Sample records for strength significantly increased

  1. Balance disorder and increased risk of falls in osteoporosis and kyphosis: significance of kyphotic posture and muscle strength.

    PubMed

    Sinaki, Mehrsheed; Brey, Robert H; Hughes, Christine A; Larson, Dirk R; Kaufman, Kenton R

    2005-08-01

    This controlled trial was designed to investigate the influence of osteoporosis-related kyphosis (O-K) on falls. Twelve community-dwelling women with O-K (Cobb angle, 50-65 degrees measured from spine radiographs) and 13 healthy women serving as controls were enrolled. Mean age of the O-K group was 76 years (+/-5.1), height 158 cm (+/-5), and weight 61 kg (+/-7.9), and mean age of the control group was 71 years (+/-4.6), height 161 cm (+/-3.8), and weight 66 kg (+/-11.7). Quantitative isometric strength data were collected. Gait was monitored during unobstructed level walking and during stepping over an obstacle of four different heights randomly assigned (2.5%, 5%, 10%, and 15% of the subject's height). Balance was objectively assessed with computerized dynamic posturography consisting of the sensory organization test. Back extensor strength, grip strength, and all lower extremity muscle groups were significantly weaker in the O-K group than the control group (P <0.05), except right ankle plantar flexors (P =0.09). There was a significant difference in the anteroposterior and mediolateral displacements and velocities. The O-K subjects had less anteroposterior displacement, greater mediolateral displacement, reduced anteroposterior velocity, and increased mediolateral velocity compared with controls for all conditions of unobstructed and obstructed level walking. Obstacle height had a significant effect on all center-of-mass variables. The O-K subjects had significantly greater balance abnormalities on computerized dynamic posturography than the control group (P =0.002). Data show that thoracic hyperkyphosis on a background of reduced muscle strength plays an important role in increasing body sway, gait unsteadiness, and risk of falls in osteoporosis.

  2. At-home resistance tubing strength training increases shoulder strength in the trained and untrained limb.

    PubMed

    Magnus, C R A; Boychuk, K; Kim, S Y; Farthing, J P

    2014-06-01

    The purpose was to determine if an at-home resistance tubing strength training program on one shoulder (that is commonly used in rehabilitation settings) would produce increases in strength in the trained and untrained shoulders via cross-education. Twenty-three participants were randomized to TRAIN (strength-trained one shoulder; n = 13) or CONTROL (no intervention; n = 10). Strength training was completed at home using resistance tubing and consisted of maximal shoulder external rotation, internal rotation, scaption, retraction, and flexion 3 days/week for 4 weeks. Strength was measured via handheld dynamometry and muscle size measured via ultrasound. For external rotation strength, the trained (10.9 ± 10.9%) and untrained (12.7 ± 9.6%) arm of TRAIN was significantly different than CONTROL (1.6 ± 13.2%; -2.7 ± 12.3%; pooled across arm; P < 0.05). For internal rotation strength, the trained (14.8 ± 11.3%) and untrained (14.6 ± 10.1%) arm of TRAIN was significantly different than CONTROL (6.4 ± 11.2%; 5.1 ± 8.8%; pooled across arm; P < 0.05). There were no significant differences for scaption strength (P = 0.056). TRAIN significantly increased muscle size in the training arm of the supraspinatus (1.90 ± 0.32 to 1.99 ± 0.31 cm), and the anterior deltoid (1.08 ± 0.37 to 1.21 ± 0.39 cm; P < 0.05). This study suggests that an at-home resistance tubing training program on one limb can produce increases in strength in both limbs, and has implications for rehabilitation after unilateral shoulder injuries. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Significantly Increased Odds of Reporting Previous Shoulder Injuries in Female Marines Based on Larger Magnitude Shoulder Rotator Bilateral Strength Differences

    PubMed Central

    Eagle, Shawn R.; Connaboy, Chris; Nindl, Bradley C.; Allison, Katelyn F.

    2018-01-01

    Background: Musculoskeletal injuries to the extremities are a primary concern for the United States (US) military. One possible injury risk factor in this population is side-to-side strength imbalance. Purpose: To examine the odds of reporting a previous shoulder injury in US Marine Corps Ground Combat Element Integrated Task Force volunteers based on side-to-side strength differences in isokinetic shoulder strength. Study Design: Cohort study; Level of evidence, 3. Methods: Male (n = 219) and female (n = 91) Marines were included in this analysis. Peak torque values from 5 shoulder internal/external rotation repetitions were averaged and normalized to body weight. The difference in side-to-side strength measurements was calculated as the absolute value of the limb difference divided by the mean peak torque of the dominant limb. Participants were placed into groups based on the magnitude of these differences: <10%, 10% to 20%, and >20%. Odds ratios (ORs) and 95% CIs were calculated. Results: When separated by sex, 13.2% of men reported an injury, while 5.5% of women reported an injury. Female Marines with >20% internal rotation side-to-side strength differences demonstrated increased odds of reporting a previous shoulder injury compared with female Marines with <10% strength differences (OR, 15.4; 95% CI, 1.4-167.2; P = .03 ) and female Marines with 10% to 20% strength differences (OR, 13.9; 95% CI, 1.3-151.2; P = .04). No significant ORs were demonstrated in male Marines. Conclusion: Marines with larger magnitude internal rotation strength differences demonstrated increased odds of reporting a previous shoulder injury compared with those with lesser magnitude differences. Additionally, female sex appears to drastically affect the increased odds of reporting shoulder injuries (OR, 13.9-15.4) with larger magnitude differences (ie, >20%) compared with those with lesser magnitude differences (ie, <10% and 10%-20%). The retrospective cohort design of this study cannot

  4. Significantly Increased Odds of Reporting Previous Shoulder Injuries in Female Marines Based on Larger Magnitude Shoulder Rotator Bilateral Strength Differences.

    PubMed

    Eagle, Shawn R; Connaboy, Chris; Nindl, Bradley C; Allison, Katelyn F

    2018-02-01

    Musculoskeletal injuries to the extremities are a primary concern for the United States (US) military. One possible injury risk factor in this population is side-to-side strength imbalance. To examine the odds of reporting a previous shoulder injury in US Marine Corps Ground Combat Element Integrated Task Force volunteers based on side-to-side strength differences in isokinetic shoulder strength. Cohort study; Level of evidence, 3. Male (n = 219) and female (n = 91) Marines were included in this analysis. Peak torque values from 5 shoulder internal/external rotation repetitions were averaged and normalized to body weight. The difference in side-to-side strength measurements was calculated as the absolute value of the limb difference divided by the mean peak torque of the dominant limb. Participants were placed into groups based on the magnitude of these differences: <10%, 10% to 20%, and >20%. Odds ratios (ORs) and 95% CIs were calculated. When separated by sex, 13.2% of men reported an injury, while 5.5% of women reported an injury. Female Marines with >20% internal rotation side-to-side strength differences demonstrated increased odds of reporting a previous shoulder injury compared with female Marines with <10% strength differences (OR, 15.4; 95% CI, 1.4-167.2; P = .03 ) and female Marines with 10% to 20% strength differences (OR, 13.9; 95% CI, 1.3-151.2; P = .04). No significant ORs were demonstrated in male Marines. Marines with larger magnitude internal rotation strength differences demonstrated increased odds of reporting a previous shoulder injury compared with those with lesser magnitude differences. Additionally, female sex appears to drastically affect the increased odds of reporting shoulder injuries (OR, 13.9-15.4) with larger magnitude differences (ie, >20%) compared with those with lesser magnitude differences (ie, <10% and 10%-20%). The retrospective cohort design of this study cannot delineate cause and effect but establishes a relationship between

  5. Increasing Lean Mass and Strength: A Comparison of High Frequency Strength Training to Lower Frequency Strength Training.

    PubMed

    Thomas, Michael H; Burns, Steve P

    The purpose of this study was to determine the effect strength training frequency has on improvements in lean mass and strength. Participants were 7 women and 12 men, age ( χ̄ = 34.64 years ± 6.91 years), with strength training experience, training age ( χ̄ = 51.16 months ± 39.02 months). Participants were assigned to one of two groups to equal baseline group demographics. High frequency training group (HFT) trained each muscle group as the agonist, 3 times per week, exercising with 3 sets per muscle group per session (3 total body workouts). Low frequency training group (LFT) trained each muscle group as the agonist one time per week, completing all 9 sets during that one workout. LFT consisted of a routine split over three days: 1) pectoralis, deltoids, and triceps; 2) upper back and biceps; 3) quadriceps, hamstrings, calves, and abdominals. Following eight weeks of training, HFT increased lean mass by 1.06 kg ± 1.78 kg, (1.9%), and LFT increased lean mass by .99 kg ± 1.31 kg, (2.0%). HFT strength improvements on the chest press was 9.07 kg ± 6.33 kg, (11%), and hack squat 20.16 kg ± 11.59 kg, (21%). LFT strength improvements on chest press was 5.80kg ± 4.26 kg, (7.0%), and hack squat 21.83 kg ± 11.17 kg, (24 %). No mean differences between groups were significant. These results suggest that HFT and LFT of equal set totals result in similar improvements in lean mass and strength, following 8 weeks of strength training.

  6. Anisotropic Failure Strength of Shale with Increasing Confinement: Behaviors, Factors and Mechanism

    PubMed Central

    Cheng, Cheng; Li, Xiao; Qian, Haitao

    2017-01-01

    Some studies reported that the anisotropic failure strength of shale will be weakened by increasing confinement. In this paper, it is found that there are various types of anisotropic strength behaviors. Four types of anisotropic strength ratio (SA1) behaviors and three types of anisotropic strength difference (SA2) behaviors have been classified based on laboratory experiments on nine groups of different shale samples. The cohesion cw and friction angle ϕw of the weak planes are proven to be two dominant factors according to a series of bonded-particle discrete element modelling analyses. It is observed that shale is more prone to a slight increase of SA1 and significant increase of SA2 with increasing confinement for higher cohesion cw and lower to medium friction angle ϕw. This study also investigated the mechanism of the anisotropic strength behaviors with increasing confinement. Owing to different contributions of cw and ϕw under different confinements, different combinations of cw and ϕw may have various types of influences on the minimum failure strength with the increasing confinement; therefore, different types of anisotropic behaviors occur for different shale specimens as the confinement increases. These findings are very important to understand the stability of wellbore and underground tunneling in the shale rock mass, and should be helpful for further studies on hydraulic fracture propagations in the shale reservoir. PMID:29140292

  7. Anisotropic Failure Strength of Shale with Increasing Confinement: Behaviors, Factors and Mechanism.

    PubMed

    Cheng, Cheng; Li, Xiao; Qian, Haitao

    2017-11-15

    Some studies reported that the anisotropic failure strength of shale will be weakened by increasing confinement. In this paper, it is found that there are various types of anisotropic strength behaviors. Four types of anisotropic strength ratio ( S A 1 ) behaviors and three types of anisotropic strength difference ( S A 2 ) behaviors have been classified based on laboratory experiments on nine groups of different shale samples. The cohesion c w and friction angle ϕ w of the weak planes are proven to be two dominant factors according to a series of bonded-particle discrete element modelling analyses. It is observed that shale is more prone to a slight increase of S A 1 and significant increase of S A 2 with increasing confinement for higher cohesion c w and lower to medium friction angle ϕ w . This study also investigated the mechanism of the anisotropic strength behaviors with increasing confinement. Owing to different contributions of c w and ϕ w under different confinements, different combinations of c w and ϕ w may have various types of influences on the minimum failure strength with the increasing confinement; therefore, different types of anisotropic behaviors occur for different shale specimens as the confinement increases. These findings are very important to understand the stability of wellbore and underground tunneling in the shale rock mass, and should be helpful for further studies on hydraulic fracture propagations in the shale reservoir.

  8. [Electrical acupoint stimulation increases athletes' rapid strength].

    PubMed

    Yang, Hua-yuan; Liu, Tang-yi; Kuai, Le; Gao, Ming

    2006-05-01

    To search for a stimulation method for increasing athletes' performance. One hundred and fifty athletes were randomly divided into a trial group and a control group, 75 athletes in each group. Acupoints were stimulated with audio frequency pulse modulated wave and multi-blind method were used to investigate effects of the electric stimulation of acupoints on 30-meter running, standing long jumping and Cybex isokinetic testing index. The acupoint electric stimulation method could significantly increase athlete's performance (P < 0.05), and the biomechanical indexes, maximal peak moment of force (P < 0.05), force moment accelerating energy (P < 0.05) and average power (P < 0.05). Electrical acupoint stimulation can enhance athlete's rapid strength.

  9. A Behavioral Mechanism of How Increases in Leg Strength Improve Old Adults’ Gait Speed

    PubMed Central

    Uematsu, Azusa; Tsuchiya, Kazushi; Kadono, Norio; Kobayashi, Hirofumi; Kaetsu, Takamasa; Hortobágyi, Tibor; Suzuki, Shuji

    2014-01-01

    We examined a behavioral mechanism of how increases in leg strength improve healthy old adults’ gait speed. Leg press strength training improved maximal leg press load 40% (p = 0.001) and isometric strength in 5 group of leg muscles 32% (p = 0.001) in a randomly allocated intervention group of healthy old adults (age 74, n = 15) but not in no-exercise control group (age 74, n = 8). Gait speed increased similarly in the training (9.9%) and control (8.6%) groups (time main effect, p = 0.001). However, in the training group only, in line with the concept of biomechanical plasticity of aging gait, hip extensors and ankle plantarflexors became the only significant predictors of self-selected and maximal gait speed. The study provides the first behavioral evidence regarding a mechanism of how increases in leg strength improve healthy old adults’ gait speed. PMID:25310220

  10. The effect of increasing strength and approach velocity on triple jump performance.

    PubMed

    Allen, Sam J; Yeadon, M R Fred; King, Mark A

    2016-12-08

    The triple jump is an athletic event comprising three phases in which the optimal phase ratio (the proportion of each phase to the total distance jumped) is unknown. This study used a planar whole body torque-driven computer simulation model of the ground contact parts of all three phases of the triple jump to investigate the effect of strength and approach velocity on optimal performance. The strength and approach velocity of the simulation model were each increased by up to 30% in 10% increments from baseline data collected from a national standard triple jumper. Increasing strength always resulted in an increased overall jump distance. Increasing approach velocity also typically resulted in an increased overall jump distance but there was a point past which increasing approach velocity without increasing strength did not lead to an increase in overall jump distance. Increasing both strength and approach velocity by 10%, 20%, and 30% led to roughly equivalent increases in overall jump distances. Distances ranged from 14.05m with baseline strength and approach velocity, up to 18.49m with 30% increases in both. Optimal phase ratios were either hop-dominated or balanced, and typically became more balanced when the strength of the model was increased by a greater percentage than its approach velocity. The range of triple jump distances that resulted from the optimisation process suggests that strength and approach velocity are of great importance for triple jump performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The increase of compressive strength of natural polymer modified concrete with Moringa oleifera

    NASA Astrophysics Data System (ADS)

    Susilorini, Rr. M. I. Retno; Santosa, Budi; Rejeki, V. G. Sri; Riangsari, M. F. Devita; Hananta, Yan's. Dianaga

    2017-03-01

    Polymer modified concrete is one of some concrete technology innovations to meet the need of strong and durable concrete. Previous research found that Moringa oleifera can be applied as natural polymer modifiers into mortars. Natural polymer modified mortar using Moringa oleifera is proven to increase their compressive strength significantly. In this resesearch, Moringa oleifera seeds have been grinded and added into concrete mix for natural polymer modified concrete, based on the optimum composition of previous research. The research investigated the increase of compressive strength of polymer modified concrete with Moringa oleifera as natural polymer modifiers. There were 3 compositions of natural polymer modified concrete with Moringa oleifera referred to previous research optimum compositions. Several cylinder of 10 cm x 20 cm specimens were produced and tested for compressive strength at age 7, 14, and, 28 days. The research meets conclusions: (1) Natural polymer modified concrete with Moringa oleifera, with and without skin, has higher compressive strength compared to natural polymer modified mortar with Moringa oleifera and also control specimens; (2) Natural polymer modified concrete with Moringa oleifera without skin is achieved by specimens contains Moringa oleifera that is 0.2% of cement weight; and (3) The compressive strength increase of natural polymer modified concrete with Moringa oleifera without skin is about 168.11-221.29% compared to control specimens

  12. Inspiratory muscle training increases inspiratory muscle strength in patients weaning from mechanical ventilation: a systematic review.

    PubMed

    Moodie, Lisa; Reeve, Julie; Elkins, Mark

    2011-01-01

    Does inspiratory muscle training improve inspiratory muscle strength and endurance, facilitate weaning, improve survival, and reduce the rate of reintubation and tracheostomy in adults receiving mechanical ventilation? Systematic review of randomised or quasi-randomised controlled trials. Adults over 16 years of age receiving mechanical ventilation. Inspiratory muscle training versus sham or no inspiratory muscle training. Data were extracted regarding inspiratory muscle strength and endurance, the duration of unassisted breathing periods, weaning success and duration, reintubation and tracheostomy, survival, adverse effects, and length of stay. Three studies involving 150 participants were included in the review. The studies varied in time to commencement of the training, the device used, the training protocol, and the outcomes measured. Inspiratory muscle training significantly increased inspiratory muscle strength over sham or no training (weighted mean difference 8 cmH(2)O, 95% CI 6 to 9). There were no statistically significant differences between the groups in weaning success or duration, survival, reintubation, or tracheostomy. Inspiratory muscle training was found to significantly increase inspiratory muscle strength in adults undergoing mechanical ventilation. Despite data from a substantial pooled cohort, it is not yet clear whether the increase in inspiratory muscle strength leads to a shorter duration of mechanical ventilation, improved weaning success, or improved survival. Further large randomised studies are required to clarify the impact of inspiratory muscle training on patients receiving mechanical ventilation. PROSPERO CRD42011001132. Copyright © 2011 Australian Physiotherapy Association. Published by .. All rights reserved.

  13. Comparison between linear and daily undulating periodized resistance training to increase strength.

    PubMed

    Prestes, Jonato; Frollini, Anelena B; de Lima, Cristiane; Donatto, Felipe F; Foschini, Denis; de Cássia Marqueti, Rita; Figueira, Aylton; Fleck, Steven J

    2009-12-01

    To determine the most effective periodization model for strength and hypertrophy is an important step for strength and conditioning professionals. The aim of this study was to compare the effects of linear (LP) and daily undulating periodized (DUP) resistance training on body composition and maximal strength levels. Forty men aged 21.5 +/- 8.3 and with a minimum 1-year strength training experience were assigned to an LP (n = 20) or DUP group (n = 20). Subjects were tested for maximal strength in bench press, leg press 45 degrees, and arm curl (1 repetition maximum [RM]) at baseline (T1), after 8 weeks (T2), and after 12 weeks of training (T3). Increases of 18.2 and 25.08% in bench press 1 RM were observed for LP and DUP groups in T3 compared with T1, respectively (p < or = 0.05). In leg press 45 degrees , LP group exhibited an increase of 24.71% and DUP of 40.61% at T3 compared with T1. Additionally, DUP showed an increase of 12.23% at T2 compared with T1 and 25.48% at T3 compared with T2. For the arm curl exercise, LP group increased 14.15% and DUP 23.53% at T3 when compared with T1. An increase of 20% was also found at T2 when compared with T1, for DUP. Although the DUP group increased strength the most in all exercises, no statistical differences were found between groups. In conclusion, undulating periodized strength training induced higher increases in maximal strength than the linear model in strength-trained men. For maximizing strength increases, daily intensity and volume variations were more effective than weekly variations.

  14. Increased medial olivocochlear reflex strength in normal-hearing, noise-exposed humans

    PubMed Central

    2017-01-01

    tolerance (SLT) and tinnitus. These data provide evidence that MOCR strength is associated with NEB. The functional significance of increased MOCR strength is discussed. PMID:28886123

  15. The development of ultrahigh strength low alloy cast steels with increased toughness

    NASA Astrophysics Data System (ADS)

    Lynch, Paul C.

    a high temperature HIP treatment, both the CVN and ductility of the alloy was found to increase while maintaining comparable ultimate tensile strength (UTS) and yield strength (YS) levels as compared to the original homogenization treatment. Austempering the (IC) 4340+ material led to a significant increase in CVN and ductility at the expense of UTS and yield strength as the primarily martensitic microstructure was converted to a mixed martensitic-bainitic structure. An initial heat of induction melted, aluminum deoxidized investment cast ES-1 with 0.06 wt % of aluminum showed that the average -40°F and +72°F impact toughness, % elongation, and UTS and YS of the fully heat treated investment cast + HIP ES-1 material lagged significantly behind that of the vacuum degassed cast + HIP ES-1 ingot material. Even though the % elongation and impact toughness of the investment cast ES-1 material changed between heat treatment conditions, the average UTS and YS values remained relatively unchanged throughout the heat treatments for the investment cast study. Etched micrographs of the investment cast ES-1 material showed evidence of significant differences in microsegregation reduction between the samples homogenized at 2125°F for 4 hours and those not homogenized at 2125°F for 4 hours. SEM fracture surface work performed on the investment cast material clearly showed that the induction melted investment and aluminum killed cast material contained significant amounts of MnS and Al2O3 inclusions that were not discovered in the vacuum degassed cast ingot material. Lastly, the results of a third heat of induction melted, aluminum deoxidized investment cast ES-1 material possessing just 0.01wt% of aluminum showed that the decrease in aluminum content from the first experimental heat did not improve the mechanical properties of the investment cast material. (Abstract shortened by UMI.)

  16. Resistance Training Increases the Variability of Strength Test Scores

    DTIC Science & Technology

    2009-06-08

    standard deviations for pretest and posttest strength measurements. This information was recorded for every strength test used in a total of 377 samples...significant if the posttest standard deviation consistently was larger than the pretest standard deviation. This condition could be satisfied even if...the difference in the standard deviations was small. For example, the posttest standard deviation might be 1% larger than the pretest standard

  17. Antimicrobial strength increases with group size: implications for social evolution.

    PubMed

    Turnbull, Christine; Hoggard, Stephen; Gillings, Michael; Palmer, Chris; Stow, Adam; Beattie, Doug; Briscoe, David; Smith, Shannon; Wilson, Peter; Beattie, Andrew

    2011-04-23

    We hypothesize that aggregations of animals are likely to attract pathogenic micro-organisms and that this is especially the case for semisocial and eusocial insects where selection ultimately led to group sizes in the thousands or even millions, attracting the epithet 'superorganism'. Here, we analyse antimicrobial strength, per individual, in eight thrips species (Insecta: Thysanoptera) that present increasing innate group sizes and show that species with the largest group size (100-700) had the strongest antimicrobials, those with smaller groups (10-80) had lower antimicrobial activity, while solitary species showed none. Species with large innate group sizes showed strong antimicrobial activity while the semisocial species showed no activity until group size increased sufficiently to make activity detectable. The eusocial species behaved in a similar way, with detectable activity appearing once group size exceeded 120. These analyses show that antimicrobial strength is determined by innate group size. This suggests that the evolution of sociality that, by definition, increases group size, may have had particular requirements for defences against microbial pathogens. Thus, increase in group size, accompanied by increased antibiotic strength, may have been a critical factor determining the 'point of no return', early in the evolution of social insects, beyond which the evolution of social anatomical and morphological traits was irreversible. Our data suggest that traits that increase group size in general are accompanied by increased antimicrobial strength and that this was critical for transitions from solitary to social and eusocial organization.

  18. Calcium- and Phosphorus-Supplemented Diet Increases Bone Mass after Short-Term Exercise and Increases Bone Mass and Structural Strength after Long-Term Exercise in Adult Mice

    PubMed Central

    Friedman, Michael A.; Bailey, Alyssa M.; Rondon, Matthew J.; McNerny, Erin M.; Sahar, Nadder D.; Kohn, David H.

    2016-01-01

    Exercise has long-lasting benefits to bone health that may help prevent fractures by increasing bone mass, bone strength, and tissue quality. Long-term exercise of 6–12 weeks in rodents increases bone mass and bone strength. However, in growing mice, a short-term exercise program of 3 weeks can limit increases in bone mass and structural strength, compared to non-exercised controls. Short-term exercise can, however, increase tissue strength, suggesting that exercise may create competition for minerals that favors initially improving tissue-level properties over structural-level properties. It was therefore hypothesized that adding calcium and phosphorus supplements to the diet may prevent decreases in bone mass and structural strength during a short-term exercise program, while leading to greater bone mass and structural strength than exercise alone after a long-term exercise program. A short-term exercise experiment was done for 3 weeks, and a long-term exercise experiment was done for 8 weeks. For each experiment, male 16-week old C57BL/6 mice were assigned to 4 weight-matched groups–exercise and non-exercise groups fed a control or mineral-supplemented diet. Exercise consisted of treadmill running at 12 m/min, 30 min/day for 7 days/week. After 3 weeks, exercised mice fed the supplemented diet had significantly increased tibial tissue mineral content (TMC) and cross-sectional area over exercised mice fed the control diet. After 8 weeks, tibial TMC, cross-sectional area, yield force, and ultimate force were greater from the combined treatments than from either exercise or supplemented diet alone. Serum markers of bone formation (PINP) and resorption (CTX) were both decreased by exercise on day 2. In exercised mice, day 2 PINP was significantly positively correlated with day 2 serum Ca, a correlation that was weaker and negative in non-exercised mice. Increasing dietary mineral consumption during an exercise program increases bone mass after 3 weeks and

  19. Root Tip Shape Governs Root Elongation Rate under Increased Soil Strength1[OPEN

    PubMed Central

    Kirchgessner, Norbert; Walter, Achim

    2017-01-01

    Increased soil strength due to soil compaction or soil drying is a major limitation to root growth and crop productivity. Roots need to exert higher penetration force, resulting in increased penetration stress when elongating in soils of greater strength. This study aimed to quantify how the genotypic diversity of root tip geometry and root diameter influences root elongation under different levels of soil strength and to determine the extent to which roots adjust to increased soil strength. Fourteen wheat (Triticum aestivum) varieties were grown in soil columns packed to three bulk densities representing low, moderate, and high soil strength. Under moderate and high soil strength, smaller root tip radius-to-length ratio was correlated with higher genotypic root elongation rate, whereas root diameter was not related to genotypic root elongation. Based on cavity expansion theory, it was found that smaller root tip radius-to-length ratio reduced penetration stress, thus enabling higher root elongation rates in soils with greater strength. Furthermore, it was observed that roots could only partially adjust to increased soil strength. Root thickening was bounded by a maximum diameter, and root tips did not become more acute in response to increased soil strength. The obtained results demonstrated that root tip geometry is a pivotal trait governing root penetration stress and root elongation rate in soils of greater strength. Hence, root tip shape needs to be taken into account when selecting for crop varieties that may tolerate high soil strength. PMID:28600344

  20. Neck Strength Imbalance Correlates With Increased Head Acceleration in Soccer Heading

    PubMed Central

    Dezman, Zachary D.W.; Ledet, Eric H.; Kerr, Hamish A.

    2013-01-01

    Background: Soccer heading is using the head to directly contact the ball, often to advance the ball down the field or score. It is a skill fundamental to the game, yet it has come under scrutiny. Repeated subclinical effects of heading may compound over time, resulting in neurologic deficits. Greater head accelerations are linked to brain injury. Developing an understanding of how the neck muscles help stabilize and reduce head acceleration during impact may help prevent brain injury. Hypothesis: Neck strength imbalance correlates to increasing head acceleration during impact while heading a soccer ball. Study Design: Observational laboratory investigation. Methods: Sixteen Division I and II collegiate soccer players headed a ball in a controlled indoor laboratory setting while player motions were recorded by a 14-camera Vicon MX motion capture system. Neck flexor and extensor strength of each player was measured using a spring-type clinical dynamometer. Results: Players were served soccer balls by hand at a mean velocity of 4.29 m/s (±0.74 m/s). Players returned the ball to the server using a heading maneuver at a mean velocity of 5.48 m/s (±1.18 m/s). Mean neck strength difference was positively correlated with angular head acceleration (rho = 0.497; P = 0.05), with a trend toward significance for linear head acceleration (rho = 0.485; P = 0.057). Conclusion: This study suggests that symmetrical strength in neck flexors and extensors reduces head acceleration experienced during low-velocity heading in experienced collegiate players. Clinical Relevance: Balanced neck strength may reduce head acceleration cumulative subclinical injury. Since neck strength is a measureable and amenable strength training intervention, this may represent a modifiable intrinsic risk factor for injury. PMID:24459547

  1. Does on-water resisted rowing increase or maintain lower-body strength?

    PubMed

    Lawton, Trent W; Cronin, John B; McGuigan, Michael R

    2013-07-01

    Over the past 30 years, endurance volumes have increased by >20% among the rowing elite; therefore, informed decisions about the value of weight training over other possible activities in periodized training plans for rowing need to be made. The purpose of this study was to quantify the changes in lower-body strength development after two 14-week phases of intensive resisted on-water rowing, either incorporating weight training or rowing alone. Ten elite women performed 2 resisted rowing ("towing ropes," e.g., 8 × 3 minutes) plus 6 endurance (e.g., 16-28 km at 70-80% maximum heart rate) and 2 rate-regulated races (e.g., 8,000 m at 24 strokes per minute) on-water each week. After a 4-week washout phase, the 14-week phase was repeated with the addition of 2 weight-training sessions (e.g., 3-4 sets × 6-15 reps). Percent (±SD) and standardized differences in effects (effect size [ES] ± 90% confidence limit) for 5-repetition leg pressing and isometric pulling strength were calculated from data ratio scaled for body mass, log transformed and adjusted for pretest scores. Resisted rowing alone did not increase leg pressing (-1.0 ± 5.3%, p = 0.51) or isometric pulling (5.3 ± 13.4%, p = 0.28) strength. In contrast, after weight training, a moderately greater increase in leg pressing strength was observed (ES = 0.72 ± 0.49, p = 0.03), although differences in isometric pulling strength were unclear (ES = 0.56 ± 1.69, p = 0.52). In conclusion, intensive on-water training including resisted rowing maintained but did not increase lower-body strength. Elite rowers or coaches might consider the incorporation of high-intensity nonfatiguing weight training concurrent to endurance exercise if increases in lower-body strength without changes in body mass are desired.

  2. Econometric analysis of the changing effects in wind strength and significant wave height on the probability of casualty in shipping.

    PubMed

    Knapp, Sabine; Kumar, Shashi; Sakurada, Yuri; Shen, Jiajun

    2011-05-01

    This study uses econometric models to measure the effect of significant wave height and wind strength on the probability of casualty and tests whether these effects changed. While both effects are in particular relevant for stability and strength calculations of vessels, it is also helpful for the development of ship construction standards in general to counteract increased risk resulting from changing oceanographic conditions. The authors analyzed a unique dataset of 3.2 million observations from 20,729 individual vessels in the North Atlantic and Arctic regions gathered during the period 1979-2007. The results show that although there is a seasonal pattern in the probability of casualty especially during the winter months, the effect of wind strength and significant wave height do not follow the same seasonal pattern. Additionally, over time, significant wave height shows an increasing effect in January, March, May and October while wind strength shows a decreasing effect, especially in January, March and May. The models can be used to simulate relationships and help understand the relationships. This is of particular interest to naval architects and ship designers as well as multilateral agencies such as the International Maritime Organization (IMO) that establish global standards in ship design and construction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Method of making dielectric capacitors with increased dielectric breakdown strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  4. Laser welded versus resistance spot welded bone implants: analysis of the thermal increase and strength.

    PubMed

    Fornaini, Carlo; Meleti, Marco; Bonanini, Mauro; Lagori, Giuseppe; Vescovi, Paolo; Merigo, Elisabetta; Nammour, Samir

    2014-01-01

    The first aim of this "ex vivo split mouth" study was to compare the thermal elevation during the welding process of titanium bars to titanium implants inserted in pig jaws by a thermal camera and two thermocouples. The second aim was to compare the strength of the joints by a traction test with a dynamometer. Six pigs' jaws were used and three implants were placed on each side of them for a total of 36 fixtures. Twelve bars were connected to the abutments (each bar on three implants) by using, on one side, laser welding and, on the other, resistance spot welding. Temperature variations were recorded by thermocouples and by thermal camera while the strength of the welded joint was analyzed by a traction test. For increasing temperature, means were 36.83 and 37.06, standard deviations 1.234 and 1.187, and P value 0.5763 (not significant). For traction test, means were 195.5 and 159.4, standard deviations 2.00 and 2.254, and P value 0.0001 (very significant). Laser welding was demonstrated to be able to connect titanium implant abutments without the risk of thermal increase into the bone and with good results in terms of mechanical strength.

  5. Laser Welded versus Resistance Spot Welded Bone Implants: Analysis of the Thermal Increase and Strength

    PubMed Central

    Fornaini, Carlo; Meleti, Marco; Bonanini, Mauro; Lagori, Giuseppe; Vescovi, Paolo; Merigo, Elisabetta; Nammour, Samir

    2014-01-01

    Introduction. The first aim of this “ex vivo split mouth” study was to compare the thermal elevation during the welding process of titanium bars to titanium implants inserted in pig jaws by a thermal camera and two thermocouples. The second aim was to compare the strength of the joints by a traction test with a dynamometer. Materials and Methods. Six pigs' jaws were used and three implants were placed on each side of them for a total of 36 fixtures. Twelve bars were connected to the abutments (each bar on three implants) by using, on one side, laser welding and, on the other, resistance spot welding. Temperature variations were recorded by thermocouples and by thermal camera while the strength of the welded joint was analyzed by a traction test. Results. For increasing temperature, means were 36.83 and 37.06, standard deviations 1.234 and 1.187, and P value 0.5763 (not significant). For traction test, means were 195.5 and 159.4, standard deviations 2.00 and 2.254, and P value 0.0001 (very significant). Conclusion. Laser welding was demonstrated to be able to connect titanium implant abutments without the risk of thermal increase into the bone and with good results in terms of mechanical strength. PMID:25110731

  6. Chronic effect of light resistance exercise after ingestion of a high-protein snack on increase of skeletal muscle mass and strength in young adults.

    PubMed

    Kato, Yushi; Sawada, Atsushi; Numao, Shigeharu; Suzuki, Masashige

    2011-01-01

    We have previously reported on the possibility that light resistance exercise performed with a high plasma amino acid concentration resulting from the ingestion of a high-protein snack (HPS; 15 g protein, 18 g sugar) 3 h after a basal meal promotes the utilization of amino acids in peripheral tissues such as muscle in both rats and humans. In the present study, we further examined the effectiveness of a daily routine involving ingestion of HPS 3 h after a basal meal and subsequent light resistance exercise (dumbbell exercise) in increasing the mass and strength of human muscle. Ten young adult males were subject to the following 3 conditions for 5 wk each, with sufficient recovery period between each condition: (1) Snack-Exercise (SE), (2) Snack-Sedentary (SS), and (3) No snack-Exercise (NE). The SE group showed a significant increase in lean body mass and total cross-sectional area (CSA) of the right forearm muscles along with a significant decrease in body fat mass. The SS group showed no change in body composition. Furthermore, the SE group showed significant increase in grip strength and isometric knee extensor muscle strength, while the SS group showed no increase in muscle strength. The NE group showed significant increase in grip strength. In conclusion, daily routine ingestion of HPS 3 h after a basal meal and subsequent light resistance exercise is effective in increasing the mass and strength of human muscle.

  7. [Biomechanical investigation of the tensile strength of tendon sutures - locking sutures increase stability].

    PubMed

    Betz, C; Schleicher, P; Winkel, R; Hoffmann, R

    2013-02-01

    In this study we examined the tensile strength of core sutures of tendons. In particular, we examined the effect of having 2 or 4 stitch strands in the core suture as well as the effect of additional locking sutures on the tensile strength. 60 flexor tendons from the forepaws of freshly slaughtered swines were harvested for biomechanical testing. They were divided into 4 groups (A, B, C and D) of 15 sutures each. Group A: core suture after Zechner with 2 strands; group B: modified core suture with 4 strands; group C: modified core suture with 2 strands and 4 locking sutures; group D: modified core suture with 4 strands and 4 locking sutures. The primary tensile strength of the sutures was measured in Newton using the testing machine with a traction speed of 0.1 mm/s. Simultaneously, the increasing space forming at the suture was filmed against graph paper. Our command variables were force measured in Newton when forming a space of 2 mm as well as the force at which the suture failed. Statistical analysis was carried out with the software SPSS to produce a multivariate analysis with a statistical significance of p<0.05. Results are presented as averages including the 1st and 3rd quartile (1Q/3Q). Under traction to form a 2 mm space, the force measured with group A was 14.2 N (12.9/15.1 N). In group B the force 22.5 N (20.0/24.7 N) was significantly higher (p<0.05). Group C required a traction force of 28.7 N (23.5/35.8 N) which was significantly higher than for groups A and B. Group D required the significantly highest traction force of 42.0 N (39.5/46.0 N) to produce a 2 mm space. The force required for the suture to fail in group A was 19.9 N (17.9/22.8 N), in group B: 26.2 N (24.5/29.7 N), in group C 32.0 N (27.1/40.1 N) and in Group D 46.5 N (41.5/50.0 N); the differences between the gloups were all statistically significant. The primary tensile strength of core sutures after Zechner on flexor tendons from the forepaws of swines was significantly increased by

  8. INCREASING DURATION OF TYPE 1 DIABETES PERTURBS THE STRENGTH-STRUCTURE RELATIONSHIP AND INCREASES BRITTLENESS OF BONE

    PubMed Central

    Nyman, Jeffry S.; Even, Jesse L.; Jo, Chan-Hee; Herbert, Erik G.; Murry, Matthew R.; Cockrell, Gael E.; Wahl, Elizabeth C.; Bunn, R. Clay; Lumpkin, Charles K.; Fowlkes, John L.; Thrailkill, Kathryn M.

    2011-01-01

    Type 1 diabetes (T1DM) increases the likelihood of a fracture. Despite serious complications in the healing of fractures among those with diabetes, the underlying causes are not delineated for the effect of diabetes on the fracture resistance of bone. Therefore, in a mouse model of T1DM, we have investigated the possibility that a prolonged state of diabetes perturbs the relationship between bone strength and structure (i.e., affects tissue properties). At 10, 15, and 18 weeks following injection of streptozotocin to induce diabetes, diabetic male mice and age-matched controls were examined for measures of skeletal integrity. We assessed 1) the moment of inertia (IMIN) of the cortical bone within diaphysis, trabecular bone architecture of the metaphysis, and mineralization density of the tissue (TMD) for each compartment of the femur by microcomputed tomography and 2) biomechanical properties by three point bending test (femur) and nanoindentation (tibia). In the metaphysis, a significant decrease in trabecular bone volume fraction and trabecular TMD was apparent after 10 weeks of diabetes. For cortical bone, type 1 diabetes was associated with decreased cortical TMD, IMIN, rigidity, and peak moment as well as a lack of normal age-related increases in the biomechanical properties. However, there were only modest differences in material properties between diabetic and normal mice at both whole bone and tissue-levels. As the duration of diabetes increased, bone toughness decreased relative to control. If the sole effect of diabetes on bone strength was due to a reduction in bone size, then IMIN would be the only significant variable explaining the variance in the maximum moment. However, general linear modeling found that the relationship between peak moment and IMIN depended on whether the bone was from a diabetic mouse and the duration of diabetes. Thus, these findings suggest that the elevated fracture risk among diabetics is impacted by complex changes in tissue

  9. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound

    PubMed Central

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-01-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys. PMID:27488621

  10. Nanostructural hierarchy increases the strength of aluminium alloys.

    PubMed

    Liddicoat, Peter V; Liao, Xiao-Zhou; Zhao, Yonghao; Zhu, Yuntian; Murashkin, Maxim Y; Lavernia, Enrique J; Valiev, Ruslan Z; Ringer, Simon P

    2010-09-07

    Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries-an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space.

  11. Foam concrete of increased strength with the thermomodified peat additives

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Kopanitsa, N. O.; Sarkisov, Ju S.; Kasatkina, A. V.; Prischepa, I. A.

    2015-01-01

    The paper presents the results of research of foam concrete with thermomodified peat additives. The aim of the research was to study the effect of modifying additives on cement stone and foam concrete properties. Peat additives are prepared by heat treatment of peat at 600 °C. Two approaches of obtaining additives are examined: in condition of open air access (TMT-600) and in condition of limited air access (TMT-600-k). Compressive strength of a cement stone with modifiers found to be increased by 28.9 - 65.2%. Introducing peat modifiers into foam concrete mix leads to increase of compressive strength by 44-57% at 28- day age and heat conductivity of foam concrete decreases by 0.089 W/(m·°C).

  12. Is the relationship between increased knee muscle strength and improved physical function following exercise dependent on baseline physical function status?

    PubMed

    Hall, Michelle; Hinman, Rana S; van der Esch, Martin; van der Leeden, Marike; Kasza, Jessica; Wrigley, Tim V; Metcalf, Ben R; Dobson, Fiona; Bennell, Kim L

    2017-12-08

    dysfunction at baseline. The association between change in knee flexor strength and change in physical function was not significant, irrespective of baseline function status. In patients with severe physical dysfunction, an increase in knee extensor strength and improved physical function were associated. ANZCTR 12610000660088 . Registered 12 August 2010.

  13. Tensile strength decreases and perfusion pressure of 3-holed polyamide epidural catheters increases in long-term epidural infusion.

    PubMed

    Kim, Pascal; Meyer, Urs; Schüpfer, Guido; Rukwied, Roman; Konrad, Christoph; Gerber, Helmut

    2011-01-01

    Epidural analgesia is an established method for pain management. The failure rate is 8% to 12% due to technical difficulties (catheter dislocation and/or disconnection; partial or total catheter occlusion) and management. The mechanical properties of the catheters, like tensile strength and flow rate, may also be affected by the analgesic solution and/or the tissue environment. We investigated the tensile strength and perfusion pressure of new (n=20), perioperatively (n=30), and postoperatively (n=73) used epidural catheters (20-gauge, polyamide, closed tip, 3 side holes; Perifix [B. Braun]). To prevent dislocation, epidural catheters were taped (n=5) or fixed by suture (n=68) to the skin. After removal, mechanical properties were assessed by a tensile-testing machine (INSTRON 4500), and perfusion pressure was measured at flow rates of 10, 20, and 40 mL/h. All catheters demonstrated a 2-step force transmission. Initially, a minimal increase of length could be observed at 15 N followed by an elongation of several cm at additional forces (7 N). Breakage occurred in the control group at 23.5±1.5 N compared with 22.4±1.6 N in perioperative and 22.4±1.7 N in postoperative catheters (P<0.05). Duration of catheter use had no effect on tensile strength, whereas perfusion pressure at clinically used flow rates (10 mL/h) increased significantly from 19±1.3 to 44±72 mm Hg during long-term (≥7 days) epidural analgesia (P<0.05, analysis of variance). Fixation by suture had no influence on tensile strength or perfusion pressure. Epidural catheter use significantly increases the perfusion pressure and decreases the tensile strength. Copyright © 2011 by American Society of Regional Anesthesia and Pain Medicine

  14. Can repetitive transcranial magnetic stimulation increase muscle strength in functional neurological paresis? A proof-of-principle study.

    PubMed

    Broersma, M; Koops, E A; Vroomen, P C; Van der Hoeven, J H; Aleman, A; Leenders, K L; Maurits, N M; van Beilen, M

    2015-05-01

    Therapeutic options are limited in functional neurological paresis disorder. Earlier intervention studies did not control for a placebo effect, hampering assessment of effectivity. A proof-of-principle investigation was conducted into the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS), using a single-blind two-period placebo-controlled cross-over design. Eleven patients received active 15 Hz rTMS over the contralateral motor cortex (hand area), in two periods of 5 days, for 30 min once a day at 80% of resting motor threshold, with a train length of 2 s and an intertrain interval of 4 s. Eight of these eleven patients were also included in the placebo treatment condition. Primary outcome measure was change in muscle strength as measured by dynamometry after treatment. Secondary outcome measure was the subjective change in muscle strength after treatment. In patients who received both treatments, active rTMS induced a significantly larger median increase in objectively measured muscle strength (24%) compared to placebo rTMS (6%; P < 0.04). Subjective ratings showed no difference due to treatment, i.e. patients did not perceive these objectively measured motor improvements (P = 0.40). Our findings suggest that rTMS by itself can potentially improve muscle weakness in functional neurological paresis disorder. Whereas patients' muscle strength increased as measured with dynamometry, patients did not report increased functioning of the affected hand, subjectively. The results may indicate that decreased muscle strength is not the core symptom and that rTMS should be added to behavioral approaches in functional neurological paresis. © 2015 EAN.

  15. The effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal model of osteoporosis

    NASA Astrophysics Data System (ADS)

    Yudaniayanti, Ira Sari; Primarizky, Hardany; Nangoi, Lianny

    2018-04-01

    Osteoporosis is a chronic skeletal disease characterized by low bone mass and microarchitectural deterioration with a consequent increase in bone fragility and fracture risk. The aim of the study was to evaluate the effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal models of osteoporosis. Twenty female rats at 3 months of age, weighing 150-200 g were used in the study. The rats were divided into five groups (n=4) : Sham operation group (SH); ovariectomy group no treatment(OVX); ovariectomy with treatment Apis dorsata 1g/Kg BW (AD-1); ovariectomy with treatment Apis dorsata 2g/Kg BW (AD-2); ovariectomy with treatment Apis dorsata 4g/Kg BW (AD-3). The treatment started to be given the next day after ovariectomy operation for 12 weeks. The Rats were sacrified within 12 weeks, and then the right femur were taken bone strength test. Based on the statistical analysis of the bone strength test, the greatest score belongs to the Sham operation group (SH) that have significant difference (p<0.05) with OVX group and AD-1 group, but there was no significant difference with AD-2 and AD-3 (p>0,05). In conclusion, honey (Apis dorsata) supplements has the effect of increasing bone strength in ovariectomized rat as animal models of osteoporosis, so that honey (Apis dorsata) supplements has the potential to be used as an alternative treatment for osteoporosis.

  16. Prospects of increasing the strength of aluminum by reinforcing it with stainless steel wire (a review)

    NASA Technical Reports Server (NTRS)

    Botvina, L. R.; Ivanova, V. S.; Kopev, I. M.

    1982-01-01

    The theoretical and experimental strength of aluminum reinforced with stainless steel wire is analyzed. Various methods of producing the composite material and it's static and cyclical strengths are considered. The reinforcement of aluminum with stainless steel wire was accomplished from the perspective of increasing the specific strength of aluminum and it's alloys, increasing the strength of the material with respect to high and low temperatures, as well as increasing the cyclical strength. The production of the composite aluminum-stainless steel wire material with approximated or calculated strengthening is possible by any of the considered methods. The selection of the proper production technology depends on precise details and conditions of application of the material.

  17. Creatine monohydrate supplementation during eight weeks of progressive resistance training increases strength in as little as two weeks without reducing markers of muscle damage.

    PubMed

    Kaviani, Mojtaba; Abassi, Aboozar; Chilibeck, Philip D

    2018-05-02

    Creatine supplementation (Cr) increases strength during resistance training, but the time course of this strength increase is unclear. The aim was to determine the precise time course by which Cr could increase strength and whether Cr prevents muscle damage during eight weeks of resistance training. Young males were randomized (double blind) to Cr (n=9, 0.07g/kg/d) and placebo (n=9) during 8-weeks of resistance training (3d/week). Strength was assessed across six exercises every two weeks. Venous blood samples obtained at baseline, and 24 and 48 hours after the final resistance training session were assessed for creatine kinase [CK] and lactate dehydrogenase [LDH] as measures of muscle damage. Strength was significantly higher in the Cr versus placebo group (p<0.05) after two weeks of training for three of the six exercises (bench press, leg press, shoulder press). By the end of the eight weeks of training, strength was significantly higher in the Cr versus placebo group (p<0.05) for four of the six exercises (bench press, leg press, shoulder press, and triceps extension, but not biceps curl or lat-pulldown). Creatine supplementation did not prevent muscle damage. Indeed, muscle damage markers increased in the Cr compared to placebo group (p<0.05). Cr increased muscular strength in as little as two weeks during a resistance training program; however, this was not accompanied by decreased muscle damage. Greater muscle damage with Cr may be due to a greater training intensity enabled by Cr supplementation. This might lead to greater protein turnover and enhanced muscle adaptation.

  18. Increases in lower-body strength transfer positively to sprint performance: a systematic review with meta-analysis.

    PubMed

    Seitz, Laurent B; Reyes, Alvaro; Tran, Tai T; Saez de Villarreal, Eduardo; Haff, G Gregory

    2014-12-01

    Although lower-body strength is correlated with sprint performance, whether increases in lower-body strength transfer positively to sprint performance remain unclear. This meta-analysis determined whether increases in lower-body strength (measured with the free-weight back squat exercise) transfer positively to sprint performance, and identified the effects of various subject characteristics and resistance-training variables on the magnitude of sprint improvement. A computerized search was conducted in ADONIS, ERIC, SPORTDiscus, EBSCOhost, Google Scholar, MEDLINE and PubMed databases, and references of original studies and reviews were searched for further relevant studies. The analysis comprised 510 subjects and 85 effect sizes (ESs), nested with 26 experimental and 11 control groups and 15 studies. There is a transfer between increases in lower-body strength and sprint performance as indicated by a very large significant correlation (r = -0.77; p = 0.0001) between squat strength ES and sprint ES. Additionally, the magnitude of sprint improvement is affected by the level of practice (p = 0.03) and body mass (r = 0.35; p = 0.011) of the subject, the frequency of resistance-training sessions per week (r = 0.50; p = 0.001) and the rest interval between sets of resistance-training exercises (r = -0.47; p ≤ 0.001). Conversely, the magnitude of sprint improvement is not affected by the athlete's age (p = 0.86) and height (p = 0.08), the resistance-training methods used through the training intervention, (p = 0.06), average load intensity [% of 1 repetition maximum (RM)] used during the resistance-training sessions (p = 0.34), training program duration (p = 0.16), number of exercises per session (p = 0.16), number of sets per exercise (p = 0.06) and number of repetitions per set (p = 0.48). Increases in lower-body strength transfer positively to sprint performance. The magnitude of sprint improvement is affected by numerous subject characteristics and resistance

  19. Increased Tensile Strength of Carbon Nanotube Yarns and Sheets through Chemical Modification and Electron Beam Irradiation

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.

    2014-01-01

    The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.

  20. Ischemic conditioning increases strength and volitional activation of paretic muscle in chronic stroke: a pilot study.

    PubMed

    Hyngstrom, Allison S; Murphy, Spencer A; Nguyen, Jennifer; Schmit, Brian D; Negro, Francesco; Gutterman, David D; Durand, Matthew J

    2018-05-01

    Ischemic conditioning (IC) on the arm or leg has emerged as an intervention to improve strength and performance in healthy populations, but the effects on neurological populations are unknown. The purpose of this study was to quantify the effects of a single session of IC on knee extensor strength and muscle activation in chronic stroke survivors. Maximal knee extensor torque measurements and surface EMG were quantified in 10 chronic stroke survivors (>1 yr poststroke) with hemiparesis before and after a single session of IC or sham on the paretic leg. IC consisted of 5 min of compression with a proximal thigh cuff (inflation pressure = 225 mmHg for IC or 25 mmHg for sham) followed by 5 min of rest. This was repeated five times. Maximal knee extensor strength, EMG magnitude, and motor unit firing behavior were measured before and immediately after IC or sham. IC increased paretic leg strength by 10.6 ± 8.5 Nm, whereas no difference was observed in the sham group (change in sham = 1.3 ± 2.9 Nm, P = 0.001 IC vs. sham). IC-induced increases in strength were accompanied by a 31 ± 15% increase in the magnitude of muscle EMG during maximal contractions and a 5% decrease in motor unit recruitment thresholds during submaximal contractions. Individuals who had the most asymmetry in strength between their paretic and nonparetic legs had the largest increases in strength ( r 2  = 0.54). This study provides evidence that a single session of IC can increase strength through improved muscle activation in chronic stroke survivors. NEW & NOTEWORTHY Present rehabilitation strategies for chronic stroke survivors do not optimally activate paretic muscle, and this limits potential strength gains. Ischemic conditioning of a limb has emerged as an effective strategy to improve muscle performance in healthy individuals but has never been tested in neurological populations. In this study, we show that ischemic conditioning on the paretic leg of chronic stroke survivors

  1. Mixed-Methods Resistance Training Increases Power and Strength of Young and Older Men.

    ERIC Educational Resources Information Center

    Newton, Robert U.; Hakkinen, Keijo; Hakkinen, Arja; McCormick, Matt; Volek, Jeff; Kraemer, William J.

    2002-01-01

    Examined the effects of a 10-week, mixed-methods resistance training program on young and older men. Although results confirmed some age-related reductions in muscle strength and power, the older men demonstrated similar capacity to the younger men for increases in muscle strength and power via an appropriate, periodized resistance training…

  2. Pseudotachylyte increases the post-slip strength of faults

    USGS Publications Warehouse

    Proctor, Brooks; Lockner, David A.

    2016-01-01

    Solidified frictional melts, or pseudotachylytes, are observed in exhumed faults from across the seismogenic zone. These unique fault rocks, and many experimental studies, suggest that frictional melting can be an important process during earthquakes. However, it remains unknown how melting affects the post-slip strength of the fault and why many exhumed faults do not contain pseudotachylyte. Analyses of triaxial stick-slip events on Westerly Granite (Rhode Island, USA) sawcuts at confining pressures from 50 to 400 MPa show evidence for frictional heating, including some events energetic enough to generate surface melt. Total and partial stress drops were observed with slip as high as 6.5 mm. We find that in dry samples following melt-producing stick slip, the shear failure strength increased as much as 50 MPa, while wet samples had <10 MPa strengthening. Microstructural analysis indicates that the strengthening is caused by welding of the slip surface during melt quenching, suggesting that natural pseudotachylytes may also strengthen faults after earthquakes. These results predict that natural pseudotachylyte will inhibit slip reactivation and possibly generate stress heterogeneities along faults. Wet samples do not exhibit melt welding, possibly because of thermal pressurization of water reducing frictional heating during slip.

  3. ANODAL TRANSCRANIAL DIRECT CURRENT STIMULATION (TDCS) INCREASES ISOMETRIC STRENGTH OF SHOULDER ROTATORS MUSCLES IN HANDBALL PLAYERS.

    PubMed

    Hazime, Fuad Ahmad; da Cunha, Ronaldo Alves; Soliaman, Renato Rozenblit; Romancini, Ana Clara Bezerra; Pochini, Alberto de Castro; Ejnisman, Benno; Baptista, Abrahão Fontes

    2017-06-01

    Weakness of the rotator cuff muscles can lead to imbalances in the strength of shoulder external and internal rotators, change the biomechanics of the glenohumeral joint and predispose an athlete to injury. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has demonstrated promising results in a variety of health conditions. However few studies addressed its potential approach in the realm of athletics. The purpose of this study was to investigate if transcranial direct current stimulation (tDCS) technique increases the isometric muscle strength of shoulder external and internal rotators in handball athletes. Randomized, double-blind, placebo-controlled, crossover study. Eight female handball players aged between 17 and 21 years (Mean=19.65; SD=2.55) with 7.1 ± 4.8 years of experience in training, participating in regional and national competitions were recruited. Maximal voluntary isometric contraction (MVIC) of shoulder external and internal rotator muscles was evaluated during and after 30 and 60 minutes post one session of anodal and sham current (2mA; 0.057mA/cm 2 ) with a one-week interval between stimulations. Compared to baseline, MVIC of shoulder external and internal rotators significantly increased after real but not sham tDCS. Between-group differences were observed for external and internal rotator muscles. Maximal voluntary isometric contraction of external rotation increased significantly during tDCS, and 30 and 60 minutes post-tDCS for real tDCS compared to that for sham tDCS. For internal rotation MVIC increased significantly during and 60 minutes post-tDCS. The results indicate that transcranial direct current stimulation temporarily increases maximal isometric contractions of the internal and external rotators of the shoulder in handball players. 2.

  4. Is a school-based physical activity intervention effective for increasing tibial bone strength in boys and girls?

    PubMed

    Macdonald, Heather M; Kontulainen, Saija A; Khan, Karim M; McKay, Heather A

    2007-03-01

    This 16-month randomized, controlled school-based study compared change in tibial bone strength between 281 boys and girls participating in a daily program of physical activity (Action Schools! BC) and 129 same-sex controls. The simple, pragmatic intervention increased distal tibia bone strength in prepubertal boys; it had no effect in early pubertal boys or pre or early pubertal girls. Numerous school-based exercise interventions have proven effective for enhancing BMC, but none have used pQCT to evaluate the effects of increased loading on bone strength during growth. Thus, our aim was to determine whether a daily program of physical activity, Action Schools! BC (AS! BC) would improve tibial bone strength in boys and girls who were pre- (Tanner stage 1) or early pubertal (Tanner stage 2 or 3) at baseline. Ten schools were randomized to intervention (INT, 7 schools) or control (CON, 3 schools). The bone-loading component of AS! BC included a daily jumping program (Bounce at the Bell) plus 15 minutes/day of classroom physical activity in addition to regular physical education. We used pQCT to compare 16-month change in bone strength index (BSI, mg2/mm4) at the distal tibia (8% site) and polar strength strain index (SSIp, mm3) at the tibial midshaft (50% site) in 281 boys and girls participating in AS! BC and 129 same-sex controls. We used a linear mixed effects model to analyze our data. Children were 10.2+/-0.6 years at baseline. Intervention boys tended to have a greater increase in BSI (+774.6 mg2/mm4; 95% CI: 672.7, 876.4) than CON boys (+650.9 mg2/mm4; 95% CI: 496.4, 805.4), but the difference was only significant in prepubertal boys (p=0.03 for group x maturity interaction). Intervention boys also tended to have a greater increase in SSIp (+198.6 mm3; 95% CI: 182.9, 214.3) than CON boys (+177.1 mm3; 95% CI: 153.5, 200.7). Change in BSI and SSIp was similar between CON and INT girls. Our findings suggest that a simple, pragmatic program of daily activity

  5. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions.

    PubMed

    Behrens, Martin; Mau-Moeller, Anett; Weippert, Matthias; Fuhrmann, Josefin; Wegner, Katharina; Skripitz, Ralf; Bader, Rainer; Bruhn, Sven

    2015-05-13

    This study investigated effects of caffeine ingestion (8 mg/kg) on maximum voluntary torque (MVT) and voluntary activation of the quadriceps during isometric, concentric and eccentric contractions. Fourteen subjects ingested caffeine and placebo in a randomized, controlled, counterbalanced, double-blind crossover design. Neuromuscular tests were performed before and 1 h after oral caffeine and placebo intake. MVTs were measured and the interpolated twitch technique was applied during isometric, concentric and eccentric contractions to assess voluntary activation. Furthermore, normalized root mean square of the EMG signal was calculated and evoked spinal reflex responses (H-reflex evoked at rest and during weak isometric voluntary contraction) as well as twitch torques were analyzed. Caffeine increased MVT by 26.4 N m (95%CI: 9.3-43.5 N m, P = 0.004), 22.5 N m (95%CI: 3.1-42.0 N m, P = 0.025) and 22.5 N m (95%CI: 2.2-42.7 N m, P = 0.032) for isometric, concentric and eccentric contractions. Strength enhancements were associated with increases in voluntary activation. Explosive voluntary strength and voluntary activation at the onset of contraction were significantly increased following caffeine ingestion. Changes in spinal reflex responses and at the muscle level were not observed. Data suggest that caffeine ingestion induced an acute increase in voluntary activation that was responsible for the increased strength regardless of the contraction mode.

  6. Single- vs. Multiple-Set Strength Training in Women.

    ERIC Educational Resources Information Center

    Schlumberger, Andreas; Stec, Justyna; Schmidtbleicher, Dietmar

    2001-01-01

    Compared the effects of single- and multiple-set strength training in women with basic experience in resistance training. Both training groups had significant strength improvements in leg extension. In the seated bench press, only the three-set group showed a significant increase in maximal strength. There were higher strength gains overall in the…

  7. The significance of nanoparticles on bond strength of polymer concrete to steel

    DOE PAGES

    Douba, A.; Genedy, M.; Matteo, E. N.; ...

    2017-01-03

    Here, polymer concrete (PC) is a commonly used material in construction due to its improved durability and good bond strength to steel substrate. PC has been suggested as a repair and seal material to restore the bond between the cement annulus and the steel casing in wells that penetrate formations under consideration for CO 2 sequestration. Nanoparticles including Multi-Walled Carbon Nano Tubes (MWCNTs), Aluminum Nanoparticles (ANPs) and Silica Nano particles (SNPs) were added to an epoxy-based PC to examine how the nanoparticles affect the bond strength of PC to a steel substrate. Slant shear tests were used to determine themore » bond strength of PC incorporating nanomaterials to steel; results reveal that PC incorporating nanomaterials has an improved bond strength to steel substrate compared with neat PC. In particular, ANPs improve the bond strength by 51% over neat PC. Local shear stresses, extracted from Finite Element (FE) analysis of the slant shear test, were found to be as much as twice the apparent/average shear/bond strength. These results suggest that the impact of nanomaterials is higher than that shown by the apparent strength. Fourier Transform Infrared (FTIR) measurements of epoxy with and without nanomaterials showed ANPs to influence curing of epoxy, which might explain the improved bond strength of PC incorporating ANPs.« less

  8. The significance of nanoparticles on bond strength of polymer concrete to steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douba, A.; Genedy, M.; Matteo, E. N.

    Here, polymer concrete (PC) is a commonly used material in construction due to its improved durability and good bond strength to steel substrate. PC has been suggested as a repair and seal material to restore the bond between the cement annulus and the steel casing in wells that penetrate formations under consideration for CO 2 sequestration. Nanoparticles including Multi-Walled Carbon Nano Tubes (MWCNTs), Aluminum Nanoparticles (ANPs) and Silica Nano particles (SNPs) were added to an epoxy-based PC to examine how the nanoparticles affect the bond strength of PC to a steel substrate. Slant shear tests were used to determine themore » bond strength of PC incorporating nanomaterials to steel; results reveal that PC incorporating nanomaterials has an improved bond strength to steel substrate compared with neat PC. In particular, ANPs improve the bond strength by 51% over neat PC. Local shear stresses, extracted from Finite Element (FE) analysis of the slant shear test, were found to be as much as twice the apparent/average shear/bond strength. These results suggest that the impact of nanomaterials is higher than that shown by the apparent strength. Fourier Transform Infrared (FTIR) measurements of epoxy with and without nanomaterials showed ANPs to influence curing of epoxy, which might explain the improved bond strength of PC incorporating ANPs.« less

  9. Lifting strength in two-person teamwork.

    PubMed

    Lee, Tzu-Hsien

    2016-01-01

    This study examined the effects of lifting range, hand-to-toe distance, and lifting direction on single-person lifting strengths and two-person teamwork lifting strengths. Six healthy males and seven healthy females participated in this study. Two-person teamwork lifting strengths were examined in both strength-matched and strength-unmatched groups. Our results showed that lifting strength significantly decreased with increasing lifting range or hand-to-toe distance. However, lifting strengths were not affected by lifting direction. Teamwork lifting strength did not conform to the law of additivity for both strength-matched and strength-unmatched groups. In general, teamwork lifting strength was dictated by the weaker of the two members, implying that weaker members might be exposed to a higher potential danger in teamwork exertions. To avoid such overexertion in teamwork, members with significantly different strength ability should not be assigned to the same team.

  10. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions

    PubMed Central

    Behrens, Martin; Mau-Moeller, Anett; Weippert, Matthias; Fuhrmann, Josefin; Wegner, Katharina; Skripitz, Ralf; Bader, Rainer; Bruhn, Sven

    2015-01-01

    This study investigated effects of caffeine ingestion (8 mg/kg) on maximum voluntary torque (MVT) and voluntary activation of the quadriceps during isometric, concentric and eccentric contractions. Fourteen subjects ingested caffeine and placebo in a randomized, controlled, counterbalanced, double-blind crossover design. Neuromuscular tests were performed before and 1 h after oral caffeine and placebo intake. MVTs were measured and the interpolated twitch technique was applied during isometric, concentric and eccentric contractions to assess voluntary activation. Furthermore, normalized root mean square of the EMG signal was calculated and evoked spinal reflex responses (H-reflex evoked at rest and during weak isometric voluntary contraction) as well as twitch torques were analyzed. Caffeine increased MVT by 26.4 N m (95%CI: 9.3-43.5 N m, P = 0.004), 22.5 N m (95%CI: 3.1-42.0 N m, P = 0.025) and 22.5 N m (95%CI: 2.2-42.7 N m, P = 0.032) for isometric, concentric and eccentric contractions. Strength enhancements were associated with increases in voluntary activation. Explosive voluntary strength and voluntary activation at the onset of contraction were significantly increased following caffeine ingestion. Changes in spinal reflex responses and at the muscle level were not observed. Data suggest that caffeine ingestion induced an acute increase in voluntary activation that was responsible for the increased strength regardless of the contraction mode. PMID:25969895

  11. Increasing FSW join strength by optimizing feed rate, rotating speed and pin angle

    NASA Astrophysics Data System (ADS)

    Darmadi, Djarot B.; Purnowidodo, Anindito; Siswanto, Eko

    2017-10-01

    Principally the join in Friction Stir Welding (FSW) is formed due to mechanical bonding. At least there are two factors determines the quality of this join, first is the temperature in the area around the interface and secondly the intense of mixing forces in nugget zone to create the mechanical bonding. The adequate temperature creates good flowability of the nugget zone and an intensive mixing force produces homogeneous strong bonding. Based on those two factors in this research the effects of feed rate, rotating speed and pin angle of the FSW process to the tensile strength of resulted join are studied. The true experimental method was used. Feed rate was varied at 24, 42, 55 and 74 mm/minutes and from the experimental results, it can be concluded that the higher feed rate decreases the tensile strength of weld join and it is believed due to the lower heat embedded in the material. Inversely, the higher rotating speed increases the join’s tensile strength as a result of higher heat embedded in base metal and higher mixing force in the nugget zone. The rotating speed were 1842, 2257 and 2904 RPMs. The pin angle determines the direction of mixing force. With variation of pin angle: 0°, 4°, 8° and 12° the higher pin angle generally increases the tensile strength because of more intensive mixing force. For 12° pin angle the lower tensile strength is found since the force tends to push out the nugget area from the joint gap.

  12. Strength Training Decreases Inflammation and Increases Cognition and Physical Fitness in Older Women with Cognitive Impairment.

    PubMed

    Chupel, Matheus U; Direito, Fábio; Furtado, Guilherme E; Minuzzi, Luciéle G; Pedrosa, Filipa M; Colado, Juan C; Ferreira, José P; Filaire, Edith; Teixeira, Ana M

    2017-01-01

    Introduction: Cognitive impairment that affects older adults is commonly associated with an inflammatory imbalance, resulting in decreased physical fitness. Exercise has been pointed to mitigate immunosenescence and cognitive impairment associated with aging, while increase in physical fitness. However, few studies explored the relationship between changes in cytokine concentration and improvement on cognition due to elastic band strength training. The aim of this study was to investigate the effects of strength training on pro-and anti-inflammatory cytokines, hematological markers and physical fitness of older women with cognitive impairment. Methods: Thirty-three women (82.7 ± 5.7 years old) participated in the study and were divided in two groups: strength exercise training group (ST; n = 16) and Control Group (CG; n = 17) and were evaluated before and after 28 weeks of the exercise program. The CG did not undergo any type of exercise programs. Data for IL-10, TNF-α, IFN-γ, C-Reactive Protein (CRP), white blood counts (WBC), red blood counts (RBC), Mini Mental State Examination (MMSE) and physical fitness tests were analyzed in both moments. Results: IL-10 increased in the ST group without changes in CG. TNF-α and CRP increased in the control group while no changes were observed for IFN-γ in both groups. Strength training decreased leukocyte and lymphocyte counts and increase hemoglobin, mean cell volume and mean cell hemoglobin concentration. The MMSE score increased in strength training group but remained unchanged in the control group. A correlation between the variation of granulocyte counts and the MMSE scores was also observed within the total sample. An improvement in physical fitness was observed with strength training. Conclusion: Resistance exercise promoted better anti-inflammatory balance and physical performance simultaneously with an increase in cognitive profile in older women with cognitive impairment.

  13. The bioimpedance phase angle predicts low muscle strength, impaired quality of life, and increased mortality in old patients with cancer.

    PubMed

    Norman, Kristina; Wirth, Rainer; Neubauer, Maxi; Eckardt, Rahel; Stobäus, Nicole

    2015-02-01

    We investigated the impact of low phase angle (PhA) values on muscle strength, quality of life, symptom severity, and 1-year mortality in older cancer patients. Prospective study with 1-year follow-up. Cancer patients aged >60 years. PhA was derived from whole body impedance analysis. The fifth percentile of age-, sex-, and body mass index-stratified reference values were used as cut-off. Quality of life was determined with the European Organization of Research and Treatment in Cancer questionnaire, reflecting both several function scales and symptom severity. Muscle strength was assessed by hand grip strength, knee extension strength, and peak expiratory flow. 433 cancer patients, aged 60-95 years, were recruited. Patients with low PhA (n = 197) exhibited decreased muscle strength compared with patients with normal PhA (hand grip strength: 22 ± 8.6 vs 28.9 ± 8.9 kg, knee extension strength: 20.8 ± 11.8 vs 28.1 ± 14.9 kg, and peak expiratory flow: 301.1 ± 118 vs 401.7 ± 142.6 L/min, P < .001). Physical function, global health status, and role function from the European Organization of Research and Treatment in Cancer questionnaire were reduced, and most symptoms (fatigue, anorexia, pain, and dyspnea) increased in patients with low PhA (P < .001). In a risk-factor adjusted regression analysis, PhA emerged as independent predictor of physical function (ß:-0.538, P = .023), hand grip strength (ß:-4.684, P < .0001), knee extension strength (ß:-4.548, P = .035), and peak expiratory flow (ß:-66.836, P < .0001). Low PhA moreover predicted 1-year mortality in the Cox proportional hazards regression model, whereas grip strength was no longer significant. PhA below the fifth reference percentile is highly predictive of decreased muscle strength, impaired quality of life, and increased mortality in old patients with cancer and should be evaluated in routine assessment. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by

  14. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength.

    PubMed

    Seymore, Kayla D; Domire, Zachary J; DeVita, Paul; Rider, Patrick M; Kulas, Anthony S

    2017-05-01

    Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury-prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm 3 , p < 0.001) and physiological cross-sectional area (16.1 vs. 18.1 cm 2 , p = 0.032). There were no significant changes to muscle fascicle length, stiffness, or eccentric hamstring strength. The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest that the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is, therefore, warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk.

  15. Resin cements formulated with thio-urethanes can strengthen porcelain and increase bond strength to ceramics.

    PubMed

    Bacchi, Atais; Spazzin, Aloisio Oro; de Oliveira, Gabriel Rodrigues; Pfeifer, Carmem; Cesar, Paulo Francisco

    2018-06-01

    The use of thio-urethane oligomers has been shown to significantly improve the mechanical properties of resin cements (RCs). The aim of this study was to use thio-urethane-modified RC to potentially reinforce the porcelain-RC structure and to improve the bond strength to zirconia and lithium disilicate. Six oligomers were synthesized by combining thiols - pentaerythritol tetra-3-mercaptopropionate (PETMP, P) or trimethylol-tris-3-mercaptopropionate (TMP, T) - with di-functional isocyanates - 1,6-Hexanediol-diissocyante (HDDI) (aliphatic, AL) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (BDI) (aromatic, AR) or Dicyclohexylmethane 4,4'-Diisocyanate (HMDI) (cyclic, CC). Thio-urethanes (20 wt%) were added to a BisGMA/UDMA/TEGDMA organic matrix. Filler was introduced at 60 wt%. The microshear bond strength (μSBS), Weibull modulus (m), and failure pattern of RCs bonded to zirconia (ZR) and lithium disilicate (LD) ceramics was evaluated. Biaxial flexural test and fractographic analysis of porcelain discs bonded to RCs were also performed. The biaxial flexural strength (σ bf ) and m were calculated in the tensile surfaces of porcelain and RC structures (Z = 0 and Z = -t 2 , respectively). The μSBS was improved with RCs formulated with oligomers P_AL or T_AL bonded to LD and P_AL, P_AR or T_CC bonded to zirconia in comparison to controls. Mixed failures predominated in all groups. σ bf had superior values at Z = 0 with RCs formulated with oligomers P_AL, P_AR, T_AL, or T_CC in comparison to control; σ bf increased with all RCs composed by thio-urethanes at Z = -t 2 . Fractographic analysis revealed all fracture origins at Z = 0. The use of specific thio-urethane oligomers as components of RCs increased both the biaxial flexural strength of the porcelain-RC structure and the μSBS to LD and ZR. The current investigation suggests that it is possible to reinforce the porcelain-RC pair and obtain higher bond strength to LD and ZR with RCs

  16. Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning.

    PubMed

    Ye, Lin; Chang, Chun-Yi; García-Comas, Carmen; Gong, Gwo-Ching; Hsieh, Chih-Hao

    2013-09-01

    1. The biodiversity-ecosystem functioning debate is a central topic in ecology. Recently, there has been a growing interest in size diversity because body size is sensitive to environmental changes and is one of the fundamental characteristics of organisms linking many ecosystem properties. However, how size diversity affects ecosystem functioning is an important yet unclear issue. 2. To fill the gap, with large-scale field data from the East China Sea, we tested the novel hypothesis that increasing zooplankton size diversity enhances top-down control on phytoplankton (H1) and compared it with five conventional hypotheses explaining the top-down control: flatter zooplankton size spectrum enhances the strength of top-down control (H2); nutrient enrichment lessens the strength of top-down control (H3); increasing zooplankton taxonomic diversity enhances the strength of top-down control (H4); increasing fish predation decreases the strength of top-down control of zooplankton on phytoplankton through trophic cascade (H5); increasing temperature intensifies the strength of top-down control (H6). 3. The results of univariate analyses support the hypotheses based on zooplankton size diversity (H1), zooplankton size spectrum (H2), nutrient (H3) and zooplankton taxonomic diversity (H4), but not the hypotheses based on fish predation (H5) and temperature (H6). More in-depth analyses indicate that zooplankton size diversity is the most important factor in determining the strength of top-down control on phytoplankton in the East China Sea. 4. Our results suggest a new potential mechanism that increasing predator size diversity enhances the strength of top-down control on prey through diet niche partitioning. This mechanism can be explained by the optimal predator-prey body-mass ratio concept. Suppose each size group of zooplankton predators has its own optimal phytoplankton prey size, increasing size diversity of zooplankton would promote diet niche partitioning of predators

  17. Effects of Strength vs. Ballistic-Power Training on Throwing Performance

    PubMed Central

    Zaras, Nikolaos; Spengos, Konstantinos; Methenitis, Spyridon; Papadopoulos, Constantinos; Karampatsos, Giorgos; Georgiadis, Giorgos; Stasinaki, Aggeliki; Manta, Panagiota; Terzis, Gerasimos

    2013-01-01

    The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power) training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9) and Power (n = 8) groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ), Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively). Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively), while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p < 0.05). Muscle fibre Cross Sectional Area (fCSA) increased in all fibre types after Strength training by 19-26% (p < 0.05), while only type IIx fibres hypertrophied significantly after Power training. Type IIx fibres (%) decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations. Key points Ballistic-power training with 30% of 1RM is equally effective in increasing shot put performance as strength training, in novice throwers, during a short training cycle of six weeks. In novice shot putters with relatively low initial muscle strength/mass, short-term strength training might be more important since it can increase both muscle strength and shot put performance. The ballistic type of power training resulted in a significant

  18. Effects of Strength vs. Ballistic-Power Training on Throwing Performance.

    PubMed

    Zaras, Nikolaos; Spengos, Konstantinos; Methenitis, Spyridon; Papadopoulos, Constantinos; Karampatsos, Giorgos; Georgiadis, Giorgos; Stasinaki, Aggeliki; Manta, Panagiota; Terzis, Gerasimos

    2013-01-01

    The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power) training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9) and Power (n = 8) groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ), Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively). Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively), while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p < 0.05). Muscle fibre Cross Sectional Area (fCSA) increased in all fibre types after Strength training by 19-26% (p < 0.05), while only type IIx fibres hypertrophied significantly after Power training. Type IIx fibres (%) decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations. Key pointsBallistic-power training with 30% of 1RM is equally effective in increasing shot put performance as strength training, in novice throwers, during a short training cycle of six weeks.In novice shot putters with relatively low initial muscle strength/mass, short-term strength training might be more important since it can increase both muscle strength and shot put performance.The ballistic type of power training resulted in a significant increase

  19. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal

    PubMed Central

    Xing, Qi; Yates, Keegan; Vogt, Caleb; Qian, Zichen; Frost, Megan C.; Zhao, Feng

    2014-01-01

    The usage of gelatin hydrogel is limited due to its instability and poor mechanical properties, especially under physiological conditions. Divalent metal ions present in gelatin such as Ca2+ and Fe2+ play important roles in the gelatin molecule interactions. The objective of this study was to determine the impact of divalent ion removal on the stability and mechanical properties of gelatin gels with and without chemical crosslinking. The gelatin solution was purified by Chelex resin to replace divalent metal ions with sodium ions. The gel was then chemically crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Results showed that the removal of divalent metal ions significantly impacted the formation of the gelatin network. The purified gelatin hydrogels had less interactions between gelatin molecules and form larger-pore network which enabled EDC to penetrate and crosslink the gel more efficiently. The crosslinked purified gels showed small swelling ratio, higher crosslinking density and dramatically increased storage and loss moduli. The removal of divalent ions is a simple yet effective method that can significantly improve the stability and strength of gelatin hydrogels. The in vitro cell culture demonstrated that the purified gelatin maintained its ability to support cell attachment and spreading. PMID:24736500

  20. Increased sink strength offsets the inhibitory effect of sucrose on sugarcane photosynthesis.

    PubMed

    Ribeiro, Rafael V; Machado, Eduardo C; Magalhães Filho, José R; Lobo, Ana Karla M; Martins, Márcio O; Silveira, Joaquim A G; Yin, Xinyou; Struik, Paul C

    2017-01-01

    Spraying sucrose inhibits photosynthesis by impairing Rubisco activity and stomatal conductance (g s ), whereas increasing sink demand by partially darkening the plant stimulates sugarcane photosynthesis. We hypothesized that the stimulatory effect of darkness can offset the inhibitory effect of exogenous sucrose on photosynthesis. Source-sink relationship was perturbed in two sugarcane cultivars by imposing partial darkness, spraying a sucrose solution (50mM) and their combination. Five days after the onset of the treatments, the maximum Rubisco carboxylation rate (V cmax ) and the initial slope of A-C i curve (k) were estimated by measuring leaf gas exchange and chlorophyll fluorescence. Photosynthesis was inhibited by sucrose spraying in both genotypes, through decreases in V cmax , k, g s and ATP production driven by electron transport (J atp ). Photosynthesis of plants subjected to the combination of partial darkness and sucrose spraying was similar to photosynthesis of reference plants for both genotypes. Significant increases in V cmax , g s and J atp and marginal increases in k were noticed when combining partial darkness and sucrose spraying compared with sucrose spraying alone. Our data also revealed that increases in sink strength due to partial darkness offset the inhibition of sugarcane photosynthesis caused by sucrose spraying, enhancing the knowledge on endogenous regulation of sugarcane photosynthesis through the source-sink relationship. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Undulatory physical resistance training program increases maximal strength in elderly type 2 diabetics.

    PubMed

    Santos, Gilberto Monteiro dos; Montrezol, Fábio Tanil; Pauli, Luciana Santos Souza; Sartori-Cintra, Angélica Rossi; Colantonio, Emilson; Gomes, Ricardo José; Marinho, Rodolfo; Moura, Leandro Pereira de; Pauli, José Rodrigo

    2014-01-01

    To investigate the effects of a specific protocol of undulatory physical resistance training on maximal strength gains in elderly type 2 diabetics. The study included 48 subjects, aged between 60 and 85 years, of both genders. They were divided into two groups: Untrained Diabetic Elderly (n=19) with those who were not subjected to physical training and Trained Diabetic Elderly (n=29), with those who were subjected to undulatory physical resistance training. The participants were evaluated with several types of resistance training's equipment before and after training protocol, by test of one maximal repetition. The subjects were trained on undulatory resistance three times per week for a period of 16 weeks. The overload used in undulatory resistance training was equivalent to 50% of one maximal repetition and 70% of one maximal repetition, alternating weekly. Statistical analysis revealed significant differences (p<0.05) between pre-test and post-test over a period of 16 weeks. The average gains in strength were 43.20% (knee extension), 65.00% (knee flexion), 27.80% (supine sitting machine), 31.00% (rowing sitting), 43.90% (biceps pulley), and 21.10% (triceps pulley). Undulatory resistance training used with weekly different overloads was effective to provide significant gains in maximum strength in elderly type 2 diabetic individuals.

  2. One year of abaloparatide, a selective peptide activator of the PTH1 receptor, increased bone mass and strength in ovariectomized rats.

