louisville, KY. Recently updated data will be presented covering landfill solids, gas being collecte...

  6. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 40 CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppo...

  7. Superfund Record of Decision (EPA Region 7): Red Oak Landfill, Red Oak, IA, March 1993

    SciTech Connect

    Not Available

    1993-03-01

    This decision document presents the selected remedial action for the Red Oak Landfill Superfund site, in Red Oak, Montgomery County, Iowa. The selected remedial action at the Red Oak City Landfill Superfund Site (herein referred to as 'the Red Oak Landfill' or 'the Site') addresses all identified remedial action objectives, and is to be implemented in a single operable unit. This action addresses the principal threat at the Site through containment of the waste materials. The containment system will limit the threat of direct contact with wastes, and minimize the potential for migration of contaminants to ground water and surface water.

  8. Applying guidance for methane emission estimation for landfills

    SciTech Connect

    Scharff, Heijo . E-mail: h.scharff@afvalzorg.nl; Jacobs, Joeri . E-mail: j.jacobs@afvalzorg.nl

    2006-07-01

    Quantification of methane emission from landfills is important to evaluate measures for reduction of greenhouse gas emissions. Both the United Nations and the European Union have adopted protocols to ensure quantification of methane emission from individual landfills. The purpose of these protocols is to disclose emission data to regulators and the general public. Criteria such as timeliness, completeness, certainty, comparability, consistency and transparency are set for inclusion of emission data in a publicly accessible database. All methods given as guidance to landfill operators to estimate landfill methane emissions are based on models. In this paper the consequences of applying six different models for estimates of three landfills are explored. It is not the intention of this paper to criticise or validate models. The modelling results are compared with whole site methane emission measurements. A huge difference in results is observed. This raises doubts about the accuracy of the models. It also indicates that at least some of the criteria previously mentioned are not met for the tools currently available to estimate methane emissions from individual landfills. This will inevitably lead to compiling and comparing data with an incomparable origin. Harmonisation of models is recommended. This may not necessarily reduce uncertainty, but it will at least result in comparable, consistent and transparent data.

  9. Trends in sustainable landfilling in Malaysia, a developing country.

    PubMed

    Fauziah, S H; Agamuthu, P

    2012-07-01

    In Malaysia, landfills are being filled up rapidly due to the current daily generation of approximately 30,000 tonnes of municipal solid waste. This situation creates the crucial need for improved landfilling practices, as sustainable landfilling technology is yet to be achieved here. The objective of this paper is to identify and evaluate the development and trends in landfilling practices in Malaysia. In 1970, the disposal sites in Malaysia were small and prevailing waste disposal practices was mere open-dumping. This network of relatively small dumps, typically located close to population centres, was considered acceptable for a relatively low population of 10 million in Malaysia. In the 1980s, a national programme was developed to manage municipal and industrial wastes more systematically and to reduce adverse environmental impacts. The early 1990s saw the privatization of waste management in many parts of Malaysia, and the establishment of the first sanitary landfills for MSW and an engineered landfill (called 'secure landfill' in Malaysia) for hazardous waste. A public uproar in 2007 due to contamination of a drinking water source from improper landfilling practices led to some significant changes in the government's policy regarding the country's waste management strategy. Parliament passed the Solid Waste and Public Cleansing Management (SWPCM) Act 2007 in August 2007. Even though the Act is yet to be implemented, the government has taken big steps to improve waste management system further. The future of the waste management in Malaysia seems somewhat brighter with a clear waste management policy in place. There is now a foundation upon which to build a sound and sustainble waste management and disposal system in Malaysia. PMID:22455994

  10. AMBIENT MONITORING FOR PCB AFTER REMEDIAL CLEANUP OF TWO LANDFILLS IN THE BLOOMINGTON, INDIANA AREA

    EPA Science Inventory

    A monitoring program was conducted to determine PCB levels in ambient air on and in the vicinity of two landfills at which interim remedial cleanup measures have been performed. The landfill sites are in the Bloomington, Indiana area. The sampling locations and methods used were ...

  11. Assessment of Kuwait's Al-Qurain landfill using remotely sensed data.

    PubMed

    Kwarteng, A Y; Al-Enezi, A

    2004-01-01

    Kuwait's Al-Qurain landfill problem resulted from indiscriminate dumping of domestic and industrial waste in an abandoned quarry in the late 1970s and early 1980s. The landfill and surrounding areas were set aside for a government housing project without an environmental assessment of the impact of the landfill on the project. Inhabitants of the newly constructed housing area experienced persistent foul odor emanating from the landfill site. Since then, the issue has generated a lot of public interests, and several remediation measures have been adopted. In this preliminary study, several remotely sensed data consisting of Landsat Multispectral Scanner (MSS), Landsat Thematic Mapper (TM), IKONOS, and synthetic aperture radar (SAR) acquired between 1972 and 2000 were processed and assessed for their usefulness to study and monitor the landfill site. The imagery provided a historical perspective of how the areas had changed over the last 30 years. Other useful information of the landfill obtained from the satellite imagery included the spatial extent, spectral reflectance, surface temperature, and surface roughness. The landfill site showed higher surface temperatures compared to the immediate surrounding areas-a process that could accelerate the biodegradation and the release of landfill gases. Such dataset could be incorporated into a GIS for the long-term monitoring of the site. PMID:15027819

  12. CHEMICAL AND PHYSICAL EFFECTS OF MUNICIPAL LANDFILLS ON UNDERLYING SOILS AND GROUNDWATER

    EPA Science Inventory

    Three municipal landfill sites in the eastern and central United States were studied to determine the effects of the disposal facilities on surrounding soils and groundwater. Borings were made up the groundwater gradient, down the groundwater gradient and through the landfill. So...

  13. RCRA SUBTITLE D (258): SEISMIC DESIGN GUIDANCE FOR MUNICIPAL SOLID WASTE LANDFILL FACILITIES

    EPA Science Inventory

    On October 9, 1993, the new RCRA Subtitle D regulation (40CFR Part 258) went into effect. hese regulations are applicable to landfills reclining solid waste (MSW) and establish minimum Federal criteria for the siting, design, operations, and closure of MSW landfills. hese regulat...

  14. RCRA SUBTITLE D (258): SEISMIC DESIGN GUIDANCE FOR MUNICIPAL SOLID WASTE LANDFILL FACILITIES

    EPA Science Inventory

    On October 9, 1993, the new RCRA Subtitle D regulations (40 CFR Part 258) went into effect. These regulations are applicable to landfills receiving municipal solid waste (MSW) and establish minimum Federal criteria for the siting, design, operation, and closure of MSW landfills....

  15. 8. PARK AVENUE EAST OF CEDAR STREET (400 Block). THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. PARK AVENUE EAST OF CEDAR STREET (400 Block). THE MARCHION HARDWARE BUILDING WAS DESIGNED BY W.W. HISLOP, AND BUILT IN 1895. THE GROUND FLOOR WAS RENOVATED SOME TIME IN THE 1930s. IN THE CENTER IS THE IMPERIAL BLOCK (ca. 1920), AND THE FULLER DRUG COMPANY (1918-1932).THE FULLER SITE WAS OCCUPIED BY THE HIGHLAND THEATER FROM 1932 TO 1972, AND RETAINS MUCH OF THE INTERIOR DECORATION FROM THAT PERIOD - Anaconda Historic District, Park & Commercial Streets, Main Street vicinity, Anaconda, Deer Lodge County, MT

  16. Public-health assessment for Delta Quarries/Stotler Landfill, Antis and Logan Townships, Blair County, Pennsylvania, Region 3. CERCLIS No. PAD981038052. Final report

    SciTech Connect

    Not Available

    1992-07-15

    The Delta Quarries/Stotler Landfill is a National Priorities List (NPL) site located approximately two miles north of Altoona in Antis and Logan Townships, Blair County, Pennsylvania. The site is an inactive, unpermitted municipal waste disposal facility which was closed in 1987. Previously, the site consisted of two separate landfills, the Stotler Landfill and the Parshall-Kruise Landfill. Ground water was found to be contaminated with volatile organic compounds and metals. The majority of the homes within a one-mile radius of the site rely on private wells for their drinking water. Of these wells, only about five are located within 500 feet downgradient from the site. In the past, nearby residents were concerned about potential exposure to site contaminants through their well water. Environmental media associated with the site appear minimally affected by the landfill. There is no known public health risk, at this time, associated with the landfill and the site represents no apparent public health hazard.

  17. Health assessment for Seattle Municipal Landfill (Kent Highlands Landfill) Kent, King County, Washington, Region 10. CERCLIS No. WAD980639462. Preliminary report

    SciTech Connect

    Not Available

    1990-09-12

    The Kent Highlands Landfill, also known as the Seattle Municipal Landfill, is located in Kent, Washington, approximately 14 miles south of Seattle. The landfill operated from 1968 to 1986 and accepted municipal waste from Seattle and surrounding areas. The wastes consisted of residential, industrial, and commercial materials. The site, which has been proposed for inclusion on the National Priorities List, is inoperative and closure activities are under way. Leachate and soil gases, mostly methane, are now detected at the site. The leachate is reported to contain organic contaminants and some heavy metals. The Agency for Toxic Substances and Disease Registry considers the Kent Highlands Landfill a potential public health concern because of the presence of methane gases generated on-site and the possible migration of contaminants from the site to surface water in the vicinity and possibly contaminating edible aquatic life.

  18. General view of underground along 9th street. J street segment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of underground along 9th street. J street segment intersects at left, 9th street segment intersects alley at right. View to the east. - Coolot Building, 812 J Street, Sacramento, Sacramento County, CA

  19. View of South TwentyEighth Street from south boundary of Easter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of South Twenty-Eighth Street from south boundary of Easter Hill project site. Buildings No. 15, 16, 41, 46, 45, and 48 from left to right. Church Building at right foreground is not an element of Easter Hill object site. Looking north - Easter Hill Village, Bordered by South Twenty-sixth Street, South Twenty-eighth Street, Hinkley Avenue, Foothill Avenue & Corto Square, Richmond, Contra Costa County, CA

  20. Groundwater Monitoring Plan for the Nonradioactive Dangerous Waste Landfill

    SciTech Connect

    J.S. Lindberg; M.J. Hartman

    1999-08-17

    The Nonradioactive Dangerous Waste Landfill (NRDWL), which received nonradioactive hazardous waste between 1975 and 1985, is located in the central Hanford Site (Figure 1.1) in southeastern Washington State. The Solid Waste Landfill, which is regulated and monitored separately, is adjacent to the NRDWL. The NRDWL is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA) and monitored by Pacific Northwest National Laboratory. Monitoring is done under interim-status, indicator-evaluation requirements (WAC 173-303 and by reference, 40 CFR 265.92). The well network includes three upgradient wells (one shared with the Solid Waste Landfill) and six downgradient wells. The wells are sampled semiannually for contaminant indicator parameters and site-specific parameters and annually for groundwater quality parameters.

  1. Detail view illustrating existing (typical) sidewalks and street trees within ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view illustrating existing (typical) sidewalks and street trees within the Vale Historic District - Vale Commercial Historic District, A Street between Holland & Longfellow Streets, north side of B Street between Holland & Main Streets, Main Street South from A Street through B Street, & Stone House at 283 Main Street South, Vale, Malheur County, OR

  2. Perspective view of the Rex Theater, 240 A Street West, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of the Rex Theater, 240 A Street West, view looking north - Vale Commercial Historic District, A Street between Holland & Longfellow Streets, north side of B Street between Holland & Main Streets, Main Street South from A Street through B Street, & Stone House at 283 Main Street South, Vale, Malheur County, OR

  3. Report: landfill alternative daily cover: conserving air space and reducing landfill operating cost.

    PubMed

    Haughey, R D

    2001-02-01

    Title 40, Part 258 of the Code of Federal Regulations, Solid Waste Disposal Facility Criteria, commonly referred to as Subtitle D, became effective on October 9, 1993. It establishes minimum criteria for solid waste disposal facility siting, design, operations, groundwater monitoring and corrective action, and closure and postclosure maintenance, while providing EPA-approved state solid waste regulatory programs flexibility in implementing the criteria. Section 258.21(a) [40 CFR 258.21(a)] requires owners or operators of municipal solid waste landfill (MSWLF) units to cover disposed solid waste with 30cm of earthen material at the end of the operating day, or at more frequent intervals, if necessary, to control disease vectors, fires, odours, blowing litter, and scavenging. This requirement is consistent with already existing solid waste facility regulations in many states. For many MSWLFs, applying daily cover requires the importation of soil which increases landfill operating costs. Daily cover also uses valuable landfill air space, reducing potential operating revenue and the landfill's operating life. 40 CFR 258.21 (b) allows the director of an approved state to approve alternative materials of an alternative thickness if the owner or operator demonstrates that the alternative material and thickness will control disease vectors, fires, odours, blowing litter, and scavenging without presenting a threat to human health and the environment. Many different types of alternative daily cover (ADC) are currently being used, including geosynthetic tarps, foams, garden waste, and auto shredder fluff. These materials use less air space than soil and can reduce operating costs. This paper discusses the variety of ADCs currently being used around the country and their applicability to different climates and operating conditions, highlighting the more unusual types of ADC, the types of demonstrations necessary to obtain approval of ADC, and the impact on landfill air space and operating costs of ADC use. PMID:11525478

  4. Landfilling ash/sludge mixtures

    SciTech Connect

    Benoit, J.; Eighmy, T.T.; Crannell, B.S.

    1999-10-01

    The geotechnical properties of a mixture of municipal solid waste incinerator bottom ash and municipal wastewater treatment plant sludge was investigated for a proposed ash/sludge secure landfill. The components as well as mixtures ranging from 10:1 to 5:1 (ash:sludge, by volume) were evaluated, where appropriate, for a number of geotechnical index and mechanical properties including particle size, water content, specific gravity, density-moisture relationships, shear strength, and compressibility. The results from a compactibility study and stability analysis of the proposed landfill were used to help approve a landfill codisposal concept; a full-scale facility was constructed and is currently operating successfully.