    PubMed

    Varela, Aurore; Chouinard, Luc; Lesage, Elisabeth; Guldberg, Robert; Smith, Susan Y; Kostenuik, Paul J; Hattersley, Gary

    2017-02-01

    Abaloparatide is a novel 34 amino acid peptide selected to be a potent and selective activator of the parathyroid hormone receptor 1 (PTHR1) signaling pathway. The effects of 12months of abaloparatide treatment on bone mass, bone strength and bone quality was assessed in osteopenic ovariectomized (OVX) rats. SD rats were subjected to OVX or sham surgery at 6months of age and left untreated for 3months to allow OVX-induced bone loss. Eighteen OVX rats were sacrificed after this bone depletion period, and the remaining OVX rats received daily s.c. injections of vehicle (n=18) or abaloparatide at 1, 5 or 25μg/kg/d (n=18/dose level) for 12months. Sham controls (n=18) received vehicle daily. Bone changes were assessed by DXA and pQCT after 0, 3, 6 or 12months of treatment, and destructive biomechanical testing was conducted at month 12 to assess bone strength and bone quality. Abaloparatide dose-dependently increased bone mass at the lumbar spine and at the proximal and diaphyseal regions of the tibia and femur. pQCT revealed that increased cortical bone volume at the tibia was a result of periosteal expansion and endocortical bone apposition. Abaloparatide dose-dependently increased structural strength of L4-L5 vertebral bodies, the femur diaphysis, and the femur neck. Increments in peak load for lumbar spine and the femur diaphysis of abaloparatide-treated rats persisted even after adjusting for treatment-related increments in BMC, and estimated material properties were maintained or increased at the femur diaphysis with abaloparatide. The abaloparatide groups also exhibited significant and positive correlations between bone mass and bone strength at these sites. These data indicate that gains in cortical and trabecular bone mass with abaloparatide are accompanied by and correlated with improvements in bone strength, resulting in maintenance or improvement in bone quality. Thus, this study demonstrated that long-term daily administration of abaloparatide to

  3. Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review.

    PubMed

    Menezes, Kênia Kp; Nascimento, Lucas R; Ada, Louise; Polese, Janaine C; Avelino, Patrick R; Teixeira-Salmela, Luci F

    2016-07-01

    After stroke, does respiratory muscle training increase respiratory muscle strength and/or endurance? Are any benefits carried over to activity and/or participation? Does it reduce respiratory complications? Systematic review of randomised or quasi-randomised trials. Adults with respiratory muscle weakness following stroke. Respiratory muscle training aimed at increasing inspiratory and/or expiratory muscle strength. Five outcomes were of interest: respiratory muscle strength, respiratory muscle endurance, activity, participation and respiratory complications. Five trials involving 263 participants were included. The mean PEDro score was 6.4 (range 3 to 8), showing moderate methodological quality. Random-effects meta-analyses showed that respiratory muscle training increased maximal inspiratory pressure by 7 cmH2O (95% CI 1 to 14) and maximal expiratory pressure by 13 cmH2O (95% CI 1 to 25); it also decreased the risk of respiratory complications (RR 0.38, 95% CI 0.15 to 0.96) compared with no/sham respiratory intervention. Whether these effects carry over to activity and participation remains uncertain. This systematic review provided evidence that respiratory muscle training is effective after stroke. Meta-analyses based on five trials indicated that 30minutes of respiratory muscle training, five times per week, for 5 weeks can be expected to increase respiratory muscle strength in very weak individuals after stroke. In addition, respiratory muscle training is expected to reduce the risk of respiratory complications after stroke. Further studies are warranted to investigate whether the benefits are carried over to activity and participation. PROSPERO (CRD42015020683). [Menezes KKP, Nascimento LR, Ada L, Polese JC, Avelino PR, Teixeira-Salmela LF (2016) Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review.Journal of Physiotherapy62: 138-144]. Copyright © 2016 Australian

  4. Effect of 8 weeks of free-weight and machine-based strength training on strength and power performance

    PubMed Central

    Wirth, Klaus; Hartmann, Hagen; Sander, Andre; Mickel, Christoph

    2016-01-01

    Abstract The aim of this study was to evaluate the effectiveness of free-weight and machine-based exercises to increase different strength and speed-strength variables. One hundred twenty male participants (age: 23.8 ± 2.5 years; body height: 181.0 ± 6.8 cm; body mass: 80.2 ± 8.9 kg) joined the study. The 2 experimental groups completed an 8 week periodized strength training program that included 2 training sessions per week. The exercises that were used in the strength training programs were the parallel barbell squat and the leg press. Before and after the training period, the 1-repetition-maximum in the barbell squat and the leg press, the squat jump, the countermovement jump and unilateral isometric force (maximal isometric force and the rate of force development) were evaluated. To compare each group pre vs. post-intervention, analysis of variance with repeated measures and Scheffé post-hoc tests were used. The leg press group increased their 1-repetition-maximum significantly (p < 0.001), while in the squat group such variables as 1-repetition-maximum, the squat jump and the countermovement jump increased significantly (p < 0.001). The maximal isometric force showed no statistically significant result for the repeated measures factor, while the rate of force development of the squat group even showed a statistically significant decrease. Differences between the 2 experimental groups were detected for the squat jump and the countermovement jump. In comparison with the leg press, the squat might be a better strength training exercise for the development of jump performance. PMID:28149424

  5. Effect of 8 weeks of free-weight and machine-based strength training on strength and power performance.

    PubMed

    Wirth, Klaus; Keiner, Michael; Hartmann, Hagen; Sander, Andre; Mickel, Christoph

    2016-12-01

    The aim of this study was to evaluate the effectiveness of free-weight and machine-based exercises to increase different strength and speed-strength variables. One hundred twenty male participants (age: 23.8 ± 2.5 years; body height: 181.0 ± 6.8 cm; body mass: 80.2 ± 8.9 kg) joined the study. The 2 experimental groups completed an 8 week periodized strength training program that included 2 training sessions per week. The exercises that were used in the strength training programs were the parallel barbell squat and the leg press. Before and after the training period, the 1-repetition-maximum in the barbell squat and the leg press, the squat jump, the countermovement jump and unilateral isometric force (maximal isometric force and the rate of force development) were evaluated. To compare each group pre vs. post-intervention, analysis of variance with repeated measures and Scheffé post-hoc tests were used. The leg press group increased their 1-repetition-maximum significantly (p < 0.001), while in the squat group such variables as 1-repetition-maximum, the squat jump and the countermovement jump increased significantly (p < 0.001). The maximal isometric force showed no statistically significant result for the repeated measures factor, while the rate of force development of the squat group even showed a statistically significant decrease. Differences between the 2 experimental groups were detected for the squat jump and the countermovement jump. In comparison with the leg press, the squat might be a better strength training exercise for the development of jump performance.

  6. Parameter optimization of fusion splicing of photonic crystal fibers and conventional fibers to increase strength

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxi; Zhang, Zuchen; Song, Jingming; Wu, Chunxiao; Song, Ningfang

    2015-03-01

    A splicing parameter optimization method to increase the tensile strength of splicing joint between photonic crystal fiber (PCF) and conventional fiber is demonstrated. Based on the splicing recipes provided by splicer or fiber manufacturers, the optimal values of some major splicing parameters are obtained in sequence, and a conspicuous improvement in the mechanical strength of splicing joints between PCFs and conventional fibers is validated through experiments.

  7. Undulatory physical resistance training program increases maximal strength in elderly type 2 diabetics

    PubMed Central

    dos Santos, Gilberto Monteiro; Montrezol, Fábio Tanil; Pauli, Luciana Santos Souza; Sartori-Cintra, Angélica Rossi; Colantonio, Emilson; Gomes, Ricardo José; Marinho, Rodolfo; de Moura, Leandro Pereira; Pauli, José Rodrigo

    2014-01-01

    Objective To investigate the effects of a specific protocol of undulatory physical resistance training on maximal strength gains in elderly type 2 diabetics. Methods The study included 48 subjects, aged between 60 and 85 years, of both genders. They were divided into two groups: Untrained Diabetic Elderly (n=19) with those who were not subjected to physical training and Trained Diabetic Elderly (n=29), with those who were subjected to undulatory physical resistance training. The participants were evaluated with several types of resistance training’s equipment before and after training protocol, by test of one maximal repetition. The subjects were trained on undulatory resistance three times per week for a period of 16 weeks. The overload used in undulatory resistance training was equivalent to 50% of one maximal repetition and 70% of one maximal repetition, alternating weekly. Statistical analysis revealed significant differences (p<0.05) between pre-test and post-test over a period of 16 weeks. Results The average gains in strength were 43.20% (knee extension), 65.00% (knee flexion), 27.80% (supine sitting machine), 31.00% (rowing sitting), 43.90% (biceps pulley), and 21.10% (triceps pulley). Conclusion Undulatory resistance training used with weekly different overloads was effective to provide significant gains in maximum strength in elderly type 2 diabetic individuals. PMID:25628192

  8. Properties of hot-rolled sheets from ferritic steel with increased strength

    NASA Astrophysics Data System (ADS)

    Perlovich, Yu.; Isaenkova, M.; Dobrokhotov, P.; Stolbov, S.; Bannykh, O.; Bannykh, I.; Antsyferova, M.

    2017-10-01

    Sheets from ferritic steel 3 mm thick with increased strength after thermal hardening were studied by use of various X-ray methods and mechanical testing. Rolling of steel was carried out at 1100°C with rather great reductions per pass, so that plastic deformation of metal spread by the significant distance from the surface. The texture of sheet proved to have two sharply different layers: the inner layer of ˜40% thick with the usual rolling texture of BCC metals and the external layer with the rolling texture of FCC metals. At that, within the intermediate layer the texture is weakened. Texture formation within the external layer is conditioned by the process of dynamical deformation ageing: interstitial impurities from atmosphere block dislocations, prevent from their slip and at increased temperatures promote their collective climb. As a result, the direction of lattice rotation as well as the final rolling texture change. Due to texture layering, by impact testing of the sheet the plane of crack propagation must be changed when this crack reaches the inner layer, and then an additional energy for its further movement is required. Thermal hardening of the sheet retains the type of rolling texture, though results in some its scattering, but at the same time the breaking point of steel grows twice owing to formation of intermetallic particles.

  9. Strength training and physical activity in boys: a randomized trial.

    PubMed

    Meinhardt, Udo; Witassek, Fabienne; Petrò, Renato; Fritz, Chris; Eiholzer, Urs

    2013-12-01

    In developed societies levels of daily physical activity (PA) among school-age children are decreasing. This implies risk factors for cardiovascular and metabolic diseases. Specific strategies to improve levels of PA are needed. In prepubertal boys there is evidence that strength training increases spontaneous PA outside of training. A total of 102 schoolchildren (age 10-14 years) in Switzerland were randomly assigned to physical education classes or to participate twice weekly at a guided strength training program for 19 weeks. Spontaneous PA energy expenditure (PAEE; 3axial accelerometry for 7 days), leg and arm strength, and body composition (dual energy radiograph absorptiometry) were measured at baseline, after 19 weeks of training intervention, and after 3 months of washout. There were no significant differences between the groups at baseline. In the intervention group, PAEE increased by 10% from baseline to end of training in boys (P = .02), but not in girls. Leg and arm strength were increased owing to training intervention in both boys and girls. All other variables were unchanged. Baseline PAEE was significantly negatively correlated with changes of PAEE. Targeted strength training significantly increases daily spontaneous PA behavior in boys. The less active children showed the greatest increase in spontaneous PAEE. Girls showed a similar increase in strength, but not in spontaneous PAEE. This may be explained by their earlier pubertal development. Strength training may be a promising strategy in schools to counteract decreasing levels of PA.

  10. Increasing Bone Mass and Bone Strength in Individuals with Chronic Spinal Cord Injury: Maximizing Response to Therapy

    DTIC Science & Technology

    2017-10-01

    Award Number: W81XWH-16-1-0763 TITLE: Increasing Bone Mass and Bone Strength in Individuals with Chronic Spinal Cord Injury: Maximizing Response...TYPE Annual 3. DATES COVERED (From - To) 30 Sep 2016-29 Sep 2017 5a. CONTRACT NUMBER Increasing Bone Mass and Bone Strength in Individuals with...DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Rapid bone loss is a universal

  11. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    NASA Astrophysics Data System (ADS)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  12. Relationship Between Muscle Strength Asymmetry and Body Sway in Older Adults.

    PubMed

    Koda, Hitoshi; Kai, Yoshihiro; Murata, Shin; Osugi, Hironori; Anami, Kunihiko; Fukumoto, Takahiko; Imagita, Hidetaka

    2018-05-31

    The purpose of this study was to investigate the relationship between muscle strength asymmetry and body sway while walking. We studied 63 older adult women. Strong side and weak side of knee extension strength, toe grip strength, hand grip strength, and body sway while walking were measured. The relationship between muscle strength asymmetry for each muscle and body sway while walking was evaluated using Pearson's correlation coefficient. Regarding the muscles recognized to have significant correlation with body sway, the asymmetry cutoff value causing an increased sway was calculated. Toe grip strength asymmetry was significantly correlated with body sway. Toe grip strength asymmetry causing an increased body sway had a cutoff value of 23.5%. Our findings suggest toe grip strength asymmetry may be a target for improving gait stability.

  13. Sublingual testosterone replacement improves muscle mass and strength, decreases bone resorption, and increases bone formation markers in hypogonadal men--a clinical research center study.

    PubMed

    Wang, C; Eyre, D R; Clark, R; Kleinberg, D; Newman, C; Iranmanesh, A; Veldhuis, J; Dudley, R E; Berman, N; Davidson, T; Barstow, T J; Sinow, R; Alexander, G; Swerdloff, R S

    1996-10-01

    To study the effects of androgen replacement therapy on muscle mass and strength and bone turnover markers in hypogonadal men, we administered sublingual testosterone (T) cyclodextrin (SLT; 5 mg, three times daily) to 67 hypogonadal men (baseline serum T, < 8.4 nmol/L) recruited from 4 centers in the U.S.: Torrance (n = 34), Durham (n = 12), New York (n = 9), and Salem (n = 12). Subjects who had received prior T therapy were withdrawn from injections for at least 6 weeks and from oral therapy for 4 weeks. Body composition, muscle strength, and serum and urinary bone turnover markers were measured before and after 6 months of SLT. We have shown previously that this regimen for 60 days will maintain adequate serum T levels and restore sexual function. Total body (P = 0.0104) and lean body mass (P = 0.007) increased with SLT treatment in the 34 subjects in whom body composition was assessed. There was no significant change in total body fat or percent fat. The increase in lean body mass was mainly in the legs; the right leg lean mass increased from 8.9 +/- 0.3 kg at 0 months to 9.2 +/- 0.3 kg at 6 months (P = 0.0008). This increase in leg lean mass was associated with increased leg muscle strength, assessed by leg press (0 months, 139.0 +/- 4.0 kg; 6 months, 147.7 +/- 4.2 kg; P = 0.0038). SLT replacement in hypogonadal men led to small, but significant, decreases in serum Ca (P = 0.0029) and the urinary calcium/creatinine ratio (P = 0.0066), which were associated with increases in serum PTH (P = 0.0001). At baseline, the urinary type I collagen-cross linked N-telopeptides/creatinine ratio [75.6 +/- 7.9 nmol bone collagen equivalents (BCE/mmol] was twice the normal adult male mean (41.0 +/- 3.6 nmol BCE/mmol) and was significantly decreased in response to SLT treatment at 6 months (68.2 +/- 7.7 nmol BCE/mmol; P = 0.0304) without significant changes in urinary creatinine. Serum skeletal alkaline phosphatase did not change. In addition, SLT replacement caused significant

  14. Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength.

    PubMed

    Marks, Wendie; Fournier, Neil M; Kalynchuk, Lisa E

    2009-08-04

    We have recently shown that repeated high dose injections of corticosterone (CORT) reliably increase depression-like behavior on a modified one-day version of the forced swim test. The main purpose of this experiment was to compare the effect of these CORT injections on our one-day version of the forced swim test and the more traditional two-day version of the test. A second purpose was to determine whether altered behavior in the forced swim test could be due to nonspecific changes in locomotor activity or muscle strength. Separate groups of rats received a high dose CORT injection (40 mg/kg) or a vehicle injection once per day for 21 consecutive days. Then, half the rats from each group were exposed to the traditional two-day forced swim test and the other half were exposed to our one-day forced swim test. After the forced swim testing, all the rats were tested in an open field and in a wire suspension grip strength test. The CORT injections significantly increased the time spent immobile and decreased the time spent swimming in both versions of the forced swim test. However, they had no significant effect on activity in the open field or grip strength in the wire suspension test. These results show that repeated CORT injections increase depression-like behavior regardless of the specific parameters of forced swim testing, and that these effects are independent of changes in locomotor activity or muscle strength.

  15. Increases in muscle strength and balance using a resistance training program administered via a telecommunications system in older adults.

    PubMed

    Sparrow, David; Gottlieb, Daniel J; Demolles, Deborah; Fielding, Roger A

    2011-11-01

    Resistance training programs have been found to improve muscle strength, physical function, and depressive symptoms in middle-aged and older adults. These programs have typically been provided in clinical facilities, health clubs, and senior centers, which may be inconvenient and/or cost prohibitive for some older adults. The purpose of this study was to investigate the effectiveness of an automated telemedicine intervention that provides real-time guidance and monitoring of resistance training in the home. A randomized clinical trial in 103 middle-aged or older participants. Participants were assigned to use of a theory-driven interactive voice response system designed to promote resistance training (Telephone-Linked Computer-based Long-term Interactive Fitness Trainer; n = 52) or to an attention control (n = 51) for a period of 12 months. Measurements of muscle strength, balance, walk distance, and mood were obtained at baseline, 3, 6, and 12 months. We observed increased strength, improved balance, and fewer depressive symptoms in the intervention group than in the control group. Using generalized estimating equations modeling, group differences were statistically significant for knee flexion strength (p = .035), single-leg stance time (p = .029), and Beck Depression Inventory (p = .030). This computer-based telecommunications exercise intervention led to improvements in participants' strength, balance, and depressive symptoms. Because of their low cost and easy accessibility, computer-based interventions may be a cost-effective way of promoting exercise in the home.

  16. Progressive resistance training increases strength after stroke but this may not carry over to activity: a systematic review.

    PubMed

    Dorsch, Simone; Ada, Louise; Alloggia, Daniella

    2018-04-01

    Does progressive resistance training improve strength and activity after stroke? Does any increase in strength carry over to activity? Systematic review of randomised trials with meta-analysis. Adults who have had a stroke. Progressive resistance training compared with no intervention or placebo. The primary outcome was change in strength. This measurement had to be of maximum voluntary force production and performed in muscles congruent with the muscles trained in the intervention. The secondary outcome was change in activity. This measurement had to be a direct measure of performance that produced continuous or ordinal data, or with scales that produced ordinal data. Eleven studies involving 370 participants were included in this systematic review. The overall effect of progressive resistance training on strength was examined by pooling change scores from six studies with a mean PEDro score of 5.8, representing medium quality. The effect size of progressive resistance training on strength was 0.98 (95% CI 0.67 to 1.29, I 2 =0%). The overall effect of progressive resistance training on activity was examined by pooling change scores from the same six studies. The effect size of progressive resistance training on activity was 0.42 (95% CI -0.08 to 0.91, I 2 =54%). After stroke, progressive resistance training has a large effect on strength compared with no intervention or placebo. There is uncertainty about whether these large increases in strength carry over to improvements in activity. PROSPERO CRD42015025401. [Dorsch S, Ada L, Alloggia D (2018) Progressive resistance training increases strength after stroke but this may not carry over to activity: a systematic review. Journal of Physiotherapy 64: 84-90]. Copyright © 2018 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  17. Increased muscle strength improves managing in activities of daily living in fall-prone community-dwelling older women.

    PubMed

    Vaapio, Sari; Salminen, Marika; Vahlberg, Tero; Kivelä, Sirkka-Liisa

    2011-02-01

    The aim of this longitudinal study was to describe whether an increase in knee extension strength is associated with improvements in managing in activities of daily living (ADL) and in self-perceived physical condition in fall-prone community-dwelling older women. Subjects (n=417) aged ≥ 65 years belonged either to intervention or control groups in a 12-month randomized controlled fall prevention trial. Isometric muscle strength of knee extension was measured with an adjustable dynamometer chair. Managing in activities of daily living was measured with structured questions about abilities to climb stairs, walk at least 400 meters, toilet, bath, go to the sauna, do light or heavy housework, and carry heavy loads. A question of self-perceived physical condition was also asked. Positive associations were found between increased knee extension strength and an increase in walking at least 400 meters (p<0.001), carrying heavy loads (p=0.004), and climbing stairs (p=0.007), and in self perceived physical condition (p=0.005) over a 12- month follow-up. In addition, low age, non-use of a walking aid, low number of prescribed medications, and good functional balance at baseline were associated with an increase in performance of these ADL functions. An increase in knee extension strength during the 12-month follow-up was associated with improvement in some ADL functions and improvement in self-perceived physical condition during the same period in fall-prone community-dwelling women.

  18. Circuit strength training improves muscle strength, functional performance and anthropometric indicators in sedentary elderly women.

    PubMed

    Mazini Filho, Mauro L; Aidar, Felipe J; Gama de Matos, Dihogo; Costa Moreira, Osvaldo; Patrocínio de Oliveira, Cláudia E; de Oliveira Venturini, Gabriela R; Magalhães Curty, Victor; Menezes Touguinha, Henrique; Caputo Ferreira, Maria E

    2017-04-26

    This study aimed to investigate the effects of circuit strength training on the muscle strength, functional autonomy and anthropometric indicators of the elderly. Were included 65 women divided in two groups: strength training (TG, n= 34) and control group (CG, n = 31). The strength-training group was subjected to a circuit shaped training program, three days per week, for a period of 12 weeks. In each training session, the circuit was repeated three times. In each circuit, all exercises wereperformed once, with 8 to 12 repetitions per exercise, with 30-seconds intervals between each exercise. TG showed significantly changes in body composition post 12 weeks, as decreases in body weight (Δ -1.5±1.8 kg) and BMI (Δ-0.57 ±0.74 kg/m²), and decreases in abdominal (Δ -3±1.61 cm), waist (Δ -1 ± 1.61 cm), hip (Δ -2.75±1.44 cm) and waist hip ratio circumference (Δ -0.02 ± 0.15 cm). For functional autonomy, TG showed increases post 12 weeks by 30-second chair stand (Δ 3.5±0.4 reps), six minute walk (Δ60.95±7.91 m), back scratch (Δ 3.2 ± 1.36 cm), and time up and go tests (Δ -1,62 ±0,15s). TG also showed increases in muscle strength post 12 weeks in both leg press (Δ 11±1,29 kg) and lat pulldown (Δ11 ±0,75 Kg). For CG, Body composition, functional autonomy and muscle strength did not improved in any moment. Hence, circuit strength training provides significant improvements inmuscle strength, functional performance and anthropometric indicators in sedentary elderly women.

  19. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    PubMed

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  20. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes

    PubMed Central

    Alam, Imranul; Reilly, Austin M.; Alkhouli, Mohammed; Gerard-O’Riley, Rita L.; Kasipathi, Charishma; Oakes, Dana K.; Wright, Weston B.; Acton, Dena; McQueen, Amie K.; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G.; Econs, Michael J.

    2017-01-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice over-expressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions. PMID:28013361

  1. Blockade of Metallothioneins 1 and 2 Increases Skeletal Muscle Mass and Strength

    PubMed Central

    Summermatter, Serge; Bouzan, Anais; Pierrel, Eliane; Melly, Stefan; Stauffer, Daniela; Gutzwiller, Sabine; Nolin, Erin; Dornelas, Christina; Fryer, Christy; Leighton-Davies, Juliet; Glass, David J.

    2016-01-01

    ABSTRACT Metallothioneins are proteins that are involved in intracellular zinc storage and transport. Their expression levels have been reported to be elevated in several settings of skeletal muscle atrophy. We therefore investigated the effect of metallothionein blockade on skeletal muscle anabolism in vitro and in vivo. We found that concomitant abrogation of metallothioneins 1 and 2 results in activation of the Akt pathway and increases in myotube size, in type IIb fiber hypertrophy, and ultimately in muscle strength. Importantly, the beneficial effects of metallothionein blockade on muscle mass and function was also observed in the setting of glucocorticoid addition, which is a strong atrophy-inducing stimulus. Given the blockade of atrophy and the preservation of strength in atrophy-inducing settings, these results suggest that blockade of metallothioneins 1 and 2 constitutes a promising approach for the treatment of conditions which result in muscle atrophy. PMID:27956698

  2. Small Beneficial Effect of Caffeinated Energy Drink Ingestion on Strength.

    PubMed

    Collier, Nora B; Hardy, Michelle A; Millard-Stafford, Mindy L; Warren, Gordon L

    2016-07-01

    Collier, NB, Hardy, MA, Millard-Stafford, ML, and Warren, GL. Small beneficial effect of caffeinated energy drink ingestion on strength. J Strength Cond Res 30(7): 1862-1870, 2016-Because caffeine ingestion has been found to increase muscle strength, our aim was to determine whether caffeine when combined with other potential ergogenic ingredients, such as those in commercial energy drinks, would have a similar effect. Fifteen young healthy subjects were used in a double-blind, repeated-measures experimental design. Each subject performed 3 trials, ingesting either a caffeinated energy drink, an uncaffeinated version of the drink, or a placebo drink. The interpolated twitch procedure was used to assess maximum voluntary isometric contraction (MVIC) strength, electrically evoked strength, and percent muscle activation during MVIC of the knee extensors both before and after drink ingestion, and after a fatiguing bout of contractions; electromyographic (EMG) amplitude of the knee extensors during MVIC was also assessed. The mean (±SE) change in MVIC strength from before to after drink ingestion was significantly greater for the caffeinated energy drink compared with placebo [+5.0 (±1.7) vs. -0.5 (±1.5)%] and the difference between the drinks remained after fatigue (p = 0.015); the strength changes for the uncaffeinated energy drink were not significantly different from those of the other 2 drinks at any time. There was no significant effect of drink type on the changes in electrically evoked strength, percent muscle activation, and EMG from before to after drink ingestion. This study indicates that a caffeinated energy drink can increase MVIC strength but the effect is modest and the strength increase cannot be attributed to increased muscle activation. Whether the efficacy of energy drinks can be attributed solely to caffeine remains unclear.

  3. The cross education of strength and skill following unilateral strength training in the upper and lower limbs.

    PubMed

    Green, Lara A; Gabriel, David A

    2018-04-18

    Cross education is the strength gain or skill improvement transferred to the contralateral limb following unilateral training or practice. The present study examined the transfer of both strength and skill following a strength training program. Forty participants (20M, 20F) completed a 6-week unilateral training program of dominant wrist flexion or dorsiflexion. Strength, force variability, and muscle activity were assessed pre-training, post-training, and following 6-weeks of detraining (retention). Analyses of covariance compared the experimental limb (trained or untrained) to the control (dominant or non-dominant). There were no sex differences in the training response. Cross education of strength at post-training was 6% (p<0.01) in the untrained arm and 13% (p<0.01) in the untrained leg. Contralateral strength continued to increase following detraining to 15% in the arm (p<0.01) and 14% in the leg (p<0.01). There was no difference in strength gains between upper and lower limbs (p>0.05). Cross education of skill (force variability) demonstrated greater improvements in the untrained limbs compared to the control limbs during contractions performed without concurrent feedback. Significant increases in V-wave amplitude (p=0.02) and central activation (p<0.01) were highly correlated with contralateral strength gains. There was no change in agonist amplitude or motor unit firing rates in the untrained limbs (p>0.05). The neuromuscular mechanisms mirrored the force increases at post-training and retention supporting central drive adaptations of cross education. The continued strength increases at retention identified the presence of motor learning in cross education, as confirmed by force variability.

  4. Effects of neck strength training on isometric neck strength in rugby union players.

    PubMed

    Geary, Kevin; Green, Brian S; Delahunt, Eamonn

    2014-11-01

    To investigate the effectiveness of a neck strengthening program on the isometric neck strength profile of male rugby union players. Controlled laboratory study. Professional rugby union club. Fifteen professional and 10 semiprofessional rugby union players. The 15 professional players undertook a 5-week neck strengthening intervention, which was performed twice per week, whereas the 10 semiprofessional players acted as the control group. Isometric strength of the neck musculature was tested using a hand-held dynamometer, for flexion (F), extension (E), left-side flexion (LSF), and right-side flexion (RSF). Preintervention and postintervention evaluations were undertaken. No significant between-group differences in isometric neck strength were noted preintervention. A significant main effect for time was observed (P < 0.05), whereby the intervention group increased isometric neck strength in all planes after the 5-week intervention (F preintervention = 334.45 ± 39.31 N vs F postintervention 396.05 ± 75.55 N; E preintervention = 606.19 ± 97.34 vs E postintervention = 733.88 ± 127.16 N; LSF preintervention = 555.56 ± 88.34 N vs LSF postintervention = 657.14 ± 122.99 N; RSF preintervention = 570.00 ± 106.53 N vs RSF postintervention = 668.00 ± 142.18 N). No significant improvement in neck strength was observed for control group participants. The results of the present study indicate that a 5-week neck strengthening program improves isometric neck strength in rugby union players, which may have implications for injury prevention, screening, and rehabilitation. The strengthening program described in the present study may facilitate rehabilitation specialists in the development of neck injury prevention, screening, and rehabilitation protocols.

  5. Increase of reliability of contact networks of electric transport, due to increase of strength of the joint unit of pipes of different diameters

    NASA Astrophysics Data System (ADS)

    Sabitov, L. S.; Kashapov, N. F.; Gilmanshin, I. R.; Gatiyatov, I. Z.; Kuznetsov, I. L.

    2017-09-01

    The feature of the stress state of the supports of the contact networks is the presence of a joint of pipes of different diameters, the ultimate state of which is determined, as a rule, the strength of the weld. The proposed unit allows to increase the reliability and strength of the connection and also exclude the presence of a weld bead on the outer surface of the pipe of smaller diameter in the place of its attachment to the upper end of the support ring.

  6. Seat strength in rear body block tests.

    PubMed

    Viano, David C; White, Samuel D

    2016-07-03

    This study collected and analyzed available testing of motor vehicle seat strength in rearward loading by a body block simulating the torso of an occupant. The data were grouped by single recliner, dual recliner, and all belts to seat (ABTS) seats. The strength of seats to rearward loading has been evaluated with body block testing from 1964 to 2008. The database of available tests includes 217 single recliner, 65 dual recliner, and 18 ABTS seats. The trends in seat strength were determined by linear regression and differences between seat types were evaluated by Student's t-test. The average peak moment and force supported by the seat was determined by decade of vehicle model year (MY). Single recliner seats were used in motor vehicles in the 1960s to 1970s. The average strength was 918 ± 224 Nm (n = 26) in the 1960s and 1,069 ± 293 Nm (n = 65) in the 1980s. There has been a gradual increase in strength over time. Dual recliner seats started to phase into vehicles in the late 1980s. By the 2000s, the average strength of single recliner seats increased to 1,501 ± 335 Nm (n = 14) and dual recliner seats to 2,302 ± 699 Nm (n = 26). Dual recliner seats are significantly stronger than single recliner seats for each decade of comparison (P < .001). The average strength of ABTS seats was 4,395 ± 1,185 in-lb for 1989-2004 MY seats (n = 18). ABTS seats are significantly stronger than single or dual recliner seats (P < .001). The trend in ABTS strength is decreasing with time and converging toward that of dual recliner seats. Body block testing is an quantitative means of evaluating the strength of seats for occupant loading in rear impacts. There has been an increase in conventional seat strength over the past 50 years. By the 2000s, most seats are 1,700-3,400 Nm moment strength. However, the safety of a seat is more complex than its strength and depends on many other factors.

  7. Gaseous hydrogen embrittlement of high strength steels

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1977-01-01

    The effects of temperature, hydrogen pressure, stress intensity, and yield strength on the kinetics of gaseous hydrogen assisted crack propagation in 18Ni maraging steels were investigated experimentally. It was found that crack growth rate as a function of stress intensity was characterized by an apparent threshold for crack growth, a stage where the growth rate increased sharply, and a stage where the growth rate was unchanged over a significant range of stress intensity. Cracking proceeded on load application with little or no detectable incubation period. Gaseous hydrogen embrittlement susceptibility increased with increasing yield strength.

  8. Dramatic Enhancement of Graphene Oxide/Silk Nanocomposite Membranes: Increasing Toughness, Strength, and Young's modulus via Annealing of Interfacial Structures.

    PubMed

    Wang, Yaxian; Ma, Ruilong; Hu, Kesong; Kim, Sunghan; Fang, Guangqiang; Shao, Zhengzhong; Tsukruk, Vladimir V

    2016-09-21

    We demonstrate that stronger and more robust nacre-like laminated GO (graphene oxide)/SF (silk fibroin) nanocomposite membranes can be obtained by selectively tailoring the interfacial interactions between "bricks"-GO sheets and "mortar"-silk interlayers via controlled water vapor annealing. This facial annealing process relaxes the secondary structure of silk backbones confined between flexible GO sheets. The increased mobility leads to a significant increase in ultimate strength (by up to 41%), Young's modulus (up to 75%) and toughness (up to 45%). We suggest that local silk recrystallization is initiated in the proximity to GO surface by the hydrophobic surface regions serving as nucleation sites for β-sheet domains formation and followed by SF assembly into nanofibrils. Strong hydrophobic-hydrophobic interactions between GO layers with SF nanofibrils result in enhanced shear strength of layered packing. This work presented here not only gives a better understanding of SF and GO interfacial interactions, but also provides insight on how to enhance the mechanical properties for the nacre-mimic nanocomposites by focusing on adjusting the delicate interactions between heterogeneous "brick" and adaptive "mortar" components with water/temperature annealing routines.

  9. Chronic effect of static stretching on strength performance and basal serum IGF-1 levels.

    PubMed

    Borges Bastos, Carmen L; Miranda, Humberto; Vale, Rodrigo Gomes de Souza; Portal, Maria de Nazaré; Gomes, M Thiago; Novaes, Jefferson da Silva; Winchester, Jason B

    2013-09-01

    Improving the process of how physical performance is enhanced is one of the main topics evaluated by physiologists. This process often involves athletes and nonathletic populations. The purpose of this study was to assess the chronic response to 10 weeks of static stretching exercises carried out before and during a strength training program for 8 exercises on an 8 repetition maximum (8RM) test performance, and basal serum insulinlike growth factor (IGF-1) levels. Thirty recreationally trained volunteers were randomly assigned to 1 of 3 training groups: (a) SBST (performed a warm-up with a static stretching protocol before each strength training session); (b) SDST (before each training set, a static stretching exercise was performed); and (c) OST (entire session was performed without any type of stretching exercise). Strength and IGF-1 levels were collected at the beginning (pretest) and end (posttest) of the entire experimental procedure. All the exercises showed a significant increase in muscle strength for the OST group. However, the results revealed a significant increase in the muscle strength for only a few exercises in the SBST (LP, LE) and SDST (LP) experimental conditions. Significant statistical differences were found between SBST and SDST for all the exercises in the OST experimental condition. Furthermore, the IGF-1 expression showed no significant differences in the intragroup analysis. However, the OST group showed higher values (p < 0.05) in the posttest when compared with those of the other groups (increased significantly only in the OST experimental condition). It has been concluded that, although all the groups showed an increase in muscular strength, the strength training performed without any type of stretching exercise, regardless of whether the stretching is performed before or during the lifting session, can more effectively increase muscle strength and basal serum IGF-1 levels. It was concluded that strength training, with or without the use

  10. Greater Strength Gains after Training with Accentuated Eccentric than Traditional Isoinertial Loads in Already Strength-Trained Men

    PubMed Central

    Walker, Simon; Blazevich, Anthony J.; Haff, G. Gregory; Tufano, James J.; Newton, Robert U.; Häkkinen, Keijo

    2016-01-01

    As training experience increases it becomes more challenging to induce further neuromuscular adaptation. Consequently, strength trainers seek alternative training methods in order to further increase strength and muscle mass. One method is to utilize accentuated eccentric loading, which applies a greater external load during the eccentric phase of the lift as compared to the concentric phase. Based upon this practice, the purpose of this study was to determine the effects of 10 weeks of accentuated eccentric loading vs. traditional isoinertial resistance training in strength-trained men. Young (22 ± 3 years, 177 ± 6 cm, 76 ± 10 kg, n = 28) strength-trained men (2.6 ± 2.2 years experience) were allocated to concentric-eccentric resistance training in the form of accentuated eccentric load (eccentric load = concentric load + 40%) or traditional resistance training, while the control group continued their normal unsupervised training program. Both intervention groups performed three sets of 6-RM (session 1) and three sets of 10-RM (session 2) bilateral leg press and unilateral knee extension exercises per week. Maximum force production was measured by unilateral isometric (110° knee angle) and isokinetic (concentric and eccentric 30°.s−1) knee extension tests, and work capacity was measured by a knee extension repetition-to-failure test. Muscle mass was assessed using panoramic ultrasonography and dual-energy x-ray absorptiometry. Surface electromyogram amplitude normalized to maximum M-wave and the twitch interpolation technique were used to examine maximal muscle activation. After training, maximum isometric torque increased significantly more in the accentuated eccentric load group than control (18 ± 10 vs. 1 ± 5%, p < 0.01), which was accompanied by an increase in voluntary activation (3.5 ± 5%, p < 0.05). Isokinetic eccentric torque increased significantly after accentuated eccentric load training only (10 ± 9%, p < 0.05), whereas concentric torque

  11. Muscle strength response to strength training is influenced by insulin-like growth factor 1 genotype in older adults.

    PubMed

    Kostek, Matthew C; Delmonico, Matthew J; Reichel, Jonathan B; Roth, Stephen M; Douglass, Larry; Ferrell, Robert E; Hurley, Ben F

    2005-06-01

    Strength training (ST) is considered an intervention of choice for the prevention and treatment of sarcopenia. Reports in the literature have suggested that the insulin-like growth factor I protein (IGF-I) plays a major role in ST-induced skeletal muscle hypertrophy and strength improvements. A microsatellite repeat in the promoter region of the IGF1 gene has been associated with IGF-I blood levels and phenotypes related to IGF-I in adult men and women. To examine the influence of this polymorphism on muscle hypertrophic and strength responses to ST, we studied 67 Caucasian men and women before and after a 10-wk single-leg knee-extension ST program. One repetition maximum strength, muscle volume via computed tomography, and muscle quality were assessed at baseline and after 10 wk of training. The IGF1 repeat promoter polymorphism and three single-nucleotide polymorphisms were genotyped. For the promoter polymorphism, subjects were grouped as homozygous for the 192 allele, heterozygous, or noncarriers of the 192 allele. After 10 wk of training, 1-repetition maximum, muscle volume, and muscle quality increased significantly for all groups combined (P < 0.001). However, carriers of the 192 allele gained significantly more strength with ST than noncarriers of the 192 allele (P = 0.02). There was also a nonsignificant trend for a greater increase in muscle volume in 192 carriers than noncarriers (P = 0.08). No significant associations were observed for the other polymorphisms studied. Thus these data suggest that the IGF1 promoter polymorphism may influence the strength response to ST. Larger sample sizes should be used in future studies to verify these results.

  12. Muscle hypertrophy, strength development, and serum hormones during strength training in elderly women with fibromyalgia.

    PubMed

    Valkeinen, H; Häkkinen, K; Pakarinen, A; Hannonen, P; Häkkinen, A; Airaksinen, O; Niemitukia, L; Kraemer, W J; Alén, M

    2005-01-01

    To examine the effects of strength training on maximal force, cross-sectional area (CSA), and electromyographic (EMG) activity of muscles and serum hormone concentrations in elderly females with fibromyalgia (FM). Twenty-six patients with FM were randomly assigned to a training (FMT; n = 13; mean age 60 years) or a control (FMC; n = 13; 59 years) group. FMT performed progressive strength training twice a week for 21 weeks. The measurements included maximal isometric and concentric leg extension forces, EMG activity of the vastus lateralis and medialis, CSA of the quadriceps femoris, and serum concentrations of testosterone (T), free testosterone (FT), growth hormone (GH), insulin-like growth factor-1 (IGF-1), dehydroepiandrosterone sulfate (DHEAS), and cortisol. Subjectively perceived symptoms of FM were also assessed. All patients were able to complete the training. In FMT strength training led to increases of 36% (p<0.001) and 33% (p<0.001) in maximal isometric and concentric forces, respectively. The CSA increased by 5% (p<0.001) and the EMG activity in isometric action by 47% (p<0.001) and in concentric action by 57% (p<0.001). Basal serum hormone concentrations remained unaltered during strength training. The subjective perceived symptoms showed a minor decreasing tendency (ns). No statistically significant changes occurred in any of these parameters in FMC. Progressive strength training increases strength, CSA, and voluntary activation of the trained muscles in elderly women with FM, while the measured basal serum hormone concentrations remain unaltered. Strength training benefits the overall physical fitness of the patients without adverse effects or any exacerbation of symptoms and should be included in the rehabilitation programmes of elderly patients with FM.

  13. Achilles tendinosis and calf muscle strength. The effect of short-term immobilization after surgical treatment.

    PubMed

    Alfredson, H; Pietilä, T; Ohberg, L; Lorentzon, R

    1998-01-01

    We prospectively studied calf muscle strength in 7 men and 4 women (mean age, 40.9 +/- 10.1 years) who had surgical treatment for chronic Achilles tendinosis. Surgery was followed by immobilization in a weightbearing below-the-knee plaster cast for 2 weeks followed by a stepwise increasing strength training program. Strength measurements (peak torque and total work) were done preoperatively (Week 0) and at 16, 26, and 52 weeks postoperatively. We measured isokinetic concentric plantar flexion strength at 90 and 225 deg/sec and eccentric flexion strength at 90 deg/sec on both the injured and noninjured sides. Preoperatively, concentric and eccentric strength were significantly lower on the injured side at 90 and 225 deg/sec. Postoperatively, concentric peak torque on the injured side decreased significantly between Weeks 0 and 16 and increased significantly between Weeks 26 and 52 at 90 deg/sec but was significantly lower than that on the noninjured side at all periods and at both velocities. The eccentric strength was significantly lower on the injured side at Week 26 but increased significantly until at Week 52 no significant differences between the sides could be demonstrated. It seems, therefore, that the recovery in concentric and eccentric calf muscle strength after surgery for Achilles tendinosis is slow. We saw no obvious advantages in recovery of muscle strength with a short immobilization time (2 weeks) versus a longer (6 weeks) period used in a previous study.

  14. Rapamycin increases grip strength and attenuates age-related decline in maximal running distance in old low capacity runner rats.

    PubMed

    Xue, Qian-Li; Yang, Huanle; Li, Hui-Fen; Abadir, Peter M; Burks, Tyesha N; Koch, Lauren G; Britton, Steven L; Carlson, Joshua; Chen, Laura; Walston, Jeremy D; Leng, Sean X

    2016-04-01

    Rapamycin is known to extend lifespan. We conducted a randomized placebo-controlled study of enteric rapamycin-treatment to evaluate its effect on physical function in old low capacity runner (LCR) rats, a rat model selected from diverse genetic background for low intrinsic aerobic exercise capacity without genomic manipulation and characterized by increased complex disease risks and aging phenotypes. The study was performed in 12 male and 16 female LCR rats aged 16-22 months at baseline. The treatment group was fed with rapamycin-containing diet pellets at approximately 2.24mg/kg body weight per day and the placebo group with the same diet without rapamycin for six months. Observation was extended for additional 2 months. Physical function measurements include grip strength measured as maximum tensile force using a rat grip strength meter and maximum running distance (MRD) using rat physical treadmill test. The results showed that rapamycin improved grip strength by 13% (p=.036) and 60% (p=.001) from its baseline in female and male rats, respectively. Rapamycin attenuated MRD decline by 66% (p=.001) and 46% (p=.319) in females and males, respectively. These findings provide initial evidence for beneficial effect of rapamycin on physical functioning in an aging rat model of high disease risks with significant implication in humans.

  15. Rapamycin increases grip strength and attenuates age-related decline in maximal running distance in old low capacity runner rats

    PubMed Central

    Xue, Qian-Li; Yang, Huanle; Li, Hui-Fen; Abadir, Peter M.; Burks, Tyesha N.; Koch, Lauren G.; Britton, Steven L.; Carlson, Joshua; Chen, Laura; Walston, Jeremy D.; Leng, Sean X.

    2016-01-01

    Rapamycin is known to extend lifespan. We conducted a randomized placebo-controlled study of enteric rapamycin-treatment to evaluate its effect on physical function in old low capacity runner (LCR) rats, a rat model selected from diverse genetic background for low intrinsic aerobic exercise capacity without genomic manipulation and characterized by increased complex disease risks and aging phenotypes. The study was performed in 12 male and 16 female LCR rats aged 16-22 months at baseline. The treatment group was fed with rapamycin-containing diet pellets at approximately 2.24mg/kg body weight per day and the placebo group with the same diet without rapamycin for six months. Observation was extended for additional 2 months. Physical function measurements include grip strength measured as maximum tensile force using a rat grip strength meter and maximum running distance (MRD) using rat physical treadmill test. The results showed that rapamycin improved grip strength by 13% (p=.036) and 60% (p<.001) from its baseline in female and male rats, respectively. Rapamycin attenuated MRD decline by 66% (p<.001) and 46% (p=.319) in females and males, respectively. These findings provide initial evidence for beneficial effect of rapamycin on physical functioning in an aging rat model of high disease risks with significant implication in humans. PMID:26997106

  16. "Clinical" Significance: "Clinical" Significance and "Practical" Significance are NOT the Same Things

    ERIC Educational Resources Information Center

    Peterson, Lisa S.

    2008-01-01

    Clinical significance is an important concept in research, particularly in education and the social sciences. The present article first compares clinical significance to other measures of "significance" in statistics. The major methods used to determine clinical significance are explained and the strengths and weaknesses of clinical significance…

  17. Endochondral fracture healing with external fixation in the Sost knockout mouse results in earlier fibrocartilage callus removal and increased bone volume fraction and strength.

    PubMed

    Morse, A; Yu, N Y C; Peacock, L; Mikulec, K; Kramer, I; Kneissel, M; McDonald, M M; Little, D G

    2015-02-01

    Sclerostin deficiency, via genetic knockout or anti-Sclerostin antibody treatment, has been shown to cause increased bone volume, density and strength of calluses following endochondral bone healing. However, there is limited data on the effect of Sclerostin deficiency on the formative early stage of fibrocartilage (non-bony tissue) formation and removal. In this study we extensively investigate the early fibrocartilage callus. Closed tibial fractures were performed on Sost(-/-) mice and age-matched wild type (C57Bl/6J) controls and assessed at multiple early time points (7, 10 and 14days), as well as at 28days post-fracture after bony union. External fixation was utilized, avoiding internal pinning and minimizing differences in stability stiffness, a variable that has confounded previous research in this area. Normal endochondral ossification progressed in wild type and Sost(-/-) mice with equivalent volumes of fibrocartilage formed at early day 7 and day 10 time points, and bony union in both genotypes by day 28. There were no significant differences in rate of bony union; however there were significant increases in fibrocartilage removal from the Sost(-/-) fracture calluses at day 14 suggesting earlier progression of endochondral healing. Earlier bone formation was seen in Sost(-/-) calluses over wild type with greater bone volume at day 10 (221%, p<0.01). The resultant Sost(-/-) united bony calluses at day 28 had increased bone volume fraction compared to wild type calluses (24%, p<0.05), and the strength of the fractured Sost(-/-) tibiae was greater than that that of wild type fractured tibiae. In summary, bony union was not altered by Sclerostin deficiency in externally-fixed closed tibial fractures, but fibrocartilage removal was enhanced and the resultant united bony calluses had increased bone fraction and increased strength. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  18. Relationship between low handgrip strength and quality of life in Korean men and women.

    PubMed

    Kang, Seo Young; Lim, Jisun; Park, Hye Soon

    2018-06-19

    Handgrip strength is strongly related to muscle power in the extremities and is an important index for diagnosing sarcopenia. We evaluated the relationship between handgrip strength and quality of life (QoL) in Korean men and women. We analyzed 4620 participants (2070 men and 2550 women) using data from the Korea National Health and Nutrition Examination Survey VI-3 (2015). Low handgrip strength was defined as the lower quartile of handgrip strength in the study population. QoL was evaluated according to the European Quality of Life Scale-Five Dimensions (EQ-5D). The relationship between handgrip strength and QoL was evaluated by multivariate logistic regression analyses. The odds ratios (ORs) for low handgrip strength significantly increased as age increased for both men and women. The ORs for low handgrip strength increased as body mass index decreased in men. In men with low handgrip strength, the OR for having problems in mobility (OR 1.93, 95% confidence interval (CI) 1.25-2.98) and having pain or discomfort (1.53, 1.04-2.24) significantly increased. In women with low handgrip strength, the OR for having problems in mobility (2.12, 1.02-2.87), problems in usual activities (2.04, 1.46-2.85), and having pain or discomfort (1.48, 1.15-1.90) significantly increased. Men with low handgrip strength had poor QoL on the mobility and pain/discomfort dimensions of EQ-5D, whereas women with low handgrip strength had poor QoL on mobility, usual activities, and pain/discomfort dimensions. Management to improve handgrip strength is necessary for achieving better QoL.

  19. The added value of measuring thumb and finger strength when comparing strength measurements in hypoplastic thumb patients.

    PubMed

    Molenaar, H M Ties; Selles, Ruud W; de Kraker, Marjolein; Stam, Henk J; Hovius, Steven E R

    2013-10-01

    When interventions to the hand are aimed at improving function of specific fingers or the thumb, the RIHM (Rotterdam Intrinsic Hand Myometer) is a validated tool and offers more detailed information to assess strength of the involved joints besides grip and pinch measurements. In this study, strength was measured in 65 thumbs in 40 patients diagnosed with thumb hypoplasia. These 65 thumbs were classified according to Blauth. Longitudinal radial deficiencies were also classified. The strength measurements comprised of grip, tip, tripod and key pinch. Furthermore palmar abduction and opposition of the thumb as well as abduction of the index and little finger were measured with the RIHM. For all longitudinal radial deficiency patients, grip and pinch strength as well as palmar abduction and thumb opposition were significantly lower than reference values (P<0.001). However, strength in the index finger abduction and the little finger abduction was maintained or decreased to a lesser extent according to the degree of longitudinal radial deficiency. All strength values decreased with increasing Blauth-type. Blauth-type II hands (n=15) with flexor digitorum superficialis 4 opposition transfer including stabilization of the metacarpophalangeal joint showed a trend toward a higher opposition strength without reaching statistical significance (P=0.094),however compared to non-operated Blauth-type II hands (n=6) they showed a lower grip strength (P=0.019). The RIHM is comparable in accuracy to other strength dynamometers. Using the RIHM, we were able to illustrate strength patterns on finger-specific level, showing added value when evaluating outcome in patients with hand related problems. © 2013.

  20. EFFECTS OF STRENGTH TRAINING ON PHYSICAL FUNCTION: INFLUENCE OF POWER, STRENGTH, AND BODY COMPOSITION

    PubMed Central

    Hanson, Erik D.; Srivatsan, Sindhu R.; Agrawal, Siddhartha; Menon, Kalapurakkal S.; Delmonico, Matthew J.; Wang, Min Q.; Hurley, Ben F.

    2010-01-01

    The purpose of this study was to determine (a) the effects of strength training (ST) on physical function and (b) the influence of strength, power, muscle volume (MV), and body composition on physical function. Healthy, inactive adults (n = 50) aged 65 years and older underwent strength, power, total body composition (% fat and fat free mass [FFM]), and physical function testing before and after 22 weeks of ST. Physical function testing consisted of tasks designed to mimic common physical activities of daily living (ADL). To improve internal validity of the assessment of mid-thigh intermuscular fat, subcutaneous fat, and knee extensors MV, a 10-week unilateral ST program using the untrained leg as an internal control preceded 12 weeks of whole-body ST. Strength, power, and FFM increased significantly with ST (all p < 0.05), whereas rapid walk, 5 chair stands, and get up and go time decreased significantly with ST in the overall group (all p < 0.05). Women improved significantly in both walking test times (both p < 0.05) but not in the stair climb test, whereas men improved in the stair climb test (p < 0.05) but not in walking test times. Multiple regression analysis revealed the highest R2 (0.28) for the change in chair stands time, followed by stair climb and usual walk at 0.27 and 0.21, respectively. ST improves performance in functional tasks important for ADLs. Changes in strength, power, and FFM are predictors of ST-induced improvements in these tasks. PMID:19910811

  1. The adhesive strength and initial viscosity of denture adhesives.

    PubMed

    Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi

    2014-11-01

    To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.

  2. Innovative strength training-induced neuroplasticity and increased muscle size and strength in children with spastic cerebral palsy: an experimenter-blind case study--three-month follow-up.

    PubMed

    Lee, Dong Ryul; Kim, Yun Hee; Kim, Dong A; Lee, Jung Ah; Hwang, Pil Woo; Lee, Min Jin; You, Sung Hyun

    2014-01-01

    In children with cerebral palsy (CP), the never-learned-to-use (NLTU) effect and underutilization suppress the normal development of cortical plasticity in the paretic limb, which further inhibits its functional use and increases associated muscle weakness. To highlight the effects of a novel comprehensive hand repetitive intensive strengthening training system on neuroplastic changes associated with upper extremity (UE) muscle strength and motor performance in children with spastic hemiplegic CP. Two children with spastic hemiplegic CP were recruited. Intervention with the comprehensive hand repetitive intensive strengthening training system was provided for 60 min a day, three times a week, for 10 weeks. Neuroplastic changes, muscle size, strength, and associated motor function were measured using functional magnetic resonance imaging (MRI), ultrasound imaging, and standardized motor tests, respectively. The functional MRI data showed that the comprehensive hand repetitive intensive strengthening training intervention produced measurable neuroplastic changes in the neural substrates associated with motor control and learning. These neuroplastic changes were associated with increased muscle size, strength and motor function. These results provide compelling evidence of neuroplastic changes and associated improvements in muscle size and motor function following innovative upper extremity strengthening exercise.

  3. Semantic priming increases word frequency judgments: Evidence for the role of memory strength in frequency estimation.

    PubMed

    Woltz, Dan J; Gardner, Michael K

    2015-09-01

    Previous research has demonstrated a systematic, nonlinear relationship between word frequency judgments and values from word frequency norms. This relationship could reflect a perceptual process similar to that found in the psychophysics literature for a variety of sensory phenomena. Alternatively, it could reflect memory strength differences that are expected for words of varying levels of prior exposure. Two experiments tested the memory strength explanation by semantically priming words prior to frequency judgments. Exposure to related word meanings produced a small but measurable increase in target word frequency ratings. Repetition but not semantic priming had a greater impact on low compared to high frequency words. These findings are consistent with a memory strength view of frequency judgments that assumes a distributed network with lexical and semantic levels of representation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone.

    PubMed

    Henriksen, S S; Ding, M; Juhl, M Vinther; Theilgaard, N; Overgaard, S

    2011-05-01

    Eight groups of calcium-phosphate scaffolds for bone implantation were prepared of which seven were reinforced with biopolymers, poly lactic acid (PLA) or hyaluronic acid in different concentrations in order to increase the mechanical strength, without significantly impairing the microarchitecture. Controls were un-reinforced calcium-phosphate scaffolds. Microarchitectural properties were quantified using micro-CT scanning. Mechanical properties were evaluated by destructive compression testing. Results showed that adding 10 or 15% PLA to the scaffold significantly increased the mechanical strength. The increase in mechanical strength was seen as a result of increased scaffold thickness and changes to plate-like structure. However, the porosity was significantly lowered as a consequence of adding 15% PLA, whereas adding 10% PLA had no significant effect on porosity. Hyaluronic acid had no significant effect on mechanical strength. The novel composite scaffold is comparable to that of human bone which may be suitable for transplantation in specific weight-bearing situations, such as long bone repair.

  5. Acute Responses of Strength and Running Mechanics to Increasing and Decreasing Pain in Patients With Patellofemoral Pain

    PubMed Central

    Bazett-Jones, David M.; Huddleston, Wendy; Cobb, Stephen; O'Connor, Kristian; Earl-Boehm, Jennifer E.

    2017-01-01

    Context:  Patellofemoral pain (PFP) is typically exacerbated by repetitive activities that load the patellofemoral joint, such as running. Understanding the mediating effects of changes in pain in individuals with PFP might inform injury progression, rehabilitation, or both. Objective:  To investigate the effects of changing pain on muscular strength and running biomechanics in those with PFP. Design:  Crossover study. Setting:  University research laboratory. Patients or Other Participants:  Seventeen participants (10 men, 7 women) with PFP. Intervention(s):  Each participant completed knee pain-reducing and pain-inducing protocols in random order. The pain-reducing protocol consisted of 15 minutes of transcutaneous electric nerve stimulation (TENS) around the patella. The pain-inducing protocol was sets of 20 repeated single-legged squats (RSLS). Participants completed RSLS sets until either their pain was within at least 1 cm of their pain during an exhaustive run or they reached 10 sets. Main Outcome Measure(s):  Pain, isometric hip and trunk strength, and running mechanics were assessed before and after the protocols. Dependent variables were pain, normalized strength (abduction, extension, external rotation, lateral trunk flexion), and peak lower extremity kinematics and kinetics in all planes. Pain scores were analyzed using a Friedman test. Strength and mechanical variables were analyzed using repeated-measures analyses of variance. The α level was set at P < .05. Results:  Pain was decreased after the TENS (pretest: 3.10 ± 1.95, posttest: 1.89 ± 2.33) and increased after the RSLS (baseline: 3.10 ± 1.95, posttest: 4.38 ± 2.40) protocols (each P < .05). The RSLS protocol resulted in a decrease in hip-extension strength (baseline: 0.355 ± 0.08 kg/kg, posttest: 0.309 ± 0.09 kg/kg; P < .001). Peak plantar-flexion angle was decreased after RSLS (baseline: −13.97° ± 6.41°, posttest: −12.84° ± 6.45°; P = .003). Peak hip

  6. Acute Responses of Strength and Running Mechanics to Increasing and Decreasing Pain in Patients With Patellofemoral Pain.

    PubMed

    Bazett-Jones, David M; Huddleston, Wendy; Cobb, Stephen; O'Connor, Kristian; Earl-Boehm, Jennifer E

    2017-05-01

      Patellofemoral pain (PFP) is typically exacerbated by repetitive activities that load the patellofemoral joint, such as running. Understanding the mediating effects of changes in pain in individuals with PFP might inform injury progression, rehabilitation, or both.   To investigate the effects of changing pain on muscular strength and running biomechanics in those with PFP.   Crossover study.   University research laboratory.   Seventeen participants (10 men, 7 women) with PFP.   Each participant completed knee pain-reducing and pain-inducing protocols in random order. The pain-reducing protocol consisted of 15 minutes of transcutaneous electric nerve stimulation (TENS) around the patella. The pain-inducing protocol was sets of 20 repeated single-legged squats (RSLS). Participants completed RSLS sets until either their pain was within at least 1 cm of their pain during an exhaustive run or they reached 10 sets.   Pain, isometric hip and trunk strength, and running mechanics were assessed before and after the protocols. Dependent variables were pain, normalized strength (abduction, extension, external rotation, lateral trunk flexion), and peak lower extremity kinematics and kinetics in all planes. Pain scores were analyzed using a Friedman test. Strength and mechanical variables were analyzed using repeated-measures analyses of variance. The α level was set at P < .05.   Pain was decreased after the TENS (pretest: 3.10 ± 1.95, posttest: 1.89 ± 2.33) and increased after the RSLS (baseline: 3.10 ± 1.95, posttest: 4.38 ± 2.40) protocols (each P < .05). The RSLS protocol resulted in a decrease in hip-extension strength (baseline: 0.355 ± 0.08 kg/kg, posttest: 0.309 ± 0.09 kg/kg; P < .001). Peak plantar-flexion angle was decreased after RSLS (baseline: -13.97° ± 6.41°, posttest: -12.84° ± 6.45°; P = .003). Peak hip-extension (pretest: -2.31 ± 0.46) and hip-abduction (pretest: -2.02 ± 0.35) moments decreased after both the TENS (extension

  7. A method to determine shear adhesive strength of fibrin sealants.

    PubMed

    Sierra, D H; Feldman, D S; Saltz, R; Huang, S

    1992-01-01

    The adhesive strength of fibrin sealants has not been rigorously evaluated to date. The adhesive strength of six different concentrations of cryoprecipitated fibrinogen as well as the commercially available fibrin tissue adhesive Tissucol was tested under controlled conditions utilizing split-thickness skin grafts as the test adherand. This test configuration permitted the modeling of bonding strength for attachment of skin grafts as well as incorporate established engineering test standards for adhesives. An increase in fibrin concentration corresponded with an increase in shear adhesive strength. No significant increases in adhesive strength were attained after 5 min of bonding for all tested concentrations, except for the commercial adhesive, which attained the adhesive strength of an equivalent concentration of cryoprecipitated adhesive after 90 min. The adhesive strength, however, was an order of magnitude less than reported values of the tensile strength of fibrin material for similar concentrations. Therefore, it is important that the surgeon use a sufficiently high fibrinogen concentration for the specific clinical indication. The method of fibrin sealant preparation and/or the compounding adjuncts appear to have an effect on the development of adhesive strength.

  8. Effects of strength training on muscle strength characteristics, functional capabilities, and balance in middle-aged and older women.

    PubMed

    Holviala, Jarkko H S; Sallinen, Janne M; Kraemer, William J; Alen, Markku J; Häkkinen, Keijo K T

    2006-05-01

    Progressive strength training can lead to substantial increases in maximal strength and mass of trained muscles, even in older women and men, but little information is available about the effects of strength training on functional capabilities and balance. Thus, the effects of 21 weeks of heavy resistance training--including lower loads performed with high movement velocities--twice a week on isometric maximal force (ISOmax) and force-time curve (force produced in 500 milliseconds, F0-500) and dynamic 1 repetition maximum (1RM) strength of the leg extensors, 10-m walking time (10WALK) and dynamic balance test (DYN.D) were investigated in 26 middle-aged (MI; 52.8 +/- 2.4 years) and 22 older women (O; 63.8 +/- 3.8 years). 1RM, ISOmax, and F0-500 increased significantly in MI by 28 +/- 10%, 20 +/- 19%, 31 +/- 34%, and in O by 27 +/- 8%, 20 +/- 16%, 18 +/- 45%, respectively. 10WALK (MI and O, p < 0.001) shortened and DYN.D improved (MI and O, p < 0.001). The present strength-training protocol led to large increases in maximal and explosive strength characteristics of leg extensors and in walking speed, as well to an improvement in the present dynamic balance test performance in both age groups. Although training-induced increase in explosive strength is an important factor for aging women, there are other factors that contribute to improvements in dynamic balance capacity. This study indicates that total body heavy resistance training, including explosive dynamic training, may be applied in rehabilitation or preventive exercise protocols in aging women to improve dynamic balance capabilities.

  9. Knee strength ratios in competitive female athletes

    PubMed Central

    Murawa, Michal; Mackala, Krzysztof; Dworak, Lechoslaw Bogdan

    2018-01-01

    Knee strength ratios are related to the movement patterns, sport-specific training and knee injuries in athletes. The purpose of this study was to determine the ratios in the concentric isokinetic strength of the hamstrings and quadriceps and the isometric strength of the knee extensors. In female basketball players (n = 14) and female volleyball players (n = 12) were evaluated: the hamstrings to quadriceps peak torque ratio (H/Q) and side-to-side peak torque ratio (TR) for hamstrings and quadriceps; the ratio of the maximal bilateral strength to the summed maximal unilateral strength (B/U) and side-to-side maximal strength ratio (SR) for knee extensors. For the H/Q values, a 2 × 2 × 3 mixed-factorial analysis of variance and Bonferroni post hoc test were computed. The H/Q values increased from 48.0 (3.9)% at 60°/s to 70.4 (7.9)% at 300°/s. Furthermore, there were significant differences in the H/Q values between 300°/s and 180°/s, 300°/s and 60°/s in basketball and volleyball athletes, and between 180°/s and 60°/s only in basketball athletes (p < .05). Significantly higher H/Q results at 60°/s demonstrated basketball players than volleyball players (p < .05). Differences in the TR and SR mean values ranged from 4.4% to 8.6% and indicated no significant side-to-side strength deficits (p > .05). In both groups, greater isometric strength developed bilaterally was found (B/U > 100%). The findings revealed the magnitude of knee strength ratios in female athletes determined by sport-specific movements in basketball and volleyball. This study highlighted the importance of the bilateral strength deficit and muscular balance between the hamstrings and quadriceps in basketball and volleyball athletes in activities related to their movement patterns and specific training. PMID:29315348

  10. Effect of ultraviolet light irradiation and sandblasting treatment on bond strengths between polyamide and chemical-cured resin.

    PubMed

    Asakawa, Yuya; Takahashi, Hidekazu; Iwasaki, Naohiko; Kobayashi, Masahiro

    2014-01-01

    The aim of this study was to evaluate the effects of ultraviolet light (UV) irradiation and sandblasting treatment on the shear bond strength between polyamide and chemical-cured resin. Three types of commercial polyamides were treated using UV irradiation, sandblasting treatment, and a combining sandblasting and UV irradiation. The shear bond strength was measured and analyzed using the Kruskal-Wallis test (α=0.05). Comparing shear bond strengths without surface treatment, from 4.1 to 5.7 MPa, the UV irradiation significantly increased the shear bond strengths except for Valplast, whose shear bond strengths ranged from 5.2 to 9.3 MPa. The sandblasting treatment also significantly increased the shear bond strengths (8.0 to 11.4 MPa). The combining sandblasting and UV irradiation significantly increased the shear bond strengths (15.2 to 18.3 MPa) comparing without surface treatment. This combined treatment was considered the most effective at improving the shear bond strength between polyamide and chemical-cured resin.

  11. Aquatic Therapy Improves Outcomes for Subacute Stroke Patients by Enhancing Muscular Strength of Paretic Lower Limbs Without Increasing Spasticity: A Randomized Controlled Trial.

    PubMed

    Zhang, Yue; Wang, Yi-Zhao; Huang, Li-Ping; Bai, Bei; Zhou, Shi; Yin, Miao-Miao; Zhao, Hua; Zhou, Xiao-Na; Wang, Hong-Tu

    2016-11-01

    The aim of this study was to evaluate the effects of an aquatic exercise program designed to enhance muscular strength in paretic lower limbs in subacute stroke patients. Thirty-six subacute stroke patients were randomly divided to a conventional or an aquatic group (n = 18 each). Outcome measures were assessed at baseline and after 8 wks of training. For the paretic lower limbs, maximum isometric voluntary contraction strength of the rectus femoris and biceps femoris caput longus and the tibialis anterior and lateral gastrocnemius was measured. Cocontraction ratios during knee extension and flexion and ankle dorsiflexion and plantarflexion were calculated respectively. In addition, Modified Ashworth Scale, Functional Ambulation Category, and Barthel Index were assessed. Compared with the conventional intervention, the aquatic intervention resulted in significantly higher knee extension (P = 0.002) and ankle plantarflexion torque (P = 0.002), accompanied with a significantly lower knee extension cocontraction ratio in the paretic limb (P = 0.000). Functional Ambulation Category (P = 0.009) and Barthel Index (P = 0.024) were greater in aquatic group than conventional group posttreatment. Modified Ashworth Scale scores did not show any differences between groups. Aquatic exercise enhanced muscle strength in paretic lower limbs and improved muscle cocontraction without increasing spasticity in subacute stroke patients.

  12. Does extensive on-water rowing increase muscular strength and endurance?

    PubMed

    Lawton, Trent W; Cronin, John B; McGuigan, Mike R

    2012-01-01

    The purpose of this study was to compare changes in aerobic condition, strength, and muscular endurance following 8 weeks of endurance rowing alone or in combination with weight-training. Twenty-two elite rowers were assigned to (1) rowing (n = 10, 250-270 km · week⁻¹) or (2) rowing (n = 12, 190-210 km · week⁻¹) plus four weight-training sessions each week. Pre and post mean and standardized effect-size (ES) differences in aerobic condition (watts at 4 mmol · L⁻¹) and strength (isometric pull, N), prone bench-pull (6-repetition maximum, 6-RM), 5- and 30-repetition leg-press and 60-repetition seated-arm-pull (J, performed on a dynamometer) normalized by body mass and log-transformed were analysed, after adjusting for gender. The standardized differences between groups were trivial for aerobic condition (ES [±90% CI] = 0.15; ±0.28, P = 0.37) and prone bench-pull (ES = 0.27; ±0.33, P = 0.18), although a moderate positive benefit in favour of rowing only was observed for the seated-arm-pull (ES = 0.42; ±0.4, P = 0.08). Only the weight-training group improved isometric pull (12.4 ± 8.9%, P < 0.01), 5-repetition (4.0 ± 5.7%, P < 0.01) and 30-repetition (2.4 ± 5.4%, P < 0.01) leg-press. In conclusion, while gains in aerobic condition and upper-body strength were comparable to extensive endurance rowing, weight-training led to moderately greater lower-body muscular-endurance and strength gains.

  13. Heavyweight cement concrete with high stability of strength parameters

    NASA Astrophysics Data System (ADS)

    Kudyakov, Konstantin; Nevsky, Andrey; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The present paper establishes regularities of basalt fibers distribution in movable cement concrete mixes under different conditions of their preparation and their selective introduction into mixer during the mixing process. The optimum content of basalt fibers was defined as 0.5% of the cement weight, which provides a uniform distribution of fibers in the concrete volume. It allows increasing compressive strength up to 51.2% and increasing tensile strength up to 28.8%. Micro-structural analysis identified new formations on the surface of basalt fibers, which indicates the good adhesion of hardened cement paste to the fibers. Stability of concrete strength parameters has significantly increased with introduction of basalt fibers into concrete mix.

  14. [Significance of physical training on prevention in elderly patients].

    PubMed

    Baum, K

    2002-07-01

    The loss of strength, coordination, endurance, and flexibility with increasing age is only partly due to the aging process itself. A major factor is physical activity, i.e. the influence of implicit or explicit training stimuli. All elements of physical performance can be improved through training even in the very old, if the intensity and frequency of training are adequate. For the elderly, strength and coordination are particularly important elements of training since they constitute a prerequisite for an independent way of living. To minimize the cardiovascular risks during strength training, we developed and tested a new method which leads to significantly smaller increases in blood pressure than conventional approaches.

  15. Accelerated Strength Testing of Thermoplastic Composites

    NASA Technical Reports Server (NTRS)

    Reeder, J. R.; Allen, D. H.; Bradley, W. L.

    1998-01-01

    Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.

  16. Adaptive significance of small body size: strength and motor performance of school children in Mexico and Papua New Guinea.

    PubMed

    Malina, R M; Little, B B; Shoup, R F; Buschang, P H

    1987-08-01

    The postulated superior functional efficiency in association with reduced body size under conditions of chronic protein-energy undernutrition was considered in school children from rural Mexico and coastal Papua New Guinea. Grip strength and three measures of motor performance were measured in cross-sectional samples of children 6-16 years of age from a rural agricultural community in Oaxaca, Mexico, and from the coastal community Pere on Manus Island, Papua New Guinea. The strength and performance of a mixed-longitudinal sample of well nourished children from Philadelphia was used as a reference. The Oaxaca and Pere children are significantly shorter and lighter and are not as strong as the well nourished children. Motor performances of Pere children compare favorably to those of the better-nourished Philadelphia children, whereas those of the Oaxaca children are poorer. Throwing performance is more variable. When expressed relative to body size, strength is similar in the three samples, but the running and jumping performances of Pere children per unit body size are better than the relative performances of Oaxaca and Philadelphia children. Throwing performance per unit body size is better in the undernourished children. The influence of age, stature, and weight on the performance of Oaxaca and Pere children is generally similar to that for well nourished children. These results suggest that the hypothesized adaptive significance of small body size for the functional efficiency of populations living under conditions of chronic undernutrition varies between populations and with performance tasks.

  17. Medium-Chain Triglycerides in Combination with Leucine and Vitamin D Increase Muscle Strength and Function in Frail Elderly Adults in a Randomized Controlled Trial.

    PubMed

    Abe, Sakiko; Ezaki, Osamu; Suzuki, Motohisa

    2016-05-01

    Sarcopenia, the loss of skeletal muscle mass, strength, and function, is common in elderly individuals but difficult to treat. A combination of nutrients was investigated to treat sarcopenia in very frail elderly adults. We enrolled 38 elderly nursing home residents (11 men and 27 women with a mean ± SD age of 86.6 ± 4.8 y) in a 3-mo randomized, controlled, single-blind, parallel group trial. The participants were randomly allocated to 3 groups. The first group received a daily l-leucine (1.2 g) and cholecalciferol (20 μg)-enriched supplement with 6 g medium-chain triglycerides (TGs) (MCTs) (LD + MCT); the second group received the same leucine and cholecalciferol-enriched supplement with 6 g long-chain TGs (LD + LCT); and the third group did not receive any supplements (control). The supplement and oils were taken at dinner, and changes in muscle mass, strength, and function were monitored. The increase in body weight in the LD + MCT (1.1 ± 1.0 kg) and LD + LCT (0.8 ± 1.1 kg) groups was greater than that in the control group (-0.5 ± 0.9 kg) (P < 0.05). After 3 mo, participants in the LD + MCT group had a 13.1% increase in right-hand grip strength (1.2 ± 1.0 kg, P < 0.01), a 12.5% increase in walking speed (0.078 ± 0.080 m/s, P < 0.05), a 68.2% increase in a 10-s leg open-and-close test performance (2.31 ± 1.68 n/10 s, P < 0.001), and a 28.2% increase in peak expiratory flow (53 ± 59 L/min, P < 0.01). No significant improvements in muscle mass, strength, or function were observed in the LD + LCT or control groups. The combined supplementation of MCTs (6 g), leucine-rich amino acids, and cholecalciferol at dinner may improve muscle strength and function in frail elderly individuals. This trial was registered at the University Hospital Medical Information Network Clinical Trials Registry as UMIN000017567. © 2016 American Society for Nutrition.

  18. Resistance training is accompanied by increases in hip strength and changes in lower extremity biomechanics during running.

    PubMed

    Snyder, Kelli R; Earl, Jennifer E; O'Connor, Kristian M; Ebersole, Kyle T

    2009-01-01

    Movement and muscle activity of the hip have been shown to affect movement of the lower extremity, and been related to injury. The purpose of this study was to determine if increased hip strength affects lower extremity mechanics during running. Within subject, repeated measures design. Fifteen healthy women volunteered. Hip abduction and external rotation strength were measured using a hand-held dynamometer. Three-dimensional biomechanical data of the lower extremity were collected during running using a high-speed motion capture system. Measurements were made before, at the mid-point, and after a 6-week strengthening program using closed-chain hip rotation exercises. Joint range of motion (rearfoot eversion, knee abduction, hip adduction, and internal rotation), eversion velocity, eversion angle at heel strike, and peak joint moments (rearfoot inversion, knee abduction, hip abduction, and external rotation) were analyzed using repeated measures analysis of variance (P strength. Hip abduction (P=0.009) and external rotation strength (P<0.0005) increased by 13% and 23%, respectively. Eversion range of motion decreased (P=0.05), hip adduction range of motion increased (P=0.05), and a trend of decreased hip internal rotation range of motion (P=0.08) were found. Rearfoot inversion moment (P=0.02) and knee abduction moment (P=0.05) decreased by 57% and 10%, respectively. The hip abductors and external rotators were strengthened, leading to an alteration of lower extremity joint loading which may reduce injury risk. These exercises could be used in the rehabilitation, or prevention, of lower extremity injuries.

  19. The Immediate Effect of Neuromuscular Joint Facilitation (NJF) Treatment on Hip Muscle Strength.

    PubMed

    Wang, Hongdan; Huo, Ming; Huang, Qiuchen; Li, Desheng; Maruyama, Hitoshi

    2013-11-01

    [Purpose] This study investigated the change in hip muscle strength of younger persons after neuromuscular joint facilitation (NJF) treatment. [Subjects] The subjects were 45 healthy young people, who were divided into two groups: a NJF group and a proprioceptive neuromuscular facilitation (PNF) group. The NJF group consisted of 21 subjects (11 males, 10 females), and the PNF group consisted of 24 subjects (11 males, 13 females). [Methods] Participants in the NJF group received NJF treatment. We measured the maximal flexor strength and the maximal extensor strength during isokinetic movement of the hip joint before and after intervention in both groups. The angular velocities used were 60°/sec and 180°/sec. [Results] The NJF group showed significant increases in the maximal flexor strength and the maximal extensor strength after the intervention at each angular velocity. In the PNF group, the maximal flexor strength of 60°/sec and the maximal extensor strength of 180°/sec were significant increases. [Conclusion] These results suggest that there is an immediate effect of NJF intervention on hip muscle strength.

  20. Sources of strength-training information and strength-training behavior among Japanese older adults.

    PubMed

    Harada, Kazuhiro; Shibata, Ai; Lee, Euna; Oka, Koichiro; Nakamura, Yoshio

    2016-03-01

    The promotion of strength training is now recognized as an important component of public health initiatives for older adults. To develop successful communication strategies to increase strength-training behavior among older adults, the identification of effective communication channels to reach older adults is necessary. This study aimed to identify the information sources about strength training that were associated with strength-training behaviors among Japanese older adults. The participants were 1144 adults (60-74 years old) randomly sampled from the registry of residential addresses. A cross-sectional questionnaire survey was conducted. The independent variables were sources of strength-training information (healthcare providers, friends, families, radio, television, newspapers, newsletters, posters, books, magazines, booklets, the Internet, lectures, other sources), and the dependent variable was regular strength-training behavior. Logistic regression analysis was used to identify potential relationships. After adjusting for demographic factors and all other information sources, strength-training information from healthcare providers, friends, books and the Internet were positively related to regular strength-training behavior. The findings of the present study contribute to a better understanding of strength-training behavior and the means of successful communication directed at increasing strength training among older adults. The results suggest that healthcare providers, friends, books and the Internet are effective methods of communication for increasing strength-training behaviors among older adults. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Elbow isokinetic strength characteristics among collegiate baseball players.

    PubMed

    Laudner, Kevin G; Wilson, James T; Meister, Keith

    2012-05-01

    To compare the bilateral strength characteristics of the wrist flexors, extensors, pronators, and supinators among baseball players. Cross-sectional. Laboratory. 30 collegiate baseball players with no recent history of upper extremity injury. Bilateral pronation, supination, wrist flexion, and wrist extension peak torque (PT) and peak torque to body weight (PT/BW) strength were measured at speeds of 90 and 180°/second. Paired t-tests showed that the throwing arm of baseball players produced significantly less PT/BW strength for supination at 90°/second compared to the non-throwing arm (P = .001). The throwing arm produced significantly more PT/BW strength for pronation (P = .001) at 180°/second compared to the non-throwing arm. Furthermore, the throwing arm had more PT and PT/BW strength for wrist extension (P < .005) at 180°/second. Conversely, the throwing arm had less PT and PT/BW strength for supination (P < .004) and wrist flexion (P < .004) at 180°/second compared to the non-throwing arm. Significant bilateral strength differences exist in pronation, supination, wrist flexion, and wrist extension among collegiate baseball players. With the steady increase in ulnar collateral ligament injuries of the elbow among baseball players and the proven resistance to valgus force provided by the flexor-pronator mass of the elbow, the results of this study may prove beneficial in the prevention, evaluation, and rehabilitation of such dysfunctions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Effects of Strength Training Combined with Specific Plyometric exercises on body composition, vertical jump height and lower limb strength development in elite male handball players: a case study.

    PubMed

    Carvalho, Alberto; Mourão, Paulo; Abade, Eduardo

    2014-06-28

    The purpose of the present study was to identify the effects of a strength training program combined with specific plyometric exercises on body composition, vertical jump (VJ) height and strength development of lower limbs in elite male handball players. A 12-week program with combined strength and specific plyometric exercises was carried out for 7 weeks. Twelve elite male handball players (age: 21.6 ± 1.73) competing in the Portuguese Major League participated in the study. Besides the anthropometric measurements, several standardized jump tests were applied to assess VJ performance together with the strength development of the lower limbs in an isokinetic setting. No significant changes were found in body circumferences and diameters. Body fat content and fat mass decreased by 16.4 and 15.7% respectively, while lean body mass increased by 2.1%. Despite small significance, there was in fact an increase in squat jump (SJ), counter movement jump (CMJ) and 40 consecutive jumps after the training period (6.1, 3.8 and 6.8%, respectively). After the applied protocol, peak torque increased in lower limb extension and flexion in the majority of the movements assessed at 90ºs-1. Consequently, it is possible to conclude that combining general strength-training with plyometric exercises can not only increase lower limb strength and improve VJ performance but also reduce body fat content.

  3. Effects of Strength Training Combined with Specific Plyometric exercises on body composition, vertical jump height and lower limb strength development in elite male handball players: a case study

    PubMed Central

    Carvalho, Alberto; Mourão, Paulo; Abade, Eduardo

    2014-01-01

    The purpose of the present study was to identify the effects of a strength training program combined with specific plyometric exercises on body composition, vertical jump (VJ) height and strength development of lower limbs in elite male handball players. A 12-week program with combined strength and specific plyometric exercises was carried out for 7 weeks. Twelve elite male handball players (age: 21.6 ± 1.73) competing in the Portuguese Major League participated in the study. Besides the anthropometric measurements, several standardized jump tests were applied to assess VJ performance together with the strength development of the lower limbs in an isokinetic setting. No significant changes were found in body circumferences and diameters. Body fat content and fat mass decreased by 16.4 and 15.7% respectively, while lean body mass increased by 2.1%. Despite small significance, there was in fact an increase in squat jump (SJ), counter movement jump (CMJ) and 40 consecutive jumps after the training period (6.1, 3.8 and 6.8%, respectively). After the applied protocol, peak torque increased in lower limb extension and flexion in the majority of the movements assessed at 90ºs-1. Consequently, it is possible to conclude that combining general strength-training with plyometric exercises can not only increase lower limb strength and improve VJ performance but also reduce body fat content. PMID:25114739

  4. Compressive and flexural strength of high strength phase change mortar

    NASA Astrophysics Data System (ADS)

    Qiao, Qingyao; Fang, Changle

    2018-04-01

    High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.

  5. Quadriceps muscle strength and voluntary activation after polio.

    PubMed

    Beelen, Anita; Nollet, Frans; de Visser, Marianne; de Jong, Bareld A; Lankhorst, Gustaaf J; Sargeant, Anthony J

    2003-08-01

    Quadriceps strength, maximal anatomical cross-sectional area (CSA), maximal voluntary activation (MVA), and maximal relaxation rate (MRR) were studied in 48 subjects with a past history of polio, 26 with and 22 without postpoliomyelitis syndrome (PPS), and in 13 control subjects. It was also investigated whether, apart from CSA, MVA and MRR were determinants of muscle strength. Polio subjects had significantly less strength, CSA, and MRR in the more-affected quadriceps than control subjects. MVA was reduced in 18 polio subjects and normal in all controls. PPS subjects differed from non-PPS subjects only in that the MVA of the more-affected quadriceps was significantly lower. Both CSA and MVA were found to be associated with muscle strength. Quadriceps strength in polio subjects was dependent not only on muscle mass, but also on the ability to activate the muscles. Since impaired activation was more pronounced in PPS subjects, the new muscle weakness and functional decline in PPS may be due not only to a gradual loss of muscle fibers, but also to an increasing inability to activate the muscles.

  6. Vaccine to fibroblast growth factor 23 peptides increases eggshell strength.

    PubMed

    Ren, Z Z; Piepenburg, A J; Bütz, D E; Claus, J R; Cook, M E

    2018-03-01

    Strategies that would increase eggshell quality could be of considerable value to egg producers. This research demonstrated the effective use of fibroblast growth factor 23 (FGF-23) peptide vaccines to increase eggshell quality of Single Comb White Leghorn laying hens (from 69 to 72 wk of age). Hens, fed a standard diet (containing 900 IU/kg vitamin D3), were intramuscularly injected (and boosted) with either a control vaccine (n = 14 hens) or one of 2 FGF-23 peptide vaccines (peptides NP1, GMNPPPYS; and NP7, YTSTERNSFH; n = 15 hens for each peptide). During peak antibody titer, eggs were collected for shell and internal quality analysis, hens were artificially inseminated, and the hatchability of fertilized eggs was determined. Laying hens vaccinated with either FGF-23 peptide NP1 or NP7 had increased (P < 0.05) plasma phosphate level (mmol/L; NP1 = 1.74, NP7 = 1.76, control = 1.47), egg specific gravity (NP1 = 1.083, NP7 = 1.083, control = 1.079), and eggshell strength (g of force; NP1 = 4002, NP7 = 4157, control = 3102) when compared to control vaccinated hens. FGF-23 peptide NP1 vaccinated hens also had increased eggshell thickness (mm, P < 0.001), shell weight (g, P = 0.032), and shell index (% of whole egg, P = 0.023) when compared to control vaccinated hens. FGF-23 peptide NP7 vaccinated hens tended to have decreased eggshell weight (P = 0.064) when compared to control vaccinated hens. Hatchability of fertilized eggs was not affected in incubations 1 and 3, but tended to be decreased (P = 0.097) by FGF-23 peptide NP1 vaccination in incubation 2. In conclusion, vaccines to FGF-23 peptides increased eggshell quality of laying hens with minimal adverse effects on egg internal quality. The effect of FGF-23 peptide vaccination on hatchability remains to be clarified.

  7. Associations of Grip Strength and Change in Grip Strength With All-Cause and Cardiovascular Mortality in a European Older Population

    PubMed Central

    Prasitsiriphon, Orawan; Pothisiri, Wiraporn

    2018-01-01

    Objective: (1) To examine the associations between 3 measures of grip strength: static grip strength, change in grip strength, and the combination of grip strength and its change, with all-cause and cardiovascular mortality, and (2) to determine which measure is the most powerful predictor of all-cause and cardiovascular mortality among the European older population. Method: Data come from the first 4 waves of the Survey of Health, Ageing and Retirement in Europe (SHARE). A Cox proportional hazard model and a competing risk regression model were used to assess the associations. To determine the best predictor, Akaike information criterion was applied. Results: Grip strength and the combination of grip strength and its change were associated with all-cause and cardiovascular mortality. Change in grip strength was correlated with only all-cause mortality. Among the 3 measures, the static measure of grip strength was the best predictor of cardiovascular mortality whereas the combined measure is that of all-cause mortality. Discussion: Grip strength is a significant indicator of all-cause and cardiovascular mortality. The combination of grip strength and its change can be used to increase the accuracy for prediction of all-cause mortality among older persons.

  8. CL316,243, a β3-adrenergic receptor agonist, induces muscle hypertrophy and increased strength.

    PubMed

    Puzzo, Daniela; Raiteri, Roberto; Castaldo, Clotilde; Capasso, Raffaele; Pagano, Ester; Tedesco, Mariateresa; Gulisano, Walter; Drozd, Lisaveta; Lippiello, Pellegrino; Palmeri, Agostino; Scotto, Pietro; Miniaci, Maria Concetta

    2016-11-22

    Studies in vitro have demonstrated that β3-adrenergic receptors (β3-ARs) regulate protein metabolism in skeletal muscle by promoting protein synthesis and inhibiting protein degradation. In this study, we evaluated whether activation of β3-ARs by the selective agonist CL316,243 modifies the functional and structural properties of skeletal muscles of healthy mice. Daily injections of CL316,243 for 15 days resulted in a significant improvement in muscle force production, assessed by grip strength and weight tests, and an increased myofiber cross-sectional area, indicative of muscle hypertrophy. In addition, atomic force microscopy revealed a significant effect of CL316,243 on the transversal stiffness of isolated muscle fibers. Interestingly, the expression level of mammalian target of rapamycin (mTOR) downstream targets and neuronal nitric oxide synthase (NOS) was also found to be enhanced in tibialis anterior and soleus muscles of CL316,243 treated mice, in accordance with previous data linking β3-ARs to mTOR and NOS signaling pathways. In conclusion, our data suggest that CL316,243 systemic administration might be a novel therapeutic strategy worthy of further investigations in conditions of muscle wasting and weakness associated with aging and muscular diseases.

  9. Strength training increases the size of the satellite cell pool in type I and II fibres of chronically painful trapezius muscle in females.

    PubMed

    Mackey, Abigail L; Andersen, Lars L; Frandsen, Ulrik; Sjøgaard, Gisela

    2011-11-15

    While strength training has been shown to be effective in mediating hypertrophy and reducing pain in trapezius myalgia, responses at the cellular level have not previously been studied. This study investigated the potential of strength training targeting the affected muscles (SST, n = 18) and general fitness training (GFT, n = 16) to augment the satellite cell (SC) and macrophage pools in the trapezius muscles of women diagnosed with trapezius myalgia. A group receiving general health information (REF, n = 8) served as a control. Muscle biopsies were collected from the trapezius muscles of the 42 women (age 44 ± 8 years; mean ± SD) before and after the 10 week intervention period and were analysed by immunohistochemistry for SCs, macrophages and myonuclei. The SC content of type I and II fibres was observed to increase significantly from baseline by 65% and 164%, respectively, with SST (P < 0.0001), together with a significant correlation between the baseline number of SCs and the extent of hypertrophy (r = -0.669, P = 0.005). SST also resulted in a 74% enhancement of the trapezius macrophage content (P < 0.01), accompanied by evidence for the presence of an increased number of actively dividing cells (Ki67(+)) post-SST (P < 0.001). GFT resulted in a significant 23% increase in the SC content of type II fibres, when expressed relative to myonuclear number only (P < 0.05). No changes in the number of myonuclei per fibre or myonuclear domain were detected in any group. These findings provide strong support at the cellular level for the potential of SST to induce a strong myogenic response in this population.

  10. The strength of negative plant-soil feedback increases from the intraspecific to the interspecific and the functional group level.

    PubMed

    Bukowski, Alexandra R; Schittko, Conrad; Petermann, Jana S

    2018-02-01

    One of the processes that may play a key role in plant species coexistence and ecosystem functioning is plant-soil feedback, the effect of plants on associated soil communities and the resulting feedback on plant performance. Plant-soil feedback at the interspecific level (comparing growth on own soil with growth on soil from different species) has been studied extensively, while plant-soil feedback at the intraspecific level (comparing growth on own soil with growth on soil from different accessions within a species) has only recently gained attention. Very few studies have investigated the direction and strength of feedback among different taxonomic levels, and initial results have been inconclusive, discussing phylogeny, and morphology as possible determinants. To test our hypotheses that the strength of negative feedback on plant performance increases with increasing taxonomic level and that this relationship is explained by morphological similarities, we conducted a greenhouse experiment using species assigned to three taxonomic levels (intraspecific, interspecific, and functional group level). We measured certain fitness-related aboveground traits and used them along literature-derived traits to determine the influence of morphological similarities on the strength and direction of the feedback. We found that the average strength of negative feedback increased from the intraspecific over the interspecific to the functional group level. However, individual accessions and species differed in the direction and strength of the feedback. None of our results could be explained by morphological dissimilarities or individual traits. Synthesis . Our results indicate that negative plant-soil feedback is stronger if the involved plants belong to more distantly related species. We conclude that the taxonomic level is an important factor in the maintenance of plant coexistence with plant-soil feedback as a potential stabilizing mechanism and should be addressed explicitly

  11. Evaluation and comparison of transverse and impact strength of different high strength denture base resins.

    PubMed

    Gupta, Abhinav; Tewari, R K

    2016-01-01

    The present study was undertaken to evaluate and compare the impact strength and transverse strength of the high-impact denture base materials. A conventional heat polymerized acrylic resin was used as a control. The entire experiment was divided into four main groups with twenty specimens each according to denture base material selected Trevalon, Trevalon Hi, DPI Tuff and Metrocryl Hi. These groups were further subgrouped into the two parameters selected, impact strength and flexural strength with ten specimens each. These specimens were then subjected to transverse bend tests with the help of Lloyds instrument using a three point bend principle. Impact tests were undertaken using an Izod-Charpy digital impact tester. This study was analyzed with one-way analysis of variance using Fisher f-test and Bonferroni t-test. There was a significant improvement in the impact strength of high-impact denture base resins as compared to control (Trevalon). However, in terms of transverse bend tests, only DPI Tuff showed higher transverse strength in comparison to control. Trevalon Hi and Metrocryl Hi showed a decrease in transverse strength. Within the limits of this in vitro study, (1) There is a definite increase in impact strength due to the incorporation of butadiene styrene rubber in this high strength denture base materials as compared to Trevalon used as a control. (2) Further investigations are required to prevent the unduly decrease of transverse strength. (3) It was the limitation of the study that the exact composition of the high-impact resins was not disclosed by the manufacturer that would have helped in better understanding of their behavior.

  12. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

  13. Early age strength increase of fly ash blended cement by a ternary hardening accelerating admixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Kien; Justnes, Harald; SINTEF Building and Infrastructure

    The applicability of a combination of sodium thiocyanate (NaSCN), diethanolamine (DEA) and glycerol (Gly) with small dosages as a ternary hardening accelerating admixture for fly ash blended cement (OPC-FA) was studied. The ternary admixture induced higher early and later age mortar strength at both low (5 °C) and normal (20 °C) temperature. Despite used in lower dosage the ternary admixture led to higher strength of the investigated OPC-FA system than other chemicals (e.g. sodium sulfate). Results obtained from isothermal calorimetry, thermogravimetric analysis (TGA) and X-ray diffraction (XRD) showed that the ternary admixture accelerated the cement hydration and increased the amountmore » of AFm (notably calcium hemicarboaluminate hydrate) in the hydration products. A synergistic effect between the three components of the accelerator on the hydration of OPC-FA system was observed.« less

  14. Strength and muscle mass loss with aging process. Age and strength loss.

    PubMed

    Keller, Karsten; Engelhardt, Martin

    2013-10-01

    aging process is associated with changes in muscle mass and strength with decline of muscle strength after the 30(th) life year. The aim of this study was to investigate these changes in muscle mass and strength. for this analysis 26 participants were subdivided in two groups. Group 1 comprises participants aged <40 years (n=14), group 2 those >40 years (n=12). We assessed anthropometrics, range of motions, leg circumferences and isometric strength values of the knee joints. besides comparable anthropometrics, circumferences and strength were higher in group 1 than in group 2. Circumference of upper leg (20 cm above knee articular space) showed for right leg a trend to a significant (median: 54.45 cm (1(st) quartile: 49.35/3(rd) quartile: 57.78) vs 49.80 cm (49.50/50.75), p=0.0526) and for left leg a significant 54.30 cm (49.28/58.13) vs 49.50 cm (48.00/52.53), p=0.0356) larger circumference in group 1. Isometric strength was in 60° knee flexion significantly higher in group 1 than in group 2 for right (729.88N (561.47/862.13) vs 456.92N (304.67/560.12), p=0.00448) and left leg (702.49N (581.36/983.87) vs 528.49N (332.95/648.58), p=0.0234). aging process leads to distinct muscle mass and strength loss. Muscle strength declines from people aged <40 years to those >40 years between 16.6% and 40.9%.

  15. Effects of a Modified German Volume Training Program on Muscular Hypertrophy and Strength.

    PubMed

    Amirthalingam, Theban; Mavros, Yorgi; Wilson, Guy C; Clarke, Jillian L; Mitchell, Lachlan; Hackett, Daniel A

    2017-11-01

    Amirthalingam, T, Mavros, Y, Wilson, GC, Clarke, JL, Mitchell, L, and Hackett, DA. Effects of a modified German volume training program on muscular hypertrophy and strength. J Strength Cond Res 31(11): 3109-3119, 2017-German Volume Training (GVT), or the 10 sets method, has been used for decades by weightlifters to increase muscle mass. To date, no study has directly examined the training adaptations after GVT. The purpose of this study was to investigate the effect of a modified GVT intervention on muscular hypertrophy and strength. Nineteen healthy men were randomly assign to 6 weeks of 10 or 5 sets of 10 repetitions for specific compound resistance exercises included in a split routine performed 3 times per week. Total and regional lean body mass, muscle thickness, and muscle strength were measured before and after the training program. Across groups, there were significant increases in lean body mass measures, however, greater increases in trunk (p = 0.043; effect size [ES] = -0.21) and arm (p = 0.083; ES = -0.25) lean body mass favored the 5-SET group. No significant increases were found for leg lean body mass or measures of muscle thickness across groups. Significant increases were found across groups for muscular strength, with greater increases in the 5-SET group for bench press (p = 0.014; ES = -0.43) and lat pull-down (p = 0.003; ES = -0.54). It seems that the modified GVT program is no more effective than performing 5 sets per exercise for increasing muscle hypertrophy and strength. To maximize hypertrophic training effects, it is recommended that 4-6 sets per exercise be performed, as it seems gains will plateau beyond this set range and may even regress due to overtraining.

  16. Mixed maximal and explosive strength training in recreational endurance runners.

    PubMed

    Taipale, Ritva S; Mikkola, Jussi; Salo, Tiina; Hokka, Laura; Vesterinen, Ville; Kraemer, William J; Nummela, Ari; Häkkinen, Keijo

    2014-03-01

    Supervised periodized mixed maximal and explosive strength training added to endurance training in recreational endurance runners was examined during an 8-week intervention preceded by an 8-week preparatory strength training period. Thirty-four subjects (21-45 years) were divided into experimental groups: men (M, n = 9), women (W, n = 9), and control groups: men (MC, n = 7), women (WC, n = 9). The experimental groups performed mixed maximal and explosive exercises, whereas control subjects performed circuit training with body weight. Endurance training included running at an intensity below lactate threshold. Strength, power, endurance performance characteristics, and hormones were monitored throughout the study. Significance was set at p ≤ 0.05. Increases were observed in both experimental groups that were more systematic than in the control groups in explosive strength (12 and 13% in men and women, respectively), muscle activation, maximal strength (6 and 13%), and peak running speed (14.9 ± 1.2 to 15.6 ± 1.2 and 12.9 ± 0.9 to 13.5 ± 0.8 km Ł h). The control groups showed significant improvements in maximal and explosive strength, but Speak increased only in MC. Submaximal running characteristics (blood lactate and heart rate) improved in all groups. Serum hormones fluctuated significantly in men (testosterone) and in women (thyroid stimulating hormone) but returned to baseline by the end of the study. Mixed strength training combined with endurance training may be more effective than circuit training in recreational endurance runners to benefit overall fitness that may be important for other adaptive processes and larger training loads associated with, e.g., marathon training.

  17. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    PubMed

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair

  18. Increase of tensile strength and toughness of bio-based diglycidyl ether of bisphenol A with chitin nanowhiskers

    PubMed Central

    Wang, Mian; Xue, Han; Feng, Zhiwei; Cheng, Binfeng; Yang, Haijie

    2017-01-01

    It is challenging to reinforce and toughen thermoset epoxy resins. We describe a slurry-compounding technique to transfer a uniform dispersion of chitin nanowhiskers (CW) in ethanol into an epoxy matrix. The incorporation of the hydrophilic CW reinforces the oil-soluble diglycidyl ether of bisphenol A (DGEBA). The resultant CW/epoxy bionanocomposites were transparent and showed considerably enhanced thermal and mechanical properties with tensile strength, modulus, toughness, and elongation at break being increased by 49%, 16%, 457%, and 250%, with only 2.5 wt.% CW. This improvement in strength and toughness is rare for thermoset epoxy/rigid nanofiller systems. We hypothesize that CW with many free amine groups could function not only as a nanofiller but also as a macromolecular polyamine hardener that participates in epoxy curing. The strong covalent interaction between the filler and the matrix allowed for efficient load transfer across the interfaces, which accounted for the greater strength and toughness. PMID:28604774

  19. Increase of tensile strength and toughness of bio-based diglycidyl ether of bisphenol A with chitin nanowhiskers.

    PubMed

    Wang, Mian; Xue, Han; Feng, Zhiwei; Cheng, Binfeng; Yang, Haijie

    2017-01-01

    It is challenging to reinforce and toughen thermoset epoxy resins. We describe a slurry-compounding technique to transfer a uniform dispersion of chitin nanowhiskers (CW) in ethanol into an epoxy matrix. The incorporation of the hydrophilic CW reinforces the oil-soluble diglycidyl ether of bisphenol A (DGEBA). The resultant CW/epoxy bionanocomposites were transparent and showed considerably enhanced thermal and mechanical properties with tensile strength, modulus, toughness, and elongation at break being increased by 49%, 16%, 457%, and 250%, with only 2.5 wt.% CW. This improvement in strength and toughness is rare for thermoset epoxy/rigid nanofiller systems. We hypothesize that CW with many free amine groups could function not only as a nanofiller but also as a macromolecular polyamine hardener that participates in epoxy curing. The strong covalent interaction between the filler and the matrix allowed for efficient load transfer across the interfaces, which accounted for the greater strength and toughness.

  20. Preventive strength training improves working ergonomics during welding.

    PubMed

    Krüger, Karsten; Petermann, Carmen; Pilat, Christian; Schubert, Emil; Pons-Kühnemann, Jörn; Mooren, Frank C

    2015-01-01

    To investigate the effect of a preventive strength training program on cardiovascular, metabolic and muscular strains during welding. Welders are one of the occupation groups which typically have to work in extended forced postures which are known to be an important reason for musculoskeletal disorders. Subjects (exercise group) accomplished a 12-week strength training program, while another group served as controls (control group). Pre and post training examinations included the measurements of the one repetition maximum and an experimental welding test. Local muscle activities were analysed by surface electromyography. Furthermore, heart rate, blood pressure, lactate and rating of perceived exertion were examined. In the exercise group, strength training lead to a significant increase of one repetition maximum in all examined muscles (p<.05). During the experimental welding test muscle activities of trunk and shoulder muscles and arm muscles were significantly reduced in the exercise group after intervention (p<.05). While no changes of neither cardiovascular nor metabolic parameters were found, subjects of the exercise group rated a significantly decreased rate of perceived exertion welding (p<.05). Effects of strength training can be translated in an improved working ergonomics and tolerance against the exposure to high physical demands at work.

  1. Significance of acceleration period in a dynamic strength testing study.

    PubMed

    Chen, W L; Su, F C; Chou, Y L

    1994-06-01

    The acceleration period that occurs during isokinetic tests may provide valuable information regarding neuromuscular readiness to produce maximal contraction. The purpose of this study was to collect the normative data of acceleration time during isokinetic knee testing, to calculate the acceleration work (Wacc), and to determine the errors (ERexp, ERwork, ERpower) due to ignoring Wacc during explosiveness, total work, and average power measurements. Seven male and 13 female subjects attended the test by using the Cybex 325 system and electronic stroboscope machine for 10 testing speeds (30-300 degrees/sec). A three-way ANOVA was used to assess gender, direction, and speed factors on acceleration time, Wacc, and errors. The results indicated that acceleration time was significantly affected by speed and direction; Wacc and ERexp by speed, direction, and gender; and ERwork and ERpower by speed and gender. The errors appeared to increase when testing the female subjects, during the knee flexion test, or when speed increased. To increase validity in clinical testing, it is important to consider the acceleration phase effect, especially in higher velocity isokinetic testing or for weaker muscle groups.

  2. Fatigue strength of socket welded pipe joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higuchi, Makoto; Hayashi, Makoto; Yamauchi, Takayoshi

    1995-12-01

    Fully reversed four point bending fatigue tests were carried out on small diameter socket welded joints made of carbon steels. Experimental parameters were pipe diameter, thicknesses of pipe and socket wall, throat depth and shape of fillet welds, slip-on and diametral gaps in the socket welding, lack of penetration at the root of fillet welds, and peening of fillet welds. In most cases a fatigue crack started from the root of the fillet, but in the case of higher stress amplitude, it tended to start from the toe of fillet. The standard socket welded joint for a pipe with amore » 50 mm nominal diameter showed a relatively low fatigue strength of 46 MPa in stress amplitude at the 10{sup 7} cycles failure life. This value corresponds to about 1/5 of that for the smoothed base metal specimens in axial fatigue. The fatigue strength decreased with increasing pipe diameter, and increased with increasing thickness of the pipe and socket wall. The effects of throat depth and shape of fillet welds on fatigue strength were not significant. Contrary to expectation, the fatigue strength of a socket welded joint without slip-on gap is Higher than that of the joint with a normal gap. A lack of penetration at the root deleteriously reduced fatigue strength, showing 14 MPa in stress amplitude at the 10{sup 7} cycles failure life for the 50 mm diameter socket joint.« less

  3. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-10-28

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

  4. The strength of polyaxial locking interfaces of distal radius plates.

    PubMed

    Hoffmeier, Konrad L; Hofmann, Gunther O; Mückley, Thomas

    2009-10-01

    Currently available polyaxial locking plates represent the consequent enhancement of fixed-angle, first-generation locking plates. In contrast to fixed-angle locking plates which are sufficiently investigated, the strength of the new polyaxial locking options has not yet been evaluated biomechanically. This study investigates the mechanical strength of single polyaxial interfaces of different volar radius plates. Single screw-plate interfaces of the implants Palmar 2.7 (Königsee Implantate und Instrumente zur Osteosynthese GmbH, Allendorf, Germany), VariAx (Stryker Leibinger GmbH & Co. KG, Freiburg, Germany) und Viper (Integra LifeSciences Corporation, Plainsboro, NJ, USA) were tested by cantilever bending. The strength of 0 degrees, 10 degrees and 20 degrees screw locking angle was obtained during static and dynamic loading. The Palmar 2.7 interfaces showed greater ultimate strength and fatigue strength than the interfaces of the other implants. The strength of the VariAx interfaces was about 60% of Palmar 2.7 in both, static and dynamic loading. No dynamic testing was applied to the Viper plate because of its low ultimate strength. By static loading, an increase in screw locking angle caused a reduction of strength for the Palmar 2.7 and Viper locking interfaces. No influence was observed for the VariAx locking interfaces. During dynamic loading; angulation had no influence on the locking strength of Palmar 2.7. However, reduction of locking strength with increasing screw angulation was observed for VariAx. The strength of the polyaxial locking interfaces differs remarkably between the examined implants. Depending on the implant an increase of the screw locking angle causes a reduction of ultimate or fatigue strength, but not in all cases a significant impact was observed.

  5. Strength changes induced by extreme dieting and exercise in severely obese females.

    PubMed

    Pronk, N P; Donnelly, J E; Pronk, S J

    1992-04-01

    Strength changes, induced by very low-calorie diet (VLCD, 520 kcal/day) alone and in combination with exercise, were determined in 109 severely obese females (46.8 +/- 4.69% fat). Experimental treatments included VLCD alone (LC, n = 40), VLCD with endurance exercise (EE, n = 23), VLCD with endurance exercise and resistance strength training (EERST, n = 23), and VLCD with resistance strength training (RST, n = 23). All subjects participated in the study for 90 days while EE, EERST, and RST exercised four times/week according to specified schedules. Results indicated significant differences for the change scores (baseline to 90 days) for bench press, knee flexion, upper body and lower body composite strength scores between RST and all other groups. RST was the only treatment that increased upper and lower body strength. No differences between groups were found for body mass losses, decrease in percent fat and fat mass. In contrast, these variables showed significant change scores for all groups. Decreases in fat-free mass (FFM) were 5.18 +/- 3.40 kg, 4.79 +/- 4.15 kg (p = 0.001), 4.64 +/- 4.23 kg, and 3.26 +/- 2.67 kg for EE, LC, RST, and EERST, respectively. These data suggest that the combination of resistance strength training and VLCD increases strength despite a loss of FFM. However, endurance exercise and VLCD do not seem to affect body mass loss or FFM loss per se. Moreover, it seems that these increases in strength may represent a training effect which might imply improved central neuromuscular function rather than muscular hypertrophy since FFM decreased in all groups.

  6. Doxycycline shows dose-dependent changes in hernia repair strength after mesh repair.

    PubMed

    Tharappel, Job C; Harris, Jennifer W; Zwischenberger, Brittany A; Levy, Salomon M; Puleo, David A; Roth, J Scott

    2016-05-01

    Ventral hernia is a commonly occurring surgical problem. Our earlier studies have shown that a 30 mg/kg dose of doxycycline can significantly impact the strength of polypropylene (PP) mesh in a rat hernia repair model at 6 and 12 weeks. The objective of the present study was to investigate the dose dependence of doxycycline treatment on hernia repair strengths in rats. Fifty-six Sprague-Dawley rats underwent hernia repair with either PP mesh (n = 28) or sutures only (primary; n = 28); both groups were further divided into four doxycycline groups of seven animals each: control (0 mg/kg), low (3 mg/kg), medium (10 mg/kg), and high (30 mg/kg). One day before hernia repair surgery, animals received doxycycline doses by gavage and continued receiving daily until euthanasia. After 8 weeks, rats were euthanized and tissue samples from hernia repaired area were collected and analyzed for tensile strength using a tensiometer (Instron, Canton, MA, USA), while MMPs 2, 3, and 9, and collagen type 1 and 3 were analyzed by western blotting. In mesh-repaired animals, medium and high doxycycline dose repaired mesh fascia interface (MFI) showed significant increase in tensile strength when compared to control. In the primary repaired animals, there was no significant difference in MFI tensile strength in any dose group. In medium-dose MFI, there was a significant reduction in MMPs 2, 3, and 9. In this animal group, MFI showed significant increase in collagen 1 and significant reduction in collagen type 3 when compared to control. It is possible to improve the strength of mesh-repaired tissue by administering a significantly lower dose of the drug, which has implications for translation of the findings.

  7. Different Patterns in Muscular Strength and Hypertrophy Adaptations in Untrained Individuals Undergoing Nonperiodized and Periodized Strength Regimens.

    PubMed

    De Souza, Eduardo O; Tricoli, Valmor; Rauch, Jacob; Alvarez, Michael R; Laurentino, Gilberto; Aihara, André Y; Cardoso, Fabiano N; Roschel, Hamilton; Ugrinowitsch, Carlos

    2018-05-01

    De Souza, EO, Tricoli, V, Rauch, J, Alvarez, MR, Laurentino, G, Aihara, AY, Cardoso, FN, Roschel, H, and Ugrinowitsch, C. Different patterns in muscular strength and hypertrophy adaptations in untrained individuals undergoing non-periodized and periodized strength regimens. J Strength Cond Res 32(5): 1238-1244, 2018-This study investigated the effects of nonperiodized (NP), traditional periodization (TP), and daily undulating periodization (UP) regimens on muscle strength and hypertrophy in untrained individuals. Thirty-three recreationally active males were randomly divided into 4 groups: NP: n = 8; TP: n = 9; UP: n = 8, and control group (C): n = 8. Experimental groups underwent a 12-week strength training program consisting of 2 sessions per week. Muscle strength and quadriceps cross-sectional area (QCSA) were assessed at baseline, 6 weeks (i.e., mid-point) and after 12 weeks. All training groups increased squat 1RM from pre to 6 weeks mid (NP: 17.02%, TP: 7.7%, and UP: 12.9%, p ≤ 0.002) and pre to post 12 weeks (NP: 19.5%, TP: 17.9%, and UP: 20.4%, p ≤ 0.0001). Traditional periodization was the only group that increased squat 1RM from 6 weeks mid to 12-week period (9.4%, p ≤ 0.008). All training groups increased QCSA from pre to 6 weeks mid (NP: 5.1%, TP: 4.6%, and UP: 5.3%, p ≤ 0.0006) and from pre to post 12 weeks (NP: 8.1%, TP: 11.3%, and UP: 8.7%, p ≤ 0.0001). From 6 weeks mid to 12-week period, TP and UP were the only groups that increased QCSA (6.4 and 3.7%, p ≤ 0.02). There were no significant changes for all dependent variables in C group across the time (p ≥ 0.05). In conclusion, our results demonstrated similar training-induced adaptations after 12 weeks of NP and periodized regimens. However, our findings suggest that in the latter half of the study (i.e., after the initial 6 weeks), the periodized regimens elicited greater rates of muscular adaptations compared with NP regimens. Strength coaches and practitioners should be aware that

  8. Pelvic floor muscle training increases pelvic floor muscle strength more in post-menopausal women who are not using hormone therapy than in women who are using hormone therapy: a randomised trial.

    PubMed

    Ignácio Antônio, Flávia; Herbert, Robert D; Bø, Kari; Rosa-E-Silva, Ana Carolina Japur Sá; Lara, Lúcia Alves Silva; Franco, Maira de Menezes; Ferreira, Cristine Homsi Jorge

    2018-06-15

    Are there differences in the effectiveness of pelvic floor muscle training on pelvic floor muscle strength and urinary incontinence symptoms in postmenopausal women who are and are not using hormone therapy? Randomised, controlled trial with concealed allocation, blinded assessors, and intention-to-treat analysis. Ninety-nine postmenopausal women, 38 of whom were using daily systemic oestrogen/progestogen therapy. The experimental group (n=51) received an intensive supervised pelvic floor muscle training protocol, and the control group (n=48) received no intervention. The randomisation was stratified by hormone therapy use. Change in pelvic floor muscle strength assessed with manometry at 12 weeks. Prevalence and severity of urinary incontinence symptoms were assessed using questionnaires. Eighty-eight women provided data that could be included in the analysis. Pelvic floor muscle training increased pelvic floor muscle strength by 8.0 cmH 2 O (95% CI 3.4 to 12.6) in women not using hormone therapy and by -0.9 cmH 2 0 (95% CI -6.5 to 4.8) in women using hormone therapy (interaction p=0.018). A sensitivity analysis showed that the greater training effect in women who were not using hormone therapy was still apparent if the analysis was conducted on percentage change in strength rather than absolute change in strength. There was also a significantly greater effect of training in women not using hormone therapy on prevalence of urinary incontinence symptoms (ratio of odds ratios=7.4; interaction p=0.028). The difference in effects on severity of urinary incontinence symptoms was not statistically significant (interaction p=0.37). Pelvic floor muscle training increases pelvic floor muscle strength more in women who are not using hormone therapy than in women using hormone therapy. ClinicalTrials.gov NCT02549729. [Ignácio Antônio F, Herbert RD, Bø K, Rosa-e-Silva ACJS, Lara LAS, Franco MdM, Ferreira CHJ (2018) Pelvic floor muscle training increases pelvic floor muscle

  9. In vitro study of transverse strength of fiber reinforced composites.

    PubMed

    Mosharraf, R; Hashemi, Z; Torkan, S

    2011-01-01

    Reinforcement with fiber is an effective method for considerable improvement in flexural properties of indirect composite resin restorations. The aim of this in-vitro study was to compare the transverse strength of composite resin bars reinforced with pre-impregnated and non-impregnated fibers. Thirty six bar type composite resin specimens (3×2×25 mm) were constructed in three groups. The first group was the control group (C) without any fiber reinforcement. The specimens in the second group (P) were reinforced with pre-impregnated fibers and the third group (N) with non-impregnated fibers. These specimens were tested by the three-point bending method to measure primary transverse strength. Data were statistically analyzed with one way ANOVA and Tukey's tests. There was a significant difference among the mean primary transverse strength in the three groups (P<0.001). The post-hoc (Tukey) test showed that there was a significant difference between the pre-impregnated and control groups in their primary transverse strength (P<0.001). Regarding deflection, there was also a significant difference among the three groups (P=0.001). There were significant differences among the mean deflection of the control group and two other groups (P(C&N)<.001 and P(C&P)=.004), but there was no significant difference between the non-and pre-impregnated groups (P(N&P)=.813). Within the limitations of this study, it was concluded that reinforcement with fiber considerably increased the transverse strength of composite resin specimens, but impregnation of the fiber used implemented no significant difference in the transverse strength of composite resin samples.

  10. High-Intensity Progressive Resistance Training Increases Strength With No Change in Cardiovascular Function and Autonomic Neural Regulation in Older Adults.

    PubMed

    Kanegusuku, Hélcio; Queiroz, Andréia C; Silva, Valdo J; de Mello, Marco T; Ugrinowitsch, Carlos; Forjaz, Cláudia L

    2015-07-01

    The effects of high-intensity progressive resistance training (HIPRT) on cardiovascular function and autonomic neural regulation in older adults are unclear. To investigate this issue, 25 older adults were randomly divided into two groups: control (CON, N = 13, 63 ± 4 years; no training) and HIPRT (N = 12, 64 ± 4 years; 2 sessions/week, 7 exercises, 2–4 sets, 10–4 RM). Before and after four months, maximal strength, quadriceps cross-sectional area (QCSA), clinic and ambulatory blood pressures (BP), systemic hemodynamics, and cardiovascular autonomic modulation were measured. Maximal strength and QCSA increased in the HIPRT group and did not change in the CON group. Clinic and ambulatory BP, cardiac output, systemic vascular resistance, stroke volume, heart rate, and cardiac sympathovagal balance did not change in the HIPRT group or the CON group. In conclusion, HIPRT was effective at increasing muscle mass and strength without promoting changes in cardiovascular function or autonomic neural regulation.

  11. Does bipolar electrocoagulation time affect vessel weld strength?

    PubMed Central

    Harrison, J D; Morris, D L

    1991-01-01

    The value of the bipolar electrocoagulator in the haemostasis of bleeding ulcers is controversial. We have therefore investigated the effect of different coagulation times on vessel weld strength achieved by the bipolar device. Welds were then made in vessels of known diameter using a standard 10F endoscopic haemostatic probe at coagulation times of two and 20 seconds. The intravascular temperature achieved at each time was measured. Vessel weld strength achieved by bipolar electrocoagulation was much greater at 20 seconds (approximately twice that at two seconds) and was highly significantly greater at all vessel diameters. There was a gradual reduction in weld strength with increasing vessel diameter, an effect that was seen for both two and 20 seconds of electrocoagulation. Intravascular temperature was significantly higher at 20 seconds than at two seconds. We conclude that vessel weld strength is related to coagulation time and that any future studies comparing the bipolar electrocoagulator with other haemostatic devices should use longer periods of bipolar electrocoagulation and record the coagulation time in order to optimise the clinical value of the device. PMID:1864540

  12. Increasing the Number of African American PhDs in the Sciences and Engineering A Strengths-Based Approach.

    ERIC Educational Resources Information Center

    Maton, Kenneth I.; Hrabowski, Freeman A.

    2004-01-01

    Fifty years after Brown v. Board of Education, the percentage of African American students who receive PhDs in natural science, technology, engineering, or mathematics (STEM) fields remains disappointingly low. A multifaceted, strengths-based approach to intervention and research that holds great promise for increasing the number of African…

  13. Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength

    NASA Astrophysics Data System (ADS)

    Ge, Ting; Robbins, Mark O.; Perahia, Dvora; Grest, Gary S.

    2014-07-01

    Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface. The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is significantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical strength.

  14. Postactivation potentiation biases maximal isometric strength assessment.

    PubMed

    Lima, Leonardo Coelho Rabello; Oliveira, Felipe Bruno Dias; Oliveira, Thiago Pires; Assumpção, Claudio de Oliveira; Greco, Camila Coelho; Cardozo, Adalgiso Croscato; Denadai, Benedito Sérgio

    2014-01-01

    Postactivation potentiation (PAP) is known to enhance force production. Maximal isometric strength assessment protocols usually consist of two or more maximal voluntary isometric contractions (MVCs). The objective of this study was to determine if PAP would influence isometric strength assessment. Healthy male volunteers (n = 23) performed two five-second MVCs separated by a 180-seconds interval. Changes in isometric peak torque (IPT), time to achieve it (tPTI), contractile impulse (CI), root mean square of the electromyographic signal during PTI (RMS), and rate of torque development (RTD), in different intervals, were measured. Significant increases in IPT (240.6 ± 55.7 N·m versus 248.9 ± 55.1 N·m), RTD (746 ± 152 N·m·s(-1) versus 727 ± 158 N·m·s(-1)), and RMS (59.1 ± 12.2% RMSMAX  versus 54.8 ± 9.4% RMSMAX) were found on the second MVC. tPTI decreased significantly on the second MVC (2373 ± 1200 ms versus 2784 ± 1226 ms). We conclude that a first MVC leads to PAP that elicits significant enhancements in strength-related variables of a second MVC performed 180 seconds later. If disconsidered, this phenomenon might bias maximal isometric strength assessment, overestimating some of these variables.

  15. What Are Strength Training Activities?

    Cancer.gov

    Strength training is any practice or exercise specifically designed to increase muscle tone, strength, and fitness. Concerned that strength training will make you bulky and too muscle-y? You are not alone.

  16. Strengths-based positive psychology interventions: a randomized placebo-controlled online trial on long-term effects for a signature strengths- vs. a lesser strengths-intervention.

    PubMed

    Proyer, René T; Gander, Fabian; Wellenzohn, Sara; Ruch, Willibald

    2015-01-01

    Recent years have seen an increasing interest in research in positive psychology interventions. There is broad evidence for their effectiveness in increasing well-being and ameliorating depression. Intentional activities that focus on those character strengths, which are most typical for a person (i.e., signature strengths, SS) and encourage their usage in a new way have been identified as highly effective. The current study aims at comparing an intervention aimed at using SS with one on using individual low scoring (or lesser) strengths in a randomized placebo-controlled trial. A total of 375 adults were randomly assigned to one of the two intervention conditions [i.e., using five signature vs. five lesser strengths (LS) in a new way] or a placebo control condition (i.e., early memories). We measured happiness and depressive symptoms at five time points (i.e., pre- and post-test, 1-, 3-, and 6-months follow-ups) and character strengths at pre-test. The main findings are that (1) there were increases in happiness for up to 3 months and decreases in depressive symptoms in the short term in both intervention conditions; (2) participants found working with strengths equally rewarding (enjoyment and benefit) in both conditions; (3) those participants that reported generally higher levels of strengths benefitted more from working on LS rather than SS and those with comparatively lower levels of strengths tended to benefit more from working on SS; and (4) deviations from an average profile derived from a large sample of German-speakers completing the Values-in-Action Inventory of Strengths were associated with greater benefit from the interventions in the SS-condition. We conclude that working on character strengths is effective for increasing happiness and discuss how these interventions could be tailored to the individual for promoting their effectiveness.

  17. Effect of grinding and polishing on roughness and strength of zirconia.

    PubMed

    Khayat, Waad; Chebib, Najla; Finkelman, Matthew; Khayat, Samer; Ali, Ala

    2018-04-01

    The clinical applications of high-translucency monolithic zirconia restorations have increased. Chairside and laboratory adjustments of these restorations are inevitable, which may lead to increased roughness and reduced strength. The influence of grinding and polishing on high-translucency zirconia has not been investigated. The purpose of this in vitro study was to compare the roughness averages (Ra) of ground and polished zirconia and investigate whether roughness influenced strength after aging. High-translucency zirconia disks were milled, sintered, and glazed according to the manufacturer's recommendations. Specimens were randomized to 4 equal groups. Group G received only grinding; groups GPB and GPK received grinding and polishing with different polishing systems; and group C was the (unground) control group. All specimens were subjected to hydrothermal aging in an autoclave at 134°C at 200 kPa for 3 hours. Roughness average was measured using a 3-dimensional (3D) optical interferometer at baseline (Ra1), after grinding and polishing (Ra2), and after aging (Ra3). A biaxial flexural strength test was performed at a rate of 0.5 mm/min. Statistical analyses were performed using commercial software (α=.05). Group G showed a significantly higher mean value of Ra3 (1.96 ±0.32 μm) than polished and glazed groups (P<.001), which showed no statistically significant difference among them (GPB, 1.12 ±0.31 µm; GPK, 0.88 ±0.31 µm; C: 0.87 ±0.25 μm) (P>.05). Compared with baseline, the roughness of groups G and GPB increased significantly after surface treatments and after aging, whereas aging did not significantly influence the roughness of groups GPK or C. Group G showed the lowest mean value of biaxial flexural strength (879.01 ±157.99 MPa), and the highest value was achieved by group C (962.40 ±113.84 MPa); no statistically significant differences were found among groups (P>.05). Additionally, no significant correlation was detected between the Ra and

  18. Effects of blood contamination on resin-resin bond strength.

    PubMed

    Eiriksson, Sigurdur O; Pereira, Patricia N R; Swift, Edward J; Heymann, Harald O; Sigurdsson, Asgeir

    2004-02-01

    Incremental placement and curing of resin composites has been recommended. However, this requires longer operating time, and therefore, increased risk of contamination. The purpose of this study was to evaluate the effects of blood contamination on microtensile bond strengths (microTBS) between resin interfaces and to determine the best decontamination method to re-establish the original resin-resin bond strength. The top surfaces of 64, 4-mm composite blocks (Z-250, Renew, APX, Pertac II) were untreated as the control, or were treated as follows: blood applied and dried on the surface (Treatment 1), blood applied, rinsed, dried (Treatment 2), blood applied, rinsed, and an adhesive applied (Single Bond, One-Step, Clearfil SE, Prompt L-Pop) (Treatment 3). Fresh composite was applied and light-cured in 2-mm increments. After 24 h storage in water, the specimens were sectioned into 0.7-mm thick slabs, trimmed to a cross-sectional area of 1 mm(2), and loaded to failure at a crosshead speed of 1 mm/min using an Instron universal testing machine. Data were analyzed using two-way ANOVA and Fisher's PLSD test (p<0.05). Control values ranged from 45.1 MPa for Pertac II to 71.5 MPa for APX. Untreated blood contamination resulted in resin-resin bond strengths of only 1.0-13.1 MPa. Rinsing raised bond strengths to over 40 MPa for each material. Use of an adhesive further increased bond strengths except for Pertac II. Rinsing blood from contaminated surfaces increases the resin-resin bond strength significantly and the application of an appropriate adhesive increases the bond strength to control levels.

  19. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice.

    PubMed

    Camporez, João-Paulo G; Petersen, Max C; Abudukadier, Abulizi; Moreira, Gabriela V; Jurczak, Michael J; Friedman, Glenn; Haqq, Christopher M; Petersen, Kitt Falk; Shulman, Gerald I

    2016-02-23

    Sarcopenia, or skeletal muscle atrophy, is a debilitating comorbidity of many physiological and pathophysiological processes, including normal aging. There are no approved therapies for sarcopenia, but the antihypertrophic myokine myostatin is a potential therapeutic target. Here, we show that treatment of young and old mice with an anti-myostatin antibody (ATA 842) for 4 wk increased muscle mass and muscle strength in both groups. Furthermore, ATA 842 treatment also increased insulin-stimulated whole body glucose metabolism in old mice, which could be attributed to increased insulin-stimulated skeletal muscle glucose uptake as measured by a hyperinsulinemic-euglycemic clamp. Taken together, these studies provide support for pharmacological inhibition of myostatin as a potential therapeutic approach for age-related sarcopenia and metabolic disease.

  20. Experimental knee joint pain during strength training and muscle strength gain in healthy subjects: a randomized controlled trial.

    PubMed

    Sørensen, T J; Langberg, H; Hodges, P W; Bliddal, H; Henriksen, M

    2012-01-01

    Knee joint pain and reduced quadriceps strength are cardinal symptoms in many knee pathologies. In people with painful knee pathologies, quadriceps exercise reduces pain, improves physical function, and increases muscle strength. A general assumption is that pain compromises muscle function and thus may prevent effective rehabilitation. This study evaluated the effects of experimental knee joint pain during quadriceps strength training on muscle strength gain in healthy individuals. Twenty-seven healthy untrained volunteers participated in a randomized controlled trial of quadriceps strengthening (3 times per week for 8 weeks). Participants were randomized to perform resistance training either during pain induced by injections of painful hypertonic saline (pain group, n = 13) or during a nonpainful control condition with injection of isotonic saline (control group, n = 14) into the infrapatellar fat pad. The primary outcome measure was change in maximal isokinetic muscle strength in knee extension/flexion (60, 120, and 180 degrees/second). The group who exercised with pain had a significantly larger improvement in isokinetic muscle strength at all angular velocities of knee extension compared to the control group. In knee flexion there were improvements in isokinetic muscle strength in both groups with no between-group differences. Experimental knee joint pain improved the training-induced gain in muscle strength following 8 weeks of quadriceps training. It remains to be studied whether knee joint pain has a positive effect on strength gain in patients with knee pathology. Copyright © 2012 by the American College of Rheumatology.

  1. Ionic strength-induced formation of smectite quasicrystals enhances nitroaromatic compound sorption.

    PubMed

    Li, Hui; Pereira, Tanya R; Teppen, Brian J; Laird, David A; Johnston, Cliff T; Boyd, Stephen A

    2007-02-15

    Sorption of organic contaminants by soils is a determinant controlling their transport and fate in the environment. The influence of ionic strength on nitroaromatic compound sorption by K+- and Ca2+ -saturated smectite was examined. Sorption of 1,3-dinitrobenzene by K-smectite increased as KCl ionic strength increased from 0.01 to 0.30 M. In contrast, sorption by Ca-smectite at CaCl2 ionic strengths of 0.015 and 0.15 M remained essentially the same. The "salting-out" effect on the decrease of 1,3-dinitrobenzene aqueous solubility within this ionic strength range was <1.5% relative to the solubility in pure water. This decrease of solubility is insufficient to account for the observed increase of sorption by K-smectite with increasing KCl ionic strength. X-ray diffraction patterns and light absorbance of K-clay suspensions indicated the aggregation of clay particles and the formation of quasicrystal structures as KCI ionic strength increased. Sorption enhancement is attributed to the formation of better-ordered K-clay quasicrystals with reduced interlayer distances rather than to the salting-out effect. Dehydration of 1,3-dinitrobenzene is apparently a significant driving force for sorption, and we show for the first time that sorption of small, planar, neutral organic molecules, namely, 1,3-dinitrobenzene, causes previously expanded clay interlayers to dehydrate and collapse in aqueous suspension.

  2. Muscular Strength and Power in 3-to 7-Year-Old Children.

    PubMed

    Fry, Andrew C; Irwin, Carol C; Nicoll, Justin X; Ferebee, David E

    2015-08-01

    To determine absolute and relative (adjusted for body mass) strength, mean power, and mean velocity for upper and lower body resistance exercises, forty-seven young boys and girls participated in maximal strength testing. Healthy young boys and girls, ages 3- to 7-years old, were tested for one-repetition maximum (1-RM) strength, and 70% of 1-RM to determine mean power and mean velocity on the chest press and leg press exercises. Adult weight machines were modified to accommodate the smaller size and lower strength levels of the children. A 2 × 4 (sex × age) ANOVA was used to determine age and sex differences in performance. No interaction or sex differences were observed for any variable at any age. 1-RM strength, mean power, and mean velocity significantly increased across ages (p ≤ .05). When adjusted for body mass, the changes were insignificant, with one exception. Relative mean power for the bench press increased with age. Data indicated children from 3-7 years of age are capable of performing strength and power tests, but may require more attempts at maximal loads compared with adults. It appears that muscular strength and velocity during this stage of development are primarily dependent on increasing body mass, whereas power is influenced by additional variable(s).

  3. Does maximum torque mean optimal pullout strength of screws?

    PubMed

    Tankard, Sara E; Mears, Simon C; Marsland, Daniel; Langdale, Evan R; Belkoff, Stephen M

    2013-04-01

    To determine the relationship between insertion torque and pullout strength of 3.5-mm-diameter cortical screws in cadaveric humeri with different bone mineral densities (BMDs). Five pairs of human humeri from each of 3 BMD groups (normal, osteopenic, and osteoporotic) were used. Holes were drilled in each humerus, and maximum insertion torque (T(max)) was measured by tightening a screw until stripping occurred. In the remaining holes, screws were tightened to 50%, 70%, or 90% of the T(max). A servohydraulic testing machine pulled each screw out at 1 mm/s while resulting force and axial displacement were recorded at 10 Hz. The authors checked for an effect of insertion torque (percent T(max)) on pullout strength using a general linearized and latent mixed model (Stata10), controlling for cortical thickness and BMD (T-score). Pullout strength for normal and osteoporotic bone was greatest for screws inserted to 50% T(max) and was significantly greater than that at T(max) but not significantly different from that at 70% or 90% T(max). For osteopenic bone, pullout strength was greatest at 70% peak torque, but it was not significantly different from the pullout strength at the 50% or 90% T(max) levels. Tightening screws beyond 50% T(max) does not increase pullout strength of the screw and may place bone at risk for damage that might result in loss of fixation. Even after adjusting for bone thickness and density, there is no clear relationship between pullout strength and screw torque.

  4. Study on Strength Behavior of Organic Soil Stabilized with Fly Ash

    PubMed Central

    Molla, Md. Keramat Ali; Sarkar, Grytan

    2017-01-01

    The aim of this study is to investigate the effect of fly ash on the consistency, compactness, acidic properties, and strength of organic soil. The presence of organic content in the soil has detrimental impacts on the physical and strength behavior of soil. To investigate the effectiveness of fly ash in the stabilization of organic soil, two types of fly ashes (Type I and Type II) at different percentages were used. It is found that fly ash significantly reduces the plasticity index of the organic soil, whereas the liquid and plastic limits increase. The dry density of the fly ash-soil mixture increases significantly, while the water requirement reduces due to the addition of fly ash. The increase of dry density compromises higher strength. The increase of qu with the increase of fly ash content is mainly due to the pozzolanic reaction of fly ash, although the reduction in water content results from the addition of dry fly ash solid. Moreover, Type I fly ash contributes a higher value of qu compared to Type II fly ash. This is attributed to the characteristics of fly ash including CaO and CaO/SiO2 ratio. PMID:29085881

  5. The strength of metal matrix composites

    NASA Astrophysics Data System (ADS)

    Baxter, William J.

    1992-11-01

    There is intensive interest in metal matrix composites (MMCs) for automotive components, and the first production applications in Japan use discontinuous fibers as the reinforcements. These fibers are randomly oriented, resulting in an MMC with isotropic properties. However, there are conflicting reports on the tensile strengths attainable. In some cases, the strength increases with increasing volume fraction (V f) of fibers, while in other cases, there is little or no benefit. A simple method is proposed to calculate the strength of this type of MMC. It is shown that the fibers oriented perpendicular to the stress direction play a key role, and the strength depends upon the strength of the interfacial bond. Upper and lower limits of the composite strength are calculated. If the bond strength is larger than the matrix strength, the composite strength has a maximum value which increases with V f. If the bond strength is weaker than the matrix, the composite strength has a minimum value which is either weakly dependent or even independent of V f. These calculations are in good agreement with examples taken from the literature of aluminum composites reinforced with either A12O3, graphite, or SiC. The strength of the matrix alloy is shown to be a very important parameter: weak alloys are easily strengthened, while in certain cases, strong alloys may be weakened.

  6. Comparison of shear bond strength of brackets recycled using micro sandblasting and industrial methods.

    PubMed

    Montero, Manuela M Haro; Vicente, Ascensión; Alfonso-Hernández, Noelia; Jiménez-López, Manuel; Bravo-González, Luis-Alberto

    2015-05-01

    To evaluate in vitro the shear bond strength of brackets recycled by sandblasting with aluminum oxide particles of different sizes or reconditioned industrially after successive rebonding. Eighty brackets were bonded and debonded sequentially three times. After the first debonding, brackets were divided into four groups: (group 1) sandblasting with aluminum oxide particles of 25 μ, (group 2) 50 μ, and (group 3) 110 μ, and (group 4) industrial recycling. Bond strength and adhesive material remaining on debonded bracket bases were evaluated for each successive debond. No significant differences were detected between the four groups following the first recycle (P > .05). After the second recycle, bond strength was significantly greater for the industrially recycled group than the other groups (P < .016). When shear bond strength was compared within each recycling method, the bond strength of sandblasted brackets decreased with the increase of particle size and with each recycle; for the industrially recycled group, no significant differences were detected between the three sequences (P > .016). In the evaluation of bond material remnant, the industrially recycled group left significantly less bond material after successive recycling than the other groups did (P < .016). Within each recycling method, the adhesive remnant decreased significantly after successive debond (P < .016). Industrial recycling obtained better results than sandblasting after three successive debondings. The brackets' shear bond strength decreased as the size of the aluminum oxide particle used for sandblasting increased and as recycling was repeated.

  7. Effect of a 10-week strength training program and recovery drink on body composition, muscular strength and endurance, and anaerobic power and capacity.

    PubMed

    Chromiak, Joseph A; Smedley, Brianne; Carpenter, William; Brown, Robert; Koh, Yun S; Lamberth, John G; Joe, Lee Ann; Abadie, Ben R; Altorfer, Greg

    2004-05-01

    We investigated whether postexercise consumption of a supplement containing whey protein, amino acids, creatine, and carbohydrate combined with a strength training program promotes greater gains in fat-free mass (FFM), muscle strength and endurance, and anaerobic performance compared with an isocaloric, carbohydrate-only control drink combined with strength training. The study was double blind and randomized, and the experimental supplement was compared with a carbohydrate-only control. Forty-one males (n = 20 in control group, n = 21 in the supplement group; mean age, 22.2 y) participated in a 4 d/wk, 10-wk periodized strength training program. Subjects had to complete at least 70% of the workouts. Before and after 10 wk of strength training, subjects were tested for body composition by using hydrostatic weighing and skinfold thicknesses, one repetition maximum strength and muscular endurance for the bench press and 45-degree leg press, and anaerobic performance using a 30-s Wingate test. Thirty-three subjects (80.5%) completed the training program (n = 15 in control group, n = 18 in the supplement); these 33 subjects also completed all post-training test procedures. Data were analyzed with two-way analysis of variance with repeated measures on time. P <== 0.05 was set as statistically significant. All statistical analyses, including calculation of effect size and power, were completed with SPSS 11.0. Across groups, FFM increased during 10 wk of strength training. Although there was no statistically significant time x group interaction for FFM, there was a trend toward a greater increase in FFM for the supplement group (+3.4 kg) compared with the control group (+1.5 kg; P = 0.077). The effect size (eta(2) = 0.100) was moderately large. Percentage of body fat declined and fat mass was unchanged; there were no differences between groups. One repetition maximum strength for the bench press and 45-degree leg press increased, but there were no differences between

  8. Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review

    EPA Science Inventory

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low rem...

  9. Vacuum Strength of Two Candidate Glasses for a Space Observatory

    NASA Technical Reports Server (NTRS)

    Manning, Timothy Andrew; Tucker, Dennis S.; Herren, Kenneth A.; Gregory, Don A.

    2007-01-01

    The strengths of two candidate glass types for use in a space observatory were measured. Samples of ultra-low expansion glass (ULE) and borosilicate (Pyrex) were tested in air and in vacuum at room temperature (20 degrees C) and in vacuum after being heated to 200 degrees C. Both glasses tested in vacuum showed a significant increase in strength over those tested in air. However, there was no statistical difference between the strength of samples tested in vacuum at room temperature and those tested in vacuum after heating to 200 degrees C.

  10. Inhibition of Activin Receptor Type IIB Increases Strength and Lifespan in Myotubularin-Deficient Mice

    PubMed Central

    Lawlor, Michael W.; Read, Benjamin P.; Edelstein, Rachel; Yang, Nicole; Pierson, Christopher R.; Stein, Matthew J.; Wermer-Colan, Ariana; Buj-Bello, Anna; Lachey, Jennifer L.; Seehra, Jasbir S.; Beggs, Alan H.

    2011-01-01

    X-linked myotubular myopathy (XLMTM) is a congenital disorder caused by deficiency of the lipid phosphatase, myotubularin. Patients with XLMTM often have severe perinatal weakness that requires mechanical ventilation to prevent death from respiratory failure. Muscle biopsy specimens from patients with XLMTM exhibit small myofibers with central nuclei and central aggregations of organelles in many cells. It was postulated that therapeutically increasing muscle fiber size would cause symptomatic improvement in myotubularin deficiency. Recent studies have elucidated an important role for the activin-receptor type IIB (ActRIIB) in regulation of muscle growth and have demonstrated that ActRIIB inhibition results in significant muscle hypertrophy. To evaluate whether promoting muscle hypertrophy can attenuate symptoms resulting from myotubularin deficiency, the effect of ActRIIB-mFC treatment was determined in myotubularin-deficient (Mtm1δ4) mice. Compared with wild-type mice, untreated Mtm1δ4 mice have decreased body weight, skeletal muscle hypotrophy, and reduced survival. Treatment of Mtm1δ4 mice with ActRIIB-mFC produced a 17% extension of lifespan, with transient increases in weight, forelimb grip strength, and myofiber size. Pathologic analysis of Mtm1δ4 mice during treatment revealed that ActRIIB-mFC produced marked hypertrophy restricted to type 2b myofibers, which suggests that oxidative fibers in Mtm1δ4 animals are incapable of a hypertrophic response in this setting. These results support ActRIIB-mFC as an effective treatment for the weakness observed in myotubularin deficiency. PMID:21281811

  11. Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components

    DOE PAGES

    Kishore, Vidya; Ajinjeru, Christine; Nycz, Andrzej; ...

    2017-03-01

    The Big Area Additive Manufacturing (BAAM) system can print structures on the order of several meters at high extrusion rates, thereby having the potential to significantly impact automotive, aerospace and energy sectors. The functional use of such parts, however, may be limited by mechanical anisotropy in which the strength of printed parts across successive layers in the build direction (z-direction) is significantly lower than the corresponding in-plane strength (x-y directions). This has been primarily attributed to poor bonding between printed layers as the lower layers cool below the glass transition temperature (Tg) before the next layer is deposited. Therefore, themore » potential of using infrared heating is considered for increasing the surface temperature of the printed layer just prior to deposition of new material to improve the interlayer strength of the components. This study found significant improvements in bond strength for the deposition of acrylonitrile butadiene styrene (ABS) reinforced with 20% chopped carbon fiber when the surface temperature of the substrate material was increased from below Tg to close to or above Tg using infrared heating.« less

  12. Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishore, Vidya; Ajinjeru, Christine; Nycz, Andrzej

    The Big Area Additive Manufacturing (BAAM) system can print structures on the order of several meters at high extrusion rates, thereby having the potential to significantly impact automotive, aerospace and energy sectors. The functional use of such parts, however, may be limited by mechanical anisotropy in which the strength of printed parts across successive layers in the build direction (z-direction) is significantly lower than the corresponding in-plane strength (x-y directions). This has been primarily attributed to poor bonding between printed layers as the lower layers cool below the glass transition temperature (Tg) before the next layer is deposited. Therefore, themore » potential of using infrared heating is considered for increasing the surface temperature of the printed layer just prior to deposition of new material to improve the interlayer strength of the components. This study found significant improvements in bond strength for the deposition of acrylonitrile butadiene styrene (ABS) reinforced with 20% chopped carbon fiber when the surface temperature of the substrate material was increased from below Tg to close to or above Tg using infrared heating.« less

  13. [Significant increase of glucose transport activity in breast cancer].

    PubMed

    Li, Juan; Yang, Shou-jing; Zhao, Xi-long; Zhang, Ya-qing; Li, Kai-nan; Cui, Ji-hong; Li, Jing

    2008-02-01

    To study the expression level and significance of glucose transporter 1 (Glut-1) in normal breast tissue, adenosis, adenoma and breast carcinoma. A total of 147 cases of female breast tissue samples, including 92 cases of invasive ductal carcinoma, 26 cases of breast fibroadenoma, 24 cases of breast adenosis and 5 cases of normal breast tissues, were collected for quantitative detection of the expression of Glut-1 protein by immunohistochemistry (EnVision method) and Western blot, and its mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR). In normal breast tissue and benign lesions of the breast, Glut-1 was undetectable or only weakly detectable in cytoplasm of ductal and acinar epithelia. In contrast, the intensity of Glut-1 staining was significantly higher in invasive ductal carcinomas (P = 0.0002) with protein expression predominantly in cellular membrane and lesser in cytoplasm. Western blot and RT-PCR analyses showed that the expression of Glut-1 protein and mRNA were significantly increased in invasive ductal carcinoma than fibroadenoma (P =0.001 for protein; P <0.05 for mRNA) and adenosis (P =0.001 for protein; P < 0.05 for mRNA). There was a significant difference among groups (P = 0.0002 for protein; P = 0.0001 for mRNA). Glucose transport activity, as indicated by Glut-1 protein and its mRNA expression, significantly increases in breast carcinoma than non-cancerous lesions. The over-expression of Glut-1 in breast carcinoma is tightly coupled with tumor cell proliferation, invasion and metastasis, implying that Glut-1 may serve as a new marker in the early diagnosis and prognostication of breast malignancy as well as a new therapeutic target.

  14. Character Strengths and Intellectual and Developmental Disability: A Strengths-Based Approach from Positive Psychology

    ERIC Educational Resources Information Center

    Niemiec, Ryan M.; Shogren, Karrie A.; Wehmeyer, Michael L.

    2017-01-01

    There has been limited focus in the disability field on assessing and intervening to promote strengths of character. However, character strengths have received significant attention in the broader field of positive psychology. This paper provides an overview of the growing science of character strengths and explores why and how character strengths…

  15. Reduced Bone Material Strength is Associated with Increased Risk and Severity of Osteoporotic Fractures. An Impact Microindentation Study.

    PubMed

    Sosa, Daysi Duarte; Eriksen, Erik Fink

    2017-07-01

    The aim of the study was to test, whether bone material strength differs between different subtypes of osteoporotic fracture and assess whether it relates to vertebral fracture severity. Cortical bone material strength index (BMSi) was measured by impact microindentation in 66 women with osteoporotic fracture and 66 age- and sex-matched controls without fracture. Bone mineral density (BMD) and bone turnover markers were also assessed. Vertebral fracture severity was graded by semiquantitative (SQ) grading. Receiver operator characteristic (ROC) curves were used to examine the ability of BMSi to discriminate fractures. Subjects with osteoporotic fractures exhibited lower BMSi than controls (71.5 ± 7.3 vs. 76.4 ± 6.2, p < 0.001). After adjusting for age and hip BMD, a significant negative correlation was seen between BMSi and vertebral fracture severity (r 2  = 0.19, p = 0.007). A decrease of one standard deviation (SD) in BMSi was associated with increased risk of fracture (OR 2.62; 95% CI 1.35, 5.10, p = 0.004). ROC curve areas under the curve (AUC) for BMSi in subjects with vertebral fracture (VF), hip fracture (HF), and non-vertebral non-hip fracture (NVNHFx), (mean; 95% CI) were 0.711 (0.608; 0.813), 0.712 (0.576; 0.843), 0.689 (0.576; 0.775), respectively. Combining BMSi and BMD provided further improvement in the discrimination of fractures with AUC values of 0.777 (0.695; 0.858), 0.789 (0.697; 0.882), and 0.821 (0.727; 0.914) for VFx, HFx, and NVNHFx, respectively. Low BMSi of the tibial cortex is associated with increased risk of all osteoporotic fractures and severity of vertebral fractures.

  16. Composite Stress Rupture: A New Reliability Model Based on Strength Decay

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2012-01-01

    A model is proposed to estimate reliability for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures. This new reliability model is generated by assuming a strength degradation (or decay) over time. The model suggests that most of the strength decay occurs late in life. The strength decay model will be shown to predict a response similar to that predicted by a traditional reliability model for stress rupture based on tests at a single stress level. In addition, the model predicts that even though there is strength decay due to proof loading, a significant overall increase in reliability is gained by eliminating any weak vessels, which would fail early. The model predicts that there should be significant periods of safe life following proof loading, because time is required for the strength to decay from the proof stress level to the subsequent loading level. Suggestions for testing the strength decay reliability model have been made. If the strength decay reliability model predictions are shown through testing to be accurate, COPVs may be designed to carry a higher level of stress than is currently allowed, which will enable the production of lighter structures

  17. Longer Interset Rest Periods Enhance Muscle Strength and Hypertrophy in Resistance-Trained Men.

    PubMed

    Schoenfeld, Brad J; Pope, Zachary K; Benik, Franklin M; Hester, Garrett M; Sellers, John; Nooner, Josh L; Schnaiter, Jessica A; Bond-Williams, Katherine E; Carter, Adrian S; Ross, Corbin L; Just, Brandon L; Henselmans, Menno; Krieger, James W

    2016-07-01

    Schoenfeld, BJ, Pope, ZK, Benik, FM, Hester, GM, Sellers, J, Nooner, JL, Schnaiter, JA, Bond-Williams, KE, Carter, AS, Ross, CL, Just, BL, Henselmans, M, and Krieger, JW. Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. J Strength Cond Res 30(7): 1805-1812, 2016-The purpose of this study was to investigate the effects of short rest intervals normally associated with hypertrophy-type training versus long rest intervals traditionally used in strength-type training on muscular adaptations in a cohort of young, experienced lifters. Twenty-one young resistance-trained men were randomly assigned to either a group that performed a resistance training (RT) program with 1-minute rest intervals (SHORT) or a group that employed 3-minute rest intervals (LONG). All other RT variables were held constant. The study period lasted 8 weeks with subjects performing 3 total body workouts a week comprised 3 sets of 8-12 repetition maximum (RM) of 7 different exercises per session. Testing was performed prestudy and poststudy for muscle strength (1RM bench press and back squat), muscle endurance (50% 1RM bench press to failure), and muscle thickness of the elbow flexors, triceps brachii, and quadriceps femoris by ultrasound imaging. Maximal strength was significantly greater for both 1RM squat and bench press for LONG compared to SHORT. Muscle thickness was significantly greater for LONG compared to SHORT in the anterior thigh, and a trend for greater increases was noted in the triceps brachii (p = 0.06) as well. Both groups saw significant increases in local upper body muscle endurance with no significant differences noted between groups. This study provides evidence that longer rest periods promote greater increases in muscle strength and hypertrophy in young resistance-trained men.

  18. Short-Term Training Cessation as a Method of Tapering to Improve Maximal Strength.

    PubMed

    Pritchard, Hayden J; Barnes, Matthew J; Stewart, Robin J C; Keogh, Justin W L; McGuigan, Michael R

    2018-02-01

    Pritchard, HJ, Barnes, MJ, Stewart, RJC, Keogh, JWL, and McGuigan, MR. Short-term training cessation as a method of tapering to improve maximal strength. J Strength Cond Res 32(2): 458-465, 2018-The aim of this study was to determine the effects of 2 different durations of training cessation on upper- and lower-body maximal strength performance and to investigate the mechanisms underlying performance changes following short-term training cessation. Eight resistance trained males (23.8 ± 5.4 years, 79.6 ± 10.2 kg, 1.80 ± 0.06 m, relative deadlift 1 repetition maximum of 1.90 ± 0.30 times bodyweight [BW]) each completed two 4-week strength training periods followed by either 3.5 days (3.68 ± 0.12 days) or 5.5 days (5.71 ± 0.13 days) of training cessation. Testing occurred pretraining (T1), on the final day of training (T2), and after each respective period of training cessation (T3). Participants were tested for salivary testosterone and cortisol, plasma creatine kinase, psychological profiles, and performance tests (countermovement jump [CMJ], isometric midthigh pull, and isometric bench press [IBP]) on a force plate. Participants' BW increased significantly over time (p = 0.022). The CMJ height and IBP peak force showed significant increases over time (p = 0.013, 0.048, and 0.004, respectively). Post hoc testing showed a significant increase between T1 and T3 for both CMJ height and IBP peak force (p = 0.022 and 0.008 with effect sizes of 0.30 and 0.21, respectively). No other significant differences were seen for any other measures. These results suggest that a short period of strength training cessation can have positive effects on maximal strength expression, perhaps because of decreases in neuromuscular fatigue.

  19. Association of Increased Serum Ferritin With Impaired Muscle Strength/Quality in Hemodialysis Patients.

    PubMed

    Nakagawa, Chie; Inaba, Masaaki; Ishimura, Eiji; Yamakawa, Tomoyuki; Shoji, Shigeichi; Okuno, Senji

    2016-07-01

    We reported previously that muscle quality and muscle strength provide clinically relevant predictors for better survival in hemodialysis patients. Iron overload might impair muscle function by its accumulation in muscle in such patients. Serum ferritin, a marker for body iron store, was examined for its association with handgrip strength (HGS) and muscle quality which was defined as the ratio of HGS to arm lean mass measured with dual-energy X-ray absorptiometry. In 300 Japanese hemodialysis patients, age, hemodialysis duration, body mass index, and serum albumin were 58.0 ±12.0 (mean ± standard deviation) years, 4.2 (1.8-10.4) (median [25th-75th percentile]) years, 20.4 ± 2.8 kg/m(2), 4.0 ± 0.3 g/dL, respectively. Hemoglobin and hematocrit were 8.9 ± 1.2 g/dL, and 28.8 ± 3.9%, respectively, whereas transferrin saturation and serum ferritin were 29.8 ± 11.0% and 100 (54-172) ng/mL, respectively. Serum ferritin significantly correlated in a positive manner with the total dose of iron orally administered during the previous 6 months (r = 0.185, P = .0013). HGS and muscle quality were 23.1 ± 10.4 kg and 11.6 ± 3.8 kg/kg, respectively. In multivariate analysis to elucidate the factors associated with HGS and muscle quality in 300 hemodialysis patients, which included transferrin saturation and log serum ferritin, in addition to age, gender, hemodialysis duration, the presence/absence of diabetes, body mass index as independent variables, log serum ferritin emerged as a significant and independent factor which associated in a negative fashion with HGS (β = -0.091, P = .0395) and tendency toward negative association with muscle quality (β = -0.100, P = .0754). In summary, the present study demonstrated the significant association of serum ferritin with HGS and muscle quality in hemodialysis patients and thus suggested that we should be careful of iron overload to avoid its possible harmful effect on muscle in such patients. Copyright © 2016 National Kidney

  20. Investigating the Effects of Typical Rowing Strength Training Practices on Strength and Power Development and 2,000 m Rowing Performance

    PubMed Central

    Caplan, Nicholas; Christian Gibbon, Karl; Howatson, Glyn; Grant Thompson, Kevin

    2016-01-01

    Abstract This study aimed to determine the effects of a short-term, strength training intervention, typically undertaken by club-standard rowers, on 2,000 m rowing performance and strength and power development. Twenty-eight male rowers were randomly assigned to intervention or control groups. All participants performed baseline testing involving assessments of muscle soreness, creatine kinase activity (CK), maximal voluntary contraction (leg-extensors) (MVC), static-squat jumps (SSJ), counter-movement jumps (CMJ), maximal rowing power strokes (PS) and a 2,000 m rowing ergometer time-trial (2,000 m) with accompanying respiratory-exchange and electromyography (EMG) analysis. Intervention group participants subsequently performed three identical strength training (ST) sessions, in the space of five days, repeating all assessments 24 h following the final ST. The control group completed the same testing procedure but with no ST. Following ST, the intervention group experienced significant elevations in soreness and CK activity, and decrements in MVC, SSJ, CMJ and PS (p < 0.01). However, 2,000 m rowing performance, pacing strategy and gas exchange were unchanged across trials in either condition. Following ST, significant increases occurred for EMG (p < 0.05), and there were non-significant trends for decreased blood lactate and anaerobic energy liberation (p = 0.063 – 0.086). In summary, club-standard rowers, following an intensive period of strength training, maintained their 2,000 m rowing performance despite suffering symptoms of muscle damage and disruption to muscle function. This disruption likely reflected the presence of acute residual fatigue, potentially in type II muscle fibres as strength and power development were affected. PMID:28149354

  1. Acute Effects of Partial-Body Cryotherapy on Isometric Strength: Maximum Handgrip Strength Evaluation.

    PubMed

    De Nardi, Massimo; Pizzigalli, Luisa; Benis, Roberto; Caffaro, Federica; Micheletti Cremasco, Margherita

    2017-12-01

    De Nardi, M, Pizzigalli, L, Benis, R, Caffaro, F, and Cremasco, MM. Acute effects of partial-body cryotherapy on isometric strength: maximum handgrip strength evaluation. J Strength Cond Res 31(12): 3497-3502, 2017-The aim of the study was to evaluate the influence of a single partial-body cryotherapy (PBC) session on the maximum handgrip strength (JAMAR Hydraulic Hand dynamometer). Two hundred healthy adults were randomized into a PBC group and a control group (50 men and 50 women in each group). After the initial handgrip strength test (T0), the experimental group performed a 150-second session of PBC (temperature range between -130 and -160° C), whereas the control group stayed in a thermo neutral room (22.0 ± 0.5° C). Immediately after, both groups performed another handgrip strength test (T1). Data underlined that both groups showed an increase in handgrip strength values, especially the experimental group (Control: T0 = 39.48 kg, T1 = 40.01 kg; PBC: T0 = 39.61 kg, T1 = 41.34 kg). The analysis also reported a statistical effect related to gender (F = 491.99, P ≤ 0.05), with women showing lower handgrip strength values compared with men (women = 30.43 kg, men = 52.27 kg). Findings provide the first evidence that a single session of PBC leads to the improvement of muscle strength in healthy people. The results of the study imply that PBC could be performed also before a training session or a sport competition, to increase hand isometric strength.

  2. Crystallization of high-strength nano-scale leucite glass-ceramics.

    PubMed

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p<0.05) higher mean BFS and characteristic strength values than the commercial materials. Attritor milled and planetary milled (2h) materials showed no significant (p>0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (p<0.05) to each other. The mean (SD) MPa strengths measured were: Attritor milled: 252.4 (38.7), Planetary milled: 225.4 (41.8) [4h milling] 255.0 (35.0) [2h milling], Ceramco-3: 75.7 (6.8) and IPS Empress: 165.5 (30.6). Planetary milling enabled synthesis of nano-scale leucite glass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Identification of significant E0 strength in the 22+ → 21+ transitions of 58,60,62Ni

    NASA Astrophysics Data System (ADS)

    Evitts, L. J.; Garnsworthy, A. B.; Kibédi, T.; Smallcombe, J.; Reed, M. W.; Brown, B. A.; Stuchbery, A. E.; Lane, G. J.; Eriksen, T. K.; Akber, A.; Alshahrani, B.; de Vries, M.; Gerathy, M. S. M.; Holt, J. D.; Lee, B. Q.; McCormick, B. P.; Mitchell, A. J.; Moukaddam, M.; Mukhopadhyay, S.; Palalani, N.; Palazzo, T.; Peters, E. E.; Ramirez, A. P. D.; Stroberg, S. R.; Tornyi, T.; Yates, S. W.

    2018-04-01

    The E0 transition strength in the 22+ →21 + transitions of 58,60,62Ni have been determined for the first time following a series of measurements at the Australian National University (ANU) and the University of Kentucky (UK). The CAESAR Compton-suppressed HPGe array and the Super-e solenoid at ANU were used to measure the δ (E 2 / M 1) mixing ratio and internal conversion coefficient of each transition following inelastic proton scattering. Level half-lives, δ (E 2 / M 1) mixing ratios and γ-ray branching ratios were measured at UK following inelastic neutron scattering. The new spectroscopic information was used to determine the E0 strengths. These are the first 2+ →2+E0 transition strengths measured in nuclei with spherical ground states and the E0 component is found to be unexpectedly large; in fact, these are amongst the largest E0 transition strengths in medium and heavy nuclei reported to date.

  4. Climate impacts of oil extraction increase significantly with oilfield age

    NASA Astrophysics Data System (ADS)

    Masnadi, Mohammad S.; Brandt, Adam R.

    2017-08-01

    Record-breaking temperatures have induced governments to implement targets for reducing future greenhouse gas (GHG) emissions. Use of oil products contributes ~35% of global GHG emissions, and the oil industry itself consumes 3-4% of global primary energy. Because oil resources are becoming increasingly heterogeneous, requiring different extraction and processing methods, GHG studies should evaluate oil sources using detailed project-specific data. Unfortunately, prior oil-sector GHG analysis has largely neglected the fact that the energy intensity of producing oil can change significantly over the life of a particular oil project. Here we use decades-long time-series data from twenty-five globally significant oil fields (>1 billion barrels ultimate recovery) to model GHG emissions from oil production as a function of time. We find that volumetric oil production declines with depletion, but this depletion is accompanied by significant growth--in some cases over tenfold--in per-MJ GHG emissions. Depletion requires increased energy expenditures in drilling, oil recovery, and oil processing. Using probabilistic simulation, we derive a relationship for estimating GHG increases over time, showing an expected doubling in average emissions over 25 years. These trends have implications for long-term emissions and climate modelling, as well as for climate policy.

  5. Impact of a daily 10-minute strength and flexibility program in a manufacturing plant.

    PubMed

    Pronk, S J; Pronk, N P; Sisco, A; Ingalls, D S; Ochoa, C

    1995-01-01

    In summary, employees' flexibility and mood showed modest improvements following the implementation of a plant-wide, 10-minute, daily flexibility and strength program. The initial six-week pilot study, administered prior to the plant-wide program implementation, successfully assessed program feasibility, assessed the efficiency of program implementation, identified administrative and logistical concerns, and generated pilot data needed to secure managerial support. Despite the noted significant increases in grip strength in the pilot study, no increases were observed following the six months of plant-wide implementation. This may be related to the differences in low average pretest grip strength for the pilot study compared to the higher scores for the main study population. The pilot study subjects may have received a sufficient exercise stimulus to increase grip strength over the course of six weeks. In contrast, this may not have been the case for the main study subjects due to their higher initial mean grip strength. An increased number of exercises designed to directly impact grip strength may be needed to improve this parameter.

  6. The significance of relative density for particle damage in loaded and sheared gravels

    NASA Astrophysics Data System (ADS)

    Fityus, Stephen; Imre, Emőke

    2017-06-01

    For granular assemblages of strong particles, an increase in the relative density usually leads to a significant increase in shear strength, which is evident as a peak strength, accompanied by significant dilation as the peak strength is attained. This paper describes an experimental study of shearing in assemblages of weak particles, where particle breakage offsets dilation for all but the lowest of confining stresses. In such materials, prone to particle breakage, the shear strengths of loose and dense assemblages rapidly converge to similar values as confining stress increases, and any benefit of greater relative density is lost. This is attributed to the densification effect associated with the loading under a high stress prior to shearing, which is characterised by widespread particle breakage and the formation of smaller particles to occupy space between coarser ones. Interestingly, under both low and high stresses, there was a tendency for greater particle breakage in the loose samples, as a result of both shearing and compression. This result suggests that, despite the denser assemblage having its particles more rigidly constrained and less able to rearrange to avoid direct loading, the influence of greater load-spreading capacity afforded by an increased number of particle contacts in a denser sample, is more dominant in controlling breakage.

  7. Retention of neodymium by dolomite at variable ionic strength as probed by batch and column experiments.

    PubMed

    Emerson, H P; Zengotita, F; Richmann, M; Katsenovich, Y; Reed, D T; Dittrich, T M

    2018-10-01

    The results presented in this paper highlight the complexity of adsorption and incorporation processes of Nd with dolomite and significantly improve upon previous work investigating trivalent actinide and lanthanide interactions with dolomite. Both batch and mini column experiments were conducted at variable ionic strength. These data highlight the strong chemisorption of Nd to the dolomite surface (equilibrium K d 's > 3000 mL/g) and suggest that equilibrium adsorption processes may not be affected by ionic strength based on similar results at 0.1 and 5.0 M ionic strength in column breakthrough and equilibrium batch (>5 days) results. Mini column experiments conducted over approximately one year also represent a significant development in measurement of sorption of Nd in the presence of flow as previous large-scale column experiments did not achieve breakthrough likely due to the high loading capacity of dolomite for Nd (up to 240 μg/g). Batch experiments in the absence of flow show that the rate of Nd removal increases with increasing ionic strength (up to 5.0 M) with greater removal at greater ionic strength for a 24 h sampling point. We suggest that the increasing ionic strength induces increased mineral dissolution and re-precipitation caused by changes in activity with ionic strength that lead to increased removal of Nd through co-precipitation processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Short-term Periodization Models: Effects on Strength and Speed-strength Performance.