  5. Endogenous mitigation of H2S inside of the landfills.

    PubMed

    Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang

    2016-02-01

    Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes. PMID:26423286

  6. Field survey of enteric viruses in solid waste landfill leachates.

    PubMed Central

    Sobsey, M D

    1978-01-01

    Because municipal solid waste may contain fecal material from a variety of sources, there is concern that the leachate discharged from some solid waste landfills may contain enteric pathogens, including enteric viruses. In this study, 22 leachate samples from 21 different landfills in the United States and Canada were examined for enteric viruses. The sites represented a broad range of conditions for solid waste landfills and the leachate samples ranged from 10.3 to 18 liters in volume. Enteric viruses were found in only one of the 22 leachate samples examined. Two viruses, identified as poliovirus types 1 and 3, were found in an 11.8 liter sample obtained from a site where solid waste landfill practice was deficient. The low levels of enteric viruses detected in field samples of raw leachate and the opportunities for further reductions in the virus concentration of leachates by such processes as thermal inactivation, removal by soil and dilution in ground and surface waters, suggest that leachates from properly operated solid waste landfills do not constitute an environmental or public health hazard due to enteric viruses. PMID:28677

  7. Photochemistry of reduced sulfur compounds in a landfill environment

    NASA Astrophysics Data System (ADS)

    Shon, Zang-Ho; Kim, Ki-Hyun; Jeon, Eui-Chan; Kim, Min-Young; Kim, Yoo-Keun; Song, Sang-Keun

    This study examines the distribution characteristics of reduced sulfur compounds (RSCs such as DMS, CS 2, H 2S, DMDS, and CH 3SH) and their photochemical reactions in landfill air. The photochemical conversions of RSCs to a further oxidized form, SO 2 were evaluated in the landfill site using a photochemical box model. Measurements of RSCs were carried out from landfill areas in Daegu, Korea, during a wintertime period (e.g., 13-16 Jan 2004). This study indicated that H 2S was the most dominant RSC in the landfill, with the concentrations of 4.25.8 ppbv. The chemical species of RSCs, which may exert influences on the SO 2 production depending on sampling conditions, were found to include DMS, DMDS, and H 2S. In general, the RSC contribution to the observed SO 2 levels was insignificant in the sampling sites investigated. Overall, the extent of the RSC oxidation to the observed SO 2 varied dramatically during the sampling period. The photochemical conversion of the RSCs in the landfill environment can account for about 15% of the observed SO 2, on average. There was a strong correlation between DMS and SO 2 concentration levels during the study period.

  8. Hydrogeology and water-quality conditions at the City of Olathe Landfill, east-central Kansas, 1990-93

    USGS Publications Warehouse

    Rasmussen, P.P.; Shockley, J.C.; Hargadine, D.A.

    1994-01-01

    Water quality at the City of Olathe Landfill in east-central Kansas was examined in relation to hydrogeologic conditions to help determine the effects of the landfill on shallow ground water. This study focused on the Wyandotte and Plattsburg Limestones underlying the landfill. The Wyandotte Limestone underlies the entire landfill, whereas the overlying Plattsburg Limestone crops out within the landffll boundaries. Little Cedar Creek, an unnamed tributary, and a pond are located in the landfill. Water samples from seven monitoring wells and five surface-water sites in the vicinity of the City of Olathe Landfill were collected for analysis of inorganic and organic constituents. The inorganic constituents in the ground water that are most affected in the vicinity of the landfill are calcium, magnesium, sodium, bicarbonate, ammonia, barium, iron, and manganese. The dissolved- organic-carbon concentration at a seep flowing from the Plattsburg Limestone was 1,400 milligrams per liter, indicating that the landfill is affecting the water quality near the seep. Benzene was detected in all of the water samples, and the largest concentration was in a sample collected upgradient of the landfill. The benzene concentration exceeded the U.S. Environmental Protection Agency's Maximum Contaminant Level (0.005 milligram per liter) for drinking-water supplies. Six of the eight specific organic compounds detected were found in a water sample collected from the Plattsburg Limestone immediately downgradient of the landfill. No organic compoands, except benzene, were detected in samples collected from the Wyandotte Limestone downgradient of the landfill.

  9. LANDFILL CONTAINMENT AND COVER SYSTEMS

    EPA Science Inventory

    The U.S. Environmental Protection Agency through its research and field experiences has developed control strategies for hazardous and municipal solid waste landfills and surface impoundments. hese control strategies include liner and cover systems. he liner systems include doubl...

  10. Superfund Record of Decision (EPA Region 7): Fulbright/Sac River Landfill, Missouri (first remedial action), September 1988. Final report

    SciTech Connect

    Not Available

    1988-09-30

    The Fulbright and Sac River Landfills are located just north of the City of Springfield, Missouri, in a semirural area. The landfills were operated by the city for the disposal of municipal and industrial solid wastes. The site, however, could endanger human health or the environment in the future through exposure of the industrial wastes through erosion of the landfill cover. The selected remedial action for this site includes: removal of the drum and drum remnants found in the sinkhole and associated trench east of the Fulbright Landfill; sampling the removed contents to determine hazardous characteristics; proper offsite treatment or disposal.

  11. Health assessment for Dover Municipal Landfill, Stratford County, Dover, New Hampshire, Region 1. CERCLIS No. NHD980520191. Final report

    SciTech Connect

    Not Available

    1989-04-12

    The Dover Municipal Landfill is an inactive landfill located on Tolend Road in the western corner of Dover, New Hampshire. Specific wastes include municipal trash, leather tanning wastes, industrial solvents, and municipal wastewater treatment plant sludge. Contamination at the landfill exists in on-site groundwater, leachate, sediments, and soil. The Dover Municipal Landfill site is of potential public health concern due the potential risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects.

  12. Leachate plumes in ground water from Babylon and Islip landfills, Long Island, New York

    USGS Publications Warehouse

    Kimmel, Grant E.; Braids, O.C.

    1977-01-01

    Landfills operated by the towns of Babylon and Islip in southwest and central Suffolk County, N.Y., contain urban refuse , incinerated garbage, and scavenger (cesspool) waste; some industrial refuse is deposited at the Babylon site. The Islip landfill was started in 1933, the Babylon landfill in 1947. The landfills are in contact with and discharge leachate into the highly permeable upper glacial aquifer hydraulic conductivity 190 to 500 ft/d. The aquifer is 74 feet thick at the Babylon landfill and 170 feet thick at the Islip landfill. The leachate-enriched water occupies the entire thickness of the aquifer beneath both landfills, but hydrologic boundaries retard downward migration of the plumes to deeper aquifers. The Babylon plume is 1,900 feet wide at the landfill and narrows to about 700 feet near its terminus 10,000 feet from the landfill. The Islip plume is 1,400 feet wide at the landfill and narrows to 500 feet near its terminus 5,000 feet from the landfill. Hydrochemical maps and sections show the distribution of the major chemical constituents of the plumes. The most highly leachate-enriched ground water obtained was from the Babylon site; it contained 860 mg/liter sodium, 110 mg/liter potassium, 565 mg/liter calcium, 100 mg/liter magnesium, 2,700 mg/liter bicarbonate, and 1,300 mg/liter chloride. Simulation of the movement and dispersion of the Babylon plume with a mathematical dispersion model indicated the coefficient of longitudinal dispersion to be about 60 feet squared per day and the ground-water velocity to be 1 ft/d. However, the velocity determined from the hydraulic gradient and public-supply wells in the area was 4 ft/d, which would cause a plume four times as long as that predicted by the model. (Woodard-USGS)

  13. Tips for profitable landfill acquisitions

    SciTech Connect

    Nangunoori, R.K.; Duffy, D.P.

    1994-05-01

    There is a gap between the amount of solid wastes generated and te landfill capacity. The acquisition of existing facilites and their remaining disposal space are a good option. The acquisitions by large firms have slowed down, but those by secondary and regional firms have increased. This paper presents information which could aid the prospective buyer and related staffing in making a feasible decision to acquire a sanitary landfill.

  14. Release and conversion of ammonia in bioreactor landfill simulators.

    PubMed

    Lubberding, Henk J; Valencia, Roberto; Salazar, Rosemarie S; Lens, Piet N L

    2012-03-01

    Bioreactor landfills are an improvement to normal sanitary landfills, because the waste is stabilised faster and the landfill gas is produced in a shorter period of time in a controlled way, thus enabling CH(4) based energy generation. However, it is still difficult to reach, within 30 years, a safe status of the landfill due to high NH(4)(+) levels (up to 3 g/L) in the leachate and NH(4)(+) is extremely important when defining the closure of landfill sites, due to its potential to pollute aquatic environments and the atmosphere. The effect of environmental conditions (temperature, fresh versus old waste) on the release of NH(4)(+) was assessed in experiments with bench (1 L) and pilot scale (800 L) reactors. The NH(4)(+) release was compared to the release of Cl(-) and BOD in the liquid phase. The different release mechanisms (physical, chemical, biological) of NH(4)(+) and Cl(-) release from the solid into the liquid phase are discussed. The NH(4)(+) level in the liquid phase of the pilot scale reactors starts decreasing after 100 days, which contrasts real-scale observations, where the NH(4)(+) level increases or remains constant. Based on the absence of oxygen in the simulators, the detectable levels of hydrazin and the presence of Anammox bacteria, it is likely that Anammox is involved in the conversion of NH(4)(+) into N(2). Nitrogen release was shown to be governed by physical and biological mechanisms and Anammox bacteria are serious candidates for the nitrogen removal process in bioreactor landfills. These results, combined with carbon removal and improved hydraulics, will accelerate the achievement of environmental sustainability in the landfilling of municipal solid waste. PMID:20884112

  15. Pharmaceuticals and other organic wastewater contaminants within a leachate plume downgradient of a municipal landfill

    USGS Publications Warehouse

    Barnes, Kimberlee K.; Christenson, Scott C.; Kolpin, Dana W.; Focazio, Michael J.; Furlong, Edward T.; Zaugg, Steven D.; Meyer, Michael T.; Barber, Larry B.

    2004-01-01

    Ground water samples collected from the Norman Landfill research site in central Oklahoma were analyzed as part of the U.S. Geological Survey (USGS) Toxic Substances Hydrology Program's national reconnaissance of pharmaceuticals and other organic waste water contaminants (OWCs) in ground water. Five sites, four of which are located downgradient of the landfill, were sampled in 2000 and analyzed for 76 OWCs using four research methods developed by the USGS. OWCs were detected in water samples from all of the sites sampled, with 22 of the 76 OWCs being detected at least once. Cholesterol (a plant and animal steroid), was detected at all five sites and was the only compound detected in a well upgradient of the landfill. N,Ndiethyltoluamide (DEET used in insect repellent) and tri(2-chloroethyl) phosphate (fire-retardant) were detected in water samples from all four sites located within the landfill-derived leachate plume. The sites closest to the landfill had more detections and greater concentrations of each of the detected compounds than sites located farther away. Detection of multiple OWCs occurred in the four sites located within the leachate plume, with a minimum of four and a maximum of 17 OWCs detected. Because the landfill was established in the 1920s and closed in 1985, many compounds detected in the leachate plume were likely disposed of decades ago. These results indicate the potential for long-term persistence and transport of some OWCs in ground water.

  16. Enhanced Landfill Mining case study: Innovative separation techniques

    NASA Astrophysics Data System (ADS)

    Cuyvers, Lars; Moerenhout, Tim; Helsen, Stefan; Van de Wiele, Katrien; Behets, Tom; Umans, Luk; Wille, Eddy

    2014-05-01

    In 2011, a corporate vision on Enhanced Landfill Mining (ELFM)1 was approved by the OVAM Board of directors, which resulted in an operational programme over the period 2011-2015. OVAM (Public Waste Agency of Flanders) is the competent authority in charge of waste, Sustainable Materials Management (SMM) and contaminated soil management in Flanders. The introduction of the ELFM concept needs to be related with the concept of SMM and the broader shift to a circular economy. Within the concept of ELFM, landfills are no longer considered to be a final and static situation, but a dynamic part of the materials cycle. The main goal of this research programme is to develop a comprehensive policy on resource management to deal with the issue of former landfills. In order to investigate the opportunities of ELFM, the OVAM is applying a three step approach including mapping, surveying and mining of these former landfills. As a result of the mapping part over 2,000 landfill sites, that will need to be dealt with, were revealed. The valorisation potential of ELFM could be assigned to different goals, according to the R³P-concept : Recycling of Materials, Recovery of Energy, Reclamation of Land and Protection of drinking water supply. . On behalf of the OVAM, ECOREM was assigned to follow-up a pilot case executed on a former landfill, located in Zuienkerke, Flanders. Within this case study some technical tests were carried out on the excavated waste material to investigate the possibilities for a waste to resource conversion. The performance of both on site and off site techniques were evaluated. These testings also contribute to the mapping part of OVAM's research programme on ELFM and reveal more information on the composition of former landfills dating from different era's. In order to recover as many materials as possible, five contractors were assigned to perform separation tests on the bulk material from the Zuienkerke landfill. All used techniques were described, resulting in a separate flowsheet for every contractor. The resulting fractions and materials were described in detail to obtain an inventory of the bulk material. Based on the characteristics from the obtained fractions, all possible valorisation pathways are listed, suggesting a Waste to Material (WtM) or a Waste to Energy (WtE) valorisation pathway. Fractions that needed further treatment were also discussed. The results of the separation tests proved to be very promising and delivered well sorted waste streams. The composition of the waste material, on the other hand, proved to be less beneficial to be economically feasible. Due to the high amount of sand and clay (up to 90wt%) in the Zuienkerke landfill the share of instant recoverable materials proved to be very limited. Due to the limited number of tests concerning the separation and valorisation of landfilled waste, the feasibility of ELFM in the short term is not fully described yet. Based on the first experiences, the main drivers to introduce the ELFM concept on these type of landfills are the necessity of urgent remediation actions and the reclamation of land. The added value of land reuse for the future might close the financial gap in a significant way, making the implementation of ELFM feasible on former landfills. 1 Jones et al.,2010: "the safe conditioning, excavation and integrated valorisation of landfilled waste streams as both materials and energy, using innovative transformation technologies and respecting the most stringent social and ecological criteria".