    PubMed

    Hartmann, Hagen; Wirth, Klaus; Keiner, Michael; Mickel, Christoph; Sander, Andre; Szilvas, Elena

    2015-10-01

    Dividing training objectives into consecutive phases to gain morphological adaptations (hypertrophy phase) and neural adaptations (strength and power phases) is called strength-power periodization (SPP). These phases differ in program variables (volume, intensity, and exercise choice or type) and use stepwise intensity progression and concomitant decreasing volume, converging to peak intensity (peaking phase). Undulating periodization strategies rotate these program variables in a bi-weekly, weekly, or daily fashion. The following review addresses the effects of different short-term periodization models on strength and speed-strength both with subjects of different performance levels and with competitive athletes from different sports who use a particular periodization model during off-season, pre-season, and in-season conditioning. In most periodization studies, it is obvious that the strength endurance sessions are characterized by repetition zones (12-15 repetitions) that induce muscle hypertrophy in persons with a low performance level. Strictly speaking, when examining subjects with a low training level, many periodization studies include mainly hypertrophy sessions interspersed with heavy strength/power sessions. Studies have demonstrated equal or statistically significant higher gains in maximal strength for daily undulating periodization compared with SPP in subjects with a low to moderate performance level. The relatively short intervention period and the lack of concomitant sports conditioning call into question the practical value of these findings for competitive athletes. Possibly owing to differences in mesocycle length, conditioning programs, and program variables, competitive athletes either maintained or improved strength and/or speed-strength performance by integrating daily undulating periodization and SPP during off-season, pre-season and in-season conditioning. In high-performance sports, high-repetition strength training (>15) should be

  9. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.

    PubMed

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-07-11

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33f cu . It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

  10. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures

    PubMed Central

    Yoon, Minho; Kim, Gyuyong; Kim, Youngsun; Lee, Taegyu; Choe, Gyeongcheol; Hwang, Euichul; Nam, Jeongsoo

    2017-01-01

    Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W–B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W–B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load. PMID:28773144

  11. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy.

    PubMed

    Aye, Thanda; Thein, Soe; Hlaing, Thaingi

    2016-01-01

    [Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy.

  12. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy

    PubMed Central

    Aye, Thanda; Thein, Soe; Hlaing, Thaingi

    2016-01-01

    [Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy. PMID:27065561

  13. Effects of strength training, detraining and retraining in muscle strength, hypertrophy and functional tasks in older female adults.

    PubMed

    Correa, Cleiton S; Cunha, Giovani; Marques, Nise; Oliveira-Reischak, Ãlvaro; Pinto, Ronei

    2016-07-01

    Previous studies presented different results regarding the maintenance time of muscular adaptations after strength training and the ability to resume the gains on muscular performance after resumption of the training programme. This study aimed to verify the effect of strength training on knee extensors and elbow flexor muscle strength, rectus femoris muscle volume and functional performance in older female adults after 12 weeks of strength training, 1 year of detraining and followed by 12 weeks of retraining. Twelve sedentary older women performed 12 weeks of strength training, 1 year of detraining and 12 weeks of retraining. The strength training was performed twice a week, and the assessment was made four times: at the baseline, after the strength training, after the detraining and after the retraining. The knee extensor and elbow flexor strength, rectus femoris muscle volume and functional task were assessed. Strength of knee extensor and elbow flexor muscles, rectus femoris muscle volume and 30-s sit-to-stand increased from baseline to post-training (respectively, 40%, 70%, 38% and 46%), decreased after detraining (respectively, -36%, -64%, -35% and -43%) and increased again these parameters after retraining (35%, 68%, 36% and 42%). Strength training induces gains on strength and hypertrophy, also increased the performance on functional tasks after the strength training. The stoppage of the strength caused strength loss and reduction of functional performance. The resumption of the strength training promoted the same gains of muscular performance in older female adults. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  14. The Effect of Two Different Hand Exercises on Grip Strength, Forearm Circumference, and Vascular Maturation in Patients Who Underwent Arteriovenous Fistula Surgery

    PubMed Central

    Kong, Sangwon; Lee, Kyung Soo; Kim, Junho

    2014-01-01

    Objective To compare the effect of two different hand exercises on hand strength and vascular maturation in patients who underwent arteriovenous fistula surgery. Methods We recruited 18 patients who had chronic kidney disease and had undergone arteriovenous fistula surgery for hemodialysis. After the surgery, 10 subjects performed hand-squeezing exercise with GD Grip, and other 8 subjects used Soft Ball. The subjects continued the exercises for 4 weeks. The hand grip strength, pinch strength (tip, palmar and lateral pinch), and forearm circumference of the subjects were assessed before and after the hand-squeezing exercise. The cephalic vein size, blood flow velocity and volume were also measured by ultrasonography in the operated limb. Results All of the 3 types of pinch strengths, grip strength, and forearm circumference were significantly increased in the group using GD Grip. Cephalic vein size and blood flow volume were also significantly increased. However, blood flow velocity showed no difference after the exercise. The group using Soft Ball showed a significant increase in the tip and lateral pinch strength and forearm circumference. The cephalic vein size and blood flow volume were also significantly increased. On comparing the effect of the two different hand exercises, hand-squeezing exercise with GD Grip had a significantly better effect on the tip and palmar pinch strength than hand-squeezing exercise with Soft Ball. The effect on cephalic vein size was not significantly different between the two groups. Conclusion The results showed that hand squeezing exercise with GD Grip was more effective in increasing the tip and palmar pinch strength compared to hand squeezing exercise with soft ball. PMID:25379494

  15. Contributions of neural excitability and voluntary activation to quadriceps muscle strength following anterior cruciate ligament reconstruction.

    PubMed

    Lepley, Adam S; Ericksen, Hayley M; Sohn, David H; Pietrosimone, Brian G

    2014-06-01

    Persistent quadriceps weakness is common following anterior cruciate ligament reconstruction (ACLr). Alterations in spinal-reflexive excitability, corticospinal excitability and voluntary activation have been hypothesized as underlying mechanisms contributing to quadriceps weakness. The aim of this study was to evaluate the predictive capabilities of spinal-reflexive excitability, corticospinal excitability and voluntary activation on quadriceps strength in healthy and ACLr participants. Quadriceps strength was measured using maximal voluntary isometric contractions (MVIC). Voluntary activation was quantified via the central activation ratio (CAR). Corticospinal and spinal-reflexive excitability were measured using active motor thresholds (AMT) and Hoffmann reflexes normalized to maximal muscle responses (H:M), respectively. ACLr individuals were also split into high and low strength subsets based on MVIC. CAR was the only significant predictor in the healthy group. In the ACLr group, CAR and H:M significantly predicted 47% of the variance in MVIC. ACLr individuals in the high strength subset demonstrated significantly higher CAR and H:M than those in the low strength subset. Increased quadriceps voluntary activation, spinal-reflexive excitability and corticospinal excitability relates to increased quadriceps strength in participants following ACLr. Rehabilitation strategies used to target neural alterations may be beneficial for the restoration of muscle strength following ACLr. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Effects of combined endurance and strength training on muscle strength, power and hypertrophy in 40-67-year-old men.

    PubMed

    Karavirta, L; Häkkinen, A; Sillanpää, E; García-López, D; Kauhanen, A; Haapasaari, A; Alen, M; Pakarinen, A; Kraemer, W J; Izquierdo, M; Gorostiaga, E; Häkkinen, K

    2011-06-01

    Both strength and endurance training have several positive effects on aging muscle and physical performance of middle-aged and older adults, but their combination may compromise optimal adaptation. This study examined the possible interference of combined strength and endurance training on neuromuscular performance and skeletal muscle hypertrophy in previously untrained 40-67-year-old men. Maximal strength and muscle activation in the upper and lower extremities, maximal concentric power, aerobic capacity and muscle fiber size and distribution in the vastus lateralis muscle were measured before and after a 21-week training period. Ninety-six men [mean age 56 (SD 7) years] completed high-intensity strength training (S) twice a week, endurance training (E) twice a week, combined training (SE) four times per week or served as controls (C). SE and S led to similar gains in one repetition maximum strength of the lower extremities [22 (9)% and 21 (8)%, P<0.001], whereas E and C showed minor changes. Cross-sectional area of type II muscle fibers only increased in S [26 (22)%, P=0.002], while SE showed an inconsistent, non-significant change [8 (35)%, P=0.73]. Combined training may interfere with muscle hypertrophy in aging men, despite similar gains in maximal strength between the strength and the combined training groups. © 2009 John Wiley & Sons A/S.

  17. Velocity-strengthening friction significantly affects interfacial dynamics, strength and dissipation

    PubMed Central

    Bar-Sinai, Yohai; Spatschek, Robert; Brener, Efim A.; Bouchbinder, Eran

    2015-01-01

    Frictional interfaces abound in natural and man-made systems, yet their dynamics are not well-understood. Recent extensive experimental data have revealed that velocity-strengthening friction, where the steady-state frictional resistance increases with sliding velocity over some range, is a generic feature of such interfaces. This physical behavior has very recently been linked to slow stick-slip motion. Here we elucidate the importance of velocity-strengthening friction by theoretically studying three variants of a realistic friction model, all featuring identical logarithmic velocity-weakening friction at small sliding velocities, but differ in their higher velocity behaviors. By quantifying energy partition (e.g. radiation and dissipation), the selection of interfacial rupture fronts and rupture arrest, we show that the presence or absence of strengthening significantly affects the global interfacial resistance and the energy release during frictional instabilities. Furthermore, we show that different forms of strengthening may result in events of similar magnitude, yet with dramatically different dissipation and radiation rates. This happens because the events are mediated by rupture fronts with vastly different propagation velocities, where stronger velocity-strengthening friction promotes slower rupture. These theoretical results may have significant implications on our understanding of frictional dynamics. PMID:25598161

  18. Flexural Strength of Polymethyl Methacrylate Repaired with Fiberglass.

    PubMed

    Golbidi, Fariba; Pozveh, Maryam Amini

    2017-07-01

    The purpose of this experimental study was to discover a method to increase the strength of repaired polymethyl methacrylate (PMMA) samples. In this experimental study, 40 specimens with the dimensions of 65×10×2.5mm 3 were fabricated using heat-curing acrylic resin. Sixteen specimens were repaired with fiberglass and self-curing PMMA, while 16 samples were repaired with self-curing PMMA. Eight specimens were left intact as the control group. Afterwards, the flexural strengths of the repaired and intact specimens were measured by three-point bending test in a universal testing machine. Data were analyzed with one-way analysis of variance (ANOVA) and Tukey's HSD and LSD tests. The level of significance was set at P<0.05. The mean flexural strength of the samples repaired with fiberglass was higher than that of the other repaired samples. However, the difference was statistically significant only with respect to the Meliodent group (P=0.008). Impregnated fiberglass could be used in the repair of denture bases to improve the flexural strength. In terms of the fracture site, it can be concluded that the lower flexural strength of the auto-polymerizing acryl compared to that of the heat-curing type was the main reason for the occurrence of fractures, rather than the weak bond between heat-curing and auto-polymerizing acrylic resins.

  19. Different Levels of Eccentric Resistance during Eight Weeks of Training Affect Muscle Strength and Lean Tissue Mass

    NASA Technical Reports Server (NTRS)

    English, K. L.; Loehr, J. A.; Lee, S. M. C.; Laughlin, M. S.; Hagan, R. D.

    2008-01-01

    Coupling concentric and eccentric muscle contractions appears to be important in the development of muscle strength and hypertrophy. The interim Resistive Exercise Device (iRED) currently used aboard the International Space Station does not seem to be as effective as free weight training in ambulatory subjects and has not completely protected against muscular deconditioning due to space flight. The lack of protection during space flight could be caused by iRED's proportionally lower eccentric resistance (60-70%) compared to concentric resistance. PURPOSE: To determine the effects of 8 wks of lower body resistive exercise training using five levels of eccentric resistance on muscle strength and lean tissue mass. METHODS: Forty untrained males (34.9 +/- 7 yrs, 80.9 +/- 9.8 kg, 178.2 +/- 7.1 cm; mean +/- SD) completed three 1-repetition maximum (1-RM) strength tests for both the supine leg press (LP) and supine heel raise (HR) prior to training; subjects were matched for LP strength and randomly assigned to one of five training groups. Concentric load (% 1-RM) was constant across groups during training, but each group trained with different levels of eccentric load (0%, 33%, 66%, 100%, or 138% of concentric). Subjects trained 3 d / wk for 8 wks using a periodized program for LP and HR based on percentages of the highest pre-training 1-RM. LP and HR 1-RM and leg lean mass (LLM; assessed by DEXA) were measured pre- and post-training. A two-way ANOVA was used to analyze all dependent measures. Tukey's post hoc tests were used to test significant main effects. Within group pre- to post-training changes were compared using paired t-tests with a Bonferroni adjustment. Statistical significance was set a priori at p 0.05. All data are expressed as mean +/- SE. RESULTS: LP 1-RM strength increased significantly in all groups pre- to post-training. The 138% group increase (20.1 +/- 3.7%) was significantly greater than the 0% (7.9 +/- 2.8%), 33% (7.7 +/- 4.6%), and 66% (7.5 +/- 4

  20. Specificity of endurance, sprint and strength training on physical performance capacity in young athletes.

    PubMed

    Häkkinen, K; Mero, A; Kauhanen, H

    1989-03-01

    Three prebubescent athlete groups of endurance runners (E; n = 4), sprinters (S; n = 4) and weightlifters (WL; n = 4) and one control group (C; n = 6) as well as one junior but postpubescent weightlifter group (JWL; n = 6) volunteered as subjects in order to investigate specific effects of endurance, sprint and strength training on physical performance capacity during a 1 year follow-up period. The prepubescent E-group had higher (p less than 0.05) VO2 max (66.5 +/- 2.9 ml x kg1 x min-1) already at the beginning of the study than the other three groups. The prepubescent WL-group demonstrated greater (p less than 0.05) maximal muscular strength than the E-group and the WL-group increased its strength greatly by 21.4% (p less than 0.05) during the follow-up. No significant differences were observed in physical performance capacity between the prepubescent WL- and S-groups. Both groups demonstrated a slightly (ns.) better force-time curve recorded from the leg extensor muscles than the E-group and significant (p less than 0.05) increases occurred in these two groups in dynamic explosive performance during the follow-up. The postpubescent JWL-group demonstrated much greater (p less than 0.001) muscular mass and maximal strength than the prepubescent groups. No significant changes occurred in explosive types of performances in these athletes but significant (p less than 0.05) increase took place in the maximal neural activation and strength of the leg extensor muscles during the 1 year.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Improved Tensile Adhesion Specimens for High Strength Epoxy Systems in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Haddock, M. Reed; McLennan, Michael L.

    2000-01-01

    An improved tensile adhesion button has been designed and tested that results in higher measured tensile adhesion strength while providing increased capability for testing high strength epoxy adhesive systems. The best attributes of two well-established tensile button designs were combined and refined into an optimized tensile button. The most significant design change to the tensile button was to improve alignment of the bonded tensile button specimens during tensile testing by changing the interface between the tensile button and the tensile test machine. The established or old button design uses a test fixture that pulls from a grooved annulus or anvil head while the new button design pulls from a threaded hole in the centerline of the button. Finite element (FE) analysis showed that asymmetric loading of the established anvil head tensile button significantly increases the stress concentration in the adhesive, causing failure at lower tensile test loads. The new tensile button was designed to eliminate asymmetric loading and eliminate misalignment sensitivity. Enhanced alignment resulted in improved tensile adhesion strength measurement up to 13.8 MPa (2000psi) over the established button design. Another design change increased the capability of the button by increasing the threaded hole diameter allowing it to test high strength epoxy systems up to 85 MPa(less than 12,000 psi). The improved tensile button can be used in button- to-button or button-to-panel configurations.

  2. Influence of dentin pretreatment on bond strength of universal adhesives.

    PubMed

    Poggio, Claudio; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco; Scribante, Andrea

    2017-01-01

    Objective: The purpose of the present study was to compare bond strength of different universal adhesives under three different testing conditions: when no pretreatment was applied, after 37% phosphoric acid etching and after glycine application. Materials and methods: One hundred and fifty bovine permanent mandibular incisors were used as a substitute for human teeth. Five different universal adhesives were tested: Futurabond M+, Scotchbond Universal, Clearfil Universal Bond, G-Premio BOND, Peak Universal Bond. The adhesive systems were applied following each manufacturer's instructions. The teeth were randomly assigned to three different dentin surface pretreatments: no pretreatment agent (control), 37% phosphoric acid etching, glycine pretreatment. The specimens were placed in a universal testing machine in order to measure and compare bond strength values. Results: The Kruskal-Wallis analysis of variance and the Mann-Whitney test were applied to assess significant differences among the groups. Dentin pretreatments provided different bond strength values for the adhesives tested, while similar values were registered in groups without dentin pretreatment. Conclusions: In the present report, dentin surface pretreatment did not provide significant differences in shear bond strength values of almost all groups. Acid pretreatment lowered bond strength values of Futurabond and Peak Universal Adhesives, whereas glycine pretreatment increased bond strength values of G Praemio Bond adhesive system.

  3. Influence of dentin pretreatment on bond strength of universal adhesives

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco; Scribante, Andrea

    2017-01-01

    Abstract Objective: The purpose of the present study was to compare bond strength of different universal adhesives under three different testing conditions: when no pretreatment was applied, after 37% phosphoric acid etching and after glycine application. Materials and methods: One hundred and fifty bovine permanent mandibular incisors were used as a substitute for human teeth. Five different universal adhesives were tested: Futurabond M+, Scotchbond Universal, Clearfil Universal Bond, G-Premio BOND, Peak Universal Bond. The adhesive systems were applied following each manufacturer’s instructions. The teeth were randomly assigned to three different dentin surface pretreatments: no pretreatment agent (control), 37% phosphoric acid etching, glycine pretreatment. The specimens were placed in a universal testing machine in order to measure and compare bond strength values. Results: The Kruskal–Wallis analysis of variance and the Mann–Whitney test were applied to assess significant differences among the groups. Dentin pretreatments provided different bond strength values for the adhesives tested, while similar values were registered in groups without dentin pretreatment. Conclusions: In the present report, dentin surface pretreatment did not provide significant differences in shear bond strength values of almost all groups. Acid pretreatment lowered bond strength values of Futurabond and Peak Universal Adhesives, whereas glycine pretreatment increased bond strength values of G Praemio Bond adhesive system. PMID:28642929

  4. Study on the strength characteristics of High strength concrete with Micro steel fibers

    NASA Astrophysics Data System (ADS)

    Gowdham, K.; Sumathi, A.; Saravana Raja Mohan, K.

    2017-07-01

    The study of High Strength Concrete (HSC) has become interesting as concrete structures grow taller and larger. The usage of HSC in structures has been increased worldwide and has begun to make an impact in India. Ordinary cementitious materials are weak under tensile loads and fiber reinforced cementitious composites (FRCCs) have been developed to improve this weak point. High Strength concrete containing Alccofine as mineral admixture and reinforced with micro steel fibers were cast and tested to study the mechanical properties. The concrete were designed to have compressive strength of 60 MPa. Mixtures containing 0% and 10% replacement of cement by Alccofine and with 1%, 2% and 3% of micro steel fibers by weight of concrete were prepared. Mixtures incorporating Alccofine with fibers developed marginal increase in strength properties at all curing days when compared to control concrete.

  5. Reduced memory skills and increased hair cortisol levels in recent Ecstasy/MDMA users: significant but independent neurocognitive and neurohormonal deficits.

    PubMed

    Downey, Luke A; Sands, Helen; Jones, Lewis; Clow, Angela; Evans, Phil; Stalder, Tobias; Parrott, Andrew C

    2015-05-01

    The goals of this study were to measure the neurocognitive performance of recent users of recreational Ecstasy and investigate whether it was associated with the stress hormone cortisol. The 101 participants included 27 recent light users of Ecstasy (one to four times in the last 3 months), 23 recent heavier Ecstasy users (five or more times) and 51 non-users. Rivermead paragraph recall provided an objective measure for immediate and delayed recall. The prospective and retrospective memory questionnaire provided a subjective index of memory deficits. Cortisol levels were taken from near-scalp 3-month hair samples. Cortisol was significantly raised in recent heavy Ecstasy users compared with controls, whereas hair cortisol in light Ecstasy users was not raised. Both Ecstasy groups were significantly impaired on the Rivermead delayed word recall, and both groups reported significantly more retrospective and prospective memory problems. Stepwise regression confirmed that lifetime Ecstasy predicted the extent of these memory deficits. Recreational Ecstasy is associated with increased levels of the bio-energetic stress hormone cortisol and significant memory impairments. No significant relationship between cortisol and the cognitive deficits was observed. Ecstasy users did display evidence of a metacognitive deficit, with the strength of the correlations between objective and subjective memory performances being significantly lower in the Ecstasy users. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields

    NASA Astrophysics Data System (ADS)

    Koppes, Abigail N.; Seggio, Angela M.; Thompson, Deanna M.

    2011-08-01

    Axonal extension is influenced by a variety of external guidance cues; therefore, the development and optimization of a multi-faceted approach is probably necessary to address the intricacy of functional regeneration following nerve injury. In this study, primary dissociated neonatal rat dorsal root ganglia neurons and Schwann cells were examined in response to an 8 h dc electrical stimulation (0-100 mV mm-1). Stimulated samples were then fixed immediately, immunostained, imaged and analyzed to determine Schwann cell orientation and characterize neurite outgrowth relative to electric field strength and direction. Results indicate that Schwann cells are viable following electrical stimulation with 10-100 mV mm-1, and retain a normal morphology relative to unstimulated cells; however, no directional bias is observed. Neurite outgrowth was significantly enhanced by twofold following exposure to either a 50 mV mm-1 electric field (EF) or co-culture with unstimulated Schwann cells by comparison to neurons cultured alone. Neurite outgrowth was further increased in the presence of simultaneously applied cues (Schwann cells + 50 mV mm-1 dc EF), exhibiting a 3.2-fold increase over unstimulated control neurons, and a 1.2-fold increase over either neurons cultured with unstimulated Schwann cells or the electrical stimulus alone. These results indicate that dc electric stimulation in combination with Schwann cells may provide synergistic guidance cues for improved axonal growth relevant to nerve injuries in the peripheral nervous system.

  7. Bond strength and microleakage of current dentin adhesives.

    PubMed

    Fortin, D; Swift, E J; Denehy, G E; Reinhardt, J W

    1994-07-01

    The purpose of this in vitro study was to evaluate shear bond strengths and microleakage of seven current-generation dentin adhesive systems. Standard box-type Class V cavity preparations were made at the cemento-enamel junction on the buccal surfaces of eighty extracted human molars. These preparations were restored using a microfill composite following application of either All-Bond 2 (Bisco), Clearfil Liner Bond (Kuraray), Gluma 2000 (Miles), Imperva Bond (Shofu), OptiBond (Kerr), Prisma Universal Bond 3 (Caulk), Scotchbond Multi-Purpose (3M), or Scotchbond Dual-Cure (3M) (control). Lingual dentin of these same teeth was exposed and polished to 600-grit. Adhesives were applied and composite was bonded to the dentin using a gelatin capsule technique. Specimens were thermocycled 500 times. Shear bond strengths were determined using a universal testing machine, and microleakage was evaluated using a standard silver nitrate staining technique. Clearfill Liner Bond and OptiBond, adhesive systems that include low-viscosity, low-modulus intermediate resins, had the highest shear bond strengths (13.3 +/- 2.3 MPa and 12.9 +/- 1.5 MPa, respectively). Along with Prisma Universal Bond 3, they also had the least microleakage at dentin margins of Class V restorations. No statistically significant correlation between shear bond strength and microleakage was observed in this study. Adhesive systems that include a low-viscosity intermediate resin produced the high bond strengths and low microleakage. Similarly, two materials with bond strengths in the intermediate range had significantly increased microleakage, and one material with a bond strength in the low end of the spectrum exhibited microleakage that was statistically greater. Thus, despite the lack of statistical correlation, there were observable trends.

  8. Resistance Training for Muscle Weakness in Multiple Sclerosis: Direct Versus Contralateral Approach in Individuals With Ankle Dorsiflexors' Disparity in Strength.

    PubMed

    Manca, Andrea; Cabboi, Maria Paola; Dragone, Daniele; Ginatempo, Francesca; Ortu, Enzo; De Natale, Edoardo Rosario; Mercante, Beniamina; Mureddu, Giovanni; Bua, Guido; Deriu, Franca

    2017-07-01

    To compare effects of contralateral strength training (CST) and direct strength training of the more affected ankle dorsiflexors on muscle performance and clinical functional outcomes in people with multiple sclerosis (MS) exhibiting interlimb strength asymmetry. Randomized controlled trial. University hospital. Individuals with relapsing-remitting MS (N=30) and mild-to-moderate disability (Expanded Disability Status Scale score ≤6) presenting with ankle dorsiflexors' strength disparity. Participants were randomly assigned to a CST (n=15) or direct strength training (n=15) group performing 6 weeks of maximal intensity strength training of the less or more affected dorsiflexors, respectively. Maximal strength, endurance to fatigue, and mobility outcomes were assessed before, at the intervention end, and at 12-week follow-up. Strength and fatigue parameters were measured after 3 weeks of training (midintervention). In the more affected limb of both groups, pre- to postintervention significant increases in maximal strength (P≤.006) and fatigue endurance (P≤.04) were detected along with consistent retention of these improvements at follow-up (P≤.04). At midintervention, the direct strength training group showed significant improvements (P≤.002), with no further increase at postintervention, despite training continuation. Conversely, the CST group showed nonsignificant strength gains, increasing to significance at postintervention (P≤.003). In both groups, significant pre- to postintervention improvements in mobility outcomes (P≤.03), not retained at follow-up, were observed. After 6 weeks of training, CST proved as effective as direct strength training in enhancing performance of the more affected limb with a different time course, which may have practical implications in management of severely weakened limbs where direct strength training is not initially possible. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc

  9. Grain-refining heat treatments to improve cryogenic toughness of high-strength steels

    NASA Technical Reports Server (NTRS)

    Rush, H. F.

    1984-01-01

    The development of two high Reynolds number wind tunnels at NASA Langley Research Center which operate at cryogenic temperatures with high dynamic pressures has imposed severe requirements on materials for model construction. Existing commercial high strength steels lack sufficient toughness to permit their safe use at temperatures approaching that of liquid nitrogen (-320 F). Therefore, a program to improve the cryogenic toughness of commercial high strength steels was conducted. Significant improvement in the cryogenic toughness of commercial high strength martensitic and maraging steels was demonstrated through the use of grain refining heat treatments. Charpy impact strength at -320 F was increased by 50 to 180 percent for the various alloys without significant loss in tensile strength. The grain sizes of the 9 percent Ni-Co alloys and 200 grade maraging steels were reduced to 1/10 of the original size or smaller, with the added benefit of improved machinability. This grain refining technique should permit these alloys with ultimate strengths of 220 to 270 ksi to receive consideration for cryogenic service.

  10. Maturity- and sex-related changes in tibial bone geometry, strength and bone-muscle strength indices during growth: a 20-month pQCT study.

    PubMed

    Macdonald, Heather M; Kontulainen, Saija A; Mackelvie-O'Brien, Kerry J; Petit, Moira A; Janssen, Patricia; Khan, Karim M; McKay, Heather A

    2005-06-01

    During growth, bone strength is conferred through subtle adaptations in bone mass and geometry in response to muscle forces. Few studies have examined the changes in bone geometry, strength and the bone-muscle strength relationship across maturity in boys and girls. Our aims were to describe (i) 20-month changes in bone geometry and strength at the tibial midshaft across three maturity groups of boys and girls, (ii) differences in these adaptations between sexes at the same approximate level of maturity and (iii) the bone-muscle strength relationship across maturity groups of boys and girls and between sexes. We used peripheral quantitative computed tomography (pQCT, Stratec XCT-2000) to measure change in total bone cross-sectional area (ToA, mm(2)), cortical area (CoA, mm(2)), average cortical thickness (C.Th., mm), section modulus (mm(3)) and muscle cross-sectional area (mm(2)) at the tibial midshaft (50% site) in 128 EARLY-, PERI- and POST-pubertal girls (n = 69, 11.9 +/- 0.6 years) and boys (n = 59, 12.0 +/- 0.6 years) across 20 months. We also calculated two bone-muscle strength indices (BMSI) for compression (CoA/MCSA) and bending [strength index/MCSA; where strength index = Z / (tibial length / 2)]. EARLY boys and girls had smaller ToA at baseline than same sex PERI or POST participants. There were no sex differences in ToA or CoA at baseline; however, boys increased both parameters significantly more than girls in every maturity group (8.5-11.1%, P < 0.01). These changes in bone geometry conferred greater gains in bone strength for boys compared with girls in each maturity group (13.8-15.6%, P < 0.01). Baseline BMSIs did not differ between sexes for EARLY and PERI groups, whereas BMSIs were significantly higher for POST boys compared with POST girls (P < 0.05). BMSIs decreased for EARLY and PERI girls (-7.4-(-1.1%)) whereas the ratios remained stable for EARLY and PERI boys (-0.6-2.5%). This sex difference in BMSI change was due to a relatively greater

  11. Hand grip strength and anthropometric characteristics in Italian female national basketball teams.

    PubMed

    Pizzigalli, Luisa; Micheletti Cremasco, Margherita; LA Torre, Antonio; Rainoldi, Alberto; Benis, Roberto

    2017-05-01

    The aim of this study was to investigate the influence of hand and body dimensions on hand grip strength and to define a reference scale for talent identification in basketball players. Body and hand anthropometric data and the maximal handgrip strength of 109 female Italian basketball National players (Under14-Seniores) were measured. Handgrip strength and arm length trend increased, raising the statistical significant differences only for players from the age of 19 (U20, Seniores) with respect to sub-elite groups (U14, U15) (P<0.05). Handgrip strength showed low positive correlations with height and Body Mass Index but a positive relationships with arm length (r=0.5; P<0.001). Findings underline training and years of practice have effects on increasing handgrip strength. Data show that to select female basketball players by arm length means selecting by handgrip strength. Thus it is possible to suggest that in addition to height, arm length could also be considered a useful parameter in young female talent identification.

  12. Significant Impacts of Increasing Aridity on the Arid Soil Microbiome.

    PubMed

    Neilson, Julia W; Califf, Katy; Cardona, Cesar; Copeland, Audrey; van Treuren, Will; Josephson, Karen L; Knight, Rob; Gilbert, Jack A; Quade, Jay; Caporaso, J Gregory; Maier, Raina M

    2017-01-01

    Global deserts occupy one-third of the Earth's surface and contribute significantly to organic carbon storage, a process at risk in dryland ecosystems that are highly vulnerable to climate-driven ecosystem degradation. The forces controlling desert ecosystem degradation rates are poorly understood, particularly with respect to the relevance of the arid-soil microbiome. Here we document correlations between increasing aridity and soil bacterial and archaeal microbiome composition along arid to hyperarid transects traversing the Atacama Desert, Chile. A meta-analysis reveals that Atacama soil microbiomes exhibit a gradient in composition, are distinct from a broad cross-section of nondesert soils, and yet are similar to three deserts from different continents. Community richness and diversity were significantly positively correlated with soil relative humidity (SoilRH). Phylogenetic composition was strongly correlated with SoilRH, temperature, and electrical conductivity. The strongest and most significant correlations between SoilRH and phylum relative abundance were observed for Acidobacteria , Proteobacteria , Planctomycetes , Verrucomicrobia , and Euryarchaeota (Spearman's rank correlation [ r s ] = >0.81; false-discovery rate [ q ] = ≤0.005), characterized by 10- to 300-fold decreases in the relative abundance of each taxon. In addition, network analysis revealed a deterioration in the density of significant associations between taxa along the arid to hyperarid gradient, a pattern that may compromise the resilience of hyperarid communities because they lack properties associated with communities that are more integrated. In summary, results suggest that arid-soil microbiome stability is sensitive to aridity as demonstrated by decreased community connectivity associated with the transition from the arid class to the hyperarid class and the significant correlations observed between soilRH and both diversity and the relative abundances of key microbial phyla

  13. Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates

    PubMed Central

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10−7 s−1 to 10−4 s−1 in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

  14. Comparison of the compressive strengths for stitched and toughened composite systems

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    1994-01-01

    The compression strength of a stitched and a toughened matrix graphite/epoxy composite was determined and compared to a baseline unstitched untoughened composite. Two different layups with a variety of test lengths were tested under both ambient and hot/wet conditions. No significant difference in strength was seen for the different materials when the gage lengths of the specimens were long enough to lead to a buckling failure. For shorter specimens, a 30 percent reduction in strength from the baseline was seen due to stitching for both a 48-ply quasi-isotropic and a (0/45/0/-45/90/-45/0/45/0)s laminate. Analysis of the results suggested that the decrease in strength was due to increased fiber misalignment due to the stitches. An observed increasing strength with decreasing gage length, which was seen for all materials, was explained with a size effect model. The model assumed a random distribution of flaws (misaligned fibers). The toughened materials showed a small increase in strength over the baseline material for both laminates presumably due to the compensating effects of a more compliant matrix and straighter fibers in the toughened material. The hot/wet strength of the stitched and baseline material fell 30 percent below their ambient strengths for shorter, nonbuckling specimen, while the strength of the toughened matrix material only fell 20 percent. Video images of the failing specimen were recorded and showed local failures prior to global collapse of the specimen. These images support the theory of a random distribution of flaws controlling composite failure. Failed specimen appearance, however, seems to be a misleading indication of the cause of failure.

  15. Changes in boron fiber strength due to surface removal by chemical etching

    NASA Technical Reports Server (NTRS)

    Smith, R. J.

    1976-01-01

    The effects of chemical etching on the tensile strength of commercial boron/tungsten fibers were investigated. Fibers with as-received diameters of 203, 143, and 100 micrometers were etched to diameters as small as 43 micrometers. The etching generally resulted in increasing fiber tensile strength with decreasing fiber diameter. And for the 203 micrometer fibers there was an accompanying significant decrease in the coefficient of variation of the tensile strength for diameters down to 89 micrometers. Heat treating these fibers above 1,173 K in a vacuum caused a marked decrease in the average tensile strength of at least 80 percent. But after the fibers were etched, their strengths exceeded the as-received strengths. The tensile strength behavior is explained in terms of etching effects on surface flaws and the residual stress pattern of the as-received fibers.

  16. Relationship between tongue strength, lip strength, and nutrition-related sarcopenia in older rehabilitation inpatients: a cross-sectional study

    PubMed Central

    Sakai, Kotomi; Nakayama, Enri; Tohara, Haruka; Kodama, Keiji; Takehisa, Takahiro; Takehisa, Yozo; Ueda, Koichiro

    2017-01-01

    Objective The objective of this study was to clarify the relationship between tongue strength, lip strength, and nutrition-related sarcopenia (NRS). Patients and methods A total of 201 older inpatients aged ≥65 years (70 men, median age: 84 years, interquartile range: 79–89 years) consecutively admitted for rehabilitation were included in this cross-sectional study. The main factors evaluated were the presence of NRS diagnosed by malnutrition using the Mini-Nutrition Assessment – Short Form, sarcopenia based on the criteria of the Asian Working Group for Sarcopenia, tongue strength, and lip strength. Other factors such as age, sex, comorbidity, physical function, cognitive function, and oral intake level were also assessed. Results In all, 78 (38.8%) patients were allocated to the NRS group, and 123 (61.2%) patients were allocated to the non-NRS group. The median tongue strength and lip strength (interquartile range) were significantly lower in the NRS group (tongue: 22.9 kPa [17.7–27.7 kPa] and lip: 7.2 N [5.6–9.8 N]) compared with the non-NRS group (tongue: 29.7 kPa [24.8–35.1 kPa] and lip: 9.9 N [8.4–12.3 N], P<0.001 for both). Multivariable logistic regression analysis showed that NRS was independently associated with tongue strength (odds ratio [OR] =0.93, 95% confidence interval [CI] 0.87–0.98, P=0.012) and lip strength (OR =0.76, 95% CI 0.66–0.88, P<0.001), even after adjusting for age, sex, comorbidity, physical function, cognitive function, and oral intake level. Conclusion The likelihood of occurrence of NRS decreased when tongue strength or lip strength increased. Tongue strength and lip strength may be important factors for preventing and improving NRS, regardless of the presence of low oral intake level in older rehabilitation inpatients. PMID:28814847

  17. Muscle strength and fatigue in newly diagnosed patients with myasthenia gravis.

    PubMed

    Vinge, Lotte; Andersen, Henning

    2016-10-01

    Dynamometry is increasingly used as an objective measurement of muscle strength in neurological diseases. No study has applied dynamometry in untreated newly diagnosed patients with myasthenia gravis (MG). Isometric muscle strength at the shoulder, knee, and ankle was determined in 21 MG patients before and after initial anti-myasthenic treatment. Isometric strength was compared with MG evaluation scales. Muscle strength was reduced for knee extensors and shoulder abductors but normal for ankle extensors. Isometric muscle strength did not correlate significantly with manual muscle testing (MG Composite). Dynamometry revealed improved muscle strength of up to 50% (median 17%; range -1.8-49.8) despite no change in the MG Composite score. Dynamometry appears to be a more sensitive method of identifying changes in limb strength than MG evaluation scales. This supports the use of dynamometry in MG patients, especially for evaluation of the effect of anti-myasthenic treatment. Muscle Nerve 54: 709-714, 2016. © 2016 Wiley Periodicals, Inc.

  18. The effects of a 12-week strength-training program on strength and functionality in women with fibromyalgia.

    PubMed

    Kingsley, J Derek; Panton, Lynn B; Toole, Tonya; Sirithienthad, Prawee; Mathis, Reed; McMillan, Victor

    2005-09-01

    To determine whether women with fibromyalgia benefit from strength training. Randomized controlled trial. Testing was completed at the university and training was completed at a local community wellness facility. Twenty-nine women (age range, 18-54 y) with fibromyalgia participated. Subjects were randomly assigned to a control (n=14; wait-listed for exercise) or strength (n=15) group. After the first 4 weeks, 7 (47%) women dropped from the strength group. Subjects underwent 12 weeks of training on 11 exercises, 2 times a week, performing 1 set of 8 to 12 repetitions at 40% to 60% of their maximal lifts and were progressed to 60% to 80%. Subjects were measured for strength, functionality, tender point sensitivity, and fibromyalgia impact. The strength group significantly (P< or =.05) improved upper- (strength, 39+/-11 to 42+/-12 kg; control, 38+/-13 to 38+/-12 kg) and lower- (strength, 68+/-28 to 82+/-25 kg; control, 61+/-25 to 61+/-26 kg) body strength. Upper-body functionality measured by the Continuous-Scale Physical Functional Performance test improved significantly (strength, 44+/-11 to 50+/-16U; control, 51+/-11 to 49+/-13U) after training. Tender point sensitivity and fibromyalgia impact did not change. Strength training improved strength and some functionality in women with fibromyalgia. Interventions with resistance have important implications on independence and quality of life issues for women with fibromyalgia.

  19. Adaptations in athletic performance after ballistic power versus strength training.

    PubMed

    Cormie, Prue; McGuigan, Michael R; Newton, Robert U

    2010-08-01

    To determine whether the magnitude of improvement in athletic performance and the mechanisms driving these adaptations differ in relatively weak individuals exposed to either ballistic power training or heavy strength training. Relatively weak men (n = 24) who could perform the back squat with proficient technique were randomized into three groups: strength training (n = 8; ST), power training (n = 8; PT), or control (n = 8). Training involved three sessions per week for 10 wk in which subjects performed back squats with 75%-90% of one-repetition maximum (1RM; ST) or maximal-effort jump squats with 0%-30% 1RM (PT). Jump and sprint performances were assessed as well as measures of the force-velocity relationship, jumping mechanics, muscle architecture, and neural drive. Both experimental groups showed significant (P < or = 0.05) improvements in jump and sprint performances after training with no significant between-group differences evident in either jump (peak power: ST = 17.7% +/- 9.3%, PT = 17.6% +/- 4.5%) or sprint performance (40-m sprint: ST = 2.2% +/- 1.9%, PT = 3.6% +/- 2.3%). ST also displayed a significant increase in maximal strength that was significantly greater than the PT group (squat 1RM: ST = 31.2% +/- 11.3%, PT = 4.5% +/- 7.1%). The mechanisms driving these improvements included significant (P < or = 0.05) changes in the force-velocity relationship, jump mechanics, muscle architecture, and neural activation that showed a degree of specificity to the different training stimuli. Improvements in athletic performance were similar in relatively weak individuals exposed to either ballistic power training or heavy strength training for 10 wk. These performance improvements were mediated through neuromuscular adaptations specific to the training stimulus. The ability of strength training to render similar short-term improvements in athletic performance as ballistic power training, coupled with the potential long-term benefits of improved maximal strength

  20. Variability of the pullout strength of cancellous bone screws with cement augmentation.

    PubMed

    Procter, P; Bennani, P; Brown, C J; Arnoldi, J; Pioletti, D P; Larsson, S

    2015-06-01

    Orthopaedic surgeons often face clinical situations where improved screw holding power in cancellous bone is needed. Injectable calcium phosphate cements are one option to enhance fixation. Paired screw pullout tests were undertaken in which human cadaver bone was augmented with calcium phosphate cement. A finite element model was used to investigate sensitivity to screw positional placement. Statistical analysis of the data concluded that the pullout strength was generally increased by cement augmentation in the in vitro human cadaver tests. However, when comparing the individual paired samples there were surprising results with lower strength than anticipated after augmentation, in apparent contradiction to the generally expected conclusion. Investigation using the finite element model showed that these strength reductions could be accounted for by small screw positional changes. A change of 0.5mm might result in predicted pullout force changes of up to 28%. Small changes in screw position might lead to significant changes in pullout strength sufficient to explain the lower than expected individual pullout values in augmented cancellous bone. Consequently whilst the addition of cement at a position of low strength would increase the pullout strength at that point, it might not reach the pullout strength of the un-augmented paired test site. However, the overall effect of cement augmentation produces a significant improvement at whatever point in the bone the screw is placed. The use of polymeric bone-substitute materials for tests may not reveal the natural variation encountered in tests using real bone structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of Instrumentation Techniques, Irrigant Solutions and Artificial accelerated Aging on Fiberglass Post Bond Strength to Intraradicular Dentin.

    PubMed

    Santana, Fernanda Ribeiro; Soares, Carlos José; Silva, Júlio Almeida; Alencar, Ana Helena Gonçalves; Renovato, Sara Rodrigues; Lopes, Lawrence Gonzaga; Estrela, Carlos

    2015-07-01

    To evaluate the effect of instrumentation techniques, irrigant solutions and specimen aging on fiberglass posts bond strength to intraradicular dentine. A total of 120 bovine teeth were prepared and randomized into control and experimental groups resulting from three study factors (instrumentation techniques, irrigant solutions, specimen aging). Posts were cemented with RelyX U100. Samples were submitted to push-out test and failure mode was evaluated under a confocal microscope. In specimens submitted to water artificial aging, nickel-titanium rotary instruments group presented higher bond strength values in apical third irrigated with NaOCl or chlorhexi-dine. Irrigation with NaOCl resulted in higher bond strength than ozonated water. Artificial aging resulted in significant bond strength increase. Adhesive cement-dentin failure was prevalent in all the groups. Root canal preparation with NiTi instruments associated with NaOCl irrigation and ethylenediaminetetra acetic acid (EDTA) increased bond strength of fiberglass posts cemented with self-adhesive resin cement to intraradicular dentine. Water artificial aging significantly increased post-Clinical significance: The understanding of factors that may influence the optimal bond between post-cement and cement-dentin are essential to the success of endodontically treated tooth restoration.

  2. Alumina fiber strength improvement

    NASA Technical Reports Server (NTRS)

    Pepper, R. T.; Nelson, D. C.

    1982-01-01

    The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation.

  3. Flexural Strength of Polymethyl Methacrylate Repaired with Fiberglass

    PubMed Central

    Golbidi, Fariba

    2017-01-01

    Objectives: The purpose of this experimental study was to discover a method to increase the strength of repaired polymethyl methacrylate (PMMA) samples. Materials and Methods: In this experimental study, 40 specimens with the dimensions of 65×10×2.5mm3 were fabricated using heat-curing acrylic resin. Sixteen specimens were repaired with fiberglass and self-curing PMMA, while 16 samples were repaired with self-curing PMMA. Eight specimens were left intact as the control group. Afterwards, the flexural strengths of the repaired and intact specimens were measured by three-point bending test in a universal testing machine. Data were analyzed with one-way analysis of variance (ANOVA) and Tukey’s HSD and LSD tests. The level of significance was set at P<0.05. Results: The mean flexural strength of the samples repaired with fiberglass was higher than that of the other repaired samples. However, the difference was statistically significant only with respect to the Meliodent group (P=0.008). Conclusions: Impregnated fiberglass could be used in the repair of denture bases to improve the flexural strength. In terms of the fracture site, it can be concluded that the lower flexural strength of the auto-polymerizing acryl compared to that of the heat-curing type was the main reason for the occurrence of fractures, rather than the weak bond between heat-curing and auto-polymerizing acrylic resins. PMID:29285033

  4. Isometric shoulder strength in young swimmers.

    PubMed

    McLaine, Sally J; Ginn, Karen A; Fell, James W; Bird, Marie-Louise

    2018-01-01

    The prevalence of shoulder pain in young swimmers is high. Shoulder rotation strength and the ratio of internal to external rotation strength have been reported as potential modifiable risk factors associated with shoulder pain. However, relative strength measures in elevated positions, which include flexion and extension, have not been established for the young swimmer. The aim of this study was to establish clinically useful, normative shoulder strength measures and ratios for swimmers (14-20 years) without shoulder pain. Cross-sectional, observational study. Swimmers (N=85) without a recent history of shoulder pain underwent strength testing of shoulder flexion and extension (in 140° abduction); and internal and external rotation (in 90° abduction). Strength tests were performed in supine using a hand-held dynamometer and values normalised to body weight. Descriptive statistics were calculated for strength and strength ratios (flexion:extension and internal:external rotation). Differences between groups (based on gender, history of pain, test and arm dominance) were explored using independent and paired t tests. Normative shoulder strength values and ratios were established for young swimmers. There was a significant difference (p<0.002) in relative strength between males and females for all tests with no differences in strength ratios. Relative strength of the dominant and non-dominant shoulders (except for extension); and for swimmers with and without a history of shoulder pain was not significantly different. A normal shoulder strength profile for the young swimmer has been established which provides a valuable reference for the clinician assessing shoulder strength in this population. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Strength training for children and adolescents.

    PubMed

    Faigenbaum, A D

    2000-10-01

    The potential benefits of youth strength training extend beyond an increase in muscular strength and may include favorable changes in selected health- and fitness-related measures. If appropriate training guidelines are followed, regular participation in a youth strength-training program has the potential to increase bone mineral density, improve motor performance skills, enhance sports performance, and better prepare our young athletes for the demands of practice and competition. Despite earlier concerns regarding the safety and efficacy of youth strength training, current public health objectives now aim to increase the number of boys and girls age 6 and older who regularly participate in physical activities that enhance and maintain muscular fitness. Parents, teachers, coaches, and healthcare providers should realize that youth strength training is a specialized method of conditioning that can offer enormous benefit but at the same time can result in serious injury if established guidelines are not followed. With qualified instruction, competent supervision, and an appropriate progression of the volume and intensity of training, children and adolescents cannot only learn advanced strength training exercises but can feel good about their performances, and have fun. Additional clinical trails involving children and adolescents are needed to further explore the acute and chronic effects of strength training on a variety of anatomical, physiological, and psychological parameters.

  6. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    NASA Astrophysics Data System (ADS)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  7. Making High-Tensile-Strength Amalgam Components

    NASA Technical Reports Server (NTRS)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  8. Patterns and correlates of grip strength change with age in Afro-Caribbean men.

    PubMed

    Forrest, Kimberly Y Z; Bunker, Clareann H; Sheu, Yahtyng; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M

    2012-05-01

    muscle strength is essential for physical functions and an indicator of morbidity and mortality in older adults. Among the factors associated with muscle strength loss with age, ethnicity has been shown to play an important role. to examine the patterns and correlates of muscle strength change with age in a population-based cohort of middle-aged and older Afro-Caribbean men. handgrip strength and body composition were measured in 1,710 Afro-Caribbean men. Data were also collected for demographic variables, medical history and lifestyle behaviours. the age range of the study population was 29-89 years. Grip strength increased below age 50 years, and decreased after age 50 years over 4.5-year follow-up. The average loss in grip strength was 2.2% (0.49% per year) for ages 50 years or older and 3.8% (0.64% per year) for ages 65 years or older. The significant independent predictors of grip strength loss included older age, a greater body mass index, lower initial arm lean mass and greater loss of arm lean mass. Afro-Caribbean men experience a significant decline in muscle strength with advanced age. The major independent factors associated with strength loss were similar to other ethnic groups, including age, body weight and lean mass.

  9. Reduced bone breakage and increased bone strength in free range laying hens fed omega-3 polyunsaturated fatty acid supplemented diets.

    PubMed

    Tarlton, John F; Wilkins, Lindsay J; Toscano, Michael J; Avery, Nick C; Knott, Lynda

    2013-02-01

    The omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are the immediate precursors to a number of important mediators of immunity, inflammation and bone function, with products of omega-6 generally thought to promote inflammation and favour bone resorption. Western diets generally provide a 10 to 20-fold deficit in omega-3 PUFAs compared with omega-6, and this is thought to have contributed to the marked rise in incidence of disorders of modern human societies, such as heart disease, colitis and perhaps osteoporosis. Many of our food production animals, fed on grains rich in omega-6, are also exposed to a dietary deficit in omega-3, with perhaps similar health consequences. Bone fragility due to osteoporotic changes in laying hens is a major economic and welfare problem, with our recent estimates of breakage rates indicating up to 95% of free range hens suffer breaks during lay. Free range hens housed in full scale commercial systems were provided diets supplemented with omega-3 alpha linolenic acid, and the skeletal benefits were investigated by comparison to standard diets rich in omega-6. There was a significant 40-60% reduction in keel bone breakage rate, and a corresponding reduction in breakage severity in the omega-3 supplemented hens. There was significantly greater bone density and bone mineral content, alongside increases in total bone and trabecular volumes. The mechanical properties of the omega-3 supplemented hens were improved, with strength, energy to break and stiffness demonstrating significant increases. Alkaline phosphatase (an osteoblast marker) and tartrate-resistant acid phosphatase (an osteoclast marker) both showed significant increases with the omega-3 diets, indicating enhanced bone turnover. This was corroborated by the significantly lower levels of the mature collagen crosslinks, hydroxylysyl pyridinoline, lysyl pyridinoline and histidinohydroxy-lysinonorleucine, with a corresponding significant shift in the mature

  10. Saturated fat consumption and the Theory of Planned Behaviour: exploring additive and interactive effects of habit strength.

    PubMed

    de Bruijn, Gert-Jan; Kroeze, Willemieke; Oenema, Anke; Brug, Johannes

    2008-09-01

    The additive and interactive effects of habit strength in the explanation of saturated fat intake were explored within the framework of the Theory of Planned Behaviour (TPB). Cross-sectional data were gathered in a Dutch adult sample (n=764) using self-administered questionnaires and analyzed using hierarchical regression analyses and simple slope analyses. Results showed that habit strength was a significant correlate of fat intake (beta=-0.11) and significantly increased the amount of explained variance in fat intake (R(2-change)=0.01). Furthermore, based on a significant interaction effect (beta=0.11), simple slope analyses revealed that intention was a significant correlate of fat intake for low levels (beta=-0.29) and medium levels (beta=-0.19) of habit strength, but a weaker and non-significant correlate for high levels (beta=-0.07) of habit strength. Higher habit strength may thus make limiting fat intake a non-intentional behaviour. Implications for information and motivation-based interventions are discussed.

  11. Beneficial use of off-specification fly ashes to increase the shear strength and stiffness of expansive soil-rubber (ESR) mixtures.

    DOT National Transportation Integrated Search

    2011-07-01

    The use of off-specification fly ashes to increase the shear strength and stiffness of an expansive soil-rubber (ESR) mixture is investigated systematically in this study. The off-specification fly ashes used include a high-sulfur content and a high-...

  12. Reference Values of Grip Strength, Prevalence of Low Grip Strength, and Factors Affecting Grip Strength Values in Chinese Adults.

    PubMed

    Yu, Ruby; Ong, Sherlin; Cheung, Osbert; Leung, Jason; Woo, Jean

    2017-06-01

    The objectives of this study were to update the reference values of grip strength, to estimate the prevalence of low grip strength, and to examine the impact of different aspects of measurement protocol on grip strength values in Chinese adults. A cross-sectional survey of Chinese men (n = 714) and women (n = 4014) aged 18-102 years was undertaken in different community settings in Hong Kong. Grip strength was measured with a digital dynamometer (TKK 5401 Grip-D; Takei, Niigata, Japan). Low grip strength was defined as grip strength 2 standard deviations or more below the mean for young adults. The effects of measurement protocol on grip strength values were examined in a subsample of 45 men and women with repeated measures of grip strength taken with a hydraulic dynamometer (Baseline; Fabrication Enterprises Inc, Irvington, NY), using pair t-tests, intraclass correlation coefficient, and Bland and Altman plots. Grip strength was greater among men than among women (P < .001) and the rate of decline differed between sexes (P < .001). The prevalence of low grip strength also increased with age, reaching a rate of 16.5% in men and 20.6% in women aged 65+. Although the TKK digital dynamometer gave higher grip strength values than the Baseline hydraulic dynamometer (P < .001), the degree of agreement between the 2 dynamometers was satisfactory. Higher grip strength values were also observed when the measurement was performed with the elbow extended in a standing position, compared with that with the elbow flexed at 90° in a sitting position, using the same dynamometer (P < .05). This study updated the reference values of grip strength and estimated the prevalence of low grip strength among Chinese adults spanning a wide age range. These findings might be useful for risk estimation and evaluation of interventions. However, grip strength measurements should be interpreted with caution, as grip strength values can be affected by type of dynamometer used

  13. Strength and microstructure of IPS Empress 2 glass-ceramic after different treatments.

    PubMed

    Oh, S C; Dong, J K; Lüthy, H; Schärer, P

    2000-01-01

    This investigation was designed to determine whether heat pressing and/or simulated heat treatments affect the flexure strength and microstructure of the lithium disilicate glass-ceramic of the IPS Empress 2 system. Four groups of the lithium disilicate glass-ceramic were prepared as follows: group 1 = as-received material; group 2 = heat-pressed material; group 3 = heat-pressed and stimulated initial heat-treated material; and group 4 = heat-pressed and simulated heat-treated material with full firings for a final restoration. Three-point bending tests and scanning electron microscopy (SEM) analysis were conducted. The flexure strength of group 2 was significantly higher than that of group 1. However, there were no significant differences in strength among groups 2, 3, and 4, or between groups 1 and 4. The SEM micrographs of the lithium disilicate glass-ceramic showed a closely packed, multidirectionally interlocking microstructure of numerous lithium disilicate crystals protruding from the glass matrix. The crystals in the glass matrix of the heat-pressed materials (groups 2, 3, and 4) were a little more homogeneous and about 2 times bigger than those of the as-received material (group 1). These changes of the microstructure were greatest between groups 1 and 2. However, there were no marked differences among groups 2, 3, and 4. Although there were significant increases in the strength and some changes of the microstructure after the heat-pressing operation, the combination of heat pressing and simulated subsequent heat treatments did not produce an increase of strength of IPS Empress 2 glass-ceramic.

  14. Effect of mirror use on lower extremity muscle strength of patients with chronic stroke.

    PubMed

    Kim, Myoung-Kwon; Choe, Yu-Won; Shin, Young-Jun; Peng, Cheng; Choi, Eun-Hong

    2018-02-01

    [Purpose] This study examines the effect on muscle strength of lower extremity muscle strength exercise while using a mirror on the non-paretic side in patients with chronic stroke. [Subjects and Methods] Subjects were randomly assigned to a non-mirror lower extremity exercise group (n=10), a mirror lower extremity exercise group (n=10), or a mirror lower extremity muscle strength exercise group (n=10). Subjects were asked to do the exercise assigned to their group (5 sets 30 times a day, 5 times weekly for 4 weeks) with general physical therapy in the hospital. Muscle strength in the knee extensor and flexor of paretic and non-paretic side were measured using electrical muscle testing device before and after the intervention. [Results] Muscle strength significantly increased within each group after intervention. No significant differences were found among the three groups. [Conclusion] This study showed that the lower extremity muscle strength exercise of the non-paretic side using a mirror has a positive effect on muscle strength in patient with chronic stroke.

  15. Individual responses to combined endurance and strength training in older adults.

    PubMed

    Karavirta, Laura; Häkkinen, Keijo; Kauhanen, Antti; Arija-Blázquez, Alfredo; Sillanpää, Elina; Rinkinen, Niina; Häkkinen, Arja

    2011-03-01

    A combination of endurance and strength training is generally used to seek further health benefits or enhanced physical performance in older adults compared with either of the training modes alone. The mean change within a training group, however, may conceal a wide range of individual differences in the responses. The purpose, therefore, was to examine the individual trainability of aerobic capacity and maximal strength, when endurance and strength training are performed separately or concurrently. For this study, 175 previously untrained volunteers, 89 men and 86 women between the ages of 40 and 67 yr, completed a 21-wk period of either strength training (S) twice a week, endurance training (E) twice a week, combined training (ES) four times per week, or served as controls. Training adaptations were quantified as peak oxygen uptake (VO2peak) in a bicycle ergometer test to exhaustion and maximal isometric bilateral leg extension force (MVC) in a dynamometer. A large range in training responses, similar to endurance or strength training alone, was also observed with combined endurance and strength training in both ΔVO2peak (from -8% to 42%) and ΔMVC (from -12% to 87%). There were no significant correlations between the training responses in VO2peak and MVC in the E, S, or especially in the ES group, suggesting that the same subjects did not systematically increase both aerobic capacity and maximal strength. The goal of combined endurance and strength training--increasing both aerobic capacity and maximal strength simultaneously--was only achieved by some of the older subjects. New means are needed to personalize endurance, strength, and especially combined endurance and strength training programs for optimal individual adaptations.

  16. Subcutaneous immunoglobulin preserves muscle strength in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Markvardsen, L H; Harbo, T; Sindrup, S H; Christiansen, I; Andersen, H; Jakobsen, J

    2014-12-01

    Subcutaneous immunoglobulin (SCIG) is superior to placebo treatment for maintenance of muscle strength during 12 weeks in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). The present study evaluated whether SCIG preserves muscle strength for 1 year in an open-label follow-up study. Seventeen responders to intravenous immunoglobulin (IVIG) who had participated in the previous study of SCIG versus placebo in CIDP were included. After one IVIG infusion 2 weeks prior to baseline, all continued on SCIG treatment at weekly equal dosage and were evaluated after 3, 6 and 12 months. Primary end-points were changes in muscle strength evaluated by isokinetic dynamometry in four affected muscle groups and a composite score of muscle performance and function tests, including Medical Research Council (MRC) score, grip strength, 40-m walking test (40-MWT) and nine-hole peg test (9-HPT). Secondary end-points were changes of each of the listed parameters at each time point as well as an overall disability sum score (ODSS). The dose of SCIG was significantly unaltered during the follow-up period. Overall the isokinetic dynamometry value increased by 7.2% (P = 0.033) and after 3, 6 and 12 months by 5.7%, 8.2% and 6.8% (ns). The overall composite score at all time intervals and for each interval remained unchanged. Amongst the secondary parameters the MRC score increased significantly by 1.7% (P = 0.007), whereas grip strength, 40-MWT, 9-HPT and ODSS remained unchanged. SCIG preserves muscle strength and functional ability in patients with CIDP who previously responded to IVIG. SCIG should be considered as an alternative in long-term treatment of CIDP patients. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.

  17. Effect of silver nano particles on flexural strength of acrylic resins.

    PubMed

    Sodagar, Ahmad; Kassaee, Mohammad Zaman; Akhavan, Azam; Javadi, Negar; Arab, Sepideh; Kharazifard, Mohammad Javad

    2012-04-01

    Poly(methyl methacrylate), PMMA, is widely used for fabrication of removable orthodontic appliances. Silver nano particles (AgNps) have been added to PMMA because of their antimicrobial properties. The aim of this study is to investigate the effect of AgNps on the flexural strength of PMMA. Acrylic liquid containing 0.05% and 0.2% AgNps was prepared for two kinds of acrylic resins: Rapid Repair &Selecta Plus. Two groups without AgNps were used as control groups. For each one, flexural strength was investigated via Three Point Bending method for the 15 acrylic blocks. Two-way ANOVA, one way ANOVA and Tukey tests were used for statistical analysis. Rapid Repair without AgNps showed the highest flexural strength. Addition of 0.05% AgNps to Rapid Repair, significantly decreased its flexural strength while, continuing the addition up to 0.2% increased it nearly up to its primary level. In contrast, addition of AgNps to Selecta Plus increased its flexural strength but addition of 0.05% nano particles was more effective than 0.2%. The effect of AgNps on flexural strength of PMMA depends on several factors including the type of acrylics and the concentrations of nano particles. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  18. On the strength of random fiber networks

    NASA Astrophysics Data System (ADS)

    Deogekar, S.; Picu, R. C.

    2018-07-01

    Damage accumulation and failure in random fiber networks is of importance in a variety of applications, from design of synthetic materials, such as paper and non-wovens, to accidental tearing of biological tissues. In this work we study these processes using three-dimensional models of athermal fiber networks, focusing attention on the modes of failure and on the relationship between network strength and network structural parameters. We consider network failure at small and large strains associated with the rupture of inter-fiber bonds. It is observed that the strength increases linearly with the network volume fraction and with the bond strength, while the stretch at peak stress is inversely related to these two parameters. A small fraction of the bonds rupture before peak stress and this fraction increases with increasing failure stretch. Rendering the bond strength stochastic causes a reduction of the network strength. However, heterogeneity retards damage localization and increases the stretch at peak stress, therefore promoting ductility.

  19. PKMζ Inhibition Reverses Learning-Induced Increases in Hippocampal Synaptic Strength and Memory during Trace Eyeblink Conditioning

    PubMed Central

    Madroñal, Noelia; Gruart, Agnès; Sacktor, Todd C.; Delgado-García, José M.

    2010-01-01

    A leading candidate in the process of memory formation is hippocampal long-term potentiation (LTP), a persistent enhancement in synaptic strength evoked by the repetitive activation of excitatory synapses, either by experimental high-frequency stimulation (HFS) or, as recently shown, during actual learning. But are the molecular mechanisms for maintaining synaptic potentiation induced by HFS and by experience the same? Protein kinase Mzeta (PKMζ), an autonomously active atypical protein kinase C isoform, plays a key role in the maintenance of LTP induced by tetanic stimulation and the storage of long-term memory. To test whether the persistent action of PKMζ is necessary for the maintenance of synaptic potentiation induced after learning, the effects of ZIP (zeta inhibitory peptide), a PKMζ inhibitor, on eyeblink-conditioned mice were studied. PKMζ inhibition in the hippocampus disrupted both the correct retrieval of conditioned responses (CRs) and the experience-dependent persistent increase in synaptic strength observed at CA3-CA1 synapses. In addition, the effects of ZIP on the same associative test were examined when tetanic LTP was induced at the hippocampal CA3-CA1 synapse before conditioning. In this case, PKMζ inhibition both reversed tetanic LTP and prevented the expected LTP-mediated deleterious effects on eyeblink conditioning. Thus, PKMζ inhibition in the CA1 area is able to reverse both the expression of trace eyeblink conditioned memories and the underlying changes in CA3-CA1 synaptic strength, as well as the anterograde effects of LTP on associative learning. PMID:20454458

  20. The effects of strength and endurance training in patients with rheumatoid arthritis.

    PubMed

    Strasser, Barbara; Leeb, Gunther; Strehblow, Christoph; Schobersberger, Wolfgang; Haber, Paul; Cauza, Edmund

    2011-05-01

    Patients with rheumatoid arthritis (RA) suffer from muscle loss, causing reduced muscle strength and endurance. The current study aimed to: (1) evaluate the effects of combined strength and endurance training (CT) on disease activity and functional ability in patients with RA and (2) investigate the benefits of a 6-month supervised CT program on muscle strength, cardio-respiratory fitness, and body composition of RA patients. Forty patients with RA, aged 41-73 years, were recruited for the current study. Twenty of these patients (19 females, one male) were randomly assigned to a 6-month supervised CT program; 20 patients (17 females, three males) served as controls. Within the CT program, strength training consisted of sets of weight bearing exercises for all major muscle groups. In addition to strength training, systematic endurance training was performed on a cycle ergometer two times per week. For RA patients involved in CT, disease activity (p = 0.06) and pain (p = 0.05) were reduced after the 6-month training period while general health (p = 0.04) and functional ability (p = 0.06) improved. Cardio-respiratory endurance was found to have improved significantly (by 10%) after 6 months of CT (p < 0.001). The overall strength of patients undertaking CT increased by an average of 14%. Lean body mass increased, and the percentage of body fat was found to decrease significantly (p < 0.05). A combination of strength and endurance training resulted in considerable improvements in RA patients' muscle strength and cardio-respiratory endurance, accompanied by positive changes in body composition and functional ability. Long-term training appears to be effective in reducing disease activity and associated pain and was found to have no deleterious effects.

  1. Removal of natural organic matter by titanium tetrachloride: The effect of total hardness and ionic strength.

    PubMed

    Zhao, Y X; Shon, H K; Phuntsho, S; Gao, B Y

    2014-02-15

    This study is the first attempt to investigate the effect of total hardness and ionic strength on coagulation performance and the floc characteristics of titanium tetrachloride (TiCl4). Membrane fouling under different total hardness and ionic strength conditions was also evaluated during a coagulation-ultrafiltration (C-UF) hybrid process. Coagulation experiments were performed with two simulated waters, using humic acid (HA, high molecular weight) and fulvic acid (FA, relatively low molecular weight), respectively, as model natural organic matter (NOM). Results show that both particle and organic matter removal can be enhanced by increasing total hardness and ionic strength. Floc characteristics were significantly influenced by total hardness and ionic strength and were improved in terms of floc size, growth rate, strength, recoverability and compactness. The results of the UF tests show that the pre-coagulation with TiCl4 significantly improves the membrane permeate fluxes. Under different total hardness and ionic strength conditions, the membrane permeate flux varied according to both NOM and floc characteristics. The increase in total hardness and ionic strength improved the membrane permeate flux in the case of HA simulated water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys.

    PubMed

    St Andre, Michael; Johnson, Mark; Bansal, Prashant N; Wellen, Jeremy; Robertson, Andrew; Opsahl, Alan; Burch, Peter M; Bialek, Peter; Morris, Carl; Owens, Jane

    2017-11-09

    The treatments currently approved for Duchenne muscular dystrophy (DMD), a progressive skeletal muscle wasting disease, address the needs of only a small proportion of patients resulting in an urgent need for therapies that benefit all patients regardless of the underlying mutation. Myostatin is a member of the transforming growth factor-β (TGF-β) family of ligands and is a negative regulator of skeletal muscle mass. Loss of myostatin has been shown to increase muscle mass and improve muscle function in both normal and dystrophic mice. Therefore, myostatin blockade via a specific antibody could ameliorate the muscle weakness in DMD patients by increasing skeletal muscle mass and function, thereby reducing patients' functional decline. A murine anti-myostatin antibody, mRK35, and its humanized analog, domagrozumab, were developed and their ability to inhibit several TGB-β ligands was measured using a cell-based Smad-activity reporter system. Normal and mdx mice were treated with mRK35 to examine the antibody's effect on body weight, lean mass, muscle weights, grip strength, ex vivo force production, and fiber size. The humanized analog (domagrozumab) was tested in non-human primates (NHPs) for changes in skeletal muscle mass and volume as well as target engagement via modulation of circulating myostatin. Both the murine and human antibodies are specific and potent inhibitors of myostatin and GDF11. mRK35 is able to increase body weight, lean mass, and muscle weights in normal mice. In mdx mice, mRK35 significantly increased body weight, muscle weights, grip strength, and ex vivo force production in the extensor digitorum longus (EDL) muscle. Further, tibialis anterior (TA) fiber size was significantly increased. NHPs treated with domagrozumab demonstrated a dose-dependent increase in lean mass and muscle volume and exhibited increased circulating levels of myostatin demonstrating target engagement. We demonstrated that the potent anti-myostatin antibody mRK35 and

  3. Rotator cuff strength balance in glovebox workers

    DOE PAGES

    Lawton, Cindy M.; Weaver, Amelia M.; Chan, Martha Kwan Yi; ...

    2016-11-23

    Gloveboxes are essential to the pharmaceutical, semi-conductor, nuclear, and biochemical industries. While gloveboxes serve as effective containment systems, they are often difficult to work in and present a number of ergonomic hazards. One such hazard is injury to the rotator cuff, a group of tendons and muscles in the shoulder, connecting the upper arm to the shoulder blade. Rotator cuff integrity is critical to shoulder health. This study compared the rotator cuff muscle strength ratios of glovebox workers to the healthy norm. Descriptive statistics were collected using a short questionnaire. Handheld dynamometry was used to quantify the ratio of forcesmore » produced for shoulder internal and external rotation. Results showed this population to have shoulder strength ratios significantly different from the healthy norm. Strength ratios were found to be a sound predictor of symptom incidence. The deviation from the normal ratio demonstrates the need for solutions designed to reduce the workload on the rotator cuff musculature in order to improve health and safety. Assessment of strength ratios can be used to screen for risk of symptom development. As a result, this increases technical knowledge and augments operational safety.« less

  4. Rotator cuff strength balance in glovebox workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, Cindy M.; Weaver, Amelia M.; Chan, Martha Kwan Yi

    Gloveboxes are essential to the pharmaceutical, semi-conductor, nuclear, and biochemical industries. While gloveboxes serve as effective containment systems, they are often difficult to work in and present a number of ergonomic hazards. One such hazard is injury to the rotator cuff, a group of tendons and muscles in the shoulder, connecting the upper arm to the shoulder blade. Rotator cuff integrity is critical to shoulder health. This study compared the rotator cuff muscle strength ratios of glovebox workers to the healthy norm. Descriptive statistics were collected using a short questionnaire. Handheld dynamometry was used to quantify the ratio of forcesmore » produced for shoulder internal and external rotation. Results showed this population to have shoulder strength ratios significantly different from the healthy norm. Strength ratios were found to be a sound predictor of symptom incidence. The deviation from the normal ratio demonstrates the need for solutions designed to reduce the workload on the rotator cuff musculature in order to improve health and safety. Assessment of strength ratios can be used to screen for risk of symptom development. As a result, this increases technical knowledge and augments operational safety.« less

  5. Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis

    PubMed Central

    Behm, David G.; Young, James D.; Whitten, Joseph H. D.; Reid, Jonathan C.; Quigley, Patrick J.; Low, Jonathan; Li, Yimeng; Lima, Camila D.; Hodgson, Daniel D.; Chaouachi, Anis; Prieske, Olaf; Granacher, Urs

    2017-01-01

    Numerous national associations and multiple reviews have documented the safety and efficacy of strength training for children and adolescents. The literature highlights the significant training-induced increases in strength associated with youth strength training. However, the effectiveness of youth strength training programs to improve power measures is not as clear. This discrepancy may be related to training and testing specificity. Most prior youth strength training programs emphasized lower intensity resistance with relatively slow movements. Since power activities typically involve higher intensity, explosive-like contractions with higher angular velocities (e.g., plyometrics), there is a conflict between the training medium and testing measures. This meta-analysis compared strength (e.g., training with resistance or body mass) and power training programs (e.g., plyometric training) on proxies of muscle strength, power, and speed. A systematic literature search using a Boolean Search Strategy was conducted in the electronic databases PubMed, SPORT Discus, Web of Science, and Google Scholar and revealed 652 hits. After perusal of title, abstract, and full text, 107 studies were eligible for inclusion in this systematic review and meta-analysis. The meta-analysis showed small to moderate magnitude changes for training specificity with jump measures. In other words, power training was more effective than strength training for improving youth jump height. For sprint measures, strength training was more effective than power training with youth. Furthermore, strength training exhibited consistently large magnitude changes to lower body strength measures, which contrasted with the generally trivial, small and moderate magnitude training improvements of power training upon lower body strength, sprint and jump measures, respectively. Maturity related inadequacies in eccentric strength and balance might influence the lack of training specificity with the unilateral

  6. Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis.

    PubMed

    Behm, David G; Young, James D; Whitten, Joseph H D; Reid, Jonathan C; Quigley, Patrick J; Low, Jonathan; Li, Yimeng; Lima, Camila D; Hodgson, Daniel D; Chaouachi, Anis; Prieske, Olaf; Granacher, Urs

    2017-01-01

    Numerous national associations and multiple reviews have documented the safety and efficacy of strength training for children and adolescents. The literature highlights the significant training-induced increases in strength associated with youth strength training. However, the effectiveness of youth strength training programs to improve power measures is not as clear. This discrepancy may be related to training and testing specificity. Most prior youth strength training programs emphasized lower intensity resistance with relatively slow movements. Since power activities typically involve higher intensity, explosive-like contractions with higher angular velocities (e.g., plyometrics), there is a conflict between the training medium and testing measures. This meta-analysis compared strength (e.g., training with resistance or body mass) and power training programs (e.g., plyometric training) on proxies of muscle strength, power, and speed. A systematic literature search using a Boolean Search Strategy was conducted in the electronic databases PubMed, SPORT Discus, Web of Science, and Google Scholar and revealed 652 hits. After perusal of title, abstract, and full text, 107 studies were eligible for inclusion in this systematic review and meta-analysis. The meta-analysis showed small to moderate magnitude changes for training specificity with jump measures. In other words, power training was more effective than strength training for improving youth jump height. For sprint measures, strength training was more effective than power training with youth. Furthermore, strength training exhibited consistently large magnitude changes to lower body strength measures, which contrasted with the generally trivial, small and moderate magnitude training improvements of power training upon lower body strength, sprint and jump measures, respectively. Maturity related inadequacies in eccentric strength and balance might influence the lack of training specificity with the unilateral

  7. A Model for Determining Strength for Embedded Elliptical Crack in Ultra-high-temperature Ceramics

    PubMed Central

    Wang, Ruzhuan; Li, Weiguo

    2015-01-01

    A fracture strength model applied at room temperature for embedded elliptical crack in brittle solid was obtained. With further research on the effects of various physical mechanisms on material strength, a thermo-damage strength model for ultra-high-temperature ceramics was applied to each temperature phase. Fracture strength of TiC and the changing trends with elliptical crack shape variations under different temperatures were studied. The study showed that under low temperature, the strength is sensitive to the crack shape variation; as the temperature increases, the sensitivities become smaller. The size of ellipse’s minor axes has great effect on the material strength when the ratio of ellipse’s minor and major axes is lower than 0.5, even under relatively high temperatures. The effect of the minor axes of added particle on material properties thus should be considered under this condition. As the crack area is set, the fracture strength decreases firstly and then increases with the increase of ratio of ellipse’s minor and major axes, and the turning point is 0.5. It suggests that for the added particles the ratio of ellipse’s minor and major axes should not be 0.5. All conclusions significantly coincided with the results obtained by using the finite element software ABAQUS. PMID:28793488

  8. A Model for Determining Strength for Embedded Elliptical Crack in Ultra-high-temperature Ceramics.

    PubMed

    Wang, Ruzhuan; Li, Weiguo

    2015-08-05

    A fracture strength model applied at room temperature for embedded elliptical crack in brittle solid was obtained. With further research on the effects of various physical mechanisms on material strength, a thermo-damage strength model for ultra-high-temperature ceramics was applied to each temperature phase. Fracture strength of TiC and the changing trends with elliptical crack shape variations under different temperatures were studied. The study showed that under low temperature, the strength is sensitive to the crack shape variation; as the temperature increases, the sensitivities become smaller. The size of ellipse's minor axes has great effect on the material strength when the ratio of ellipse's minor and major axes is lower than 0.5, even under relatively high temperatures. The effect of the minor axes of added particle on material properties thus should be considered under this condition. As the crack area is set, the fracture strength decreases firstly and then increases with the increase of ratio of ellipse's minor and major axes, and the turning point is 0.5. It suggests that for the added particles the ratio of ellipse's minor and major axes should not be 0.5. All conclusions significantly coincided with the results obtained by using the finite element software ABAQUS.

  9. Transcriptome Analysis Suggests That Chromosome Introgression Fragments from Sea Island Cotton (Gossypium barbadense) Increase Fiber Strength in Upland Cotton (Gossypium hirsutum).

    PubMed

    Lu, Quanwei; Shi, Yuzhen; Xiao, Xianghui; Li, Pengtao; Gong, Juwu; Gong, Wankui; Liu, Aiying; Shang, Haihong; Li, Junwen; Ge, Qun; Song, Weiwu; Li, Shaoqi; Zhang, Zhen; Rashid, Md Harun Or; Peng, Renhai; Yuan, Youlu; Huang, Jinling

    2017-10-05

    As high-strength cotton fibers are critical components of high quality cotton, developing cotton cultivars with high-strength fibers as well as high yield is a top priority for cotton development. Recently, chromosome segment substitution lines (CSSLs) have been developed from high-yield Upland cotton ( Gossypium hirsutum ) crossed with high-quality Sea Island cotton ( G. barbadense ). Here, we constructed a CSSL population by crossing CCRI45, a high-yield Upland cotton cultivar, with Hai1, a Sea Island cotton cultivar with superior fiber quality. We then selected two CSSLs with significantly higher fiber strength than CCRI45 (MBI7747 and MBI7561), and one CSSL with lower fiber strength than CCRI45 (MBI7285), for further analysis. We sequenced all four transcriptomes at four different time points postanthesis, and clustered the 44,678 identified genes by function. We identified 2200 common differentially-expressed genes (DEGs): those that were found in both high quality CSSLs (MBI7747 and MBI7561), but not in the low quality CSSL (MBI7285). Many of these genes were associated with various metabolic pathways that affect fiber strength. Upregulated DEGs were associated with polysaccharide metabolic regulation, single-organism localization, cell wall organization, and biogenesis, while the downregulated DEGs were associated with microtubule regulation, the cellular response to stress, and the cell cycle. Further analyses indicated that three genes, XLOC_036333 [mannosyl-oligosaccharide-α-mannosidase ( MNS1 )], XLOC_029945 ( FLA8 ), and XLOC_075372 ( snakin-1 ), were potentially important for the regulation of cotton fiber strength. Our results suggest that these genes may be good candidates for future investigation of the molecular mechanisms of fiber strength formation and for the improvement of cotton fiber quality through molecular breeding. Copyright © 2017 Lu et al.

  10. The assessment of bond strength between heat damaged concrete and high strength fibre reinforced concrete

    NASA Astrophysics Data System (ADS)

    Zahid, M. Z. A. Mohd; Muhamad, K.

    2017-09-01

    The aim of this study is to assess the bond strength between heat damaged concrete and high strength fibre reinforced concrete (HPFRC). Firstly, this paper presents the various steps taken to prepare the HPFRC with self-compacting property. The minimum targeted slump flow is 600 mm and minimum targeted compressive strength is 80 MPa. The key mix variables considered are such as type of superplasticizer, water cement ratio and silica fume content. Then, the bond strength between the heat damaged concrete with HPFRC was examined. The experimental parameters are heating temperature, surface treatment technique and curing method and the results show that, all experimental parameters are significantly affected the bond strength between heat damaged concrete and HPFRC.

  11. Scale effects on the transverse tensile strength of graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin; Salpekar, Satish A.

    1992-01-01

    The influence of material volume on the transverse tensile strength of AS4/3501-6 graphite epoxy composites was investigated. Tensile tests of 90 degree laminates with 3 different widths and 5 different thicknesses were conducted. A finite element analysis was performed to determine the influence of the grip on the stress distribution in the coupons and explain the tendency for the distribution of failure locations to be skewed toward the grip. Specimens were instrumented with strain gages and extensometers to insure good alignment and to measure failure strains. Data indicated that matrix dominated strength properties varied with the volume of material that was stressed, with the strength decreasing as volume increased. Transverse strength data were used in a volumetric scaling law based on Weibull statistics to predict the strength of 90 degree laminates loaded in three point bending. Comparisons were also made between transverse strength measurements and out-of-plane interlaminar tensile strength measurements from curved beam bending tests. The significance of observed scale effects on the use of tests for material screening, quality assurance, and design allowables is discussed.

  12. Relationships Between Smelter Grade Alumina Characteristics and Strength Determined by Nanoindentation and Ultrasound-Mediated Particle Breakage

    NASA Astrophysics Data System (ADS)

    Wijayaratne, Hasini; McIntosh, Grant; Hyland, Margaret; Perander, Linus; Metson, James

    2017-06-01

    The mechanical strength of smelter grade alumina (SGA) is of considerable practical significance for the aluminum reduction process. Attrition of alumina during transportation and handling generates an increased level of fines. This results in generation of dust, poor flow properties, and silo segregation that interfere with alumina feeding systems. These lead to process instabilities which in turn result in current efficiency losses that are costly. Here we are concerned with developing a fundamental understanding of SGA strength in terms of its microstructure. Nanoindentation and ultrasound-mediated particle breakage tests have been conducted to study the strength. Strength of SGA samples both industry calcined and laboratory prepared, decrease with increasing α-alumina (corundum) content contrary to expectation. The reducing strength of alumina with increasing degree of calcination is attributed to the development of a macroporous and abrasion-prone microstructure resulting from the `pseudomorphic' transformation of precursor gibbsite during the calcination process.

  13. Effects of processing induced defects on laminate response - Interlaminar tensile strength

    NASA Technical Reports Server (NTRS)

    Gurdal, Zafer; Tomasino, Alfred P.; Biggers, S. B.

    1991-01-01

    Four different layup methods were used in the present study of the interlaminar tensile strength of AS4/3501-6 graphite-reinforced epoxy as a function of defects from manufacturing-induced porosity. The methods were: (1) baseline hand layup, (2) solvent wipe of prepreg for resin removal, (3) moisture-introduction between plies, and (4) a low-pressure cure cycle. Pore characterization was conducted according to ASTM D-2734. A significant reduction is noted in the out-of-plane tensile strength as a function of increasing void content; the porosity data were used in an empirical model to predict out-of-plane strength as a function of porosity.

  14. Longitudinal assessment of grip strength using bulb dynamometer in Duchenne Muscular Dystrophy

    PubMed Central

    Pizzato, Tatiana M.; Baptista, Cyntia R. J. A.; Souza, Mariana A.; Benedicto, Michelle M. B.; Martinez, Edson Z.; Mattiello-Sverzut, Ana C.

    2014-01-01

    BACKGROUND: Grip strength is used to infer functional status in several pathological conditions, and the hand dynamometer has been used to estimate performance in other areas. However, this relationship is controversial in neuromuscular diseases and studies with the bulb dynamometer comparing healthy children and children with Duchenne Muscular Dystrophy (DMD) are limited. OBJECTIVE: The evolution of grip strength and the magnitude of weakness were examined in boys with DMD compared to healthy boys. The functional data of the DMD boys were correlated with grip strength. METHOD: Grip strength was recorded in 18 ambulant boys with DMD (Duchenne Group, DG) aged 4 to 13 years (mean 7.4±2.1) and 150 healthy volunteers (Control Group, CG) age-matched using a bulb dynamometer (North Coast- NC70154). The follow-up of the DG was 6 to 33 months (3-12 sessions), and functional performance was verified using the Vignos scale. RESULTS: There was no difference between grip strength obtained by the dominant and non-dominant side for both groups. Grip strength increased in the CG with chronological age while the DG remained stable or decreased. The comparison between groups showed significant difference in grip strength, with CG values higher than DG values (confidence interval of 95%). In summary, there was an increment in the differences between the groups with increasing age. Participants with 24 months or more of follow-up showed a progression of weakness as well as maintained Vignos scores. CONCLUSIONS: The amplitude of weakness increased with age in the DG. The bulb dynamometer detected the progression of muscular weakness. Functional performance remained virtually unchanged in spite of the increase in weakness. PMID:25003277

  15. ZERODUR: bending strength data for etched surfaces

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter; Leys, Antoine; Carré, Antoine; Kerz, Franca; Westerhoff, Thomas

    2014-07-01

    In a continuous effort since 2007 a considerable amount of new data and information has been gathered on the bending strength of the extremely low thermal expansion glass ceramic ZERODUR®. By fitting a three parameter Weibull distribution to the data it could be shown that for homogenously ground surfaces minimum breakage stresses exist lying much higher than the previously applied design limits. In order to achieve even higher allowable stress values diamond grain ground surfaces have been acid etched, a procedure widely accepted as strength increasing measure. If surfaces are etched taking off layers with thickness which are comparable to the maximum micro crack depth of the preceding grinding process they also show statistical distributions compatible with a three parameter Weibull distribution. SCHOTT has performed additional measurement series with etch solutions with variable composition testing the applicability of this distribution and the possibility to achieve further increase of the minimum breakage stress. For long term loading applications strength change with time and environmental media are important. The parameter needed for prediction calculations which is combining these influences is the stress corrosion constant. Results from the past differ significantly from each other. On the basis of new investigations better information will be provided for choosing the best value for the given application conditions.

  16. Shoulder strength imbalances as injury risk in handball.

    PubMed

    Edouard, P; Degache, F; Oullion, R; Plessis, J-Y; Gleizes-Cervera, S; Calmels, P

    2013-07-01

    This study was conducted to analyze whether internal (IR) and external (ER) rotator shoulder muscles weakness and/or imbalance collected through a preseason assessment could be predictors of subsequent shoulder injury during a season in handball players. In preseason, 16 female elite handball players (HPG) and 14 healthy female nonathletes (CG) underwent isokinetic IR and ER strength test with use of a Con-Trex® dynamometer in a seated position with 45° shoulder abduction in scapular plane, at 60, 120 and 240°/s in concentric and at 60°/s in eccentric, for both sides. An imbalanced muscular strength profile was determined using -statistically selected cut-offs from CG values. For HPG, all newly incurred shoulder injuries were reported during the season. There were significant differences between HPG and CG only for dominant eccentric IR strength, ER/IR ratio at 240°/s and for IRecc/ERcon ratio. In HPG, IR and ER strength was higher, and ER/IR ratios lower for dominant than for nondominant side. The relative risk was 2.57 (95%CI: 1.60-3.54; P<0.05) if handball players had an imbalanced muscular strength profile. In youth female handball players IR and ER muscle strength increases on the dominant side without ER/IR imbalances; and higher injury risk was associated with imbalanced muscular strength profile. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Effect of official judo matches on handgrip strength and perceptual responses

    PubMed Central

    Kons, Rafael Lima; Pupo, Juliano Dal; Ache-Dias, Jonathan; Garcia, Thyago; da Silva, Romário Rodrigues; Katicips, Luiz Felipe Guarise; Detanico, Daniele

    2018-01-01

    This study aimed to verify the effect of judo matches on handgrip strength and perceptual responses during an official tournament in medalists and nonmedalists. Thirty-four male judo athletes participated in an official judo tournament. Before the first match and immediately after each match, maximum isometric handgrip strength and rate of perceived exertion overall and in specific areas were assessed. Analysis of variance for repeated measures was used to compare variables before the first match and after each match, and t-test was used to compare medalists and nonmedalists with the level of significance set at 5%. Also, effect size (ES) analysis was used. The results showed decrease in handgrip strength in both hands from the third match (P<0.05). The rate of perceived exertion (RPE) increased from the first match and remained high over the subsequent matches (P<0.001). A very large effect for nonmedalist group (ES=3.44) and large effect for medalist group (ES=1.94) was found in the third match compared to prematch. Forearm and fingers were the body regions most cited by athletes in both groups. We concluded that an official judo competition induced significant drop in handgrip strength from the third match and increased the RPE from first match. Medalists seem to have better recovery after the third match compared to nonmedalists. PMID:29511658

  18. Shoulder Strength Requirements for Upper Limb Functional Tasks: Do Age and Rotator Cuff Tear Status Matter?

    PubMed

    Santago, Anthony C; Vidt, Meghan E; Li, Xiaotong; Tuohy, Christopher J; Poehling, Gary G; Freehill, Michael T; Saul, Katherine R

    2017-12-01

    Understanding upper limb strength requirements for daily tasks is imperative for early detection of strength loss that may progress to disability due to age or rotator cuff tear. We quantified shoulder strength requirements for 5 upper limb tasks performed by 3 groups: uninjured young adults and older adults, and older adults with a degenerative supraspinatus tear prior to repair. Musculoskeletal models were developed for each group representing age, sex, and tear-related strength losses. Percentage of available strength used was quantified for the subset of tasks requiring the largest amount of shoulder strength. Significant differences in strength requirements existed across tasks: upward reach 105° required the largest average strength; axilla wash required the largest peak strength. However, there were limited differences across participant groups. Older adults with and without a tear used a larger percentage of their shoulder elevation (p < .001, p < .001) and external rotation (p < .001, p = .017) strength than the young adults, respectively. Presence of a tear significantly increased percentage of internal rotation strength compared to young (p < .001) and uninjured older adults (p = .008). Marked differences in strength demand across tasks indicate the need for evaluating a diversity of functional tasks to effectively detect early strength loss, which may lead to disability.

  19. Three-fold increase of M1 strength in 40Ar at 10 MeV excitation energy

    NASA Astrophysics Data System (ADS)

    Tornow, Werner; Finch, Sean; Krishichayan, Fnu; Tonchev, Anton

    2017-09-01

    We reexamined the excitation energy region of 40Ar around 9.8 MeV with the goal of determining the known M1 strength located at 9.76 MeV more accurately. The physics motivation was based on the fact that i) the neutrino-nucleus interaction cross section is proportional to the M1 strength of a nucleus, ii) DUNE, the Deep Underground Neutrino Experiment at SURF will be using liquid argon as detector medium, iii) the energy spectrum of supernova neutrinos is peaked at approximately 10 MeV. Mono-energetic and linearly polarized photons of 9.88 MeV were produced via Compton backscattering of 548 nm FEL photons from 543 MeV electrons at the High-Intensity γ-ray Source (HI γS) facility at TUNL. The 1.25 cm diameter photon beam with energy spread of 300 keV (FWHM) interacted with argon gas contained in a high-pressure cell. The cell was viewed with HPGe detectors placed at 90o relative to the incident photon beam in the horizontal and vertical planes to distinguish between E1 and M1 de-excitation γ-rays. Our re-measurement provided an increase in M1 strength by a factor of approximately 3, mostly due to the discovery that the known level in 40Ar at 9.84 MeV is of M1 character and not of E1 character, as previously thought. In addition to the already known M1 state at 9.76 MeV, we observed weaker M1 states at 9.70, 9.81, 9.87, and 9.89 MeV.

  20. [Effect of nano-silica coating on bonding strength of zirconia ceramics to dentin].

    PubMed

    Zhang, Xian-Fang; Zheng, Hu; Han, Dong-Wei

    2009-04-01

    To investigate the effect of silica coating by sol-gel process on bonding strength of zirconia ceramics to dentin. Blocks of sintered zirconia ceramics were cut and randomly divided into 4 groups,16 slices in each group. Each group was subject to one of the 4 kinds of surface treatment (control group, sandblasting, sandblasting +silicone, sandblasting + silica coating + silicone) and then bonded to dentin with resin cement. After preservation in 37 degrees centigrade distilled water for 24 hours, the shear bonding strength of these specimens was tested and the data was analyzed with SAS6.12 software package for analysis of variance. The surface modality of the ceramics was observed under scanning electron microscopy (SEM). The group of sandblasting+ silica coating + silicone attained the highest shear bonding strength, which was significantly different from the other groups(P=0.000);There was no significant difference between the sandblasting and sandblasting + silicone group (P=0.827), which was significantly different from the control group(P=0.001). Silica coating by sol-gel process, coupled with silicone, can significantly increase the bonding strength of zirconia ceramics to dentin.

  1. Sixteen-Day Bedrest Significantly Increases Plasma Colloid Osmotic Pressure

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Hsieh, S. T.; Murthy, G.; Ballard, R. E.; Convertino, V. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Upon exposure to microgravity, astronauts lose up to 10% of their total plasma volume, which may contribute to orthostatic intolerance after space flight. Because plasma colloid osmotic pressure (COP) is a primary factor maintaining plasma volume, our objective was to measure time course changes in COP during microgravity simulated by 6 deg. head-down tilt (HDT). Seven healthy male subjects (30-55 years of age) were placed in HDT for 16 days. For the purpose of another study, three of the seven subjects were chosen to exercise on a cycle ergometer on day 16. Blood samples were drawn immediately before bedrest on day 14 of bedrest, 18-24 hours following exercise while all subjects were still in HDT and 1 hour following bedrest termination. Plasma COP was measured in all 20 microliter EDTA-treated samples using an osmometer fitted with a PM 30 membrane. Data were analyzed with paired and unpaired t-tests. Plasma COP on day 14 of bedrest (29.9 +/- 0.69 mmHg) was significantly higher (p less than 0.005) than the control, pre-bedrest value (23.1 +/- 0.76 mmHg). At one hour of upright recovery after HDT, plasma COP remained significantly elevated (exercise: 26.9 +/- 0.87 mmHg; no exercise: 26.3 +/- 0.85 mmHg). Additionally, exercise had no significant effect on plasma COP 18-24 hours following exercise (exercise: 27.8 +/- 1.09 mmHg; no exercise: 27.1 +/- 0.78 mmHg). Our results demonstrate that plasma COP increases significantly with microgravity simulated by HDT. However, preliminary results indicate exercise during HDT does not significantly affect plasma COP.

  2. Digit ratio (2D:4D), testosterone, cortisol, aggression, personality and hand-grip strength: Evidence for prenatal effects on strength.

    PubMed

    Ribeiro, Evaldo; Neave, Nick; Morais, Rosana Nogueiro; Kilduff, Liam; Taylor, Suzan R; Butovskaya, Marina; Fink, Bernhard; Manning, John T

    2016-09-01

    Digit ratio (2D:4D) is a putative marker for prenatal testosterone and is correlated with performance in many sports. Low 2D:4D has been linked to strength but the evidence is mixed and strength is also influenced by mass, testosterone, and behavioural factors. It has been hypothesised that the 2D:4D-strength correlation may be strongest in challenge conditions when short-term changes occur in steroid hormones. We tested this suggestion in men. We used a cross-over study design with a challenge (an aggressive video of rugby tackles) and control (a blank screen) condition. 89 healthy men. Finger lengths (2nd and 4th for both hands), hand-grip strength (HGS), testosterone (T), cortisol (C), aggression (Buss-Perry Aggression Questionnaire) and personality type (Ten Item Personality Measure). In both conditions participants provided saliva samples (for hormone assays). In the challenge condition there was a highly significant increase in HGS, and modest changes in T, physical aggression and emotional stability. HGS correlated negatively with left hand 2D:4D. In a multiple regression, left hand 2D:4D was negatively related to HGS and emotional stability was positively related to HGS. In the control condition HGS was not correlated with 2D:4D. In a multiple regression, BMI, physical aggression, and emotional stability were significantly related to HGS. 2D:4D is a negative correlate of strength in challenge situations. This finding may in part explain associations between 2D:4D and sports performance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. High-strength bolt corrosion fatigue life model and application.

    PubMed

    Hui-li, Wang; Si-feng, Qin

    2014-01-01

    The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life.

  4. Strength Estimation for Hydrate-Bearing Sediments From Direct Shear Tests of Hydrate-Bearing Sand and Silt

    NASA Astrophysics Data System (ADS)

    Liu, Zhichao; Dai, Sheng; Ning, Fulong; Peng, Li; Wei, Houzhen; Wei, Changfu

    2018-01-01

    Safe and economic methane gas production, as well as the replacement of methane while sequestering carbon in natural hydrate deposits, requires enhanced geomechanical understanding of the strength and volume responses of hydrate-bearing sediments during shear. This study employs a custom-made apparatus to investigate the mechanical and volumetric behaviors of carbon dioxide hydrate-bearing sediments subjected to direct shear. The results show that both peak and residual strengths increase with increased hydrate saturation and vertical stress. Hydrate contributes mainly the cohesion and dilatancy constraint to the peak strength of hydrate-bearing sediments. The postpeak strength reduction is more evident and brittle in specimens with higher hydrate saturation and under lower stress. Significant strength reduction after shear failure is expected in silty sediments with high hydrate saturation Sh ≥ 0.65. Hydrate contribution to the residual strength is mainly by increasing cohesion at low hydrate saturation and friction at high hydrate saturation. Stress state and hydrate saturation are dominating both the stiffness and the strength of hydrate-bearing sediments; thus, a wave velocity-based peak strength prediction model is proposed and validated, which allows for precise estimation of the shear strength of hydrate-bearing sediments through acoustic logging data. This method is advantageous to geomechanical simulators, particularly when the experimental strength data of natural samples are not available.

  5. Titanium dioxide nanoparticles: Impact of increasing ionic strength during synthesis, reflux, and hydrothermal aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isley, Sara L.; Jordan, David S.; Penn, R. Lee

    2009-01-08

    This work investigates the role of ionic strength during synthesis, reflux, and hydrothermal aging of sol-gel synthesized titanium dioxide. Research presented here uses X-ray diffraction data and Rietveld refinements to quantify anatase, brookite, and rutile phases as functions of synthetic and aging variables. In addition, the Scherrer equation is used to obtain average crystallite sizes for each phase quantified. Results presented in this work demonstrate that the most control over the sol-gel products can be obtained by modifying the pH during hydrolysis. In addition, while varying the ionic strength during reflux and hydrothermal aging can result in enhanced control overmore » the crystalline phase and crystallite size, the most control can be achieved by varying the ionic strength during synthesis. Finally, sol-gel synthesis at low pH (-0.6) and high-chloride concentration (3 M NaCl) produced a heterogeneous sample composed of nanocrystalline anatase (3.8 nm) and rutile (2.9 nm)« less

  6. Strength characteristics of lightly solidified dredged marine clay admixed with bentonite

    NASA Astrophysics Data System (ADS)

    Ariffin, Syazwana Tajul; Chan, Chee-Ming

    2017-11-01

    Strength characteristic is a significant parameter in measuring the effect of soil improvement and effective composition of solidification. In this study, the dredged marine sediment (DMS) collected from Kuala Perlis (Malaysia) was examined to determine its strength characteristics under light cement solidification with bentonite. Dredged marine clay generally has the low shear strength and high void ratio, and consists mainly of soil particles of the fine-grained type. As a discarded geo-waste, it can be potentially treated to for reuse as a backfill material instead of being disposed of, hence reducing the negative impact on the environment. Physico-chemical parameters of the dredged sample were first determined, then solidification was carried out to improve the engineering properties by admixing ordinary Portland cement (OPC) as the binder and bentonite as a volume enhancer to the soil. The DMS was treated with the addition of 3 % and 6 % cement and bentonite within the range of 0-30 %. The specimens were cured at room temperature for 3, 7 and 14 days. The strength gain was measured by unconfined compression test and vane shear test. The laboratory test results were analyzed to establish the relationship between strength properties and solidification specifications. In summary, the strength of specimens increased with the increase of the quantity of bentonite and cement to get the effective composition of the specimen.

  7. Association of balance, strength, and power measures in young adults.

    PubMed

    Muehlbauer, Thomas; Gollhofer, Albert; Granacher, Urs

    2013-03-01

    The purpose of this study was to investigate the relationship between variables of static/dynamic balance, isometric strength, and power. Twenty-seven young healthy adults (mean age: 23 ± 4 years) performed measurements of static (unperturbed)/dynamic (perturbed) balance, isometric strength (i.e., maximal isometric torque [MIT]; rate of torque development [RTD] of the plantar flexor), and power (i.e., countermovement jump [CMJ] height and power). No significant associations were found between variables of static and dynamic balance (r = -0.090 to +0.329, p > 0.05) and between measures of static/dynamic balance and isometric strength (r = +0.041 to +0.387, p > 0.05) and static/dynamic balance and power (r = -0.076 to +0.218, p > 0.05). Significant positive correlations (r) were detected between variables of power and isometric strength ranging from +0.458 to +0.689 (p < 0.05). Furthermore, simple regression analyses revealed that a 10% increase in mean CMJ height (4.1 cm) was associated with 22.9 N·m and 128.4 N·m·s better MIT and RTD, respectively. The nonsignificant correlation between static and dynamic balance measures and between static/dynamic balance, isometric strength, and power variables implies that these capacities may be independent of each other and may have to be tested and trained complementarily.

  8. The role of commitment strength in enhancing safe water consumption: mediation analysis of a cluster-randomized trial.

    PubMed

    Inauen, Jennifer; Tobias, Robert; Mosler, Hans-Joachim

    2014-11-01

    The objectives of this study were to investigate the importance of commitment strength in the theory of planned behaviour (TPB) and to test whether behaviour change techniques (BCTs) aimed at increasing commitment strength indeed promote switching to arsenic-safe wells by changing commitment strength. A cluster-randomized controlled trial with four arms was conducted to compare an information-only intervention to information plus one, two, or three commitment-enhancing BCTs. Randomly selected households (N = 340) of Monoharganj, Bangladesh, in seven geographically separate areas, whose members were drinking arsenic-contaminated water at baseline and had access to arsenic-safe wells, participated in this trial. The areas were randomly allocated to the four intervention arms. Water consumption behaviour, variables of the TPB, commitment strength, and socio-demographic characteristics were assessed at baseline and at 3-month follow-up by structured face-to-face interviews. Mediation analysis was used to investigate the mechanisms of behaviour change. Changes in commitment strength significantly increased the explanatory power of the TPB to predict well-switching. Commitment-enhancing BCTs - public self-commitment, implementation intentions, and reminders - increased the behaviour change effects of information by up to 50%. Mediation analyses confirmed that the BCTs indeed increased well-switching by increasing commitment strength. Unexpectedly, however, mediation via changes in behavioural intentions was the strongest mechanism of the intervention effects. Commitment is an important construct to consider in water- and health-related behaviour change and may be for other health behaviours as well. BCTs that alter behavioural intentions and commitment strength proved highly effective at enhancing the behaviour change effects of information alone. Statement of contribution What is already known on this subject? Millions of people drink contaminated water even if they

  9. Modification of the Structure of Low-Carbon Pipe Steel by Helical Rolling, and the Increase in Its Strength and Cold Resistance

    NASA Astrophysics Data System (ADS)

    Derevyagina, L. S.; Gordienko, A. I.; Pochivalov, Yu. I.; Smirnova, A. S.

    2018-01-01

    The paper reports the investigation results on the microstructure and mechanical properties of low-carbon pipe steel after helical rolling. The processing of the steel leads to the refinement of ferritic grains from 12 (for the coarse-grained state) to 5 μm, to the strengthening of ferrite by carbide particles, a decrease in the total fraction of perlite grains, a more uniform alternation of ferrite and perlite, and the formation of regions with bainitic structure. The mechanical properties of the steel have been determined in the conditions of static and dynamic loading in the range of test temperatures from +20 to-70°C. As a result of processing, the ultimate tensile strength increases (from 650 to 770 MPa at a rolling temperature from 920°C) and the viscoplastic properties at negative temperatures are improved significantly. The ductile-brittle transition temperature of the rolled steel decreases from-32 to-55°C and the impact toughness at the test temperature-40°C increases eight times compared to the initial state of the steel.

  10. Increased consumer density reduces the strength of neighborhood effects in a model system.

    PubMed

    Merwin, Andrew C; Underwood, Nora; Inouye, Brian D

    2017-11-01

    An individual's susceptibility to attack can be influenced by conspecific and heterospecifics neighbors. Predicting how these neighborhood effects contribute to population-level processes such as competition and evolution requires an understanding of how the strength of neighborhood effects is modified by changes in the abundances of both consumers and neighboring resource species. We show for the first time that consumer density can interact with the density and frequency of neighboring organisms to determine the magnitude of neighborhood effects. We used the bean beetle, Callosobruchus maculatus, and two of its host beans, Vigna unguiculata and V. radiata, to perform a response-surface experiment with a range of resource densities and three consumer densities. At low beetle density, damage to beans was reduced with increasing conspecific density (i.e., resource dilution) and damage to the less preferred host, V. unguiculata, was reduced with increasing V. radiata frequency (i.e., frequency-dependent associational resistance). As beetle density increased, however, neighborhood effects were reduced; at the highest beetle densities neither focal nor neighboring resource density nor frequency influenced damage. These findings illustrate the importance of consumer density in mediating indirect effects among resources, and suggest that accounting for consumer density may improve our ability to predict population-level outcomes of neighborhood effects and our use of them in applications such as mixed-crop pest management. © 2017 by the Ecological Society of America.

  11. Effects of different strength training frequencies on maximum strength, body composition and functional capacity in healthy older individuals.

    PubMed

    Turpela, Mari; Häkkinen, Keijo; Haff, Guy Gregory; Walker, Simon

    2017-11-01

    There is controversy in the literature regarding the dose-response relationship of strength training in healthy older participants. The present study determined training frequency effects on maximum strength, muscle mass and functional capacity over 6months following an initial 3-month preparatory strength training period. One-hundred and six 64-75year old volunteers were randomly assigned to one of four groups; performing strength training one (EX1), two (EX2), or three (EX3) times per week and a non-training control (CON) group. Whole-body strength training was performed using 2-5 sets and 4-12 repetitions per exercise and 7-9 exercises per session. Before and after the intervention, maximum dynamic leg press (1-RM) and isometric knee extensor and plantarflexor strength, body composition and quadriceps cross-sectional area, as well as functional capacity (maximum 7.5m forward and backward walking speed, timed-up-and-go test, loaded 10-stair climb test) were measured. All experimental groups increased leg press 1-RM more than CON (EX1: 3±8%, EX2: 6±6%, EX3: 10±8%, CON: -3±6%, P<0.05) and EX3 improved more than EX1 (P=0.007) at month 9. Compared to CON, EX3 improved in backward walk (P=0.047) and EX1 in timed-up-and-go (P=0.029) tests. No significant changes occurred in body composition. The present study found no evidence that higher training frequency would induce greater benefit to maximum walking speed (i.e. functional capacity) despite a clear dose-response in dynamic 1-RM strength, at least when predominantly using machine weight-training. It appears that beneficial functional capacity improvements can be achieved through low frequency training (i.e. 1-2 times per week) in previously untrained healthy older participants. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Grip Strength as an Indicator of Health-Related Quality of Life in Old Age-A Pilot Study.

    PubMed

    Musalek, Christina; Kirchengast, Sylvia

    2017-11-24

    Over the last century life expectancy has increased dramatically nearly all over the world. This dramatic absolute and relative increase of the old aged people component of the population has influenced not only population structure but also has dramatic implications for the individuals and public health services. The aim of the present pilot study was to examine the impact of physical well-being assessed by hand grip strength and social factors estimated by social contact frequency on health-related quality of life among 22 men and 41 women ranging in age between 60 and 94 years. Physical well-being was estimated by hand grip strength, data concerning subjective wellbeing and health related quality of life were collected by personal interviews based on the WHOQOL-BREF questionnaires. Number of offspring and intergenerational contacts were not related significantly to health-related quality of life, while social contacts with non-relatives and hand grip strength in contrast had a significant positive impact on health related quality of life among old aged men and women. Physical well-being and in particular muscle strength-estimated by grip strength-may increase health-related quality of life and is therefore an important source for well-being during old age. Grip strength may be used as an indicator of health-related quality of life.

  13. Effect of concrete strength gradation to the compressive strength of graded concrete, a numerical approach

    NASA Astrophysics Data System (ADS)

    Pratama, M. Mirza Abdillah; Aylie, Han; Gan, Buntara Sthenly; Umniati, B. Sri; Risdanareni, Puput; Fauziyah, Shifa

    2017-09-01

    Concrete casting, compacting method, and characteristic of the concrete material determine the performance of concrete as building element due to the material uniformity issue. Previous studies show that gradation in strength exists on building member by nature and negatively influence the load carrying capacity of the member. A pilot research had modeled the concrete gradation in strength with controllable variable and observed that the weakest material determines the strength of graded concrete through uniaxial compressive loading test. This research intends to confirm the recent finding by a numerical approach with extensive variables of strength disparity. The finite element analysis was conducted using the Strand7 nonlinear program. The results displayed that the increase of strength disparity in graded concrete models leads to the slight reduction of models strength. A substantial difference in displacement response is encountered on the models for the small disparity of concrete strength. However, the higher strength of concrete mix in the graded concrete models contributes to the rise of material stiffness that provides a beneficial purpose for serviceability of building members.

  14. Microstructure control for high strength 9Cr ferritic-martensitic steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Hoelzer, David T; Busby, Jeremy T

    2012-01-01

    Ferritic-martensitic (F-M) steels with 9 wt.%Cr are important structural materials for use in advanced nuclear reactors. Alloying composition adjustment, guided by computational thermodynamics, and thermomechanical treatment (TMT) were employed to develop high strength 9Cr F-M steels. Samples of four heats with controlled compositions were subjected to normalization and tempering (N&T) and TMT, respectively. Their mechanical properties were assessed by Vickers hardness and tensile testing. Ta-alloying showed significant strengthening effect. The TMT samples showed strength superior to the N&T samples with similar ductility. All the samples showed greater strength than NF616, which was either comparable to or greater than the literaturemore » data of the PM2000 oxide-dispersion-strengthened (ODS) steel at temperatures up to 650 C without noticeable reduction in ductility. A variety of microstructural analyses together with computational thermodynamics provided rational interpretations on the strength enhancement. Creep tests are being initiated because the increased yield strength of the TMT samples is not able to deduce their long-term creep behavior.« less

  15. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters.

    PubMed

    Chowdhury, S; Maniar, A; Suganya, O M

    2015-11-01

    In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  16. Correlation of bond strength with surface roughness using a new roughness measurement technique.

    PubMed

    Winkler, M M; Moore, B K

    1994-07-01

    The correlation between shear bond strength and surface roughness was investigated using new surface measurement methods. Bonding agents and associated resin composites were applied to set amalgam after mechanically roughening its surface. Surface treatments were noe (as set against glass), 80 grit, and 600 grit abrasive paper. Surface roughness (R(a) as measured parallel and perpendicular (+) to the direction of the polishing scratches and true profile length were measured. A knife-edge was applied (rate = 2.54 mm/min) at the bonding agent/amalgam interface of each sample until failure. Coefficients of determination for mean bond strength vs either roughness (R(a), of profile length were significantly higher for measurements in parallel directions than for those measurements in (+) directions. The shear bond strength to set amalgam for a PENTA-containing adhesives system (L.D. Caulk Division) was not significantly different from that of a PENTA-free adhesive (3M Dental Products Division), even though PENTA has been reported to increase bond strength to nonprecious metals. The shear bond strength of resin composite to amalgam is correlated to surface roughness when it is measured parallel to the polishing scratches. This correlation is significantly lower when surface roughness is measured in the typical manner, perpendicular to the polishing scratches.

  17. Effects of fatigue and environment on residual strengths of center-cracked graphite/epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Bigelow, Catherine A.

    1989-01-01

    The effects of fatigue, moisture conditioning, and heating on the residual tension strengths of center-cracked graphite/epoxy buffer strip panels were evaluated using specimens made with T300/5208 graphite epoxy in a 16-ply quasi-isotropic layup, with two different buffer strip materials, Kevlar-49 or S-glass. It was found that, for panels subjected to fatigue loading, the residual strengths were not significantly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panels by 10 to 15 percent below the ambient results, but increased the residual strengths of the Kevlar-49 buffer strip panels slightly. For both buffer strip materials, the heat increased the residual strengths of the buffer strip panels slightly over the ambient results.

  18. Optimum mix for fly ash geopolymer binder based on workability and compressive strength

    NASA Astrophysics Data System (ADS)

    Arafa, S. A.; Ali, A. Z. M.; Awal, A. S. M. A.; Loon, L. Y.

    2018-04-01

    The request of concrete is increasing every day for sustaining the necessity of development of structure. The production of OPC not only consumes big amount of natural resources and energy, but also emit significant quantity of CO2 to the atmosphere. Therefore, it is necessary to find alternatives like Geopolymer to make the concrete environment friendly. Geopolymer is an inorganic alumino-silicate compound, produced from fly ash. This paper describes the experimental work conducted by casting 40 geopolymer paste mixes, and was cured at 80°C for 24 h to evaluate the effect of various parameters affecting the workability and compressive strength. Alkaline solution to fly ash ratio and sodium hydroxide (NaOH) concentration were chosen as the key parameters of strength and workability. Laboratory investigation with different percentage of sodium hydroxide concentration and different alkaline liquid to fly ash ratio reveals that the optimum ratios are 10 M, AL/FA=0.5. It has generally been found that the workability decreased and the compressive strength increased with an increase in the concentration of sodium hydroxide solution. However, workability was increased and the compressive strength was decreased with the increase in the ratio of fly ash to alkaline solution.

  19. Comparison of whole-body vibration exercise and plyometric exercise to improve isokinetic muscular strength, jumping performance and balance of female volleyball players

    PubMed Central

    Kim, Yong-Youn; Park, Si-Eun

    2016-01-01

    [Purpose] The purpose of this study was to assess the effect of whole-body vibration exercise and plyometric exercise on female volleyball players. [Subjects and Methods] Subjects were randomly allocated to two exercise groups (whole-body vibration exercise group and plyometric exercise group). The exercise was conducted three times each week for 8 weeks. Isokinetic muscular strength, jumping performance, and balance were measured before starting the exercise and after finishing the 8 weeks of exercise. [Results] Measurements of isokinetic muscular strength revealed that the whole-body vibration exercise group showed significant increase after the exercise. However, the plyometric exercise group had no significant increase in lumbar flexion, extension, and knee flexion. Measurements of vertical jumping revealed that, the whole-body vibration exercise group had no significant increase after the exercise. However, the plyometric exercise group showed significant increase. Measurements of balance revealed that, the whole-body vibration exercise group showed significant increase. However, the plyometric exercise group showed no significant increase. [Conclusion] Although both whole-body vibration and plyometric exercises are effective intervention methods, the two methods have different effects on the improvement of isokinetic muscular strength, jumping performance, and balance of female volleyball players. PMID:27942136

  20. Comparison of whole-body vibration exercise and plyometric exercise to improve isokinetic muscular strength, jumping performance and balance of female volleyball players.

    PubMed

    Kim, Yong-Youn; Park, Si-Eun

    2016-11-01

    [Purpose] The purpose of this study was to assess the effect of whole-body vibration exercise and plyometric exercise on female volleyball players. [Subjects and Methods] Subjects were randomly allocated to two exercise groups (whole-body vibration exercise group and plyometric exercise group). The exercise was conducted three times each week for 8 weeks. Isokinetic muscular strength, jumping performance, and balance were measured before starting the exercise and after finishing the 8 weeks of exercise. [Results] Measurements of isokinetic muscular strength revealed that the whole-body vibration exercise group showed significant increase after the exercise. However, the plyometric exercise group had no significant increase in lumbar flexion, extension, and knee flexion. Measurements of vertical jumping revealed that, the whole-body vibration exercise group had no significant increase after the exercise. However, the plyometric exercise group showed significant increase. Measurements of balance revealed that, the whole-body vibration exercise group showed significant increase. However, the plyometric exercise group showed no significant increase. [Conclusion] Although both whole-body vibration and plyometric exercises are effective intervention methods, the two methods have different effects on the improvement of isokinetic muscular strength, jumping performance, and balance of female volleyball players.

  1. High efficient preparation of carbon nanotube-grafted carbon fibers with the improved tensile strength

    NASA Astrophysics Data System (ADS)

    Fan, Wenxin; Wang, Yanxiang; Wang, Chengguo; Chen, Jiqiang; Wang, Qifen; Yuan, Yan; Niu, Fangxu

    2016-02-01

    An innovative technique has been developed to obtain the uniform catalyst coating on continuously moving carbon fibers. Carbon nanotube (CNT)-grafted carbon fibers with significantly improved tensile strength have been succeeded to produce by using chemical vapor deposition (CVD) when compared to the tensile strength of untreated carbon fibers. The critical requirements for preparation of CNT-grafted carbon fibers with high tensile strength have been found, mainly including (i) the obtainment of uniform coating of catalyst particles with small particle size, (ii) the low catalyst-induced and mechano-chemical degradation of carbon fibers, and (iii) the high catalyst activity which could facilitate the healing and strengthening of carbon fibers during the growth of CNTs. The optimum growth temperature was found to be about 500 °C, and the optimum catalyst is Ni due to its highest activity, there is a pronounced increase of 10% in tensile strength of carbon fibers after CNT growth at 500 °C by using Ni catalyst. Based on the observation from HRTEM images, a healing and crosslink model of neighboring carbon crystals by CNTs has been formulated to reveal the main reason that causes an increase in tensile strength of carbon fibers after the growth of CNTs. Such results have provided the theoretical and experimental foundation for the large-scale preparation of CNT-grafted carbon fibers with the improved tensile strength, significantly promoting the development of CNT-grafted carbon fiber reinforced polymer composites.

  2. Towards Rocket Engine Components with Increased Strength and Robust Operating Characteristics

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan; Hadid, Ali; Lin, Pei; Balcazar, Daniel; Rai, Man Mohan; Dorney, Daniel J.

    2005-01-01

    High-energy rotating machines, powering liquid propellant rocket engines, are subject to various sources of high and low cycle fatigue generated by unsteady flow phenomena. Given the tremendous need for reliability in a sustainable space exploration program, a fundamental change in the design methodology for engine components is required for both launch and space based systems. A design optimization system based on neural-networks has been applied and demonstrated in the redesign of the Space Shuttle Main Engine (SSME) Low Pressure Oxidizer Turbo Pump (LPOTP) turbine nozzle. One objective of the redesign effort was to increase airfoil thickness and thus increase its strength while at the same time detuning the vane natural frequency modes from the vortex shedding frequency. The second objective was to reduce the vortex shedding amplitude. The third objective was to maintain this low shedding amplitude even in the presence of large manufacturing tolerances. All of these objectives were achieved without generating any detrimental effects on the downstream flow through the turbine, and without introducing any penalty in performance. The airfoil redesign and preliminary assessment was performed in the Exploration Technology Directorate at NASA ARC. Boeing/Rocketdyne and NASA MSFC independently performed final CFD assessments of the design. Four different CFD codes were used in this process. They include WIL DCA T/CORSAIR (NASA), FLUENT (commercial), TIDAL (Boeing Rocketdyne) and, a new family (AardvarWPhantom) of CFD analysis codes developed at NASA MSFC employing LOX fluid properties and a Generalized Equation Set formulation. Extensive aerodynamic performance analysis and stress analysis carried out at Boeing Rocketdyne and NASA MSFC indicate that the redesign objectives have been fully met. The paper presents the results of the assessment analysis and discusses the future potential of robust optimal design for rocket engine components.

  3. Effect of metal primers on bond strength of resin cements to base metals.

    PubMed

    Fonseca, Renata Garcia; de Almeida, Juliana Gomes dos Santos Paes; Haneda, Isabella Gagliardi; Adabo, Gelson Luis

    2009-04-01

    Panavia F. The Panavia F (P<.01) and Alloy Primer plus Panavia F groups' bond strength to titanium presented a significant increase (P<.001) in shear bond strength at 6 months. In general, the groups exhibited higher shear bond strength to CP Ti than to NiCr alloy (P<.01). The failure mode was 100% adhesive for all groups. The metal primers did not promote an increase in adhesive bonding of resin cements to NiCr alloy and to CP Ti. Water storage had no adverse effect on the shear bond strength of the groups. The shear bond strengths to titanium were significantly higher than those to the NiCr alloy.

  4. A simulation study of the strength of evidence in the recommendation of medications based on two trials with statistically significant results

    PubMed Central

    Ioannidis, John P. A.

    2017-01-01

    A typical rule that has been used for the endorsement of new medications by the Food and Drug Administration is to have two trials, each convincing on its own, demonstrating effectiveness. “Convincing” may be subjectively interpreted, but the use of p-values and the focus on statistical significance (in particular with p < .05 being coined significant) is pervasive in clinical research. Therefore, in this paper, we calculate with simulations what it means to have exactly two trials, each with p < .05, in terms of the actual strength of evidence quantified by Bayes factors. Our results show that different cases where two trials have a p-value below .05 have wildly differing Bayes factors. Bayes factors of at least 20 in favor of the alternative hypothesis are not necessarily achieved and they fail to be reached in a large proportion of cases, in particular when the true effect size is small (0.2 standard deviations) or zero. In a non-trivial number of cases, evidence actually points to the null hypothesis, in particular when the true effect size is zero, when the number of trials is large, and when the number of participants in both groups is low. We recommend use of Bayes factors as a routine tool to assess endorsement of new medications, because Bayes factors consistently quantify strength of evidence. Use of p-values may lead to paradoxical and spurious decision-making regarding the use of new medications. PMID:28273140

  5. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns

    PubMed Central

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko

    2017-01-01

    Background An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​ Aim: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Material and methods Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Results Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Conclusion Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding. PMID:28827846

  6. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns.

    PubMed

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko; Anić-Milošević, Sandra

    2017-06-01

    An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​: A im: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding.

  7. Vertebral body bone strength: the contribution of individual trabecular element morphology.

    PubMed

    Parkinson, I H; Badiei, A; Stauber, M; Codrington, J; Müller, R; Fazzalari, N L

    2012-07-01

    Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading. Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength. Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP). Bone volume fraction was the strongest individual determinant of SI strength (r(2) = 0.77, p < 0.0001) and AP (r(2) = 0.54, p < 0.0001). The determination of SI strength was improved to r(2) = 0.87 with the addition of mean rod length and relative plate bone volume fraction. The determination of AP strength was improved to r(2) = 0.85 with the addition of mean rod volume and relative rod bone volume fraction. Microarchitectural measures of individual trabeculae that contribute to bone strength have been identified. In addition to the contribution of BV/TV, trabecular rod morphology increased the determination of AP strength by 57%, whereas measures of trabecular plate and rod morphology increased determination of SI strength by 13%. Decomposing vertebral body bone architecture into its constituent

  8. Effect of pH on compressive strength of some modification of mineral trioxide aggregate

    PubMed Central

    Saghiri, Mohammad A.; Garcia-Godoy, Franklin; Asatourian, Armen; Lotfi, Mehrdad; Khezri-Boukani, Kaveh

    2013-01-01

    Objectives: Recently, it was shown that NanoMTA improved the setting time and promoted a better hydration process which prevents washout and the dislodgment of this novel biomaterial in comparison with WTMA. This study analyzed the compressive strength of ProRoot WMTA (Dentsply), a NanoWMTA (Kamal Asgar Research Center), and Bioaggregate (Innovative Bioceramix) after its exposure to a range of environmental pH conditions during hydration. Study Design: After mixing the cements under aseptic condition and based on the manufacturers` recommendations, the cements were condensed with moderate force using plugger into 9 × 6 mm split molds. Each type of cement was then randomly divided into three groups (n=10). Specimens were exposed to environments with pH values of 4.4, 7.4, or 10.4 for 3 days. Cement pellets were compressed by using an Instron testing machine. Values were recorded and compared. Data were analyzed by using one-way analysis of variance and a post hoc Tukey’s test. Results: After 3 days, the samples were solid when probed with an explorer before removing them from the molds. The greatest mean compressive strength 133.19±11.14 MPa was observed after exposure to a pH value of 10.4 for NanoWMTA. The values decreased to 111.41±8.26 MPa after exposure to a pH value of 4.4. Increasing of pH had a significant effect on the compressive strength of the groups (p<0.001). The mean compressive strength for the NanoWMTA was statistically higher than for ProRoot WMTA and Bioaggregate (p<0.001). Moreover, increasing of pH values had a significant effect on compressive strength of the experimental groups (p<0.001). Conclusion: The compressive strength of NanoWMTA was significantly higher than WMTA and Bioaggregate; the more acidic the environmental pH, the lower was the compressive strength. Key words:Compressive strength, mineral trioxide aggregate, Nano. PMID:23722137

  9. Daily Overfeeding from Protein and/or Carbohydrate Supplementation for Eight Weeks in Conjunction with Resistance Training Does not Improve Body Composition and Muscle Strength or Increase Markers Indicative of Muscle Protein Synthesis and Myogenesis in Resistance-Trained Males

    PubMed Central

    Spillane, Mike; Willoughby, Darryn S.

    2016-01-01

    This study determined the effects of heavy resistance training and daily overfeeding with carbohydrate and/or protein on blood and skeletal muscle markers of protein synthesis (MPS), myogenesis, body composition, and muscle performance. Twenty one resistance-trained males were randomly assigned to either a protein + carbohydrate [HPC (n = 11)] or a carbohydrate [HC (n = 10)] supplement group in a double-blind fashion. Body composition and muscle performance were assessed, and venous blood samples and muscle biopsies were obtained before and after eight weeks of resistance training and supplementation. Data were analyzed by two-way ANOVA (p ≤ 0.05). Total body mass, body water, and fat mass were significantly increased in both groups in response to resistance training, but not supplementation (p < 0.05); however, lean mass was not significantly increased in either group (p = 0.068). Upper- (p = 0.024) and lower-body (p = 0.001) muscle strength and myosin heavy chain (MHC) 1 (p = 0.039) and MHC 2A (p = 0.027) were also significantly increased with resistance training. Serum IGF-1, GH, and HGF were not significantly affected (p > 0.05). Muscle total DNA, total protein, and c-Met were not significantly affected (p > 0.05). In conjunction with resistance training, the peri-exercise and daily overfeeding of protein and/or carbohydrate did not preferentially improve body composition, muscle performance, and markers indicative of MPS and myogenic activation. Key points In response to 56 days of heavy resistance training and HC or HPC supplementation, similar increases in muscle mass and strength in both groups occurred; however, the increases were not different between supplement groups. The supplementation of HPC had no preferential effect on augmenting serum IGF-1 GH, or HGF. The supplementation of HPC had no preferential effect on augmenting increases in total muscle protein content or the myogenic markers, total DNA and muscle cMet content. In response to 56 days of

  10. Upper limb strength estimation of physically impaired persons using a musculoskeletal model: A sensitivity analysis.

    PubMed

    Carmichael, Marc G; Liu, Dikai

    2015-01-01

    Sensitivity of upper limb strength calculated from a musculoskeletal model was analyzed, with focus on how the sensitivity is affected when the model is adapted to represent a person with physical impairment. Sensitivity was calculated with respect to four muscle-tendon parameters: muscle peak isometric force, muscle optimal length, muscle pennation, and tendon slack length. Results obtained from a musculoskeletal model of average strength showed highest sensitivity to tendon slack length, followed by muscle optimal length and peak isometric force, which is consistent with existing studies. Muscle pennation angle was relatively insensitive. The analysis was repeated after adapting the musculoskeletal model to represent persons with varying severities of physical impairment. Results showed that utilizing the weakened model significantly increased the sensitivity of the calculated strength at the hand, with parameters previously insensitive becoming highly sensitive. This increased sensitivity presents a significant challenge in applications utilizing musculoskeletal models to represent impaired individuals.

  11. Rheumatoid arthritis significantly increased recurrence risk after ischemic stroke/transient ischemic attack.

    PubMed

    Chen, Yih-Ru; Hsieh, Fang-I; Lien, Li-Ming; Hu, Chaur-Jong; Jeng, Jiann-Shing; Peng, Giia-Sheun; Tang, Sung-Chun; Chi, Nai-Fang; Sung, Yueh-Feng; Chiou, Hung-Yi

    2018-06-02

    The effect of RA on recurrent stroke is unknown. Therefore, we examined effects of rheumatoid arthritis (RA) on risk of stroke recurrence and investigated the interaction between RA and traditional cardiovascular risk factors on recurrence risk after ischemic stroke (IS) or transient ischemic attack (TIA). Of 3190 patients with IS or TIA recruited in this cohort study, 638 were comorbid with RA and 2552 without RA. Stroke recurrence, RA, lifestyle, lipid variables and other comorbidities were identified through linkage between a nationwide stroke database in Taiwan and the National Health Insurance claims database. Cox proportional hazard models with competing risk adjustment were used to evaluate the relationship between RA and recurrent stroke. Patients with RA showed a significantly increased risk of recurrent stroke, particular in recurrent IS/TIA. The increased risk of recurrent IS/TIA in RA patients may through the changes of triglycerides (TG)/high-density lipoprotein cholesterol (HDL-C) ratio. A positive additive interaction was observed between RA and current smoking on the risk of recurrent IS/TIA. Significantly increased risks for recurrent IS/TIA were observed among RA patients who smoked > 40 years or those who smoked > 20 cigarettes/day. This study provides the first evidence that RA significantly increased recurrence IS/TIA risk. The changes of TG/HDL-C ratio may play some roles in the recurrence IS/TIA risk in RA patients. In addition, our results suggest that smoking increases the risk of recurrent IS/TIA in RA patients and reinforces the need for aggressive smoking cessation efforts in RA patients.

  12. Isometric strength training lowers the O2 cost of cycling during moderate-intensity exercise.

    PubMed

    Zoladz, Jerzy A; Szkutnik, Zbigniew; Majerczak, Joanna; Grandys, Marcin; Duda, Krzysztof; Grassi, Bruno

    2012-12-01

    The effect of maximal voluntary isometric strength training of knee extensor muscles on pulmonary V'O(2) on-kinetics, the O(2) cost of cycling and peak oxygen uptake (V'O(2peak)) in humans was studied. Seven healthy males (mean ± SD, age 22.3 ± 2.0 years, body weight 75.0 ± 9.2 kg, V'O(2peak) 49.5 ± 3.8 ml kg(-1) min(-1)) performed maximal isometric strength training lasting 7 weeks (4 sessions per week). Force during maximal voluntary contraction (MVC) increased by 15 % (P < 0.001) after 1 week of training, and by 19 % (P < 0.001) after 7 weeks of training. This increase in MVC was accompanied by no significant changes in the time constant of the V'O(2) on-kinetics during 6 min of moderate and heavy cycling intensities. Strength training resulted in a significant decrease (by ~7 %; P < 0.02) in the amplitude of the fundamental component of the V'O(2) on-kinetics, and therefore in a lower O(2) cost of cycling during moderate cycling intensity. The amplitude of the slow component of V'O(2) on-kinetics during heavy cycling intensity did not change with training. Training had no effect on the V'O(2peak), whereas the maximal power output reached at V'O(2peak) was slightly but significantly increased (P < 0.05). Isometric strength training rapidly (i.e., after 1 week) decreases the O(2) cost of cycling during moderate-intensity exercise, whereas it does not affect the amplitude of the slow component of the V'O(2) on-kinetics during heavy-intensity exercise. Isometric strength training can have beneficial effects on performance during endurance events.

  13. Statistical Significance vs. Practical Significance: An Exploration through Health Education

    ERIC Educational Resources Information Center

    Rosen, Brittany L.; DeMaria, Andrea L.

    2012-01-01

    The purpose of this paper is to examine the differences between statistical and practical significance, including strengths and criticisms of both methods, as well as provide information surrounding the application of various effect sizes and confidence intervals within health education research. Provided are recommendations, explanations and…

  14. The influence of tongue strength on oral viscosity discrimination acuity.

    PubMed

    Steele, Catriona M

    2018-06-01

    The ability to generate tongue pressures is widely considered to be critical for liquid bolus propulsion in swallowing. It has been proposed that the application of tongue pressure may also serve the function of collecting sensory information regarding bolus viscosity (resistance to flow). In this study, we explored the impact of age-related reductions in tongue strength on oral viscosity discrimination acuity. The experiment employed a triangle test discrimination protocol with an array of xanthan-gum thickened liquids in the mildly to moderately thick consistency range. A sample of 346 healthy volunteers was recruited, with age ranging from 12 to 86 (164 men, 182 women). On average, participants were able to detect a 0.29-fold increase in xanthan-gum concentration, corresponding to a 0.5-fold increase in viscosity at 50/s. Despite having significantly reduced tongue strength on maximum isometric tongue-palate pressure tasks, and regardless of sex, older participants in this study showed no reductions in viscosity discrimination acuity. In this article, the relationship between tongue strength and the ability to discriminate small differences in liquid viscosity during oral processing is explored. Given that tongue strength declines with age in healthy adults and is also reduced in individuals with dysphagia, it is interesting to determine whether reduced tongue strength might contribute to difficulties in evaluating liquid viscosity during the oral stage of swallowing. Using an array of mildly to moderately thick xanthan-gum thickened liquids, this experiment failed to find any evidence that reductions in tongue strength influence oral viscosity discrimination acuity. © 2017 Wiley Periodicals, Inc.

  15. Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganjeh, E., E-mail: navidganjehie@sina.kntu.ac.ir; Sarkhosh, H.; Bajgholi, M.E.

    Microstructural features developed along with mechanical properties in furnace brazing of Ti-6Al-4V alloy using STEMET 1228 (Ti-26.8Zr-13Ni-13.9Cu, wt.%) and STEMET 1406 (Zr-9.7Ti-12.4Ni-11.2Cu, wt.%) amorphous filler alloys. Brazing temperatures employed were 900-950 Degree-Sign C for the titanium-based filler and 900-990 Degree-Sign C for the zirconium-based filler alloys, respectively. The brazing time durations were 600, 1200 and 1800 s. The brazed joints were evaluated by ultrasonic test, and their microstructures and phase constitutions analyzed by metallography, scanning electron microscopy and X-ray diffraction analysis. Since microstructural evolution across the furnace brazed joints primarily depends on their alloying elements such as Cu, Ni andmore » Zr along the joint. Accordingly, existence of Zr{sub 2}Cu, Ti{sub 2}Cu and (Ti,Zr){sub 2}Ni intermetallic compounds was identified in the brazed joints. The chemical composition of segregation region in the center of brazed joints was identical to virgin filler alloy content which greatly deteriorated the shear strength of the joints. Adequate brazing time (1800 s) and/or temperature (950 Degree-Sign C for Ti-based and 990 Degree-Sign C for Zr-based) resulted in an acicular Widmanstaetten microstructure throughout the entire joint section due to eutectoid reaction. This microstructure increased the shear strength of the brazed joints up to the Ti-6Al-4V tensile strength level. Consequently, Ti-6Al-4V can be furnace brazed by Ti and Zr base foils produced excellent joint strengths. - Highlights: Black-Right-Pointing-Pointer Temperature or time was the main factors of controlling braze joint strength. Black-Right-Pointing-Pointer Developing a Widmanstaetten microstructure generates equal strength to base metal. Black-Right-Pointing-Pointer Brittle intermetallic compounds like (Ti,Zr){sub 2}Ni/Cu deteriorate shear strength. Black-Right-Pointing-Pointer Ti and Zr base filler alloys were the best choice for

  16. Bonding measurement -Strength and fracture mechanics approaches.

    PubMed

    Anunmana, Chuchai; Wansom, Wiroj

    2017-07-26

    This study investigated the effect of cross-sectional areas on interfacial fracture toughness and bond strength of bilayered dental ceramics. Zirconia core ceramics were veneered and cut to produce specimens with three different cross-sectional areas. Additionally, monolithic specimens of glass veneer were also prepared. The specimens were tested in tension until fracture at the interface and reported as bond strength. Fracture surfaces were observed, and the apparent interfacial toughness was determined from critical crack size and failure stress. The results showed that cross-sectional area had no effect on the interfacial toughness whereas such factor had a significant effect on interfacial bond strength. The study revealed that cross-sectional area had no effect on the interfacial toughness, but had a significant effect on interfacial bond strength. The interfacial toughness may be a more reliable indicator for interfacial bond quality than interfacial bond strength.

  17. Normative reference values for strength and flexibility of 1,000 children and adults.

    PubMed

    McKay, Marnee J; Baldwin, Jennifer N; Ferreira, Paulo; Simic, Milena; Vanicek, Natalie; Burns, Joshua

    2017-01-03

    To establish reference values for isometric strength of 12 muscle groups and flexibility of 13 joint movements in 1,000 children and adults and investigate the influence of demographic and anthropometric factors. A standardized reliable protocol of hand-held and fixed dynamometry for isometric strength of ankle, knee, hip, elbow, and shoulder musculature as well as goniometry for flexibility of the ankle, knee, hip, elbow, shoulder, and cervical spine was performed in an observational study investigating 1,000 healthy male and female participants aged 3-101 years. Correlation and multiple regression analyses were performed to identify factors independently associated with strength and flexibility of children, adolescents, adults, and older adults. Normative reference values of 25 strength and flexibility measures were generated. Strong linear correlations between age and strength were identified in the first 2 decades of life. Muscle strength significantly decreased with age in older adults. Regression modeling identified increasing height as the most significant predictor of strength in children, higher body mass in adolescents, and male sex in adults and older adults. Joint flexibility gradually decreased with age, with little sex difference. Waist circumference was a significant predictor of variability in joint flexibility in adolescents, adults, and older adults. Reference values and associated age- and sex-stratified z scores generated from this study can be used to determine the presence and extent of impairments associated with neuromuscular and other neurologic disorders, monitor disease progression over time in natural history studies, and evaluate the effect of new treatments in clinical trials. © 2016 American Academy of Neurology.

  18. Strength of bond with Comspan Opaque to three silicoated alloys and titanium.

    PubMed

    Hansson, O

    1990-06-01

    In Sweden high-gold alloys or cobalt-chromium alloys are used for resin-bonded prostheses. The bond strength between a resin cement and different sandblasted or silicoated metals were measured before and after thermocycling; in connection with this some rapid thermocycling methods were studied. The effect of different storage times and different protection coatings on bond strength were tested. Finally, the influence of rubbing and contamination with saliva on bond strength were investigated. Silicoating increased the bond strength significantly. The highest bond strengths were these of silicoated Wirobond and titanium, unsusceptible to thermal stress; the bond strengths of the sandblasted metals were the weakest, and sensitive to thermocycling as well. The influence on bond strength for silicoated gold alloys, protected with an unpolymerized composite resin coating, stored in sealed plastic bags up to 7 days, was negligible. Rubbing and contamination with saliva did not influence bond strength. Preferably, silicoated Wirobond and titanium should be used for resin-bonded prostheses, but gold alloys may still be adequate for clinical use. The experimental method described for storing, sealing, and cleaning the silicoated metal surfaces in this article can be recommended for laboratory and clinical use.

  19. [Effect of silicon coating on bonding strength of ceramics and titanium].

    PubMed

    Zhou, Shu; Wang, Yu; Zhang, Fei-Min; Guang, Han-Bing

    2009-06-01

    This study investigated the effect of silicon coating (SiO2) by solution-gelatin (Sol-Gel) technology on bonding strength of titanium and ceramics. Sixteen pure titanium specimens with the size of 25 mm x 3 mm x 0.5 mm were divided into two groups (n=8), test group was silicon coated by Sol-Gel technology, the other one was control group. The middle area of the samples were veneered with Vita Titankeramik system, the phase composition of two specimens were characterized by X-ray diffraction (XRD). The bonding strength of titanium/porcelain was evaluated using three-point bending test. The interface of titanium and porcelain and fractured titanium surface were investigated by scanning electron microscope (SEM) with energy depressive spectrum (EDS). Contents of surface silicon increased after modification with silicon coated by Sol-Gel technology. The mean bonding strength of test group and control group were (37.768 +/- 0.777) MPa and (29.483 +/- 1.007) MPa. There was a statistically significant difference (P=0.000) between them. The bonded ceramic boundary of test group was wider than control group. Silicon coating by Sol-Gel technology was significant in improving bonding strength of titanium/Vita Titankeramik system.

  20. Significance in the increase of women psychiatrists in Korea.

    PubMed

    Kim, Ha Kyoung; Kim, Soo In

    2008-01-01

    The number of female doctors has increased in Korea; 18.9% (13,083) of the total medical doctors registered (69,097) were women in 2006, compared to 13.6% (2,216) in 1975. The proportion of female doctors will jump up by 2010 considering that nearly 40% of the medical students are women as of today. This trend has had strong influence on the field of psychiatry; the percentage of women psychiatrists rose from 1.6 (6)% to 18% (453), from 1975 to 2006 and now women residents comprise 39% (206) of all. This is not only a reflection of a social phenomenon of the increase in professional women but also attributed to some specific characteristics of the psychiatry. Psychiatric practice may come more natural to women. While clinical activities of women psychiatrists are expanding, there are few women leaders and much less women are involving in academic activities in this field as yet. Though there is less sexual discrimination in the field of psychiatry, women psychiatrists are still having a lot of difficulties in balancing work and family matters. Many women psychiatrists also report they've ever felt an implied discrimination in their careers. In this study, we are to identify the characteristics of women psychiatrists and to explore the significance of the increase in women psychiatrists in Korea and the situation in which they are.

  1. Influence of processing factors over concrete strength.

    NASA Astrophysics Data System (ADS)

    Kara, K. A.; Dolzhenko, A. V.; Zharikov, I. S.

    2018-03-01

    Construction of facilities of cast in-situ reinforced concrete poses additional requirements to quality of material, peculiarities of the construction process may sometimes lead to appearance of lamination planes and inhomogeneity of concrete, which reduce strength of the material and structure as a whole. Technology compliance while working with cast in-situ concrete has a significant impact onto the concrete strength. Such process factors as concrete curing, vibration and compaction of the concrete mixture, temperature treatment, etc., when they are countered or inadequately followed lead to a significant reduction in concrete strength. Here, the authors experimentally quantitatively determine the loss of strength in in-situ cast concrete structures due to inadequate following of process requirements, in comparison with full compliance.

  2. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters

    PubMed Central

    Chowdhury, S.; Maniar, A.; Suganya, O.M.

    2014-01-01

    In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper. PMID:26644928

  3. A soluble bone morphogenetic protein type IA receptor increases bone mass and bone strength

    PubMed Central

    Baud’huin, Marc; Solban, Nicolas; Cornwall-Brady, Milton; Sako, Dianne; Kawamoto, Yoshimi; Liharska, Katia; Lath, Darren; Bouxsein, Mary L.; Underwood, Kathryn W.; Ucran, Jeffrey; Kumar, Ravindra; Pobre, Eileen; Grinberg, Asya; Seehra, Jasbir; Canalis, Ernesto; Pearsall, R. Scott; Croucher, Peter I.

    2012-01-01

    Diseases such as osteoporosis are associated with reduced bone mass. Therapies to prevent bone loss exist, but there are few that stimulate bone formation and restore bone mass. Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily, which act as pleiotropic regulators of skeletal organogenesis and bone homeostasis. Ablation of the BMPR1A receptor in osteoblasts increases bone mass, suggesting that inhibition of BMPR1A signaling may have therapeutic benefit. The aim of this study was to determine the skeletal effects of systemic administration of a soluble BMPR1A fusion protein (mBMPR1A–mFc) in vivo. mBMPR1A–mFc was shown to bind BMP2/4 specifically and with high affinity and prevent downstream signaling. mBMPR1A–mFc treatment of immature and mature mice increased bone mineral density, cortical thickness, trabecular bone volume, thickness and number, and decreased trabecular separation. The increase in bone mass was due to an early increase in osteoblast number and bone formation rate, mediated by a suppression of Dickkopf-1 expression. This was followed by a decrease in osteoclast number and eroded surface, which was associated with a decrease in receptor activator of NF-κB ligand (RANKL) production, an increase in osteoprotegerin expression, and a decrease in serum tartrate-resistant acid phosphatase (TRAP5b) concentration. mBMPR1A treatment also increased bone mass and strength in mice with bone loss due to estrogen deficiency. In conclusion, mBMPR1A–mFc stimulates osteoblastic bone formation and decreases bone resorption, which leads to an increase in bone mass, and offers a promising unique alternative for the treatment of bone-related disorders. PMID:22761317

  4. Gait symmetry and hip strength in women with developmental dysplasia following hip arthroplasty compared to healthy subjects: A cross-sectional study.

    PubMed

    Leijendekkers, Ruud A; Marra, Marco A; Kolk, Sjoerd; van Bon, Geert; Schreurs, B Wim; Weerdesteyn, Vivian; Verdonschot, Nico

    2018-01-01

    Untreated unilateral developmental dysplasia of the hip (DDH) results in asymmetry of gait and hip strength and may lead to early osteoarthritis, which is commonly treated with a total hip arthroplasty (THA). There is limited knowledge about the obtained symmetry of gait and hip strength after the THA. The objectives of this cross-sectional study were to: a) identify asymmetries between the operated and non-operated side in kinematics, kinetics and hip strength, b) analyze if increased walking speed changed the level of asymmetry in patients c) compare these results with those of healthy subjects. Women (18-70 year) with unilateral DDH who had undergone unilateral THA were eligible for inclusion. Vicon gait analysis system was used to collect frontal and sagittal plane kinematic and kinetic parameters of the hip joint, pelvis and trunk during walking at comfortable walking speed and increased walking speed. Furthermore, hip abductor and extensor muscle strength was measured. Six patients and eight healthy subjects were included. In the patients, modest asymmetries in lower limb kinematics and kinetics were present during gait, but trunk lateral flexion asymmetry was evident. Patients' trunk lateral flexion also differed compared to healthy subjects. Walking speed did not significantly influence the level of asymmetry. The hip abduction strength asymmetry of 23% was not statistically significant, but the muscle strength of both sides were significantly weaker than those of healthy subjects. In patients with a DDH treated with an IBG THA modest asymmetries in gait kinematics and kinetics were present, with the exception of a substantial asymmetry of the trunk lateral flexion. Increased walking speed did not result in increased asymmetries in gait kinematics and kinetics. Hip muscle strength was symmetrical in patients, but significantly weaker than in healthy subjects. Trunk kinematics should be included as an outcome measure to assess the biomechanical benefits of

  5. Role of enamel deminerlization and remineralization on microtensile bond strength of resin composite

    PubMed Central

    Rizvi, Abbas; Zafar, Muhammad S.; Al-Wasifi, Yasser; Fareed, Wamiq; Khurshid, Zohaib

    2016-01-01

    Objective: This study is aimed to establish the microtensile bond strength of enamel following exposure to an aerated drink at various time intervals with/without application of remineralization agent. In addition, degree of remineralization and demineralization of tooth enamel has been assessed using polarized light microscopy. Materials and Methods: Seventy extracted human incisors split into two halves were immersed in aerated beverage (cola drink) for 5 min and stored in saliva until the time of microtensile bond testing. Prepared specimens were divided randomly into two study groups; remineralizing group (n = 70): specimens were treated for remineralization using casein phosphopeptides and amorphous calcium phosphate (CPP-ACP) remineralization agent (Recaldent™; GC Europe) and control group (n = 70): no remineralization treatment; specimens were kept in artificial saliva. All specimens were tested for microtensile bond strength at regular intervals (1 h, 1 days, 2 days, 1 week, and 2 weeks) using a universal testing machine. The results statistically analyzed (P = 0.05) using two-way ANOVA test. Results: Results showed statistically significant increase in bond strength in CPP-ACP tested group (P < 0.05) at all-time intervals. The bond strength of remineralizing group samples at 2 days (~13.64 megapascals [MPa]) is comparable to that of control group after 1 week (~12.44 MPa). Conclusions: CPP-ACP treatment of teeth exposed to an aerated drink provided significant increase in bond strength at a shorter interval compared to teeth exposed to saliva alone. PMID:27403057

  6. Role of enamel deminerlization and remineralization on microtensile bond strength of resin composite.

    PubMed

    Rizvi, Abbas; Zafar, Muhammad S; Al-Wasifi, Yasser; Fareed, Wamiq; Khurshid, Zohaib

    2016-01-01

    This study is aimed to establish the microtensile bond strength of enamel following exposure to an aerated drink at various time intervals with/without application of remineralization agent. In addition, degree of remineralization and demineralization of tooth enamel has been assessed using polarized light microscopy. Seventy extracted human incisors split into two halves were immersed in aerated beverage (cola drink) for 5 min and stored in saliva until the time of microtensile bond testing. Prepared specimens were divided randomly into two study groups; remineralizing group (n = 70): specimens were treated for remineralization using casein phosphopeptides and amorphous calcium phosphate (CPP-ACP) remineralization agent (Recaldent™; GC Europe) and control group (n = 70): no remineralization treatment; specimens were kept in artificial saliva. All specimens were tested for microtensile bond strength at regular intervals (1 h, 1 days, 2 days, 1 week, and 2 weeks) using a universal testing machine. The results statistically analyzed (P = 0.05) using two-way ANOVA test. Results showed statistically significant increase in bond strength in CPP-ACP tested group (P < 0.05) at all-time intervals. The bond strength of remineralizing group samples at 2 days (~13.64 megapascals [MPa]) is comparable to that of control group after 1 week (~12.44 MPa). CPP-ACP treatment of teeth exposed to an aerated drink provided significant increase in bond strength at a shorter interval compared to teeth exposed to saliva alone.

  7. Cycle training induces muscle hypertrophy and strength gain: strategies and mechanisms.

    PubMed

    Ozaki, Hayao; Loenneke, J P; Thiebaud, R S; Abe, T

    2015-03-01

    Cycle training is widely performed as a major part of any exercise program seeking to improve aerobic capacity and cardiovascular health. However, the effect of cycle training on muscle size and strength gain still requires further insight, even though it is known that professional cyclists display larger muscle size compared to controls. Therefore, the purpose of this review is to discuss the effects of cycle training on muscle size and strength of the lower extremity and the possible mechanisms for increasing muscle size with cycle training. It is plausible that cycle training requires a longer period to significantly increase muscle size compared to typical resistance training due to a much slower hypertrophy rate. Cycle training induces muscle hypertrophy similarly between young and older age groups, while strength gain seems to favor older adults, which suggests that the probability for improving in muscle quality appears to be higher in older adults compared to young adults. For young adults, higher-intensity intermittent cycling may be required to achieve strength gains. It also appears that muscle hypertrophy induced by cycle training results from the positive changes in muscle protein net balance.

  8. Bond and fracture strength of metal-ceramic restorations formed by selective laser sintering

    PubMed Central

    Bae, Eun-Jeong; Kim, Woong-Chul; Kim, Hae-Young

    2014-01-01

    PURPOSE The purpose of this study was to compare the fracture strength of the metal and the bond strength in metal-ceramic restorations produced by selective laser sintering (SLS) and by conventional casting (CAST). MATERIALS AND METHODS Non-precious alloy (StarLoy C, DeguDent, Hanau, Germany) was used in CAST group and metal powder (SP2, EOS GmbH, Munich, Germany) in SLS group. Metal specimens in the form of sheets (25.0 × 3.0 × 0.5 mm) were produced in accordance with ISO 9693:1999 standards (n=30). To measure the bond strength, ceramic was fired on a metal specimen and then three-point bending test was performed. In addition, the metal fracture strength was measured by continuing the application of the load. The values were statistically analyzed by performing independent t-tests (α=.05). RESULTS The mean bond strength of the SLS group (50.60 MPa) was higher than that of the CAST group (46.29 MPa), but there was no statistically significant difference. The metal fracture strength of the SLS group (1087.2 MPa) was lower than that of the CAST group (2399.1 MPa), and this difference was statistically significant. CONCLUSION In conclusion the balling phenomenon and the gap formation of the SLS process may increase the metal-ceramic bond strength. PMID:25177469

  9. Effect of light aging on silicone-resin bond strength in maxillofacial prostheses.

    PubMed

    Polyzois, Gregory; Pantopoulos, Antonis; Papadopoulos, Triantafillos; Hatamleh, Muhanad

    2015-04-01

    The aim of this study was to investigate the effect of accelerated light aging on bond strength of a silicone elastomer to three types of denture resin. A total of 60 single lap joint specimens were fabricated with auto-, heat-, and photopolymerized (n = 20) resins. An addition-type silicone elastomer (Episil-E) was bonded to resins treated with the same primer (A330-G). Thirty specimens served as controls and were tested after 24 hours, and the remaining were aged under accelerated exposure to daylight for 546 hours (irradiance 765 W/m(2) ). Lap shear joint tests were performed to evaluate bond strength at 50 mm/min crosshead speed. Two-way ANOVA and Tukey's test were carried out to detect statistical significance (p < 0.05). ANOVA showed that the main effect of light aging was the most important factor determining the shear bond strength. The mean bond strength values ranged from 0.096 to 0.136 MPa. The highest values were recorded for auto- (0.131 MPa) and photopolymerized (0.136 MPa) resins after aging. Accelerated light aging for 546 hours affects the bond strength of an addition-type silicone elastomer to three different denture resins. The bond strength significantly increased after aging for photo- and autopolymerized resins. All the bonds failed adhesively. © 2014 by the American College of Prosthodontists.

  10. Maximal strength and power assessment in novice weight trainers.

    PubMed

    Cronin, John B; Henderson, Melanie E

    2004-02-01

    The purpose of this study was to investigate whether changes in maximal strength and power output occurred over time in the absence of strength and power training in novice weight trainers. It also investigated whether differences existed between upper- and lower-body assessments and unilateral and bilateral assessments. The power output and maximal strength (1 repetition maximum [1RM]) of 10 male novice subjects were measured on 4 occasions, each assessment 7-10 days apart. The exercises used to measure the upper- and lower-body strength and power outputs were the bench press and supine squat, respectively. Significant (p < 0.05) changes in unilateral (9.8-16.8%) and bilateral 1RM (6.8-15.0%) leg strength were found, the first assessment being significantly different from all other assessments and assessment 2 significantly different from assessment 4. Changes in the upper body (10-13.6%) were also observed. The only significant difference was between assessment 1 and the other testing occasions. No differences in power output were observed for both the upper and lower body during the study. It would seem that considerable changes in maximal strength occur rapidly and in the absence of any formal strength training program in novice weight trainers.

  11. Effects of different heel-raise-lower exercise interventions on the strength of plantarflexion, balance, and gait parameters in stroke survivors.

    PubMed

    Lee, Seung-Mi; Cynn, Heon-Seock; Yoon, Tae-Lim; Lee, Ji-Hyun

    2017-09-01

    The objective of this study was to investigate the effects of Heel-Raise-Lower Exercise (HRLE) interventions on the strength of plantarflexion, balance, and gait parameters in people with stroke. Specifically, this study compared the two different HRLEs to identify whether heels raise-lower with forefoot on a block (HRB) is more effective or ineffective to enhance strength and functional capacities than heels raise-lower on a level floor (HRL) exercise in people with stroke. Repetitive heel raise-lower is a common exercise for improving the strength and power of ankle plantarflexors. It is a simple movement, requires no equipment, and can be performed at home. Each group of 10 people with stroke was given either HRB training or HRL training. The subjects performed the exercise 100 times per day, 5 days per week for 6 weeks. The strength of plantarflexors, static/dynamic balance, and gait parameters were measured using the manual muscle test (MMT), a Biodex Balance System (BBS) SD, and the GAITRite system. After 6 weeks of treatment, there were significant increases in the plantarflexors strength in both groups: by 34% in the HRB group and by 21% in the HRL group. Static and dynamic balance and gait speed also increased significantly in both groups. However, cadence, the paretic side single limb support period (SLSP), paretic side step length, and paretic side stride length significantly increased only in the HRB group. The HRB improved significantly the plantar flexor strength of the paretic side, gait speed, and cadence compared to the HRL.

  12. Bisphosphonates Significantly Increase the Activity of Doxorubicin or Vincristine Against Canine Malignant Histiocytosis Cells

    PubMed Central

    Hafeman, S.D.; Varland, D.; Dow, S.W.

    2011-01-01

    Canine malignant histiocytosis (MH) is an aggressive neoplasm of macrophages and dendritic cells. It carries a poor prognosis due to the development of widespread metastasis and poor sensitivity to chemotherapy. Thus, there is a large need for new treatments for MH. We hypothesized that bisphosphonates might be useful to increase the effectiveness of cytotoxic chemotherapy against MH. To address this question, we conducted in vitro screening studies using MH cell lines and a panel of 6 chemotherapy and 5 bisphosphonate drugs. The combination of clodronate with vincristine was found to elicit synergistic killing which was associated with a significant increase in cell cycle arrest. Second, zoledronate combined with doxorubicin also significantly increased cell killing. Zoledronate significantly increased the uptake of doxorubicin by MH cells. Based on these findings, we conclude that certain bisphosphonate drugs may increase the overall effectiveness of chemotherapy for MH in dogs. PMID:22236140

  13. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    PubMed Central

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  14. Randomized controlled trial of strength training in post-polio patients.

    PubMed

    Chan, K Ming; Amirjani, Nasim; Sumrain, Mae; Clarke, Anita; Strohschein, Fay J

    2003-03-01

    Many post-polio patients develop new muscle weakness decades after the initial illness. However, its mechanism and treatment are controversial. The purpose of this study was to test the hypotheses that: (1) after strength training, post-polio patients show strength improvement comparable to that seen in the healthy elderly; (2) such training does not have a deleterious effect on motor unit (MU) survival; and (3) part of the strength improvement is due to an increase in voluntary motor drive. After baseline measures including maximum voluntary contraction force, voluntary activation index, motor unit number estimate, and the tetanic tension of the thumb muscles had been determined, 10 post-polio patients with hand involvement were randomized to either the training or control group. The progressive resistance training program consisted of three sets of eight isometric contractions, three times weekly for 12 weeks. Seven healthy elderly were also randomized and trained in a similar manner. Changes in the baseline parameters were monitored once every 4 weeks throughout the training period. The trained post-polio patients showed a significant improvement in their strength (P < 0.05). The magnitude of gain was greater than that seen in the healthy elderly (mean +/- SE, 41 +/- 16% vs. 29 +/- 8%). The training did not adversely affect MU survival and the improvement was largely attributable to an increase in voluntary motor drive. We therefore conclude that moderate intensity strength training is safe and effective in post-polio patients.

  15. Cardiopulmonary fitness and muscle strength in patients with osteogenesis imperfecta type I.

    PubMed

    Takken, Tim; Terlingen, Heike C; Helders, Paul J M; Pruijs, Hans; Van der Ent, Cornelis K; Engelbert, Raoul H H

    2004-12-01

    To evaluate cardiopulmonary function, muscle strength, and cardiopulmonary fitness (VO 2 peak) in patients with osteogenesis imperfecta (OI). In 17 patients with OI type I (mean age 13.3 +/- 3.9 years) cardiopulmonary function was assessed at rest using spirometry, plethysmography, electrocardiography, and echocardiography. Exercise capacity was measured using a maximal exercise test on a bicycle ergometer and an expired gas analysis system. Muscle strength in shoulder abductors, hip flexors, ankle dorsal flexor, and grip strength were measured. All results were compared with reference values. Cardiopulmonary function at rest was within normal ranges, but when it was compared with normal height for age and sex, vital capacities were reduced. Mean absolute and relative VO 2 peak were respectively -1.17 (+/- 0.67) and -1.41 (+/- 1.52) standard deviations lower compared with reference values ( P < .01). Muscle strength also was significantly reduced in patients with OI, ranging from -1.24 +/- 1.40 to -2.88 +/- 2.67 standard deviations lower compared with reference values. In patients with OI type I, no pulmonary or cardiac abnormalities at rest were found. The exercise tolerance and muscle strength were significantly reduced in patients with OI, which might account for their increased levels of fatigue during activities of daily living.

  16. ZERODUR®: new stress corrosion data improve strength fatigue prediction

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter; Kleer, Günter; Rist, Tobias

    2015-09-01

    The extremely low thermal expansion glass ceramic ZERODUR® finds more and more applications as sophisticated light weight structures with thin ribs or as thin shells. Quite often they will be subject to higher mechanical loads such as rocket launches or modulating wobbling vibrations. Designing such structures requires calculation methods and data taking into account their long term fatigue. With brittle materials fatigue is not only given by the material itself but to a high extent also by its surface condition and the environmental media especially humidity. This work extends the latest data and information gathered on the bending strength of ZERODUR® with new results concerning its long term behavior under tensile stress. The parameter needed for prediction calculations which combines the influences of time and environmental media is the stress corrosion constant n. Results of the past differ significantly from each other. In order to obtain consistent data the stress corrosion constant has been measured with the method comparing the breakage statistical distributions at different stress increase rates. For better significance the stress increase rate was varied over four orders of magnitude from 0.004 MPa/s to 40 MPa/s. Experiments were performed under normal humidity for long term earth bound applications and under nitrogen atmosphere as equivalent to dry environment occurring for example with telescopes in deserts and also equivalent to vacuum for space applications. As shown earlier the bending strength of diamond ground surfaces of ZERODUR® can be represented with a three parameter Weibull distribution. Predictions on the long term strength change of ZERODUR® structures under tensile stress are possible with reduced uncertainty if Weibull threshold strength values are considered and more reliable stress corrosion constant data are applied.

  17. The Effects of Blood Flow Restricted Electrostimulation on Strength and Hypertrophy.

    PubMed

    Slysz, Joshua T; Burr, Jamie F

    2018-05-22

    The combined effect of neuromuscular electrical stimulation (NMES) and blood flow restriction (BFR) on muscle mass and strength has not been thoroughly investigated. To examine the effects of combined and independent BFR and a low-intensity NMES on skeletal muscle adaptation. Exploratory study. Laboratory. Twenty recreationally active subjects. Subjects had each leg randomly allocated to 1 of 4 possible intervention groups: (1) cyclic BFR alone, (2) NMES alone, (3) BFR + NMES, or (4) control. Each leg was stimulated in its respective intervention group for 32 minutes, 4 days per week for 6 weeks. Mean differences in size (in grams) and isometric strength (in kilograms), between week 0 and week 6, were calculated for each group. Leg strength increased 32 (19) kg in the BFR + NMES group, which differed from the 3 (11) kg change in the control group (P = .03). The isolated NMES and BFR groups revealed increases of 16 (28) kg and 18 (17) kg, respectively, but these did not statistically differ from the control, or one another. No alterations were statistically significant for leg size. Compared with a control that received no treatment, the novel combination of BFR and NMES led to increasing muscular strength of the knee extensors, but not muscle mass which had a large interindividual variability in response.

  18. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain.

    PubMed

    Volkow, N D; Wang, G; Fowler, J S; Logan, J; Gerasimov, M; Maynard, L; Ding, Y; Gatley, S J; Gifford, A; Franceschi, D

    2001-01-15

    Methylphenidate (Ritalin) is the most commonly prescribed psychoactive drug in children for the treatment of attention deficit hyperactivity disorder (ADHD), yet the mechanisms responsible for its therapeutic effects are poorly understood. Whereas methylphenidate blocks the dopamine transporter (main mechanism for removal of extracellular dopamine), it is unclear whether at doses used therapeutically it significantly changes extracellular dopamine (DA) concentration. Here we used positron emission tomography and [(11)C]raclopride (D2 receptor radioligand that competes with endogenous DA for binding to the receptor) to evaluate whether oral methylphenidate changes extracellular DA in the human brain in 11 healthy controls. We showed that oral methylphenidate (average dose 0.8 +/- 0.11 mg/kg) significantly increased extracellular DA in brain, as evidenced by a significant reduction in B(max)/K(d) (measure of D2 receptor availability) in striatum (20 +/- 12%; p < 0.0005). These results provide direct evidence that oral methylphenidate at doses within the therapeutic range significantly increases extracellular DA in human brain. This result coupled with recent findings of increased dopamine transporters in ADHD patients (which is expected to result in reductions in extracellular DA) provides a mechanistic framework for the therapeutic efficacy of methylphenidate. The increase in DA caused by the blockade of dopamine transporters by methylphenidate predominantly reflects an amplification of spontaneously released DA, which in turn is responsive to environmental stimulation. Because DA decreases background firing rates and increases signal-to-noise in target neurons, we postulate that the amplification of weak DA signals in subjects with ADHD by methylphenidate would enhance task-specific signaling, improving attention and decreasing distractibility. Alternatively methylphenidate-induced increases in DA, a neurotransmitter involved with motivation and reward, could

  19. Impact tensile properties and strength development mechanism of glass for reinforcement fiber

    NASA Astrophysics Data System (ADS)

    Kim, T.; Oshima, K.; Kawada, H.