  17. Minimizing N2O fluxes from full-scale municipal solid waste landfill with properly selected cover soil.

    PubMed

    Zhang, Houhu; He, Pinjing; Shao, Liming; Qu, Xian; Lee, Duujong

    2008-01-01

    Municipal solid waste landfills emit nitrous oxide (N2O) gas. Assuming that the soil cover is the primary N2O source from landfills, this study tested, during a four-year project, the hypothesis that the proper use of chosen soils with fine texture minimizes N2O emissions. A full-scale sanitary landfill, a full-scale bioreactor landfill and a cell planted with Nerium indicum or Festuca arundinacea Schreb, at the Hangzhou Tianziling landfill in Hangzhou City were the test sites. The N2O emission rates from all test sites were considerably lower than those reported in the published reports. Specifically, the N2O emission rate was dependent on soil water content and nitrate concentrations in the cover soil. The effects of leachate recirculation and irrigation were minimal. Properly chosen cover soils applied to the landfills reduced N2O flux. PMID:18574960

  18. UPDATE OF EPA'S EMISSION FACTORS FOR LANDFILL GAS EMISSIONS

    EPA Science Inventory

    The paper describes an effort to collect updated data and determine if changes are needed to AP-42, a document that provides emission factors characterizing landfill gas (LFG) emissions from sites with and without LFG controls. The work underway includes the types of measurement ...

  19. Economic aspects of the rehabilitation of the Hiriya landfill

    SciTech Connect

    Ayalon, O. . E-mail: agofira@tx.technion.ac.il; Becker, N.; Shani, E.

    2006-07-01

    The Hiriya landfill, Israel's largest, operated from 1952 to 1998. The landfill, located in the heart of the Dan Region, developed over the years into a major landscape nuisance and environmental hazard. In 1998, the Israeli government decided to close the landfill, and in 2001 rehabilitation activities began at the site, including site investigations, engineering and scientific evaluations, and end-use planning. The purpose of the present research is to perform a cost-benefit analysis of engineering and architectural-landscape rehabilitation projects considered for the site. An engineering rehabilitation project is required for the reduction of environmental impacts such as greenhouse gas emissions, slope instability and leachate formation. An architectural-landscape rehabilitation project would consider improvements to the site to make it suitable for future end uses such as a public park. The findings reveal that reclamation is worthwhile only in the case of architectural-landscape rehabilitation of the landfill, converting it into a public park. Engineering rehabilitation alone was found to be unjustified, but is essential to enable the development of a public park.

  20. The landfill methane balance: Model and practical applications

    SciTech Connect

    Bogner, J.; Spokas, K.

    1995-10-01

    A rational mass-balance framework is described for improved quantification of landfill methane processes at a given site. The methane balance model examines the partitioning of methane generated into methane recovered (via extraction systems), methane emitted, methane oxidized, methane migrated, and methane storage. This model encourages use of field-based data to better quantify rates of methane recovery and emissions.

  1. Field Performance Of Three Compacted Clay Landfill Covers

    EPA Science Inventory

    A study was conducted at sites in subtropical Georgia, seasonal and humid Iowa, and arid southeastern California to evaluate the field hydrology of compacted clay covers for final closure of landfills. Water balance of the covers was monitored with large (10 by 20 m ), instrumen...

  2. BIOREACTOR DESIGN - OUTER LOOP LANDFILL RESEARCH PROJECT, LOUISVILLE, KY

    EPA Science Inventory

    Bioreactor field demonstration projects are underway at the Outer Loop Landfill, Louisville, KY. The research effort is a cooperative research effort between USEPA and Waste Management, Inc. Two primary kinds of municipal waste bioreactors are under study at this site. First, new...

  3. TACOMA LANDFILL ENVIRONMENTAL SAMPLING DATA: JULY 1983 TO JANUARY 1996

    EPA Science Inventory

    The data set contains both ground water and surface water data from environmental sampling at the Tacoma Landfill, a National Priority List (NPL) Superfund site in Washington State. It contains a complete set of analytical chemistry and other sampling parameters associated with t...

  4. TREATMENT OF LANDFILL LEACHATE AT PUBLICLY OWNED TREATMENT WORKS

    EPA Science Inventory

    The project investigated the discharge of landfill leachate into a municipal waste water collection system with subsequent treatment at the municipal treatment plant. The research article points out that leachates from disposal sites can be mixed with municipal wastewater and tre...

  5. MEASUREMENT OF FUGITIVE EMISSIONS AT REGION I LANDFILL

    EPA Science Inventory

    This report discusses a new measurement technology for characterizing emissions from large area sources. This work was funded by EPA's Monitoring and Measurement for the 21st Century Initiative, or 21M2. The site selected for demonstrating this technology is a superfund landfil...

  6. Sanitary Landfill groundwater monitoring report. Second quarter 1994

    SciTech Connect

    Not Available

    1994-08-01

    This report contains analytical data for samples taken during second quarter 1994 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  7. Sanitary Landfill groundwater monitoring report. Second quarter 1993

    SciTech Connect

    Not Available

    1993-08-01

    This report contains analytical data for samples taken during second quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report represents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

  8. Sanitary landfill groundwater monitoring report, Third Quarter 1999

    SciTech Connect

    Chase, J.

    1999-12-08

    This report contains analytical data for samples taken during Third Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  9. Sanitary Landfill Groundwater Monitoring Report, Second Quarter 1999

    SciTech Connect

    Chase, J.

    1999-07-29

    This report contains analytical data for samples taken during Second Quarter 1999 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  10. Sanitary landfill groundwater monitoring report. Third quarter 1995

    SciTech Connect

    1995-11-01

    This report contains analytical data for samples taken during third quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  11. Sanitary Landfill groundwater monitoring report: Third quarter 1994

    SciTech Connect

    Not Available

    1994-11-01

    This report contains analytical data for samples taken during third quarter 1994 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established the US Environmental Protection Agency, the South Carolina final PDWS for lead (Appendix A), or the SRS flagging criteria.

  12. Sanitary landfill groundwater monitoring report (U): second quarter 1996

    SciTech Connect

    1996-08-01

    This report contains analytical data for samples taken during second quarter 1996 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  13. Sanitary landfill groundwater monitoring report: Third quarter 1996

    SciTech Connect

    1996-11-01

    This report contains analytical data for samples taken during third quarter 1996 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  14. Sanitary Landfill groundwater monitoring report. First quarter 1993

    SciTech Connect

    Not Available

    1993-05-01

    This report contains analytical data for samples taken during first quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

  15. Sanitary Landfill groundwater monitoring report. Third quarter 1993

    SciTech Connect

    Not Available

    1993-11-01

    This report contains analytical data for samples taken during third quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit. The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  16. Delineation of landfill migration boundaries using chemical surrogates

    SciTech Connect

    Thielen, D.R.; Foreman, P.S.; Davis, A.; Wyeth, R.

    1987-02-01

    A purge/trap procedures for the determination of monochlorobenzene and monochlorotoluene at the 10 ng/g level in soil is described. The advantages of a heated and stirred vessel for sample preparation are demonstrated. This method was applied to samples from the Hyde Park landfill site in Niagara Falls, NY, and the results were used to define chemical migration is illustrated with both two- and three-dimensional plotting techniques. This study is a first phase in the development of a remedial plan for the Hyde Park landfill.

  17. Sanitary Landfill Groundwater Monitoring Report. Second Quarter 1995

    SciTech Connect

    Chase, J.A.

    1995-08-01

    This report contains analytical data for samples taken during second quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  18. Comparison of slope stability in two Brazilian municipal landfills

    SciTech Connect

    Gharabaghi, B. Singh, M.K.; Inkratas, C. Fleming, I.R. McBean, E.

    2008-07-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability analysis method is presented in a case study of two Brazilian landfill sites; the Cruz das Almas Landfill in Maceio and the Muribeca Landfill in Recife. The Muribeca site has never recorded a slope failure and is much larger and better-maintained when compared to the Maceio site at which numerous minor slumps and slides have been observed. Conventional limit-equilibrium analysis was used to calculate factors of safety for stability of the landfill side slopes. Results indicate that the Muribeca site is more stable with computed factors of safety values in the range 1.6-2.4 compared with computed values ranging from 0.9 to 1.4 for the Maceio site at which slope failures have been known to occur. The results suggest that this approach may be useful as a screening-level tool when considering the feasibility of implementing LFGTE projects.

  19. Comparison of slope stability in two Brazilian municipal landfills.

    PubMed

    Gharabaghi, B; Singh, M K; Inkratas, C; Fleming, I R; McBean, E

    2008-01-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use "generic" published shear strength envelopes for municipal waste. Application of the slope stability analysis method is presented in a case study of two Brazilian landfill sites; the Cruz das Almas Landfill in Maceio and the Muribeca Landfill in Recife. The Muribeca site has never recorded a slope failure and is much larger and better-maintained when compared to the Maceio site at which numerous minor slumps and slides have been observed. Conventional limit-equilibrium analysis was used to calculate factors of safety for stability of the landfill side slopes. Results indicate that the Muribeca site is more stable with computed factors of safety values in the range 1.6-2.4 compared with computed values ranging from 0.9 to 1.4 for the Maceio site at which slope failures have been known to occur. The results suggest that this approach may be useful as a screening-level tool when considering the feasibility of implementing LFGTE projects. PMID:17897819

  20. Field Water Balance of Landfill Final Covers

    SciTech Connect

    Albright, William H.; Benson, Craig H.; Gee, Glendon W.; Roesler, Arthur C.; Abichou, Tarek; Apiwantragoon, Preecha; Lyles, Bradley F.; Rock, S A.

    2004-11-15

    Landfill covers are critical to waste containment, yet field performance of specific cover designs has not been well documented and seldom been compared in side-by-side testing. A study was conducted to asses the ability of landfill final covers to control percolation into underlying waste. Conventional covers employing resistive barriers as well as alternative covers relying on water-storage principles were monitored in large (10 x 20), instrumented drainage lysimeters over a range of climates at field sites in the United States. Surface runoff was a small fraction of the water balance (0-10%, 4% on average) and was nearly insensitive to the cover slope, cover design, or climate. Lateral drainage from internal drainage layers was also a small fraction of the water balance (0-5%, 2.0% on average). Average percolation rates for the conventional covers with composite barriers (geomembrane over fine soil) typically were less than 12 mm/yr (1.4% of precipitation) at humid locations and 1.5 mm/yr (0.4% of precipitation) at arid, semiarid, and subhumid locations. Average percolation rates for conventional covers with soil barriers in humid climates were between 52 and 195 mm/yr (6-17% of precipitation), probably due to preferential flow through defects in the soil barriers. Average percolation rates for alternative covers ranged between 33 and 160 mm/yr (6 and 18% if precipitation) in humid climates and generally less than 2.2 mm/yr (0.4% of precipitation) in arid, semiarid, and subhumid climates. One half (five) of the alternative covers in arid, semiarid, and subhumid climates transmitted less than 0.1 mm of percolation, but two transmitted much more percolation (26.8 and 52 mm) than anticipated during design. The data collected support conclusions from other studies that detailed, site-specific design procedures are very important for successful performance of alternative landfill covers.

  1. 75 FR 8986 - Draft Supplemental Environmental Impact Statement for the Proposed Campo Regional Landfill...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... landfill. Supporting developments include the site entrance facilities, screening berms, utilities, surface... be viewed at http://www.CampoDSEIS.com . To obtain a compact disk copy of the DSEIS, please...

  2. Implementation of the semi-aerobic landfill system (Fukuoka method) in developing countries: a Malaysia cost analysis.

    PubMed

    Chong, Theng Lee; Matsufuji, Yasushi; Hassan, Mohd Nasir

    2005-01-01

    Most of the existing solid waste landfill sites in developing countries are practicing either open dumping or controlled dumping. Proper sanitary landfill concepts are not fully implemented due to technological and financial constraints. Implementation of a fully engineered sanitary landfill is necessary and a more economically feasible landfill design is crucial, particularly for developing countries. This study was carried out by focusing on the economics from the development of a new landfill site within a natural clay area with no cost of synthetic liner up to 10 years after its closure by using the Fukuoka method semi-aerobic landfill system. The findings of the study show that for the development of a 15-ha landfill site in Malaysia with an estimated volume of 2,000,000 m(3), the capital investment required was about US 1,312,895 dollars, or about US 0.84 dollars/tonne of waste. Assuming that the lifespan of the landfill is 20 years, the total cost of operation was about US 11,132,536 dollars or US 7.15 dollars/tonne of waste. The closure cost of the landfill was estimated to be US 1,385,526 dollars or US 0.89 dollars/tonne of waste. Therefore, the total cost required to dispose of a tonne of waste at the semi-aerobic landfill was estimated to be US 8.89 dollars. By considering an average tipping fee of about US 7.89 dollars/tonne of waste in Malaysia in the first year, and an annual increase of 3% to about US 13.84 dollars in year-20, the overall system recorded a positive revenue of US 1,734,749 dollars. This is important information for the effort of privatisation of landfill sites in Malaysia, as well as in other developing countries, in order to secure efficient and effective landfill development and management. PMID:16009304

  3. Sesame Street: Magic or Malevolence?

    ERIC Educational Resources Information Center

    Ratliff, Anne R.; Ratliff, Richard G.