    2013-07-01

    In this study, impact tensile properties of E-glass were investigated by fiber bundle testing under a high strain rate. The impact tests were performed employing two types of experiments. One is the tension-type split Hopkinson pressure bar system, and the other is the universal high-speed tensile-testing machine. As the results, it was found that not only the tensile strength but also the fracture strain of E-glass fiber improved with the strain rate. The absorbed strain energy of this material significantly increased. It was also found that the degree of the strain rate dependency of E-glass fibers on the tensile strength was varied according to fiber diameter. As for the strain rate dependency of the glass fiber under tensile loading condition, change of the small crack-propagation behaviour was considered to clarify the development of the fiber strength. The tensile fiber strength was estimated by employing the numerical simulation based on the slow crack-growth model (SCG). Through the parametric study against the coefficient of the crack propagation rate, the numerical estimation value was obtained for the various testing conditions. It was concluded that the slow crack-growth behaviour in the glass fiber was an essential for the increase in the strength of this material.

  20. Adolescents' strengths and difficulties: approach to attachment styles.

    PubMed

    Keskin, G; Cam, O

    2010-06-01

    This research is a descriptive field study conducted in order to investigate the relationship between adolescent difficulties and the attachment style. The study aims to investigate the relationship between adolescent attachment style and strength and difficulties in Turkey. Children attachment style and difficulties pattern in the group of adolescents aged 11-16 years old were compared with each other. Several different questionnaires, including The Strength and Difficulties Questionnaire, The Relationship Scale Questionnaire were applied to 384 (mean age 12.10 +/- 1.4 years) adolescents. The data were analysed using descriptive statistics, Pearson correlation coefficients, anova, t-test, Kruskall Wallis and effect sizes. The adolescent secure attachment style was associated with increased levels of prosocial behaviour, decreased levels of emotional symptoms, hyperactivity/inattention, peer relationship problems, conduct problems, total difficulties scores. The adolescent fearful attachment style was associated with increased levels of emotional symptoms, and total difficulties scores. The adolescent dismissing attachment style was significantly associated with higher levels of emotional symptoms, hyperactivity/inattention, total difficulties scores and lower levels of prosocial behaviour. Adolescent strengths and difficulties are associated with their attachment style. Insecure attachment styles of dismissing and fearful were associated with increased mental symptom reporting. It is suggested that further studies may illuminate the clinical value of the attachment disorder and quantify parental contribution to psychopathology. Giving the therapeutic, structured mental support programme to adolescents that have attachment problems could be beneficial in improving mental status of these individuals.

  1. Bisphosphonates significantly increase the activity of doxorubicin or vincristine against canine malignant histiocytosis cells.

    PubMed

    Hafeman, S D; Varland, D; Dow, S W

    2012-03-01

    Canine malignant histiocytosis (MH) is an aggressive neoplasm of macrophages and dendritic cells. It carries a poor prognosis because of the development of widespread metastasis and poor sensitivity to chemotherapy. Thus, there is a large need for new treatments for MH. We hypothesized that bisphosphonates might be useful to increase the effectiveness of cytotoxic chemotherapy against MH. To address this question, we conducted in vitro screening studies using MH cell lines and a panel of 6 chemotherapy and 5 bisphosphonate drugs. The combination of clodronate with vincristine was found to elicit synergistic killing which was associated with a significant increase in cell cycle arrest. Second, zoledronate combined with doxorubicin also significantly increased cell killing. Zoledronate significantly increased the uptake of doxorubicin by MH cells. On the basis of these findings, we conclude that certain bisphosphonate drugs may increase the overall effectiveness of chemotherapy for MH in dogs. © 2011 Blackwell Publishing Ltd.

  2. Elastic Bands in Combination With Free Weights in Strength Training: Neuromuscular Effects.

    PubMed

    Andersen, Vidar; Fimland, Marius S; Kolnes, Maria K; Saeterbakken, Atle H

    2015-10-01

    This study compared the effects of a variable vs. a constant lower limb resistance training program on muscle strength, muscle activation, and ballistic muscle performance at different knee angles. Thirty-two females were randomized to a constant resistance training free-weight group (FWG) or a variable resistance training group using free weights in combination with elastic bands (EBG). Two variations of the squat exercise (back squat and split) were performed 2 days per week for 10 weeks. Knee extensor maximal voluntary isometric contraction (MVC) and countermovement jump were assessed at knee angles of 60, 90, and 120° before and after the intervention. During the MVCs, muscle activation of the superficial knee extensor muscles was measured using surface electromyography. The FWG increased their MVCs at 60 and 90° (24 and 15%, respectively), whereas the EBG only increased significantly at 60° (15%). The FWG increased their jump height significantly at all angles (12-16%), whereas the EBG only improved significantly at 60 and 90° (15 and 10%, respectively). Both groups improved their 6-repetition maximum free-weight squat performance (EBG: 25% and FWG: 23%). There were no significant changes in muscle activation. In conclusion, constant and variable resistance training provided similar increases in dynamic and isometric strength, and ballistic muscle performance, albeit most consistently for the group training only with free weights.

  3. Effects of High Velocity Elastic Band versus Heavy Resistance Training on Hamstring Strength, Activation, and Sprint Running Performance

    PubMed Central

    Janusevicius, Donatas; Snieckus, Audrius; Skurvydas, Albertas; Silinskas, Viktoras; Trinkunas, Eugenijus; Cadefau, Joan Aureli; Kamandulis, Sigitas

    2017-01-01

    Hamstring muscle injuries occur during high-speed activities, which suggests that muscular strength at high velocities may be more important than maximal strength. This study examined hamstring adaptations to training for maximal strength and for strength at high velocities. Physically active men (n = 25; age, 23.0 ± 3.2 years) were randomly divided into: (1) a resistance training (RT, n = 8) group, which performed high-load, low-velocity concentric–eccentric hamstring contractions; (2) a resistance training concentric (RTC; n = 9) group, which performed high-load, low-velocity concentric-only hamstring contractions; and (3) a high-velocity elastic band training (HVT, n = 8) group, which performed low-load, high-velocity concentric–eccentric hamstring contractions. Pre- and posttraining tests included hamstring strength on a hamstring-curl apparatus, concentric knee extension–flexion at 60°/s, 240°/s, and 450°/s, eccentric knee flexion at 60°/s and 240°/s, hamstring and quadriceps coactivation, knee flexion and extension frequency in the prone position, and 30-m sprint running speed from a stationary start and with a running start. Knee flexor torque increased significantly by 21.1% ± 8.1% in the RTC group and 16.2% ± 4.2% in the RT group (p < 0.05 for both groups). Hamstring coactivation decreased significantly in both groups. In the HVT group, knee flexion and extension frequency increased by 17.8% ± 8.2%, concentric peak torque of the knee flexors at 450°/s increased by 31.0% ± 12.0%, hamstring coactivation decreased, and running performance over 30 m improved (p < 0.05 for all parameters). These findings suggest that resistance training at high velocities is superior to traditional heavy resistance training for increasing knee flexor strength at high velocities, movement frequency, and sprint running performance. These findings also indicate that traditional training approaches are effective for increasing knee flexor strength and reducing knee

  4. Challenges in Determining Intrinsic Viscosity Under Low Ionic Strength Solution Conditions.

    PubMed

    Pindrus, Mariya A; Shire, Steven J; Yadav, Sandeep; Kalonia, Devendra S

    2017-04-01

    To determine the intrinsic viscosity of several monoclonal antibodies (mAbs) under varying pH and ionic strength solution conditions. An online viscosity detector attached to HPLC (Viscotek®) was used to determine the intrinsic viscosity of mAbs. The Ross and Minton equation was used for viscosity prediction at high protein concentrations. Bulk viscosity was determined by a Cambridge viscometer. At 15 mM ionic strength, intrinsic viscosity of the mAbs determined by the single-point approach varied from 5.6 to 6.4 mL/g with changes in pH. High ionic strength did not significantly alter intrinsic viscosity, while a significant increase (up to 24.0 mL/g) was observed near zero mM. No difference in bulk viscosity of mAb3 was observed around pH 6 as a function of ionic strength. Data analysis revealed that near zero mM ionic strength limitations of the single-point technique result in erroneously high intrinsic viscosity. Intrinsic viscosity is a valuable tool that can be used to model baseline viscosity at higher protein concentrations. However, it is not predictive of solution non-ideality at higher protein concentrations. Furthermore, breakdown of numerous assumptions limits the applicability of experimental techniques near zero mM ionic strength conditions. For molecules and conditions studied, the single-point approach produced reliable intrinsic viscosity results at 15 mM. However, this approach must be used with caution near zero mM ionic strength. Data analysis can be used to reveal whether determined intrinsic viscosity is reliable or erroneously high.

  5. Effect of insulating concrete forms in concrete compresive strength

    NASA Astrophysics Data System (ADS)

    Martinez Jerez, Silvio R.

    The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.

  6. Effect of wear on the burst strength of l-80 steel casing

    NASA Astrophysics Data System (ADS)

    Irawan, S.; Bharadwaj, A. M.; Temesgen, B.; Karuppanan, S.; Abdullah, M. Z. B.

    2015-12-01

    Casing wear has recently become one of the areas of research interest in the oil and gas industry especially in extended reach well drilling. The burst strength of a worn out casing is one of the significantly affected mechanical properties and is yet an area where less research is done The most commonly used equations to calculate the resulting burst strength after wear are Barlow, the initial yield burst, the full yield burst and the rupture burst equations. The objective of this study was to estimate casing burst strength after wear through Finite Element Analysis (FEA). It included calculation and comparison of the different theoretical bursts pressures with the simulation results along with effect of different wear shapes on L-80 casing material. The von Misses stress was used in the estimation of the burst pressure. The result obtained shows that the casing burst strength decreases as the wear percentage increases. Moreover, the burst strength value of the casing obtained from the FEA has a higher value compared to the theoretical burst strength values. Casing with crescent shaped wear give the highest burst strength value when simulated under nonlinear analysis.

  7. Comparison of spinal alignment, muscular strength, and quality of life between women with postmenopausal osteoporosis and healthy volunteers.

    PubMed

    Miyakoshi, N; Kudo, D; Hongo, M; Kasukawa, Y; Ishikawa, Y; Shimada, Y

    2017-11-01

    This study compared spinal alignment, muscular strength, and quality of life (QOL) between women with postmenopausal osteoporosis and healthy volunteers. The results indicated that lower QOL in osteoporosis patients may be associated with increased thoracic kyphosis, reduced lean muscle mass, and generalized muscle weakness. Increased spinal kyphosis is common in patients with osteoporosis and negatively impacts quality of life (QOL). Muscular strength is also important for QOL in patients with osteoporosis. However, spinal kyphosis and muscle weakness also occur in healthy individuals with advancing age. The purposes of this study were thus to compare spinal alignment, muscular strength, and QOL between women with postmenopausal osteoporosis and healthy volunteers. Participants comprised 236 female patients with postmenopausal osteoporosis (mean age, 68.7 years) and 93 healthy volunteer women (mean age, 71.0 years). Body mass index (BMI), angles of spinal kyphosis, back extensor strength, grip strength, and QOL were compared between groups. BMI, back extensor strength, and grip strength were significantly higher in the volunteer group than in the osteoporosis group (p < 0.01). Both thoracic kyphosis and lumbar lordosis were significantly greater in the osteoporosis group than in the volunteer group (p < 0.01). With regard to QOL, the 36-Item Short-Form Health Survey (SF-36) subscale scores of role physical, bodily pain, general health, and role emotional were all significantly lower in the osteoporosis group than in the volunteer group (p < 0.05 each). SF-36 physical component summary (PCS) score was significantly lower in the osteoporosis group than in the volunteer group (p < 0.001). SF-36 PCS score correlated positively with thoracic kyphosis and negatively with BMI only in the osteoporosis group (p < 0.05 each). These results indicated that lower QOL in osteoporosis patients may be associated with increased thoracic kyphosis, reduced lean muscle

  8. Pressure pain and isometric strength of neck flexors are related in chronic tension-type headache.

    PubMed

    Castien, Rene; Blankenstein, Annette; De Hertogh, Willem

    2015-01-01

    In patients with chronic tension-type headache (CTTH) changes in pressure pain in the cervical region are associated with peripheral or central sensitization. It is hypothesized that an increase of isometric strength of neck flexors would lead to a decrease of pressure pain in CTTH, as an expression of reduced peripheral or central sensitization In this study we aimed to analyze the correlation between change in isometric strength of the neck flexors and change in pressure pain scores (PPS) in patients with CTTH. Comparative analysis of data from previous study. Primary healthcare center. Data from 145 patients with CTTH who underwent a manual therapy program including isometric strength training of the neck flexors were analyzed at 8 and 26 weeks post-treatment. PPS were measured as a total of pain scores on a numeric rating scale (score 0 to 10) on application of a pressure stimulus of 3kg/cm at 8 cervical- and suboccipital muscles. Isometric strength of the neck flexors was measured in seconds. Correlations were computed between changes in PPS and isometric neck flexor strength. Isometric strength of neck flexors scored significantly different compared to baseline measurement (mean 30.0 seconds, sd:25.2), and increased with a mean difference of 17.33 seconds (95%CI: 20.61 to 14.05) at 8 weeks and 19.18 seconds (95%CI: 23.48 to 14.87) at 26 weeks. Similarly, compared to PPS baseline measurement (31.6 points, sd:18.6), mean difference in PPS was significantly decreased at 8 and 26 weeks: -11.3 points (95%CI: -8.77 to -13.83) and -11.15 points (95%CI: -8.31 to -13.99). There is a negative correlation between changes in PPS and changes in isometric strength of neck flexors which is weak at 8 weeks (r = -0.243, P = 0.004) and moderate at 26 weeks (r = -0.318, P < 0.000). Correlational analysis. Decrease in PPS correlates with increases in isometric strength of neck flexors in patients with CTTH in short- and long-term.

  9. Method of increasing the phase stability and the compressive yield strength of uranium-1 to 3 wt. % zirconium alloy

    DOEpatents

    Anderson, Robert C.

    1986-01-01

    A uranium-1 to 3 wt. % zirconium alloy characterized by high strength, high ductility and stable microstructure is fabricated by an improved thermal mechanical process. A homogenous ingot of the alloy which has been reduced in thickness of at least 50% in the two-step forging operation, rolled into a plate with a 75% reduction and then heated in vacuum at a temperature of about 750.degree. to 850.degree. C. and then quenched in water is subjected to further thermal-mechanical operation steps to increase the compressive yield strength approximately 30%, stabilize the microstructure, and decrease the variations in mechanical properties throughout the plate is provided. These thermal-mechanical steps are achieved by cold rolling the quenched plate to reduce the thickness thereof about 8 to 12%, aging the cold rolled plate at a first temperature of about 325.degree. to 375.degree. C. for five to six hours and then aging the plate at a higher temperature ranging from 480.degree. to 500.degree. C. for five to six hours prior to cooling the billet to ambient conditions and sizing the billet or plate into articles provides the desired increase in mechanical properties and phase stability throughout the plate.

  10. Strength and Mechanics of Bonded Scarf Joints for Repair of Composite Materials

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Adkins, D. W.

    1982-01-01

    Experimental and analytical investigations of scarf joints indicate that slight bluntness of adherend tips induces adhesive stress concentrations which significantly reduce joint strength, and the stress distribution through the adhesive thickness is non-uniform and has significant stress concentrations at the ends of the joint. The laminate stacking sequence can have important effects on the adhesive stress distribution. A significant improvement in joint strength is possible by increasing overlap at the expense of raising the repair slightly above the original surface. Although a surface grinder was used to make most experimental specimens, a hand held rotary bur can make a surprisingly good scarf. Scarf joints wit doublers on one side, such as might be used for repair, bend under tensile loads and may actually be weaker than joints without doublers.

  11. Effect of thickness and surface modifications on flexural strength of monolithic zirconia.

    PubMed

    Ozer, Fusun; Naden, Andrew; Turp, Volkan; Mante, Francis; Sen, Deniz; Blatz, Markus B

    2017-10-14

    A recommended minimum thickness for monolithic zirconia restorations has not been reported. Assessing a proper thickness that has the necessary load-bearing capacity but also conserves dental hard tissues is essential. The purpose of this in vitro study was to evaluate the effect of thickness and surface modifications on monolithic zirconia after simulated masticatory stresses. Monolithic zirconia disks (10 mm in diameter) were fabricated with 1.3 mm and 0.8 mm thicknesses. For each thickness, 21 disks were fabricated. The specimens of each group were further divided into 3 subgroups (n=7) according to the surface treatments applied: untreated (control), airborne-particle abrasion with 50-μm Al 2 O 3 particles at a pressure of 400 kPa at 10 mm, and grinding with a diamond rotary instrument followed by polishing. The biaxial flexure strength was determined by using a piston-on-3-balls technique in a universal testing machine. Flexural loading was applied with a 1.4-mm diameter steel cylinder, centered on the disk, at a crosshead speed of 0.5 mm/min until fracture occurred. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed. The data were statistically analyzed with 2-way ANOVA, Tamhane T2, 1-way ANOVA, and Student t tests (α=.05). The 1.3-mm specimens had significantly higher flexural strength than the 0.8-mm specimens (P<.05). Airborne-particle abrasion significantly increased the flexural strength (P<.05). Grinding and polishing did not affect the flexural strength of the specimens (P>.05). The mean flexural strength of 0.8-mm and 1.3-mm thick monolithic zirconia was greater than reported masticatory forces. Airborne-particle abrasion increased the flexural strength of monolithic zirconia. Grinding did not affect flexural strength if subsequently polished. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Effects of Nintendo Wii Fit Plus training on ankle strength with functional ankle instability.

    PubMed

    Kim, Ki-Jong; Jun, Hyun-Ju; Heo, Myoung

    2015-11-01

    [Purpose] The objective of this study was to examine the effects of a training program using the Nintendo Wii Fit Plus on the ankle muscle strengths of subjects with functional ankle instability. [Subjects and Methods] This study was conducted using subjects in their 20s who had functional ankle instability. They were randomized to a strengthening training group and a balance training group with 10 subjects in each, and they performed an exercise using Nintendo Wii Fit Plus for 20 minutes. In addition, every participant completed preparation and finishing exercises for 5 minutes, respectively. [Results] The muscle strengths after conducting plantar flexion and dorsiflexion significantly increased at the angular velocities of 60° and 120° in the strengthening training group. Furthermore, the muscle strengths after conducting plantar flexion, dorsiflexion, eversion, and inversion significantly increased at the angular velocities of 60° and 120° in the balance training group. [Conclusion] The balance training group using Nintendo Wii Fit Plus showed better results than the strengthening training group. Consequently, it is recommended to add the balance training program of the Nintendo Wii Fit Plus to conventional exercise programs to improve ankle muscle strength in functional ankle instability at a low cost.

  13. Effects of Nintendo Wii Fit Plus training on ankle strength with functional ankle instability

    PubMed Central

    Kim, Ki-Jong; Jun, Hyun-Ju; Heo, Myoung

    2015-01-01

    [Purpose] The objective of this study was to examine the effects of a training program using the Nintendo Wii Fit Plus on the ankle muscle strengths of subjects with functional ankle instability. [Subjects and Methods] This study was conducted using subjects in their 20s who had functional ankle instability. They were randomized to a strengthening training group and a balance training group with 10 subjects in each, and they performed an exercise using Nintendo Wii Fit Plus for 20 minutes. In addition, every participant completed preparation and finishing exercises for 5 minutes, respectively. [Results] The muscle strengths after conducting plantar flexion and dorsiflexion significantly increased at the angular velocities of 60° and 120° in the strengthening training group. Furthermore, the muscle strengths after conducting plantar flexion, dorsiflexion, eversion, and inversion significantly increased at the angular velocities of 60° and 120° in the balance training group. [Conclusion] The balance training group using Nintendo Wii Fit Plus showed better results than the strengthening training group. Consequently, it is recommended to add the balance training program of the Nintendo Wii Fit Plus to conventional exercise programs to improve ankle muscle strength in functional ankle instability at a low cost. PMID:26696703

  14. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S.J.; Eatherly, W.S.

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination ofmore » high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.« less

  15. Effect of water storage on the silanization in porcelain repair strength.

    PubMed

    Berry, T; Barghi, N; Chung, K

    1999-06-01

    This study examined the long-term water storage affect of silanization on shear bond strength of composite resin to porcelain. One hundred and sixty square-shaped specimens were fabricated and sanded flat sequentially with silicone carbide papers. The specimens were then placed into four groups and 16 subgroups of 10 specimens each randomly. Four commercially available silane systems, two one-mix and two two-mix, were tested in this study. Teflon tubes with an internal diameter of 2.97 mm and 2 mm in height were filled with a dual cure composite resin (Mirage FLC), placed on the silanated surfaces and light-cured for 120 s. Specimens were stored in room temperature water and subjected to shear bond strength testing after 24 h, 1 week, 1 month and 3 month periods of immersion. An Instron Universal testing machine with a crosshead speed of 0.5 mm/min was used for the testing. The mean values of the shear bond strengths ranged from 4.38 MPa (24-h period) to 23.90 MPa (3-month period). ANOVA and Scheffe' tests were used to analyse data with confidence level at 95%. All groups recorded an increase in bond strength after one week as compared with the 24-h period (P<0.05). With the exception of a one-mix system, all systems showed significantly higher bond strength at 3 weeks as compared with the 24-h and 1-week water storage periods. In conclusion, bond strength of composite resin to porcelain resulting from silanization of porcelain increased during the experimental period. The bond strength also varied for different silanes used in this study.

  16. Quasi-static and dynamic experimental studies on the tensile strength and failure pattern of concrete and mortar discs.

    PubMed

    Jin, Xiaochao; Hou, Cheng; Fan, Xueling; Lu, Chunsheng; Yang, Huawei; Shu, Xuefeng; Wang, Zhihua

    2017-11-10

    As concrete and mortar materials widely used in structural engineering may suffer dynamic loadings, studies on their mechanical properties under different strain rates are of great importance. In this paper, based on splitting tests of Brazilian discs, the tensile strength and failure pattern of concrete and mortar were investigated under quasi-static and dynamic loadings with a strain rate of 1-200 s -1 . It is shown that the quasi-static tensile strength of mortar is higher than that of concrete since coarse aggregates weaken the interface bonding strength of the latter. Numerical results confirmed that the plane stress hypothesis lead to a lower value tensile strength for the cylindrical specimens. With the increase of strain rates, dynamic tensile strengths of concrete and mortar significantly increase, and their failure patterns change form a single crack to multiple cracks and even fragment. Furthermore, a relationship between the dynamic increase factor and strain rate was established by using a linear fitting algorithm, which can be conveniently used to calculate the dynamic increase factor of concrete-like materials in engineering applications.

  17. Improvement of enamel bond strengths for conventional and resin-modified glass ionomers: acid-etching vs. conditioning*

    PubMed Central

    Zhang, Ling; Tang, Tian; Zhang, Zhen-liang; Liang, Bing; Wang, Xiao-miao; Fu, Bai-ping

    2013-01-01

    Objective: This study deals with the effect of phosphoric acid etching and conditioning on enamel micro-tensile bond strengths (μTBSs) of conventional and resin-modified glass ionomer cements (GICs/RMGICs). Methods: Forty-eight bovine incisors were prepared into rectangular blocks. Highly-polished labial enamel surfaces were either acid-etched, conditioned with liquids of cements, or not further treated (control). Subsequently, two matching pre-treated enamel surfaces were cemented together with one of four cements [two GICs: Fuji I (GC), Ketac Cem Easymix (3M ESPE); two RMGICs: Fuji Plus (GC), RelyX Luting (3M ESPE)] in preparation for μTBS tests. Pre-treated enamel surfaces and cement-enamel interfaces were analyzed by scanning electron microscopy (SEM). Results: Phosphoric acid etching significantly increased the enamel μTBS of GICs/RMGICs. Conditioning with the liquids of the cements produced significantly weaker or equivalent enamel μTBS compared to the control. Regardless of etching, RMGICs yielded stronger enamel μTBS than GICs. A visible hybrid layer was found at certain enamel-cement interfaces of the etched enamels. Conclusions: Phosphoric acid etching significantly increased the enamel μTBSs of GICs/RMGICs. Phosphoric acid etching should be recommended to etch the enamel margins before the cementation of the prostheses such as inlays and onlays, using GICs/RMGICs to improve the bond strengths. RMGICs provided stronger enamel bond strength than GICs and conditioning did not increase enamel bond strength. PMID:24190447

  18. Associations Between Balance and Muscle Strength, Power Performance in Male Youth Athletes of Different Maturity Status.

    PubMed

    Hammami, Raouf; Chaouachi, Anis; Makhlouf, Issam; Granacher, Urs; Behm, David G

    2016-11-01

    Balance, strength and power relationships may contain important information at various maturational stages to determine training priorities. The objective was to examine maturity-specific relationships of static/dynamic balance with strength and power measures in young male athletes. Soccer players (N = 130) aged 10-16 were assessed with the Stork and Y balance (YBT) tests. Strength/power measures included back extensor muscle strength, standing long jump (SLJ), countermovement jump (CMJ), and 3-hop jump tests. Associations between balance with strength/power variables were calculated according to peak-height-velocity (PHV). There were significant medium-large sized correlations between all balance measures with back extensor strength (r = .486-.791) and large associations with power (r = .511-.827). These correlation coefficients were significantly different between pre-PHV and circa PHV as well as pre-PHV and post-PHV with larger associations in the more mature groups. Irrespective of maturity-status, SLJ was the best strength/power predictor with the highest proportion of variance (12-47%) for balance (i.e., Stork eyes opened) and the YBT was the best balance predictor with the highest proportion of variance (43-78%) for all strength/power variables. The associations between balance and muscle strength/power measures in youth athletes that increase with maturity may imply transfer effects from balance to strength/power training and vice versa in youth athletes.

  19. Individualized treadmill and strength training for chronic stroke rehabilitation: effects of imbalance.

    PubMed

    Al-Jarrah, Muhammed; Shaheen, Samira; Harries, Netta; Kissani, Najib; Molteni, Franco; Bar Haim, Simona

    2014-01-01

    Stroke survivors often have significant walking limitations and are at high risk for falling. Treadmill training, as a rehabilitation approach in stroke survivors, and its relationship to balance ability has not been widely studied. The main goal of this study was to investigate the effectiveness of an individualized treadmill-strength training protocol on functional outcomes in chronic stroke survivors. Thirty adult participants with chronic stroke were recruited from 1 European and 4 Middle Eastern countries. Each completed 36 sessions of treadmill-strength training. The rehabilitation protocol was individualized according to each patient's cardiovascular fitness. Ten-meter walk test (10MWT), Berg Balance Scale (BBS), and 6-minute walk test (6MWT) were measured before (T0) and after training (T1) and 6 months later (T2). Paired t tests were used to test differences with training (T1 - T0) and retention after training (T2 - T1). Increases in all 3 measures from T0 to T1 were significant. There were no changes in 10MWT and BBS from T1 to T2, but 6MWT tended to increase. Separate analyses for subjects with BBS scores <41 at T0 demonstrated comparatively greater improvements from T0 to T1 than in those with BBS scores ≯40. Those with low scores also significantly increased from T1 to T2 in both walk tests. These findings suggest that a protocol combining treadmill with strength training has beneficial long-term effects on functional walking measures after chronic stroke, especially in patients who initially have low balance ability.

  20. Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats.

    PubMed

    Xiang, Chunhui; Frey, Margaret W

    2016-04-07

    Tensile strength, Young's modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber-fiber load sharing. Single-walled carbon nanotubes (CNTs) were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young's modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber-fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young's modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young's modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young's modulus of the electrospun nylon 6 non-woven fiber mats.

  1. Grain refinement of high strength steels to improve cryogenic toughness

    NASA Technical Reports Server (NTRS)

    Rush, H. F.

    1985-01-01

    Grain-refining techniques using multistep heat treatments to reduce the grain size of five commercial high-strength steels were investigated. The goal of this investigation was to improve the low-temperature toughness as measured by Charpy V-notch impact test without a significant loss in tensile strength. The grain size of four of five alloys investigated was successfully reduced up to 1/10 of original size or smaller with increases in Charpy impact energy of 50 to 180 percent at -320 F. Tensile properties were reduced from 0 to 25 percent for the various alloys tested. An unexpected but highly beneficial side effect from grain refining was improved machinability.

  2. The Role of Natural Hydrate on the Strength of Sands: Load-bearing or Cementing?

    NASA Astrophysics Data System (ADS)

    Priest, J. A.; Hayley, J. L.

    2017-12-01

    The strength of hydrate bearing sands is a key parameter for simulating the long-term performance of hydrate reservoirs during gas production and assessing reservoir and wellbore stability. Historically this parameter has been determined from testing synthesized hydrate sand samples, which has led to significant differences in measured strength that appears to reflect different formation methods adopted. At present, formation methods can be grouped into either those that form hydrate at grain contacts leading to a high strength `cemented' sand, or those where the hydrate forms a `load-bearing' structure in which the hydrate grains reside in the pore space resulting in more subtle changes in strength. Recovered natural hydrate-bearing cores typically exhibit this `load-bearing' behavior, although these cores have generally undergone significant changes in temperature and pressure during recovery, which may have altered the structure of the hydrate and sediment. Recent drilling expeditions using pressure coring, such as NGHP2 offshore India, have enabled intact hydrate bearing sediments to be recovered that have maintained hydrostatic stresses minimizing any changes in the hydrate structure within the core. Triaxial testing on these samples highlight enhanced strength even at zero effective stresses. This suggests that the hydrate forms a connected framework within the pore space apparently `cementing' the sand grains in place: we differentiate here between true cementation where hydrate is sintered onto the sand grains and typical observed behavior for cemented sands (cohesion, peak strength, post-peak strain softening). This inter-connected hydrate, and its ability to increase strength of the sands, appears to occur even at hydrate saturations as low as 30%, where typical `load-bearing' hydrates just start to increase strength. The results from pressure cores suggest that hydrate formation techniques that lead to `load-bearing' behavior may not capture the true

  3. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    NASA Astrophysics Data System (ADS)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  4. Scale-dependent measurements of meteorite strength: Implications for asteroid fragmentation

    NASA Astrophysics Data System (ADS)

    Cotto-Figueroa, Desireé; Asphaug, Erik; Garvie, Laurence A. J.; Rai, Ashwin; Johnston, Joel; Borkowski, Luke; Datta, Siddhant; Chattopadhyay, Aditi; Morris, Melissa A.

    2016-10-01

    Measuring the strengths of asteroidal materials is important for developing mitigation strategies for potential Earth impactors and for understanding properties of in situ materials on asteroids during human and robotic exploration. Studies of asteroid disruption and fragmentation have typically used the strengths determined from terrestrial analog materials, although questions have been raised regarding the suitability of these materials. The few published measurements of meteorite strength are typically significantly greater than those estimated from the stratospheric breakup of meter-sized meteoroids. Given the paucity of relevant strength data, the scale-varying strength properties of meteoritic and asteroidal materials are poorly constrained. Based on our uniaxial failure studies of centimeter-sized cubes of a carbonaceous and ordinary chondrite, we develop the first Weibull failure distribution analysis of meteorites. This Weibull distribution projected to meter scales, overlaps the strengths determined from asteroidal airbursts and can be used to predict properties of to the 100 m scale. In addition, our analysis shows that meter-scale boulders on asteroids are significantly weaker than small pieces of meteorites, while large meteorites surviving on Earth are selected by attrition. Further, the common use of terrestrial analog materials to predict scale-dependent strength properties significantly overestimates the strength of meter-sized asteroidal materials and therefore is unlikely well suited for the modeling of asteroid disruption and fragmentation. Given the strength scale-dependence determined for carbonaceous and ordinary chondrite meteorites, our results suggest that boulders of similar composition on asteroids will have compressive strengths significantly less than typical terrestrial rocks.

  5. Increased frequency of retinopathy of prematurity over the last decade and significant regional differences.

    PubMed

    Holmström, Gerd; Tornqvist, Kristina; Al-Hawasi, Abbas; Nilsson, Åsa; Wallin, Agneta; Hellström, Ann

    2018-03-01

    Retinopathy of prematurity (ROP) causes childhood blindness globally in prematurely born infants. Although increased levels of oxygen supply lead to increased survival and reduced frequency of cerebral palsy, increased incidence of ROP is reported. With the help of a Swedish register for ROP, SWEDROP, national and regional incidences of ROP and frequencies of treatment were evaluated from 2008 to 2015 (n = 5734), as well as before and after targets of provided oxygen changed from 85-89% to 91-95% in 2014. Retinopathy of prematurity (ROP) was found in 31.9% (1829/5734) of all infants with a gestational age (GA) of <31 weeks at birth and 5.7% of the infants (329/5734) had been treated for ROP. Analyses of the national data revealed an increased incidence of ROP during the 8-year study period (p = 0.003), but there was no significant increase in the frequency of treatment. There were significant differences between the seven health regions of Sweden, regarding both incidence of ROP and frequency of treatment (p < 0.001). Comparison of regional data before and after the new oxygen targets revealed a significant increase in treated ROP in one region [OR: 2.24 (CI: 1.11-4.49), p = 0.024] and a borderline increase in one other [OR: 3.08 (CI: 0.99-9.60), p = 0.052]. The Swedish national ROP register revealed an increased incidence of ROP during an 8-year period and significant regional differences regarding the incidence of ROP and frequency of treatment. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  6. Effect of Reduced Phosphoric Acid Pre-etching Times 
on Enamel Surface Characteristics and Shear Fatigue Strength Using Universal Adhesives.

    PubMed

    Tsujimoto, Akimasa; Fischer, Nicholas; Barkmeier, Wayne; Baruth, Andrew; Takamizawa, Toshiki; Latta, Mark; Miyazaki, Masashi

    2017-01-01

    To examine the effect of reduced phosphoric acid pre-etching times on enamel fatigue bond strength of universal adhesives and surface characteristics by using atomic force microscopy (AFM). Three universal adhesives were used in this study (Clearfil Universal Bond [C], G-Premio Bond [GP], Scotchbond Universal Adhesive [SU]). Four pre-etching groups were employed: enamel pre-etched with phosphoric acid and immediately rinsed with an air-water spray, and enamel pre-etched with phosphoric acid for 5, 10, or 15 s. Ground enamel was used as the control group. For the initial bond strength test, 15 specimens per etching group for each adhesive were used. For the shear fatigue test, 20 specimens per etching group for each adhesive were loaded using a sine wave at a frequency of 20 Hz for 50,000 cycles or until failure occurred. Initial shear bond strengths and fatigue shear strengths of composite adhesively bonded to ground and pre-etched enamel were determined. AFM observations of ground and pre-etched enamel were also conducted, and surface roughness as well as surface area were evaluated. The initial shear bond strengths and fatigue shear strengths of the universal adhesives in the pre-etched groups were significantly higher than those of the control group, and were not influenced by the pre-etching time. Significantly higher surface roughness and surface area of enamel surfaces in pre-etched groups were observed compared with those in the control group. While the surface area was not significantly influenced by etching time, surface roughness of the enamel surfaces in the pre-etched groups significantly increased with pre-etching time. The results of this in vitro study suggest that reduced phosphoric acid pre-etching times do not impair the fatigue bond strength of universal adhesives. Although fatigue bond strength and surface area were not influenced by phosphoric-acid etching times, surface roughness increased with increasing etching time.

  7. Shear bond strength of resin composite bonded with two adhesives: Influence of Er: YAG laser irradiation distance

    PubMed Central

    Shirani, Farzaneh; Birang, Reza; Malekipour, Mohammad Reza; Hourmehr, Zahra; Kazemi, Shantia

    2014-01-01

    Background: Dental surfaces prepared with different Er:YAG laser distance may have different characteristics compared with those prepared with conventional instruments. The aim of this study was to investigate the effect of Er:YAG laser irradiation distance from enamel and dentin surfaces on the shear bond strength of composite with self-etch and etch and rinse bonding systems compared with conventional preparation method. Materials and Methods: Two hundred caries-free human third molars were randomly divided into twenty groups (n = 10). Ten groups were designated for enamel surface (E1-E10) and ten for dentin surface (D1-D10). Er: YAG laser (2940 nm) was used on the E1-E8 (240 mJ, 25 Hz) and D1-D8 (140 mJ, 30 Hz) groups at four different distances of 0.5 (standard), 2, 4 and 11 mm. Control groups (E9, E10, D9 and D10) were ground with medium grit diamond bur. The enamel and dentin specimens were divided into two subgroups that were bonded with either Single Bond or Clearfil SE Bond. Resin composite (Z100) was dispensed on prepared dentin and enamel. The shear bond strengths were tested using a universal testing machine. Data were analyzed by SPSS12 statistical software using three way analysis of variance, Tukey and independent t-test. P < 0.05 was considered as significant. Results: There was a significant difference between enamel and dentin substrates (P < 0.001) and between lased and un-lased groups; the un-lased group had significantly higher bond strength (P < 0.001). Shear bond strength increased significantly with an increase in the laser irradiation distance (P < 0.05) on enamel surfaces (in both bonding agent subgroups) and on dentin surfaces (in the Single Bond subgroup). Conclusion: Laser irradiation decreases shear bond strength. Irradiation distance affects shear bond strength and increasing the distance would decrease the negative effects of laser irradiation. PMID:25540665

  8. Are anthropometric, flexibility, muscular strength, and endurance variables related to clubhead velocity in low- and high-handicap golfers?

    PubMed

    Keogh, Justin W L; Marnewick, Michel C; Maulder, Peter S; Nortje, Jacques P; Hume, Patria A; Bradshaw, Elizabeth J

    2009-09-01

    The present study assessed the anthropometric profile (International Society for the Advancement of Kinanthropometry protocol), flexibility, muscular strength, and endurance of 20 male golfers. These data were collected in order to determine: a) the relationship between these kinanthropometric measures and clubhead velocity; and b) if these measures could distinguish low-handicap (LHG) and high-handicap (HHG) golfers. Ten LHG (handicap of 0.3 +/- 0.5) and 10 HHG (handicap of 20.3 +/- 2.4) performed 10 swings for maximum velocity and accuracy with their own 5-iron golf club at a wall-mounted target. LHG hit the target significantly more (115%) and had a 12% faster clubhead velocity than HHG (p < 0.01). The LHG also had significantly (28%) greater golf swing-specific cable woodchop (GSCWC) strength (p < 0.01) and tendencies for greater (30%) bench press strength and longer (5%) upper am and total arm (4%) length and less (24%) right hip internal rotation than HHG (0.01 < p < 0.05). GSCWC strength was significantly correlated to clubhead velocity (p < 0.01), with bench press and hack squat strength as well as upper arm and total arm length also approaching significance (0.01 < p < 0.05). Golfers with high GSCWC strength and perhaps greater bench press strength and longer arms may therefore be at a competitive advantage, as these characteristics allow the production of greater clubhead velocity and resulting ball displacement. Such results have implications for golf talent identification programs and for the prescription and monitoring of golf conditioning programs. While golf conditioning programs may have many aims, specific trunk rotation exercises need to be included if increased clubhead velocity is the goal. Muscular hypertrophy development may not need to be emphasized as it could reduce golf performance by limiting range of motion and/or increasing moment of inertia.

  9. Deletion of the low-molecular-weight glutenin subunit allele Glu-A3a of wheat (Triticum aestivum L.) significantly reduces dough strength and breadmaking quality.

    PubMed

    Zhen, Shoumin; Han, Caixia; Ma, Chaoying; Gu, Aiqin; Zhang, Ming; Shen, Xixi; Li, Xiaohui; Yan, Yueming

    2014-12-19

    Low-molecular-weight glutenin subunits (LMW-GS), encoded by Glu-3 complex loci in hexaploid wheat, play important roles in the processing quality of wheat flour. To date, the molecular characteristics and effects on dough quality of individual Glu-3 alleles and their encoding proteins have been poorly studied. We used a Glu-A3 deletion line of the Chinese Spring (CS-n) wheat variety to conduct the first comprehensive study on the molecular characteristics and functional properties of the LMW-GS allele Glu-A3a. The Glu-A3a allele at the Glu-A3 locus in CS and its deletion in CS-n were identified and characterized by proteome and molecular marker methods. The deletion of Glu-A3a had no significant influence on plant morphological and yield traits, but significantly reduced the dough strength and breadmaking quality compared to CS. The complete sequence of the Glu-A3a allele was cloned and characterized, which was found to encode a B-subunit with longer repetitive domains and an increased number of α-helices. The Glu-A3a-encoded B-subunit showed a higher expression level and accumulation rate during grain development. These characteristics of the Glu-A3a allele could contribute to achieving superior gluten quality and demonstrate its potential application to wheat quality improvement. Furthermore, an allele-specific polymerase chain reaction (AS-PCR) marker for the Glu-A3a allele was developed and validated using different bread wheat cultivars, including near-isogenic lines (NILs) and recombinant inbred lines (RILs), which could be used as an effective molecular marker for gluten quality improvement through marker-assisted selection. This work demonstrated that the LMW-GS allele Glu-A3a encodes a specific LMW-i type B-subunit that significantly affects wheat dough strength and breadmaking quality. The Glu-A3a-encoded B-subunit has a long repetitive domain and more α-helix structures as well as a higher expression level and accumulation rate during grain development

  10. Improving strength and postural control in young skiers: whole-body vibration versus equivalent resistance training.

    PubMed

    Mahieu, Nele N; Witvrouw, Erik; Van de Voorde, Danny; Michilsens, Diny; Arbyn, Valérie; Van den Broecke, Wouter

    2006-01-01

    Several groups have undertaken studies to evaluate the physiologic effects of whole-body vibration (WBV). However, the value of WBV in a training program remains unknown. To investigate whether a WBV program results in a better strength and postural control performance than an equivalent exercise program performed without vibration. Randomized, controlled trial. Laboratory. Thirty-three Belgian competitive skiers (ages = 9-15 years). Subjects were assigned to either the WBV group or the equivalent resistance (ER) group for 6 weeks of training at 3 times per week. Isokinetic plantar and dorsiflexion peak torque, isokinetic knee flexion and extension peak torque, explosive strength (high box test), and postural control were assessed before and after the training period. Both training programs significantly improved isokinetic ankle and knee muscle strength and explosive strength. Moreover, the increases in explosive strength and in plantar-flexor strength at low speed were significantly higher in the WBV group than in the ER group after 6 weeks. However, neither WBV training nor ER training seemed to have an effect on postural control. A strength training program that includes WBV appears to have additive effects in young skiers compared with an equivalent program that does not include WBV. Therefore, our findings support the hypothesis that WBV training may be a beneficial supplementary training technique in strength programs for young athletes.

  11. Effects of yoga, strength training and advice on back pain: a randomized controlled trial.

    PubMed

    Brämberg, Elisabeth Björk; Bergström, Gunnar; Jensen, Irene; Hagberg, Jan; Kwak, Lydia

    2017-03-29

    Among the working population, non-specific low-back pain and neck pain are one of the most common reasons for sickness absenteeism. The aim was to evaluate the effects of an early intervention of yoga - compared with strength training or evidence-based advice - on sickness absenteeism, sickness presenteeism, back and neck pain and disability among a working population. A randomized controlled trial was conducted on 159 participants with predominantly (90%) chronic back and neck pain. After screening, the participants were randomized to kundalini yoga, strength training or evidence-based advice. Primary outcome was sickness absenteeism. Secondary outcomes were sickness presenteeism, back and neck pain and disability. Self-reported questionnaires and SMS text messages were completed at baseline, 6 weeks, 6 and 12 months. The results did not indicate that kundalini yoga and strength training had any statistically significant effects on the primary outcome compared with evidence-based advice. An interaction effect was found between adherence to recommendations and sickness absenteeism, indicating larger significant effects among the adherers to kundalini yoga versus evidence-based advice: RR = 0.47 (CI 0.30; 0.74, p = 0.001), strength training versus evidence-based advice: RR = 0.60 (CI 0.38; 0.96, p = 0.032). Some significant differences were also found for the secondary outcomes to the advantage of kundalini yoga and strength training. Guided exercise in the forms of kundalini yoga or strength training does not reduce sickness absenteeism more than evidence-based advice alone. However, secondary analyses reveal that among those who pursue kundalini yoga or strength training at least two times a week, a significantly reduction in sickness absenteeism was found. Methods to increase adherence to treatment recommendations should be further developed and applied in exercise interventions. Clinicaltrials.gov NCT01653782, date of registration: June, 28

  12. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    PubMed

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  13. Infrared Preheating to Enhance Interlayer Strength of Components Printed on the Big Area Additive Manufacturing (BAAM) System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishore, Vidya; Ajinjeru, Christine; Duty, Chad E

    The Big Area Additive Manufacturing (BAAM) system has the capacity to print structures on the order of several meters at a rate exceeding 50 kg/h, thereby having the potential to significantly impact the production of components in automotive, aerospace and energy sectors. However, a primary issue that limits the functional use of such parts is mechanical anisotropy. The strength of printed parts across successive layers in the build direction (z-direction) is significantly lower than the corresponding in-plane strength (x-y directions). This is largely due to poor bonding between the printed layers as the lower layers cool below the glass transitionmore » temperature (Tg) before the next layer is deposited. This work explores the use of infrared heating to increase the surface temperature of the printed layer just prior to deposition of new material to improve the interlayer strength of the components. The material used in this study was acrylonitrile butadiene styrene (ABS) reinforced with 20% chopped carbon fiber by weight. Significant improvements in z-strength were observed for the parts whose surface temperature was increased from below Tg to close to or above Tg using infrared heating. Parameters such as print speed, nozzle diameter and extrusion temperature were also found to impact the heat input required to enhance interlayer adhesion without significantly degrading the polymer and compromising on surface finish.« less

  14. Tensile strength and failure load of sutures for robotic surgery.

    PubMed

    Abiri, Ahmad; Paydar, Omeed; Tao, Anna; LaRocca, Megan; Liu, Kang; Genovese, Bradley; Candler, Robert; Grundfest, Warren S; Dutson, Erik P

    2017-08-01

    Robotic surgical platforms have seen increased use among minimally invasive gastrointestinal surgeons (von Fraunhofer et al. in J Biomed Mater Res 19(5):595-600, 1985. doi: 10.1002/jbm.820190511 ). However, these systems still suffer from lack of haptic feedback, which results in exertion of excessive force, often leading to suture failures (Barbash et al. in Ann Surg 259(1):1-6, 2014. doi: 10.1097/SLA.0b013e3182a5c8b8 ). This work catalogs tensile strength and failure load among commonly used sutures in an effort to prevent robotic surgical consoles from exceeding identified thresholds. Trials were thus conducted on common sutures varying in material type, gauge size, rate of pulling force, and method of applied force. Polydioxanone, Silk, Vicryl, and Prolene, gauges 5-0 to 1-0, were pulled till failure using a commercial mechanical testing system. 2-0 and 3-0 sutures were further tested for the effect of pull rate on failure load at rates of 50, 200, and 400 mm/min. 3-0 sutures were also pulled till failure using a da Vinci robotic surgical system in unlooped, looped, and at the needle body arrangements. Generally, Vicryl and PDS sutures had the highest mechanical strength (47-179 kN/cm 2 ), while Silk had the lowest (40-106 kN/cm 2 ). Larger diameter sutures withstand higher total force, but finer gauges consistently show higher force per unit area. The difference between material types becomes increasingly significant as the diameters decrease. Comparisons of identical suture materials and gauges show 27-50% improvement in the tensile strength over data obtained in 1985 (Ballantyne in Surg Endosc Other Interv Tech 16(10):1389-1402, 2002. doi: 10.1007/s00464-001-8283-7 ). No significant differences were observed when sutures were pulled at different rates. Reduction in suture strength appeared to be strongly affected by the technique used to manipulate the suture. Availability of suture tensile strength and failure load data will help define software safety

  15. Predicting hand function in older adults: evaluations of grip strength, arm curl strength, and manual dexterity.

    PubMed

    Liu, Chiung-Ju; Marie, Deana; Fredrick, Aaron; Bertram, Jessica; Utley, Kristen; Fess, Elaine Ewing

    2017-08-01

    Hand function is critical for independence in activities of daily living for older adults. The purpose of this study was to examine how grip strength, arm curl strength, and manual dexterous coordination contributed to time-based versus self-report assessment of hand function in community-dwelling older adults. Adults aged ≥60 years without low vision or neurological disorders were recruited. Purdue Pegboard Test, Jamar hand dynamometer, 30-second arm curl test, Jebsen-Taylor Hand Function Test, and the Late-Life Function and Disability Instrument were administered to assess manual dexterous coordination, grip strength, arm curl strength, time-based hand function, and self-report of hand function, respectively. Eighty-four adults (mean age = 72 years) completed the study. Hierarchical multiple regressions show that older adults with better arm curl strength (β = -.25, p < .01) and manual dexterous coordination (β = -.52, p < .01) performed better on the time-based hand function test. In comparison, older adults with better grip strength (β = .40, p < .01), arm curl strength (β = .23, p < .05), and manual dexterous coordination (β = .23, p < .05) were associated with better self-report of upper extremity function. The relationship between grip strength and hand function may be test-specific. Grip strength becomes a significant factor when the test requires grip strength to successfully complete the test tasks. Arm curl strength independently contributed to hand function in both time-based and self-report assessments, indicating that strength of extrinsic muscles of the hand are essential for hand function.

  16. Evaluation of the performance characteristics of bilayer tablets: Part II. Impact of environmental conditions on the strength of bilayer tablets.

    PubMed

    Kottala, Niranjan; Abebe, Admassu; Sprockel, Omar; Bergum, James; Nikfar, Faranak; Cuitiño, Alberto M

    2012-12-01

    Ambient air humidity and temperature are known to influence the mechanical strength of tablets. The objective of this work is to understand the influence of processing parameters and environmental conditions (humidity and temperature) on the strength of bilayer tablets. As part of this study, bilayer tablets were compressed with different layer ratios, dwell times, layer sequences, material properties (plastic and brittle), first and second layer forces, and lubricant concentrations. Compressed tablets were stored in stability chambers controlled at predetermined conditions (40C/45%RH, 40C/75%RH) for 1, 3, and 5 days. The axial strength of the stored tablets was measured and a statistical model was developed to determine the effects of the aforementioned factors on the strength of bilayer tablets. As part of this endeavor, a full 3 × 2(4) factorial design was executed. Responses of the experiments were analyzed using PROC GLM of SAS (SAS Institute Inc, Cary, North Carolina, USA). A model was fit using all the responses to determine the significant interactions (p < 0.05). Results of this study indicated that storage conditions and storage time have significant impact on the strength of bilayer tablets. For Avicel-lactose and lactose-Avicel tablets, tablet strength decreased with the increasing humidity and storage time. But for lactose-lactose tablets, due to the formation of solid bridges upon storage, an increase in tablet strength was observed. Significant interactions were observed between processing parameters and storage conditions on the strength of bilayer tablets.

  17. Evaluation of microtensile and tensile bond strength tests determining effects of erbium, chromium: yttrium-scandium-gallium-garnet laser pulse frequency on resin-enamel bonding.

    PubMed

    Yildirim, T; Ayar, M K; Yesilyurt, C; Kilic, S

    2016-01-01

    The aim of the present study was to compare two different bond strength test methods (tensile and microtensile) in investing the influence of erbium, chromium: yttrium-scandium-gallium-garnet (Er, Cr: YSGG) laser pulse frequency on resin-enamel bonding. One-hundred and twenty-five bovine incisors were used in the present study. Two test methods were used: Tensile bond strength (TBS; n = 20) and micro-TBS (μTBS; n = 5). Those two groups were further split into three subgroups according to Er, Cr: YSGG laser frequency (20, 35, and 50 Hz). Following adhesive procedures, microhybrid composite was placed in a custom-made bonding jig for TBS testing and incrementally for μTBS testing. TBS and μTBS tests were carried out using a universal testing machine and a microtensile tester, respectively. Analysis of TBS results showed that means were not significantly different. For μTBS, the Laser-50 Hz group showed the highest bond strength (P < 0.05), and increasing frequency significantly increased bond strength (P < 0.05). Comparing the two tests, the μTBS results showed higher means and lower standard deviations. It was demonstrated that increasing μTBS pulse frequency significantly improved immediate bond strength while TBS showed no significant effect. It can, therefore, be concluded that test method may play a significant role in determining optimum laser parameters for resin bonding.

  18. An interlaminar tension strength specimen

    NASA Technical Reports Server (NTRS)

    Jackson, Wade C.; Martin, Roderick H.

    1992-01-01

    This paper describes a technique to determine interlaminar tension strength, sigma(sub 3c) of a fiber reinforced composite material using a curved beam. The specimen was a unidirectional curved beam, bent 90 degrees, with straight arms. Attached to each arm was a hinged loading mechanism which was held by the grips of a tensile testing machine. Geometry effects of the specimen, including the effects of loading arm length, inner radius, thickness, and width, were studied. The data sets fell into two categories: low strength corresponding to a macroscopic flaw related failure and high strength corresponding to a microscopic flaw related failure. From the data available, the loading arm length had no effect on sigma(sub 3c). The inner radius was not expected to have a significant effect on sigma(sub 3c), but this conclusion could not be confirmed because of differences in laminate quality for each curve geometry. The thicker specimens had the lowest value of sigma(sub 3c) because of poor laminate quality. Width was found to affect the value of sigma(sub 3c) only slightly. The wider specimens generally had a slightly lower strength since more material was under high stress, and hence, had a larger probability of containing a significant flaw.

  19. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash

    PubMed Central

    Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin

    2016-01-01

    Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520

  20. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash.

    PubMed

    Safiuddin, Md; Raman, Sudharshan N; Abdus Salam, Md; Jumaat, Mohd Zamin

    2016-05-20

    Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination ( R ²) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.

  1. Strength training improves the tri-digit finger-pinch force control of older adults.

    PubMed

    Keogh, Justin W; Morrison, Steve; Barrett, Rod

    2007-08-01

    To investigate the effect of unilateral upper-limb strength training on the finger-pinch force control of older men. Pretest and post-test 6-week intervention study. Exercise science research laboratory. Eleven neurologically fit older men (age range, 70-80y). The strength training group (n=7) trained twice a week for 6 weeks, performing dumbbell bicep curls, wrist flexions, and wrists extensions, while the control group subjects (n=4) maintained their normal activities. Changes in force variability, targeting error, peak power frequency, proportional power, sample entropy, digit force sharing, and coupling relations were assessed during a series of finger-pinch tasks. These tasks involved maintaining a constant or sinusoidal force output at 20% and 40% of each subject's maximum voluntary contraction. All participants performed the finger-pinch tasks with both the preferred and nonpreferred limbs. Analysis of covariance for between-group change scores indicated that the strength training group (trained limb) experienced significantly greater reductions in finger-pinch force variability and targeting error, as well as significantly greater increases in finger-pinch force, sample entropy, bicep curl, and wrist flexion strength than did the control group. A nonspecific upper-limb strength-training program may improve the finger-pinch force control of older men.

  2. Effects of Pelvic and Core Strength Training on High School Cross-Country Race Times.

    PubMed

    Clark, Anne W; Goedeke, Maggie K; Cunningham, Saengchoy R; Rockwell, Derek E; Lehecka, Bryan J; Manske, Robert C; Smith, Barbara S

    2017-08-01

    Clark, AW, Goedeke, MK, Cunningham, SR, Rockwell, DE, Lehecka, BJ, Manske, RC, and Smith, BS. Effects of pelvic and core strength training on high school cross-country race times. J Strength Cond Res 31(8): 2289-2295, 2017-There is only limited research examining the effect of pelvic and core strength training on running performance. Pelvic and core muscle fatigue is believed to contribute to excess motion along frontal and transverse planes which decreases efficiency in normal sagittal plane running motions. The purpose of this study was to determine whether adding a 6-week pelvic and core strengthening program resulted in decreased race times in high school cross-country runners. Thirty-five high school cross-country runners (14-19 years old) from 2 high schools were randomly assigned to a strengthening group (experimental) or a nonstrengthening group (control). All participants completed 4 standardized isometric strength tests for hip abductors, adductors, extensors, and core musculature in a test-retest design. The experimental group performed a 6-week pelvic and core strengthening program along with their normal training. Participants in the control group performed their normal training without additional pelvic and core strengthening. Baseline, 3-week, and 6-week race times were collected using a repeated measures design. No significant interaction between experimental and control groups regarding decreasing race times and increasing pelvic and core musculature strength occurred over the 6-week study period. Both groups increased strength and decreased overall race times. Clinically significant findings reveal a 6-week pelvic and core stability strengthening program 3 times a week in addition to coach led team training may help decrease race times.

  3. Effect of a Brazilian Jiu-jitsu-simulated tournament on strength parameters and perceptual responses.

    PubMed

    Detanico, Daniele; Dellagrana, Rodolfo André; Athayde, Marina Saldanha da Silva; Kons, Rafael Lima; Góes, Angel

    2017-03-01

    This study aimed to analyse the effects of a simulated Brazilian jiu-jitsu (BJJ) tournament on vertical jump performance, grip strength test and perceived effort responses. 22 male BJJ athletes participated in a simulated tournament consisting of three 7 min matches separated by 14 min of rest. Kimono grip strength test (KGST), counter movement jump (CMJ) and rate of perceived exertion (RPE) were measured before and after each match, while RPE of specific areas was assessed after three matches. ANOVA for repeated measures was used to compare strength parameters after each match with the level of significance set at 5%. The key results showed a significant decrease of jump height (p = 0.001) and net vertical impulse in the CMJ (p = 0.031), as well as a reduction of the number of reps in the KGST (p < 0.001). A significant increase of RPE was found throughout the matches (p < 0.001). Considering the RPE in specific areas, no differences were observed between the upper and lower body (p = 0.743). We conclude that the BJJ simulated tournament generated a decrease of performance in both upper and lower limbs and provoked a progressive increase in the effort perception over the matches.

  4. Effects of quadriceps strength after static and dynamic whole-body vibration exercise.

    PubMed

    Bush, Jill A; Blog, Gabriel L; Kang, Jie; Faigenbaum, Avery D; Ratamess, Nicholas A

    2015-05-01

    Numerous studies have shown performance benefits including whole-body vibration (WBV) as a training modality or an acute exercise protocol when used as a component of the resistance training program. Some studies have indicated that performing dynamic exercises as compared with static position exercises while exposed to WBV might be beneficial; however, evidence is lacking. Thus, the purpose of this study was to determine if an acute bout of dynamic versus static squats performed during WBV results in increase in quadriceps force production by means of dynamic isokinetic knee extension and flexion exercise. Nonresistance-trained healthy young men and women (N = 21) of 18-25 years participated in 4 protocols with 2-week rest in-between. Protocol 1 consisted of 5 sets of 10 dynamic squats without vibration; Protocol 2: 5 sets of 30-second static squats without vibration; Protocol 3: 5 sets of 10 dynamic squats with 30-Hz WBV for a total of 2.5 minutes; and Protocol 4: 5 sets of 30-second static squats with 30-Hz WBV for a total of 2.5 minutes. Prestrength tests (1 set of 4 repetitions at 100° · s(-1) for the knee extension exercise) was performed within 5 minutes of starting each protocol, and poststrength testing was performed within 1 minute of completing each protocol. Strength outcomes were analyzed by repeated measures analysis of variance with a significance level set at p ≤ 0.05. A significant decrease in strength was observed after dynamic and static squats without WBV (p = 0.002); an increase in strength after dynamic squats with WBV (p = 0.003); and a decrease in strength after static squats with WBV (p = 0.003). The inclusion of WBV to dynamic resistance exercise can be an added modality to increase strength. Whole-body vibration can have varied effects in altering muscle strength in untrained individuals according to the type of resistance training performed. As a dynamic squat with WBV seems to immediately potentiate neuromuscular functioning, the

  5. Strength Training in Children and Adolescents

    PubMed Central

    Dahab, Katherine Stabenow; McCambridge, Teri Metcalf

    2009-01-01

    Context: Strength training in children, in combination with plyometric and/or agility training, has become an increasingly popular tactic for athletes to gain a competitive edge during the off-season. The present review clarifies some common myths associated with strength training in children, and it outlines the most current recommendations. Evidence Acquisition: Relevant studies on strength training in children and adolescents were reviewed (search results included studies indexed in PubMed and MEDLINE from 1980 through 2008). Also reviewed were recommendations from consensus guidelines and position statements applicable to strength training in youth. Results: Children can improve strength by 30% to 50% after just 8 to 12 weeks of a well-designed strength training program. Youth need to continue to train at least 2 times per week to maintain strength. The case reports of injuries related to strength training, including epiphyseal plate fractures and lower back injuries, are primarily attributed to the misuse of equipment, inappropriate weight, improper technique, or lack of qualified adult supervision. Conclusion: Youth—athletes and nonathletes alike—can successfully and safely improve their strength and overall health by participating in a well-supervised program. Trained fitness professionals play an essential role in ensuring proper technique, form, progression of exercises, and safety in this age group. PMID:23015875

  6. Training in élite young athletes (the Training of Young Athletes (TOYA) Study): injuries, flexibility and isometric strength.

    PubMed Central

    Maffulli, N; King, J B; Helms, P

    1994-01-01

    Using a mixed longitudinal design, the incidence of injuries, and the development of flexibility and isometric strength of the upper and lower limbs were studied for 2 years in 453 élite young athletes (aged between 9 and 18 years) practising football, gymnastics, swimming or tennis. The children suffered from a low incidence of injuries. Strength and flexibility did not exert a significant role in determining injuries. The rate of injury was not significantly different between the 2 years of the study. Young swimmers showed a greater generalized flexibility. Girls were more flexible than boys between the ages of 13 to 16 years. Athletic children are able to exert greater isometric strength than normal schoolchildren. Boys diverged from the normal population at 14 years, while athletic girls were stronger at all ages. Girls were stronger than boys up to age 12, who were still increasing their muscle strength at 19 years. The average maximal isometric strength exerted in both upper and lower limbs in the four sports was not significantly different. Male gymnasts over 11 years old were significantly stronger than all other athletes. PMID:7921912

  7. Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers.

    PubMed

    Mozdzen, Laura C; Rodgers, Ryan; Banks, Jessica M; Bailey, Ryan C; Harley, Brendan A C

    2016-03-01

    substrates have significant potential for addressing these defects. However, the high porosity required to facilitate cell infiltration and nutrient transport often dictates that the resultant biomaterials has insufficient biomechanical strength. Here we describe the use of three-dimensional printing techniques to generate customizable fiber arrays from ABS polymer that can be incorporated into a collagen scaffold under development for tendon repair applications. Notably, the mechanical performance of the fiber-scaffold composite can be defined by the fiber array independent of the bioactivity of the collagen scaffold design. Further, the fiber array provides a substrate for growth factor delivery to aid healing. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Artificially modified collagen fibril orientation affects leather tear strength.

    PubMed

    Kelly, Susyn J; Wells, Hannah C; Sizeland, Katie H; Kirby, Nigel; Edmonds, Richard L; Ryan, Tim; Hawley, Adrian; Mudie, Stephen; Haverkamp, Richard G

    2018-07-01

    Ovine leather has around half the tear strength of bovine leather and is therefore not suitable for high-value applications such as shoes. Tear strength has been correlated with the natural collagen fibril alignment (orientation index, OI). It is hypothesized that it could be possible to artificially increase the OI of the collagen fibrils and that an artificial increase in OI could increase tear strength. Ovine skins, after pickling and bating, were strained biaxially during chrome tanning. The strain ranged from 2 to 15% of the initial sample length, either uniformly in both directions by 10% or with 3% in one direction and 15% in the other. Once tanned, the leather tear strengths were measured and the collagen fibril orientation was measured using synchrotron-based small-angle X-ray scattering. The OI increased as a result of strain during tanning from 0.48 to 0.79 (P = 0.001) measured edge-on and the thickness-normalized tear strength increased from 27 to 43 N mm -1 (P < 0.001) after leather was strained 10% in two orthogonal directions. This is evidence to support a causal relationship between high OI (measured edge-on), highly influenced by thickness, and tear strength. It also provides a method to produce stronger leather. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Creatine supplementation prevents acute strength loss induced by concurrent exercise.

    PubMed

    de Salles Painelli, Vítor; Alves, Victor Tavares; Ugrinowitsch, Carlos; Benatti, Fabiana Braga; Artioli, Guilherme Giannini; Lancha, Antonio Herbert; Gualano, Bruno; Roschel, Hamilton

    2014-08-01

    To investigate the effect of creatine (CR) supplementation on the acute interference induced by aerobic exercise on subsequent maximum dynamic strength (1RM) and strength endurance (SE, total number of repetitions) performance. Thirty-two recreationally strength-trained men were submitted to a graded exercise test to determine maximal oxygen consumption (VO2max: 41.56 ± 5.24 ml kg(-1) min(-1)), anaerobic threshold velocity (ATv: 8.3 ± 1.18 km h(-1)), and baseline performance (control) on the 1RM and SE (4 × 80 % 1RM to failure) tests. After the control tests, participants were randomly assigned to either a CR (20 g day(-1) for 7 days followed by 5 g day(-1) throughout the study) or a placebo (PL-dextrose) group, and then completed 4 experimental sessions, consisting of a 5-km run on a treadmill either continuously (90 % ATv) or intermittently (1:1 min at vVO2max) followed by either a leg- or bench-press SE/1RM test. CR was able to maintain the leg-press SE performance after the intermittent aerobic exercise when compared with C (p > 0.05). On the other hand, the PL group showed a significant decrease in leg-press SE (p ≤ 0.05). CR supplementation significantly increased bench-press SE after both aerobic exercise modes, while the bench-press SE was not affected by either mode of aerobic exercise in the PL group. Although small increases in 1RM were observed after either continuous (bench press and leg press) or intermittent (bench press) aerobic exercise in the CR group, they were within the range of variability of the measurement. The PL group only maintained their 1RM. In conclusion, the acute interference effect on strength performance observed in concurrent exercise may be counteracted by CR supplementation.

  10. Increasing Mechanical Properties of 2-D-Structured Electrospun Nylon 6 Non-Woven Fiber Mats

    PubMed Central

    Xiang, Chunhui; Frey, Margaret W.

    2016-01-01

    Tensile strength, Young’s modulus, and toughness of electrospun nylon 6 non-woven fiber mats were improved by increasing individual nanofiber strength and fiber–fiber load sharing. Single-walled carbon nanotubes (CNTs) were used as reinforcement to increase the strength of the electrospun nylon 6 nanofibers. Young’s modulus, tensile strength, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % solutions increased 51%, 87%, and 136%, respectively, after incorporating 1 wt % CNTs into the nylon 6 nanofibers. Three methods were investigated to enhance fiber–fiber load sharing: increasing friction between fibers, thermal bonding, and solvent bonding. The addition of beaded nylon 6 nanofibers into the non-woven fiber mats to increase fiber-fiber friction resulted in a statistically significantly increase in Young’s modulus over comparable smooth non-woven fiber mats. After annealing, tensile strength, elongation, and toughness of the nylon 6 non-woven fiber mats electrospun from 20 wt % + 10 wt % solutions increased 26%, 28%, and 68% compared to those from 20 wt % solutions. Solvent bonding with formic acid vapor at room temperature for 30 min caused increases of 56%, 67%, and 39% in the Young’s modulus, tensile strength, and toughness of non-woven fiber mats, respectively. The increases attributed to increased individual nanofiber strength and solvent bonding synergistically resulted in the improvement of Young’s modulus of the electrospun nylon 6 non-woven fiber mats. PMID:28773397

  11. Evaluation of thermal conductivity and flexural strength properties of poly(methyl methacrylate) denture base material reinforced with different fillers.

    PubMed

    Kul, Esra; Aladağ, Lütfü İhsan; Yesildal, Ruhi

    2016-11-01

    Poly(methyl methacrylate) (PMMA) is widely used in prosthodontics as a denture base material. However, it has several disadvantages, including low strength and low thermal conductivity. The purpose of this in vitro study was to evaluate thermal conductivity and flexural strength after adding powdered Ag, TiO 2 , ZrO 2 , Al 2 O 3 , SiC, SiC-nano, Si 3 N 4 , and HA-nano in ratios of 10 wt% to PMMA. A total of 144 specimens were fabricated and divided into 18 groups. Specimens were left in water for 30 days. Thermal conductivity values were measured using a heat flowmeter, flexural strength was measured with a 3-point bend test, and specimens were investigated with environmental scanning electron microscopy. One-way ANOVA was used to compare means followed by using Duncan multiple range test (α=.05). The thermal conductivity value of PMMA increased significantly after the addition of Si 3 N 4 , SiC, Al 2 O 3 , SiC-nano, TiO 2 , ZrO 2 , HA-nano, and Ag. Progressive increases in thermal conductivity were observed in Si 3 N 4 , SiC, and Al 2 O 3 fillers. Flexural strength values of the control group were not significantly different from those of the SiC, Al 2 O 3 , or Ag group (P>.05). In the other groups, flexural strength values decreased significantly (P<.05). On the basis of electron microscopy, we observed that Si 3 N 4 , SiC, and Al 2 O 3 powders had higher thermal conductivity values that are dissipated more homogeneously in PMMA. Although the addition of 10 wt% SiC, Al 2 O 3, and Ag powder to PMMA significantly increased thermal conductivity, the flexural strength values of PMMA were not significantly changed. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. The Influence of Oropalatal Dimensions on the Measurement of Tongue Strength.

    PubMed

    Pitts, Laura L; Stierwalt, Julie A G; Hageman, Carlin F; LaPointe, Leonard L

    2017-12-01

    Tongue strength is routinely evaluated in clinical swallowing evaluations since lingual weakness is an established contributor to dysphagia. Tongue strength may be clinically quantified by the maximum isometric tongue pressure (MIP) generated by the tongue against the palate; however, wide ranges in normal performance remain to be fully explained. Although orthodontic theory has long suggested a relation between lingual function and oral cavity dimensions, little attention has been given to the potential influence of oral and palatal structure(s) on healthy variance in MIP generation. Therefore, anterior and posterior tongue strength measures and oropalatal dimensions were obtained across 147 healthy adults (aged 18-88 years). Age was confirmed as a significant, independent predictor explaining approximately 10.2% of the variance in anterior tongue strength, but not a significant predictor of posterior tongue strength. However, oropalatal dimensions predicted anterior tongue strength with over three times the predictive power of age alone (p < .001). Significant models for anterior tongue strength (R 2  = .457) and posterior tongue strength (R 2  = .283) included a combination of demographic predictors (i.e., age and/or gender) and oropalatal dimensions. Palatal width, estimated tongue volume, and gender were significant predictors of posterior tongue strength (p < .001). Therefore, oropalatal dimensions may warrant consideration when accurately differentiating between pathological lingual weakness and healthy individual difference.

  13. Preseason shoulder strength measurements in professional baseball pitchers: identifying players at risk for injury.

    PubMed

    Byram, Ian R; Bushnell, Brandon D; Dugger, Keith; Charron, Kevin; Harrell, Frank E; Noonan, Thomas J

    2010-07-01

    The ability to identify pitchers at risk for injury could be valuable to a professional baseball organization. To our knowledge, there have been no prior studies examining the predictive value of preseason strength measurements. Preseason weakness of shoulder external rotators is associated with increased risk of in-season throwing-related injury in professional baseball pitchers. Cohort study (prognosis); Level of evidence, 2. Preseason shoulder strength was measured for all pitchers in a professional baseball organization over a 5-year period (2001-2005). Prone internal rotation (IR), prone external rotation (PER), seated external rotation (SER), and supraspinatus (SS) strength were tested during spring training before each season. The players were then prospectively followed throughout the season for incidence of throwing-related injury. Injuries were categorized on an ordinal scale, with no injury, injury treated conservatively, and injury resulting in surgery delineated 0, 1, and 2, respectively. Subset analyses of shoulder injuries and of players with prior surgery were also performed. The association between strength measurements and injury was analyzed using Spearman rank correlation. A statistically significant association was observed for PER strength (P = .003), SER strength (P = .048), and SS strength (P = .006) with throwing-related injury requiring surgical intervention. Supraspinatus strength was also significantly associated with incidence of any shoulder injury (P = .031). There was an association between the ratio of PER/IR strength and incidence of shoulder injury (P = .037) and some evidence for an association with overall incidence of throwing-related injury (P = .051). No associations were noted in the subgroup of players with prior surgery. Preseason weakness of external rotation and SS strength is associated with in-season throwing-related injury resulting in surgical intervention in professional baseball pitchers. Thus, preseason strength

  14. Bond strength of the porcelain repair system to all-ceramic copings and porcelain.

    PubMed

    Lee, Sang J; Cheong, Chan Wook; Wright, Robert F; Chang, Brian M

    2014-02-01

    only onto the veneering ceramic surface were not statistically significant from those of 50% surface area of composite bonded onto all-ceramic cores. No statistically significant differences in the bond strength of a porcelain repair system to alumina and zirconia copings were observed. Increasing the surface of veneering ceramics to a porcelain repair system improved the repair material's bond strength. © 2013 by the American College of Prosthodontists.

  15. Dynamic balance ability in young elite soccer players: implication of isometric strength.

    PubMed

    Chtara, Moktar; Rouissi, Mehdi; Bragazzi, Nicola L; Owen, Adam L; Haddad, Monoem; Chamari, Karim

    2018-04-01

    Soccer requires maintaining unilateral balance when executing movement with the contralateral leg. Despite the fact that balance requires standing with maintaining isometric posture with the support leg, currently there is a lack of studies regarding the implication of isometric strength on dynamic balance's performance among young soccer players. Therefore, the aim of this study was to examine the relationship between the Y-Balance Test and 12 lower limbs isometric strength tests. Twenty-six right footed soccer players (mean±SD, age=16.2±1.6 years, height=175±4.2 cm, body mass=68.8±6.1 kg) performed a dynamic balance test (star excursion balance-test with dominant- (DL) and nondominant-legs (NDL). Furthermore, maximal isometric contraction tests of 12 lower limb muscle groups were assessed in DL and NDL. Correlations analysis reported a significant positive relationship between some of isometric strength tests (with DL and NDL) and the Y-Balance Test. Furthermore, stepwise multiple regression analysis showed that maximal isometric strength explained between 21.9% and 49.4% of the variance of the Y-Balance Test. Moreover, maximal isometric strength was dependent upon the reaching angle of the Y-Balance Test and the leg used to support body weight. This study showed a significant implication of maximal isometric strength of the lower limb and the Y-Balance Test. Moreover, the present investigation suggests the implementation of specific lower limb strengthening exercises depending on players' deficit in each reaching direction and leg. This result suggests that further studies should experiment if increasing lower limbs isometric strength could improve dynamic balance ability among young soccer players.

  16. St. John's wort significantly increased the systemic exposure and toxicity of methotrexate in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shih-Ying; Juang, Shin-Hun; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan

    2012-08-15

    St. John's wort (SJW, Hypericum perforatum) is one of the popular nutraceuticals for treating depression. Methotrexate (MTX) is an immunosuppressant with narrow therapeutic window. This study investigated the effect of SJW on MTX pharmacokinetics in rats. Rats were orally given MTX alone and coadministered with 300 and 150 mg/kg of SJW, and 25 mg/kg of diclofenac, respectively. Blood was withdrawn at specific time points and serum MTX concentrations were assayed by a specific monoclonal fluorescence polarization immunoassay method. The results showed that 300 mg/kg of SJW significantly increased the AUC{sub 0−t} and C{sub max} of MTX by 163% and 60%,more » respectively, and 150 mg/kg of SJW significantly increased the AUC{sub 0−t} of MTX by 55%. In addition, diclofenac enhanced the C{sub max} of MTX by 110%. The mortality of rats treated with SJW was higher than that of controls. In conclusion, coadministration of SJW significantly increased the systemic exposure and toxicity of MTX. The combined use of MTX with SJW would need to be with caution. -- Highlights: ► St. John's wort significantly increased the AUC{sub 0−t} and C{sub max} of methotrexate. ► Coadministration of St. John's wort increased the exposure and toxicity of methotrexate. ► The combined use of methotrexate with St. John's wort will need to be with caution.« less

  17. The Effect of CuO Nanoparticles on Antimicrobial Effects and Shear Bond Strength of Orthodontic Adhesives

    PubMed Central

    Toodehzaeim, Mohammad Hossein; Zandi, Hengameh; Meshkani, Hamidreza; Hosseinzadeh Firouzabadi, Azadeh

    2018-01-01

    Statement of the Problem: Orthodontic appliances facilitate microbial plaque accumulation and increase the chance of white spot lesions. There is a need for new plaque control methods independent of patient's cooperation. Purpose: The aim of this study was to determine the effects of incorporating copper oxide (CuO) nanoparticles on antimicrobial properties and bond strength of orthodontic adhesive. Materials and Method: CuO nanoparticles were added to the composite transbond XT at concentrations of 0.01, 0.5 and 1 wt.%. To evaluate the antimicrobial properties of composites containing nanoparticles, the disk agar diffusion test was used. For this purpose, 10 discs from each concentration of nano-composites (totally 30 discs) and 10 discs from conventional composite (as the control group) were prepared. Then the diameter of streptococcus mutans growth inhibition around each disc was determined in blood agar medium. To evaluate the shear bond strength, with each concentration of nano-composites as well as the control group (conventional composite), 10 metal brackets were bonded to the human premolars and shear bond strength was determined using a universal testing machine. Results: Nano-composites in all three concentrations showed significant antimicrobial effect compared to the control group (p< 0.001). With increasing concentration of nanoparticles, antimicrobial effect showed an upward trend, although statistically was not significant. There was no significant difference between the shear bond strength of nano-composites compared to control group (p= 0.695). Conclusion: Incorporating CuO nanoparticles into adhesive in all three studied concentrations added antimicrobial effects to the adhesive with no adverse effects on shear bond strength. PMID:29492409

  18. The Effect of CuO Nanoparticles on Antimicrobial Effects and Shear Bond Strength of Orthodontic Adhesives.

    PubMed

    Toodehzaeim, Mohammad Hossein; Zandi, Hengameh; Meshkani, Hamidreza; Hosseinzadeh Firouzabadi, Azadeh

    2018-03-01

    Orthodontic appliances facilitate microbial plaque accumulation and increase the chance of white spot lesions. There is a need for new plaque control methods independent of patient's cooperation. The aim of this study was to determine the effects of incorporating copper oxide (CuO) nanoparticles on antimicrobial properties and bond strength of orthodontic adhesive. CuO nanoparticles were added to the composite transbond XT at concentrations of 0.01, 0.5 and 1 wt.%. To evaluate the antimicrobial properties of composites containing nanoparticles, the disk agar diffusion test was used. For this purpose, 10 discs from each concentration of nano-composites (totally 30 discs) and 10 discs from conventional composite (as the control group) were prepared. Then the diameter of streptococcus mutans growth inhibition around each disc was determined in blood agar medium. To evaluate the shear bond strength, with each concentration of nano-composites as well as the control group (conventional composite), 10 metal brackets were bonded to the human premolars and shear bond strength was determined using a universal testing machine. Nano-composites in all three concentrations showed significant antimicrobial effect compared to the control group ( p < 0.001). With increasing concentration of nanoparticles, antimicrobial effect showed an upward trend, although statistically was not significant. There was no significant difference between the shear bond strength of nano-composites compared to control group ( p = 0.695). Incorporating CuO nanoparticles into adhesive in all three studied concentrations added antimicrobial effects to the adhesive with no adverse effects on shear bond strength.

  19. Normative data for hand grip strength and key pinch strength, stratified by age and gender for a multiethnic Asian population.

    PubMed

    Lam, Ngee Wei; Goh, Hui Ting; Kamaruzzaman, Shahrul Bahyah; Chin, Ai-Vyrn; Poi, Philip Jun Hua; Tan, Maw Pin

    2016-10-01

    Hand strength is a good indicator of physical fitness and frailty among the elderly. However, there are no published hand strength references for Malaysians aged > 65 years. This study aimed to establish normative data for hand grip strength (HGS) and key pinch strength (KPS) for Malaysians aged ≥ 60 years, and explore the relationship between hand strength and physical ability. Healthy participants aged ≥ 60 years with no neurological conditions were recruited from rural and urban locations in Malaysia. HGS and KPS were measured using hand grip and key pinch dynamometers. Basic demographic data, anthropometric measures, modified Barthel Index scores and results of the Functional Reach Test (FRT), Timed Up and Go (TUG) test and Jebsen-Taylor Hand Function Test (JTHFT) were recorded. 362 subjects aged 60-93 years were recruited. The men were significantly stronger than the women in both HGS and KPS (p < 0.001). The hand strength of the study cohort was lower than that of elderly Western populations. Significant correlations were observed between hand strength, and residential area (p < 0.001), FRT (r = 0.236, p = 0.028), TUG (r = -0.227, p = 0.009) and JTHFT (r = -0.927, p < 0.001). This study established reference ranges for the HGS and KPS of rural and urban elderly Malaysian subpopulations. These will aid the use of hand strength as a screening tool for frailty among elderly persons in Malaysia. Future studies are required to determine the modifiable factors for poor hand strength. Copyright: © Singapore Medical Association

  20. Normative data for hand grip strength and key pinch strength, stratified by age and gender for a multiethnic Asian population

    PubMed Central

    Lam, Ngee Wei; Goh, Hui Ting; Kamaruzzaman, Shahrul Bahyah; Chin, Ai-Vyrn; Poi, Philip Jun Hua; Tan, Maw Pin

    2016-01-01

    INTRODUCTION Hand strength is a good indicator of physical fitness and frailty among the elderly. However, there are no published hand strength references for Malaysians aged > 65 years. This study aimed to establish normative data for hand grip strength (HGS) and key pinch strength (KPS) for Malaysians aged ≥ 60 years, and explore the relationship between hand strength and physical ability. METHODS Healthy participants aged ≥ 60 years with no neurological conditions were recruited from rural and urban locations in Malaysia. HGS and KPS were measured using hand grip and key pinch dynamometers. Basic demographic data, anthropometric measures, modified Barthel Index scores and results of the Functional Reach Test (FRT), Timed Up and Go (TUG) test and Jebsen-Taylor Hand Function Test (JTHFT) were recorded. RESULTS 362 subjects aged 60–93 years were recruited. The men were significantly stronger than the women in both HGS and KPS (p < 0.001). The hand strength of the study cohort was lower than that of elderly Western populations. Significant correlations were observed between hand strength, and residential area (p < 0.001), FRT (r = 0.236, p = 0.028), TUG (r = −0.227, p = 0.009) and JTHFT (r = −0.927, p < 0.001). CONCLUSION This study established reference ranges for the HGS and KPS of rural and urban elderly Malaysian subpopulations. These will aid the use of hand strength as a screening tool for frailty among elderly persons in Malaysia. Future studies are required to determine the modifiable factors for poor hand strength. PMID:26768064

  1. Pulmonary Function, Muscle Strength and Mortality in Old Age

    PubMed Central

    Buchman, A. S.; Boyle, P. A.; Wilson, R.S.; Gu, Liping; Bienias, Julia L.; Bennett, D. A.

    2009-01-01

    Numerous reports have linked extremity muscle strength with mortality but the mechanism underlying this association is not known. We used data from 960 older persons without dementia participating in the Rush Memory and Aging Project to test two sequential hypotheses: first, that extremity muscle strength is a surrogate for respiratory muscle strength, and second, that the association of respiratory muscle strength with mortality is mediated by pulmonary function. In a series of proportional hazards models, we first demonstrated that the association of extremity muscle strength with mortality was no longer significant after including a term for respiratory muscle strength, controlling for age, sex, education, and body mass index. Next, the association of respiratory muscle strength with mortality was attenuated by more than 50% and no longer significant after including a term for pulmonary function. The findings were unchanged after controlling for cognitive function, parkinsonian signs, physical frailty, balance, physical activity, possible COPD, use of pulmonary medications, vascular risk factors including smoking, chronic vascular diseases, musculoskeletal joint pain, and history of falls. Overall, these findings suggest that pulmonary function may partially account for the association of muscle strength and mortality. PMID:18755207

  2. Strength Training for Women as a Vehicle for Health Promotion at Work.

    PubMed

    Nestler, Kai; Witzki, Alexander; Rohde, Ulrich; Rüther, Thomas; Tofaute, Kim Alexander; Leyk, Dieter

    2017-06-30

    Women, on average, have less muscle strength than men. This anthropometric-physiological trait may make them more vulnerable to ex - cessive physical strain, injury, and inability to work. Strength training is used for preventive health maintenance and to lessen musculoskeletal symptoms. In this context, we studied whether the degree of muscle strength has any effect on women's health in everyday working life, and also the effects of strength training for women on their health in the workplace. We systematically searched the PubMed/MEDLINE, Embase, CINAHL, Web of Science, CENTRAL, and SPOLIT databases for pertinent publications, in accordance with the PRISMA criteria for literature searches. We analyzed all of the retrieved randomized controlled trials conducted on women aged 18 to 65 to determine the effects of training on muscle strength, physical performance ability, and health-related parameters including body composition, musculo - skeletal pain, and subjective well-being. We did not find any studies that provided answers to the first question. As for the second question, the selection criteria were met by 12 of the 4969 retrieved studies, which dealt with the effect of strength training on health in the occupational environment and involved a total of 1365 female subjects. These studies were carried out in heterogeneous subject groups, with a variety of overlapping interventions consisting of both strength and endurance training. Significantly increased strength was found in all studies, as was a reduction of pain in all of the studies where this question was asked. Inconsistent results were obtained with respect to body weight, body composition, and subjective well-being. The interventions that were conducted in these studies succeeded in increasing strength and reducing pain, even when the training was brief and of low intensity. This was true not only for women working in occupations requiring unusual physical strength, but also for those in sedentary

  3. Introducing biomimetic shear and ion gradients to microfluidic spinning improves silk fiber strength.

    PubMed

    Li, David; Jacobsen, Matthew M; Gyune Rim, Nae; Backman, Daniel; Kaplan, David L; Wong, Joyce Y

    2017-05-31

    Silkworm silk is an attractive biopolymer for biomedical applications due to its high mechanical strength and biocompatibility; as a result, there is increasing interest in scalable devices to spin silk and recombinant silk so as to improve and customize their properties for diverse biomedical purposes (Vepari and Kaplan 2007 Prog. Polym. Sci. 32 ). While artificial spinning of regenerated silk fibroins adds tunability to properties such as degradation rate and surface functionalization, the resulting fibers do not yet approach the mechanical strength of native silkworm silk. These drawbacks reduce the applicability and attractiveness of artificial silk (Kinahan et al 2011 Biomacromolecules 12 ). Here, we used computational fluid dynamic simulations to incorporate shear in tandem with biomimetic ion gradients by coupling a modular novel glass microfluidic device to our previous co-axial flow device. Fibers spun with this combined apparatus demonstrated a significant increase in mechanical strength compared to fibers spun with the basic apparatus alone, with a three-fold increase in Young's modulus and extensibility and a twelve-fold increase in toughness. These results thus demonstrate the critical importance of ionic milieu and shear stress in spinning strong fibers from solubilized silk fibroin.

  4. Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength

    DOE PAGES

    Ge, Ting; Robbins, Mark O.; Perahia, Dvora; ...

    2014-07-25

    Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface.more » The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is signifcantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. When the strength of the interface saturates, the number of interfacial entanglements scales with the corresponding bulk entanglement density. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical

  5. Effects of Partner's Improvisational Resistance Training on dancers' muscular strength.

    PubMed

    Vetter, Rheba E; Dorgo, Sandor

    2009-05-01

    The purpose of this study was to observe the effects of Partner's Improvisational Resistance Training (PIRT) on muscular strength, body circumference, and body fat percentage in 10 female college-age dancers in comparison with 8 female dancers in a control group. The PIRT program, based on the concepts of manual resistance training, is the application of contact improvisation in a systematic strength development program, which proposes a way of contextualizing muscular strength development within the dance class. The program lasted 8 weeks, meeting 3 times weekly for 60-minute sessions. The muscular strength pre- and posttests included 1-repetition maximum (1RM) for leg extension, leg flexion, leg press, bench press, lat pulldown, back extension, and modified sit-up. Hydrostatic weighing for body composition and circumference measures on the waist, hip, shoulder, upper arm, and thigh were made pre- and posttest analyses. There were no significant pretest differences between the groups for age, height, body weight, body fat percentage, any of the circumference measures, or 5 of the 7 muscular strength measures. At posttest, neither group showed significant changes in total body weight, body fat percentage, or lean body weight. The experimental group showed significant decrements in the waist and hip circumference measures, and all other body circumference changes were nonsignificant. The experimental group showed significant changes from pretest to posttest for all seven 1RM strength measures and greater absolute and relative strength improvements in 5 measures compared with the control group. Thus, the 8-week PIRT program for female dancers was found effective in improving overall muscular strength and decreasing circumference in the waist-hip region, but it did not elicit significant changes in body composition.

  6. Tort reform is associated with significant increases in Texas physicians relative to the Texas population.

    PubMed

    Stewart, Ronald M; West, Molly; Schirmer, Richard; Sirinek, Kenneth R

    2013-01-01

    Texas implemented comprehensive tort reform in 2003. We hypothesized that tort reform was followed by a significant increase of physicians practicing in Texas. To test this hypothesis, we compared the rate of physician growth prior to and following tort reform, and the number of licensed physicians and physicians per 100,000. Comparing before and after tort reform, the rate of increase in Texas physicians per 100,000 population increased significantly (p < 0.01). From 2002 to 2012, the Texas population increased 21 %. The number of actively practicing Texas physicians increased by 15,611 a 44 % increase (46 % metro areas vs. 9 % non-metro areas), an increase of 30 physicians per 100,000 population (p < 0.01). Non-metropolitan Texas had a net increase of 215 physicians; however, there was no change in the number of physicians per 100,000. Examining the data by trauma service areas (TSAs), 20 of 22 TSAs had an increase in both number of physicians and physicians per capita, five greater than 50 %. The post-tort reform period in Texas was associated with a significantly increased growth rate of physicians relative to the Texas population. Tort reform, as implemented in Texas, provides a needed framework for improving access to health care.

  7. SUSTAINED ISOMETRIC SHOULDER CONTRACTION ON MUSCULAR STRENGTH AND ENDURANCE: A RANDOMIZED CLINICAL TRIAL.

    PubMed

    Myers, Natalie L; Toonstra, Jenny L; Smith, Jacob S; Padgett, Cooper A; Uhl, Tim L

    2015-12-01

    The Advanced Throwers Ten Exercise Program incorporates sustained isometric contractions in conjunction with dynamic shoulder movements. It has been suggested that incorporating isometric holds may facilitate greater increases in muscular strength and endurance. However, no objective evidence currently exists to support this claim. The purpose of this research was to compare the effects of a sustained muscle contraction resistive training program (Advanced Throwers Ten Program) to a more traditional exercise training protocol to determine if increases in shoulder muscular strength and endurance occur in an otherwise healthy population. It was hypothesized that utilizing a sustained isometric hold during a shoulder scaption exercise from the Advanced Throwers Ten would produce greater increases in shoulder strength and endurance as compared to a traditional training program incorporating a isotonic scapular plane abduction (scaption) exercise. Randomized Clinical Trial. Fifty healthy participants were enrolled in this study, of which 25 were randomized into the traditional training group (age: 26 ± 8, height:172 ± 10 cm, weight: 73 ± 13 kg, Marx Activity Scale: 11 ± 4) and 25 were randomized to the Advanced Throwers Ten group (age: 28 ± 9, height: 169 ± 23 cm, weight: 74 ± 16 kg, Marx Activity Scale: 11 ± 5). No pre-intervention differences existed between the groups (P>0.05). Arm endurance and strength data were collected pre and post intervention using a portable load cell (BTE Evaluator, Hanover, MD). Both within and between group analyses were done in order to investigate average torque (strength) and angular impulse (endurance) changes. The traditional and Advanced Throwers Ten groups both significantly improved torque and angular impulse on both the dominant and non-dominant arms by 10-14%. There were no differences in strength or endurance following the interventions between the two training groups (p>0

  8. Fluid overpressures and strength of the sedimentary upper crust

    NASA Astrophysics Data System (ADS)

    Suppe, John

    2014-12-01

    The classic crustal strength-depth profile based on rock mechanics predicts a brittle strength σ1 -σ3 = κ(ρbar gz -Pf) that increases linearly with depth as a consequence of [1] the intrinsic brittle pressure dependence κ plus [2] an assumption of hydrostatic pore-fluid pressure, Pf = ρwgz. Many deep borehole stress data agree with a critical state of failure of this form. In contrast, fluid pressures greater than hydrostatic ρbar gz >Pf >ρw gz are normally observed in clastic continental margins and shale-rich mountain belts. Therefore we explore the predicted shapes of strength-depth profiles using data from overpressured regions, especially those dominated by the widespread disequilibrium-compaction mechanism, in which fluid pressures are hydrostatic above the fluid-retention depth zFRD and overpressured below, increasing parallel to the lithostatic gradient ρbar gz . Both brittle crustal strength and frictional fault strength below the zFRD must be constant with depth because effective stress (ρbar gz -Pf) is constant, in contrast with the classic linearly increasing profile. Borehole stress and fluid-pressure measurements in several overpressured deforming continental margins agree with this constant-strength prediction, with the same pressure-dependence κ as the overlying hydrostatic strata. The role of zFRD in critical-taper wedge mechanics and jointing is illustrated. The constant-strength approximation is more appropriate for overpressured crust than classic linearly increasing models.

  9. Influence of ultraviolet irradiation treatment on porcelain bond strength of titanium surfaces.

    PubMed

    Kumasaka, Tomonari; Ohno, Akinori; Hori, Norio; Hoshi, Noriyuki; Maruo, Katsuichiro; Kuwabara, Atsushi; Seimiya, Kazuhide; Toyoda, Minoru; Kimoto, Katsuhiko

    2018-01-26

    To determine the effect of titanium (Ti) surface modification by ultraviolet irradiation (UVI) on the bond strength between Ti and porcelain. Grade 2 Ti plates were allotted to five groups: sandblasted (SA), 15 min UVI (UV), SA+5 min UVI (SA+UV5), SA+10 min UVI (SA+UV10), and SA+15 min UVI (SA+UV15). After surface treatment, porcelain was added. A precious metal (MC) was used for comparison with Ti. The effects of 24-h storage at room temperature versus thermal cycling only at 5 and 55°C in water were evaluated. Subsequently, the tensile strength of each sample was tested. Data were analyzed using one-way analysis of variance and the Tukey test. In both the room temperature and thermal cycling groups, the MC and SA+15 min UVI samples showed significantly greater bond strengths than the other samples (p<0.05). UVI processing efficiently increases the bond strength between porcelain and the Ti surface.

  10. Amnion-Derived Multipotent Progenitor Cells Increase Gain of Incisional Breaking Strength and Decrease Incidence and Severity of Acute Wound Failure

    PubMed Central

    Xing, Liyu; Franz, Michael G.; Marcelo, Cynthia L.; Smith, Charlotte A.; Marshall, Vivienne S.; Robson, Martin C.

    2007-01-01

    Objective: Acute wound failure is a common complication following surgical procedures and trauma. Laparotomy wound failure leads to abdominal dehiscence and incisional hernia formation. Delayed recovery of wound-breaking strength is one mechanism for laparotomy wound failure. Early fascial wounds are relatively acellular, and there is a delay in the appearance of acute wound growth factors and cytokines. The objective of this study was to accelerate and improve laparotomy wound healing using amnion-derived multipotent cells (AMPs). AMPs' nonimmunogenic phenotype and relative abundance support its role as a cell therapy. Methods: AMPs were injected into the load-bearing layer of rat abdominal walls prior to laparotomy, and cell viability was confirmed. Wound mechanical properties were measured over 28 days. The incidence and severity of laparotomy wound failure was measured in an incisional hernia model. Results: AMP cells were viable in laparotomy wounds for at least 28 days and did not migrate to other tissues. Laparotomy wound-breaking strength was increased by postoperative day 7 following AMP therapy. AMP therapy reduced the incidence of hernia formation and the size of hernia defects. Histology suggested stimulated wound fibroplasia and angiogenesis. Conclusions: AMP cell therapy reduces the incidence of laparotomy wound failure by accelerating the recovery of wound-breaking strength. This results in fewer incisional hernias and smaller hernia defects. PMID:18091982

  11. Poor toe flexor strength, but not handgrip strength, is associated with the prevalence of diabetes mellitus in middle-aged males.

    PubMed

    Suwa, Masataka; Imoto, Takayuki; Kida, Akira; Yokochi, Takashi; Iwase, Mitsunori; Kozawa, Kenji

    2018-03-28

    Previous studies suggested that reduced muscular strength was one of the potential predictor of prevalence of diabetes mellitus. The purpose of this study was to investigate the association between toe flexor strength (TFS) and handgrip strength (HGS) and the prevalence of diabetes mellitus. Cross-sectional analysis was conducted using data from 1,390 Japanese males (35-59 years). TFS and HGS were measured and medical examinations undertaken. The prevalence of diabetes mellitus was defined as fasting blood glucose ≥126 mg/dL, glycated hemoglobin ≥6.5% (48 mmol/mol), and/or current use of anti-diabetes mellitus drugs. A total of 114 participants had diabetes mellitus. TFS in participants with diabetes mellitus was significantly lower than that in persons not suffering from diabetes mellitus but HGS was not. Odds ratio (OR) and 95% confidence interval (CI) per 1-standard deviation-increase in muscular strength measurements for the prevalence of diabetes mellitus were obtained using a multiple logistic regression model. Prevalence of diabetes mellitus was inversely related to TFS (OR 0.769, 95% CI 0.614-0.963), TFS/body mass (BM) (0.696, 0.545-0.889) and TFS/body mass index (BMI) (0.690, 0.539-0.882) after adjustment of covariates. Such associations were not observed in HGS (OR 0.976, 95% CI 0.773-1.232), HGS/BM (0.868, 0.666-1.133) or HGS/BMI (0.826, 0.642-1.062). These results suggested that poor TFS was associated with an increased prevalence of diabetes mellitus independent of visceral fat accumulation, but HGS was not, in middle-aged males. TFS may be a better marker for the prevalence of diabetes mellitus than HGS.

  12. Influence of incorporation of ZrO2 nanoparticles on the repair strength of polymethyl methacrylate denture bases

    PubMed Central

    Gad, Mohammed M; Rahoma, Ahmed; Al-Thobity, Ahmad M; ArRejaie, Aws S

    2016-01-01

    Background Repeated fracture of the denture base is a common problem in prosthodontics, and it represents a nuisance and a time sink for the clinician. Therefore, the possibility of increasing repair strength using new reinforcement materials is of great interest to prosthodontists. Aim of the study This study aimed to evaluate the effects of incorporation of zirconia nanoparticles (nano-ZrO2) on the flexural strength and impact strength of repaired polymethyl methacrylate (PMMA) denture bases. Materials and methods One hundred eighty specimens of heat-polymerized acrylic resin were fabricated (90 for each test) and divided into three main groups: one control group (intact specimens) and two groups divided according to surface design (45° bevels and butt joints), in which specimens were prepared in pairs to create 2.5 mm gaps. Nano-ZrO2 was added to repair resin in 2.5 wt%, 5 wt%, and 7.5 wt% concentrations of acrylic powder. A three-point bending test was used to measure flexural strength, and a Charpy-type test was used to measure impact strength. Scanning electron microscopy was used to analyze the fracture surfaces and nano-ZrO2 distribution. The results were analyzed with a paired sample t-test and an unpaired t-test, with a P-value of ≤0.05 being significant. Results Incorporation of nano-ZrO2 into the repair resin significantly increased flexural strength (P<0.05). The highest value was found in the bevel group reinforced with 7.5% nano-ZrO2, whereas the lowest value was found in the butt group reinforced with 2.5% nano-ZrO2. The impact strength values of all repaired groups were significantly lower than those of the control group (P<0.05). Among repaired groups, the higher impact strength value was seen in the butt group reinforced with 2.5% nano-ZrO2. The bevel joint demonstrated mainly cohesive failure, whereas the butt joint demonstrated mainly adhesive failure. Conclusion Incorporation of nano-ZrO2 into the repair resin improved the flexural strength

  13. Feedback increases benefits but not costs of retrieval practice: Retrieval-induced forgetting is strength independent.

    PubMed

    Tempel, Tobias; Frings, Christian

    2018-04-01

    We examined how the provision of feedback affected two separate effects of retrieval practice: strengthening of practiced information and forgetting of related, unpracticed information. Feedback substantially increased recall of retrieval-practiced items. This unsurprising result shows once again that restudy opportunities boost the benefits of testing. In contrast, retrieval-induced forgetting was unaffected by the manipulation and occurred in equal size with or without feedback. These findings demonstrate strength independence of retrieval-induced forgetting and thus support a theoretical account assuming that an inhibitory mechanism causes retrieval-induced forgetting. According to this theory, inhibition resolves competition that arises during retrieval attempts but is unrelated to the consequences of retrieval practice concerning practiced items. The present results match these assumptions and contradict the theoretical alternative that blocking by strengthened information might explain retrieval-induced forgetting. We discuss our findings against the background of previous studies.

  14. New QCT analysis approach shows the importance of fall orientation on femoral neck strength.

    PubMed

    Carpenter, R Dana; Beaupré, Gary S; Lang, Thomas F; Orwoll, Eric S; Carter, Dennis R

    2005-09-01

    The influence of fall orientation on femur strength has important implications for understanding hip fracture risk. A new image analysis technique showed that the strength of the femoral neck in 37 males varied significantly along the neck axis and that bending strength varied by a factor of up to 2.8 for different loading directions. Osteoporosis is associated with decreased BMD and increased hip fracture risk, but it is unclear whether specific osteoporotic changes in the proximal femur lead to a more vulnerable overall structure. Nonhomogeneous beam theory, which is used to determine the mechanical response of composite structures to applied loads, can be used along with QCT to estimate the resistance of the femoral neck to axial forces and bending moments. The bending moment [My(theta)] sufficient to induce yielding within femoral neck sections was estimated for a range of bending orientations (theta) using in vivo QCT images of 37 male (mean age, 73 years; range, 65-87 years) femora. Volumetric BMD, axial stiffness, average moment at yield (M(y,avg)), maximum and minimum moment at yield (M(y,max) and M(y,min)), bone strength index (BSI), stress-strain index (SSI), and density-weighted moments of resistance (Rx and Ry) were also computed. Differences among the proximal, mid-, and distal neck regions were detected using ANOVA. My(theta) was found to vary by as much as a factor of 2.8 for different bending directions. Axial stiffness, M(y,avg), M(y,max), M(y,min), BSI, and Rx differed significantly between all femoral neck regions, with an overall trend of increasing axial stiffness and bending strength when moving from the proximal neck to the distal neck. Mean axial stiffness increased 62% between the proximal and distal neck, and mean M(y,avg) increased 53% between the proximal and distal neck. The results of this study show that femoral neck strength strongly depends on both fall orientation and location along the neck axis. Compressive yielding in the

  15. The fracture strength and frictional strength of Weber Sandstone

    USGS Publications Warehouse

    Byerlee, J.D.

    1975-01-01

    The fracture strength and frictional strength of Weber Sandstone have been measured as a function of confining pressure and pore pressure. Both the fracture strength and the frictional strength obey the law of effective stress, that is, the strength is determined not by the confining pressure alone but by the difference between the confining pressure and the pore pressure. The fracture strength of the rock varies by as much as 20 per cent depending on the cement between the grains, but the frictional strength is independent of lithology. Over the range 0 2 kb, ??=0??5 + 0??6??n. This relationship also holds for other rocks such as gabbro, dunite, serpentinite, granite and limestone. ?? 1975.

  16. Fabrication and Probabilistic Fracture Strength Prediction of High-Aspect-Ratio Single Crystal Silicon Carbide Microspecimens With Stress Concentration

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Evans, Laura J.; Jadaan, Osama M.; Sharpe, William N., Jr.; Beheim, Glenn M.; Trapp, Mark A.

    2005-01-01

    Single crystal silicon carbide micro-sized tensile specimens were fabricated with deep reactive ion etching (DRIE) in order to investigate the effect of stress concentration on the room-temperature fracture strength. The fracture strength was defined as the level of stress at the highest stressed location in the structure at the instant of specimen rupture. Specimens with an elliptical hole, a circular hole, and without a hole (and hence with no stress concentration) were made. The average fracture strength of specimens with a higher stress concentration was larger than the average fracture strength of specimens with a lower stress concentration. Average strength of elliptical-hole, circular-hole, and without-hole specimens was 1.53, 1.26, and 0.66 GPa, respectively. Significant scatter in strength was observed with the Weibull modulus ranging between 2 and 6. No fractographic examination was performed but it was assumed that the strength controlling flaws originated from etching grooves along the specimen side-walls. The increase of observed fracture strength with increasing stress concentration was compared to predictions made with the Weibull stress-integral formulation by using the NASA CARES/Life code. In the analysis isotropic material and fracture behavior was assumed - hence it was not a completely rigorous analysis. However, even with these assumptions good correlation was achieved for the circular-hole specimen data when using the specimen data without stress concentration as a baseline. Strength was over predicted for the elliptical-hole specimen data. Significant specimen-to-specimen dimensional variation existed in the elliptical-hole specimens due to variations in the nickel mask used in the etching. To simulate the additional effect of the dimensional variability on the probabilistic strength response for the single crystal specimens the ANSYS Probabilistic Design System (PDS) was used with CARES/Life.

  17. Influence of warm air-drying on enamel bond strength and surface free-energy of self-etch adhesives.

    PubMed

    Shiratsuchi, Koji; Tsujimoto, Akimasa; Takamizawa, Toshiki; Furuichi, Tetsuya; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-08-01

    We examined the effect of warm air-drying on the enamel bond strengths and the surface free-energy of three single-step self-etch adhesives. Bovine mandibular incisors were mounted in self-curing resin and then wet ground with #600 silicon carbide (SiC) paper. The adhesives were applied according to the instructions of the respective manufacturers and then dried in a stream of normal (23°C) or warm (37°C) air for 5, 10, and 20 s. After visible-light irradiation of the adhesives, resin composites were condensed into a mold and polymerized. Ten samples per test group were stored in distilled water at 37°C for 24 h and then the bond strengths were measured. The surface free-energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. The enamel bond strengths varied according to the air-drying time and ranged from 15.8 to 19.1 MPa. The trends for the bond strengths were different among the materials. The value of the γS⁺ component increased slightly when drying was performed with a stream of warm air, whereas that of the γS⁻ component decreased significantly. These data suggest that warm air-drying is essential to obtain adequate enamel bond strengths, although increasing the drying time did not significantly influence the bond strength. © 2013 Eur J Oral Sci.

  18. INCREASING AGE IS A RISK FACTOR FOR DECREASED POSTPARTUM PELVIC FLOOR STRENGTH

    PubMed Central

    Quiroz, Lieschen H.; Pickett, Stephanie D.; Peck, Jennifer D; Rostaminia, Ghazaleh; Stone, Daniel E.; Shobeiri, S. Abbas

    2016-01-01

    Objectives To determine factors associated with decreased pelvic floor strength (PFS) after the first vaginal delivery in a cohort of low risk women Methods This is a secondary analysis of a prospective study examining the risk of pelvic floor injury in a cohort of primiparous women. All recruited participants underwent an examination, 3D ultrasound and measurement of pelvic floor strength (PFS) in the third trimester and repeated at 4 weeks-6 months postpartum using a perineometer. Results There were 84 women recruited for the study, and 70 completed the postpartum assessment. Average age was 28.4 years (SD, 4.8). There were 46 (66%) subjects with a vaginal delivery (VD) and 24 (34%) with a cesarean delivery (CD) who labored. Decreased PFS was observed more frequently in the VD group compared to the CD group (68% vs. 42%, p=0.03). In modified Poisson regression models controlling for mode of delivery and time of postpartum assessment, women who were age 25-29 (RR=2.80, 95% CI 1.03-7.57) and >=30 (RR=2.53, 95% CI 0.93-6.86)) were over 2.5 times more likely to have decreased postpartum PFS compared to women < 25 yo. Conclusions In this population, women age 25 and older were more than twice as likely to have a decrease in postpartum PFS. PMID:28067746

  19. Effect of additional etching and ethanol-wet bonding on the dentin bond strength of one-step self-etch adhesives

    PubMed Central

    Ahn, Joonghee; Jung, Kyoung-Hwa; Son, Sung-Ae; Hur, Bock; Kwon, Yong-Hoon

    2015-01-01

    Objectives This study examined the effects of additional acid etching on the dentin bond strength of one-step self-etch adhesives with different compositions and pH. The effect of ethanol wetting on etched dentin bond strength of self-etch adhesives was also evaluated. Materials and Methods Forty-two human permanent molars were classified into 21 groups according to the adhesive types (Clearfil SE Bond [SE, control]; G-aenial Bond [GB]; Xeno V [XV]; Beauti Bond [BB]; Adper Easy Bond [AE]; Single Bond Universal [SU]; All Bond Universal [AU]), and the dentin conditioning methods. Composite resins were placed on the dentin surfaces, and the teeth were sectioned. The microtensile bond strength was measured, and the failure mode of the fractured specimens was examined. The data were analyzed statistically using two-way ANOVA and Duncan's post hoc test. Results In GB, XV and SE (pH ≤ 2), the bond strength was decreased significantly when the dentin was etched (p < 0.05). In BB, AE and SU (pH 2.4 - 2.7), additional etching did not affect the bond strength (p > 0.05). In AU (pH = 3.2), additional etching increased the bond strength significantly (p < 0.05). When adhesives were applied to the acid etched dentin with ethanol-wet bonding, the bond strength was significantly higher than that of the no ethanol-wet bonding groups, and the incidence of cohesive failure was increased. Conclusions The effect of additional acid etching on the dentin bond strength was influenced by the pH of one-step self-etch adhesives. Ethanol wetting on etched dentin could create a stronger bonding performance of one-step self-etch adhesives for acid etched dentin. PMID:25671215

  20. Correlation of pull-out strength of cement-augmented pedicle screws with CT-volumetric measurement of cement.

    PubMed

    Fölsch, Christian; Goost, Hans; Figiel, Jens; Paletta, Jürgen R J; Schultz, Wolfgang; Lakemeier, Stefan

    2012-12-01

    Cement augmentation of pedicle screws increases fixation strength in an osteoporotic spine. This study was designed to determine the cement distribution and the correlation between the pull-out strength of the augmented screw and the cement volume within polyurethane (PU) foam. Twenty-eight cannulated pedicle screws (6×45 mm) (Peter Brehm, Erlangen, Germany) with four holes at the distal end of the screw were augmented with the acrylic Stabilit ER Bone Cement Vertebral Augmentation System (DFine Inc., San Jose, CA, USA) and implanted into open-cell rigid PU foam (Pacific Research Laboratories, Vashon Island, WA, USA) with a density of 0.12 g/cm3, resembling severe osteoporosis. Volumetric measurement of the cement with consideration of the distribution around the screws was done with multislice computed tomography scan (Somatom Definition, Siemens, Erlangen, Germany). Pull-out strength was tested with a servohydraulic system (MTS System Corporation, Eden Prairie, MN, USA), and nonaugmented screws served as control. Pearson's correlation coefficient with significance level α=0.05 and one-way analysis of variance test were used. We found a high (r=0.88) and significant (p<0.01) correlation between the cement volume and the pull-out strength, which increased by more than 5-fold with a volume of 3 ml. The correlation appeared linear at least up to 4 ml cement volume and failure always occurred at the cement-bone interface. The cement distribution was symmetric and circular around the most proximal hole, with a distance of 14 mm from the tip, and nearly 90% of the cement was found 6 mm distal and cranial to it. The 95% confidence interval for the relative amount of cement was 37%-41% within 2 mm of the most proximal hole. Compared with the control, a cement volume between 2.0 and 3.0 ml increased the pull-out strength significantly and is relevant for clinical purposes, whereas a volume of 0.5 ml did not. A cement volume beyond 3.0 ml should further increase the pull

  1. Estimation of Confined Peak Strength of Crack-Damaged Rocks

    NASA Astrophysics Data System (ADS)

    Bahrani, Navid; Kaiser, Peter K.

    2017-02-01

    It is known that the unconfined compressive strength of rock decreases with increasing density of geological features such as micro-cracks, fractures, and veins both at the laboratory specimen and rock block scales. This article deals with the confined peak strength of laboratory-scale rock specimens containing grain-scale strength dominating features such as micro-cracks. A grain-based distinct element model, whereby the rock is simulated with grains that are allowed to deform and break, is used to investigate the influence of the density of cracks on the rock strength under unconfined and confined conditions. A grain-based specimen calibrated to the unconfined and confined strengths of intact and heat-treated Wombeyan marble is used to simulate rock specimens with varying crack densities. It is demonstrated how such cracks affect the peak strength, stress-strain curve and failure mode with increasing confinement. The results of numerical simulations in terms of unconfined and confined peak strengths are used to develop semi-empirical relations that relate the difference in strength between the intact and crack-damaged rocks to the confining pressure. It is shown how these relations can be used to estimate the confined peak strength of a rock with micro-cracks when the unconfined and confined strengths of the intact rock and the unconfined strength of the crack-damaged rock are known. This approach for estimating the confined strength of crack-damaged rock specimens, called strength degradation approach, is then verified by application to published laboratory triaxial test data.

  2. Impact of exercise-induced fatigue on the strength, postural control, and gait of children with a neuromuscular disease.

    PubMed

    Hart, Raphael; Ballaz, Laurent; Robert, Maxime; Pouliot, Annie; D'Arcy, Sylvie; Raison, Maxime; Lemay, Martin

    2014-08-01

    Children with a neuromuscular disease are prone to early muscular fatigue. The objective of the present study was to evaluate the effects of fatigue induced by a walking exercise on the strength, postural control, and gait of children with a neuromuscular disease. Maximal isometric knee strength (extension and flexion), quiet standing postural control, and gait were evaluated in 12 children (8.8 [1.4] yrs) with a neuromuscular disease before and after a walking exercise. The participants were asked to stop walking when they considered themselves "very fatigued." After the exercise-induced fatigue, a significant increase in range of motion in pelvis obliquity, hip abduction and adduction, and ankle flexion and extension during gait was reported along with an increase in stride length variability. Fatigue also reduced the knee flexor strength and had a detrimental effect on postural control. Fatigue affects the strength, postural control, and gait of children with a neuromuscular disease and could notably increase the risks of falling and the occurrence of serious injuries.

  3. Imaging shear strength along subduction faults

    USGS Publications Warehouse

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.

    2017-01-01

    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  4. Strength and Conditioning Training by the Danish National Handball Team Before an Olympic Tournament.

    PubMed

    Kvorning, Thue; Hansen, Mikkel R B; Jensen, Kurt

    2017-07-01

    Kvorning, T, Hansen, MRB, and Jensen, K. Strength and conditioning training by the Danish national handball team before an Olympic tournament. J Strength Cond Res 31(7): 1759-1765, 2017-The physical demands imposed on national team handball teams during the Olympics imply significant physical preparation to improve performance and reduce incidence of injuries. The purpose of this case report was to describe and analyze the strength and conditioning (S&C) training performed by the Danish national handball team before the Beijing Olympic Games. Eight weeks of S&C was divided into 5 weeks emphasizing muscle hypertrophy and long-interval running followed by 3 weeks emphasizing strength, power, and short-interval running. Body mass increased by 1.6% (p < 0.05), whereas body fat decreased by 1.0% (p < 0.05). No differences were seen in countermovement jump or jump-and-reach height (p > 0.05). Agility performance was evaluated by a T-test and improved by 2.5% (p < 0.05). Changes by 6% and 22% were seen in 1 repetition maximum (1RM) bench press and 1RM back squat, respectively. However, only the 1RM bench press increased significantly (p < 0.05). Running performance was tested by the Yo-Yo intermittent recovery test, level 2, and improved by 25% (p < 0.05). In conclusion, during 8 weeks of S&C training before the Beijing Olympics, body composition changed toward more muscle mass, better upper-body strength, better interval running, and agility performance, whereas no changes were seen in jumping or lower-body muscle strength. This case report may be used as a handy script for handball teams preparing for competition. Detailed and periodized S&C training programs for 8 weeks are provided and can be used by teams ranging from moderately to highly trained.

  5. Dentin pretreatment and adhesive temperature as affecting factors on bond strength of a universal adhesive system.

    PubMed

    Sutil, Bruna Gabrielle da Silva; Susin, Alexandre Henrique

    2017-01-01

    To evaluate the effects of dentin pretreatment and temperature on the bond strength of a universal adhesive system to dentin. Ninety-six extracted non-carious human third molars were randomly divided into 12 groups (n=8) according to Scotchbond Universal Adhesive (SbU) applied in self-etch (SE) and etch-and-rinse (ER) mode, adhesive temperature (20°C or 37°C) and sodium bicarbonate or aluminum oxide air abrasion. After composite build up, bonded sticks with cross-sectional area of 1 mm2 were obtained to evaluate the microtensile bond strength (μTBS). The specimens were tested at a crosshead speed of 0.5 mm/min on a testing machine until failure. Fractured specimens were analyzed under stereomicroscope to determine the failure patterns in adhesive, cohesive (dentin or resin) and mixed fractures. The microtensile bond strength data was analyzed using two-way ANOVA and Tukey's test (α=5%). Interaction between treatment and temperature was statistically significant for SbU applied in self-etch technique. Both dentin treatments showed higher bond strength for ER mode, regardless of adhesive temperature. When compared to control group, sodium bicarbonate increased bond strength of SbU in SE technique. Adhesive temperature did not significantly affect the μTBS of tested groups. Predominantly, adhesive failure was observed for all groups. Dentin surface treatment with sodium bicarbonate air abrasion improves bond strength of SbU, irrespective of adhesive application mode, which makes this approach an alternative to increase adhesive performance of Scotchbond Universal Adhesive to dentin.

  6. Dentin pretreatment and adhesive temperature as affecting factors on bond strength of a universal adhesive system

    PubMed Central

    Sutil, Bruna Gabrielle da Silva; Susin, Alexandre Henrique

    2017-01-01

    Abstract Objectives: To evaluate the effects of dentin pretreatment and temperature on the bond strength of a universal adhesive system to dentin. Material and Methods: Ninety-six extracted non-carious human third molars were randomly divided into 12 groups (n=8) according to Scotchbond Universal Adhesive (SbU) applied in self-etch (SE) and etch-and-rinse (ER) mode, adhesive temperature (20°C or 37°C) and sodium bicarbonate or aluminum oxide air abrasion. After composite build up, bonded sticks with cross-sectional area of 1 mm2 were obtained to evaluate the microtensile bond strength (μTBS). The specimens were tested at a crosshead speed of 0.5 mm/min on a testing machine until failure. Fractured specimens were analyzed under stereomicroscope to determine the failure patterns in adhesive, cohesive (dentin or resin) and mixed fractures. The microtensile bond strength data was analyzed using two-way ANOVA and Tukey's test (α=5%). Results: Interaction between treatment and temperature was statistically significant for SbU applied in self-etch technique. Both dentin treatments showed higher bond strength for ER mode, regardless of adhesive temperature. When compared to control group, sodium bicarbonate increased bond strength of SbU in SE technique. Adhesive temperature did not significantly affect the μTBS of tested groups. Predominantly, adhesive failure was observed for all groups. Conclusions: Dentin surface treatment with sodium bicarbonate air abrasion improves bond strength of SbU, irrespective of adhesive application mode, which makes this approach an alternative to increase adhesive performance of Scotchbond Universal Adhesive to dentin. PMID:29069151

  7. Significance of DNA bond strength in programmable nanoparticle thermodynamics and dynamics.

    PubMed

    Yu, Qiuyan; Hu, Jinglei; Hu, Yi; Wang, Rong

    2018-04-04

    Assembly of nanoparticles (NPs) coated with complementary DNA strands leads to novel crystals with nanosized basic units rather than classic atoms, ions or molecules. The assembly process is mediated by hybridization of DNA via specific base pairing interaction, and is kinetically linked to the disassociation of DNA duplexes. DNA-level physiochemical quantities, both thermodynamic and kinetic, are key to understanding this process and essential for the design of DNA-NP crystals. The melting transition properties are helpful to judge the thermostability and sensitivity of relative DNA probes or other applications. Three different cases are investigated by changing the linker length and the spacer length on which the melting properties depend using the molecular dynamics method. Melting temperature is determined by sigmoidal melting curves based on hybridization percentage versus temperature and the Lindemann melting rule simultaneously. We provide a computational strategy based on a coarse-grained model to estimate the hybridization enthalpy, entropy and free energy from percentages of hybridizations which are readily accessible in experiments. Importantly, the lifetime of DNA bond dehybridization based on temperature and the activation energy depending on DNA bond strength are also calculated. The simulation results are in good agreement with the theoretical analysis and the present experimental data. Our study provides a good strategy to predict the melting temperature which is important for the DNA-directed nanoparticle system, and bridges the dynamics and thermodynamics of DNA-directed nanoparticle systems by estimating the equilibrium constant from the hybridization of DNA bonds quantitatively.

  8. Forearm Torque and Lifting Strength: Normative Data.

    PubMed

    Axelsson, Peter; Fredrikson, Per; Nilsson, Anders; Andersson, Jonny K; Kärrholm, Johan

    2018-02-10

    To establish reference values for new methods designed to quantitatively measure forearm torque and lifting strength and to compare these values with grip strength. A total of 499 volunteers, 262 males and 237 females, aged 15 to 85 (mean, 44) years, were tested for lifting strength and forearm torque with the Kern and Baseline dynamometers. These individuals were also tested for grip strength with a Jamar dynamometer. Standardized procedures were used and information about sex, height, weight, hand dominance, and whether their work involved high or low manual strain was collected. Men had approximately 70% higher forearm torque and lifting strength compared with females. Male subjects aged 26 to 35 years and female subjects aged 36 to 45 years showed highest strength values. In patients with dominant right side, 61% to 78% had a higher or equal strength on this side in the different tests performed. In patients with dominant left side, the corresponding proportions varied between 41% and 65%. There was a high correlation between grip strength and forearm torque and lifting strength. Sex, body height, body weight, and age showed a significant correlation to the strength measurements. In a multiple regression model sex, age (entered as linear and squared) could explain 51% to 63% of the total variances of forearm torque strength and 30% to 36% of lifting strength. Reference values for lifting strength and forearm torque to be used in clinical practice were acquired. Grip strength has a high correlation to forearm torque and lifting strength. Sex, age, and height can be used to predict forearm torque and lifting strength. Prediction equations using these variables were generated. Normative data of forearm torque and lifting strength might improve the quality of assessment of wrist and forearm disorders as well as their treatments. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  9. A Novel Application of Eddy Current Braking for Functional Strength Training during Gait

    PubMed Central

    Washabaugh, Edward P.; Claflin, Edward S.; Gillespie, R. Brent; Krishnan, Chandramouli

    2016-01-01

    Functional strength training is becoming increasingly popular when rehabilitating individuals with neurological injury such as stroke or cerebral palsy. Typically, resistance during walking is provided using cable robots or weights that are secured to the distal shank of the subject. However, there exists no device that is wearable and capable of providing resistance across the joint, allowing over ground gait training. In this study, we created a lightweight and wearable device using eddy current braking to provide resistance to the knee. We then validated the device by having subjects wear it during a walking task through varying resistance levels. Electromyography and kinematics were collected to assess the biomechanical effects of the device on the wearer. We found that eddy current braking provided resistance levels suitable for functional strength training of leg muscles in a package that is both lightweight and wearable. Applying resistive forces at the knee joint during gait resulted in significant increases in muscle activation of many of the muscles tested. A brief period of training also resulted in significant aftereffects once the resistance was removed. These results support the feasibility of the device for functional strength training during gait. Future research is warranted to test the clinical potential of the device in an injured population. PMID:26817456

  10. A Novel Application of Eddy Current Braking for Functional Strength Training During Gait.

    PubMed

    Washabaugh, Edward P; Claflin, Edward S; Gillespie, R Brent; Krishnan, Chandramouli

    2016-09-01

    Functional strength training is becoming increasingly popular when rehabilitating individuals with neurological injury such as stroke or cerebral palsy. Typically, resistance during walking is provided using cable robots or weights that are secured to the distal shank of the subject. However, there exists no device that is wearable and capable of providing resistance across the joint, allowing over ground gait training. In this study, we created a lightweight and wearable device using eddy current braking to provide resistance to the knee. We then validated the device by having subjects wear it during a walking task through varying resistance levels. Electromyography and kinematics were collected to assess the biomechanical effects of the device on the wearer. We found that eddy current braking provided resistance levels suitable for functional strength training of leg muscles in a package that is both lightweight and wearable. Applying resistive forces at the knee joint during gait resulted in significant increases in muscle activation of many of the muscles tested. A brief period of training also resulted in significant aftereffects once the resistance was removed. These results support the feasibility of the device for functional strength training during gait. Future research is warranted to test the clinical potential of the device in an injured population.

  11. Shear strength of metal-sapphire contacts

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1976-01-01

    The shear strength of polycrystalline Ag, Cu, Ni, and Fe contacts on clean (0001) sapphire has been studied in ultrahigh vacuum. Both clean metal surfaces and surfaces exposed to O2, Cl2, and C2H4 were used. The results indicate that there are two sources of strength of Al2O3-metal contacts: an intrinsic one that depends on the particular clean metal in contact with Al2O3 and an additional one due to intermediate films. The shear strength of the clean metal contacts correlated directly with the free energy of oxide formation for the lowest metal oxide, in accord with the hypothesis that a chemical bond is formed between metal cations and oxygen anions in the sapphire surface. Contacts formed by metals exposed to chlorine exhibited uniformly low shear strength indicative of van der Waals bonding between chlorinated metal surfaces and sapphire. Contacts formed by metals exposed to oxygen exhibited enhanced shear strength, in accord with the hypothesis that an intermediate oxide layer increases interfacial strength.

  12. The influence of removing sizing on strength and stiffness of conventional and high modulus E-glass fibres

    NASA Astrophysics Data System (ADS)

    Nørgaard Petersen, Helga; Kusano, Yukihiro; Brøndsted, Povl; Almdal, Kristoffer

    2016-07-01

    Two types of E-glass fibres, a conventional and a high modulus where the last one in the following will be denoted as ECR-glass fibre, were investigated regarding density, diameter, stiffness and strength. The fibres were analysed as pristine and after sizing removal treatments. The sizing was removed by either burning at 565°C or soxhlet extraction with acetone. It was found that the density and the stiffness increased after removing the sizing by the two removal treatments whereas the diameter did not change significantly. The strength of the fibres decreased after burning as the sizing, protecting against water and fibre-fibre damage, had been removed. The strength of the fibres after extraction was not significantly different from the strength of the pristine fibres despite removing the sizing. This indicates that the bonded part of sizing is still protecting the glass fibre surface.

  13. Oolong tea increases metabolic rate and fat oxidation in men.

    PubMed

    Rumpler, W; Seale, J; Clevidence, B; Judd, J; Wiley, E; Yamamoto, S; Komatsu, T; Sawaki, T; Ishikura, Y; Hosoda, K

    2001-11-01

    According to traditional Chinese belief, oolong tea is effective in the control of body weight. Few controlled studies, however, have been conducted to measure the impact of tea on energy expenditure (EE) of humans. A randomized cross-over design was used to compare 24-h EE of 12 men consuming each of four treatments: 1) water, 2) full-strength tea (daily allotment brewed from 15 g of tea), 3) half-strength tea (brewed from 7.5 g tea) and 4) water containing 270 mg caffeine, equivalent to the concentration in the full-strength tea treatment. Subjects refrained from consuming caffeine or flavonoids for 4 d prior to the study. Tea was brewed each morning; beverages were consumed at room temperature as five 300 mL servings. Subjects received each treatment for 3 d; on the third day, EE was measured by indirect calorimetry in a room calorimeter. For the 3 d, subjects consumed a typical American diet. Energy content of the diet was tailored to each subject's needs as determined from a preliminary measure of 24-h EE by calorimetry. Relative to the water treatment, EE was significantly increased 2.9 and 3.4% for the full-strength tea and caffeinated water treatments, respectively. This increase over water alone represented an additional expenditure of 281 and 331 kJ/d for subjects treated with full-strength tea and caffeinated water, respectively. In addition, fat oxidation was significantly higher (12%) when subjects consumed the full-strength tea rather than water.

  14. Design for Fe-high Mn alloy with an improved combination of strength and ductility.

    PubMed

    Lee, Seung-Joon; Han, Jeongho; Lee, Sukjin; Kang, Seok-Hyeon; Lee, Sang-Min; Lee, Young-Kook

    2017-06-15

    Recently, Fe-Mn twinning-induced plasticity steels with an austenite phase have been the course of great interest due to their excellent combination of tensile strength and ductility, which carbon steels have never been able to attain. Nevertheless, twinning-induced plasticity steels also exhibit a trade-off between strength and ductility, a longstanding dilemma for physical metallurgists, when fabricated based on the two alloy design parameters of stacking fault energy and grain size. Therefore, we investigated the tensile properties of three Fe-Mn austenitic steels with similar stacking fault energy and grain size, but different carbon concentrations. Surprisingly, when carbon concentration increased, both strength and ductility significantly improved. This indicates that the addition of carbon resulted in a proportionality between strength and ductility, instead of a trade-off between those characteristics. This new design parameter, C concentration, should be considered as a design parameter to endow Fe-Mn twinning-induced plasticity steel with a better combination of strength and ductility.

  15. Shear bond strength between autopolymerizing acrylic resin and Co-Cr alloy using different primers.

    PubMed

    Sanohkan, Sasiwimol; Urapepon, Somchai; Harnirattisai, Choltacha; Sirisinha, Chakrit; Sunintaboon, Panya

    2012-01-01

    This study aimed to examine the shear bond strength between cobalt chromium alloy and autopolymerizing acrylic resin using experimental primers containing 5, 10, and 15 wt% of 4-methacryloxyethyl trimellitic anhydride or 1, 2, and 3 wt% of 3-methacryloxypropyl-trimethoxysilane comparison to 5 commercial primers (ML primers, Alloy primer, Metal/Zirconia primer, Monobond S, and Monobond plus). Sixty alloy specimens were sandblasted and treated with each primer before bonded with an acrylic resin. The control group was not primed. The shear bond strengths were tested and statistically compared. Specimens treated with commercial primers significantly increased the shear bond strength of acrylic resin to cobalt chromium alloy (p<0.05). The highest shear bond strength was found in the Alloy primer group. Among experimental group, using 10 wt% of 4-methacryloxyethyl trimellitic anhydride -or 2 wt% of 3-methacryloxypropyltrimethoxysilane enhanced highest shear bond strength. The experimental and commercial primers in this study all improved bonding of acrylic resin to cobalt chromium alloy.

  16. Incisor crown bending strength correlates with diet and incisor curvature in anthropoid primates.

    PubMed

    Deane, Andrew S

    2015-02-01

    Anthropoid incisors are large relative to the postcanine dentition and function in the preprocessing of food items. Previous analyses of anthropoid incisor allometry and shape demonstrate that incisor morphology is correlated with preferred foods and that more frugivorous anthropoids have larger and more curved incisors. Although the relationship between incisal crown curvature and preferred foods has been well documented in extant and fossil anthropoids, the functional significance of curvature variation has yet to be conclusively established. Given that an increase in crown curvature will increase maximum linear crown dimensions, and bending resistance is a function of linear crown dimensions, it is hypothesized that incisor crown curvature functons to increase incisor crown resistance to bending forces. This study uses beam theory to calculate the mesiodistal and labiolingual bending strengths of the maxillary and mandibular incisors of hominoid and platyrrhine taxa with differing diets and variable degrees of incisal curvature. Results indicate that bending strength correlates with incisal curvature and that frugivores have elevated incisor bending resistance relative to folivores. Maxillary central incisor bending strengths further discriminate platyrrhine and hominoid hard- and soft-object frugivores suggesting this crown is subjected to elevated occlusal loading relative to other incisors. These results are consistent with the hypothesis that incisor crown curvature functions to increase incisor crown resistance to bending forces but does not preclude the possibility that incisor bending strength is a composite function of multiple dentognathic variables including, but not limited to, incisor crown curvature. © 2014 Wiley Periodicals, Inc.

  17. Strength Training Following Hematopoietic Stem Cell Transplantation

    PubMed Central

    Hacker, Eileen Danaher; Larson, Janet; Kujath, Amber; Peace, David; Rondelli, Damiano; Gaston, Lisa

    2010-01-01

    Background Patients receiving high-dose chemotherapy and hematopoietic stem cell transplantation (HSCT) experience considerable reductions in physical activity and deterioration of their health status. Objective The purpose of this pilot study was to test the effects of strength training compared to usual activity on physical activity, muscle strength, fatigue, health status perceptions, and quality of life following HSCT. Interventions/Methods Nineteen subjects were randomized to the exercise or control group. Moderate intensity strength training began following discharge from the hospital. Dependent variables included physical activity, muscle strength, fatigue, health status perceptions and quality of life. Variables were measured prior to admission to the hospital for HSCT, day 8 following HSCT, and six weeks following discharge from the hospital. Results Significant time effects were noted for many variables with anticipated declines in physical activity, muscle strength, fatigue, and health status perceptions immediately after HSCT with subsequent improvements six weeks following hospital discharge. One group effect was noted with subjects in the exercise group reporting less fatigue than subjects in the control group. Although no significant interactions were detected, the trends suggest that the exercise group may be more physically active following the intervention compared to the usual activity group. Conclusions This study demonstrates the potential positive effects of strength training on physical activity, fatigue, and quality of life in people receiving high-dose chemotherapy and HSCT. Implications for Practice Preliminary evidence is provided for using strength training to enhance early recovery following HSCT. Elastic resistance bands are easy to use and relatively inexpensive. PMID:21116175

  18. Effect of Nb on microstructure and yield strength of a high temperature tempered martensitic steel

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Sun, Yu; Zhang, Chuanyou; Wang, Qingfeng; Zhang, Fucheng

    2018-04-01

    Martensitic steels based on a composition of 25CrMo47NbVTi with different concentrations of Nb (0.003%–0.060%) were quenched (Q) at 900 °C and tempered (T) at 700 °C to obtain oil country tubular goods (OCTG) with higher yield strength. The precipitation and microstructures were characterized and quantified by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The results show that the increased Nb content led to an enhanced overall precipitation, the rising solution-precipitation temperature, the increased mass or volume fraction of the Nb-containing precipitates, and the decreased average diameter of Nb-containing particles. With the enhanced precipitation of small sized Nb-containing particles, the austenite grain and corresponding martensitic packet and block were evidently refined. In addition, the dislocation density increased slightly with increasing Nb addition. The yield strength was experimentally measured and quantitatively estimated. The findings based on theoretical calculations indicated that as a consequence of intensified strengthening from grain boundaries, precipitates and dislocations, the yield strength was enhanced significantly by Nb addition.

  19. Effect of formation and state of interface on joint strength in friction stir spot welding for advanced high strength steel sheets

    NASA Astrophysics Data System (ADS)

    Taniguchi, Koichi; Matsushita, Muneo; Ikeda, Rinsei; Oi, Kenji

    2014-08-01

    The tensile shear strength and cross tension strength of friction stir spot welded joints were evaluated in the cases of lap joints of 270 N/mm2 grade and 980 N/mm2 grade cold rolled steel sheets with respect to the stir zone area, hardness distribution, and interface condition between the sheets. The results suggested that both the tensile shear strength and cross tension strength were based on the stir zone area and its hardness in both grades of steel. The "hook" shape of the interface also affected the joint strength. However, the joining that occurred across the interfaces had a significant influence on the value of the joint strength in the case of the 270 N/mm2 grade steel.

  20. An investigation of the compressive strength of Kevlar 49/epoxy composites

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. V.; Rosen, B. W.; Rice, J. S.

    1975-01-01

    Tests were performed to evaluate the effect of a wide range of variables including matrix properties, interface properties, fiber prestressing, secondary reinforcement, and others on the ultimate compressive strength of Kevlar 49/epoxy composites. Scanning electron microscopy is used to assess the resulting failure surfaces. In addition, a theoretical study is conducted to determine the influence of fiber anisotropy and lack of perfect bond between fiber and matrix on the shear mode microbuckling. The experimental evaluation of the effect of various constituent and process characteristics on the behavior of these unidirectional composites in compression did not reveal any substantial increase in strength. However, theoretical evaluations indicate that the high degree of fiber anisotropy results in a significant drop in the predicted stress level for internal instability. Scanning electron microscope data analysis suggests that internal fiber failure and smooth surface debonding could be responsible for the measured low compressive strengths.

  1. Improving the Q:H strength ratio in women using plyometric exercises.

    PubMed

    Tsang, Kavin K W; DiPasquale, Angela A

    2011-10-01

    Plyometric training programs have been implemented in anterior cruciate ligament injury prevention programs. Plyometric exercises are designed to aid in the improvement of muscle strength and neuromuscular control. Our purpose was to examine the effects of plyometric training on lower leg strength in women. Thirty (age = 20.3 ± 1.9 years) recreationally active women were divided into control and experimental groups. The experimental group performed a plyometric training program for 6 weeks, 3 d·wk(-1). All subjects attended 4 testing sessions: before the start of the training program and after weeks 2, 4, and 6. Concentric quadriceps and hamstring strength (dominant leg) was assessed using an isokinetic dynamometer at speeds of 60 and 120°·s(-1). Peak torque, average peak torque, and average power (AvgPower) were measured. The results revealed a significant (p < 0.05) interaction between time and group for flexion PkTq and AvgPower at 120°·s(-1). Post hoc analysis further revealed that PkTq at 120°·s(-1) was greater in the plyometric group than in the control group at testing session 4 and that AvgPower was greater in the plyometric group than in the control group in testing sessions 2-4. Our results indicate that the plyometric training program increased hamstring strength while maintaining quadriceps strength, thereby improving the Q:H strength ratio.

  2. Creep and Rupture Strength of an Advanced CVD SiC Fiber

    NASA Technical Reports Server (NTRS)

    Goldsby, J. C.; Yun, H. M.; DiCarlo, J. A.

    1997-01-01

    In the as-produced condition the room temperature strength (approx. 6 GPa) of Textron Specialty Materials' 50 microns CVD SiC fiber represents the highest value thus far obtained for commercially produced polycrystalline SiC fibers. To understand whether this strength can be maintained after composite processing conditions, high temperature studies were performed on the effects of time, stress, and environment on 1400 deg. C tensile creep strain and stress rupture on as-produced, chemically vapor deposited SiC fibers. Creep strain results were consistent, allowing an evaluation of time and stress effects. Test environment had no influence on creep strain but I hour annealing at 1600 deg. C in argon gas significantly reduced the total creep strain and increased the stress dependence. This is attributed to changes in the free carbon morphology and its distribution within the CVD SiC fiber. For the as-produced and annealed fibers, strength at 1400 deg. C was found to decrease from a fast fracture value of 2 GPa to a 100-hr rupture strength value of 0. 8 GPa. In addition a loss of fast fracture strength from 6 GPa is attributed to thermally induced changes in the outer carbon coating and microstructure. Scatter in rupture times made a definitive analysis of environmental and annealing effects on creep strength difficult.

  3. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners

    NASA Astrophysics Data System (ADS)

    Brahimi, S. V.; Yue, S.; Sriraman, K. R.

    2017-06-01

    High-strength steel fasteners characterized by tensile strengths above 1100 MPa are often used in critical applications where a failure can have catastrophic consequences. Preventing hydrogen embrittlement (HE) failure is a fundamental concern implicating the entire fastener supply chain. Research is typically conducted under idealized conditions that cannot be translated into know-how prescribed in fastener industry standards and practices. Additionally, inconsistencies and even contradictions in fastener industry standards have led to much confusion and many preventable or misdiagnosed fastener failures. HE susceptibility is a function of the material condition, which is comprehensively described by the metallurgical and mechanical properties. Material strength has a first-order effect on HE susceptibility, which increases significantly above 1200 MPa and is characterized by a ductile-brittle transition. For a given concentration of hydrogen and at equal strength, the critical strength above which the ductile-brittle transition begins can vary due to second-order effects of chemistry, tempering temperature and sub-microstructure. Additionally, non-homogeneity of the metallurgical structure resulting from poorly controlled heat treatment, impurities and non-metallic inclusions can increase HE susceptibility of steel in ways that are measurable but unpredictable. Below 1200 MPa, non-conforming quality is often the root cause of real-life failures. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  4. Effect of strength training with blood flow restriction on muscle power and submaximal strength in eumenorrheic women.

    PubMed

    Gil, Ana L S; Neto, Gabriel R; Sousa, Maria S C; Dias, Ingrid; Vianna, Jeferson; Nunes, Rodolfo A M; Novaes, Jefferson S

    2017-03-01

    Blood flow restriction (BFR) training stimulates muscle size and strength by increasing muscle activation, accumulation of metabolites and muscle swelling. This method has been used in different populations, but no studies have evaluated the effects of training on muscle power and submaximal strength (SS) in accounted for the menstrual cycle. The aim of this study was to analyse the effect of strength training (ST) with BFR on the muscle power and SS of upper and lower limbs in eumenorrheic women. Forty untrained women (18-40 years) were divided randomly and proportionally into four groups: (i) high-intensity ST at 80% of 1RM (HI), (ii) low-intensity ST at 20% of 1RM combined with partial blood flow restriction (LI + BFR), (iii) low-intensity ST at 20% of 1RM (LI) and d) control group (CG). Each training group performed eight training sessions. Tests with a medicine ball (MB), horizontal jump (HJ), vertical jump (VJ), biceps curls (BC) and knee extension (KE) were performed during the 1st day follicular phase (FP), 14th day (ovulatory phase) and 26-28th days (luteal phase) of the menstrual cycle. There was no significant difference among groups in terms of the MB, HJ, VJ or BC results at any time point (P>0·05). SS in the KE exercise was significantly greater in the LI + BFR group compared to the CG group (P = 0·014) during the LP. Therefore, ST with BFR does not appear to improve the power of upper and lower limbs and may be an alternative to improve the SS of lower limbs of eumenorrheic women. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  5. Effects of bioDensity Training and Power Plate Whole-Body Vibration on Strength, Balance, and Functional Independence in Older Adults.

    PubMed

    Smith, Derek T; Judge, Stacey; Malone, Ashley; Moynes, Rebecca C; Conviser, Jason; Skinner, James S

    2016-01-01

    Reduced strength, balance, and functional independence diminish quality of life and increase health care costs. Sixty adults (82.2 ± 4.9 years) were randomized to a control or three 12-week intervention groups: bioDensity (bD); Power Plate (PP) whole-body vibration (WBV); or bD+PP. bD involved one weekly 5-s maximal contraction of four muscle groups. PP involved two 5-min WBV sessions. Primary outcomes were strength, balance, and Functional Independence Measure (FIM). No groups differed initially. Strength significantly increased 22-51% for three muscle groups in bD and bD+PP (P < .001), with no changes in control and PP. Balance significantly improved in PP and bD+PP but not in control or bD. bD, PP, and bD+PP differentially improved FIM self-care and mobility. Strength improvements from weekly 5-min sessions of bD may impart health/clinical benefits. Balance and leg strength improvements suggest WBV beneficially impacts fall risk and incidence. Improved FIM scores are encouraging and justify larger controlled trials on bD and bD+PP efficacy.

  6. A NEW CLINICAL MUSCLE FUNCTION TEST FOR ASSESSMENT OF HIP EXTERNAL ROTATION STRENGTH: AUGUSTSSON STRENGTH TEST.

    PubMed

    Augustsson, Jesper

    2016-08-01

    Dynamic clinical tests of hip strength applicable on patients, non-athletes and athletes alike, are lacking. The aim of this study was therefore to develop and evaluate the reliability of a dynamic muscle function test of hip external rotation strength, using a novel device. A second aim was to determine if gender differences exist in absolute and relative hip strength using the new test. Fifty-three healthy sport science students (34 women and 19 men) were tested for hip external rotation strength using a device that consisted of a strap connected in series with an elastic resistance band loop, and a measuring tape connected in parallel with the elastic resistance band. The test was carried out with the subject side lying, positioned in 45 ° of hip flexion and the knees flexed to 90 ° with the device firmly fastened proximally across the knees. The subject then exerted maximal concentric hip external rotation force against the device thereby extending the elastic resistance band. The displacement achieved by the subject was documented by the tape measure and the corresponding force production was calculated. Both right and left hip strength was measured. Fifteen of the subjects were tested on repeated occasions to evaluate test-retest reliability. No significant test-retest differences were observed. Intra-class correlation coefficients ranged 0.93-0.94 and coefficients of variation 2.76-4.60%. In absolute values, men were significantly stronger in hip external rotation than women (right side 13.2 vs 11.0 kg, p = 0.001, left side 13.2 vs 11.5 kg, p = 0.002). There were no significant differences in hip external rotation strength normalized for body weight (BW) between men and women (right side 0.17 kg/BW vs 0.17 kg/BW, p = 0.675, left side 0.17 kg/BW vs 0.18 kg/BW, p = 0.156). The new muscle function test showed high reliability and thus could be useful for measuring dynamic hip external rotation strength in patients, non-athletes and athletes

  7. Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy.

    PubMed

    Tsitkanou, S; Spengos, K; Stasinaki, A-N; Zaras, N; Bogdanis, G; Papadimas, G; Terzis, G

    2017-11-01

    Aim of the study was to investigate whether high-intensity interval cycling performed immediately after resistance training would inhibit muscle strength increase and hypertrophy expected from resistance training per se. Twenty-two young men were assigned into either resistance training (RE; N = 11) or resistance training plus high-intensity interval cycling (REC; N = 11). Lower body muscle strength and rate of force development (RFD), quadriceps cross-sectional area (CSA) and vastus lateralis muscle architecture, muscle fiber type composition and capillarization, and estimated aerobic capacity were evaluated before and after 8 weeks of training (2 times per week). Muscle strength and quadriceps CSA were significantly and similarly increased after both interventions. Fiber CSA increased significantly and similarly after both RE (type I: 13.6 ± 3.7%, type IIA: 17.6 ± 4.4%, type IIX: 23.2 ± 5.7%, P < 0.05) and REC (type I: 10.0 ± 2.7%, type IIA: 14.8 ± 4.3% type IIX: 20.8 ± 6.0%, P < 0.05). In contrast, RFD decreased and fascicle angle increased (P < 0.05) only after REC. Capillary density and estimated aerobic capacity increased (P < 0.05) only after REC. These results suggest that high-intensity interval cycling performed after heavy-resistance exercise may not inhibit resistance exercise-induced muscle strength/hypertrophy after 2 months of training, while it prompts aerobic capacity and muscle capillarization. The addition of high-intensity cycling after heavy-resistance exercise may decrease RFD partly due to muscle architectural changes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. The Effects of Extravehicular Activity (EVA) Glove Pressure on Hand Strength

    NASA Technical Reports Server (NTRS)

    Mesloh, Miranda; England, Scott; Benson, Elizabeth; Thompson, Shelby; Rajulu, Sudhakar

    2010-01-01

    The purpose of this study was to characterize hand strength, while wearing a Phase VI Extravehicular Activity (EVA) glove in an Extravehicular Mobility Unit (EMU) suit. Three types of data were collected: hand grip, lateral pinch, and pulp-2 pinch, wider three different conditions: bare-handed, gloved with no Thermal Micrometeoroid Garment (TMG), and glove with TMG. In addition, during the gloved conditions, subjects were tested when unpressurized and pressurized (43 psi). As a percentage of bare-hand strength, the TMG condition showed reduction in grip strength to 55% unpressurized and 46% pressurized. Without the TMG, grip strength increased to 66% unpressurized and 58% pressurized of bare-hand strength. For lateral pinch strength, the reduction in strength was the same for both pressure conditions and with and without the TMG, about 8.5% of bare-hand Pulp-2 pinch strength with no TMG showed an increase to 122% unpressurized and 115% pressurized of bare-hand strength. While wearing the TMG, pulp-2 pinch strength was 115% of bare-hand strength for both pressure conditions.

  9. Evaluation of Bone Strength During Aflatoxicosis and Ochratoxicosis †

    PubMed Central

    Huff, William E.; Doerr, John A.; Hamilton, Pat B.; Hamann, Donald D.; Peterson, Robert E.; Ciegler, Alex

    1980-01-01

    Young chickens were fed graded levels of aflatoxin (0, 0.625, 1.25, 2.5, 5.0, and 10.0 μg/g of diet) or ochratoxin (0, 0.5, 1.0, 2.0, 4.0, and 8.0 μg/g of diet), and the breaking strength, displacement before failure, and diameter of their tibias were determined. Breaking strength was decreased at growth inhibitory levels of aflatoxin (2.5 μg/g) and ochratoxin (2 μg/g), whereas a reduction in diameter required higher levels (5.0 and 4.0 μg/g, respectively). Bones from birds with ochratoxicosis selected to have diameters equal to control bones had lower breaking strength. In an attempt to negate mathematically the effect of decreased diameter and bias in any selection process, stress at time of failure of the bones was calculated and found to be decreased by feeding aflatoxin but not ochratoxin. Total displacement of bones before breaking was increased significantly (P < 0.05) by both toxins at the highest levels administered, but this increase was primarily the result of an increase in displacement from the start of failure to complete failure. Increased displacement associated with both toxicoses was equal in bones selected to be of equal diameter or in bones from the same treatment but of different diameters. However, calculation of modulus of elasticity which is corrected for diameter revealed aflatoxin had no effect whereas ochratoxin tripled the effect. These data indicate that the material properties of bones can be altered during mycotoxicoses and suggest yet another way in which mycotoxins are detrimental to animal health. PMID:7406489

  10. Effect of Pitching Consecutive Days in Youth Fast-Pitch Softball Tournaments on Objective Shoulder Strength and Subjective Shoulder Symptoms.

    PubMed

    Skillington, S Andrew; Brophy, Robert H; Wright, Rick W; Smith, Matthew V

    2017-05-01

    The windmill pitching motion has been associated with risk for shoulder injury. Because there are no pitching limits on youth fast-pitch softball pitchers, these athletes often pitch multiple games across consecutive days. Strength changes, fatigue levels, and shoulder pain that develop among female fast-pitch pitchers over the course of consecutive days of pitching have not been investigated. Over the course of 2- and 3-day fast-pitch softball tournaments, pitchers will develop progressive objective weakness and increased subjective shoulder fatigue and pain without complete recovery between days. Cross-sectional study; Level of evidence, 3. Fourteen female fast-pitch softball pitchers between the ages of 14 and 18 years were evaluated for strength and fatigue changes across 2- and 3-day tournaments. At the beginning and end of each day of tournament play, pitchers were asked to quantify shoulder fatigue and shoulder pain levels of their dominant throwing arm using a 10-point visual analog scale (VAS). Shoulder abduction, flexion, external rotation, internal rotation, elbow flexion, and elbow extension strength measurements were gathered using a handheld dynamometer. Over the course of an average single day of tournament participation, pitchers developed significant increases in VAS scores for shoulder fatigue (median, 2.0; 95% CI, 1.3-3.0) and pain (median, 1.3; 95% CI, 0.5-2.3) and significant strength loss in all tested motions. Pitchers also developed significant increases in VAS shoulder fatigue (median, 3.5; 95% CI, 1.5-5.5), VAS shoulder pain (median, 2.5; 95% CI, 1.0-4.5), and strength loss in all tested motions over the entire tournament. Shoulder pain, fatigue, and strength do not fully recover between days. The accumulation of subjective shoulder pain and fatigue over the course of tournament play were closely correlated. Among youth female fast-pitch softball pitchers, there is a progressive increase in shoulder fatigue, pain, and weakness over the

  11. Effect of dimethyl sulfoxide wet-bonding technique on hybrid layer quality and dentin bond strength.

    PubMed

    Stape, Thiago Henrique Scarabello; Tjäderhane, Leo; Marques, Marcelo Rocha; Aguiar, Flávio Henrique Baggio; Martins, Luís Roberto Marcondes

    2015-06-01

    This study examined the effect of a dimethyl sulfoxide (DMSO) wet bonding technique on the resin infiltration depths at the bonded interface and dentin bond strength of different adhesive systems. Flat dentin surfaces of 48 human third molars were treated with 50% DMSO (experimental groups) or with distilled water (controls) before bonding using an etch-and-rinse (SBMP: Scotchbond Multi-Purpose, 3M ESPE) or a self-etch (Clearfil: Clearfil SE Bond, Kuraray) adhesive system. The restored crown segments (n=12/group) were stored in distilled water (24h) and sectioned for interfacial analysis of exposed collagen using Masson's Trichrome staining and for microtensile bond strength testing. The extent of exposed collagen was measured using light microscopy and a histometric analysis software. Failure modes were examined by SEM. Data was analyzed by two-way ANOVA followed by Tukey Test (α=0.05). The interaction of bonding protocol and adhesive system had significant effects on the extension of exposed collagen matrix (p<0.0001) and bond strength (p=0.0091). DMSO-wet bonding significantly reduced the extent of exposed collagen matrix for SBMP and Clearfil (p<0.05). Significant increase in dentin bond strength was observed on DMSO-treated specimens bonded with SBMP (p<0.05), while no differences were observed for Clearfil (p>0.05). DMSO-wet bonding was effective to improve the quality of resin-dentin bonds of the tested etch-and-rinse adhesives by reducing the extent of exposed collagen matrix at the base of the resin-dentin biopolymer. The improved penetration of adhesive monomers is reflected as an increase in the immediate bond strength when the DMSO-wet bonding technique is used with a water-based etch-and-rinse adhesive. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Relationship between strength qualities and short track speed skating performance in young athletes.

    PubMed

    Felser, S; Behrens, M; Fischer, S; Heise, S; Bäumler, M; Salomon, R; Bruhn, S

    2016-02-01

    This study analyzed the relationships between isometric as well as concentric maximum voluntary contraction (MVC) strength of the leg muscles and the times as well as speeds over different distances in 17 young short track speed skaters. Isometric as well as concentric single-joint MVC strength and multi-joint MVC strength in a stable (without skates) and unstable (with skates) condition were tested. Furthermore, time during maximum skating performances on ice was measured. Results indicate that maximum torques during eversion and dorsal flexion have a significant influence on skating speed. Concentric MVC strength of the knee extensors was higher correlated with times as well as speeds over the different distances than isometric MVC strength. Multi-joint MVC testing revealed that the force loss between measurements without and with skates amounts to 25%, while biceps femoris and soleus showed decreased muscle activity and peroneus longus, tibialis anterior, as well as rectus femoris exhibited increased muscle activity. The results of this study depict evidence that the skating times and speeds are primarily influenced by concentric MVC strength of the leg extensors. To be able to transfer the strength onto ice in an optimal way, it is necessary to stabilize the knee and ankle joints. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Strength and stiffness reduction factors for infilled frames with openings

    NASA Astrophysics Data System (ADS)

    Decanini, Luis D.; Liberatore, Laura; Mollaioli, Fabrizio

    2014-09-01

    Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the system. On the other hand, irregular arrangements of the masonry panels may lead to the concentration of damage in some regions, with negative effects; for example soft story mechanisms and shear failures in short columns. Therefore, the presence of infill walls should not be neglected, especially in regions of moderate and high seismicity. To this aim, simple models are available for solid infills walls, such as the diagonal no-tension strut model, while infilled frames with openings have not been adequately investigated. In this study, the effect of openings on the strength and stiffness of infilled frames is investigated by means of about 150 experimental and numerical tests. The main parameters involved are identified and a simple model to take into account the openings in the infills is developed and compared with other models proposed by different researchers. The model, which is based on the use of strength and stiffness reduction factors, takes into account the opening dimensions and presence of reinforcing elements around the opening. An example of an application of the proposed reduction factors is also presented.

  14. [Comparative study on the strength of different mechanisms of operation of multidirectionally angle-stable distal radius plates].

    PubMed

    Rausch, S; Hoffmeier, K; Gueorguiev, B G; Klos, K; Gras, F; Hofmann, G O; Mückley, T

    2011-12-01

    Polyaxial angle-stable plating is thought to be particularly beneficial in the management of complex intra-articular fractures of the distal radius. The present study was performed to investigate the strength of polyaxial locking interfaces of distal radius plates. We tested the polyaxial interfaces of 3 different distal radius plates (2.4 mm Variable Angle LCP Two-Column Volar Distal Radius Plate, Synthes, Palmar Classic, Königsee Implantate and VariAx Plate Stryker). The strength of 0° and 10° screw locking angle was obtained during static loading. The strength of Palmar Classic with a 0° locking angle is significantly the best of all tested systems. With a 10° locking angle there is no significant difference between Palmar Classic, Two column Plate and VariAx Plate. The strength of polyaxial interfaces differs between the tested systems. A reduction of ultimate strength is due to increases of screw locking angle. The design of polyaxial locking interfaces should be investigated in human bone models. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Continuous background light significantly increases flashing-light enhancement of photosynthesis and growth of microalgae.

    PubMed

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2015-01-01

    Under specific conditions, flashing light enhances the photosynthesis rate in comparison to continuous illumination. Here we show that a combination of flashing light and continuous background light with the same integrated photon dose as continuous or flashing light alone can be used to significantly enhance photosynthesis and increase microalgae growth. To test this hypothesis, the green microalga Dunaliella salina was exposed to three different light regimes: continuous light, flashing light, and concomitant application of both. Algal growth was compared under three different integrated light quantities; low, intermediate, and moderately high. Under the combined light regime, there was a substantial increase in all algal growth parameters, with an enhanced photosynthesis rate, within 3days. Our strategy demonstrates a hitherto undescribed significant increase in photosynthesis and algal growth rates, which is beyond the increase by flashing light alone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Breast cancer-associated metastasis is significantly increased in a model of autoimmune arthritis

    PubMed Central

    Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku

    2009-01-01

    Introduction Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. Methods To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. Results We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor

  17. Breast-cancer-associated metastasis is significantly increased in a model of autoimmune arthritis.

    PubMed

    Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku

    2009-01-01

    Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor-alpha (TNF-alpha) may contribute

  18. Effect of pitching consecutive days in youth softball tournaments on objective shoulder strength and subjective shoulder symptoms

    PubMed Central

    Skillington, S. Andrew; Brophy, Robert H.; Wright, Rick W.; Smith, Matthew V.

    2017-01-01

    Background The windmill pitching motion has been associated with risk for shoulder injury. Since there are no pitching limits on youth fast-pitch softball pitchers, these athletes often pitch multiple games across consecutive days. Strength changes, fatigue levels, and shoulder pain that develop among female fast-pitch pitchers over the course of consecutive days of pitching have not been investigated. Hypothesis Over the course of 2 and 3-day fast-pitch softball tournaments, pitchers will develop progressive objective weakness and increased subjective shoulder fatigue and pain without complete recovery between days. Study Design Cross-Sectional Study. Methods Female fast-pitch softball pitchers between the ages of 14 and 18 who were pitching in 2 and 3-day tournaments were recruited for study participation. At the beginning and end of each day of tournament play, pitchers were asked to quantify shoulder fatigue and shoulder pain levels of their dominant throwing arm using a 10-point visual analog scale (VAS). Shoulder abduction, flexion, external rotation, internal rotation, elbow flexion, and elbow extension strength measurements were gathered using a hand-held dynamometer. Results Over the course of an average single day of tournament participation, pitchers developed significant increases in VAS shoulder fatigue (2.0, 95% CI: 1.3 to 3.0), and pain (1.3, 95% CI: 0.5 to 2.3) and significant strength loss in all tested motions. Pitchers also developed significant increases in VAS shoulder fatigue (3.5, 95% CI: 1.5 to 5.5), VAS shoulder pain (2.5, 95% CI: 1.0 to 4.5) and strength loss in all tested motions over the entire tournament. Shoulder pain, fatigue, and strength do not fully recover between days. The accumulation of subjective shoulder pain and fatigue over the course of tournament play were closely correlated. Conclusion Among youth female fast-pitch softball pitchers, there is a progressive increase in shoulder fatigue, pain, and weakness over the course

  19. Effects of combined elcatonin and alendronate treatment on the architecture and strength of bone in ovariectomized rats.

    PubMed

    Ogawa, Koko; Hori, Masayuki; Takao, Ryoko; Sakurada, Toyozo

    2005-01-01

    We examined the combined effects of elcatonin (ECT) and alendronate (ALN) on bone mass, architecture, and strength in ovariectomized (OVX) rats. Fifty female Sprague Dawley rats, aged 13 weeks, were divided into Sham, OVX, OVX+ECT, OVX+ALN, and OVX+ECT+ALN groups (n = 10). Immediately after ovariectomy, ECT was administered at a dose of 15 units (U)/kg three times a week, and ALN was administered daily at a dose of 2.0 microg/kg, subcutaneously for 12 weeks. The three-dimensional architecture of the bone in the distal femoral metaphysis was analyzed using a microfocus X-ray computed tomography system (microCT), and bone strength was measured using a material-testing machine. Trabecular bone volume (BV/TV) and number (Tb.N) were significantly greater in the OVX+ECT and OVX+ALN groups than in the OVX group. In the OVX+ECT+ALN group, BV/TV and Tb.N were significantly greater when compared with those in the OVX+ECT and OVX+ALN groups. Trabecular thickness (Tb.Th) was significantly greater in the OVX+ECT+ALN group than in the OVX+ALN group. With regard to bone strength, the compression strength in the femoral metaphysis was significantly lower in the OVX group than in the Sham group. The reduction of compression strength was slightly lower in the OVX+ECT and OVX+ALN groups. In the OVX+ECT+ALN group, the compression strength in the femoral metaphysis significantly increased when compared with the OVX and OVX+ECT groups. These results suggest that the combined treatment of ECT and ALN does not alter the individual effects of each drug and that it exerts an additive effect on trabecular architecture and bone strength in OVX rats.

  20. The Effect of Temperature on Compressive and Tensile Strengths of Commonly Used Luting Cements: An In Vitro Study

    PubMed Central

    Patil, Suneel G; Sajjan, MC Suresh; Patil, Rekha

    2015-01-01

    Background: The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. Materials and Methods: In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. Results: All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. Conclusion: An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures. PMID:25859100

  1. The effect of temperature on compressive and tensile strengths of commonly used luting cements: an in vitro study.

    PubMed

    Patil, Suneel G; Sajjan, Mc Suresh; Patil, Rekha

    2015-02-01

    The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures.