    1972-01-01

    Despite its unusual potential, both educational and social, it seems that Sesame Street may be exposing children to unnecessary aggression...(which) often goes unpunished and, occasionally, is actively rewarded." (Author)

  4. Estimation of landfill emission lifespan using process oriented modeling

    SciTech Connect

    Ustohalova, Veronika . E-mail: veronika.ustohalova@uni-essen.de; Ricken, Tim; Widmann, Renatus

    2006-07-01

    Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section.

  5. Estimation of landfill emission lifespan using process oriented modeling.

    PubMed

    Ustohalova, Veronika; Ricken, Tim; Widmann, Renatus

    2006-01-01

    Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section. PMID:16406761

  6. Risk mitigation methodology for solid waste landfills. Doctoral thesis

    SciTech Connect

    Nixon, W.B.

    1995-05-01

    Several recent models have attempted to simulate or assess the probability and consequences of the leakage of aqueous contaminant leakage from solid waste landfills. These models incorporate common factors, including climatological and geological characteristics. Each model, however, employs a unique approach to the problem, assigns different relative weights to factors, and relies upon extrapolated small-scale experimental data and/or subjective judgment in predicting the full-scale landfill failure mechanisms leading to contaminant migration. As a result, no two models are likely to equally assess a given landfill, and no one model has been validated as a predictor of long-term performance. The United States Air Force maintains a database for characterization of potential hazardous waste sites. Records include more than 500 landfills, providing such information as waste, soil, aquifer, monitoring location data, and the results of sample testing. Through analysis of this information, nearly 300 landfills were assessed to have sufficiently, partially, or inadequately contained hazardous constituents of the wastes placed within them.

  7. Electrodegradation of landfill leachate in a flow electrochemical reactor.

    PubMed

    Moraes, Peterson Bueno; Bertazzoli, Rodnei

    2005-01-01

    Sanitary landfills are the major method used today for the disposal and management of municipal solid waste. Decomposition of waste and rainfall generate leachate at the bottom of landfills, causing groundwater contamination. In this study, leachate from a municipal landfill site was treated by electrochemical oxidation in a pilot scale flow reactor, using oxide-coated titanium anode. The experiments were conducted under a constant flow rate of 2000 lh(-1) and the effect of current density on chemical oxygen demand, total organic carbon, color and ammonium removal was investigated. At a current density of 116.0 mA cm(-2) and 180 min of processing, the removal rates achieved were 73% for COD, 57% for TOC, 86% for color and 49% for ammonium. The process proved effective in degrading leachate, despite this effluent's usual refractoriness to treatment. PMID:15522331

  8. PRACTICE REVIEW OF FIVE BIOREACTOR/RECIRCULATION LANDFILLS

    EPA Science Inventory

    Six bioreactor landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor landfills from conventional landfills. Five of the bioreactor landfills were anaerobic and one was aerated. In one case, nearly identical cells e...

  9. Reclamation of sanitary landfills: A case study in Shelby County, Tennessee

    SciTech Connect

    Riddick, P.M.; Kirsch, S.; Kung, Hsiang-Te )

    1992-07-01

    Approximately 30,000 sanitary landfills were in operation in the United States in 1976; today, there are <7,000. The remaining 23,000 closed sites can be reclaimed to actually enhance the surrounding community; cost is the only limiting factor. Abandoned sanitary landfill sites do have problems, namely leachates, methane build-up, and subsidence. However, with modern techniques and planning, these problems can be overcome. Across the nation, old landfills have been converted into golf courses, parks, ski resorts, libraries, and even methane power plants. In some cases, a community's property value has actually increased after reclamation of the local landfill. Shelby County, in southwestern Tennessee, currently has four closed sanitary landfills. Only one site has been fully utilized as a recreational facility. At this site, four soccer fields are home to over 150 league soccer teams. Two sites are home to airplane radio-control clubs, although most land at these sites is currently unused. The fourth site is completely unused and up for sale. All of these closed sanitary landfills have potential use as recreation areas, but, as is often the case, lack of money and initiative is preventing development. 7 refs.

  10. Landfill CH sub 4 : Rates, fates, and role in global carbon cycle

    SciTech Connect

    Bogner, J.; Spokas, K.

    1991-01-01

    Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

  11. Landfill CH{sub 4}: Rates, fates, and role in global carbon cycle

    SciTech Connect

    Bogner, J.; Spokas, K.

    1991-12-31

    Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

  12. Impact of changes in barometric pressure on landfill methane emission

    NASA Astrophysics Data System (ADS)

    Xu, Liukang; Lin, Xiaomao; Amen, Jim; Welding, Karla; McDermitt, Dayle

    2014-07-01

    Landfill methane emissions were measured continuously using the eddy covariance method from June to December 2010. The study site was located at the Bluff Road Landfill in Lincoln, Nebraska, USA. Our results show that landfill methane emissions strongly depended on changes in barometric pressure; rising barometric pressure suppressed the emission, while falling barometric pressure enhanced the emission, a phenomenon called barometric pumping. There was up to a 35-fold variation in day-to-day methane emissions due to changes in barometric pressure. Wavelet coherence analysis revealed a strong spectral coherency between variations of barometric pressure and methane emission at periodicities ranging from 1 day to 8 days. Power spectrum and ogive analysis showed that at least 10 days of continuous measurements was needed in order to capture 90% of the total variance in the methane emission time series at our landfill site. From our results, it is clear that point-in-time measurements taken at monthly or longer time intervals using techniques such as the trace plume method, the mass balance method, or the closed-chamber method will be subject to large variations in measured emission rates because of the barometric pumping phenomenon. Estimates of long-term integrated methane emissions from landfills based on such measurements could yield uncertainties, ranging from 28.8% underestimation to 32.3% overestimation. Our results demonstrate a need for continuous measurements to quantify annual total landfill emissions. This conclusion may apply to the study of methane emissions from wetlands, peatlands, lakes, and other environmental contexts where emissions are from porous media or ebullition. Other implications from the present study for hazard gas monitoring programs are also discussed.

  13. Uncontrolled methane emissions from a MSW landfill surface: influence of landfill features and side slopes.

    PubMed

    Di Trapani, Daniele; Di Bella, Gaetano; Viviani, Gaspare

    2013-10-01

    Sanitary landfills for Municipal Solid Waste (MSW) disposal have been identified as one of the most important anthropogenic sources of methane (CH4) emissions; in order to minimize its negative effects on the environment, landfill gas (LFG) recovery is a suitable tool to control CH4 emissions from a landfill site; further, the measurement of CH4 emissions can represent a good way to evaluate the effectiveness of LFG recovering systems. In general, LFG will escape through any faults in the landfill capping or in the LFG collection system. Indeed, some areas of the capping can be more permeable than others (e.g. portions of a side slope), especially when considering a temporarily capped zone (covered area that is not expected to receive any further waste for a period of at least 3 months, but for engineering reasons does not have a permanent cap yet). These areas, which are characterized by abnormal emissions, are usually defined as "features": in particular, a feature is a small, discrete area or an installation where CH4 emissions significantly differ from the surrounding zones. In the present study, the influence that specific features have on CH4 emissions has been investigated, based on direct measurements carried out in different seasons by means of a flux chamber to the case study of Palermo (IT) landfill (Bellolampo). The results showed that the flux chamber method is reliable and easy to perform, and the contoured flux maps, obtained by processing the measured data were found to be a suitable tool for identifying areas with abnormal (high) emissions. Further, it was found that a relationship between methane emission rates and landfill side slope can be established. Concerning the influence of the temporary HDPE cover system on CH4 recovery efficiency, it contributed to a significant decrease of the free surface area available for uncontrolled emissions; this aspect, coupled to the increase of the CH4 volumes collected by the LFG recovery system, led to a significant increase of the recovery efficiency. PMID:23465313

  14. Potential for enhanced phytoremediation of landfills using biosolids--a review.

    PubMed

    Kim, Kwon-Rae; Owens, Gary

    2010-01-01

    Despite the use of recyclable materials increasing worldwide, waste disposal to landfill remains the most common method of waste management because it is simple and relatively inexpensive. Although landfill disposal is an effective waste management system, if not managed correctly, a number of potential detrimental environmental impacts have been identified including soil and ground water contamination, leachate generation, and gas emissions. In particular, improper post-closure treatment of landfills or deterioration of the conventional clay landfill capping were shown to result in land degradation which required remediation to secure contaminants within the landfill site. Phytoremediation is an attractive technology for landfill remediation, as it can stabilize soil and simultaneously remediate landfill leachate. In addition, landfill phytoremediation systems can potentially be combined with landfill covers (Phytocapping) for hydrological control of infiltrated rainfall. However, for the successful application of any phytoremediation system, the effective establishment of appropriate, desired vegetation is critical. This is because the typically harsh and sterile nature of landfill capping soil limits the sustainable establishment of vegetation. Therefore, the physicochemical properties of landfill capping soils often need to be improved by incorporating soil amendments. Biosolids are a common soil amendment and will often meet these demanding conditions because they contain a variety of plant nutrients such as nitrogen, phosphate, potassium, as well as a large proportion of organic matter. Such amendment will also ameliorate the physical properties of the capping soils by increasing porosity, moisture content, and soil aggregation. Contaminants which potentially originate from biosolids will also be remediated by activities congruent with the establishment of plants and bacteria. PMID:19939550

  15. Parametric sensitivity analysis of leachate transport simulations at landfills.

    PubMed

    Bou-Zeid, E; El-Fadel, M

    2004-01-01

    This paper presents a case study in simulating leachate generation and transport at a 2000 ton/day landfill facility and assesses leachate migration away from the landfill in order to control associated environmental impacts, particularly on groundwater wells down gradient of the site. The site offers unique characteristics in that it is a former quarry converted to a landfill and is planned to have refuse depths that could reach 100 m, making it one of the deepest in the world. Leachate quantity and potential percolation into the subsurface are estimated using the Hydrologic Evaluation of Landfill Performance (HELP) model. A three-dimensional subsurface model (PORFLOW) was adopted to simulate ground water flow and contaminant transport away from the site. A comprehensive sensitivity analysis to leachate transport control parameters was also conducted. Sensitivity analysis suggests that changes in partition coefficient, source strength, aquifer hydraulic conductivity, and dispersivity have the most significant impact on model output indicating that these parameters should be carefully selected when similar modeling studies are performed. PMID:15288300

  16. 43. August, 1970 SOUTH SIDE OF UNION STREET, NO. 10, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. August, 1970 SOUTH SIDE OF UNION STREET, NO. 10, NOT VISIBLE ON STREET - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  17. 40. August, 1970 VIEW OF UNION STREET WITH ELISHA GREEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. August, 1970 VIEW OF UNION STREET WITH ELISHA GREEN HOUSE (9 UNION STREET) AT LEFT - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  18. 6. South El Paso St., street view from 615 South ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. South El Paso St., street view from 615 South El Paso Street showing west side of street - South El Paso Street Historic District, South El Paso, South Oregon & South Santa Fe Streets, El Paso, El Paso County, TX

  19. Perspective view of the IOOF Building, 5 North F Street, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of the IOOF Building, 5 North F Street, corner of F and Center Streets - Lakeview Downtown Historic District, E, F & G Streets between Second Street North & First Street South, Lakeview, Lake County, OR

  20. Perspective view of Heryford Brothers Building, 10 North F Street, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of Heryford Brothers Building, 10 North F Street, corner of Center and F Streets, view looking northeast - Lakeview Downtown Historic District, E, F & G Streets between Second Street North & First Street South, Lakeview, Lake County, OR

  1. Perspective view of gas station, 126 North F Street, corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of gas station, 126 North F Street, corner of F and 2nd Streets North, view looking southeast - Lakeview Downtown Historic District, E, F & G Streets between Second Street North & First Street South, Lakeview, Lake County, OR

  2. 11. August, 1970 ORANGE STREET SIDEWALK IN FRONT OF LEVI ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. August, 1970 ORANGE STREET SIDEWALK IN FRONT OF LEVI STARBUCK HOUSE (MASS-912), 14 ORANGE STREET - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  3. 16. August, 1970 #31 ORANGE STREET & GENERAL VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. August, 1970 #31 ORANGE STREET & GENERAL VIEW OF WEST SIDE OF STREET - Orange & Union Streets Neighborhood Study, 8-31 Orange Street, 9-21 Union Street & Stone Alley, Nantucket, Nantucket County, MA

  4. The Smokey Hollow Community, Informal boundaries by street name: North ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    The Smokey Hollow Community, Informal boundaries by street name: North to South: East Jefferson Street to East Van Buren Street. West to East: South Gadsden Street to Marvin Street., Tallahassee, Leon County, FL

  5. Demonstration of landfill gas enhancement techniques in landfill simulators

    NASA Astrophysics Data System (ADS)

    Walsh, J. J.; Vogt, W. G.

    1982-02-01

    Various techniques to enhance gas production in sanitary landfills were applied to landfill simulators. These techniques include (1) accelerated moisture addition, (2) leachate recycling, (3) buffer addition, (4) nutrient addition, and (5) combinations of the above. Results are compiled through on-going operation and monitoring of sixteen landfill simulators. These test cells contain about 380 kg of municipal solid waste. Quantities of buffer and nutrient materials were placed in selected cells at the time of loading. Water is added to all test cells on a monthly basis; leachate is withdrawn from all cells (and recycled on selected cells) also on a monthly basis. Daily monitoring of gas volumes and refuse temperatures is performed. Gas and leachate samples are collected and analyzed on a monthly basis. Leachate and gas quality and quantity reslts are presented for the first 18 months of operation.

  6. Public-health assessment for Algoma Municipal Landfill, Algoma, Kewaunee County, Wisconsin, Region 5. CERCLIS No. WID980610380. Final report

    SciTech Connect

    Not Available

    1992-07-22

    The Algoma Landfill Superfund Site is a former municipal landfill which accepted hazardous industrial waste from several area companies. The contaminant of concern is benzene in on-site groundwater. Samples taken from off-site private water supplies in the vicinity of the landfill did not indicate the presence of contaminants. On-site soil and sediment samples revealed low levels of inorganic chemicals. Although soil samples were not analyzed for asbestos it remains a contaminant of concern since asbestos-containing debris was reportedly buried as the site. The Algoma Landfill Superfund Site is a indeterminate public health hazard. There is insufficient data to evaluate worker exposure to airborne asbestos in the past when Kalo dust was deposited at the site. The public health assessment recommends that access to the site be restricted to prevent trespassing and disturbance of the soil. Additional groundwater monitoring and characterization is recommended as well as sampling of surface soil for asbestos contamination.

  7. Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism

    SciTech Connect

    El-Fadel, Mutasem; Abi-Esber, Layale; Salhab, Samer

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

  8. Landfill aeration for emission control before and during landfill mining.

    PubMed

    Raga, Roberto; Cossu, Raffaello; Heerenklage, Joern; Pivato, Alberto; Ritzkowski, Marco

    2015-12-01

    The landfill of Modena, in northern Italy, is now crossed by the new high velocity railway line connecting Milan and Bologna. Waste was completely removed from a part of the landfill and a trench for the train line was built. With the aim of facilitating excavation and further disposal of the material extracted, suitable measures were defined. In order to prevent undesired emissions into the excavation area, the aerobic in situ stabilisation by means of the Airflow technology took place before and during the Landfill Mining. Specific project features involved the pneumatic leachate extraction from the aeration wells (to keep the leachate table low inside the landfill and increase the volume of waste available for air migration) and the controlled moisture addition into a limited zone, for a preliminary evaluation of the effects on process enhancement. Waste and leachate were periodically sampled in the landfill during the aeration before the excavation, for quality assessment over time; the evolution of biogas composition in the landfill body and in the extraction system for different plant set-ups during the project was monitored, with specific focus on uncontrolled migration into the excavation area. Waste biological stability significantly increased during the aeration (waste respiration index dropped to 33% of the initial value after six months). Leachate head decreased from 4 to 1.5m; leachate recirculation tests proved the beneficial effects of moisture addition on temperature control, without hampering waste aerobization. Proper management of the aeration plant enabled the minimization of uncontrolled biogas emissions into the excavation area. PMID:26445364

  9. Landfill mining for resource recovery

    SciTech Connect

    Reith, C.C.

    1997-12-31

    Landfills are repositories of subeconomic resources. Landfill mining is an important enterprise that will someday return these resources to productive use, closing the loop on finite resources and stimulating economic development in communities near landfills. Secondary development of interred resources (landfill waste) will become economically viable as the environmental externalities of primary resource development -- e.g., the destruction of pristine habitat -- are more fully accounted for in programs of ecological design and design for environment. It is important to take an integrated and holistic approach to this new endeavor, which will be a complex assemblage of disciplines. Component disciplines include: resource economics, characterization, and excavation; contaminant control, and protection of environmental safety and health; material sorting, blending, and pretreatment; resource conversion, recovery, storage, and distribution; and reclamation for long-term land use. These technical elements must be addressed in close combination with compelling social issues such as environmental justice that may be especially critical in economically depressed communities surrounding today`s landfills.

  10. NO2 photolysis frequencies in street canyons

    NASA Astrophysics Data System (ADS)

    Koepke, P.; Garhammer, M.; Hess, M.; Roeth, E.-P.

    2010-08-01

    Photolysis frequencies for NO2 are modeled for the conditions in urban streets, which are taken into account as canyons with variable height and width. The effect of a street canyon is presented with absolute values and as a ratio RJ of the photolysis frequency within the street compared to that with free horizon. This allows further use of the existing photolysis parameterizations. Values are presented for variable solar elevation and azimuth angles, varying atmospheric conditions and different street properties. The NO2 photolysis frequency in a street depends strongly on the relative width of the street and its orientation towards the sun. Averaged over atmospheric conditions and street orientation, the NO2 photolysis frequency is reduced in comparison with the values for free horizon: to less than 20% for narrow skyscraper streets, to about 40% for typical urban streets, and only to about 80% for garden streets. A parameterization with the global solar irradiance is given for the averaged RJ values.

  11. NO2 photolysis frequencies in street canyons

    NASA Astrophysics Data System (ADS)

    Koepke, P.; Garhammer, M.; Hess, M.; Roeth, E.-P.

    2010-05-01

    Photolysis frequencies for NO2 are modeled for the conditions in urban streets, which are taken into account as canyons with variable height and width. The effect of a street canyon is presented with absolute values and as a ratio RJ of the photolysis frequency within the street against those with free horizon, which allows further use of the existing photolysis parameterizations. Values are presented for variable solar elevation and azimuth angles, varying atmospheric conditions and different street properties. The NO2 photolysis frequency in the street, averaged over atmospheric conditions and street orientation, is reduced to less than 20% for narrow streets, to about 40% for typical urban streets, and only to about 80% for garden streets, each with about ±5% uncertainty. A parameterization of RJ with the global solar irradiance is given for values that are averaged over the meteorological conditions and the street orientation.

  12. Beneficial application of landfill mining Millersville Landfill, Anne Arundel County, MD

    SciTech Connect

    Vanetti, D.J.

    1995-09-01

    Several studies and investigations have been completed for the Millersville Sanitary Landfill in Anne Arundel County, Maryland. The studies and reports range from detailed hydrogeologic investigations through review of closure alternatives for the individual refuse disposal cells located at the landfill. As a result of the evaluations and studies, one recommendation that was put before Anne Arundel County is the excavation and relocation of refuse from Cell 3 to: (1) create an infiltration basin; and (2) reduce the overall refuse footprint at the site, resulting in reduce long term environmental impacts and closure costs. Subsequent to this recommendation, several preliminary reviews have been held between Anne Arundel County, regulatory agencies and their consultants, Stearns & Wheler. These discussions indicated that it would be feasible, and the concept acceptable, to relocate the refuse in Cell 3 to ultimately create an infiltration basin. Subsequent to the preliminary meetings, a project plan and construction Contract Documents and Drawings were developed by Stearns & Wheler. The Project Plan was submitted to the State regulatory agencies (Maryland and Department of Environment (MDE) and Maryland Department of Natural Resources (DNR)), Millersville Landfill Citizen`s Advisory Committee, and Anne Arundel County (Department of public Works (DPW), Permit Acquisition and Code Enforcement (PACE) and Soil Conservation District (SCD)) for review and comment prior to undertaking the relocation of refuse in Cell 3.

  13. Evaluation Of Landfill Gas Decay Constant For Municipal Solid Waste Landfills Operated As Bioreactors

    EPA Science Inventory

    Prediction of the rate of gas production from bioreactor landfills is important to optimize energy recovery and to estimate greenhouse gas emissions. Landfill gas (LFG) composition and flow rate were monitored for four years for a conventional and two bioreactor landfill landfil...

  14. Superfund Record of Decision (EPA Region 9): Hassayampa Landfill, AZ. (First remedial action), August 1992. Final report

    SciTech Connect

    Not Available

    1992-08-06

    The Hassayampa Landfill site is a 10-acre area of a 47-acre municipal landfill that was previously used for hazardous waste disposal. Land use in the area is predominantly desert and is sparsely cultivated. The Hassayampa Landfill lies within the Hassayampa River drainage area, but outside of the 100-year floodplain. The estimated 1,100 people who reside within a 3-mile radius of the site use the aquifer underlying the site for their drinking water. From 1961 to the present, the Maricopa County Landfill Department owned and operated the site. Waste disposed of at the landfill consisted chiefly of municipal garbage, tree trimmings, and other plant refuse. In 1979, the state requested that Hassayampa Landfill accept hazardous waste as an alternate waste disposal site during a prohibition at City of Phoenix landfills. In the 18 months that the landfill accepted hazardous waste, up to 3.28 million tons of liquid waste and approximately 4,150 tons of solid waste were deposited.

  15. The impact of Mpererwe landfill in Kampala Uganda, on the surrounding environment

    NASA Astrophysics Data System (ADS)

    Mwiganga, M.; Kansiime, F.

    Mpererwe landfill site receives solid wastes from the city of Kampala, Uganda. This study was carried out to assess and evaluate the appropriateness of the location and operation of this landfill, to determine the composition of the solid waste dumped at the landfill and the extent of contamination of landfill leachate to the neighbouring environment (water, soil and plants). Field observations and laboratory measurements were carried out to determine the concentration of nutrients, metals and numbers of bacteriological indicators in the landfill leachate. The landfill is not well located as it is close to a residential area (<200 m) and cattle farms. It is also located upstream of a wetland. The landfill generates nuisances like bad odour; there is scattering of waste by scavenger birds, flies and vermin. Industrial and hospital wastes are disposed of at the landfill without pre-treatment. The concentration of variables (nutrients, bacteriological indicators, BOD and heavy metals) in the leachate were higher than those recommended in the National Environment Standards for Discharge of Effluent into Water and on Land. A composite sample that was taken 1500 m down stream indicated that the wetland considerably reduced the concentration of the parameters that were measured except for sulfides. Despite the fact that there was accumulation of metals in the sediments, the concentration has not reached toxic levels to humans. Soil and plant analyses indicated deficiencies of zinc and copper. The concentration of these elements was lowest in the leachate canal.

  16. Variation in organic matter characteristics of landfill leachates in different stabilisation stages.

    PubMed

    Gupta, Abhinav; Zhao, Renzun; Novak, John T; Goldsmith, C Douglas

    2014-12-01

    This study investigates the effect of landfill age on landfill leachate characteristics; two aspects are focused here. One is ultraviolet absorbance at 254 nm (UV(254)) property, as the discharge of landfill leachates to publically owned treatment works can cause interference with UV(254) disinfection. The other is biorefractory organic nitrogen in leachates, as it can contribute to effluent nitrogen making it difficult to meet stringent effluent nitrogen regulations. To study variation in UV(254)-absorbing organic carbon and organic nitrogen, leachate samples ranging from cells with ages 2 to 30 y from a large landfill in Kentucky, were collected and fractionated on a basis of their molecular weight and chemical nature into humic acids, fulvic acids and a hydrophilic fraction. The effectiveness of long term landfilling and membrane treatment for organic matter and organic nitrogen removal was examined. Humic materials, which were the major UV(254)-absorbing substances, were mainly >1 kDa and they degraded significantly with landfill age. The hydrophilic organic fraction, which was the major contributor to organic nitrogen, was mainly <1 kDa and it became increasingly recalcitrant with landfill age. This study provides insight into the characteristics of the different leachate fractions with landfilling age that might aid the design of on-site leachate treatment techniques. PMID:25245294

  17. Emission assessment at the Burj Hammoud inactive municipal landfill: viability of landfill gas recovery under the clean development mechanism.

    PubMed

    El-Fadel, Mutasem; Abi-Esber, Layale; Salhab, Samer

    2012-11-01

    This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH(4) flux values calculated through tessellation, inverse distance weighing and kriging were 0.1880.014, 0.2240.012 and 0.2370.008 l CH(4)/m(2) hr, respectively, compared to an arithmetic mean of 0.24 l/m(2) hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m(2) hr), and lower than the reported range for active landfills (0.42-2.46 l/m(2) hr). Simulation results matched field measurements for low methane generation potential (L(0)) values in the range of 19.8-102.6 m(3)/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste. PMID:22265005

  18. Long-Range Radar Station and Landfill

    USGS Multimedia Gallery

    This oblique aerial photograph from 2006 shows the Barter Island long-range radar station landfill threatened by coastal erosion. The landfill was subsequently relocated further inland, however, the coastal bluffs continue to retreat. ...

  19. Acceleration of landfill stabilization using leachate recycle

    SciTech Connect

    Townsend, T.G.; Miller, W.L.; Lee, H.J.; Earle, J.F.K.

    1996-04-01

    A leachate recycle system was constructed and operated at an existing lined landfill in North-Central Florida to observe the effects of leachate recycle on landfill stabilization. Samples of leachate, landfill gas, and landfilled solid waste were collected and analyzed throughout a four-year period, before and after the start of leachate recycle. The settlement of landfilled waste was also measured in wetted and dry areas of the landfill. Leachate quality was not dramatically impacted by leachate recycle. Moisture content was significantly greater in the area of the landfill subjected to leachate recycle. Waste temperature and pH measurements indicated that conditions suitable for anaerobic decomposition were present in both the treated and untreated areas. Measurements of solid waste biochemical methane potential and subsidence showed that a greater degree of landfill stabilization had occurred in the leachate recycle area relative to the untreated area.

  20. Sustainable treatment of landfill leachate

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd. Suffian; Aziz, Hamidi Abdul; Hung, Yung-Tse

    2014-03-01

    Landfill leachate is a complex liquid that contains excessive concentrations of biodegradable and non-biodegradable products including organic matter, phenols, ammonia nitrogen, phosphate, heavy metals, and sulfide. If not properly treated and safely disposed, landfill leachate could be an impending source to surface and ground water contamination as it may percolate throughout soils and subsoils, causing adverse impacts to receiving waters. Lately, various types of treatment methods have been proposed to alleviate the risks of untreated leachate. However, some of the available techniques remain complicated, expensive and generally require definite adaptation during process. In this article, a review of literature reported from 2008 to 2012 on sustainable landfill leachate treatment technologies is discussed which includes biological and physical-chemical techniques, respectively.