  2. Rehabilitation of Swallowing and Cough Functions Following Stroke: An Expiratory Muscle Strength Training Trial.

    PubMed

    Hegland, Karen Wheeler; Davenport, Paul W; Brandimore, Alexandra E; Singletary, Floris F; Troche, Michelle S

    2016-08-01

    To determine the effect of expiratory muscle strength training (EMST) on both cough and swallow function in stroke patients. Prospective pre-post intervention trial with 1 participant group. Two outpatient rehabilitation clinics. Adults (N=14) with a history of ischemic stroke in the preceding 3 to 24 months. EMST. The training program was completed at home and consisted of 25 repetitions per day, 5 days per week, for 5 weeks. Baseline and posttraining measures were maximum expiratory pressure, voluntary cough airflows, reflex cough challenge to 200μmol/L of capsaicin, sensory perception of urge to cough, and fluoroscopic swallow evaluation. Repeated measures and 1-way analyses of variance were used to determine significant differences pre- and posttraining. Maximum expiratory pressure increased in all participants by an average of 30cmH2O posttraining. At baseline, all participants demonstrated a blunted reflex cough response to 200μmol/L of capsaicin. After 5 weeks of training, measures of urge to cough and cough effectiveness increased for reflex cough; however, voluntary cough effectiveness did not increase. Swallow function was minimally impaired at baseline, and there were no significant changes in the measures of swallow function posttraining. EMST improves expiratory muscle strength, reflex cough strength, and urge to cough. Voluntary cough and swallow measures were not significantly different posttraining. It may be that stroke patients benefit from the training for upregulation of reflex cough and thus improved airway protection. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Short- and Long-Term Effects of Concurrent Strength and HIIT Training in Octogenarians with COPD.

    PubMed

    Guadalupe-Grau, Amelia; Aznar-Laín, Susana; Mañas, Asier; Castellanos, Juan; Alcázar, Julián; Ara, Ignacio; Mata, Esmeralda; Daimiel, Rosa; García-García, Francisco José

    2017-01-01

    To investigate the short- and long-term effects of concurrent strength and high-intensity interval training (HIIT) on octogenarian COPD patients, nine males (age = 84.2 ± 2.8 years, BMI = 29.3 ± 2.3) with low to severe COPD levels (2.1 ± 1.5 BODE index) underwent a supervised 9-week strength and HIIT exercise program. Training had a significant (p < .05) impact on senior fitness test scores (23-45%), 30-m walking speed (from 1.29 ± 0.29-1.62 ± 0.33 m/s), leg and chest press 1RM (38% and 45% respectively), maximal isometric strength (30-35%), and 6-min walking test (from 286.1 ± 107.2-396.2 ± 106.5 m), and tended to increase predicted forced vital capacity by 14% (p = .07). One year after the intervention all training-induced gains returned to their preintervention values except for the chest press 1RM (p <.05). Short-term concurrent strength and HIIT training increases physical fitness in the oldest-old COPD patients, and has potential long-term benefits.

  4. Effect of endodontic chelating solutions on the bond strength of endodontic sealers.

    PubMed

    Tuncel, Behram; Nagas, Emre; Cehreli, Zafer; Uyanik, Ozgur; Vallittu, Pekka; Lassila, Lippo

    2015-01-01

    The purpose of this in vitro study was to evaluate the effect of various chelating solutions on the radicular push-out bond strength of calcium silicate-based and resin-based root canal sealers. Root canals of freshly-extracted single-rooted teeth (n = 80) were instrumented by using rotary instruments. The specimens were randomly divided into 4 groups according to the chelating solutions being tested: (1) 17% ethylenediaminetetraacetic acid (EDTA); (2) 9% etidronic acid; (3) 1% peracetic acid (PAA); and (4) distilled water (control). In each group, the roots were further assigned into 2 subgroups according to the sealer used: (1) an epoxy resin-based sealer (AH Plus) and (2) a calcium silicate-based sealer (iRoot SP). Four 1 mm-thick sections were obtained from the coronal aspect of each root (n = 40 slices/group). Push-out bond strength test was performed at a crosshead speed of 1 mm/min., and the bond strength data were analyzed statistically with two-way analysis of variance (ANOVA) with Bonferroni's post hoc test (p < 0.05). Failure modes were assessed quantitatively under a stereomicroscope. Irrespective of the irrigation regimens, iRoot SP exhibited significantly higher push-out bond strength values than AH Plus (p < 0.05). For both the sealers, the use of chelating solutions increased the bond strength, but to levels that were not significantly greater than their respective controls (p > 0.05). iRoot SP showed higher resistance to dislocation than AH Plus. Final irrigation with 17% EDTA, 9% Etidronic acid, and 1% PAA did not improve the bond strength of AH Plus and iRoot SP to radicular dentin.

  5. Shear strength of R/C beams wrapped with CFRP fabric

    DOT National Transportation Integrated Search

    2002-08-01

    The emergence of high strength epoxies has enhanced the feasibility of increasing the shear strength of concrete beams by wrapping with carbon fiber reinforced polymer (CFRP) fabric. The objective of this investigation is to evaluate the increase in ...

  6. Strength testing and training of rowers: a review.

    PubMed

    Lawton, Trent W; Cronin, John B; McGuigan, Michael R

    2011-05-01

    In the quest to maximize average propulsive stroke impulses over 2000-m racing, testing and training of various strength parameters have been incorporated into the physical conditioning plans of rowers. Thus, the purpose of this review was 2-fold: to identify strength tests that were reliable and valid correlates (predictors) of rowing performance; and, to establish the benefits gained when strength training was integrated into the physical preparation plans of rowers. The reliability of maximal strength and power tests involving leg extension (e.g. leg pressing) and arm pulling (e.g. prone bench pull) was high (intra-class correlations 0.82-0.99), revealing that elite rowers were significantly stronger than their less competitive peers. The greater strength of elite rowers was in part attributed to the correlation between strength and greater lean body mass (r = 0.57-0.63). Dynamic lower body strength tests that determined the maximal external load for a one-repetition maximum (1RM) leg press (kg), isokinetic leg extension peak force (N) or leg press peak power (W) proved to be moderately to strongly associated with 2000-m ergometer times (r = -0.54 to -0.68; p < 0.05). Repetition tests that assess muscular or strength endurance by quantifying the number of repetitions accrued at a fixed percentage of the strength maximum (e.g. 50-70% 1RM leg press) or set absolute load (e.g. 40 kg prone bench pulls) were less reliable and more time consuming when compared with briefer maximal strength tests. Only leg press repetition tests were correlated with 2000-m ergometer times (e.g. r = -0.67; p < 0.05). However, these tests differentiate training experience and muscle morphology, in that those individuals with greater training experience and/or proportions of slow twitch fibres performed more repetitions. Muscle balance ratios derived from strength data (e.g. hamstring-quadriceps ratio <45% or knee extensor-elbow flexor ratio around 4.2 ± 0.22 to

  7. Do patients with diabetic neuropathy use a higher proportion of their maximum strength when walking?

    PubMed

    Brown, Steven J; Handsaker, Joseph C; Bowling, Frank L; Maganaris, Costantinos N; Boulton, Andrew J M; Reeves, Neil D

    2014-11-28

    Diabetic patients have an altered gait strategy during walking and are known to be at high risk of falling, especially when diabetic peripheral neuropathy is present. This study investigated alterations to lower limb joint torques during walking and related these torques to maximum strength in an attempt to elucidate why diabetic patients are more likely to fall. 20 diabetic patients with moderate/severe peripheral neuropathy (DPN), 33 diabetic patients without peripheral neuropathy (DM), and 27 non-diabetic controls (Ctrl) underwent gait analysis using a motion analysis system and force plates to measure kinetic parameters. Lower limb peak joint torques and joint work done (energy expenditure) were calculated during walking. The ratio of peak joint torques and individual maximum joint strengths (measured on a dynamometer) was then calculated for 59 of the 80 participants to yield the ‘operating strength’ for those participants. During walking DM and DPN patients showed significantly reduced peak torques at the ankle and knee. Maximum joint strengths at the knee were significantly less in both DM and DPN groups than Ctrls, and for the DPN group at the ankle. Operating strengths were significantly higher at the ankle in the DPN group compared to the Ctrls. These findings show that diabetic patients walk with reduced lower limb joint torques; however due to a decrement in their maximum ability at the ankle and knee, their operating strengths are higher. This allows less reserve strength if responding to a perturbation in balance, potentially increasing their risk of falling.

  8. Biomechanics and Strength of Manual Wheelchair Users

    PubMed Central

    Ambrosio, Fabrisia; Boninger, Michael L; Souza, Aaron L; Fitzgerald, Shirley G; Koontz, Alicia M; Cooper, Rory A

    2005-01-01

    Background/Objective: Previous investigations have identified muscular imbalance in the shoulder as a source of pain and injury in manual wheelchair users. Our aim was to determine whether a correlation exists between strength and pushrim biomechanical variables including: tangential (motive) force (Ft), radial force (Fr), axial force (Fz), total (resultant) force (FR), fraction of effective force (FEF), and cadence. Methods: Peak isokinetic shoulder strength (flexion [FLX], extension [EXT], abduction [ABD], adduction [ADD], internal rotation [IR], and external rotation [ER]) was tested in 22 manual wheelchair users with a BioDex system for 5 repetitions at 60°/s. Subjects then propelled their own manual wheelchair at 2 speeds, 0.9 m/s (2 mph) and 1.8 m/s (4 mph), for 20 seconds, during which kinematic (OPTOTRAK) and kinetic (SMARTWHEEL) data were collected. Peak isokinetic forces in the cardinal planes were correlated with pushrim biomechanical variables. Results: All peak torque strength variables correlated significantly (P ≤ 0.05) with Ft, Fr, and FR, but were not significantly correlated with Fz, FEF, or cadence. Finally, there were no relationships found between muscle strength ratios (for example, FLX/EXT) and Ft, Fr, FR, Fz, or FEF. Conclusion: There was a correlation between strength and force imparted to the pushrim among wheelchair users; however, there was no correlation found in wheelchair propulsion or muscle imbalance. Clinicians should be aware of this, and approach strength training and training in wheelchair propulsion techniques separately. PMID:16869087

  9. Effect of curing and silanizing on composite repair bond strength using an improved micro-tensile test method

    PubMed Central

    Eliasson, Sigfus Thor; Dahl, Jon E.

    2017-01-01

    Abstract Objectives: To evaluate the micro-tensile repair bond strength between aged and new composite, using silane and adhesives that were cured or left uncured when new composite was placed. Methods: Eighty Filtek Supreme XLT composite blocks and four control blocks were stored in water for two weeks and thermo-cycled. Sandpaper ground, etched and rinsed specimens were divided into two experimental groups: A, no further treatment and B, the surface was coated with bis-silane. Each group was divided into subgroups: (1) Adper Scotchbond Multi-Purpose, (2) Adper Scotchbond Multi-Purpose adhesive, (3) Adper Scotchbond Universal, (4) Clearfil SE Bond and (5) One Step Plus. For each adhesive group, the adhesive was (a) cured according to manufacturer’s instructions or (b) not cured before repair. The substrate blocks were repaired with Filtek Supreme XLT. After aging, they were serially sectioned, producing 1.1 × 1.1 mm square test rods. The rods were prepared for tensile testing and tensile strength calculated at fracture. Type of fracture was examined under microscope. Results: Leaving the adhesive uncured prior to composite repair placement increased the mean tensile values statistically significant for all adhesives tested, with or without silane pretreatment. Silane surface treatment improved significantly (p < 0.001) tensile strength values for all adhesives, both for the cured and uncured groups. The mean strength of the control composite was higher than the strongest repair strength (p < 0.001). Conclusions: Application of freshly made silane and a thin bonding layer, rendered higher tensile bond strength. Not curing the adhesive before composite placement increased the tensile bond strength. PMID:28642928

  10. Estimates of the effective compressive strength

    NASA Astrophysics Data System (ADS)

    Goldstein, R. V.; Osipenko, N. M.

    2017-07-01

    One problem encountered when determining the effective mechanical properties of large-scale objects, which requires calculating their strength in processes of mechanical interaction with other objects, is related to the possible variability in their local properties including those due to the action of external physical factors. Such problems comprise the determination of the effective strength of bodies one of whose dimensions (thickness) is significantly less than the others and whose properties and/or composition can vary with the thickness. A method for estimating the effective strength of such bodies is proposed and illustrated with example of ice cover strength under longitudinal compression with regard to a partial loss of the ice bearing capacity in deformation. The role of failure localization processes is shown. It is demonstrated that the proposed approach can be used in other problems of fracture mechanics.

  11. Shank Muscle Strength Training Changes Foot Behaviour during a Sudden Ankle Supination

    PubMed Central

    Hagen, Marco; Lescher, Stephanie; Gerhardt, Andreas; Lahner, Matthias; Felber, Stephan; Hennig, Ewald M.

    2015-01-01

    Background The peroneal muscles are the most effective lateral stabilisers whose tension braces the ankle joint complex against excessive supination. The purpose of this study was to identify the morphological and biomechanical effects of two machine-based shank muscle training methods. Methods Twenty-two healthy male recreationally active sports students performed ten weeks of single-set high resistance strength training with 3 training sessions per week. The subjects conducted subtalar pronator/supinator muscle training (ST) with the right leg by using a custom-made apparatus; the left foot muscles were exercised with machine-based talocrural plantar and dorsiflexor training (TT). Muscle strength (MVIC), muscle volume and foot biomechanics (rearfoot motion, ground reaction forces, muscle reaction times) during a sudden ankle supination were recorded before and after the intervention. Results Compared to TT, ST resulted in significantly higher pronator (14% vs. 8%, P<0.01) and supinator MVIC (25% vs. 12%, P<0.01). During sudden foot inversions, both ST and TT resulted in reduced supination velocity (-12%; P<0.01). The muscle reaction onset time was faster after the training in peroneus longus (PL) (P<0.01). Muscle volume of PL (P<0.01) and TA (P<0.01) increased significantly after both ST and TT. Conclusion After both ST and TT, the ankle joint complex is mechanically more stabilised against sudden supinations due to the muscle volume increase of PL and TA. As the reduced supination velocities indicate, the strength training effects are already present during free-fall. According to a sudden ankle supination in standing position, both machine-based dorsiflexor and pronator strength training is recommended for enhancing the mechanical stability of the ankle. PMID:26110847

  12. Transfer of strength and power training to sports performance.

    PubMed

    Young, Warren B

    2006-06-01

    The purposes of this review are to identify the factors that contribute to the transference of strength and power training to sports performance and to provide resistance-training guidelines. Using sprinting performance as an example, exercises involving bilateral contractions of the leg muscles resulting in vertical movement, such as squats and jump squats, have minimal transfer to performance. However, plyometric training, including unilateral exercises and horizontal movement of the whole body, elicits significant increases in sprint acceleration performance, thus highlighting the importance of movement pattern and contraction velocity specificity. Relatively large gains in power output in nonspecific movements (intramuscular coordination) can be accompanied by small changes in sprint performance. Research on neural adaptations to resistance training indicates that intermuscular coordination is an important component in achieving transfer to sports skills. Although the specificity of resistance training is important, general strength training is potentially useful for the purposes of increasing body mass, decreasing the risk of soft-tissue injuries, and developing core stability. Hypertrophy and general power exercises can enhance sports performance, but optimal transfer from training also requires a specific exercise program.

  13. Performance and Endocrine Responses to Differing Ratios of Concurrent Strength and Endurance Training.

    PubMed

    Jones, Thomas W; Howatson, Glyn; Russell, Mark; French, Duncan N

    2016-03-01

    The present study examined functional strength and endocrine responses to varying ratios of strength and endurance training in a concurrent training regimen. Thirty resistance trained men completed 6 weeks of 3 d·wk of (a) strength training (ST), (b) concurrent strength and endurance training ratio 3:1 (CT3), (c) concurrent strength and endurance training ratio 1:1 (CT1), or (d) no training (CON). Strength training was conducted using whole-body multijoint exercises, whereas endurance training consisted of treadmill running. Assessments of maximal strength, lower-body power, and endocrine factors were conducted pretraining and after 3 and 6 weeks. After the intervention, ST and CT3 elicited similar increases in lower-body strength; furthermore, ST resulted in greater increases than CT1 and CON (all p ≤ 0.05). All training conditions resulted in similar increases in upper-body strength after training. The ST group observed greater increases in lower-body power than all other conditions (all p ≤ 0.05). After the final training session, CT1 elicited greater increases in cortisol than ST (p = 0.008). When implemented as part of a concurrent training regimen, higher volumes of endurance training result in the inhibition of lower-body strength, whereas low volumes do not. Lower-body power was attenuated by high and low frequencies of endurance training. Higher frequencies of endurance training resulted in increased cortisol responses to training. These data suggest that if strength development is the primary focus of a training intervention, frequency of endurance training should remain low.

  14. Effects of 8-week Pilates exercise program on menopausal symptoms and lumbar strength and flexibility in postmenopausal women

    PubMed Central

    Lee, Haelim; Caguicla, Joy Matthew Cuasay; Park, Sangseo; Kwak, Dong Jick; Won, Deuk-Yeon; Park, Yunjin; Kim, Jeeyoun; Kim, Myungki

    2016-01-01

    The aim of this study was to investigate the effects of an 8-week Pilates exercise program on menopausal symptoms and lumbar strength and flexibility in postmenopausal women. In total, 74 postmenopausal women were recruited and randomly allocated to a Pilates exercise group (n=45) and a control group (n=29). Menopausal symptoms were measured through a questionnaire, while lumbar strength was measured through a lumbar extension machine, and lumbar flexibility was measured through sit-and-reach and trunk lift tests performed before and after the Pilates exercise program, respectively. The Pilates exercises consisted of 7–10 min for warm-up, 35–40 min for the main program modified from Pilates Academy International, and 5–7 min for the cool-down, and were performed 3 times a week for 8 weeks. The results showed a significant decrease in menopausal symptoms except urogenital symptoms. Also, the results presented a significant increase in lumbar strength and flexibility after 8 weeks of the Pilates exercise program. We concluded that an 8-week Pilates exercise program is effective in decreasing menopausal symptoms and increasing lumbar strength and flexibility. PMID:27419122

  15. Effects of 8-week Pilates exercise program on menopausal symptoms and lumbar strength and flexibility in postmenopausal women.

    PubMed

    Lee, Haelim; Caguicla, Joy Matthew Cuasay; Park, Sangseo; Kwak, Dong Jick; Won, Deuk-Yeon; Park, Yunjin; Kim, Jeeyoun; Kim, Myungki

    2016-06-01

    The aim of this study was to investigate the effects of an 8-week Pilates exercise program on menopausal symptoms and lumbar strength and flexibility in postmenopausal women. In total, 74 postmenopausal women were recruited and randomly allocated to a Pilates exercise group (n=45) and a control group (n=29). Menopausal symptoms were measured through a questionnaire, while lumbar strength was measured through a lumbar extension machine, and lumbar flexibility was measured through sit-and-reach and trunk lift tests performed before and after the Pilates exercise program, respectively. The Pilates exercises consisted of 7-10 min for warm-up, 35-40 min for the main program modified from Pilates Academy International, and 5-7 min for the cool-down, and were performed 3 times a week for 8 weeks. The results showed a significant decrease in menopausal symptoms except urogenital symptoms. Also, the results presented a significant increase in lumbar strength and flexibility after 8 weeks of the Pilates exercise program. We concluded that an 8-week Pilates exercise program is effective in decreasing menopausal symptoms and increasing lumbar strength and flexibility.

  16. Developing high strength and ductility in biomedical Co-Cr cast alloys by simultaneous doping with nitrogen and carbon.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Chiba, Akihiko

    2016-02-01

    There is a strong demand for biomedical Co-Cr-based cast alloys with enhanced mechanical properties for use in dental applications. We present a design strategy for development of Co-Cr-based cast alloys with very high strength, comparable to that of wrought Co-Cr alloys, without loss of ductility. The strategy consists of simultaneous doping of nitrogen and carbon, accompanied by increasing of the Cr content to increase the nitrogen solubility. The strategy was verified by preparing Co-33Cr-9W-0.35N-(0.01-0.31)C (mass%) alloys. We determined the carbon concentration dependence of the microstructures and their mechanical properties. Metal ion release of the alloys in an aqueous solution of 0.6% sodium chloride (NaCl) and 1% lactic acid was also evaluated to ensure their corrosion resistance. As a result of the nitrogen doping, the formation of a brittle σ-phase, a chromium-rich intermetallic compound, was significantly suppressed. Adding carbon to the alloys resulted in finer-grained microstructures and carbide precipitation; accordingly, the strength increased with increasing carbon concentration. The tensile ductility, on the other hand, increased with increasing carbon concentration only up to a point, reaching a maximum at a carbon concentration of ∼0.1mass% and decreasing with further carbon doping. However, the alloy with 0.31mass% of carbon exhibited 14% elongation and also possessed very high strength (725MPa in 0.2% proof stress). The addition of carbon did not significantly degrade the corrosion resistance. The results show that our strategy realizes a novel high-strength Co-Cr-based cast alloy that can be produced for advanced dental applications using a conventional casting procedure. The present study suggested a novel alloy design concept for realizing high-strength Co-Cr-based cast alloys. The proposed strategy is beneficial from the practical point of view because it uses conventional casting approach-a simpler, more cost-effective, industrially

  17. The intensity and effects of strength training in the elderly.

    PubMed

    Mayer, Frank; Scharhag-Rosenberger, Friederike; Carlsohn, Anja; Cassel, Michael; Müller, Steffen; Scharhag, Jürgen

    2011-05-01

    The elderly need strength training more and more as they grow older to stay mobile for their everyday activities. The goal of training is to reduce the loss of muscle mass and the resulting loss of motor function. The dose-response relationship of training intensity to training effect has not yet been fully elucidated. PubMed was selectively searched for articles that appeared in the past 5 years about the effects and dose-response relationship of strength training in the elderly. Strength training in the elderly (>60 years) increases muscle strength by increasing muscle mass, and by improving the recruitment of motor units, and increasing their firing rate. Muscle mass can be increased through training at an intensity corresponding to 60% to 85% of the individual maximum voluntary strength. Improving the rate of force development requires training at a higher intensity (above 85%), in the elderly just as in younger persons. It is now recommended that healthy old people should train 3 or 4 times weekly for the best results; persons with poor performance at the outset can achieve improvement even with less frequent training. Side effects are rare. Progressive strength training in the elderly is efficient, even with higher intensities, to reduce sarcopenia, and to retain motor function.

  18. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men.

    PubMed

    Morton, Robert W; Oikawa, Sara Y; Wavell, Christopher G; Mazara, Nicole; McGlory, Chris; Quadrilatero, Joe; Baechler, Brittany L; Baker, Steven K; Phillips, Stuart M

    2016-07-01

    We reported, using a unilateral resistance training (RT) model, that training with high or low loads (mass per repetition) resulted in similar muscle hypertrophy and strength improvements in RT-naïve subjects. Here we aimed to determine whether the same was true in men with previous RT experience using a whole-body RT program and whether postexercise systemic hormone concentrations were related to changes in hypertrophy and strength. Forty-nine resistance-trained men (23 ± 1 yr, mean ± SE) performed 12 wk of whole-body RT. Subjects were randomly allocated into a higher-repetition (HR) group who lifted loads of ∼30-50% of their maximal strength (1RM) for 20-25 repetitions/set (n = 24) or a lower-repetition (LR) group (∼75-90% 1RM, 8-12 repetitions/set, n = 25), with all sets being performed to volitional failure. Skeletal muscle biopsies, strength testing, dual-energy X-ray absorptiometry scans, and acute changes in systemic hormone concentrations were examined pretraining and posttraining. In response to RT, 1RM strength increased for all exercises in both groups (P < 0.01), with only the change in bench press being significantly different between groups (HR, 9 ± 1, vs. LR, 14 ± 1 kg, P = 0.012). Fat- and bone-free (lean) body mass and type I and type II muscle fiber cross-sectional area increased following training (P < 0.01) with no significant differences between groups. No significant correlations between the acute postexercise rise in any purported anabolic hormone and the change in strength or hypertrophy were found. In congruence with our previous work, acute postexercise systemic hormonal rises are not related to or in any way indicative of RT-mediated gains in muscle mass or strength. Our data show that in resistance-trained individuals, load, when exercises are performed to volitional failure, does not dictate hypertrophy or, for the most part, strength gains. Copyright © 2016 the American Physiological Society.

  19. The Character Strengths of Special Forces Personnel: Insights for Civilian Health Care Practitioners.

    PubMed

    Gayton, Scott D; Kehoe, E James

    2016-09-01

    Civilian employees, contractors, and private community clinicians are increasingly providing health treatment to currently serving and former military personnel. This study addresses recent calls for evidence-based information to assist civilian practitioners in understanding the perspectives of their military clients. To this end, the self-reported character strengths of military personnel were elicited as an operationalized expression of their underlying personal values that shape their perspectives and conduct as soldiers. Specifically, Australian Army Special Forces operators and support personnel (N = 337) were asked to rank themselves on 24 character strengths. The three character strengths of integrity, teamworker, and good judgment were ranked significantly above random assignment. Nearly all the respondents (84%) gave a top rank to at least one of these character strengths. Differences between the operators and support personnel were modest. Results are discussed with respect to establishing an effective relationship between military clients and civilian health care practitioners. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  20. ZERODUR: deterministic approach for strength design

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter

    2012-12-01

    There is an increasing request for zero expansion glass ceramic ZERODUR substrates being capable of enduring higher operational static loads or accelerations. The integrity of structures such as optical or mechanical elements for satellites surviving rocket launches, filigree lightweight mirrors, wobbling mirrors, and reticle and wafer stages in microlithography must be guaranteed with low failure probability. Their design requires statistically relevant strength data. The traditional approach using the statistical two-parameter Weibull distribution suffered from two problems. The data sets were too small to obtain distribution parameters with sufficient accuracy and also too small to decide on the validity of the model. This holds especially for the low failure probability levels that are required for reliable applications. Extrapolation to 0.1% failure probability and below led to design strengths so low that higher load applications seemed to be not feasible. New data have been collected with numbers per set large enough to enable tests on the applicability of the three-parameter Weibull distribution. This distribution revealed to provide much better fitting of the data. Moreover it delivers a lower threshold value, which means a minimum value for breakage stress, allowing of removing statistical uncertainty by introducing a deterministic method to calculate design strength. Considerations taken from the theory of fracture mechanics as have been proven to be reliable with proof test qualifications of delicate structures made from brittle materials enable including fatigue due to stress corrosion in a straight forward way. With the formulae derived, either lifetime can be calculated from given stress or allowable stress from minimum required lifetime. The data, distributions, and design strength calculations for several practically relevant surface conditions of ZERODUR are given. The values obtained are significantly higher than those resulting from the two

  1. Influence of recreational activity and muscle strength on ulnar bending stiffness in men

    NASA Technical Reports Server (NTRS)

    Myburgh, K. H.; Charette, S.; Zhou, L.; Steele, C. R.; Arnaud, S.; Marcus, R.

    1993-01-01

    Bone bending stiffness (modulus of elasticity [E] x moment of inertia [I]), a measure of bone strength, is related to its mineral content (BMC) and geometry and may be influenced by exercise. We evaluated the relationship of habitual recreational exercise and muscle strength to ulnar EI, width, and BMC in 51 healthy men, 28-61 yr of age. BMC and width were measured by single photon absorptiometry and EI by mechanical resistance tissue analysis. Maximum biceps strength was determined dynamically (1-RM) and grip strength isometrically. Subjects were classified as sedentary (S) (N = 13), moderately (M) (N = 18), or highly active (H) (N = 20) and exercised 0.2 +/- 0.2; 2.2 +/- 1.3; and 6.8 +/- 2.3 h.wk-1 (P < 0.001). H had greater biceps (P < 0.0005) and grip strength (P < 0.05), ulnar BMC (P < 0.05), and ulnar EI (P = 0.01) than M or S, who were similar. Amount of activity correlated with grip and biceps strength (r = 0.47 and 0.49; P < 0.001), but not with bone measurements, whereas muscle strength correlated with both EI and BMC (r = 0.40-0.52, P < 0.005). EI also correlated significantly with both BMC and ulnar width (P < 0.0001). Ulnar width and biceps strength were the only independent predictors of EI (r2 = 0.67, P < 0.0001). We conclude that levels of physical activity sufficient to increase arm strength influence ulnar bending stiffness.

  2. Muscle strength in breast cancer patients receiving different treatment regimes

    PubMed Central

    Klassen, Oliver; Schmidt, Martina E.; Ulrich, Cornelia M.; Schneeweiss, Andreas; Potthoff, Karin; Steindorf, Karen

    2016-01-01

    Abstract Background Muscle dysfunction and sarcopenia have been associated with poor performance status, an increased mortality risk, and greater side effects in oncologic patients. However, little is known about how performance is affected by cancer therapy. We investigated muscle strength in breast cancer patients in different adjuvant treatment settings and also compared it with data from healthy individuals. Methods Breast cancer patients (N = 255) from two randomized controlled exercise trials, staged 0–III and aged 54.4 ± 9.4 years, were categorized into four groups according to their treatment status. In a cross‐sectional design, muscle function was assessed bilaterally by isokinetic dynamometry (0°, 60°, 180°/s) as maximal voluntary isometric contraction (MVIC) and maximal isokinetic peak torque (MIPT) in shoulder rotators and knee flexors and extensors. Additionally, muscular fatigue index (FI%) and shoulder flexibility were evaluated. Healthy women (N = 26), aged 53.3 ± 9.8 years, were tested using the same method. Analysis of covariance was used to estimate the impact of different cancer treatments on skeletal muscle function with adjustment for various clinical and socio‐demographic factors. Results Consistently, lower muscle strength was measured in shoulder and knee strength in patients after chemotherapy. On average, patients had up to 25% lower strength in lower extremities and 12–16% in upper extremities in MVIC and MIPT during cancer treatment compared with healthy women. No substantial difference between patient groups in shoulder strength, but significantly lower shoulder flexibility in patients with radical mastectomy was measured. Chemotherapy‐treated patients had consistently higher FI%. No serious adverse events were reported. Conclusions Breast cancer patients showed markedly impaired muscle strength and joint dysfunctions before and after anticancer treatment. The significant differences between patients

  3. High-impact strength acrylic denture base material processed by autoclave.

    PubMed

    Abdulwahhab, Salwan Sami

    2013-10-01

    To investigate the effect of two different cycles of autoclave processing on the transverse strength, impact strength, surface hardness and the porosity of high-impact strength acrylic denture base material. High Impact Acryl was the heat-cured acrylic denture base material included in the study. A total of 120 specimens were prepared, the specimens were grouped into: control groups in which high-impact strength acrylic resins processed by conventional water-bath processing technique (74°C for 1.5 h then boil for 30 min) and experimental groups in which high-impact strength acrylic resins processed by autoclave at 121°C, 210 kPa .The experimental groups were divided into (fast) groups for 15 min, and (slow) groups for 30 min. To study the effect of the autoclave processing (Tuttnauer 2540EA), four tests were conducted transverse strength (Instron universal testing machine), impact strength (Charpy tester), surface hardness (shore D), and porosity test. The results were analyzed to ANOVA and LSD test. In ANOVA test, there were highly significant differences between the results of the processing techniques in transverse, impact, hardness, and porosity test. The LSD test showed a significant difference between control and fast groups in transverse and hardness tests and a non-significant difference in impact test and a highly significant difference in porosity test; while, there were a highly significant differences between control and slow groups in all examined tests; finally, there were a non-significant difference between fast and slow groups in transverse and porosity tests and a highly significant difference in impact and hardness tests. In the autoclave processing technique, the slow (long) curing cycle improved the tested physical and mechanical properties as compared with the fast (short) curing cycle. The autoclave processing technique improved the tested physical and mechanical properties of High Impact Acryl. Copyright © 2013 Japan Prosthodontic Society

  4. Muscular coordination and strength training. Implications for injury rehabilitation.

    PubMed

    Rutherford, O M

    1988-03-01

    Strength training is commonly used in the rehabilitation of muscles atrophied as a result of injury and/or disuse. Studies on the effects of conventional leg extension training in healthy subjects have shown the changes to be very task-specific to the training manoeuvre itself. After conventional leg extension training for the quadriceps muscle the major improvement was in weightlifting ability with only small increases in isometric strength. The maximum dynamic force and power output during sprint cycling showed no improvement. These results suggest that the major benefit of this type of training is learning to coordinate the different muscle groups involved in the training movement rather than intrinsic increases in strength of the muscle group being trained. Other studies have shown changes in strength to be specific to the length and speed at which the muscle has been trained. The implication for rehabilitation is that strength training for isolated muscle groups may not be the most effective way of increasing functional ability. As the major changes are task-specific it may be better to incorporate the training into task-related practice. This would have the advantage of strengthening the muscle groups affected whilst increasing performance in those activities which are required in daily life.

  5. Protective claddings for high strength chromium alloys

    NASA Technical Reports Server (NTRS)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  6. Decreased Muscle Strength Relates to Self-Reported Stooping, Crouching, or Kneeling Difficulty in Older Adults

    PubMed Central

    Goldberg, Allon; Alexander, Neil B.

    2010-01-01

    Background Bending down and kneeling are fundamental tasks of daily living, yet nearly a quarter of older adults report having difficulty performing or being unable to perform these movements. Older adults with stooping, crouching, or kneeling (SCK) difficulty have demonstrated an increased fall risk. Strength (force-generating capacity) measures may be useful for determining both SCK difficulty and fall risk. Objective The purposes of this study were: (1) to examine muscle strength differences in older adults with and without SCK difficulty and (2) to examine the relative contributions of trunk and leg muscle strength to SCK difficulty. Design This was a cross-sectional observational study. Methods Community-dwelling older adults (age [X̅±SD]=75.5±6.0 years) with SCK difficulty (n=27) or without SCK difficulty (n=21) were tested for leg and trunk strength and functional mobility. Isometric strength at the trunk, hip, knee, and ankle also was normalized by body weight and height. Results Compared with older adults with no SCK difficulty, those with SCK difficulty had significant decreases in normalized trunk extensor, knee extensor, and ankle dorsiflexor and plantar-flexor strength. In 2 separate multivariate analyses, raw ankle plantar-flexor strength (odds ratio [OR]=0.97, 95% confidence interval [CI]=0.95–0.99) and normalized knee extensor strength (OR=0.61, 95% CI=0.44–0.82) were significantly associated with SCK difficulty. Stooping, crouching, and kneeling difficulty also correlated with measures of functional balance and falls. Limitations Although muscle groups that were key to rising from SCK were examined, there are other muscle groups that may contribute to safe SCK performance. Conclusions Decreased muscle strength, particularly when normalized for body size, predicts SCK difficulty. These data emphasize the importance of strength measurement at multiple levels in predicting self-reported functional impairment. PMID:19942678

  7. Muscular strength and incident hypertension in normotensive and prehypertensive men.

    PubMed

    Maslow, Andréa L; Sui, Xuemei; Colabianchi, Natalie; Hussey, Jim; Blair, Steven N

    2010-02-01

    The protective effects of cardiorespiratory fitness (CRF) on hypertension (HTN) are well known; however, the association between muscular strength and incidence of HTN has yet to be examined. This study evaluated the strength-HTN association with and without accounting for CRF. Participants were 4147 men (age = 20-82 yr) in the Aerobics Center Longitudinal Study for whom an age-specific composite muscular strength score was computed from measures of a one-repetition maximal leg and a one-repetition maximal bench press. CRF was quantified by maximal treadmill exercise test time in minutes. Cox proportional hazards regression analysis was used to estimate hazard ratios (HR) and 95% confidence intervals of incident HTN events according to exposure categories. During a mean follow-up of 19 yr, there were 503 incident HTN cases. Multivariable-adjusted (excluding CRF) HR of HTN in normotensive men comparing middle- and high-strength thirds to the lowest third were not significant at 1.17 and 0.84, respectively. Multivariable-adjusted (excluding CRF) HR of HTN in baseline prehypertensive men comparing middle- and high-strength thirds to the lowest third were significant at 0.73 and 0.72 (P = 0.01 each), respectively. The association between muscular strength and incidence of HTN in baseline prehypertensive men was no longer significant after control for CRF (P = 0.26). The study indicated that middle and high levels of muscular strength were associated with a reduced risk of HTN in prehypertensive men only. However, this relationship was no longer significant after controlling for CRF.

  8. Muscular Strength and Incident Hypertension in Normotensive and Prehypertensive Men

    PubMed Central

    Maslow, Andréa L.; Sui, Xuemei; Colabianchi, Natalie; Hussey, Jim; Blair, Steven N.

    2009-01-01

    The protective effects of cardiorespiratory fitness (CRF) on hypertension (HTN) are well known; however, the association between muscular strength and incidence of HTN has yet to be examined. Purpose This study evaluated the strength-HTN association with and without accounting for CRF. Methods Participants were 4147 men (20–82 years) in the Aerobics Center Longitudinal Study for whom an age-specific composite muscular strength score was computed from measures of a 1-repetition maximal leg and a 1-repetition maximal bench press. CRF was quantified by maximal treadmill exercise test time in minutes. Cox proportional hazards regression analysis was used to estimate hazard ratios (HRs) and 95% confidence intervals of incident HTN events according to exposure categories. Results During a mean follow-up of 19 years, there were 503 incident HTN cases. Multivariable-adjusted (excluding CRF) HRs of hypertension in normotensive men comparing middle and high strength thirds to the lowest third were not significant at 1.17 and 0.84, respectively. Multivariable-adjusted (excluding CRF) HRs of hypertension in baseline prehypertensive men comparing middle and high strength thirds to the lowest third were significant at 0.73 and 0.72 (p=.01 each), respectively. The association between muscular strength and incidence of HTN in baseline prehypertensive men was no longer significant after control for CRF (p=.26). Conclusions The study indicated that middle and high levels of muscular strength were associated with a reduced risk of HTN in prehypertensive men only. However, this relationship was no longer significant after controlling for CRF. PMID:19927030

  9. Effects of Directional Exercise on Lingual Strength

    ERIC Educational Resources Information Center

    Clark, Heather M.; O'Brien, Katy; Calleja, Aimee; Corrie, Sarah Newcomb

    2009-01-01

    Purpose: To examine the application of known muscle training principles to tongue strengthening exercises and to answer the following research questions: (a) Did lingual strength increase following 9 weeks of training? (b) Did training conducted using an exercise moving the tongue in one direction result in strength changes for tongue movements in…

  10. Enhanced Flexural Strength of Tellurium Nanowires/epoxy Composites with the Reinforcement Effect of Nanowires

    NASA Astrophysics Data System (ADS)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Aditya, D. B.; Vijaya Bhaskar, S.; Thumu, Udayabhaskararao

    2018-02-01

    Investigating the mechanical properties of polymer nanocomposite materials has been greatly increased in the last decade. In particular, flexural strength plays a major role in resisting bending and shear loads of a composite material. Here, one dimensional (1D) tellurium nanowires (TeNWs) reinforced epoxy composites have been prepared and the flexural properties of resulted TeNWs/epoxy nanocomposites are studied. The diameter and length of the TeNWs used to make TeNWs/epoxy nanocomposites are 21±2.5 nm and 697±87 nm, respectively. Plain and TeNWs/epoxy nanocomposites are characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). Furthermore, significant enhancement in the flexural strength of TeNWs/epoxy nanocomposite is observed in comparison to plain epoxy composite, i.e. flexural strength is increased by 65% with the addition of very little amount of TeNWs content (0.05 wt.%) to epoxy polymer. Structural details of plain and TeNWs/epoxy at micrometer scale were examined by scanning electron microscopy (SEM). We believe that our results provide a new type of semiconductor nanowires based high strength epoxy polymer nanocomposites.

  11. [Influence of carbodiimide-ethanol solution surface treatment on dentin microtensile bond strength].

    PubMed

    Zhang, Yi; Liu, Yu-hua; Zhou, Yong-sheng; Chung, Kwok-hung

    2015-10-18

    To evaluate the microtensile bond strength changes and patterns of fractures of the bonding interface after dentine surface treatment with carbodiimide-ethanol solution. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) dissolved in ethanol was diluted into different concentrations of 2, 1, 0.3, 0.1 and 0.01 mol/L EDC-ethanol solutions. Twenty-eight caries-free extracted human third molars were ground metallurgically to prepare flat occlusal mid-coronal dentin surfaces and etched with 35% (mass fraction) phosphoric acid gel. Then they were treated with EDC-ethanol solution for 60 s before the bonding procedure and randomly divided into five experimental groups corresponding to the tested EDC-ethanol concentrations. The ethanol treated and no pre-treated surfaces were used as controls. Single Bond 2 adhesive was applied and resin composite disk was stacked on the treated dentine surface. The teeth with resin composite disks were stored in water at room temperature for 24 h and then sectioned longitudinally to produce stick specimens for microtensile bond strength test. Fracture patterns were observed with a stereomicroscope. The dentin surfaces pre-treated with 2 mol/L [(22.17±13.31) MPa] and 1 mol/L [(45.31±17.80) MPa] EDC-ethanol solutions resulted in statistically significant lower bond strength value (P<0.05). Increasing numbers of fracture pattern at the resin-dentin interface were also found in this two groups with percentages of 81.2% and 41.3% respectively. No significant difference was observed in the groups with 0.3, 0.1, 0.01 mol/L EDC surface treatment (P>0.05). No significant difference of immediate bond strengths was found in the 0.3, 0.1, 0.01 mol/L groups compared with the control group. EDC-ethanol solution surface treatment with concentrations of 2 mol/L and 1 mol/L resulted in decreasing of the bonding strength.

  12. Factors Affecting the Attrition Strength of Alumina Products

    NASA Astrophysics Data System (ADS)

    Sang, J. V.

    The attrition strength of alumina is a matter of increasing interest. The aim of the present paper is to show how the strength of alumina is related to the precipitation parameters and to the morphology of the precursor hydrate particles.

  13. Strength training and body composition in middle-age women.

    PubMed

    Burrup, Rachelle; Tucker, Larry A; LE Cheminant, James D; Bailey, Bruce W

    2018-01-01

    Strength training is a sound method to improve body composition. However, the effect of age, diet, menopause, and physical activity on the relationship between strength training and body composition in women remains unknown. The purpose of this study was to examine the intricacies of the relationship between strength training and body composition in 257 middle-age women and to quantify the effect of these factors on the association. The study was cross-sectional. Five variables were used to index strength training participation. Body composition was assessed by dual-energy X-ray absorptiometry. Diet was assessed by 7-day weighed food records, and physical activity was measured objectively using accelerometers. There were 109 strength trainers in the sample. For each day per week of strength training, body fat was 1.3 percentage points lower (F=14.8, P<0.001) and fat-free mass was 656 g higher (F=18.9, P<0.001). Likewise, the more time women spent lifting and the more intensely they trained, the better their body composition tended to be. Differences in age, energy and protein consumption had little effect on the associations. However, adjusting for differences in physical activity, and to a lesser extent, menopause status, weakened the relationships significantly. The more days, time, and effort women devote to strength training, the lower their body fat and the higher their fat-free mass tend to be. A significant portion of the differences in body composition seems to result from lifters participating in more physical activity than non-lifters. Menopause status also contributes significantly to the relationship.

  14. Strengths of serpentinite gouges at elevated temperatures

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, D.A.; Ma, S.; Summers, R.; Byerlee, J.D.

    1997-01-01

    Serpentinite has been proposed as a cause of both low strength and aseismic creep of fault zones. To test these hypotheses, we have measured the strength of chrysotile-, lizardite-, and antigorite-rich serpentinite gouges under hydrothermal conditions, with emphasis on chrysotile, which has thus far received little attention. At 25??C, the coefficient of friction, ??, of chrysotile gouge is roughly 0.2, whereas the lizardite- and antigorite-rich gouges are at least twice as strong. The very low room temperature strength of chrysotile is a consequence of its unusually high adsorbed water content. When the adsorbed water is removed, chrysotile is as strong as pure antigorite gouge at room temperature. Heating to ???200??C causes the frictional strengths of all three gouges to increase. Limited data suggest that different polytypes of a given serpentine mineral have similar strengths; thus deformation-induced changes in polytype should not affect fault strength. At 25??C, the chrysotile gouge has a transition from velocity strengthening at low velocities to velocity weakening at high velocities, consistent with previous studies. At temperatures up to ???200??C, however, chrysotile strength is essentially independent of velocity at low velocities. Overall, chrysotile has a restricted range of velocity-strengthening behavior that migrates to higher velocities with increasing temperature. Less information on velocity dependence is available for the lizardite and antigorite gouges, but their behavior is consistent with that outlined for chrysotile. The marked changes in velocity dependence and strength of chrysotile with heating underscore the hazards of using room temperature data to predict fault behavior at depth. The velocity behavior at elevated temperatures does not rule out serpentinite as a cause of aseismic slip, but in the presence of a hydrostatic fluid pressure gradient, all varieties of serpentine are too strong to explain the apparent weakness of faults such

  15. High-resolution chromosomal microarrays in prenatal diagnosis significantly increase diagnostic power.

    PubMed

    Oneda, Beatrice; Baldinger, Rosa; Reissmann, Regina; Reshetnikova, Irina; Krejci, Pavel; Masood, Rahim; Ochsenbein-Kölble, Nicole; Bartholdi, Deborah; Steindl, Katharina; Morotti, Denise; Faranda, Marzia; Baumer, Alessandra; Asadollahi, Reza; Joset, Pascal; Niedrist, Dunja; Breymann, Christian; Hebisch, Gundula; Hüsler, Margaret; Mueller, René; Prentl, Elke; Wisser, Josef; Zimmermann, Roland; Rauch, Anita

    2014-06-01

    The objective of this study was to determine for the first time the reliability and the diagnostic power of high-resolution microarray testing in routine prenatal diagnostics. We applied high-resolution chromosomal microarray testing in 464 cytogenetically normal prenatal samples with any indication for invasive testing. High-resolution testing revealed a diagnostic yield of 6.9% and 1.6% in cases of fetal ultrasound anomalies and cases of advanced maternal age (AMA), respectively, which is similar to previous studies using low-resolution microarrays. In three (0.6%) additional cases with an indication of AMA, an aberration in susceptibility risk loci was detected. Moreover, one case (0.2%) showed an X-linked aberration in a female fetus, a finding relevant for future family planning. We found the rate of cases, in which the parents had to be tested for interpretation of unreported copy number variants (3.7%), and the rate of remaining variants of unknown significance (0.4%) acceptably low. Of note, these findings did not cause termination of pregnancy after expert genetic counseling. The 0.4% rate of confined placental mosaicism was similar to that observed by conventional karyotyping and notably involved a case of placental microdeletion. High-resolution prenatal microarray testing is a reliable technique that increases diagnostic yield by at least 17.3% when compared with conventional karyotyping, without an increase in the frequency of variants of uncertain significance. © 2014 John Wiley & Sons, Ltd.

  16. Effect of Off-Axis Screw Insertion, Insertion Torque, and Plate Contouring on Locked Screw Strength

    PubMed Central

    Gallagher, Bethany; Silva, Matthew J.; Ricci, William M.

    2015-01-01

    Objectives This study quantifies the effects of insertion torque, off-axis screw angulation, and plate contouring on the strength of locking plate constructs. Methods Groups of locking screws (n = 6–11 screws) were inserted at 50%, 100%, 150%, and 200% of the manufacturer-recommended torque (3.2 Nm) into locking compression plates at various angles: orthogonal (control), 5-degree angle off-axis, and 10-degree angle off-axis. Screws were loaded to failure by a transverse force (parallel to the plate) either in the same (“+”) or opposite direction (“−”) of the initial screw angulation. Separately, locking plates were bent to 5 and 10-degree angles, with the bend apex at a screw hole. Locking screws inserted orthogonally into the apex hole at 100% torque were loaded to failure. Results Orthogonal insertion resulted in the highest average load to failure, 2577 ± 141 N (range, 2413–2778 N), whereas any off-axis insertion significantly weakened constructs (165–1285 N, at 100% torque) (P < 0.05). For “+” loading, torque beyond 100% did not increase strength, but 50% torque reduced screw strength (P < 0.05). Loading in the “−” direction consistently resulted in higher strengths than “+” loading (P < 0.05). Plate contouring of 5-degree angle did not significantly change screw strength compared with straight plates but contouring of 10-degree angle significantly reduced load to failure (P < 0.05). Conclusions To maximize the screw plate interface strength, locking screws should be inserted without cross-threading. The mechanical stability of locked screws is significantly compromised by loose insertion, off-axis insertion, or severe distortion of the locking mechanism. PMID:24343255

  17. Significantly Increasing the Ductility of High Performance Polymer Semiconductors through Polymer Blending.

    PubMed

    Scott, Joshua I; Xue, Xiao; Wang, Ming; Kline, R Joseph; Hoffman, Benjamin C; Dougherty, Daniel; Zhou, Chuanzhen; Bazan, Guillermo; O'Connor, Brendan T

    2016-06-08

    Polymer semiconductors based on donor-acceptor monomers have recently resulted in significant gains in field effect mobility in organic thin film transistors (OTFTs). These polymers incorporate fused aromatic rings and have been designed to have stiff planar backbones, resulting in strong intermolecular interactions, which subsequently result in stiff and brittle films. The complex synthesis typically required for these materials may also result in increased production costs. Thus, the development of methods to improve mechanical plasticity while lowering material consumption during fabrication will significantly improve opportunities for adoption in flexible and stretchable electronics. To achieve these goals, we consider blending a brittle donor-acceptor polymer, poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] (PCDTPT), with ductile poly(3-hexylthiophene). We found that the ductility of the blend films is significantly improved compared to that of neat PCDTPT films, and when the blend film is employed in an OTFT, the performance is largely maintained. The ability to maintain charge transport character is due to vertical segregation within the blend, while the improved ductility is due to intermixing of the polymers throughout the film thickness. Importantly, the application of large strains to the ductile films is shown to orient both polymers, which further increases charge carrier mobility. These results highlight a processing approach to achieve high performance polymer OTFTs that are electrically and mechanically optimized.

  18. Comparisons of eccentric knee flexor strength and asymmetries across elite, sub-elite and school level cricket players

    PubMed Central

    Chalker, Wade J.; Shield, Anthony J.; Opar, David A.

    2016-01-01

    Background. There has been a continual increase in injury rates in cricket, with hamstring strain injuries (HSIs) being the most prominent. Eccentric knee flexor weakness and bilateral asymmetries are major modifiable risk factors for future HSIs. However, there is a lack of data relating to eccentric hamstring strength in cricket at any skill level. The objective of this study was to compare eccentric knee flexor strength and bilateral asymmetries in elite, sub-elite and school level cricket players; and to determine if playing position and limb role influenced these eccentric knee flexor strength indices. Methods. Seventy four male cricket players of three distinct skill levels performed three repetitions of the Nordic hamstring exercise on the experimental device. Strength was assessed as the absolute and relative mean peak force output for both limbs, with bilateral asymmetries. Differences in mean peak force outputs between skill level and playing positions were measured. Results. There were no significant differences between elite, sub-elite and school level athletes for mean peak force and bilateral asymmetries of the knee flexors. There were no significant differences observed between bowler’s and batter’s mean peak force and bilateral asymmetries. There were no significant differences between front and back limb mean peak force outputs. Discussion. Skill level, playing position and limb role appeared to have no significant effect on eccentric knee flexor strength and bilateral asymmetries. Future research should seek to determine whether eccentric knee flexor strength thresholds are predictive of HSIs in cricket and if specific eccentric knee flexor strengthening can reduce these injuries. PMID:26925310

  19. Comparisons of eccentric knee flexor strength and asymmetries across elite, sub-elite and school level cricket players.

    PubMed

    Chalker, Wade J; Shield, Anthony J; Opar, David A; Keogh, Justin W L

    2016-01-01

    Background. There has been a continual increase in injury rates in cricket, with hamstring strain injuries (HSIs) being the most prominent. Eccentric knee flexor weakness and bilateral asymmetries are major modifiable risk factors for future HSIs. However, there is a lack of data relating to eccentric hamstring strength in cricket at any skill level. The objective of this study was to compare eccentric knee flexor strength and bilateral asymmetries in elite, sub-elite and school level cricket players; and to determine if playing position and limb role influenced these eccentric knee flexor strength indices. Methods. Seventy four male cricket players of three distinct skill levels performed three repetitions of the Nordic hamstring exercise on the experimental device. Strength was assessed as the absolute and relative mean peak force output for both limbs, with bilateral asymmetries. Differences in mean peak force outputs between skill level and playing positions were measured. Results. There were no significant differences between elite, sub-elite and school level athletes for mean peak force and bilateral asymmetries of the knee flexors. There were no significant differences observed between bowler's and batter's mean peak force and bilateral asymmetries. There were no significant differences between front and back limb mean peak force outputs. Discussion. Skill level, playing position and limb role appeared to have no significant effect on eccentric knee flexor strength and bilateral asymmetries. Future research should seek to determine whether eccentric knee flexor strength thresholds are predictive of HSIs in cricket and if specific eccentric knee flexor strengthening can reduce these injuries.

  20. Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach

    NASA Astrophysics Data System (ADS)

    Bobaru, F.

    2007-07-01

    The peridynamic method is used here to analyse the effect of van der Waals forces on the mechanical behaviour and strength and toughness properties of three-dimensional nanofibre networks under imposed stretch deformation. The peridynamic formulation allows for a natural inclusion of long-range forces (such as van der Waals forces) by considering all interactions as 'long-range'. We use van der Waals interactions only between different fibres and do not need to model individual atoms. Fracture is introduced at the microstructural (peridynamic bond) level for the microelastic type bonds, while van der Waals bonds can reform at any time. We conduct statistical studies to determine a certain volume element for which the network of randomly oriented fibres becomes quasi-isotropic and insensitive to statistical variations. This qualitative study shows that the presence of van der Waals interactions and of heterogeneities (sacrificial bonds) in the strength of the bonds at the crosslinks between fibres can help in increasing the strength and toughness of the nanofibre network. Two main mechanisms appear to control the deformation of nanofibre networks: fibre reorientation (caused by deformation and breakage) and fibre accretion (due to van der Waals interaction). Similarities to the observed toughness of polymer adhesive in the abalone shell composition are explained. The author would like to dedicate this work to the 60th anniversary of Professor Subrata Mukherjee.

  1. The influence of four dual-cure resin cements and surface treatment selection to bond strength of fiber post

    PubMed Central

    Liu, Chang; Liu, Hong; Qian, Yue-Tong; Zhu, Song; Zhao, Su-Qian

    2014-01-01

    In this study, we evaluate the influence of post surface pre-treatments on the bond strength of four different cements to glass fiber posts. Eighty extracted human maxillary central incisors and canines were endodontically treated and standardized post spaces were prepared. Four post pre-treatments were tested: (i) no pre-treatment (NS, control), (ii) sandblasting (SA), (iii) silanization (SI) and (iv) sandblasting followed by silanization (SS). Per pre-treatment, four dual-cure resin cements were used for luting posts: DMG LUXACORE Smartmix Dual, Multilink Automix, RelyX Unicem and Panavia F2.0. All the specimens were subjected to micro push-out test. Two-way analysis of variance and Tukey post hoc tests were performed (α=0.05) to analyze the data. Bond strength was significantly affected by the type of resin cement, and bond strengths of RelyX Unicem and Panavia F2.0 to the fiber posts were significantly higher than the other cement groups. Sandblasting significantly increased the bond strength of DMG group to the fiber posts. PMID:24177170

  2. Upper-body strength gains from different modes of resistance training in women who are underweight and women who are obese.

    PubMed

    Mayhew, Jerry L; Smith, Abbie E; Arabas, Jana L; Roberts, B Scott

    2010-10-01

    The purpose of this study was to determine the degree of upper-body strength gained by college women who are underweight and those who are obese using different modes of resistance training. Women who were underweight (UWW, n = 93, weight = 49.3 ± 4.5 kg) and women who were obese (OBW, n = 73, weight = 94.0 ± 15.1 kg) were selected from a larger cohort based on body mass index (UWW ≤ 18.5 kg·m⁻²; OBW ≥ 30 kg·m⁻²). Subjects elected to train with either free weights (FW, n = 38), supine vertical bench press machine (n = 52) or seated horizontal bench press machine (n = 76) using similar linear periodization resistance training programs 3× per week for 12 weeks. Each participant was assessed for upper-body strength using FWs (general) and machine weight (specific) 1 repetition maximum bench press before and after training. Increases in general and mode-specific strength were significantly greater for OBW (5.2 ± 5.1 and 9.6 ± 5.1 kg, respectively) than for UWW (3.5 ± 4.1 and 7.2 ± 5.2 kg, respectively). General strength gains were not significantly different among the training modes. Mode-specific gains were significantly greater (p < 0.05) than general strength gains for all groups. In conclusion, various resistance training modes may produce comparable increases in general strength but will register greater gains if measured using the specific mode employed for training, regardless of the weight category of the individual.

  3. Tassel Removal Positively Affects Biomass Production Coupled with Significantly Increasing Stem Digestibility in Switchgrass

    PubMed Central

    Zhao, Chunqiao; Fan, Xifeng; Hou, Xincun; Zhu, Yi; Yue, Yuesen; Zhang, Shuang; Wu, Juying

    2015-01-01

    In this study, tassels of Cave-in-Rock (upland) and Alamo (lowland) were removed at or near tassel emergence to explore its effects on biomass production and quality. Tassel-removed (TR) Cave-in-Rock and Alamo both exhibited a significant (P<0.05) increase in plant heights (not including tassel length), tiller number, and aboveground biomass dry weight (10% and 12%, 30% and 13%, 13% and 18%, respectively by variety) compared to a control (CK) treatment. Notably, total sugar yields of TR Cave-in-Rock and Alamo stems increased significantly (P<0.05 or 0.01) by 19% and 19%, 21% and 14%, 52% and 18%, respectively by variety, compared to those of control switchgrass under 3 treatments by direct enzymatic hydrolysis (DEH), enzymatic hydrolysis after 1% NaOH pretreatment (EHAL) and enzymatic hydrolysis after 1% H2SO4 pretreatment (EHAC). These differences were mainly due to significantly (P<0.05 or 0.01) higher cellulose content, lower cellulose crystallinity indexes (CrI) caused by higher arabinose (Ara) substitution in xylans, and lower S/G ratio in lignin. However, the increases of nitrogen (N) and sulphur (S) concentration negatively affects the combustion quality of switchgrass aboveground biomass. This work provides information for increasing biomass production and quality in switchgrass and also facilitates the inhibition of gene dispersal of switchgrass in China. PMID:25849123

  4. Surface topography and bond strengths of feldspathic porcelain prepared using various sandblasting pressures.

    PubMed

    Moravej-Salehi, Elham; Moravej-Salehi, Elahe; Valian, Azam

    2016-11-01

    The purpose of this study was to determine the bond strength of composite resin to feldspathic porcelain and its surface topography after sandblasting at different pressures. In this in vitro study, 68 porcelain disks were fabricated and randomly divided into four groups of 17. The porcelain surface in group 1 was etched with hydrofluoric acid. Groups 2, 3, and 4 were sandblasted at 2, 3 and 4 bars pressure, respectively. Surface topography of seven samples in each of the four groups was examined by a scanning electron microscope (SEM). The remaining 40 samples received the same silane agent, bonding agent, and composite resin and they were then subjected to 5000 thermal cycles and evaluated for shear bond strength. Data were analyzed using one-way anova. The mode of failure was determined using stereomicroscope and SEM. The highest shear bond strength was seen in group 4. however, statistically significant differences were not seen between the groups (P = 0.780). The most common mode of failure was cohesive in porcelain. The SEM showed different patterns of hydrofluoric acid etching and sandblasting. Increasing the sandblasting pressure increased the surface roughness of feldspathic porcelain but no difference in bond strength occurred. © 2015 Wiley Publishing Asia Pty Ltd.

  5. The role of self-control strength in the development of state anxiety in test situations.

    PubMed

    Englert, C; Bertrams, A

    2013-06-01

    Self-control strength may affect state anxiety because emotion regulation is impaired in individuals whose self-control strength has been temporarily depleted. Increases in state anxiety were expected to be larger for participants with depleted compared to nondepleted self-control strength, and trait test anxiety should predict increases in state anxiety more strongly if self-control strength is depleted. In a sample of 76 university students, trait test anxiety was assessed, self-control strength experimentally manipulated, and state anxiety measured before and after the announcement of a test. State anxiety increased after the announcement. Trait test anxiety predicted increases in state anxiety only in students with depleted self-control strength, suggesting that increased self-control strength may be useful for coping with anxiety.

  6. Nutritional Supplements for Strength Power Athletes

    NASA Astrophysics Data System (ADS)

    Wilborn, Colin

    Over the last decade research involving nutritional supplementation and sport performance has increased substantially. Strength and power athletes have specific needs to optimize their performance. Nutritional supplementation cannot be viewed as a replacement for a balanced diet but as an important addition to it. However, diet and supplementation are not mutually exclusive, nor does one depend on the other. Strength and power athletes have four general areas of supplementation needs. First, strength athletes need supplements that have a direct effect on performance. The second group of supplements includes those that promote recovery. The third group comprises the supplements that enhance immune function. The last group of supplements includes those that provide energy or have a direct effect on the workout. This chapter reviews the key supplements needed to optimize the performance and training of the strength athlete.

  7. Upper-body progressive resistance training improves strength and household physical activity performance in women attending cardiac rehabilitation.

    PubMed

    Coke, Lola A; Staffileno, Beth A; Braun, Lynne T; Gulanick, Meg

    2008-01-01

    The purpose of this study was to examine the impact of moderate-intensity, progressive, upper-body resistance training (RT) on muscle strength and perceived performance of household physical activities (HPA) among women in cardiac rehabilitation. The 10-week, pretest-posttest, experiment randomized women to either usual care (UC) aerobic exercise or RT. Muscle strength for 5 upper-body RT exercises (chest press, shoulder press, biceps curl, lateral row, and triceps extension) was measured using the 1-Repetition Maximum Assessment. The RT group progressively increased weight lifted using 40%, 50%, and 60% of obtained 1-Repetition Maximum Assessment at 3-week intervals. Perceived performance of HPA was measured with the Kimble Household Activities Scale. The RT group (n = 16, mean age 64 +/- 11) significantly increased muscle strength in all 5 exercises in comparison with the UC group (n = 14, mean age 65 +/- 10) (chest press, 18% vs 11%; shoulder press, 24% vs 14%; biceps curl, 21% vs 12%; lateral row, 32% vs 9%; and triceps extension, 28% vs 20%, respectively). By study end, Household Activities Scale scores significantly increased (F = 13.878, P = .001) in the RT group (8.75 +/- 3.19 vs 11.25 +/- 2.14), whereas scores in the UC group decreased (8.60 +/- 3.11 vs 6.86 +/- 4.13). Progressive upper-body RT in women shows promise as an effective tool to increase muscle strength and improve the ability to perform HPA after a cardiac event. Beginning RT early after a cardiac event in a monitored cardiac rehabilitation environment can maximize the strengthening benefit.

  8. Mixing with propylene glycol enhances the bond strength of mineral trioxide aggregate to dentin.

    PubMed

    Salem Milani, Amin; Froughreyhani, Mohammad; Charchi Aghdam, Saeed; Pournaghiazar, Fatemeh; Asghari Jafarabadi, Mohammad

    2013-11-01

    Mixing mineral trioxide aggregate (MTA) with different proportions of propylene glycol (PG) improves its handling property. The aim of this study was to evaluate the effect of PG on MTA-dentin push-out bond strength. Seventy-five 2-mm-thick midroot sections were prepared from single-rooted human extracted teeth. The lumen of each slice was enlarged with Gates-Glidden burs. The slices were randomly divided into 3 groups (n = 25). In each group, 0.3 mL of the liquid was mixed with 1 g MTA (Angelus, Londrina, Brazil). The liquid vehicles used in groups 1-3 were 100% distilled water (DW), 20% PG-80% DW, and 100% PG, respectively. After incubation, the push-out strength of the samples was measured using a universal testing machine. The samples were then cut in halves and examined under a stereomicroscope to determine the failure pattern. One-way analysis of variance followed by the Tukey post hoc test was used to compare the push-out strength among groups. There were statistically significant differences between groups (P < .001). The push-out strength in group 1 (DW) was significantly lower than groups 2 and 3 (P < .001 and P = .022, respectively). However, there was no significant difference between groups 2 (DW-PG) and 3 (PG). Mixing MTA with PG increased its push-out bond strength to dentin. In the present study, the most suitable ratio was 80% DW-20% PG. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Strength of Gamma Rhythm Depends on Normalization

    PubMed Central

    Ray, Supratim; Ni, Amy M.; Maunsell, John H. R.

    2013-01-01

    Neuronal assemblies often exhibit stimulus-induced rhythmic activity in the gamma range (30–80 Hz), whose magnitude depends on the attentional load. This has led to the suggestion that gamma rhythms form dynamic communication channels across cortical areas processing the features of behaviorally relevant stimuli. Recently, attention has been linked to a normalization mechanism, in which the response of a neuron is suppressed (normalized) by the overall activity of a large pool of neighboring neurons. In this model, attention increases the excitatory drive received by the neuron, which in turn also increases the strength of normalization, thereby changing the balance of excitation and inhibition. Recent studies have shown that gamma power also depends on such excitatory–inhibitory interactions. Could modulation in gamma power during an attention task be a reflection of the changes in the underlying excitation–inhibition interactions? By manipulating the normalization strength independent of attentional load in macaque monkeys, we show that gamma power increases with increasing normalization, even when the attentional load is fixed. Further, manipulations of attention that increase normalization increase gamma power, even when they decrease the firing rate. Thus, gamma rhythms could be a reflection of changes in the relative strengths of excitation and normalization rather than playing a functional role in communication or control. PMID:23393427

  10. Strength of Wet and Dry Montmorillonite

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Lockner, D. A.; Moore, D. E.

    2015-12-01

    Montmorillonite, an expandable smectite clay, is a common mineral in fault zones to a depth of around 3 km. Its low strength relative to other common fault gouge minerals is important in many models of fault rheology. However, the coefficient of friction is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. For instance, in some reported studies, samples were either partially saturated or possibly over pressured, leading to wide variability in reported shear strength. In this study, the coefficient of friction, μ, of both saturated and oven-dried (at 150°C) Na-montmorillonite was measured at normal stresses up to 680 MPa at room temperature and shortening rates from 1.0 to 0.01 μm/s. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure in the clay layers. Coefficients of friction are reported after 8 mm of axial displacement in a triaxial apparatus on saw-cut samples containing a layer of montmorillonite gouge, with either granite or sandstone driving blocks. For saturated samples, μ increased from around 0.1 at low pressure to 0.25 at the highest test pressures. In contrast, values for oven-dried samples decreased asymptotically from approximately 0.78 at 10 MPa normal stress to around 0.45 at 400-680 MPa. While wet and dry strengths approached each other with increasing effective normal stress, wet strength remained only about half of the dry strength at 600 MPa effective normal stress. The increased coefficient of friction can be correlated with a reduction in the number of loosely bound lubricating surface water layers on the clay platelets due to applied normal stress under saturated conditions. The steady-state rate dependence of friction, a-b, was positive and dependent on normal stress. For saturated samples, a-b increased linearly with applied normal stress from ~0 to 0.004, while for dry samples a-b decreased with increasing normal

  11. Effects of Swiss-ball core strength training on strength, endurance, flexibility, and balance in sedentary women.

    PubMed

    Sekendiz, Betül; Cuğ, Mutlu; Korkusuz, Feza

    2010-11-01

    The purpose of this study was to investigate the effects of Swiss-ball core strength training on trunk extensor (abdominal)/flexor (lower back) and lower limb extensor (quadriceps)/flexor (hamstring) muscular strength, abdominal, lower back and leg endurance, flexibility and dynamic balance in sedentary women (n = 21; age = 34 ± 8.09; height = 1.63 ± 6.91 cm; weight = 64 ± 8.69 kg) trained for 45 minutes, 3 d·wk-1 for 12 weeks. Results of multivariate analysis revealed significant difference (p ≤ 0.05) between pre and postmeasures of 60 and 90° s trunk flexion/extension, 60 and 240° s-1 lower limb flexion/extension (Biodex Isokinetic Dynamometer), abdominal endurance (curl-up test), lower back muscular endurance (modified Sorensen test), lower limb endurance (repetitive squat test), lower back flexibility (sit and reach test), and dynamic balance (functional reach test). The results support the fact that Swiss-ball core strength training exercises can be used to provide improvement in the aforementioned measures in sedentary women. In conclusion, this study provides practical implications for sedentary individuals, physiotherapists, strength and conditioning specialists who can benefit from core strength training with Swiss balls.

  12. An investigation of leg and trunk strength and reaction times of hard-style martial arts practitioners.

    PubMed

    Donovan, Oliver O; Cheung, Jeanette; Catley, Maria; McGregor, Alison H; Strutton, Paul H

    2006-01-01

    The purpose of this study was to investigate trunk and knee strength in practitioners of hard-style martial arts. An additional objective was to examine reaction times in these participants by measuring simple reaction times (SRT), choice reaction times (CRT) and movement times (MT). Thirteen high-level martial artists and twelve sedentary participants were tested under isokinetic and isometric conditions on an isokinetic dynamometer. Response and movement times were also measured in response to simple and choice auditory cues. Results indicated that the martial arts group generated a greater body-weight adjusted peak torque with both legs at all speeds during isokinetic extension and flexion, and in isometric extension but not flexion. In isokinetic and isometric trunk flexion and extension, martial artists tended to have higher peak torques than controls, but they were not significantly different (p > 0.05). During the SRT and CRT tasks the martial artists were no quicker in lifting their hand off a button in response to the stimulus [reaction time (RT)] but were significantly faster in moving to press another button [movement time (MT)]. In conclusion, the results reveal that training in a martial art increases the strength of both the flexors and extensors of the leg. Furthermore, they have faster movement times to auditory stimuli. These results are consistent with the physical aspects of the martial arts. Key PointsMartial artists undertaking hard-style martial arts have greater strength in their knee flexor and extensor muscles as tested under isokinetic testing. Under isometric testing conditions they have stronger knee extensors only.The trunk musculature is generally higher under both conditions of testing in the martial artists, although not significantly.The total reaction times of the martial artists to an auditory stimulus were significantly faster than the control participants. When analysed further it was revealed that the decrease in reaction time

  13. An Investigation Of Leg And Trunk Strength And Reaction Times Of Hard-Style Martial Arts Practitioners

    PubMed Central

    Donovan, Oliver O; Cheung, Jeanette; Catley, Maria; McGregor, Alison H.; Strutton, Paul H.

    2006-01-01

    The purpose of this study was to investigate trunk and knee strength in practitioners of hard-style martial arts. An additional objective was to examine reaction times in these participants by measuring simple reaction times (SRT), choice reaction times (CRT) and movement times (MT). Thirteen high-level martial artists and twelve sedentary participants were tested under isokinetic and isometric conditions on an isokinetic dynamometer. Response and movement times were also measured in response to simple and choice auditory cues. Results indicated that the martial arts group generated a greater body-weight adjusted peak torque with both legs at all speeds during isokinetic extension and flexion, and in isometric extension but not flexion. In isokinetic and isometric trunk flexion and extension, martial artists tended to have higher peak torques than controls, but they were not significantly different (p > 0.05). During the SRT and CRT tasks the martial artists were no quicker in lifting their hand off a button in response to the stimulus [reaction time (RT)] but were significantly faster in moving to press another button [movement time (MT)]. In conclusion, the results reveal that training in a martial art increases the strength of both the flexors and extensors of the leg. Furthermore, they have faster movement times to auditory stimuli. These results are consistent with the physical aspects of the martial arts. Key Points Martial artists undertaking hard-style martial arts have greater strength in their knee flexor and extensor muscles as tested under isokinetic testing. Under isometric testing conditions they have stronger knee extensors only. The trunk musculature is generally higher under both conditions of testing in the martial artists, although not significantly. The total reaction times of the martial artists to an auditory stimulus were significantly faster than the control participants. When analysed further it was revealed that the decrease in reaction

  14. Effect of Various Laser Surface Treatments on Repair Shear Bond Strength of Aged Silorane-Based Composite

    PubMed Central

    Alizadeh Oskoee, Parnian; Savadi Oskoee, Siavash; Rikhtegaran, Sahand; Pournaghi-Azar, Fatemeh; Gholizadeh, Sarah; Aleyasin, Yasaman; Kasrae, Shahin

    2017-01-01

    Introduction: Successful repair of composite restorations depends on a strong bond between the old composite and the repair composite. This study sought to assess the repair shear bond strength of aged silorane-based composite following surface treatment with Nd:YAG, Er,Cr:YSGG and CO2 lasers. Methods: Seventy-six Filtek silorane composite cylinders were fabricated and aged by 2 months of water storage at 37°C. The samples were randomly divided into 4 groups (n=19) of no surface treatment (group 1) and surface treatment with Er,Cr:YSGG (group 2), Nd:YAG (group 3) and CO2 (group 4) lasers. The repair composite was applied and the shear bond strength was measured. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey posthoc test. Prior to the application of the repair composite, 2 samples were randomly selected from each group and topographic changes on their surfaces following laser irradiation were studied using a scanning electron microscope (SEM). Seventeen other samples were also fabricated for assessment of cohesive strength of composite. Results: The highest and the lowest mean bond strength values were 8.99 MPa and 6.69 MPa for Er,Cr:YSGG and control groups, respectively. The difference in the repair bond strength was statistically significant between the Er,Cr:YSGG and other groups. Bond strength of the control, Nd:YAG and CO2 groups was not significantly different. The SEM micrographs revealed variable degrees of ablation and surface roughness in laser-treated groups. Conclusion: Surface treatment with Er,Cr:YSGG laser significantly increase the repair bond strength of aged silorane-based composite resin. PMID:29071025

  15. Effect of gap distance on tensile strength of preceramic base metal solder joints.

    PubMed

    Fattahi, Farnaz; Motamedi, Milad

    2011-01-01

    In order to fabricate prostheses with high accuracy and durability, soldering techniques have been introduced to clinical dentistry. However, these prostheses always fail at their solder joints. The purpose of this study was to evaluate the effect of gap distance on the tensile strength of base metal solder joints. Based on ADA/ISO 9693 specifications for tensile test, 40 specimens were fabricated from a Ni-Cr alloy and cut at the midpoint of 3-mm diameter bar and placed at desired positions by a specially designed device. The specimens were divided into four groups of 10 samples according to the desired solder gap distance: Group1: 0.1mm; Group2: 0.25mm; Group3: 0.5mm; and Group4: 0.75mm. After soldering, specimens were tested for tensile strength by a universal testing machine at a cross-head speed of 0.5mm/min with a preload of 10N. The mean tensile strength values of the groups were 162, 307.8, 206.1 and 336.7 MPa, respectively. The group with 0.75-mm gap had the highest and the group with 0.1-mm gap had the lowest tensile strength. Bonferroni test showed that Group1 and Group4 had statistically different values (P=0.023), but the differences between other groups were not sig-nificant at a significance level of 0.05. There was no direct relationship between increasing soldering gap distance and tensile strength of the solder joints.

  16. Comparison of Flexural Strength of Different CAD/CAM PMMA-Based Polymers.

    PubMed

    Alp, Gülce; Murat, Sema; Yilmaz, Burak

    2018-01-28

    To compare the flexural strength of different computer-aided design/computer-aided manufacturing (CAD/CAM) poly(methyl methacrylate)-based (PMMA) polymers and conventional interim resin materials after thermocycling. Rectangular-shaped specimens (n = 15, for each material) (25 × 2 × 2 mm 3 ) were fabricated from 3 CAD/CAM PMMA-based polymers (Telio CAD [T]; M-PM-Disc [M]; Polident-PMMA [P]), 1 bis-acrylate composite resin (Protemp 4 [PT]), and 1 conventional PMMA (ArtConcept Artegral Dentine [C]) according to ISO 10477:2004 Standards (Dentistry-Polymer-Based Crown and Bridge Materials). The specimens were subjected to 10,000 thermocycles (5 to 55°C). Three-point flexural strength of the specimens was tested in a universal testing machine at a 1.0 mm/min crosshead speed, and the flexural strength data (σ) were calculated (MPa). The flexural strength values were statistically analyzed using 1-way ANOVA, and Tukey HSD post-hoc test for multiple comparisons (α = 0.05). Flexural strength values ranged between 66.1 ± 13.1 and 131.9 ± 19.8 MPa. There were significant differences among the flexural strengths of tested materials, except for between T and P CAD/CAM PMMA-based polymers (p > 0.05). CAD/CAM PMMA-based polymer M had the highest flexural strength and conventional PMMA had the lowest (p < 0.05). CAD/CAM PMMA-based T and P polymers had significantly higher flexural strength than the bis-acrylate composite resin (p < 0.05), and conventional PMMA (p < 0.0001), and significantly lower flexural strength compared to CAD/CAM PMMA-based M (p < 0.05). The flexural strength of CAD/CAM PMMA-based polymers was greater than the flexural strength of bis-acrylate composite resin, which had a greater flexural strength compared to conventional PMMA resin. © 2018 by the American College of Prosthodontists.

  17. Gender differences in rotation of the shank during single-legged drop landing and its relation to rotational muscle strength of the knee.

    PubMed

    Kiriyama, Shinya; Sato, Haruhiko; Takahira, Naonobu

    2009-01-01

    Increased shank rotation during landing has been considered to be one of the factors for noncontact anterior cruciate ligament injuries in female athletes. There have been no known gender differences in rotational knee muscle strength, which is expected to inhibit exaggerated shank rotation. Women have less knee external rotator strength than do men. Lower external rotator strength is associated with increased internal shank rotation at the time of landing. Controlled laboratory study. One hundred sixty-nine healthy young subjects (81 female and 88 male; age, 17.0 +/- 1.0 years) volunteered to participate in this study. The subjects performed single-legged drop landings from a 20-cm height. Femoral and shank kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the joint angles around the knee (flexion/extension, valgus/varus, and internal/external rotation) were calculated. The maximal isometric rotational muscle strength of the knee was measured at 30 degrees of knee flexion in a supine position using a dynamometer. The female subjects had significantly less external shank rotation strength than did the male subjects (P < .001). Female subjects also exhibited significantly greater peak shank internal rotation angles than did males during landing (P < .05). Moderate but significant association was found between the maximum shank external rotation strength and the peak shank internal rotation angle during landing (r = -0.322, P < .01). Female subjects tended to have poor shank external rotator strength. This may lead to large shank internal rotation movement during the single-legged drop landing. Improving strength training of the external rotator muscle may help decrease the rates of anterior cruciate ligament injury in female athletes.

  18. Investigation of the strength of shielded and unshielded underwater electrical cables

    NASA Astrophysics Data System (ADS)

    Glowe, D. E.; Arnett, S. L.

    1981-09-01

    The mechanical properties of shielded and unshielded submarine cables (MIL-C-915/8E) were investigated to determine the effect of shielding on cable life, performance, and reliability. Ten cables (five shielded and five unshielded) were selected for laboratory evaluation. A mission profile was developed to establish the mechanical stress limits that cables must endure in service and a test sequence designed to measure tensile strength, flexural abrasion endurance, crush resistance, creep under static tension, and performance in a hull-stuffing tube. The results of this program showed that: (1) DSS-2 cable does not have adequate tensile strength and should have a strength member added. DSS-3 and larger cables have adequate tensile strength with or without the shield; (2) Unshielded DSS-3 type cable does not perform satisfactorily in hull-stuffing tubes; (3) Shielding is not required to meet mission profile specifications for cable crush or flexural abrasion resistance; (4) Construction parameters other than shielding can significantly affect mechanical performance of cable; (5) Unshielded cable construction can result in increased reliability since it permits a thicker single-jacket construction; and (6) Unshielded cable construction can reduce the cost of cable by 8 to 20 percent.

  19. Lower limb strength in professional soccer players: profile, asymmetry, and training age.

    PubMed

    Fousekis, Konstantinos; Tsepis, Elias; Vagenas, George

    2010-01-01

    Kicking and cutting skills in soccer are clearly unilateral, require asymmetrical motor patterns and lead to the development of asymmetrical adaptations in the musculoskeletal function of the lower limbs. Assuming that these adaptations constitute a chronicity-dependent process, this study examined the effects of professional training age (PTA) on the composite strength profile of the knee and ankle joint in soccer players. One hundred soccer players (n=100) with short (5-7 years), intermediate (8-10 years) and long (>11 years) PTA were tested bilaterally for isokinetic concentric and eccentric strength of the knee and ankle muscles. Knee flexion-extension was tested concentrically at 60°, 180° and 300 °/sec and eccentrically at 60° and 180 °/sec. Ankle dorsal and plantar flexions were tested at 60 °/sec for both the concentric and eccentric mode of action. Bilaterally averaged muscle strength [(R+L)/2] increased significantly from short training age to intermediate and stabilized afterwards. These strength adaptations were mainly observed at the concentric function of knee extensors at 60°/sec (p = 0. 023), knee flexors at 60°/sec (p = 0.042) and 180°/sec (p = 0.036), and ankle plantar flexors at 60o/sec (p = 0.044). A linear trend of increase in isokinetic strength with PTA level was observed for the eccentric strength of knee flexors at 60°/sec (p = 0.02) and 180°/sec (p = 0.03). Directional (R/L) asymmetries decreased with PTA, with this being mainly expressed in the concentric function of knee flexors at 180°/sec (p = 0.04) and at 300 °/sec (p = 0.03). These findings confirm the hypothesis of asymmetry in the strength adaptations that take place at the knee and ankle joint of soccer players mainly along with short and intermediate PTA. Players with a longer PTA seem to adopt a more balanced use of their lower extremities to cope with previously developed musculoskeletal asymmetries and possibly reduce injury risk. This has certain implications

  20. Mechanical Properties of Heat Affected Zone of High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.