  1. Design of landfill daily cells.

    PubMed

    Panagiotakopoulos, D; Dokas, I

    2001-08-01

    The objective of this paper is to study the behaviour of the landfill soil-to-refuse (S/R) ratio when size, geometry and operating parameters of the daily cell vary over realistic ranges. A simple procedure is presented (1) for calculating the cell parameters values which minimise the S/R ratio and (2) for studying the sensitivity of this minimum S/R ratio to variations in cell size, final refuse density, working face length, lift height and cover thickness. In countries where daily soil cover is required, savings in landfill space could be realised following this procedure. The sensitivity of minimum S/R to variations in cell dimensions decreases with cell size. Working face length and lift height affect the S/R ratio significantly. This procedure also offers the engineer an additional tool for comparing one large daily cell with two or more smaller ones, at two different working faces within the same landfill. PMID:11720268

  2. Comparison study of landfill gas emissions from subtropical landfill with various phases: A case study in Wuhan, China.

    PubMed

    Yang, Lie; Chen, Zhulei; Zhang, Xiong; Liu, Yanyan; Xie, Ying

    2015-08-01

    The compositions and annual variations of landfill gas (LFG) were studied at two large-scale sites of Chen-Jia-Chong Landfill. Seventy-six wells were built and used for the collection and measurement of LFG. The investigation revealed the similarities and differences of LFG components and variations at two sites with different phases. It was found that ambient temperature and rainfall exhibited strong correlations with LFG components at both sites. Methane (CH?) contents showed excellent correlations with CO?at both sites. Notable correlations between hydrogen sulfide (H?S) and major components (CH?and carbon dioxide [CO?]) were only observed in unstable methane phase. Especially, the CH?/CO?volumetric ratio could act as an excellent indicator for anaerobic reaction stage by judging its phasic variations. The study is beneficial for the efficient operation of LFG collection system and could shed light on gas purification and utilization. PMID:26030713

  3. LANDFILL AIR EMISSIONS ESTIMATION MODEL USER'S MANUAL

    EPA Science Inventory

    The document is a user's guide for the computer program, "Landfill Air Emissions Estimation Model." It provides step-by-step guidance for using the program to estimate landfill air emissions. The purpose of this program is to aid local and state agencies in estimating landfill ai...

  4. METHANE PHYTOREMEDIATION BY VEGETATIVE LANDFILL COVER SYSTEMS

    EPA Science Inventory

    Landfill gas, consisting of methane and other gases, is produced from organic compounds degrading in landfills, contributes to global climate change, is toxic to various types of vegetation, and may pose a combustion hazard at higher concentrations. New landfills are required to ...

  5. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    EPA Science Inventory

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  6. THE USEPA'S LANDFILL RESEARCH AND REGULATORY STRATEGY

    EPA Science Inventory

    The priorities and initiatives of Environmental Protection Agency's landfill research and regulatory program over the next five years will be described. This will include municipal solid waste landfills as well as abandoned hazardous waste landfills.

    Regarding municipals s...

  7. BIOREACTOR LANDFILLS, THEORETICAL ADVANTAGES AND RESEARCH CHALLENGES

    EPA Science Inventory

    Bioreactor landfills are municipal solid waste landfills that utilize bulk liquids in an effort to accelerate solid waste degradation. There are few potential benefits for operating a MSW landfill as a bioreactor. These include leachate treatment and management, increase in the s...

  8. Mining landfills for space and fuel

    SciTech Connect

    Flosdorf, H.W.; Alexieff, S.

    1993-03-01

    Lancaster County, Pennsylvania`s experiments with landfill reclamation are helping the county remain self-sufficient in managing its solid waste stream. Landfill mining is proving to be a worthwhile approach to extending landfill life and obtaining fuel for the county`s waste-to-energy plant.

  9. APPROACH FOR ESTIMATING GLOBAL LANDFILL METHANE EMISSIONS

    EPA Science Inventory

    The report is an overview of available country-specific data and modeling approaches for estimating global landfill methane. Current estimates of global landfill methane indicate that landfills account for between 4 and 15% of the global methane budget. The report describes an ap...

  10. RECLAMATION EFFORTS AT THE LOCKWOOD LANDFILL STATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reclamation of disturbed arid rangelands is a monumental task under the best of conditions. The Lockwood Landfill located 17 km east of Reno, Nevada is a Regional Landfill of some 8800 ha in area. This landfill services all of northern Nevada as well as much of northern California. Returning la...

  11. Clean Air Act Title III accidental emission release risk management program, and how it applies to landfills

    SciTech Connect

    Hibbard, C.S.

    1999-07-01

    On June 20, 1996, EPA promulgated regulations pursuant to Title III of the Clean Air Act (CAA) Amendments of 1990 (Section 112(r)(7) of the CAA). The rule, contained in 40 CFR Part 68, is called Accidental Release Prevention Requirements: Risk Management Programs, and is intended to improve accident prevention and emergency response practices at facilities that store and/or use hazardous substances. Methane is a designated highly hazardous chemical (HHC) under the rule. The rule applies to facilities that have 10,000 pounds of methane or more in any process, roughly equivalent to about 244,000 cubic feet of methane. The US EPA has interpreted this threshold quantity as applying to landfill gas within landfills. This paper presents an overview of the Accidental Release Prevention regulations, and how landfills are affected by the requirements. This paper describes methodologies for calculating the threshold quantity of landfill gas in a landfill. Methane is in landfill gas as a mixture. Because landfill gas can burn readily, down to concentrations of about five percent methane, the entire landfill gas mixture must be treated as the regulated substance, and counts toward the 10,000-pound threshold. It is reasonable to assume that the entire landfill gas collection system, active or passive, is filled with landfill gas, and that a calculation of the volume of the system would be a calculation of the landfill gas present in the process on the site. However, the US EPA has indicated that there are some instances in which pore space gas should be included in this calculation. This paper presents methods available to calculate the amount of pore space gas in a landfill, and how to determine how much of that gas might be available for an explosion. The paper goes through how to conduct the release assessment to determine the worst-case hazard zone around the landfill.

  12. CONNECTICUT MUNICIPAL SOLID WASTE SITES

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of municipal solid waste sites in Connecticut. It is a point Shapefile that includes ash landfills, bulky waste landfills, waste volume reduction facilities, transfer stations, leaf compost facilities, and sludge compost facilities. Each site i...

  13. Containerized gen-sets provide landfill power

    SciTech Connect

    Mullins, P.

    1996-10-01

    The growth of electrical power generation using waste gas from landfill sites has been increasing rapidly in recent years. This is particularly the case in the U.K. where the government has incentive schemes to encourage the use of nonfossil fuels. One recent project, commissioned in February 1996, is on a site near Cheltenham owned by The Waste Company Ltd. - formerly the Gloucestershire County Council. Three containerized Jenbacher 320 GS-L.L V20 spark-ignited gas engines, each driving Newage Stamford HC734 alternators, are generating a total of 2766 kW. Taking into account the parasitic losses in the gas pump and container cooling fans, the net total power exported is 2700 kW. This article describes the selection criteria and decision process along with the specifications of the installation.

  14. Impact of Changes in Barometric Pressure on Landfill Methane Emission

    NASA Astrophysics Data System (ADS)

    McDermitt, Dayle; Xu, Liukang; Lin, Xiaomao; Amen, Jim; Welding, Karla

    2013-04-01

    Landfill methane emissions were measured continuously using the eddy covariance method from June to December 2010. The study site was located at the Bluff Road Landfill in Lincoln, Nebraska USA. Methane emissions strongly depended on changes in barometric pressure; rising barometric pressure suppressed the emission, while falling barometric pressure enhanced the emission. Emission rates were systematically higher in December than during the summer period. Higher methane emission rates were associated with changes in barometric pressure that were larger in magnitude and longer in duration in winter than in summer, and with lower mean temperatures, which appeared to reduce methane oxidation rates. Sharp changes in barometric pressure caused up to 35-fold variation in day-to-day methane emissions. Power spectrum and ogive analysis showed that continuous measurements over a period of at least 10 days were needed in order to capture 90% of total variance in the methane emission time series at our site. Our results suggest that point-in-time methane emission rate measurements taken at monthly or even longer time intervals using techniques such as the tracer plume method, the mass balance method, or the closed-chamber method may be subject to large variations because of the strong dependence of methane emissions on changes in barometric pressure. Estimates of long-term integrated methane emissions from landfills based on such measurements will inevitably yield large uncertainties. Our results demonstrate the value of continuous measurements for quantifying total annual methane emission from a landfill.

  15. A process-based inventory model for landfill CH4 emissions inclusive of seasonal soil microclimate and CH4 oxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed and field-validated an annual inventory model for California landfill CH4 emissions that incorporates both site-specific soil properties and soil microclimate modeling coupled to 0.5o scale global climatic models. Based on 1-D diffusion, CALMIM (California Landfill Methane Inventor...

  16. ELECTRIC POWER GENERATION USING A PHOSPHORIC ACID FUEL CELL ON A MUNICIPAL SOLID WASTE LANDFILL GAS STREAM

    EPA Science Inventory

    The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phorsphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Th...

  17. POTASSIUM PERMANGANATE AND CLINOPTILOLITE ZEOLITE FOR IN SITU TREATMENT OF GROUND WATER CONTAMINATED WITH LANDFILL LEACHATE: LABORATORY STUDY

    EPA Science Inventory

    There are tens of thousands of closed landfills in the United States, many of whicih are unlined and sited on alluvial deposits. Landfills are of concern because leachate contains a variety of pollutants that can contaminate ground and surface water. Data from chemical analysis...

  18. Public health assessment for North Sanitary Landfill, Dayton, Montgomery County, Ohio, Region 5. Cerclis No. OHD980611875. Preliminary report

    SciTech Connect

    1995-05-03

    North Sanitary Landfill (a.k.a. Valleycrest Landfill) is north Dayton, Montgomery County, Ohio. In 1991 the Field Investigation Team (FIT) sampled soil, groundwater (monitoring and private wells). Analysis of monitoring well samples and soil samples collected in 1991 revealed elevated levels of volatile organic compounds (VOCs), metals, and polychlorinated biphenyls (PCBs) at the site.

  19. Landfill restoration and biodiversity: a case of study in Northern Italy.

    PubMed

    Camerini, Giuseppe; Groppali, Riccardo

    2014-08-01

    Landfilling is a worldwide common waste treatment method. Final recovery usually consists of capping the area with top soil on which vegetation can grow. Depending on the suitability of the recovery pattern, landfill sites can work as potential reserve of semi-natural habitats. A recovery pattern applied to land reclamation of two hazardous waste landfills sited in Northern Italy (Po floodplain) was studied to assess the results in terms of biodiversity. These landfills lie within a landscape dominated by intensive agriculture. After final sealing, both landfills were covered by soil on which a meadow was sown and a hedgerow was planted around the borders. One of the compared areas was not provided with a pond and the hedgerow was incomplete. Butterflies and birds were used as indicators, and their seasonal abundance was related to habitat structure and ecological factors. Meadows grown on both areas supported a rich butterfly population (30 species), including some species that are by now uncommon in the Po floodplain. In both areas butterfly abundance was affected by summer drought. The birds' community included 57 species; 16 Species of European Conservation Concern (SPECs) were observed. Each bird community was different in the compared study areas because of their different size and habitat structure. For example, landfill A, provided with a pond and a more complex structure of the hedgerow, supported a richer birds community (52 species versus 39). Both restored landfills worked well as a stepping stone for migratory birds, but they were a reproductive habitat of poor quality. PMID:25161277

  20. Industrial Waste Landfill IV upgrade package

    SciTech Connect

    Not Available

    1994-03-29

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  1. 19th Annual landfill gas symposium

    SciTech Connect

    1996-11-01

    This document contains the Proceedings of the 19th Annual Landfill Gas Symposium sponsored by the Solid Waste Association of America (SWANA), held on March 19-21, 1996 in Research Triangle Park near Raleigh, North Carolina, USA.The technical papers presented by the speakers cover a broad range of topics of interest to professionals in the municipal solid waste field. Technical sessions on the following subjects were presented: U.S. Landfill Gas Regulations, Control Technologies, Emission and Migration Control, Landfill Gas Generation Models, Field Practices, Case Studies of Landfill Gas Utilization, Global Methane Control, International Perspectives, and Emerging Technologies and Issues in the field of Landfill Gas Utilization.

  2. Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range

    SciTech Connect

    1997-05-14

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

  3. VIEW OF WATERSIDE MALL SHOPPING CENTER (M STREET SIDE) DESIGNED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF WATERSIDE MALL SHOPPING CENTER (M STREET SIDE) DESIGNED BY CHLOETHIEL WOODARD SMITH & ASSOCIATES AND BUILT IN 1972 - Southwest Washington, Urban Renewal Area, Bounded by Independence Avenue, Washington Avenue, South Capitol Street, Canal Street, P Street, Maine Avenue & Washington Channel, Fourteenth Street, D Street, & Twelfth Street, Washington, District of Columbia, DC

  4. CLOSER VIEW ALONG TENTH STREET MALL LOOKING TO FORRESTAL BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOSER VIEW ALONG TENTH STREET MALL LOOKING TO FORRESTAL BUILDING - Southwest Washington, Urban Renewal Area, Bounded by Independence Avenue, Washington Avenue, South Capitol Street, Canal Street, P Street, Maine Avenue & Washington Channel, Fourteenth Street, D Street, & Twelfth Street, Washington, District of Columbia, DC

  5. Case studies in alternative landfill design

    SciTech Connect

    Barbagallo, J.C.; Druback, G.W.

    1995-12-31

    In the past, landfills or {open_quotes}dumps{close_quotes} were not highly regulated and typically did not require a detailed engineering design. However, landfills are no longer just holes in the ground, and landfill closures entail more than just spreading some dirt on top of piles of garbage. Today landfill design is a highly regulated, complex design effort that integrates soils and geosynthetics into systems aimed at providing long-term protection for the environment and surrounding communities. Integrating these complex design systems into the available landscape and exising landfill configuration often requires the designer go beyond the {open_quotes}typical{close_quotes} landfill and landfill closure design to satisfy regulations and provide cost-effective solutions.

  6. Landfill monitoring using remote sensing: a case study of Glina, Romania.

    PubMed

    Iacoboaea, Cristina; Petrescu, Florian

    2013-10-01

    Landfill monitoring is one of the most important components of waste management. This article presents a case study on landfill monitoring using remote sensing technology. The study area was the Glina landfill, one of the largest municipal waste disposal sites in Romania. The methodology consisted of monitoring the differences of temperature computed for several distinct waste disposal zones with respect to a ground reference area, all of them located within the landfill site. The remote sensing data used were Landsat satellite multi-temporal data. The differences of temperature were computed using Landsat thermal infrared data. The study confirmed the use of multi-temporal Landsat imagery as a complementary data source. PMID:23660748

  7. Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect

    1997-04-01

    This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS.

  8. Leachate plumes in ground water from Babylon and Islip landfills, Long Island, New York

    USGS Publications Warehouse

    Kimmel, Grant E.; Braids, O.C.

    1980-01-01

    Landfills operated by the towns of Babylon and Islip in southwest and central Suffolk County, N.Y., contain urban refuse incinerated garbage, and scavenger (cesspool) waste; some industrial refuse is deposited at the Babylon site. The Islip landfill was started in 1933, the Babylon landfill in 1947. The landfills are in contact with and discharge leachate into the highly permeable upper glacial aquifer (hydraulic conductivity 190 and 500 ft/d). The aquifer is 74 feet thick at the Babylon landfill and 170 feet thick at the Islip landfill. The leachate-enriched water occupies the boundaries retard downward migration of the plumes to deeper aquifers. The Babylon plume is 1,900 feet wide at the landfill and narrows to about 700 feet near its terminus 10,000 feet from the landfill. The Islip plume is 5,000 feet from the landfill. Hydrochemical maps and sections show the distribution of the major chemical constituents of the plumes. The most highly leachate-enriched ground water obtained was from the Babylon site; it contained 860 mg/L sodium, 110 mg/L potassium, 565 mg/L calcium, 100 mg/L magnesium, 2,7000 mg/L bicarbonate, and 1,300 mg/L chloride. Simulation of the movement and dispersion of the Babylon plume with a mathematical dispersion model indicated the coefficient of the longitudinal dispersion to be about 60 feet squared per day and the ground-water velocity to be 1 ft/d. However, the velocity determined from the hydraulic gradient and public-supply wells in the area was 4 ft/d, which would cause a plume four times as long as that predicted by the model. (Kosco-USGS)

  9. Wary Eyes Monitoring Wall Street

    ERIC Educational Resources Information Center

    Jacobson, Linda

    2008-01-01

    School business officials kept a close watch on the financial markets this week--and on district investment portfolios and teacher-retirement funds--as stock prices gyrated and once-sound institutions got government bailouts or crumbled into bankruptcy. While financial observers said it was too soon to predict how Wall Street's upheaval might…

  10. Street Rhymes around the World.

    ERIC Educational Resources Information Center

    Yolen, Jane, Ed.

    Based on the idea that although children of every nation speak different languages the language of play is international, this collection of 32 street rhymes from 17 nations and republics offers each rhyme in its native language (Portuguese, Tamil, Hebrew, Japanese, Russian, Chinese, Spanish, Greek, German, Bantu (Mambwe), Danish, Cheyenne,

  11. Wary Eyes Monitoring Wall Street

    ERIC Educational Resources Information Center

    Jacobson, Linda

    2008-01-01

    School business officials kept a close watch on the financial markets this week--and on district investment portfolios and teacher-retirement funds--as stock prices gyrated and once-sound institutions got government bailouts or crumbled into bankruptcy. While financial observers said it was too soon to predict how Wall Street's upheaval might

  12. Main Street in Iowa History.

    ERIC Educational Resources Information Center

    Ruth, Amy, Ed.

    1997-01-01

    This theme issue of "The Goldfinch" focuses on the main streets in Iowa's past. Residential and business patterns are discussed with an analysis of successes and failures. Efforts of young Iowans involved in preservation of a historic town square in their community are described. Activities, fiction selections, and nonfictional accounts of present…

  13. A Ride Down Mango Street.

    ERIC Educational Resources Information Center

    O'Malley, Thomas F.

    1997-01-01

    Describes the powerful connections an English teacher and his students made with Sandra Cisneros'"The House on Mango Street." Discusses how the book invites the reader to experience racism, shares the mainstream of the American experience, and deals with growing up. Notes that the book had a powerful impact on students' writing and their desire to…

  14. The Great Learning Street Debate

    ERIC Educational Resources Information Center

    Nair, Prakash

    2005-01-01

    Nair discusses the "Learning Street," a now-frequent concept of modern school planning and design in terms of the multiple modalities of learning that today's schools must nurture. The author lists 18, including: (1) Independent study; (2) Peer tutoring; (3) Team collaborative work in small and mid-sized groups; (4) One-on-one learning with the…

  15. 5. VIEW NORTHWEST, EAST ELEVATION, 1123 SPRING STREET Pendleton ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW NORTHWEST, EAST ELEVATION, 1123 SPRING STREET - Pendleton Subdivision (Residential-Commercial Buildings), Bounded by Liberty Street, Reading Road & Sycamore Street, Cincinnati, Hamilton County, OH

  16. GENERAL VIEW, WEST SIDE OF UBER STREET, LOOKING SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW, WEST SIDE OF UBER STREET, LOOKING SOUTHWEST. - 2100 Block North Uber Street (Houses), East & west sides between Diamond Street & Susquehanna Avenue, Philadelphia, Philadelphia County, PA

  17. Hydrogeologic data for Rocky Creek landfill and adjacent area, northwest Hillsborough County, Florida, 1969-73

    USGS Publications Warehouse

    Duerr, A.D.; Stewart, Joseph William

    1981-01-01

    Well location and construction data are summarized for 222 wells in the Rocky Creek landfill and adjacent area in northwest Hillsborough County. Most of the data are for 92 wells within the immediate vicinity of the landfill. Water-quality data are presented for 78 wells and 9 surface-water sites. Water-level data for 133 wells penetrating the surficial and Floridan aquifers and lithologic logs for 35 wells are also presented. (USGS)

  18. Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills.

    PubMed

    Sizirici, Banu; Tansel, Berrin; Kumar, Vivek

    2011-06-01

    Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance. PMID:21324663

  19. Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills

    SciTech Connect

    Sizirici, Banu; Tansel, Berrin; Kumar, Vivek

    2011-06-15

    Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance.

  20. Fluxes of methane between landfills and the atmosphere: Natural and engineered controls

    SciTech Connect

    Bogner, J.; Meadows, M.; Czepiel, P.

    1997-08-01

    Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

  1. Pecan Street Grid Demonstration Program. Final technology performance report

    SciTech Connect

    None, None

    2015-02-10

    This document represents the final Regional Demonstration Project Technical Performance Report (TPR) for Pecan Street Inc.’s (Pecan Street) Smart Grid Demonstration Program, DE-OE-0000219. Pecan Street is a 501(c)(3) smart grid/clean energy research and development organization headquartered at The University of Texas at Austin (UT). Pecan Street worked in collaboration with Austin Energy, UT, Environmental Defense Fund (EDF), the City of Austin, the Austin Chamber of Commerce and selected consultants, contractors, and vendors to take a more detailed look at the energy load of residential and small commercial properties while the power industry is undergoing modernization. The Pecan Street Smart Grid Demonstration Program signed-up over 1,000 participants who are sharing their home or businesses’s electricity consumption data with the project via green button protocols, smart meters, and/or a home energy monitoring system (HEMS). Pecan Street completed the installation of HEMS in 750 homes and 25 commercial properties. The program provided incentives to increase the installed base of roof-top solar photovoltaic (PV) systems, plug-in electric vehicles with Level 2 charging, and smart appliances. Over 200 participants within a one square mile area took advantage of Austin Energy and Pecan Street’s joint PV incentive program and installed roof-top PV as part of this project. Of these homes, 69 purchased or leased an electric vehicle through Pecan Street’s PV rebate program and received a Level 2 charger from Pecan Street. Pecan Street studied the impacts of these technologies along with a variety of consumer behavior interventions, including pricing models, real-time feedback on energy use, incentive programs, and messaging, as well as the corresponding impacts on Austin Energy’s distribution assets.The primary demonstration site was the Mueller community in Austin, Texas. The Mueller development, located less than three miles from the Texas State Capitol, is a 711-acre LEED Neighborhood Development mixed-use, urban infill redevelopment on the site of Austin’s former airport, currently under development through a public-private project between the City of Austin, and Catellus Austin LLC. Currently, Mueller is less than 50% complete and more than 3,500 people live or work at Mueller. At full build-out, the project will include more than 3 million square feet of commercial and institutional space, more than 13,000 residents from approximately 5,700 single-family and multi-family dwelling units. Figure 1 shows a Google Map image of the Mueller community, zoomed in on the residential streets participating in the project.

  2. Engineering geology and ground water considerations for sanitary landfills in Wisconsin-aged morainal deposits of central Indiana

    SciTech Connect

    West, T.R.

    1985-01-01

    In the past five years the author has been engaged as an engineering geology consultant concerning a number of existing and proposed landfills, located in the Wisconsin morainal plains of central Indiana. Work has involved the representation of landfill owners in some cases and opposing citizens in others. For each case except one, municipal waste or conventional waste landfills were involved with the other involving hazardous waste disposal. Several major geologic considerations are involved in proper sitting of landfills in this region. These include: (1) Type, nature and stratigraphy of unconsolidated materials; (2) Thickness of unconsolidated material; (3) Type and nature of bedrock below unconsolidated material: (4) Groundwater supplies in vicinity; (5) Topography of site including flood potential; and (6) Groundwater table and water bearing zones involved. Engineering details of landfill construction and monitoring must also be considered in regard to the site geology. Aspects of leachate generation and containment must be addressed as well.

  3. Guide to implementing reclamation processes at Department of Defense municipal solid waste and construction debris landfills. Master's thesis

    SciTech Connect

    Tures, G.L.

    1993-09-21

    This thesis serves as a guide for implementing landfill reclamation techniques on municipal solid waste or construction debris landfills owned, operated, or used by the DoD. The research describes historical and current methods for disposing of solid waste including open dumping, sanitary landfilling, and the development of state-of-the-art sanitary landfill cell technology. The thesis also identifies the factors which have led to the need for new methods of managing municipal solid waste. The vast majority of the study is devoted to identifying actions which should be taken before, during, and after implementation of a landfill reclamation project. These actions include the development of health, safety, and contingency planning documents, the establishment of systems for characterizing and monitoring site conditions, and the identification of other procedures and processes necessary for performing successful operations. Finally, this study contains a model for analyzing under which conditions reclamation is economically feasible. The model examines economic feasibility in four separate conditions and shows that reclamation is economically feasible in a wide variety of markets. However, the model also shows that feasibility is directly associated with a continuance of normal landfilling operations. Landfill, Landfill reclamation, Landfill mining, Municipal solid waste, Recycling, Construction debris.

  4. Toxicological evaluation of the leachate from a closed urban landfill

    SciTech Connect

    Radi, L.M.; Kuntz, D.J.; Padmanabhan, G.; Berg, I.E.; Chaturvedi, A.K.

    1987-02-01

    Landfilling is one of the commonly used methods of disposal of solid wastes in small and medium size municipalities. Leachate produced in the landfills can contaminate underground sources of water. Though precautionary measures to reduce the risk of leachate migration into underground sources of water are included in the selection of sites for landfilling and in their design and construction, the risk of contamination is not completely eliminated. Though chemical and in vitro toxicity tests on leachates have been conducted, not many studies are related to long-term toxicity of leachate in animal models. Therefore, toxicological evaluation of leachates is needed in order to predict possible undesirable effects of consumption of leachate-contaminated water on human populations. In this study, leachate obtained from a close landfill, which served a city population of about 60,000, was evaluated for its toxicity to mice. Animals were given leachate as drinking water for 65 days, and general toxicity to selected end points was observed.

  5. Response of tomato plants to simulated landfill gas mixtures

    SciTech Connect

    Arthur, J.J.; Leone, I.A.; Flower, F.B.

    1985-01-01

    The roots of tomato plants were fumigated with simulated refuse-generated gas mixtures at levels of methane (CH/sub 4/), carbon dioxide (CO/sub 2/), and oxygen (O/sub 2/) previously measured in the atmospheres of landfill cover soils associated with poor growth or death of plants. A concentration of 18% CO/sub 2/ or greater, exceeded in almost 30% of thirty-two landfills examined throughout the US, caused reduced growth and visible symptoms on tomato after 1 wk, regardless of O/sub 2/ level. Doubling the CO/sub 2/ level to that encountered in a typical local site (Edgeboro Landfill) resulted in more severe symptom development and the subsequent death of plants. Methane, in concentrations of 20% and above, found in more than 25% of the landfills visited, while not observed to be toxic per se; was associated with drastic O/sub 2/ depletion in the soil atmosphere, which activity was believed to be the cause of the plant decline.

  6. LEDs for Street Lighting—Here Today

    SciTech Connect

    2013-11-29

    Fact sheet that provides a brief overview of the viability of LED street lighting in municipalities and highlights case studies of two cities—Los Angeles and Seattle—that have invested in LED street lighting.

  7. Landfills in Jiangsu province, China, and potential threats for public health: Leachate appraisal and spatial analysis using geographic information system and remote sensing

    SciTech Connect

    Yang Kun; Zhou Xiaonong Yan Weian; Hang Derong; Steinmann, Peter

    2008-12-15

    Waste disposal is of growing environmental and public health concern in China where landfilling is the predominant method of disposal. The assessment of potential health hazards posed by existing landfills requires sound information, and processing of a significant amount of spatial data. Geographical information system (GIS) and remote sensing (RS) are valuable tools for assessing health impacts due to landfills. The aims of this study were: (i) to analyze the leachate and gas emissions from landfills used for domestic waste disposal in a metropolitan area of Jiangsu province, China, (ii) to investigate remotely-sensed environmental features in close proximity to landfills, and (iii) to evaluate the compliance of their location and leachate quality with the relevant national regulations. We randomly selected five landfills in the metropolitan areas of Wuxi and Suzhou city, Jiangsu province, established a GIS database and examined whether data were in compliance with national environmental and public health regulations. The leachates of the sampled landfills contained heavy metals (Pb, As, Cr{sup 6+} and Hg) and organic compounds in concentrations considered harmful to human health. Measured methane concentrations on landfill surfaces were low. Spatial analysis of the location of landfills with regard to distance from major water bodies, sensible infrastructure and environmental conditions according to current national legislation resulted in the rejection of four of the five sites as inappropriate for landfills. Our results call for rigorous evaluation of the spatial location of landfills in China that must take into consideration environmental and public health criteria.

  8. Organic matter determination for street dust in Delhi.

    PubMed

    Shandilya, Kaushik K; Khare, Mukesh; Gupta, A B

    2013-06-01

    The organic matter of street dust is considered as one of the causes for high human mortality rate. To understand the association, the street dust samples were collected from four different localities (industrial, residential, residential-commercial, and commercial) situated in the greater Delhi area of India. The loss-on-ignition method was used to determine the organic matter (OM) content in street dust. The OM content, potassium, calcium, sulfate, and nitrate concentrations of street dust in Delhi, India is measured to understand the spatial variation. Correlation analysis, analysis of variance, and factor analysis were performed to define the sources. The dust OM level ranges from 2.63 to 10.22 %. It is found through correlation and factor analysis that OM is primarily contributed from secondary aerosol and vehicular exhaust. The OM levels suggest that the use of a residential-commercial site for commercial purposes is polluting the street dust and creating the environmental and human health problems. PMID:23099860

  9. Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill

    SciTech Connect

    Salasovich, J.; Mosey, G.

    2012-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

  10. Methane emissions from landfills in Serbia and potential mitigation strategies: a case study.

    PubMed

    Stanisavljevic, Nemanja; Ubavin, Dejan; Batinic, Bojan; Fellner, Johann; Vujic, Goran

    2012-10-01

    Open dumping and landfilling have represented the predominant method of waste management in Serbia during the past decades. This practice resulted in over 3600 waste disposal sites distributed all over the country. The locations of the sites and their characteristics have been determined in the framework of the presented study. The vast majority of disposal sites (up to 3300) are characterized by small deposition depth of waste and total waste volumes of less than 10,000 m(3). Only about 50 landfills in Serbia contain more than 100,000 m(3) of waste. These large landfills are responsible for more than 95% of the total CH(4) emissions from waste disposal, which was assessed as 60,000 tons of CH(4) in 2010. The evaluation of different measures [soil cover, compost cover and landfill gas (LFG) systems] for mitigating greenhouse gas emissions from Serbian landfills indicated that enhanced microbial CH(4) oxidation (using a compost cover), as well as the installation of LFG systems, could generate net revenues as saved CH(4) emissions are creditable for the European Greenhouse Gas Emissions Trading Scheme. In total between 4 and 7 million tons of CO(2) equivalent emissions could be avoided within the next 20 years by mitigating CH(4) emissions from Serbian landfills. PMID:22751946

  11. Solid waste management in Croatia in response to the European Landfill Directive.

    PubMed

    Stanic-Maruna, Ira; Fellner, Johann

    2012-08-01

    The European Landfill Directive 99/31/EC represents the most influential piece of waste legislation on the management of municipal solid waste. In addition to technical standards regarding the design and location of landfills, it calls for a decrease in the amount of biodegradable waste landfilled. In order to meet the reduction targets set in the Landfill Directive, national solid waste strategies need to be changed. This article outlines the impact of the Landfill Directive on the Croatian waste management strategy and discusses the key challenges of its implementation. In addition, three scenarios of future waste management (mechanical biological pre-treatment, waste-to-energy and landfilling) have been investigated and evaluated regarding environmental impacts and affordability. The results of the analysis show that Croatia has transposed the said Directive into its own legislation in an exemplary way. The developed national waste management strategy foresees the set up of a separate collection of recyclables, waste pre-treatment of MSW, as well as the upgrading of existing disposal sites to sanitary landfills. However, the practical progress of carrying out provisions implemented on paper is lagging behind. Concerning the investigated scenarios the results of the evaluation indicate that mechanical biological pre-treatment in conjunction with separate collection of recyclables appears to be the most feasible option (in terms of economic and ecologic parameters). This result is in line with the proposed national waste management strategy. PMID:22615201

  12. Using observed data to improve estimated methane collection from select U.S. landfills.

    PubMed

    Wang, Xiaoming; Nagpure, Ajay S; DeCarolis, Joseph F; Barlaz, Morton A

    2013-04-01

    The anaerobic decomposition of solid waste in a landfill produces methane, a potent greenhouse gas, and if recovered, a valuable energy commodity. Methane generation from U.S. landfills is usually estimated using the U.S. EPA's Landfill Gas Emissions Model (LandGEM). Default values for the two key parameters within LandGEM, the first-order decay rate (k) and the methane production potential (L0) are based on data collected in the 1990s. In this study, observed methane collection data from 11 U.S. landfills and estimates of gas collection efficiencies developed from site-specific gas well installation data were included in a reformulated LandGEM equation. Formal search techniques were employed to optimize k for each landfill to find the minimum sum of squared errors (SSE) between the LandGEM prediction and the observed collection data. Across nearly all landfills, the optimal k was found to be higher than the default AP-42 of 0.04 yr(-1) and the weighted average decay for the 11 landfills was 0.09 - 0.12 yr(-1). The results suggest that the default k value assumed in LandGEM is likely too low, which implies that more methane is produced in the early years following waste burial when gas collection efficiencies tend to be lower. PMID:23469937

  13. A performance-based system for the long-term management of municipal waste landfills.

    PubMed

    Morris, Jeremy W F; Barlaz, Morton A

    2011-04-01

    Landfills have been the dominant alternative for disposal of solid waste and there are tens of thousands of closed landfills throughout the world that require a long-term management strategy. In contrast to approaches based on time or target values, this paper describes a performance-based methodology for evaluation of post-closure care (PCC). Using the methodology, critical components of PCC at a landfill, including leachate and gas management, groundwater monitoring and cover integrity, are considered to determine whether a landfill meets defined conditions for functional stability and can transition from regulated PCC to a post-regulatory custodial care program representing de minimus care activities only. The methodology is predicated on understanding the biological, chemical, and physical behavior of a landfill and the presence of sufficient data to verify expected trends in landfill behavior. If an evaluation suggests that a change can be made to PCC, the landfill owner must perform confirmation monitoring and then surveillance monitoring at a decreasing frequency to verify that the change is protective of human health and the environment. A hypothetical case study showed that using the methodology to evaluate site-specific PCC requirements could result in increased environmental protection at comparable cost by spending available funds where they are most needed. PMID:21186115

  14. Certification report for final closure of Y-12 Centralized Sanitary Landfill II, Oak Ridge, Tennessee

    SciTech Connect

    1995-12-31

    This report represents the Geotek Engineering Company, Inc., (Geotek) record of activities to support certification of final closure Of the subject Y-12 Centralized Sanitary Landfill II. Ex as noted herein, final closure of the landfill was completed in accordance with the Y-12 Centralized Sanitary Landfill 11 Closure/Post Closure Plan, Revision 2, submitted by the US Department of Energy (DOE) to the Tennessee Department of Environment and Conservation (TDEC) on April 14, 1992, and approved by TDEC on May 27, 1994 (the ``Closure Plan``). minor modification to the Closure Plan allowing partial closure of the Y-12 Centralized Sanitary Landfill II (Phase 1) was approved by TDEC on August 3, 1994. The Phase I portion of the closure for the subject landfill was completed on March 25, 1995. A closure certification report entitled Certification Report for Partial Closure of Y-12 Centralized Sanitary Landfill II was submitted to Lockheed Martin Energy Systems, Inc., (LMES) on March 28, 1995. The final closure represents the completion of the closure activities for the entire Y-12 Centralized Sanitary Landfill II Site. The contents of this report and accompanying certification are based on observations by Geotek engineers and geologists during closure activities and on review of reports, records, laboratory test results, and other information furnished to Geotek by LMES.

  15. Life-cycle inventory and impact evaluation of mining municipal solid waste landfills.

    PubMed

    Jain, Pradeep; Powell, Jon T; Smith, Justin L; Townsend, Timothy G; Tolaymat, Thabet

    2014-01-01

    Recent research and policy directives have emerged with a focus on sustainable management of waste materials, and the mining of old landfills represents an opportunity to meet sustainability goals by reducing the release of liquid- and gas-phase contaminants into the environment, recovering land for more productive use, and recovering energy from the landfilled materials. The emissions associated with the landfill mining process (waste excavation, screening, and on-site transportation) were inventoried on the basis of diesel fuel consumption data from two full-scale mining projects (1.3-1.5 L/in-place m(3) of landfill space mined) and unit emissions (mass per liter of diesel consumption) from heavy equipment typically deployed for mining landfills. An analytical framework was developed and used in an assessment of the life-cycle environmental impacts of a few end-use management options for materials deposited and mined from an unlined landfill. The results showed that substantial greenhouse gas emission reductions can be realized in both the waste relocation and materials and energy recovery scenarios compared to a "do nothing" case. The recovery of metal components from landfilled waste was found to have the greatest benefit across nearly all impact categories evaluated, while emissions associated with heavy equipment to mine the waste itself were found to be negligible compared to the benefits that mining provided. PMID:24512420

  16. A Preliminary evaluation of hydrology and water quality near the Tacoma Landfill, Pierce County, Washington

    USGS Publications Warehouse

    Lum, W.E.; Turney, G.L.

    1985-01-01

    The Tacoma landfill, located in western Pierce County, Washington, has been used for the disposal of waste since about 1960. Disposal operations are planned to continue at this site until at least 1990. Data were compiled and interpreted to help understand the possible effects of the landfill on water quality in the surrounding area. Data were collected from published and unpublished reports of the U.S. Geological Survey, and from predominantly unpublished data in the files of other government agencies. The Tacoma landfill is underlain by unconsolidated, glacially derived deposits that consist of a wide variety of mixtures of clay to boulder-sized materials. Ground water is mostly the result of rainfall on the land surface, and moves through artesian aquifers (under the landfill) that are tapped for both domestic and municipal use. Hazardous liquid and dissolved wastes are probably present in the landfill, and potential flow paths for waste migration exist. An undetermined number of single-family domestic wells and 18 public-supply wells are within 3 miles of the landfill, three as close as 0.2 miles. There is only limited evidence indicating ground- and surface-water contamination. Further investigations of the geology, hydrology and water quality are needed to characterize the impact the landfill has on ground- and surface-water of the surrounding area. (USGS)

  17. Mixed waste landfill annual groundwater monitoring report April 2005.

    SciTech Connect

    Lyon, Mark L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM)

    2006-01-01

    Annual groundwater sampling was conducted at the Sandia National Laboratories' Mixed Waste Landfill (MWL) in April 2005. Seven monitoring wells were sampled using a Bennett{trademark} pump in accordance with the April 2005 Mini-Sampling and Analysis Plan for the MWL (SNL/NM 2005). The samples were analyzed off site at General Engineering Laboratories, Inc. for a broad suite of radiochemical and chemical parameters, and the results are presented in this report. Sample splits were also collected from several of the wells by the New Mexico Environment Department U.S. Department of Energy Oversight Bureau; however, the split sample results are not included in this report. The results of the April 2005 annual groundwater monitoring conducted at the MWL showed constituent concentrations within the historical ranges for the site and indicated no evidence of groundwater contamination from the landfill.

  18. Landfill reduction experience in The Netherlands.

    PubMed

    Scharff, Heijo

    2014-11-01

    Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated 40 million of annual revenue, had 58 million annual costs and therefore incurred an annual loss of 18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a 'safety net' in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills. PMID:24999096

  19. Health assessment for Welsh Landfill, Honeybrook, Chester County, Pennsylvania, Region 3. CERCLIS No. PAD980829527. Final report

    SciTech Connect

    Not Available

    1992-03-24

    The Welsh Landfill site (AKA Welsh Road/Barkman Landfill) National Priorities List site is located near the top of Welsh Mountain, Honey Brook Township, Chester County, Pennsylvania. The landfill was operated as an unpermitted solid waste disposal facility from 1963-1977 and is currently operated as a waste transfer station. Environmental pathways for the migration of site-contaminants to off-site areas include those associated with groundwater and surface and subsurface soil. Human exposure to site contaminants may occur through ingestion and dermal contact with contaminated groundwater, dusts or volatilized contaminants. The proposed remediation of the site by EPA should eliminate or significantly reduce the potential for the completion of human exposure pathways to site contaminants by capping the site and supplying public water to affected residences. This site is considered a public health hazard because of past exposure to site contaminants by individuals.

  20. FACING SOUNT AT JEFFERSON STREET AND 16TH STREET. NORTH AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACING SOUNT AT JEFFERSON STREET AND 16TH STREET. NORTH AND WEST BACKSIDES OF JOHN BREUNER AND COMPANY BUILDING IN CENTER (BACKGROUND), SURROUNDING STRUCTURES ON CLAY, JEFFERSON AND 15TH STREETS AT LEFT, RIGHT, AND FOREGROUND - John Breuner & Company Building, 1515 Clay Street, Oakland, Alameda County, CA